Randomness

DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis

 http://www.cims.nyu.edu/~cfgranda/pages/OBDA_fall17/index.htmlCarlos Fernandez-Granda

Gaussian random variables

Gaussian random vectors

Randomized projections

SVD of a random matrix

Randomized SVD

Gaussian random variables

The pdf of a Gaussian or normal random variable with mean μ and standard deviation σ is given by

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

Gaussian random variables

Linear transformation of Gaussian

If \mathbf{x} is a Gaussian random variable with mean μ and standard deviation σ, then for any $a, b \in \mathbb{R}$

$$
\mathbf{y}:=a \mathbf{x}+b
$$

is a Gaussian random variable with mean $a \mu+b$ and standard deviation $|a| \sigma$

Proof

Let $a>0$ (proof for $a<0$ is very similar), to
$F_{y}(y)$

Proof

Let $a>0$ (proof for $a<0$ is very similar), to
$F_{\mathbf{y}}(y)=\mathrm{P}(\mathbf{y} \leq y)$

Proof

Let $a>0$ (proof for $a<0$ is very similar), to

$$
\begin{aligned}
F_{\mathbf{y}}(y) & =\mathrm{P}(\mathbf{y} \leq y) \\
& =\mathrm{P}(a \mathbf{x}+b \leq y)
\end{aligned}
$$

Proof

Let $a>0$ (proof for $a<0$ is very similar), to

$$
\begin{aligned}
F_{\mathbf{y}}(y) & =\mathrm{P}(\mathbf{y} \leq y) \\
& =\mathrm{P}(a \mathbf{x}+b \leq y) \\
& =\mathrm{P}\left(\mathbf{x} \leq \frac{y-b}{a}\right)
\end{aligned}
$$

Proof

Let $a>0$ (proof for $a<0$ is very similar), to

$$
\begin{aligned}
F_{\mathbf{y}}(y) & =\mathrm{P}(\mathrm{y} \leq y) \\
& =\mathrm{P}(a \mathrm{x}+b \leq y) \\
& =\mathrm{P}\left(\mathrm{x} \leq \frac{y-b}{a}\right) \\
& =\int_{-\infty}^{\frac{y-b}{a}} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \mathrm{~d} x
\end{aligned}
$$

Proof

Let $a>0$ (proof for $a<0$ is very similar), to

$$
\begin{aligned}
F_{\mathrm{y}}(y) & =\mathrm{P}(\mathrm{y} \leq y) \\
& =\mathrm{P}(a \mathrm{x}+b \leq y) \\
& =\mathrm{P}\left(\mathrm{x} \leq \frac{y-b}{a}\right) \\
& =\int_{-\infty}^{\frac{y-b}{a}} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \mathrm{~d} x \\
& =\int_{-\infty}^{y} \frac{1}{\sqrt{2 \pi} a \sigma} e^{-\frac{(w-a \mu-b)^{2}}{2 a^{2} \sigma^{2}}} \mathrm{~d} w \quad \text { change of variables } w=a x+b
\end{aligned}
$$

Proof

Let $a>0$ (proof for $a<0$ is very similar), to

$$
\begin{aligned}
F_{\mathbf{y}}(y) & =\mathrm{P}(\mathrm{y} \leq y) \\
& =\mathrm{P}(a \mathrm{x}+b \leq y) \\
& =\mathrm{P}\left(\mathrm{x} \leq \frac{y-b}{a}\right) \\
& =\int_{-\infty}^{\frac{y-b}{a}} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \mathrm{~d} x
\end{aligned}
$$

$$
=\int_{-\infty}^{y} \frac{1}{\sqrt{2 \pi} a \sigma} e^{-\frac{(w-a \mu-b)^{2}}{2 a^{2} \sigma^{2}}} d w \quad \text { change of variables } w=a x+b
$$

Differentiating with respect to y :

$$
f_{y}(y)=\frac{1}{\sqrt{2 \pi} a \sigma} e^{-\frac{(w-a \mu-b)^{2}}{2 a^{2} \sigma^{2}}}
$$

Central limit theorem

Let $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \ldots$ be a sequence of iid random variables with mean μ and bounded variance σ^{2}

The sequence of averages $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \ldots$ is defined as

$$
\mathbf{a}_{i}:=\frac{1}{i} \sum_{j=1}^{i} \mathbf{x}_{j}
$$

Central limit theorem

The sequence $\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}, \ldots$

$$
\mathbf{b}_{i}:=\sqrt{i}\left(\mathbf{a}_{i}-\mu\right)
$$

converges in distribution to a Gaussian random variable with mean 0 and variance σ^{2}

For any $x \in \mathbb{R}$

$$
\lim _{i \rightarrow \infty} f_{\mathbf{b}_{i}}(x):=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{x^{2}}{2 \sigma^{2}}}
$$

For large i the theorem suggests that the average \mathbf{a}_{i} is approximately Gaussian with mean μ and variance σ / \sqrt{n}
iid exponential $\lambda=2, i=10^{2}$

iid exponential $\lambda=2, i=10^{3}$

iid exponential $\lambda=2, i=10^{4}$

iid geometric $p=0.4, i=10^{2}$

iid geometric $p=0.4, i=10^{3}$

iid geometric $p=0.4, i=10^{4}$

Histogram of heights

Gaussian random variables

Gaussian random vectors

Randomized projections

SVD of a random matrix

Randomized SVD

Gaussian random vector

A Gaussian random vector \vec{x} is a random vector with joint pdf

$$
f_{\vec{x}}(\vec{x})=\frac{1}{\sqrt{(2 \pi)^{n}|\Sigma|}} \exp \left(-\frac{1}{2}(\vec{x}-\vec{\mu})^{T} \Sigma^{-1}(\vec{x}-\vec{\mu})\right)
$$

where $\vec{\mu} \in \mathbb{R}^{n}$ is the mean and $\Sigma \in \mathbb{R}^{n \times n}$ the covariance matrix

Uncorrelation implies independence

If the covariance matrix is diagonal,

$$
\Sigma_{\overrightarrow{\mathrm{x}}}=\left[\begin{array}{cccc}
\sigma_{1}^{2} & 0 & \cdots & 0 \\
0 & \sigma_{2}^{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \sigma_{n}^{2}
\end{array}\right]
$$

the entries are independent

Proof

$$
\begin{aligned}
& \Sigma_{\overrightarrow{\mathrm{x}}}^{-1}=\left[\begin{array}{cccc}
\frac{1}{\sigma_{1}^{2}} & 0 & \cdots & 0 \\
0 & \frac{1}{\sigma_{2}^{2}} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \frac{1}{\sigma_{n}^{2}}
\end{array}\right] \\
& |\Sigma|=\prod_{i=1}^{n} \sigma_{i}^{2}
\end{aligned}
$$

Proof

$$
f_{\vec{x}}(\vec{x})
$$

Proof

$$
f_{\vec{x}}(\vec{x})=\frac{1}{\sqrt{(2 \pi)^{n}|\Sigma|}} \exp \left(-\frac{1}{2}(\vec{x}-\vec{\mu})^{T} \Sigma^{-1}(\vec{x}-\vec{\mu})\right)
$$

Proof

$$
\begin{aligned}
f_{\overrightarrow{\mathrm{x}}}(\vec{x}) & =\frac{1}{\sqrt{(2 \pi)^{n}|\Sigma|}} \exp \left(-\frac{1}{2}(\vec{x}-\vec{\mu})^{T} \Sigma^{-1}(\vec{x}-\vec{\mu})\right) \\
& =\prod_{i=1}^{n} \frac{1}{\sqrt{(2 \pi)} \sigma_{i}} \exp \left(-\frac{\left(\vec{x}_{i}-\mu_{i}\right)^{2}}{2 \sigma_{i}^{2}}\right)
\end{aligned}
$$

Proof

$$
\begin{aligned}
f_{\overrightarrow{\mathrm{x}}}(\vec{x}) & =\frac{1}{\sqrt{(2 \pi)^{n}|\Sigma|}} \exp \left(-\frac{1}{2}(\vec{x}-\vec{\mu})^{T} \Sigma^{-1}(\vec{x}-\vec{\mu})\right) \\
& =\prod_{i=1}^{n} \frac{1}{\sqrt{(2 \pi)} \sigma_{i}} \exp \left(-\frac{\left(\vec{x}_{i}-\mu_{i}\right)^{2}}{2 \sigma_{i}^{2}}\right) \\
& =\prod_{i=1}^{n} f_{\vec{x}_{i}}\left(\vec{x}_{i}\right)
\end{aligned}
$$

Linear transformations

Let \vec{x} be a Gaussian random vector of dimension n with mean $\vec{\mu}$ and covariance matrix Σ

For any matrix $A \in \mathbb{R}^{m \times n}$ and $\vec{b} \in \mathbb{R}^{m} \vec{Y}=A \overrightarrow{\mathrm{x}}+\vec{b}$ is Gaussian with mean $A \vec{\mu}+\vec{b}$ and covariance matrix $A \Sigma A^{T}$

Subvectors are also Gaussian

Direction of iid standard Gaussian vectors

If the covariance matrix of a Gaussian vector \vec{x} is I, then \vec{x} is isotropic
It does not favor any direction
For any orthogonal matrix $U \vec{x}$ has the same distribution
(Gaussian with mean $U \overrightarrow{0}=\overrightarrow{0}$ and covariance matrix $U I U^{T}=U U^{T}=I$)

Magnitude of iid standard Gaussian vectors

In low dimensions joint pdf is mostly concentrated around the origin
High dimensions?
$\|\overrightarrow{\mathrm{x}}\|_{2}^{2}=\sum_{i=1}^{k} \overrightarrow{\mathrm{x}}[i]^{2}$ is a χ^{2} (chi squared) random variable with k degrees of freedom

Magnitude of iid standard Gaussian vectors

Mean

$$
E(\|\| x)
$$

Mean

$$
E\left(\|\overrightarrow{\mathrm{x}}\|_{2}^{2}\right)=\mathrm{E}\left(\sum_{i=1}^{k} \overrightarrow{\mathrm{x}}[i]^{2}\right)
$$

Mean

Mean

$$
\begin{aligned}
\mathrm{E}\left(\|\overrightarrow{\mathrm{x}}\|_{2}^{2}\right) & =\mathrm{E}\left(\sum_{i=1}^{k} \overrightarrow{\mathrm{x}}[i]^{2}\right) \\
& =\sum_{i=1}^{k} \mathrm{E}\left(\overrightarrow{\mathrm{x}}[i]^{2}\right) \\
& =k
\end{aligned}
$$

Variance

$\mathrm{E}\left(\left(\|\overrightarrow{\mathrm{x}}\|_{2}^{2}\right)^{2}\right)$

Variance

$$
\mathrm{E}\left(\left(\|\overrightarrow{\mathrm{x}}\|_{2}^{2}\right)^{2}\right)=\mathrm{E}\left(\left(\sum_{i=1}^{k} \overrightarrow{\mathrm{x}}[]^{2}\right)^{2}\right)
$$

Variance

$$
\begin{aligned}
\mathrm{E}\left(\left(\|\overrightarrow{\mathrm{x}}\|_{2}^{2}\right)^{2}\right) & =\mathrm{E}\left(\left(\sum_{i=1}^{k} \vec{x}[j]^{2}\right)^{2}\right) \\
& \left.=\mathrm{E}\left(\sum_{i=1}^{k} \sum_{j=1}^{k} \overrightarrow{\mathrm{x}}[i]\right]^{2} \mathrm{x}[j]^{2}\right)
\end{aligned}
$$

Variance

$$
\begin{aligned}
\mathrm{E}\left(\left(\|\overrightarrow{\mathrm{x}}\|_{2}^{2}\right)^{2}\right) & =\mathrm{E}\left(\left(\sum_{i=1}^{k} \overrightarrow{\mathrm{x}}[i]^{2}\right)^{2}\right) \\
& =\mathrm{E}\left(\sum_{i=1}^{k} \sum_{j=1}^{k} \overrightarrow{\mathrm{x}}[i]^{2} \overrightarrow{\mathrm{x}}[j]^{2}\right) \\
& =\sum_{i=1}^{k} \sum_{j=1}^{k} \mathrm{E}\left(\overrightarrow{\mathrm{x}}[i]^{2} \overrightarrow{\mathrm{x}}[j]^{2}\right)
\end{aligned}
$$

Variance

$$
\begin{aligned}
\mathrm{E}\left(\left(\|\overrightarrow{\mathrm{x}}\|_{2}^{2}\right)^{2}\right) & =\mathrm{E}\left(\left(\sum_{i=1}^{k} \overrightarrow{\mathrm{x}}[i]^{2}\right)^{2}\right) \\
& =\mathrm{E}\left(\sum_{i=1}^{k} \sum_{j=1}^{k} \overrightarrow{\mathrm{x}}[i]^{2} \overrightarrow{\mathrm{x}}[\mathrm{j}]^{2}\right) \\
& =\sum_{i=1}^{k} \sum_{j=1}^{k} \mathrm{E}\left(\overrightarrow{\mathrm{x}}[]^{2} \overrightarrow{\mathrm{x}}[\mathrm{j}]^{2}\right) \\
& =\sum_{i=1}^{k} \mathrm{E}\left(\overrightarrow{\mathrm{x}}[]^{4}\right)+2 \sum_{i=1}^{k-1} \sum_{j=i}^{k} \mathrm{E}\left(\overrightarrow{\mathrm{x}}[i]^{2}\right) \mathrm{E}\left(\overrightarrow{\mathrm{x}}[j]^{2}\right)
\end{aligned}
$$

Variance

$$
\begin{aligned}
\mathrm{E}\left(\left(\|\overrightarrow{\mathrm{x}}\|_{2}^{2}\right)^{2}\right) & =\mathrm{E}\left(\left(\sum_{i=1}^{k} \overrightarrow{\mathrm{x}}[i]^{2}\right)^{2}\right) \\
& =\mathrm{E}\left(\sum_{i=1}^{k} \sum_{j=1}^{k} \overrightarrow{\mathrm{x}}[i]^{2} \overrightarrow{\mathrm{x}}[j]^{2}\right) \\
& =\sum_{i=1}^{k} \sum_{j=1}^{k} \mathrm{E}\left(\overrightarrow{\mathrm{x}}[i]^{2} \overrightarrow{\mathrm{x}}[j]^{2}\right) \\
& =\sum_{i=1}^{k} \mathrm{E}\left(\overrightarrow{\mathrm{x}}[i]^{4}\right)+2 \sum_{i=1}^{k-1} \sum_{j=i}^{k} \mathrm{E}\left(\overrightarrow{\mathrm{x}}[i]^{2}\right) \mathrm{E}\left(\overrightarrow{\mathrm{x}}[j]^{2}\right) \\
& =3 k+k(k-1) \quad \text { 4th moment of standard Gaussian equals } 3
\end{aligned}
$$

Variance

$$
\begin{aligned}
\mathrm{E}\left(\left(\|\overrightarrow{\mathrm{x}}\|_{2}^{2}\right)^{2}\right) & =\mathrm{E}\left(\left(\sum_{i=1}^{k} \overrightarrow{\mathrm{x}}[i]^{2}\right)^{2}\right) \\
& =\mathrm{E}\left(\sum_{i=1}^{k} \sum_{j=1}^{k} \overrightarrow{\mathrm{x}}[i]^{2} \overrightarrow{\mathrm{x}}[j]^{2}\right) \\
& =\sum_{i=1}^{k} \sum_{j=1}^{k} \mathrm{E}\left(\overrightarrow{\mathrm{x}}[i]^{2} \overrightarrow{\mathrm{x}}[j]^{2}\right) \\
& =\sum_{i=1}^{k} \mathrm{E}\left(\overrightarrow{\mathrm{x}}[i]^{4}\right)+2 \sum_{i=1}^{k-1} \sum_{j=i}^{k} \mathrm{E}\left(\overrightarrow{\mathrm{x}}[i]^{2}\right) \mathrm{E}\left(\overrightarrow{\mathrm{x}}[j]^{2}\right) \\
& =3 k+k(k-1) \quad 4 \text { th moment of standard Gaussian equals } 3 \\
& =k(k+2)
\end{aligned}
$$

Variance

$$
\begin{aligned}
\operatorname{Var}\left(\|\overrightarrow{\mathbf{x}}\|_{2}^{2}\right) & =\mathrm{E}\left(\left(\|\overrightarrow{\mathbf{x}}\|_{2}^{2}\right)^{2}\right)-\mathrm{E}\left(\|\overrightarrow{\mathbf{x}}\|_{2}^{2}\right)^{2} \\
& =k(k+2)-k^{2}=2 k
\end{aligned}
$$

Relative standard deviation around mean scales as $\sqrt{2 / k}$

Non-asymptotic tail bound

Let \vec{x} be an iid standard Gaussian random vector of dimension k

For any $\epsilon>0$

$$
P\left(k(1-\epsilon)<\|\overrightarrow{\mathrm{x}}\|_{2}^{2}<k(1+\epsilon)\right) \geq 1-\frac{2}{k \epsilon^{2}}
$$

Markov's inequality

Let x be a nonnegative random variable

For any positive constant $a>0$,

$$
P(x \geq a) \leq \frac{E(x)}{a}
$$

Proof

Define the indicator variable $1_{x \geq a}$

$$
x-a 1_{x \geq a} \geq 0
$$

Proof

Define the indicator variable $1_{\mathrm{x} \geq a}$

$$
x-a 1_{x \geq a} \geq 0
$$

$$
\mathrm{E}(\mathrm{x}) \geq a \mathrm{E}\left(1_{\mathrm{x} \geq a}\right)=a \mathrm{P}(\mathrm{x} \geq a)
$$

Chebyshev bound

$$
\text { Let } \mathbf{y}:=\|\overrightarrow{\mathbf{x}}\|_{2}^{2}
$$

$$
\mathrm{P}(|y-k| \geq k \epsilon)
$$

Chebyshev bound

Let $\mathbf{y}:=\|\overrightarrow{\mathbf{x}}\|_{2}^{2}$,

$$
\mathrm{P}(|\mathrm{y}-k| \geq k \epsilon)=\mathrm{P}\left((\mathrm{y}-\mathrm{E}(\mathrm{y}))^{2} \geq k^{2} \epsilon^{2}\right)
$$

Chebyshev bound

$$
\text { Let } \mathbf{y}:=\|\overrightarrow{\mathbf{x}}\|_{2}^{2}
$$

$$
\begin{aligned}
\mathrm{P}(|\mathbf{y}-k| \geq k \epsilon) & =\mathrm{P}\left((\mathbf{y}-\mathrm{E}(\mathbf{y}))^{2} \geq k^{2} \epsilon^{2}\right) \\
& \leq \frac{\mathrm{E}\left((\mathbf{y}-\mathrm{E}(\mathbf{y}))^{2}\right)}{k^{2} \epsilon^{2}} \quad \text { by Markov's inequality }
\end{aligned}
$$

Chebyshev bound

Let $\mathbf{y}:=\|\overrightarrow{\mathbf{x}}\|_{2}^{2}$,

$$
\begin{aligned}
\mathrm{P}(|\mathbf{y}-k| \geq k \epsilon) & =\mathrm{P}\left((\mathbf{y}-\mathrm{E}(\mathbf{y}))^{2} \geq k^{2} \epsilon^{2}\right) \\
& \leq \frac{\mathrm{E}\left((\mathbf{y}-\mathrm{E}(\mathbf{y}))^{2}\right)}{k^{2} \epsilon^{2}} \quad \text { by Markov's inequality } \\
& =\frac{\operatorname{Var}(\mathbf{y})}{k^{2} \epsilon^{2}}
\end{aligned}
$$

Chebyshev bound

Let $\mathbf{y}:=\|\overrightarrow{\mathbf{x}}\|_{2}^{2}$,

$$
\begin{aligned}
P(|y-k| \geq k \epsilon) & =P\left((\mathbf{y}-\mathrm{E}(\mathbf{y}))^{2} \geq k^{2} \epsilon^{2}\right) \\
& \leq \frac{\mathrm{E}\left((\mathbf{y}-\mathrm{E}(\mathbf{y}))^{2}\right)}{k^{2} \epsilon^{2}} \quad \text { by Markov's inequality } \\
& =\frac{\operatorname{Var}(\mathbf{y})}{k^{2} \epsilon^{2}} \\
& =\frac{2}{k \epsilon^{2}}
\end{aligned}
$$

Non-asymptotic Chernoff tail bound

Let \vec{x} be an iid standard Gaussian random vector of dimension k

For any $\epsilon>0$

$$
P\left(k(1-\epsilon)<\|\overrightarrow{\mathbf{x}}\|_{2}^{2}<k(1+\epsilon)\right) \geq 1-2 \exp \left(-\frac{k \epsilon^{2}}{8}\right)
$$

Proof

Let $\mathbf{y}:=\|\overrightarrow{\mathbf{x}}\|_{2}^{2}$. The result is implied by

$$
\begin{aligned}
& P(\mathbf{y}>k(1+\epsilon)) \leq \exp \left(-\frac{k \epsilon^{2}}{8}\right) \\
& P(\mathbf{y}<k(1-\epsilon)) \leq \exp \left(-\frac{k \epsilon^{2}}{8}\right)
\end{aligned}
$$

Proof

Fix $t>0$
$P(\mathbf{y}>a)$

Proof

Fix $t>0$
$P(\mathbf{y}>a)=P(\exp (t y)>\exp (a t))$

Proof

Fix $t>0$

$$
\begin{aligned}
P(\mathbf{y}>a) & =P(\exp (t \mathbf{y})>\exp (a t)) \\
& \leq \exp (-a t) E(\exp (t \mathbf{y}))
\end{aligned}
$$

by Markov's inequality

Proof

Fix $t>0$

$$
\begin{aligned}
P(\mathbf{y}>a) & =P(\exp (t \mathbf{y})>\exp (a t)) \\
& \leq \exp (-a t) E(\exp (t y)) \quad \text { by Markov's inequality } \\
& \leq \exp (-a t) \mathrm{E}\left(\exp \left(\sum_{i=1}^{k} t \mathbf{x}_{\mathbf{i}}^{2}\right)\right)
\end{aligned}
$$

Proof

Fix $t>0$

$$
\begin{aligned}
P(\mathbf{y}>a) & =P(\exp (t \mathbf{y})>\exp (a t)) \\
& \leq \exp (-a t) \mathrm{E}(\exp (t \mathbf{y})) \quad \text { by Markov's inequality } \\
& \leq \exp (-a t) \mathrm{E}\left(\exp \left(\sum_{i=1}^{k} t \mathrm{x}_{\mathbf{i}}^{2}\right)\right) \\
& \leq \exp (-a t) \prod_{i=1}^{k} \mathrm{E}\left(\exp \left(t \mathbf{x}_{\mathbf{i}}^{2}\right)\right) \quad \text { by independence of } \mathbf{x}_{\mathbf{1}}, \ldots, \mathbf{x}_{\mathbf{k}}
\end{aligned}
$$

Proof

Lemma (by direct integration)

$$
\mathrm{E}\left(\exp \left(t \mathrm{x}^{2}\right)\right)=\frac{1}{\sqrt{1-2 t}}
$$

Equivalent to controlling higher-order moments since

$$
\begin{aligned}
\mathrm{E}\left(\exp \left(t \mathrm{x}^{2}\right)\right) & =\mathrm{E}\left(\sum_{i=0}^{\infty} \frac{\left(t \mathrm{x}^{2}\right)^{i}}{i!}\right) \\
& =\sum_{i=0}^{\infty} \frac{\mathrm{E}\left(t^{i}\left(\mathrm{x}^{2 i}\right)\right)}{i!}
\end{aligned}
$$

Proof

Fix $t>0$

$$
\begin{aligned}
P(\mathbf{y}>a) & \leq \exp (-a t) \prod_{i=1}^{k} \mathrm{E}\left(\exp \left(t \mathrm{x}_{\mathbf{i}}^{2}\right)\right) \\
& =\frac{\exp (-a t)}{(1-2 t)^{\frac{k}{2}}}
\end{aligned}
$$

Proof

Setting $a:=k(1+\epsilon)$ and

$$
t:=\frac{1}{2}-\frac{1}{2(1+\epsilon)}
$$

we conclude

$$
\begin{aligned}
P(\mathbf{y}>k(1+\epsilon)) & \leq(1+\epsilon)^{k} 2 \exp \left(-\frac{k \epsilon}{2}\right) \\
& \leq \exp \left(-\frac{k \epsilon^{2}}{8}\right)
\end{aligned}
$$

Projection onto a fixed subspace

$$
\mathcal{P}_{\mathcal{S}_{1}} \vec{z}
$$

$$
\mathcal{P}_{\mathcal{S}_{2}} \vec{z}
$$

$$
0.007=\frac{\left\|\mathcal{P}_{\mathcal{S}_{1}} \vec{z}\right\|_{2}}{\|\vec{x}\|_{2}}<\frac{\left\|\mathcal{P}_{\mathcal{S}_{2}} \vec{z}\right\|_{2}}{\|\vec{x}\|_{2}}=0.043
$$

$$
\frac{0.043}{0.007}=6.14 \approx \sqrt{\frac{\operatorname{dim}\left(\mathcal{S}_{2}\right)}{\operatorname{dim}\left(\mathcal{S}_{1}\right)}} \quad \text { (not a coincidence) }
$$

Projection onto a fixed subspace

Let \mathcal{S} be a k-dimensional subspace of \mathbb{R}^{n} and $\overrightarrow{\mathbf{z}} \in \mathbb{R}^{n}$ a vector of iid standard Gaussian noise
$\left\|\mathcal{P}_{\mathcal{S}} \overrightarrow{\mathbf{z}}\right\|_{2}^{2}$ is a χ^{2} random variable with k degrees of freedom
It has the same distribution as

$$
y:=\sum_{i=1}^{k} x_{i}^{2}
$$

where $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}$ are iid standard Gaussians.

Proof

Let $U U^{T}$ be a projection matrix for \mathcal{S}, where the columns of $U \in \mathbb{R}^{n \times k}$ are orthonormal:

$$
\left\|\mathcal{P}_{\mathcal{S}} \overrightarrow{\mathbf{z}}\right\|_{2}^{2}
$$

Proof

Let $U U^{T}$ be a projection matrix for \mathcal{S}, where the columns of $U \in \mathbb{R}^{n \times k}$ are orthonormal:

$$
\left\|\mathcal{P}_{\mathcal{S}} \overrightarrow{\mathbf{z}}\right\|_{2}^{2}=\left\|U U^{\top} \overrightarrow{\mathbf{z}}\right\|_{2}^{2}
$$

Proof

Let $U U^{T}$ be a projection matrix for \mathcal{S}, where the columns of $U \in \mathbb{R}^{n \times k}$ are orthonormal:

$$
\begin{aligned}
\left\|\mathcal{P}_{\mathcal{S}} \overrightarrow{\mathbf{z}}\right\|_{2}^{2} & =\left\|U U^{T} \overrightarrow{\mathbf{z}}\right\|_{2}^{2} \\
& =\overrightarrow{\mathbf{z}}^{T} U U^{T} U U^{T} \overrightarrow{\mathbf{z}}
\end{aligned}
$$

Proof

Let $U U^{T}$ be a projection matrix for \mathcal{S}, where the columns of $U \in \mathbb{R}^{n \times k}$ are orthonormal:

$$
\begin{aligned}
\left\|\mathcal{P}_{\mathcal{S}} \overrightarrow{\mathbf{z}}\right\|_{2}^{2} & =\left\|U U^{T} \overrightarrow{\mathbf{z}}\right\|_{2}^{2} \\
& =\overrightarrow{\mathbf{z}}^{T} U U^{T} U U^{T} \overrightarrow{\mathbf{z}} \\
& =\overrightarrow{\mathbf{z}}^{T} U U^{T} \overrightarrow{\mathbf{z}}
\end{aligned}
$$

Proof

Let $U U^{T}$ be a projection matrix for \mathcal{S}, where the columns of $U \in \mathbb{R}^{n \times k}$ are orthonormal:

$$
\begin{aligned}
\left\|\mathcal{P}_{\mathcal{S}} \overrightarrow{\mathbf{z}}\right\|_{2}^{2} & =\left\|U U^{T} \overrightarrow{\mathbf{z}}\right\|_{2}^{2} \\
& =\overrightarrow{\mathbf{z}}^{T} U U^{T} U U^{T} \overrightarrow{\mathbf{z}} \\
& =\overrightarrow{\mathbf{z}}^{T} U U^{T} \overrightarrow{\mathbf{z}} \\
& =\overrightarrow{\mathbf{w}}^{T} \overrightarrow{\mathbf{w}}
\end{aligned}
$$

Proof

Let $U U^{T}$ be a projection matrix for \mathcal{S}, where the columns of $U \in \mathbb{R}^{n \times k}$ are orthonormal:

$$
\begin{aligned}
\left\|\mathcal{P}_{\mathcal{S}} \overrightarrow{\mathbf{z}}\right\|_{2}^{2} & =\left\|U U^{T} \overrightarrow{\mathbf{z}}\right\|_{2}^{2} \\
& =\overrightarrow{\mathbf{z}}^{T} U U^{T} U U^{T} \overrightarrow{\mathbf{z}} \\
& =\overrightarrow{\mathbf{z}}^{T} U U^{T} \overrightarrow{\mathbf{z}} \\
& =\overrightarrow{\mathbf{w}}^{T} \overrightarrow{\mathbf{w}} \\
& =\sum_{i=1}^{k} \overrightarrow{\mathbf{w}}[i]^{2}
\end{aligned}
$$

Proof

Let $U U^{T}$ be a projection matrix for \mathcal{S}, where the columns of $U \in \mathbb{R}^{n \times k}$ are orthonormal:

$$
\begin{aligned}
\left\|\mathcal{P}_{\mathcal{S}} \overrightarrow{\mathbf{z}}\right\|_{2}^{2} & =\left\|U U^{T} \overrightarrow{\mathbf{z}}\right\|_{2}^{2} \\
& =\overrightarrow{\mathbf{z}}^{T} U U^{T} U U^{T} \overrightarrow{\mathbf{z}} \\
& =\overrightarrow{\mathbf{z}}^{T} U U^{T} \overrightarrow{\mathbf{z}} \\
& =\overrightarrow{\mathbf{w}}^{T} \overrightarrow{\mathbf{w}} \\
& =\sum_{i=1}^{k} \overrightarrow{\mathbf{w}}[i]^{2}
\end{aligned}
$$

$\overrightarrow{\mathbf{w}}:=U^{\top} \overrightarrow{\mathbf{z}}$ is Gaussian with mean zero and covariance matrix

$$
\Sigma_{\vec{w}}=U^{T} \Sigma_{\vec{z}} U
$$

Proof

Let $U U^{T}$ be a projection matrix for \mathcal{S}, where the columns of $U \in \mathbb{R}^{n \times k}$ are orthonormal:

$$
\begin{aligned}
\left\|\mathcal{P}_{\mathcal{S}} \overrightarrow{\mathbf{z}}\right\|_{2}^{2} & =\left\|U U^{T} \overrightarrow{\mathbf{z}}\right\|_{2}^{2} \\
& =\overrightarrow{\mathbf{z}}^{T} U U^{T} U U^{T} \overrightarrow{\mathbf{z}} \\
& =\overrightarrow{\mathbf{z}}^{T} U U^{T} \overrightarrow{\mathbf{z}} \\
& =\overrightarrow{\mathbf{w}}^{T} \overrightarrow{\mathbf{w}} \\
& =\sum_{i=1}^{k} \overrightarrow{\mathbf{w}}[i]^{2}
\end{aligned}
$$

$\overrightarrow{\mathbf{w}}:=U^{\top} \overrightarrow{\mathbf{z}}$ is Gaussian with mean zero and covariance matrix

$$
\begin{aligned}
\Sigma_{\overrightarrow{\mathbf{w}}} & =U^{T} \Sigma_{\overrightarrow{\mathbf{z}}} U \\
& =U^{T} U=1
\end{aligned}
$$

Non-asymptotic Chernoff tail bound

Let \vec{x} be an iid standard Gaussian random vector of dimension k

For any $\epsilon>0$

$$
P\left(k(1-\epsilon)<\|\overrightarrow{\mathbf{x}}\|_{2}^{2}<k(1+\epsilon)\right) \geq 1-2 \exp \left(-\frac{k \epsilon^{2}}{8}\right)
$$

Projection onto a fixed subspace

Let \mathcal{S} be a k-dimensional subspace of \mathbb{R}^{n} and $\overrightarrow{\mathbf{z}} \in \mathbb{R}^{n}$ a vector of iid standard Gaussian noise

For any $\epsilon>0$

$$
P\left(k(1-\epsilon)<\left\|\mathcal{P}_{\mathcal{S}} \vec{z}\right\|_{2}<k(1+\epsilon)\right) \geq 1-2 \exp \left(-\frac{k \epsilon^{2}}{8}\right)
$$

Gaussian random variables

Gaussian random vectors

Randomized projections

SVD of a random matrix

Randomized SVD

Dimensionality reduction

- PCA preserves the most energy (ℓ_{2} norm)
- Problem 1: Computationally expensive
- Problem 2: Depends on all of the data
- (Possible) Solution: Just project randomly!
- For a data set $\vec{x}_{1}, \vec{x}_{2}, \ldots \in \mathbb{R}^{m}$ compute $\mathbf{A} \vec{x}_{1}, \mathbf{A} \vec{x}_{2}, \ldots \in \mathbb{R}^{m}$ where $\mathbf{A} \in \mathbb{R}^{k \times n}(k<n)$ has iid standard Gaussian entries

Fixed vector

Let \mathbf{A} be a $a \times b$ matrix with iid standard Gaussian entries
If $\vec{v} \in \mathbb{R}^{b}$ is a deterministic vector with unit ℓ_{2} norm, then $\mathbf{A} \vec{v}$ is an a-dimensional iid standard Gaussian vector

Proof:

Fixed vector

Let \mathbf{A} be a $a \times b$ matrix with iid standard Gaussian entries
If $\vec{v} \in \mathbb{R}^{b}$ is a deterministic vector with unit ℓ_{2} norm, then $\mathbf{A} \vec{v}$ is an a-dimensional iid standard Gaussian vector

Proof:
$(\mathbf{A} \vec{v})[i], 1 \leq i \leq a$ is Gaussian with mean zero and variance

$$
\begin{aligned}
\operatorname{Var}\left(\mathbf{A}_{i, j}^{T} \vec{v}\right) & =\vec{v}^{T} \Sigma_{\mathbf{A}_{i,:}, \vec{v}} \\
& =\vec{v}^{T} I \vec{v} \\
& =\|\vec{v}\|_{2}^{2}=1
\end{aligned}
$$

Non-asymptotic Chernoff tail bound

Let \vec{x} be an iid standard Gaussian random vector of dimension k

For any $\epsilon>0$

$$
P\left(k(1-\epsilon)<\|\overrightarrow{\mathbf{x}}\|_{2}^{2}<k(1+\epsilon)\right) \geq 1-2 \exp \left(-\frac{k \epsilon^{2}}{8}\right)
$$

Fixed vector

Let \mathbf{A} be a $a \times b$ matrix with iid standard Gaussian entries
For any $\vec{v} \in \mathbb{R}^{p}$ with unit norm and any $\epsilon \in(0,1)$

$$
\sqrt{a(1-\epsilon)} \leq\|\mathbf{A} \vec{v}\|_{2} \leq \sqrt{a(1+\epsilon)}
$$

with probability at least $1-2 \exp \left(-a \epsilon^{2} / 8\right)$

Johnson-Lindenstrauss lemma

Let \mathbf{A} be a $k \times n$ matrix with iid standard Gaussian entries

Let $\vec{x}_{1}, \ldots, \vec{x}_{p} \in \mathbb{R}^{n}$ be any fixed set of p deterministic vectors

For any pair \vec{x}_{i}, \vec{x}_{j} and any $\epsilon \in(0,1)$

$$
(1-\epsilon)\left\|\vec{x}_{i}-\vec{x}_{j}\right\|_{2}^{2} \leq\left\|\frac{1}{\sqrt{k}} \mathbf{A} \vec{x}_{i}-\frac{1}{\sqrt{k}} \mathbf{A} \vec{x}_{j}\right\|_{2}^{2} \leq(1+\epsilon)\left\|\vec{x}_{i}-\vec{x}_{j}\right\|_{2}^{2}
$$

with probability at least $\frac{1}{p}$ as long as

$$
k \geq \frac{16 \log (p)}{\epsilon^{2}}
$$

Proof

Aim: Control action of \boldsymbol{A} the normalized differences

$$
\vec{v}_{i j}:=\frac{\vec{x}_{i}-\vec{x}_{j}}{\left\|\vec{x}_{i}-\vec{x}_{j}\right\|_{2}}
$$

Our event of interest is the intersection of the events

$$
\mathcal{E}_{i j}=\left\{k(1-\epsilon)<\left\|\mathbf{A} \vec{v}_{i j}\right\|_{2}^{2}<k(1+\epsilon)\right\} \quad 1 \leq i<p, i<j \leq p
$$

Fixed vector

Let \mathbf{A} be a $a \times b$ matrix with iid standard Gaussian entries
For any $\vec{v} \in \mathbb{R}^{b}$ with unit norm and any $\epsilon \in(0,1)$

$$
\sqrt{a(1-\epsilon)} \leq\|\mathbf{A} \vec{v}\|_{2} \leq \sqrt{a(1+\epsilon)}
$$

with probability at least $1-2 \exp \left(-a \epsilon^{2} / 8\right)$
This implies

$$
\mathrm{P}\left(\mathcal{E}_{i j}^{c}\right) \leq \frac{2}{p^{2}} \quad \text { if } k \geq \frac{16 \log (p)}{\epsilon^{2}}
$$

Union bound

For any events $S_{1}, S_{2}, \ldots, S_{n}$ in a probability space

$$
\mathrm{P}\left(\cup_{i} S_{i}\right) \leq \sum_{i=1}^{n} \mathrm{P}\left(S_{i}\right)
$$

Proof

Number of events $\mathcal{E}_{i j}$ equals $\binom{p}{2}=p(p-1) / 2$
By the union bound

Proof

Number of events $\mathcal{E}_{i j}$ equals $\binom{p}{2}=p(p-1) / 2$
By the union bound

$$
\mathrm{P}\left(\bigcap_{i, j} \mathcal{E}_{i j}\right)=1-\mathrm{P}\left(\bigcup_{i, j} \mathcal{E}_{i j}^{c}\right)
$$

Proof

Number of events $\mathcal{E}_{i j}$ equals $\binom{p}{2}=p(p-1) / 2$
By the union bound

$$
\begin{aligned}
\mathrm{P}\left(\bigcap_{i, j} \mathcal{E}_{i j}\right) & =1-\mathrm{P}\left(\bigcup_{i, j} \mathcal{E}_{i j}^{c}\right) \\
& \geq 1-\sum_{i, j} \mathrm{P}\left(\mathcal{E}_{i j}^{c}\right)
\end{aligned}
$$

Proof

Number of events $\mathcal{E}_{i j}$ equals $\binom{p}{2}=p(p-1) / 2$
By the union bound

$$
\begin{aligned}
\mathrm{P}\left(\bigcap_{i, j} \mathcal{E}_{i j}\right) & =1-\mathrm{P}\left(\bigcup_{i, j} \mathcal{E}_{i j}^{c}\right) \\
& \geq 1-\sum_{i, j} \mathrm{P}\left(\mathcal{E}_{i j}^{c}\right) \\
& \geq 1-\frac{p(p-1)}{2} \frac{2}{p^{2}}
\end{aligned}
$$

Proof

Number of events $\mathcal{E}_{i j}$ equals $\binom{p}{2}=p(p-1) / 2$
By the union bound

$$
\begin{aligned}
\mathrm{P}\left(\bigcap_{i, j} \mathcal{E}_{i j}\right) & =1-\mathrm{P}\left(\bigcup_{i, j} \mathcal{E}_{i j}^{c}\right) \\
& \geq 1-\sum_{i, j} \mathrm{P}\left(\mathcal{E}_{i j}^{c}\right) \\
& \geq 1-\frac{p(p-1)}{2} \frac{2}{p^{2}} \\
& \geq \frac{1}{p}
\end{aligned}
$$

Dimensionality reduction for visualization

Motivation: Visualize high-dimensional features projected onto 2D or 3D
Example:
Seeds from three different varieties of wheat: Kama, Rosa and Canadian
Features:

- Area
- Perimeter
- Compactness
- Length of kernel
- Width of kernel
- Asymmetry coefficient
- Length of kernel groove

Dimensionality reduction for visualization

Randomized projection

PCA

Nearest neighbors in random subspace

Nearest neighbors classification (Algorithm 4.2 in Lecture Notes 1) computes n distances in \mathbb{R}^{m} for each new example

Cost: $\mathcal{O}(n m p)$ for p examples

Idea: Use a $k \times m$ iid standard Gaussian matrix to project onto k-dimensional space beforehand

Cost:

- kmn operations to project training set
- kmp operations to project test set
- knp to perform nearest-neighbor classification

Much faster!

Face recognition

Training set: 36064×64 images from 40 different subjects (9 each)

Test set: 1 new image from each subject
We model each image as a vector in $\mathbb{R}^{4096}(m=4096)$

To classify we:

1. Project onto random a k-dimensional subspace
2. Apply nearest-neighbor classification using the ℓ_{2}-norm distance in \mathbb{R}^{k}

Performance

Nearest neighbor in \mathbb{R}^{50}

Gaussian random variables

Gaussian random vectors

Randomized projections

SVD of a random matrix

Randomized SVD

Singular values of $n \times k$ matrix, $k=100$

Singular values of $n \times k$ matrix, $k=1000$

Singular values of a Gaussian matrix

Intuitively as n grows

$$
\mathbf{A} \approx U(\sqrt{n} I) V^{T}=\sqrt{n} U V^{T}
$$

iid Gaussian vectors in high dimensions are almost orthogonal

Singular values of a Gaussian matrix

Let A be a $n \times k$ matrix with iid standard Gaussian entries such that $n>k$

For any fixed $\epsilon>0$, the singular values of \mathbf{A} satisfy

$$
\sqrt{n(1-\epsilon)} \leq \boldsymbol{\sigma}_{\mathbf{k}} \leq \boldsymbol{\sigma}_{\mathbf{1}} \leq \sqrt{n(1+\epsilon)}
$$

with probability at least $1-1 / k$ as long as

$$
n>\frac{64 k}{\epsilon^{2}} \log \frac{12}{\epsilon}
$$

Proof

Recall that

$$
\begin{aligned}
\sigma_{1} & =\max _{\left\{\|\vec{x}\|_{2}=1 \mid \vec{x} \in \mathbb{R}^{k}\right\}}\|\mathbf{A} \vec{x}\|_{2} \\
\sigma_{k} & =\min _{\left\{\|\vec{x}\|_{2}=1 \mid \vec{x} \in \mathbb{R}^{k}\right\}}\|\mathbf{A} \vec{x}\|_{2}
\end{aligned}
$$

so the bounds are equivalent to

$$
n(1-\epsilon)<\|\mathbf{A} \vec{v}\|_{2}^{2}<n(1+\epsilon)
$$

Proof

Idea: Use union bound over all unit-norm vectors

Problem: They are infinite!

Solution: Use union bound on a finite set, then show that this is enough

ϵ-net

An ϵ-net of a set $\mathcal{X} \subseteq \mathbb{R}^{k}$ is a subset $\mathcal{N}_{\epsilon} \subseteq \mathcal{X}$ such that for every vector $\vec{x} \in \mathcal{X}$ there exists $\vec{y} \in \mathcal{N}_{\epsilon}$ for which

$$
\|\vec{x}-\vec{y}\|_{2} \leq \epsilon
$$

The covering number $\mathcal{N}(\mathcal{X}, \epsilon)$ of a set \mathcal{X} at scale ϵ is the minimal cardinality of an ϵ-net of \mathcal{X}
ϵ-net

Covering number of a sphere

The covering number of the n-dimensional sphere \mathcal{S}^{k-1} at scale ϵ satisfies

$$
\mathcal{N}\left(\mathcal{S}^{k-1}, \epsilon\right) \leq\left(\frac{2+\epsilon}{\epsilon}\right)^{k} \leq\left(\frac{3}{\epsilon}\right)^{k}
$$

Covering number of a sphere

- Initialize \mathcal{N}_{ϵ} to the empty set
- Choose a point $\vec{x} \in \mathcal{S}^{k-1}$ such that

$$
\|\vec{x}-\vec{y}\|_{2}>\epsilon \quad \text { for any } \vec{y} \in \mathcal{N}_{\epsilon}
$$

- Add \vec{x} to \mathcal{N}_{ϵ} until there are no points in \mathcal{S}^{k-1} that are ϵ away from any point in \mathcal{N}_{ϵ}

Covering number of a sphere

Covering number of a sphere

$$
\operatorname{Vol}\left(\mathcal{B}_{1+\epsilon / 2}^{k}(\overrightarrow{0})\right) \geq \operatorname{Vol}\left(\cup_{\vec{x} \in \mathcal{N}_{\epsilon}} \mathcal{B}_{\epsilon / 2}^{k}(\vec{x})\right)
$$

Covering number of a sphere

$$
\begin{aligned}
\operatorname{Vol}\left(\mathcal{B}_{1+\epsilon / 2}^{k}(\overrightarrow{0})\right) & \geq \operatorname{Vol}\left(U_{\vec{x} \in \mathcal{N}_{\epsilon}} \mathcal{B}_{\epsilon / 2}^{k}(\vec{x})\right) \\
& =\left|\mathcal{N}_{\epsilon}\right| \operatorname{Vol}\left(\mathcal{B}_{\epsilon / 2}^{k}(\overrightarrow{0})\right)
\end{aligned}
$$

Covering number of a sphere

$$
\begin{aligned}
\operatorname{Vol}\left(\mathcal{B}_{1+\epsilon / 2}^{k}(\overrightarrow{0})\right) & \geq \operatorname{Vol}\left(U_{\vec{x} \in \mathcal{N}_{\epsilon}} \mathcal{B}_{\epsilon / 2}^{k}(\vec{x})\right) \\
& =\left|\mathcal{N}_{\epsilon}\right| \operatorname{Vol}\left(\mathcal{B}_{\epsilon / 2}^{k}(\overrightarrow{0})\right)
\end{aligned}
$$

By multivariable calculus

$$
\operatorname{Vol}\left(\mathcal{B}_{r}^{k}(\overrightarrow{0})\right)=r^{k} \operatorname{Vol}\left(\mathcal{B}_{1}^{k}(\overrightarrow{0})\right)
$$

Covering number of a sphere

$$
\begin{aligned}
\operatorname{Vol}\left(\mathcal{B}_{1+\epsilon / 2}^{k}(\overrightarrow{0})\right) & \geq \operatorname{Vol}\left(U_{\vec{x} \in \mathcal{N}_{\epsilon}} \mathcal{B}_{\epsilon / 2}^{k}(\vec{x})\right) \\
& =\left|\mathcal{N}_{\epsilon}\right| \operatorname{Vol}\left(\mathcal{B}_{\epsilon / 2}^{k}(\overrightarrow{0})\right) \\
\operatorname{Vol}\left(\mathcal{B}_{r}^{k}(\overrightarrow{0})\right) & =r^{k} \operatorname{Vol}\left(\mathcal{B}_{1}^{k}(\overrightarrow{0})\right)
\end{aligned}
$$

so we conclude

$$
(1+\epsilon / 2)^{k} \geq\left|\mathcal{N}_{\epsilon}\right|(\epsilon / 2)^{k}
$$

Proof

1. We prove the bounds

$$
n\left(1-\epsilon_{2}\right)<\|\mathbf{A} \vec{v}\|_{2}^{2}<n\left(1+\epsilon_{2}\right)
$$

where $\epsilon_{2}:=\epsilon / 2$ on an $\epsilon_{1}:=\epsilon / 4$ net of the sphere
2. We show that by the triangle inequality, this implies that the bounds hold on all the sphere

Fixed vector

Let \mathbf{A} be a $a \times b$ matrix with iid standard Gaussian entries
For any $\vec{v} \in \mathbb{R}^{b}$ with unit norm and any $\epsilon \in(0,1)$

$$
\sqrt{a(1-\epsilon)} \leq\|\mathbf{A} \vec{v}\|_{2} \leq \sqrt{a(1+\epsilon)}
$$

with probability at least $1-2 \exp \left(-a \epsilon^{2} / 8\right)$

Bound on the ϵ_{1}-net

We define the event

$$
\mathcal{E}_{\vec{v}, \epsilon_{2}}:=\left\{n\left(1-\epsilon_{2}\right)\|\vec{v}\|_{2}^{2} \leq\|\mathbf{A} \vec{v}\|_{2}^{2} \leq n\left(1+\epsilon_{2}\right)\|\vec{v}\|_{2}^{2}\right\}
$$

$$
\mathrm{P}\left(\cup_{\vec{v} \in \mathcal{N}_{\epsilon_{1}}} \mathcal{E}_{\vec{j}, \epsilon_{2}}^{c}\right)
$$

Bound on the ϵ_{1}-net

We define the event

$$
\begin{aligned}
\mathcal{E}_{\vec{v}, \epsilon_{2}} & :=\left\{n\left(1-\epsilon_{2}\right)\|\vec{v}\|_{2}^{2} \leq\|\mathbf{A} \vec{v}\|_{2}^{2} \leq n\left(1+\epsilon_{2}\right)\|\vec{v}\|_{2}^{2}\right\} \\
\mathrm{P}\left(\cup_{\vec{v} \in \mathcal{N}_{\epsilon_{1}}} \mathcal{E}_{\vec{v}, \epsilon_{2}}^{c}\right) & \leq \sum_{\vec{v} \in \mathcal{N}_{\epsilon_{1}}} \mathrm{P}\left(\mathcal{E}_{\vec{v}, \epsilon_{2}}^{c}\right)
\end{aligned}
$$

Bound on the ϵ_{1}-net

We define the event

$$
\begin{aligned}
\mathcal{E}_{\vec{v}, \epsilon_{2}} & :=\left\{n\left(1-\epsilon_{2}\right)\|\vec{v}\|_{2}^{2} \leq\|\mathbf{A} \vec{v}\|_{2}^{2} \leq n\left(1+\epsilon_{2}\right)\|\vec{v}\|_{2}^{2}\right\} \\
\mathrm{P}\left(\cup_{\vec{v} \in \mathcal{N}_{\epsilon_{1}}} \mathcal{E}_{\vec{v}, \epsilon_{2}}^{c}\right) & \leq \sum_{\vec{v} \in \mathcal{N}_{\epsilon_{1}}} \mathrm{P}\left(\mathcal{E}_{\vec{v}, \epsilon_{2}}^{c}\right) \\
& \leq\left|\mathcal{N}_{\epsilon_{1}}\right| \mathrm{P}\left(\mathcal{E}_{\vec{v}, \epsilon_{2}}^{c}\right)
\end{aligned}
$$

Bound on the ϵ_{1}-net

We define the event

$$
\begin{aligned}
\mathcal{E}_{\vec{v}, \epsilon_{2}} & :=\left\{n\left(1-\epsilon_{2}\right)\|\vec{v}\|_{2}^{2} \leq\|\mathbf{A} \vec{v}\|_{2}^{2} \leq n\left(1+\epsilon_{2}\right)\|\vec{v}\|_{2}^{2}\right\} \\
\mathrm{P}\left(\cup_{\vec{v} \in \mathcal{N}_{\epsilon_{1}}} \mathcal{E}_{\vec{v}, \epsilon_{2}}^{c}\right) & \leq \sum_{\vec{v} \in \mathcal{N}_{\epsilon_{1}}} \mathrm{P}\left(\mathcal{E}_{\vec{v}, \epsilon_{2}}^{c}\right) \\
& \leq\left|\mathcal{N}_{\epsilon_{1}}\right| \mathrm{P}\left(\mathcal{E}_{\vec{v}, \epsilon_{2}}^{c}\right) \\
& \leq 2\left(\frac{12}{\epsilon}\right)^{k} \exp \left(-\frac{n \epsilon^{2}}{32}\right)
\end{aligned}
$$

Bound on the ϵ_{1}-net

We define the event

$$
\begin{aligned}
\mathcal{E}_{\vec{v}, \epsilon_{2}} & :=\left\{n\left(1-\epsilon_{2}\right)\|\vec{v}\|_{2}^{2} \leq\|\mathbf{A} \vec{v}\|_{2}^{2} \leq n\left(1+\epsilon_{2}\right)\|\vec{v}\|_{2}^{2}\right\} \\
\mathrm{P}\left(\cup_{\vec{v} \in \mathcal{N}_{\epsilon_{1}}} \mathcal{E}_{\vec{v}, \epsilon_{2}}^{c}\right) & \leq \sum_{\vec{v} \in \mathcal{N}_{\epsilon_{1}}} \mathrm{P}\left(\mathcal{E}_{\vec{v}, \epsilon_{2}}^{c}\right) \\
& \leq\left|\mathcal{N}_{\epsilon_{1}}\right| \mathrm{P}\left(\mathcal{E}_{\vec{v}, \epsilon_{2}}^{c}\right) \\
& \leq 2\left(\frac{12}{\epsilon}\right)^{k} \exp \left(-\frac{n \epsilon^{2}}{32}\right) \\
& \leq \frac{1}{k} \quad \text { if } n>\frac{64 k}{\epsilon^{2}} \log \frac{12}{\epsilon}
\end{aligned}
$$

Upper bound on the sphere

Let $\vec{x} \in \mathcal{S}^{k-1}$
There exists $\vec{v} \in \mathcal{N}\left(\mathcal{X}, \epsilon_{1}\right)$ such that $\|\vec{x}-\vec{v}\|_{2} \leq \epsilon / 4$
$\|\mathbf{A} \vec{x}\|_{2}$

Upper bound on the sphere

Let $\vec{x} \in \mathcal{S}^{k-1}$
There exists $\vec{v} \in \mathcal{N}\left(\mathcal{X}, \epsilon_{1}\right)$ such that $\|\vec{x}-\vec{v}\|_{2} \leq \epsilon / 4$
$\|\mathbf{A} \vec{x}\|_{2} \leq\|\mathbf{A} \vec{v}\|_{2}+\|\mathbf{A}(\vec{x}-\vec{v})\|_{2}$

Upper bound on the sphere

Let $\vec{x} \in \mathcal{S}^{k-1}$

There exists $\vec{v} \in \mathcal{N}\left(\mathcal{X}, \epsilon_{1}\right)$ such that $\|\vec{x}-\vec{v}\|_{2} \leq \epsilon / 4$
$\|\mathbf{A} \vec{x}\|_{2} \leq\|\mathbf{A} \vec{v}\|_{2}+\|\mathbf{A}(\vec{x}-\vec{v})\|_{2}$

$$
\leq \sqrt{n}\left(1+\frac{\epsilon}{2}\right)+\|\mathbf{A}(\vec{x}-\vec{v})\|_{2} \quad \text { assuming } \cup_{\vec{v} \in \mathcal{N}_{\epsilon_{1}}} \mathcal{E}_{\vec{v}, \epsilon_{2}}^{c} \text { holds }
$$

Upper bound on the sphere

Let $\vec{x} \in \mathcal{S}^{k-1}$

There exists $\vec{v} \in \mathcal{N}\left(\mathcal{X}, \epsilon_{1}\right)$ such that $\|\vec{x}-\vec{v}\|_{2} \leq \epsilon / 4$
$\|\mathbf{A} \vec{x}\|_{2} \leq\|\mathbf{A} \vec{v}\|_{2}+\|\mathbf{A}(\vec{x}-\vec{v})\|_{2}$

$$
\begin{aligned}
& \leq \sqrt{n}\left(1+\frac{\epsilon}{2}\right)+\|\mathbf{A}(\vec{x}-\vec{v})\|_{2} \quad \text { assuming } \cup_{\vec{v} \in \mathcal{N}_{\epsilon_{1}}} \mathcal{E}_{\vec{v}, \epsilon_{2}}^{c} \text { holds } \\
& \leq \sqrt{n}\left(1+\frac{\epsilon}{2}\right)+\sigma_{1}\|\vec{x}-\vec{v}\|_{2}
\end{aligned}
$$

Upper bound on the sphere

Let $\vec{x} \in \mathcal{S}^{k-1}$
There exists $\vec{v} \in \mathcal{N}\left(\mathcal{X}, \epsilon_{1}\right)$ such that $\|\vec{x}-\vec{v}\|_{2} \leq \epsilon / 4$
$\|\mathbf{A} \vec{x}\|_{2} \leq\|\mathbf{A} \vec{v}\|_{2}+\|\mathbf{A}(\vec{x}-\vec{v})\|_{2}$

$$
\begin{aligned}
& \leq \sqrt{n}\left(1+\frac{\epsilon}{2}\right)+\|\mathbf{A}(\vec{x}-\vec{v})\|_{2} \quad \text { assuming } \cup_{\vec{v} \in \mathcal{N}_{\epsilon_{1}}} \mathcal{E}_{\vec{v}, \epsilon_{2}}^{c} \text { holds } \\
& \leq \sqrt{n}\left(1+\frac{\epsilon}{2}\right)+\boldsymbol{\sigma}_{\mathbf{1}}\|\vec{x}-\vec{v}\|_{2} \\
& \leq \sqrt{n}\left(1+\frac{\epsilon}{2}\right)+\frac{\boldsymbol{\sigma}_{1} \epsilon}{4}
\end{aligned}
$$

Upper bound on the sphere

$$
\begin{aligned}
\sigma_{1} & \leq \sqrt{n}\left(1+\frac{\epsilon}{2}\right)+\frac{\sigma_{1} \epsilon}{4} \\
\sigma_{1} & \leq \sqrt{n}\left(\frac{1+\epsilon / 2}{1-\epsilon / 4}\right) \\
& =\sqrt{n}\left(1+\epsilon-\frac{\epsilon(1-\epsilon)}{4-\epsilon}\right) \\
& \leq \sqrt{n}(1+\epsilon)
\end{aligned}
$$

Lower bound on the sphere

$\|\mathbf{A} \vec{x}\|_{2}$

Lower bound on the sphere

$$
\|\mathbf{A} \vec{x}\|_{2} \geq\|\mathbf{A} \vec{v}\|_{2}-\|\mathbf{A}(\vec{x}-\vec{v})\|_{2}
$$

Lower bound on the sphere

$$
\|\mathbf{A} \vec{x}\|_{2} \geq\|\mathbf{A} \vec{v}\|_{2}-\|\mathbf{A}(\vec{x}-\vec{v})\|_{2}
$$

$$
\geq \sqrt{n}\left(1-\frac{\epsilon}{2}\right)-\|A(\vec{x}-\vec{v})\|_{2}
$$

$$
\text { assuming } \cup_{\vec{v} \in \mathcal{N}_{\epsilon_{1}}} \mathcal{E}_{\vec{v}, \epsilon_{2}}^{c} \text { holds }
$$

Lower bound on the sphere

$$
\|\mathbf{A} \vec{x}\|_{2} \geq\|\mathbf{A} \vec{v}\|_{2}-\|\mathbf{A}(\vec{x}-\vec{v})\|_{2}
$$

$$
\begin{aligned}
& \geq \sqrt{n}\left(1-\frac{\epsilon}{2}\right)-\|A(\vec{x}-\vec{v})\|_{2} \quad \text { assuming } \cup_{\vec{v} \in \mathcal{N}_{\epsilon_{1}}} \mathcal{E}_{\vec{v}, \epsilon_{2}}^{c} \text { holds } \\
& \geq \sqrt{n}\left(1-\frac{\epsilon}{2}\right)-\sigma_{1}\|\vec{x}-\vec{v}\|_{2}
\end{aligned}
$$

Lower bound on the sphere

$$
\begin{aligned}
\|\mathbf{A} \vec{x}\|_{2} & \geq\|\mathbf{A} \vec{v}\|_{2}-\|\mathbf{A}(\vec{x}-\vec{v})\|_{2} \\
& \geq \sqrt{n}\left(1-\frac{\epsilon}{2}\right)-\|A(\vec{x}-\vec{v})\|_{2} \quad \text { assuming } \cup_{\vec{v} \in \mathcal{N}_{\epsilon_{1}}} \mathcal{E}_{\vec{v}, \epsilon_{2}}^{c} \text { holds } \\
& \geq \sqrt{n}\left(1-\frac{\epsilon}{2}\right)-\sigma_{1}\|\vec{x}-\vec{v}\|_{2} \\
& \geq \sqrt{n}\left(1-\frac{\epsilon}{2}\right)-\frac{\epsilon}{4} \sqrt{n}(1+\epsilon)
\end{aligned}
$$

Lower bound on the sphere

$$
\begin{aligned}
\|\mathbf{A} \vec{x}\|_{2} & \geq\|\mathbf{A} \vec{v}\|_{2}-\|\mathbf{A}(\vec{x}-\vec{v})\|_{2} \\
& \geq \sqrt{n}\left(1-\frac{\epsilon}{2}\right)-\|A(\vec{x}-\vec{v})\|_{2} \quad \text { assuming } \cup_{\vec{v} \in \mathcal{N}_{\epsilon_{1}}} \mathcal{E}_{\vec{v}, \epsilon_{2}}^{c} \text { holds } \\
& \geq \sqrt{n}\left(1-\frac{\epsilon}{2}\right)-\sigma_{1}\|\vec{x}-\vec{v}\|_{2} \\
& \geq \sqrt{n}\left(1-\frac{\epsilon}{2}\right)-\frac{\epsilon}{4} \sqrt{n}(1+\epsilon) \\
& =\sqrt{n}(1-\epsilon)
\end{aligned}
$$

Gaussian random variables

Gaussian random vectors

Randomized projections

SVD of a random matrix

Randomized SVD

Fast SVD

For a matrix $M \in \mathbb{R}^{m \times n}$ which is approximately rank k :

1. Choose a small oversampling parameter p (usually 5 or slightly larger).
2. Find a matrix $\widetilde{U} \in \mathbb{R}^{m \times(k+p)}$ with $k+p$ orthonormal columns that approximately span the column space of M
3. Compute $W \in \mathbb{R}^{(k+p) \times n}$ defined by $W:=\widetilde{U}^{T} M$
4. Compute the SVD of $W=U_{W} S_{W} V_{W}^{T}$
5. Output $U:=\left(\widetilde{U} U_{W}\right)_{:, 1: k}, S:=\left(S_{W}\right)_{1: k, 1: k}$ and $V:=\left(V_{W}\right)_{:, 1: k}$ as the SVD of M

Fast SVD

For a matrix $M \in \mathbb{R}^{m \times n}$ which is approximately rank k :

1. Choose a small oversampling parameter p (usually 5 or slightly larger).
2. Find a matrix $\widetilde{U} \in \mathbb{R}^{m \times(k+p)}$ with $k+p$ orthonormal columns that approximately span the column space of M
3. Compute $W \in \mathbb{R}^{(k+p) \times n}$ defined by $W:=\widetilde{U}^{T} M \mathcal{O}(k m n)$
4. Compute the SVD of $W=U_{W} S_{W} V_{W}^{T} \mathcal{O}\left(k^{2} n\right)$
5. Output $U:=\left(\widetilde{U} U_{W}\right)_{:, 1: k}, S:=\left(S_{W}\right)_{1: k, 1: k}$ and $V:=\left(V_{W}\right)_{:, 1: k}$ as the SVD of M

Complexity of regular SVD is $\mathcal{O}(m n \min \{m, n\})$

Fast SVD

Fast SVD

Fast SVD

The method works if (1) M is rank k and (2) \widetilde{U} spans the column space

Fast SVD

The method works if (1) M is rank k and (2) \widetilde{U} spans the column space

$$
M=\widetilde{U} \widetilde{U}^{T} M
$$

Fast SVD

The method works if (1) M is rank k and (2) \widetilde{U} spans the column space

$$
\begin{aligned}
M & =\tilde{U} \widetilde{U}^{T} M \\
& =\widetilde{U} W
\end{aligned}
$$

Fast SVD

The method works if (1) M is rank k and (2) \widetilde{U} spans the column space

$$
\begin{aligned}
M & =\widetilde{U} \widetilde{U}^{T} M \\
& =\widetilde{U} W \\
& =\widetilde{U} U_{W} S_{W} V_{W}^{T}
\end{aligned}
$$

Fast SVD

The method works if (1) M is rank k and (2) \widetilde{U} spans the column space

$$
\begin{aligned}
M & =\widetilde{U} \widetilde{U}^{T} M \\
& =\widetilde{U} W \\
& =\widetilde{U} U_{W} S_{W} V_{W}^{T}
\end{aligned}
$$

where $U:=\widetilde{U} U_{W}$ is an $m \times k$ matrix with orthonormal columns

Fast SVD

The method works if (1) M is rank k and (2) \widetilde{U} spans the column space

$$
\begin{aligned}
M & =\widetilde{U} \widetilde{U}^{T} M \\
& =\widetilde{U} W \\
& =\widetilde{U} U_{W} S_{W} V_{W}^{T}
\end{aligned}
$$

where $U:=\widetilde{U} U_{W}$ is an $m \times k$ matrix with orthonormal columns

$$
U^{T} U=U_{W}^{T} \widetilde{U}^{T} \widetilde{U} U_{W}
$$

Fast SVD

The method works if (1) M is rank k and (2) \widetilde{U} spans the column space

$$
\begin{aligned}
M & =\widetilde{U} \widetilde{U}^{T} M \\
& =\widetilde{U} W \\
& =\widetilde{U} U_{W} S_{W} V_{W}^{T}
\end{aligned}
$$

where $U:=\widetilde{U} U_{W}$ is an $m \times k$ matrix with orthonormal columns

$$
\begin{aligned}
U^{T} U & =U_{W}^{T} \tilde{U}^{T} \tilde{U} U_{W} \\
& =U_{W}^{T} U_{W}=I
\end{aligned}
$$

Power iterations

For approximately low-rank matrices performance depends on gap between σ_{k} and σ_{k+1}

The gap can be increased by power iterations
This method is only used when computing \widetilde{U}
The input is

$$
\widetilde{M}:=\left(M M^{T}\right)^{q} M
$$

Power iterations

For approximately low-rank matrices performance depends on gap between σ_{k} and σ_{k+1}

The gap can be increased by power iterations
This method is only used when computing \widetilde{U}
The input is

$$
\begin{aligned}
\tilde{M} & :=\left(M M^{T}\right)^{q} M \\
& =\left(U_{M} S_{M}^{2} U_{M}^{T}\right)^{q} U_{M} S_{M} V_{M}^{T}
\end{aligned}
$$

Power iterations

For approximately low-rank matrices performance depends on gap between σ_{k} and σ_{k+1}

The gap can be increased by power iterations
This method is only used when computing \widetilde{U}
The input is

$$
\begin{aligned}
\tilde{M} & :=\left(M M^{T}\right)^{q} M \\
& =\left(U_{M} S_{M}^{2} U_{M}^{T}\right)^{q} U_{M} S_{M} V_{M}^{T} \\
& =U_{M} S_{M}^{2} U_{M}^{T} U_{M} S_{M}^{2} U_{M}^{T} \cdots U_{M} S_{M}^{2} U_{M}^{T} U_{M} V_{M}^{T} \\
& =U_{M} S_{M}^{2 q+1} V_{M}^{T}
\end{aligned}
$$

Problem

How do we estimate the column space of a low-rank matrix?

- Project onto random subspace with slightly larger dimension
- Select random columns

Randomized column-space approximation

For a matrix $M \in \mathbb{R}^{m \times n}$ which is approximately rank k :

1. Create an $n \times(k+p)$ iid standard Gaussian matrix \mathbf{A}, where p is a small integer (e.g. 5)
2. Compute the $m \times(k+p)$ matrix $\mathbf{B}=M \mathbf{A}$
3. Orthonormalize the columns of B and output them as a matrix $\widetilde{\mathbf{U}} \in \mathbb{R}^{m \times(k+p)}$.
4. Apply power iterations if necessary.

Randomized column-space approximation

$$
\begin{aligned}
\mathbf{B} & =M \mathbf{A} \\
& =U_{M} S_{M} V_{M}^{T} \mathbf{A} \\
& =U_{M} S_{M} \mathbf{C}
\end{aligned}
$$

Randomized column-space approximation

$$
\begin{aligned}
\mathbf{B} & =M \mathbf{A} \\
& =U_{M} S_{M} V_{M}^{T} \mathbf{A} \\
& =U_{M} S_{M} \mathbf{C}
\end{aligned}
$$

- If M is low rank C is a $k \times(k+p)$ iid standard Gaussian matrix

Randomized column-space approximation

$$
\begin{aligned}
\mathbf{B} & =M \mathbf{A} \\
& =U_{M} S_{M} V_{M}^{T} \mathbf{A} \\
& =U_{M} S_{M} \mathbf{C}
\end{aligned}
$$

- If M is low rank C is a $k \times(k+p)$ iid standard Gaussian matrix
- Otherwise, \mathbf{C} is a $\min \{m, n\} \times(k+p)$ iid standard Gaussian matrix

Randomized SVD of a video

- Video with 1601080×1920 frames
- We interpret each frame as a vector in $\mathbb{R}^{20,736,000}$
- Matrix formed by these vectors is approximately low rank
- Regular SVD takes 12 seconds (281.1 seconds if we take 691 frames)
- Fast SVD with randomized-column-space estimate takes 5.8 seconds (10.4 seconds for 691 frames) to obtain a rank-10 approximation ($q=2, p=7$)

True singular values

True Singular Values

Left singular vector approximation

True

Estimated

Random column selection

For a matrix $M \in \mathbb{R}^{m \times n}$ which is approximately rank k :

1. Select a random subset of column indices $\mathcal{I}:=\left\{\mathbf{i}_{\mathbf{1}}, \mathbf{i}_{2}, \ldots, \mathbf{i}_{\mathbf{k}^{\prime}}\right\}$ with $k^{\prime} \geq k$
2. Orthonormalize the submatrix corresponding to \mathcal{I} :

$$
M_{\mathcal{I}}:=\left[\begin{array}{llll}
M_{:, \mathbf{i}_{1}} & M_{:, \mathbf{i}_{2}} & \cdots & M_{: ; \mathrm{i}_{\mathbf{k}^{\prime}}}
\end{array}\right]
$$

and output them as a matrix $\widetilde{\mathbf{U}} \in \mathbb{R}^{m \times k^{\prime}}$

Random column selection

(Possible) Problem: If right singular vectors are sparse, this will not work

$$
M_{\mathcal{I}}=U_{M} S_{M}\left(V_{M}\right)_{\mathcal{I}}
$$

Example

$$
M:=\left[\begin{array}{cccc}
-3 & 2 & 2 & 2 \\
3 & 2 & 2 & 2 \\
-3 & 2 & 2 & 2 \\
3 & 2 & 2 & 2
\end{array}\right]
$$

Example

$$
M=U_{M} S_{M} V_{M}^{T}=\left[\begin{array}{cc}
0.5 & -0.5 \\
0.5 & 0.5 \\
0.5 & -0.5 \\
0.5 & 0.5
\end{array}\right]\left[\begin{array}{cc}
6.9282 & 0 \\
0 & 6
\end{array}\right]\left[\begin{array}{cccc}
0 & 0.577 & 0.577 & 0.577 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

Example, $\mathcal{I}=\{2,3\}$

$$
M_{\mathcal{I}}=\left[\begin{array}{ll}
2 & 2 \\
2 & 2 \\
2 & 2 \\
2 & 2
\end{array}\right]=\left[\begin{array}{l}
0.5 \\
0.5 \\
0.5 \\
0.5
\end{array}\right] 6.2982\left[\begin{array}{ll}
0.577 & 0.577
\end{array}\right] .
$$

Randomized SVD of a video

- Video with 1601080×1920 frames
- We interpret each frame as a vector in $\mathbb{R}^{20,736,000}$
- Matrix formed by these vectors is approximately low rank
- Regular SVD takes 12 seconds (281.1 seconds if we take 691 frames)
- Fast SVD with random-column-selection estimate takes 5.2 seconds to obtain a rank-10 approximation $\left(k^{\prime}=17\right)$

Left singular vector approximation

True

Estimated

Singular value approximation

First 10 Singular Values

