

Multiresolution Analysis

DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis

http://www.cims.nyu.edu/~cfgranda/pages/OBDA_fall17/index.html

Carlos Fernandez-Granda

Frames

Short-time Fourier transform (STFT)

Wavelets

Thresholding

Definition

Let $\ensuremath{\mathcal{V}}$ be an inner-product space

A frame of $\mathcal V$ is a set of vectors $\mathcal F:=\{\vec v_1,\vec v_2,\ldots\}$ such that for every $\vec x\in\mathcal V$

$$\frac{c_{\boldsymbol{L}}}{||\vec{x}||_{\langle\cdot,\cdot\rangle}^2} \leq \sum_{\boldsymbol{v}\in\mathcal{F}} |\langle\vec{x},\vec{v}\rangle|^2 \leq \frac{c_{\boldsymbol{U}}}{||\vec{x}||_{\langle\cdot,\cdot\rangle}^2}$$

for fixed positive constants $c_U \ge c_L \ge 0$

The frame is a *tight frame* if $c_L = c_U$

Frames span the whole space

Any frame $\mathcal{F} := \{ \vec{v_1}, \vec{v_2}, \ldots \}$ of \mathcal{V} spans \mathcal{V}

Proof:

Assume $\vec{y} \notin \text{span}(\vec{v_1}, \vec{v_2}, \ldots)$

Frames span the whole space

Any frame $\mathcal{F} := \{ \vec{v_1}, \vec{v_2}, \ldots \}$ of \mathcal{V} spans \mathcal{V}

Proof:

Assume $\vec{y} \notin \text{span}(\vec{v}_1, \vec{v}_2, \ldots)$

Then $\mathcal{P}_{\mathsf{span}(\vec{v_1},\vec{v_2},...)^{\perp}} \vec{y}$ is nonzero and

$$\sum_{\vec{v}\in\mathcal{F}}\left|\left\langle \mathcal{P}_{\mathsf{span}\left(\vec{v}_{1},\vec{v}_{2},\ldots\right)^{\perp}}\vec{y},\vec{v}\right\rangle \right|^{2}=$$

Frames span the whole space

Any frame $\mathcal{F} := \{ \vec{v_1}, \vec{v_2}, \ldots \}$ of \mathcal{V} spans \mathcal{V}

Proof:

Assume $\vec{y} \notin \text{span}(\vec{v}_1, \vec{v}_2, \ldots)$

Then $\mathcal{P}_{\mathsf{span}(\vec{v_1},\vec{v_2},...)^{\perp}} \vec{y}$ is nonzero and

$$\sum_{\vec{v}\in\mathcal{F}}\left|\left\langle \mathcal{P}_{\mathsf{span}(\vec{v}_1,\vec{v}_2,\ldots)^{\perp}}\,\vec{y},\vec{v}\right\rangle\right|^2=0$$

Any orthonormal basis $\mathcal{B}:=\left\{ec{b_1},ec{b_2},\ldots
ight\}$ is a tight frame

Any orthonormal basis
$$\mathcal{B}:=\left\{ec{b}_1,ec{b}_2,\ldots
ight\}$$
 is a tight frame

Proof:

For any vector $\vec{x} \in \mathcal{V}$

 $||\vec{x}||^2_{\langle\cdot,\cdot\rangle}$

Any orthonormal basis
$$\mathcal{B}:=\left\{ec{b_1},ec{b_2},\ldots
ight\}$$
 is a tight frame

Proof:

For any vector $\vec{x} \in \mathcal{V}$

$$||\vec{x}||^{2}_{\langle\cdot,\cdot\rangle} = \left\| \sum_{\vec{b}\in\mathcal{B}} \left\langle \vec{x}, \vec{b} \right\rangle \vec{b} \right\|^{2}_{\langle\cdot,\cdot\rangle}$$

Any orthonormal basis
$$\mathcal{B} := \left\{ec{b}_1, ec{b}_2, \ldots
ight\}$$
 is a tight frame

Proof:

For any vector $\vec{x} \in \mathcal{V}$

$$\begin{split} ||\vec{x}||_{\langle\cdot,\cdot\rangle}^{2} &= \left\| \left| \sum_{\vec{b}\in\mathcal{B}} \left\langle \vec{x}, \vec{b} \right\rangle \vec{b} \right\| \right|_{\langle\cdot,\cdot\rangle}^{2} \\ &= \sum_{\vec{b}\in\mathcal{B}} \left| \left\langle \vec{x}, \vec{b} \right\rangle \right|^{2} \left\| \left| \vec{b} \right\| \right|_{\langle\cdot,\cdot\rangle}^{2} \end{split}$$

Any orthonormal basis
$$\mathcal{B}:=\left\{ec{b}_1,ec{b}_2,\ldots
ight\}$$
 is a tight frame

Proof:

For any vector $\vec{x} \in \mathcal{V}$

$$\begin{split} |\vec{x}||_{\langle\cdot,\cdot\rangle}^{2} &= \left\| \left| \sum_{\vec{b}\in\mathcal{B}} \left\langle \vec{x}, \vec{b} \right\rangle \vec{b} \right\|_{\langle\cdot,\cdot\rangle}^{2} \\ &= \sum_{\vec{b}\in\mathcal{B}} \left| \left\langle \vec{x}, \vec{b} \right\rangle \right|^{2} \left\| \left| \vec{b} \right| \right|_{\langle\cdot,\cdot\rangle}^{2} \\ &= \sum_{\vec{b}\in\mathcal{B}} \left| \left\langle \vec{x}, \vec{b} \right\rangle \right|^{2} \end{split}$$

Analysis operator

The analysis operator Φ of a frame maps a vector to its coefficients

$$\Phi\left(\vec{x}\right)\left[k\right] = \langle \vec{x}, \vec{v}_k \rangle$$

For any finite frame $\{\vec{v_1}, \vec{v_2}, \dots, \vec{v_m}\}$ of \mathbb{C}^n the analysis operator is

$$F := \begin{bmatrix} \vec{v}_1^* \\ \vec{v}_2^* \\ \cdots \\ \vec{v}_m^* \end{bmatrix}$$

Frames in finite-dimensional spaces

 $ec{v_1}, ec{v_2}, \dots, ec{v_m}$ are a frame of \mathbb{C}^n if and only F is full rank

In that case,

$$c_U = \sigma_1^2$$
$$c_L = \sigma_n^2$$

$$\sigma_n^2 \le ||F\vec{x}||_2^2 = \sum_{j=1}^m \langle \vec{x}, \vec{v}_j \rangle^2 \le \sigma_1^2$$

Pseudoinverse

If an $n \times m$ tall matrix A, $m \ge n$, is full rank, then its pseudoinverse

$$A^\dagger:=(A^*A)^{-1}\,A^*$$

is well defined, is a left inverse of A

$$A^{\dagger}A = I$$

and equals

$$A^{\dagger} = V S^{-1} U^*$$

where $A = USV^*$ is the SVD of A

$$A^{\dagger} := (A^*A)^{-1} A^*$$

$$A^{\dagger} := (A^*A)^{-1} A^*$$

= $(VSU^*USV^*A)^{-1} VSU^*$

$$A^{\dagger} := (A^*A)^{-1} A^*$$

= (VSU^*USV^*A)^{-1} VSU^*
= (VS^2V^*)^{-1} VSU^*

$$A^{\dagger} := (A^*A)^{-1} A^*$$

= $(VSU^*USV^*A)^{-1} VSU^*$
= $(VS^2V^*)^{-1} VSU^*$
= $VS^{-2}V^*VSU^*$

$$A^{\dagger} := (A^*A)^{-1} A^*$$

= $(VSU^*USV^*A)^{-1} VSU^*$
= $(VS^2V^*)^{-1} VSU^*$
= $VS^{-2}V^*VSU^*$
= $VS^{-1}U$

$$A^{\dagger} := (A^*A)^{-1} A^*$$

= $(VSU^*USV^*A)^{-1} VSU^*$
= $(VS^2V^*)^{-1} VSU^*$
= $VS^{-2}V^*VSU^*$
= $VS^{-1}U$

 $A^{\dagger}A$

$$A^{\dagger} := (A^*A)^{-1} A^*$$

= $(VSU^*USV^*A)^{-1} VSU^*$
= $(VS^2V^*)^{-1} VSU^*$
= $VS^{-2}V^*VSU^*$
= $VS^{-1}U$

$$A^{\dagger}A = VS^{-1}UV^{*}USV^{*}$$

$$A^{\dagger} := (A^*A)^{-1} A^*$$

= $(VSU^*USV^*A)^{-1} VSU^*$
= $(VS^2V^*)^{-1} VSU^*$
= $VS^{-2}V^*VSU^*$
= $VS^{-1}U$

$$A^{\dagger}A = VS^{-1}UV^*USV^* = I$$

Frames

Short-time Fourier transform (STFT)

Wavelets

Thresholding

Motivation

Spectrum of speech, music, etc. varies over time

Idea: Compute frequency representation of time segments of the signal

The short-time Fourier transform (STFT) of a function $f \in \mathcal{L}_2[-1/2, 1/2]$ is

STFT {f} (k,
$$\tau$$
) := $\int_{-1/2}^{1/2} f(t) \overline{w(t-\tau)} e^{-i2\pi kt} dt$

where $w \in \mathcal{L}_2[-1/2, 1/2]$ is a window function

Frame vectors: $v_{k,\tau}(t) := w(t-\tau) e^{i2\pi kt}$

Discrete short-time Fourier transform

The STFT of a vector $\vec{x} \in \mathbb{C}^n$ is

$$\mathsf{STFT}\left\{f\right\}\left(k,l\right) := \left\langle \vec{x} \circ \vec{w}_{\left[l\right]}, \vec{h}_{k}\right\rangle$$

where $w \in \mathbb{C}^n$ is a window vector

Frame vectors: $v_{k,l}(t) := \vec{w}_{[l]} \circ \vec{h}_k$

Length of window and shifts are chosen so that shifted windows overlap

In that case the STFT is a frame

We can invert it using fast algorithms based on the FFT

Window should not produce spurious high-frequency artifacts

Rectangular window

Hann window

Frame vector I = 0, k = 0

Frame vector I = 1/32, k = 0

Frame vector I = 0, k = 64

Frame vector I = 1/32, k = 64

Speech signal

Spectrum

Spectrogram (log magnitude of STFT coefficients)

Frequency
Frames

Short-time Fourier transform (STFT)

Wavelets

Thresholding

Motivation: Extracting features at different scales

Idea: Frame vectors are scaled, shifted copies of a fixed function

An additional function captures low-pass component at largest scale

Wavelet transform

The wavelet transform of a function $f \in \mathcal{L}_2[-1/2, 1/2]$ depends on a choice of scaling function (or *father wavelet*) ϕ and wavelet function (or *mother wavelet*) ψ

The scaling coefficients are

$$\mathsf{W}_{\phi}\left\{f\right\}(\tau) := \frac{1}{\sqrt{s}} \int f(t) \,\overline{\phi(t-\tau)} \, \mathrm{d}t$$

The wavelet coefficients are

$$\mathsf{W}_{\psi}\left\{f
ight\}\left(s, au
ight):=rac{1}{\sqrt{s}}\int_{0}^{1}f\left(t
ight)\overline{\psi\left(rac{t- au}{s}
ight)}\,\mathsf{d}t$$

Wavelets can be designed to be bases or frames

Haar wavelet

Wavelets are band-pass filters, scaling functions are low-pass filters

Discrete wavelet transform

The discrete wavelet transform depends on a choice of scaling vector $\vec{\phi}$ and wavelet $\vec{\psi}$

The scaling coefficients are

$$\mathsf{W}_{ec{\phi}}\left\{f
ight\}\left(\mathit{I}
ight):=\left\langleec{x},ec{\phi}_{\left[\mathit{I}
ight]}
ight
angle$$

The wavelet coefficients are

$$\mathsf{W}_{\vec{\psi}}\left\{f\right\}\left(s,l\right) := \left\langle \vec{x}, \vec{\psi}_{[s,l]}\right\rangle,$$

where

$$\vec{\psi}_{[s,l]}[j] := \vec{\psi} \left[\frac{j-l}{s} \right]$$

Wavelets can be designed to be bases or frames

Scale

Basis functions

2⁰

Sequence of subspaces $\mathcal{V}_0, \mathcal{V}_1, \dots, \mathcal{V}_{\mathcal{K}}$ representing different scales

Fix a scaling vector $\vec{\phi}$ and a wavelet $\vec{\psi}$

Sequence of subspaces $\mathcal{V}_0, \mathcal{V}_1, \dots, \mathcal{V}_{\mathcal{K}}$ representing different scales

Fix a scaling vector $\vec{\phi}$ and a wavelet $\vec{\psi}$

 $\mathcal{V}_{\mathcal{K}}$ is the span of $ec{\phi}$

Sequence of subspaces $\mathcal{V}_0, \mathcal{V}_1, \dots, \mathcal{V}_{\mathcal{K}}$ representing different scales

Fix a scaling vector $\vec{\phi}$ and a wavelet $\vec{\psi}$

 $\mathcal{V}_{\mathcal{K}}$ is the span of $ec{\phi}$

 $\mathcal{V}_k := \mathcal{W}_k \oplus \mathcal{V}_{k+1}$

 \mathcal{W}_k is the span of $\vec{\psi}$ dilated by 2^k and shifted by multiples of 2^{k+1}

 $\mathcal{V}_k := \mathcal{W}_k \oplus \mathcal{V}_{k+1}$

 \mathcal{W}_k is the span of $\vec{\psi}$ dilated by 2^k and shifted by multiples of 2^{k+1}

 \mathcal{W}_0

 $\mathcal{V}_k := \mathcal{W}_k \oplus \mathcal{V}_{k+1}$

 \mathcal{W}_k is the span of $\vec{\psi}$ dilated by 2^k and shifted by multiples of 2^{k+1}

 $\mathcal{V}_k := \mathcal{W}_k \oplus \mathcal{V}_{k+1}$

 \mathcal{W}_k is the span of $\vec{\psi}$ dilated by 2^k and shifted by multiples of 2^{k+1}

 $\mathcal{P}_{\mathcal{V}_k} \vec{x}$ is an approximation of \vec{x} at scale 2^k

Properties

- $\mathcal{V}_0 = \mathbb{C}^n$ (approximation at scale 2⁰ is perfect)
- \mathcal{V}_k is invariant to translations of scale 2^k
- Dilating vectors in V_j by 2 yields vectors in V_{j+1}

Electrocardiogram

Signal Haar transform

2D Wavelets

Extension to 2D by using outer products of 1D atoms

$$\xi_{s_1, s_2, k_1, k_2}^{2\mathsf{D}} := \xi_{s_1, k_1}^{1\mathsf{D}} \left(\xi_{s_2, k_2}^{1\mathsf{D}} \right)^T$$

The JPEG 2000 compression standard is based on 2D wavelets

Many extensions:

Steerable pyramid, ridgelets, curvelets, bandlets,

2D Haar transform

2D wavelet transform

2D wavelet transform

Frames

Short-time Fourier transform (STFT)

Wavelets

Thresholding

Aim: Extracting information (signal) from data in the presence of uninformative perturbations (noise)

Additive noise model

data = signal + noise $\vec{y} = \vec{x} + \vec{z}$

Prior knowledge about structure of signal vs structure of noise is required

Assumption

- Signal is a sparse superposition of basis/frame vectors
- ► Noise is not

Assumption

- Signal is a sparse superposition of basis/frame vectors
- Noise is not

Example:

Gaussian noise \vec{z} with covariance matrix $\sigma^2 I$, distribution of $F\vec{z}$?

Example

Thresholding

Hard-thresholding operator

$$\mathcal{H}_{\eta}\left(ec{v}
ight)\left[j
ight] := egin{cases} ec{v}\left[j
ight] & ext{if } |ec{v}\left[j
ight]| > \eta \ 0 & ext{otherwise} \end{cases}$$

Denoising via hard thresholding

Multisinusoidal signal

Fÿ

Denoising via hard thresholding

Data: $\vec{y} = \vec{x} + \vec{z}$ Assumption: $F\vec{x}$ is sparse, $F\vec{z}$ is not

1. Apply the hard-thresholding operator \mathcal{H}_{η} to $F\vec{y}$

2. If F is a basis, then

$$ec{x}_{\mathsf{est}} := F^{-1} \mathcal{H}_{\eta} \left(F ec{y}
ight)$$

If F is a frame,

$$ec{x}_{\mathsf{est}} := F^{\dagger} \mathcal{H}_{\eta} \left(F ec{y}
ight),$$

where F^{\dagger} is the pseudoinverse of F (other left inverses of F also work)

Denoising via hard thresholding in Fourier basis

Denoising via hard thresholding in Fourier basis

Image denoising

 \vec{x}

F*x*

Image denoising

ź

Data (SNR=2.5)

ÿ

Fÿ

$\mathcal{H}_{\eta}(F\vec{y})$

$F^{-1}\mathcal{H}_{\eta}\left(Fec{y} ight)$

Data (SNR=1)

$\mathcal{H}_{\eta}(F\vec{y})$

$F^{-1}\mathcal{H}_{\eta}\left(Fec{y} ight)$

Image denoising

 $F^{-1}\mathcal{H}_{\eta}\left(F\vec{y}\right)$ \vec{x} \vec{y}

Denoising via thresholding

$$\vec{y} \qquad F^{-1}\mathcal{H}_{\eta}(F\vec{y}) \qquad \vec{x}$$

Speech denoising

Time thresholding

Spectrum

Frequency thresholding

Frequency thresholding

Spectrogram (STFT)

Frequency

STFT thresholding

Frequency

Time

STFT thresholding

Coefficients are structured

Coefficients are structured

 \vec{x}

F*x*

Assumption: Coefficients are *group sparse*, nonzero coefficients *cluster* together

Partition coefficients into blocks $\mathcal{I}_1, \mathcal{I}_2, \dots, \mathcal{I}_k$ and threshold whole blocks

$$\mathcal{B}_{\eta}\left(\vec{v}\right)\left[j\right] := \begin{cases} \vec{v}\left[j\right] & \text{if } j \in \mathcal{I}_{j} \quad \text{such that } \left|\left|\vec{v}_{\mathcal{I}_{j}}\right|\right|_{2} > \eta,, \\ 0 & \text{otherwise}, \end{cases}$$

Denoising via block thresholding

- 1. Apply the hard-thresholding operator \mathcal{B}_η to $Fec{y}$
- 2. If F is a basis, then

$$\vec{x}_{\mathsf{est}} := F^{-1} \mathcal{B}_{\eta} \left(F \vec{y} \right)$$

If F is a frame,

$$ec{x}_{\mathsf{est}} := \mathsf{F}^{\dagger} \mathcal{B}_{\eta} \left(\mathsf{F} ec{y}
ight),$$

where F^{\dagger} is the pseudoinverse of F (other left inverses of F also work)

Image denoising (SNR=2.5)

ÿ

Fÿ

$\mathcal{H}_{\eta}(F\vec{y})$

 $\mathcal{B}_{\eta}\left(F\vec{y}
ight)$

$F^{-1}\mathcal{H}_{\eta}\left(Fec{y} ight)$

$F^{-1}\mathcal{B}_{\eta}\left(Fec{y} ight)$

Image denoising (SNR=1)

 \vec{y}

Fÿ

$\mathcal{H}_{\eta}(F\vec{y})$

$\mathcal{B}_{\eta}\left(F\vec{y} ight)$

$F^{-1}\mathcal{H}_{\eta}\left(Fec{y} ight)$

$F^{-1}\mathcal{B}_{\eta}\left(Fec{y} ight)$

$$\vec{y} \qquad F^{-1}\mathcal{H}_{\eta}(F\vec{y}) \qquad \vec{x}$$

$$ec{y} \qquad \qquad F^{-1}\mathcal{B}_\eta\left(Fec{y}
ight) \qquad \qquad ec{x}$$

$$\vec{y} \qquad F^{-1}\mathcal{H}_{\eta}(F\vec{y}) \qquad \vec{x}$$

$$ec{y} \qquad \qquad F^{-1}\mathcal{B}_\eta\left(Fec{y}
ight) \qquad \qquad ec{x}$$

Speech denoising

Spectrogram (STFT)

Frequency

STFT thresholding

Frequency

Time

STFT thresholding

STFT block thresholding

Time

STFT block thresholding

