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Gaussian random variables



Gaussian random variables

The pdf of a Gaussian or normal random variable with mean p and
standard deviation o is given by




Gaussian random variables
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Linear transformation of Gaussian

If x is a Gaussian random variable with mean p and standard deviation o,
then for any a,b € R

y:=ax-+b

is a Gaussian random variable with mean au + b and standard deviation
ElKy



Proof

Let a > 0 (proof for a < 0 is very similar), to

Fy (y)
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Let a > 0 (proof for a < 0 is very similar), to

Fy(y)=P(y<y)
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Proof

Let a > 0 (proof for a < 0 is very similar), to

Fy(y)=P(y<y)
P(ax+b<y
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change of variables w = ax + b



Proof

Let a > 0 (proof for a < 0 is very similar), to

1 (x—p)?
a _ (x=p
/ e 202 dx
— o0 210

y 1 _ (w—ap—b)? )
= / e 222 dw change of variables w = ax + b
—oo V2mao

Differentiating with respect to y:




Central limit theorem

Let x1, X2, X3, ...be a sequence of iid random variables with mean u and
bounded variance o2
The sequence of averages a1, as, as, ...is defined as

i
1
a; .= — E X
1 i . J
J=1



Central limit theorem

The sequence b1, by, bs, ...
b,‘ = \ﬂ(a,- — u)

converges in distribution to a Gaussian random variable with mean 0 and
variance o

For any x € R

1 x2
lim f, (x) = e 202
i—00 2mo

For large i the theorem suggests that the average a; is approximately
Gaussian with mean y and variance o /+/n



iid exponential A = 2, i = 102
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iid exponential A =2, i = 103
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iid exponential A =2, i = 10*
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iid geometric p = 0.4, i = 102
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iid geometric p = 0.4, i = 103
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iid geometric p = 0.4, i = 10*
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Gaussian random vectors



Gaussian random vector

A Gaussian random vector X is a random vector with joint pdf

()= ep -t (x— ) T (i
40 = e (3 (=T ()

where i € R" is the mean and X € R™*" the covariance matrix



Uncorrelation implies independence

If the covariance matrix is diagonal,

0% 0
0 o2
Y, — 2
0 O

the entries are independent



Proof

o »-qw‘ =

NQN‘ = O

Al v
:I\.)._l
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Linear transformations

Let X be a Gaussian random vector of dimension n with mean i and
covariance matrix

For any matrix A € R™*" and beR™ Y = AX + b is Gaussian with
mean Aji + b and covariance matrix AY A"



Subvectors are also Gaussian




Direction of iid standard Gaussian vectors

If the covariance matrix of a Gaussian vector X is /, then X is isotropic
It does not favor any direction

For any orthogonal matrix UX has the same distribution
(Gaussian with mean U0 = 0 and covariance matrix UIUT = UUT = 1)



Magnitude of iid standard Gaussian vectors

In low dimensions joint pdf is mostly concentrated around the origin

High dimensions?

IIX|13 = S5, X[i]? is a x? (chi squared) random variable with k degrees
of freedom



Magnitude of iid standard Gaussian vectors
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Variance
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Variance
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Variance
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Variance

k
E((Zx[ ]2 )
k  k
E (ZZ?[ ]”L/]Z)
P
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B k—1 k
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Variance

H H = ((Zk:X[]z )

k k
=B (Z > A ]2*[/]2)

i=1 j=1

k k
=ZZ (X[1P<00°)
; B k—1 k
:Z (x[1]* +2ZZE %[i1%) E (X[]°)

=3k + k(k — 1) 4th moment of standard Gaussian equals 3



Variance

E(@x[]z )

k k
B (Z > A ]2*L/]2)

i=1 j=1

k k
=ZZ (X[1P<00°)
; B k—1 k
:Z (x[1]* +2ZZE %[i1%) E (X[]°)

= 3k + k(k — 1) 4th moment of standard Gaussian equals 3
= k(k +2)



Variance

Var (|[K3) = B <(H>?H§)2> -E (H’?”g)Q

= k(k +2) — k?> =2k

Relative standard deviation around mean scales as /2/k



Non-asymptotic tail bound

Let X be an iid standard Gaussian random vector of dimension k

For any e > 0

2

— 2|12 >1 - —
P(k(l e)<\|x]|2<k(1+e))_1 =



Markov's inequality

Let x be a nonnegative random variable

For any positive constant a > 0,

E(x)

P(x>a) <
(x2a) < =




Proof

Define the indicator variable 1>,

X—aly>32>0



Proof

Define the indicator variable 1>,

Xx—aly>3>0

E(x) > aE(1x>5) = aP (x> a)



Chebyshev bound

)
Let y == [[X][3,

P(ly — k| > ke)



Chebyshev bound

)
Let y == [[X][3,

P(ly — k| > ke) = P ((y = E(y))* = K*¢)



Chebyshev bound
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< 202 by Markov's inequality
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Chebyshev bound

)
Let y == [[X][3,

P(ly — k| > ke) = P ((y = E(y))* = K*¢)
E(y-EW))

k2e?
_ Var (y)
k22

- 2

T ke?

< by Markov's inequality



Non-asymptotic Chernoff tail bound

Let X be an iid standard Gaussian random vector of dimension k

For any ¢ > 0

ke
P k(1= < RIE < k(1+9) 21200 (- )



Proof

Lety = H)?||§ The result is implied by

P(y> k(1+6)) < exp (—

P(y <k(lL—e¢)) <exp

7 N



Proof

Fix t >0

P(y > a)



Proof

Fix t >0

P(y > a) = P(exp(ty) > exp(at))



Proof

Fix t >0

P(y > a) = P(exp(ty) > exp(at))
< exp (—at) E (exp (ty)) by Markov's inequality



Proof

Fix t >0

P(y > a) = P(exp(ty) > exp(at))
< exp (—at) E (exp (ty)) by Markov's inequality
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Proof

Fix t >0

P(y > a) = P(exp(ty) > exp(at))
< exp (—at) E (exp (ty)) by Markov's inequality

k
<exp(—at) E (exp <Z tx;2>>

k
< exp (—at) H E (exp (txi2)) by independence of xq, ..., X
i=1



Proof

Lemma (by direct integration)

1
v1-—-2t

E (exp (tx2)) =

Equivalent to controlling higher-order moments since




Proof

Fix t >0

k

P(y > a) < exp(—at) HE (exp (txi2))

i=1
_ exp(—at)
(1-20)%



Proof

Setting a := k (1 + ¢) and

we conclude

ke

P(y>k(1+6) < (1+0 2exp <_>

2
< p( kez)
X S
o 8



Projection onto a fixed subspace

Ps, Z

P, Aly _ 11Psa A,

0.007 = - >
[1X] X1l

=0.043

(not a coincidence)



Projection onto a fixed subspace

Let S be a k-dimensional subspace of R” and Z € R" a vector of iid
standard Gaussian noise

||Ps Z]|5 is a x? random variable with k degrees of freedom

It has the same distribution as

where x1, ..., X, are iid standard Gaussians.



Proof

Let UUT be a projection matrix for S, where the columns of U € R"*k
are orthonormal:

=12
HPSsz



Proof

Let UUT be a projection matrix for S, where the columns of U € R"*k
are orthonormal:

s =[|juuTe]|




Proof

Let UUT be a projection matrix for S, where the columns of U € R"*k
are orthonormal:

2
1PsZ]|5 = UUTz2

=ZTuuTuu'z
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Let UUT be a projection matrix for S, where the columns of U € R"*k
are orthonormal:
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Proof

Let UUT be a projection matrix for S, where the columns of U € R"*k
are orthonormal:

2
1Ps 2|3 = ||UUTZ ,

=ZTuuTuu'z
=7ZTuU’z

—w'w




Proof

Let UUT be a projection matrix for S, where the columns of U € R"*k
are orthonormal:

2

=12
HPSsz

vu'z ,
=ZTuuTuU’z
=7ZTuU"7
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k
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Proof

Let UUT be a projection matrix for S, where the columns of U € R"*k
are orthonormal:

2
1Ps 2|3 = ||UUTZ ,
=ZTuuTuu'z
=7ZTuU’z

—w'w

k
=> Wi
i=1

—

w := UTZ is Gaussian with mean zero and covariance matrix

Ya=UTT:U



Proof

Let UUT be a projection matrix for S, where the columns of U € R"*k
are orthonormal:

2
1Ps 2|3 = ||UUTZ ,
=ZTuuTuu'z
=7ZTuU’z

—w'w

k
=> Wi
i=1

—

w := UTZ is Gaussian with mean zero and covariance matrix

Ya=UTT:U
=UTu=1



Non-asymptotic Chernoff tail bound

Let X be an iid standard Gaussian random vector of dimension k

For any ¢ > 0

ke
P k(1= < RIE < k(1+9) 21200 (- )



Projection onto a fixed subspace

Let S be a k-dimensional subspace of R” and Z € R" a vector of
iid standard Gaussian noise

For any € > 0

k2
P(k(1—¢) <|[Psll, < k(1+€)>1-2exp (_86)



Randomized projections



Dimensionality reduction

v

PCA preserves the most energy (¢2 norm)

v

Problem 1: Computationally expensive

v

Problem 2: Depends on all of the data

v

(Possible) Solution: Just project randomly!

v

For a data set xj, %, ... € R™ compute AxXj, A%, ... € R™ where
A € R**" (k < n) has iid standard Gaussian entries



Fixed vector

Let A be a a x b matrix with iid standard Gaussian entries

If ¥ € RP is a deterministic vector with unit ¢> norm, then AV is an
a-dimensional iid standard Gaussian vector

Proof:



Fixed vector

Let A be a a x b matrix with iid standard Gaussian entries

If ¥ € RP is a deterministic vector with unit ¢> norm, then AV is an
a-dimensional iid standard Gaussian vector

Proof:
(AV)[i], 1 <i < ais Gaussian with mean zero and variance

Var (AT7) = 77%a, 7



Non-asymptotic Chernoff tail bound

Let X be an iid standard Gaussian random vector of dimension k

For any ¢ > 0

ke
P k(1= < RIE < k(1+9) 21200 (- )



Fixed vector

Let A be a a x b matrix with iid standard Gaussian entries

For any v € RP with unit norm and any € € (0,1)

Val—o) < [|Ad]l, < Val + )

with probability at least 1 — 2 exp (—ae?/8)



Johnson-Lindenstrauss lemma

Let A be a kK x n matrix with iid standard Gaussian entries
Let X1, ..., X, € R" be any fixed set of p deterministic vectors

For any pair X;, x; and any € € (0, 1)

1 2 ’
1—¢)l|xi — x5 < Ax: — —=AX|| <(14+¢€)||X— X
(-5 -5l < || 7% - Az <ol -3E
with probability at least % as long as
16 og (p)

k >

ji 62



Proof

Aim: Control action of A the normalized differences

I
Vij = 5=
IR =%l

Our event of interest is the intersection of the events

& ={kl- <|AGIE<k(l+a} 1<i<p i<j<p



Fixed vector

Let A be a a x b matrix with iid standard Gaussian entries

For any v € R® with unit norm and any ¢ € (0, 1)
Va(l—e¢) <||AVl, < Va(l+e)

with probability at least 1 — 2 exp (—362/8)

This implies

2 16 log (p)

S
ho]



Union bound

For any events S1,55,...,S, in a probability space

P (U,'S,') < i P (5,) .
i=1



Proof

Number of events &; equals (5) = p(p—1) /2

By the union bound

)



Proof

Number of events &; equals (5) = p(p—1) /2

By the union bound

{ERRT



Proof

Number of events &; equals (5) = p(p—1) /2

By the union bound

{09

>1-) P(£)
i



Proof

Number of events &; equals (5) = p(p—1) /2

By the union bound

o) o
> 1—ZP(5,§-)

p(p—1) 2

>1-—



Proof

Number of events &; equals (5) = p(p—1) /2

By the union bound

o) o
> 1—ZP(5,§-)

p(p—1) 2

>1-—

27



Dimensionality reduction for visualization

Motivation: Visualize high-dimensional features projected onto 2D or 3D
Example:
Seeds from three different varieties of wheat: Kama, Rosa and Canadian

Features:

> Area

» Perimeter

» Compactness

» Length of kernel

» Width of kernel

» Asymmetry coefficient

» Length of kernel groove



Dimensionality reduction for visualization

Randomized projection PCA
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Nearest neighbors in random subspace
Nearest neighbors classification (Algorithm 4.2 in Lecture Notes 1)
computes n distances in R™ for each new example
Cost: O (nmp) for p examples

Idea: Use a k x m iid standard Gaussian matrix to project onto
k-dimensional space beforehand

Cost:
» kmn operations to project training set
» kmp operations to project test set

» knp to perform nearest-neighbor classification

Much faster!



Face recognition

Training set: 360 64 x 64 images from 40 different subjects (9 each)
Test set: 1 new image from each subject

We model each image as a vector in R*%% (m = 4096)

To classify we:

1. Project onto random a k-dimensional subspace

2. Apply nearest-neighbor classification using the ¢>-norm distance in R¥



Performance
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SVD of a random matrix



Singular values of n x k matrix, k = 100
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Singular values of n x k matrix, k = 1000
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Singular values of a Gaussian matrix

Intuitively as n grows
A~U(v/nl)VT =/nUVT,

iid Gaussian vectors in high dimensions are almost orthogonal



Singular values of a Gaussian matrix

Let A be a n x k matrix with iid standard Gaussian entries such that
n>k

For any fixed € > 0, the singular values of A satisfy

\/n(l—e)gakgalg n(].—l—e)

with probability at least 1 — 1/k as long as

64k 12
n> ——log —
€ €



Proof

Recall that

1= max ||AX]|,
{lIRll;=1| xRk}

k= min_|IA%]],
{lIxll;=1 | xRk}

so the bounds are equivalent to

n(l—e) <[|A7|3 < n(l+e)



Proof

Idea: Use union bound over all unit-norm vectors
Problem: They are infinite!

Solution: Use union bound on a finite set, then show that this is enough



e-net

An e-net of a set X C R¥ is a subset A, C X such that for every vector
X € X there exists y € N, for which

IX=¥ll; <e

The covering number N/ (X, €) of a set X’ at scale € is the minimal
cardinality of an e-net of X






Covering number of a sphere

The covering number of the n-dimensional sphere S¥K~1 at scale € satisfies

N (8e) < <2t6>k < (z)k




Covering number of a sphere

» Initialize NV, to the empty set
» Choose a point X € S~ such that

X = yl||, > € foranyye N,

» Add X to N, until there are no points in S¥~! that are ¢ away from
any point in N,






Covering number of a sphere

Vol (B]l.(+e/2 (6)) > Vol (Ui‘eNer/z ()?))



Covering number of a sphere

Vol (Blf+e/2 <6)) > Vol (Ui‘eNer/z ()?))
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Covering number of a sphere

Vol (Blf+e/2 <6)) > Vol (Ui‘eNeBép ()?))
= |Ne| Vol <Bé(/2 (6 )

By multivariable calculus

Vol (B,k (6)) — rk Vol (B'f (6))



Covering number of a sphere

Vol (Blf+e/2 <6)) > Vol (Ui‘eNeBép ()?))
= |Ne| Vol <Bé(/2 (6 )

Vol (B,k (6)) — rk Vol (B'f (6))

so we conclude

(1+€/2)5 > |Ne| (¢/2)"



Proof

1. We prove the bounds
n(l—e) < ||AV|3 < n(1+e)

where €2 :=¢/2 on an €1 := ¢/4 net of the sphere

2. We show that by the triangle inequality, this implies that the bounds
hold on all the sphere



Fixed vector

Let A be a a x b matrix with iid standard Gaussian entries

For any v € R® with unit norm and any € € (0,1
y

Val—o) < [|Ad]l, < Val + )

with probability at least 1 — 2 exp (—ae?/8)



Bound on the €;-net

We define the event
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Bound on the €;-net

We define the event

12 =12 =12
Erer = {n (1= e2) 1713 < |IAVI3 < n(1+e2) 17113}

P(Uren,80) < D P (€5,

VEN
< VAP (£5,)



Bound on the €;-net

We define the event

5\7,62 =

—

(2 =12 =12
Ml—QNMESHAMQS"U+QHWM}

p (UVGNel §,52> < P (5\%62>



Bound on the €;-net

We define the event

Ever

I
—

(2 =12 =12
Ml—QNMESHAMQS"U+QHWM}

p (UVGNel g§,62> < P (5\%62>



Upper bound on the sphere

Let x € Sk1

There exists vV € N (X, €1) such that ||X — V||, < ¢/4

[|AX]]
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Upper bound on the sphere

Let x € Sk1

There exists vV € N (X, €1) such that ||X — V||, < ¢/4

[|AX]]y < [[AV][; + [|A (X = V)]
€ S .
<+n (1 + E) +[|A (X = V)], assuming Ugen,, €5, holds

<V (1+3) +ollk =7l



Upper bound on the sphere

Let x € Sk1

There exists vV € N (X, €1) such that ||X — V||, < ¢/4

[|AX]]y < [[AV][; + [|A (X = V)]
<+/n (1 + ) +[|A (X = V)], assuming Ugen,, €5, holds
<V (1+3) +ollk =7l
< \f(l—l— ) 0’16



Upper bound on the sphere

i)+

o1 Sﬁ<1+6/2)

1—¢/4

:\/ﬁ<1+6— 6511__;))
< Vn(1+¢)




Lower bound on the sphere

[|AX]],



Lower bound on the sphere
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Lower bound on the sphere

[AX]]; = [|AV][, = [[A (X = V)]l
€ L :
>/n (1 - 5) — A (X = V)|, assuming Ugen,, €5, holds

V,€2



Lower bound on the sphere

<y

[AX]]; = [|AV][, = [[A (X = V)]l
€ L :
>/n (1 - 5) — A (X = V)|, assuming Ugen,, €5, holds

V,e2
€ o o
Zﬁ(l—i) — o1 |[X =V,



Lower bound on the sphere

<y

1AS]], = [| A7, ~ [|A (% = D)l
€ [
>V (1-3) — A=),

€ = N
Zﬁ(l—i)—UIHX_VHz

>V (1-5) - gvn(i+0)

assuming U\?E/\@lg

C
v,€2

holds



Lower bound on the sphere

<y

[AX]]; = [|AV][, = [[A (X = V)]l
€ L :
>/n (1 - 5) — A (X = V)|, assuming Ugen,, €5, holds



Randomized SVD



Fast SVD

For a matrix M € R™*" which is approximately rank k:

1. Choose a small oversampling parameter p (usually 5 or slightly larger).

2. Find a matrix U € R™<(k+P) with k + p orthonormal columns that
approximately span the column space of M

3. Compute W € R(+P)X1 defined by W := UTM

4. Compute the SVD of W = Uy Sw VV71;

5. Output U := (UUW);J;/(, S = (SW)l:k,lzk and V := (VW):,I:k as the
SVD of M



Fast SVD

For a matrix M € R™*" which is approximately rank k:

1. Choose a small oversampling parameter p (usually 5 or slightly larger).

2. Find a matrix U € R™<(k+P) with k + p orthonormal columns that
approximately span the column space of M

3. Compute W € RKTP)X defined by W := UTM O (kmn)

4. Compute the SVD of W = Uy Sw VV71; @ (kzn)

5. Output U := (UUW);J;/(, S = (SW)l:k,lzk and V := (VW):,I:k as the
SVD of M

Complexity of regular SVD is O (mnmin {m, n})



Fast SVD
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Fast SVD

The method works if (1) M is rank k and (2) U spans the column space
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Fast SVD

The method works if (1) M is rank k and (2) U spans the column space
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= UUpwSw V),

where U := UUW is an m x k matrix with orthonormal columns



Fast SVD
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Fast SVD

The method works if (1) M is rank k and (2) U spans the column space

M=UU"M
= Uw
= UUwSw V),
where U := UUW is an m x k matrix with orthonormal columns

UTu = UL UTUUy

= Ul Uy =1
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Power iterations

For approximately low-rank matrices performance depends on gap
between oy and oy 1

The gap can be increased by power iterations
This method is only used when computing U
The input is
~ \9
M= (MMT)" M
q
- (UMsﬁAUAZ) UmSm VT

= UnS3ULUMS3 UL - UyS3, UL Uy V),

= Un STt v



Problem

How do we estimate the column space of a low-rank matrix?

» Project onto random subspace with slightly larger dimension

» Select random columns



Randomized column-space approximation

For a matrix M € R™*" which is approximately rank k:

1. Create an n x (k + p) iid standard Gaussian matrix A, where p is a
small integer (e.g. 5)

2. Compute the m x (k + p) matrix B = MA
3. Orthonormalize the columns of B and output them as a matrix

0 e Rmx(k-‘:—p).

4. Apply power iterations if necessary.
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Randomized column-space approximation

B =MA
= UnSu VA
= UnSmC

> If M is low rank Cis a k x (k + p) iid standard Gaussian matrix

» Otherwise, C is a min {m, n} x (k + p) iid standard Gaussian matrix



Randomized SVD of a video

Video with 160 1080 x 1920 frames

v

v

We interpret each frame as a vector in R20:736,000

v

Matrix formed by these vectors is approximately low rank

v

Regular SVD takes 12 seconds (281.1 seconds if we take 691 frames)

v

Fast SVD with randomized-column-space estimate takes 5.8 seconds
(10.4 seconds for 691 frames) to obtain a rank-10 approximation

(g=2,p=7)



True singular values
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Left singular vector approximation

y “



Random column selection

For a matrix M € R™*" which is approximately rank k:

1. Select a random subset of column indices Z := {iy, iz,
k' > k

2. Orthonormalize the submatrix corresponding to Z:

MI = [M:7i1 M:7i2 M:,ik/]

and output them as a matrix U € R™<K

.. .,ik/} with



Random column selection

(Possible) Problem: If right singular vectors are sparse, this will not work

Mz = UySm(Vm) 1
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Example

05 —0.5
05 05 |[6.9282 0][0 0577 0577 0.577

_ T __
M = Unv SmVin = 05 —05 [ 0 6] [1 0 0 0

05 05



Example, Z = {2, 3}

0.5
— 9] 6.2082 [0.577 0.577]
= o5 6 : 577] .

0.5

Mz =

NN NN
NN NN



Randomized SVD of a video

v

Video with 160 1080 x 1920 frames

v

We interpret each frame as a vector in R20:736,000

v

Matrix formed by these vectors is approximately low rank

v

Regular SVD takes 12 seconds (281.1 seconds if we take 691 frames)

v

Fast SVD with random-column-selection estimate takes 5.2 seconds to
obtain a rank-10 approximation (k" = 17)



Left singular vector approximation

9 j



Singular value approximation
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