Multiresolution Analysis

DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/OBDA_fall17/index.html

Carlos Fernandez-Granda

Frames

Short-time Fourier transform (STFT)
Wavelets
Thresholding

Definition

Let \mathcal{V} be an inner-product space
A frame of \mathcal{V} is a set of vectors $\mathcal{F}:=\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots\right\}$ such that for every $\vec{x} \in \mathcal{V}$

$$
c_{L}\|\vec{x}\|_{\langle\cdot,\rangle}^{2} \leq \sum_{v \in \mathcal{F}}|\langle\vec{x}, \vec{v}\rangle|^{2} \leq c_{U}\|\vec{x}\|_{\langle\cdot, \cdot\rangle}^{2}
$$

for fixed positive constants $c_{U} \geq c_{L} \geq 0$
The frame is a tight frame if $c_{L}=c_{U}$

Frames span the whole space

Any frame $\mathcal{F}:=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots\right\}$ of \mathcal{V} spans \mathcal{V}

Proof:

Assume $\vec{y} \notin \operatorname{span}\left(\vec{v}_{1}, \vec{v}_{2}, \ldots\right)$

Frames span the whole space

Any frame $\mathcal{F}:=\left\{\vec{v}_{1}, \overrightarrow{v_{2}}, \ldots\right\}$ of \mathcal{V} spans \mathcal{V}

Proof:

Assume $\vec{y} \notin \operatorname{span}\left(\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots\right)$
Then $\mathcal{P}_{\text {span }\left(\vec{v}_{1}, \vec{v}_{2}, \ldots\right)^{\perp}} \vec{y}$ is nonzero and

Frames span the whole space

Any frame $\mathcal{F}:=\left\{\vec{v}_{1}, \overrightarrow{v_{2}}, \ldots\right\}$ of \mathcal{V} spans \mathcal{V}

Proof:

Assume $\vec{y} \notin \operatorname{span}\left(\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots\right)$
Then $\mathcal{P}_{\text {span }\left(\vec{v}_{1}, \overrightarrow{v_{2}}, \ldots\right)^{\perp}} \vec{y}$ is nonzero and

$$
\sum_{\vec{v} \in \mathcal{F}}\left|\left\langle\mathcal{P}_{\text {span }\left(\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots\right)^{\perp}} \vec{y}^{\boldsymbol{y}}, \vec{v}\right\rangle\right|^{2}=0
$$

Orthogonal bases are tight frames

Any orthonormal basis $\mathcal{B}:=\left\{\vec{b}_{1}, \vec{b}_{2}, \ldots\right\}$ is a tight frame
Proof:

Orthogonal bases are tight frames

Any orthonormal basis $\mathcal{B}:=\left\{\vec{b}_{1}, \vec{b}_{2}, \ldots\right\}$ is a tight frame
Proof:

For any vector $\vec{x} \in \mathcal{V}$

$$
\|\vec{x}\|_{\langle\cdot,\rangle\rangle}^{2}
$$

Orthogonal bases are tight frames

Any orthonormal basis $\mathcal{B}:=\left\{\vec{b}_{1}, \vec{b}_{2}, \ldots\right\}$ is a tight frame Proof:

For any vector $\vec{x} \in \mathcal{V}$

$$
\|\vec{x}\|_{\langle, \cdot\rangle}^{2}=\left\|\sum_{\vec{b} \in \mathcal{B}}\langle\vec{x}, \vec{b}\rangle \vec{b}\right\|_{\langle\cdot,\rangle}^{2}
$$

Orthogonal bases are tight frames

Any orthonormal basis $\mathcal{B}:=\left\{\vec{b}_{1}, \vec{b}_{2}, \ldots\right\}$ is a tight frame
Proof:
For any vector $\vec{x} \in \mathcal{V}$

$$
\begin{aligned}
\|\vec{x}\|_{\langle, \cdot\rangle}^{2} & =\left\|\sum_{\vec{b} \in \mathcal{B}}\langle\vec{x}, \vec{b}\rangle \vec{b}\right\|_{\langle\cdot,\rangle}^{2} \\
& =\sum_{\vec{b} \in \mathcal{B}}|\langle\vec{x}, \vec{b}\rangle|^{2}\|\vec{b}\|_{\langle\cdot,\rangle}^{2}
\end{aligned}
$$

Orthogonal bases are tight frames

Any orthonormal basis $\mathcal{B}:=\left\{\vec{b}_{1}, \vec{b}_{2}, \ldots\right\}$ is a tight frame
Proof:
For any vector $\vec{x} \in \mathcal{V}$

$$
\begin{aligned}
\|\vec{x}\|_{\langle\cdot, \cdot\rangle}^{2} & =\left.\left\|\sum_{\vec{b} \in \mathcal{B}}\langle\vec{x}, \vec{b}\rangle \vec{b}\right\|_{\mid}\right|_{\langle\cdot, \cdot\rangle} ^{2} \\
& =\sum_{\vec{b} \in \mathcal{B}}|\langle\vec{x}, \vec{b}\rangle|^{2}| | \vec{b} \|_{\langle\cdot, \cdot\rangle}^{2} \\
& =\sum_{\vec{b} \in \mathcal{B}}|\langle\vec{x}, \vec{b}\rangle|^{2}
\end{aligned}
$$

Analysis operator

The analysis operator Φ of a frame maps a vector to its coefficients

$$
\Phi(\vec{x})[k]=\left\langle\vec{x}, \vec{v}_{k}\right\rangle
$$

For any finite frame $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \overrightarrow{v_{m}}\right\}$ of \mathbb{C}^{n} the analysis operator is

$$
F:=\left[\begin{array}{c}
\vec{v}_{1}^{*} \\
\vec{v}_{2}^{*} \\
\cdots \\
\vec{v}_{m}^{*}
\end{array}\right]
$$

Frames in finite-dimensional spaces

$\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{m}$ are a frame of \mathbb{C}^{n} if and only F is full rank
In that case,

$$
\begin{aligned}
c_{U} & =\sigma_{1}^{2} \\
c_{L} & =\sigma_{n}^{2}
\end{aligned}
$$

Proof:

$$
\sigma_{n}^{2} \leq\|F \vec{x}\|_{2}^{2}=\sum_{j=1}^{m}\left\langle\vec{x}, \vec{v}_{j}\right\rangle^{2} \leq \sigma_{1}^{2}
$$

Pseudoinverse

If an $n \times m$ tall matrix $A, m \geq n$, is full rank, then its pseudoinverse

$$
A^{\dagger}:=\left(A^{*} A\right)^{-1} A^{*}
$$

is well defined, is a left inverse of A

$$
A^{\dagger} A=1
$$

and equals

$$
A^{\dagger}=V S^{-1} U^{*}
$$

where $A=U S V^{*}$ is the SVD of A

Proof

$$
A^{\dagger}:=\left(A^{*} A\right)^{-1} A^{*}
$$

Proof

$$
\begin{aligned}
A^{\dagger} & :=\left(A^{*} A\right)^{-1} A^{*} \\
& =\left(V S U^{*} U S V^{*} A\right)^{-1} V S U^{*}
\end{aligned}
$$

Proof

$$
\begin{aligned}
A^{\dagger} & :=\left(A^{*} A\right)^{-1} A^{*} \\
& =\left(V S U^{*} U S V^{*} A\right)^{-1} V S U^{*} \\
& =\left(V S^{2} V^{*}\right)^{-1} V S U^{*}
\end{aligned}
$$

Proof

$$
\begin{aligned}
A^{\dagger} & :=\left(A^{*} A\right)^{-1} A^{*} \\
& =\left(V S U^{*} U S V^{*} A\right)^{-1} V S U^{*} \\
& =\left(V S^{2} V^{*}\right)^{-1} V S U^{*} \\
& =V S^{-2} V^{*} V S U^{*}
\end{aligned}
$$

Proof

$$
\begin{aligned}
A^{\dagger} & :=\left(A^{*} A\right)^{-1} A^{*} \\
& =\left(V S U^{*} U S V^{*} A\right)^{-1} V S U^{*} \\
& =\left(V S^{2} V^{*}\right)^{-1} V S U^{*} \\
& =V S^{-2} V^{*} V S U^{*} \\
& =V S^{-1} U
\end{aligned}
$$

Proof

$$
\begin{aligned}
A^{\dagger} & :=\left(A^{*} A\right)^{-1} A^{*} \\
& =\left(V S U^{*} U S V^{*} A\right)^{-1} V S U^{*} \\
& =\left(V S^{2} V^{*}\right)^{-1} V S U^{*} \\
& =V S^{-2} V^{*} V S U^{*} \\
& =V S^{-1} U
\end{aligned}
$$

$A^{\dagger} A$

Proof

$$
\begin{aligned}
A^{\dagger} & :=\left(A^{*} A\right)^{-1} A^{*} \\
& =\left(V S U^{*} U S V^{*} A\right)^{-1} V S U^{*} \\
& =\left(V S^{2} V^{*}\right)^{-1} V S U^{*} \\
& =V S^{-2} V^{*} V S U^{*} \\
& =V S^{-1} U
\end{aligned}
$$

$$
A^{\dagger} A=V S^{-1} U V^{*} U S V^{*}
$$

Proof

$$
\begin{aligned}
A^{\dagger} & :=\left(A^{*} A\right)^{-1} A^{*} \\
& =\left(V S U^{*} U S V^{*} A\right)^{-1} V S U^{*} \\
& =\left(V S^{2} V^{*}\right)^{-1} V S U^{*} \\
& =V S^{-2} V^{*} V S U^{*} \\
& =V S^{-1} U
\end{aligned}
$$

$$
A^{\dagger} A=V S^{-1} U V^{*} U S V^{*}=I
$$

Frames

Short-time Fourier transform (STFT)

Wavelets

Motivation

Spectrum of speech, music, etc. varies over time
Idea: Compute frequency representation of time segments of the signal

Short-time Fourier transform

The short-time Fourier transform (STFT) of a function $f \in \mathcal{L}_{2}[-1 / 2,1 / 2]$ is

$$
\operatorname{STFT}\{f\}(k, \tau):=\int_{-1 / 2}^{1 / 2} f(t) \overline{w(t-\tau)} e^{-i 2 \pi k t} \mathrm{~d} t
$$

where $w \in \mathcal{L}_{2}[-1 / 2,1 / 2]$ is a window function
Frame vectors: $v_{k, \tau}(t):=w(t-\tau) e^{i 2 \pi k t}$

Discrete short-time Fourier transform

The STFT of a vector $\vec{x} \in \mathbb{C}^{n}$ is

$$
\operatorname{STFT}\{f\}(k, l):=\left\langle\vec{x} \circ \vec{w}_{[l]}, \vec{h}_{k}\right\rangle
$$

where $w \in \mathbb{C}^{n}$ is a window vector
Frame vectors: $v_{k, l}(t):=\vec{w}_{[l]} \circ \vec{h}_{k}$

STFT

Length of window and shifts are chosen so that shifted windows overlap
In that case the STFT is a frame

We can invert it using fast algorithms based on the FFT
Window should not produce spurious high-frequency artifacts

Rectangular window

Signal
Window

Hann window

Signal
Window

Frame vector $I=0, k=0$

Real part

Imaginary part

Frame vector $I=1 / 32, k=0$

Real part

Imaginary part

Spectrum

Frame vector $I=0, k=64$

Real part

Imaginary part

Frame vector $I=1 / 32, k=64$

Real part

Imaginary part

Speech signal

Spectrum

Spectrogram (log magnitude of STFT coefficients)

Time

Frames

Short-time Fourier transform (STFT)

Wavelets

Thresholding

Wavelet transform

Motivation: Extracting features at different scales
Idea: Frame vectors are scaled, shifted copies of a fixed function
An additional function captures low-pass component at largest scale

Wavelet transform

The wavelet transform of a function $f \in \mathcal{L}_{2}[-1 / 2,1 / 2]$ depends on a choice of scaling function (or father wavelet) ϕ and wavelet function (or mother wavelet) ψ

The scaling coefficients are

$$
\mathrm{W}_{\phi}\{f\}(\tau):=\frac{1}{\sqrt{s}} \int f(t) \overline{\phi(t-\tau)} \mathrm{d} t
$$

The wavelet coefficients are

$$
\mathrm{W}_{\psi}\{f\}(s, \tau):=\frac{1}{\sqrt{s}} \int_{0}^{1} f(t) \overline{\psi\left(\frac{t-\tau}{s}\right)} \mathrm{d} t
$$

Wavelets can be designed to be bases or frames

Haar wavelet

Scaling function

Mother wavelet

Wavelets are band-pass filters, scaling functions are low-pass filters

Discrete wavelet transform

The discrete wavelet transform depends on a choice of scaling vector $\vec{\phi}$ and wavelet $\vec{\psi}$

The scaling coefficients are

$$
\mathrm{W}_{\vec{\phi}}\{f\}(I):=\left\langle\vec{x}, \vec{\phi}_{[I]}\right\rangle
$$

The wavelet coefficients are

$$
\mathrm{W}_{\vec{\psi}}\{f\}(s, I):=\left\langle\vec{x}, \vec{\psi}_{[s, l]}\right\rangle,
$$

where

$$
\vec{\psi}_{[s, 1]}[j]:=\vec{\psi}\left[\frac{j-1}{s}\right]
$$

Wavelets can be designed to be bases or frames

Orthonormal wavelet basis

Scale

Basis functions
2^{0}

Orthonormal wavelet basis

Scale 2^{0}

Basis functions

Orthonormal wavelet basis

Scale
Basis functions
2^{0}

Orthonormal wavelet basis

Scale
2^{0}
2^{1}

Orthonormal wavelet basis

Scale
Basis functions
2^{0}

Orthonormal wavelet basis

Scale
Basis functions
2^{0}

Orthonormal wavelet basis

Scale
Basis functions

2^{2}

Orthonormal wavelet basis

Scale
Basis functions

Orthonormal wavelet basis

Scale
Basis functions
2^{0}

2^{1}

2^{2}

2^{3}

Orthonormal wavelet basis

Multiresolution decomposition

Sequence of subspaces $\mathcal{V}_{0}, \mathcal{V}_{1}, \ldots, \mathcal{V}_{K}$ representing different scales
Fix a scaling vector $\vec{\phi}$ and a wavelet $\vec{\psi}$

Multiresolution decomposition

Sequence of subspaces $\mathcal{V}_{0}, \mathcal{V}_{1}, \ldots, \mathcal{V}_{K}$ representing different scales
Fix a scaling vector $\vec{\phi}$ and a wavelet $\vec{\psi}$
\mathcal{V}_{K} is the span of $\vec{\phi}$

Multiresolution decomposition

Sequence of subspaces $\mathcal{V}_{0}, \mathcal{V}_{1}, \ldots, \mathcal{V}_{K}$ representing different scales
Fix a scaling vector $\vec{\phi}$ and a wavelet $\vec{\psi}$
\mathcal{V}_{K} is the span of $\vec{\phi}$
\mathcal{V}_{K}

Multiresolution decomposition

$\mathcal{V}_{k}:=\mathcal{W}_{k} \oplus \mathcal{V}_{k+1}$
\mathcal{W}_{k} is the span of $\vec{\psi}$ dilated by 2^{k} and shifted by multiples of 2^{k+1}

Multiresolution decomposition

$\mathcal{V}_{k}:=\mathcal{W}_{k} \oplus \mathcal{V}_{k+1}$
\mathcal{W}_{k} is the span of $\vec{\psi}$ dilated by 2^{k} and shifted by multiples of 2^{k+1}
\mathcal{W}_{0}

Multiresolution decomposition

$\mathcal{V}_{k}:=\mathcal{W}_{k} \oplus \mathcal{V}_{k+1}$
\mathcal{W}_{k} is the span of $\vec{\psi}$ dilated by 2^{k} and shifted by multiples of 2^{k+1}
\mathcal{W}_{0}
\mathcal{W}_{2}

Multiresolution decomposition

$\mathcal{V}_{k}:=\mathcal{W}_{k} \oplus \mathcal{V}_{k+1}$
\mathcal{W}_{k} is the span of $\vec{\psi}$ dilated by 2^{k} and shifted by multiples of 2^{k+1}

$\mathcal{P}_{\mathcal{V}_{k}} \vec{x}$ is an approximation of \vec{x} at scale 2^{k}

Multiresolution decomposition

Properties

- $\mathcal{V}_{0}=\mathbb{C}^{n}$ (approximation at scale 2^{0} is perfect)
- \mathcal{V}_{k} is invariant to translations of scale 2^{k}
- Dilating vectors in \mathcal{V}_{j} by 2 yields vectors in \mathcal{V}_{j+1}

Electrocardiogram

Signal

Haar transform

Scale 2^{9}

$$
\mathcal{P}_{\mathcal{W}_{9}} \vec{x}
$$

Scale 2^{8}

$\mathcal{P}_{\mathcal{W}_{8}} \vec{x}$

$\mathcal{P}_{\mathcal{V}_{8}} \vec{x}$

Scale 2^{7}

Scale 2^{6}

$$
\mathcal{P}_{\mathcal{W}_{6}} \vec{x}
$$

Scale 2^{5}

$$
\mathcal{P}_{\mathcal{W}_{5}} \vec{x}
$$

$\mathcal{P}_{\mathcal{V}_{5}} \vec{x}$

Scale 2^{4}

$$
\mathcal{P}_{\mathcal{W}_{4}} \vec{x}
$$

$\mathcal{P}_{\nu_{4}} \vec{x}$

Scale 2^{3}

$$
\mathcal{P}_{\mathcal{W}_{3}} \vec{x}
$$

Scale 2^{2}

$$
\mathcal{P}_{\mathcal{W}_{2}} \vec{x}
$$

Scale 2^{1}

$$
\mathcal{P}_{\mathcal{W}_{1}} \vec{x}
$$

Scale 2^{0}

$$
\mathcal{P}_{\mathcal{W}_{0}} \vec{x}
$$

$\mathcal{P}_{\mathcal{V}_{0}} \vec{x}$
$\square \times$

2D Wavelets

Extension to 2D by using outer products of 1D atoms

$$
\xi_{s_{1}, s_{2}, k_{1}, k_{2}}^{2 \mathrm{D}}:=\xi_{s_{1}, k_{1}}^{1 \mathrm{D}}\left(\xi_{s_{2}, k_{2}}^{1 \mathrm{D}}\right)^{T}
$$

The JPEG 2000 compression standard is based on 2D wavelets

Many extensions:

Steerable pyramid, ridgelets, curvelets, bandlets, ...

2D Haar transform

2D wavelet transform

2D wavelet transform

Frames

Short-time Fourier transform (STFT)

Wavelets

Thresholding

Denoising

Aim: Extracting information (signal) from data in the presence of uninformative perturbations (noise)

Additive noise model

$$
\begin{aligned}
\text { data } & =\text { signal }+ \text { noise } \\
\vec{y} & =\vec{x}+\vec{z}
\end{aligned}
$$

Prior knowledge about structure of signal vs structure of noise is required

Assumption

- Signal is a sparse superposition of basis/frame vectors
- Noise is not

Assumption

- Signal is a sparse superposition of basis/frame vectors
- Noise is not

Example:
Gaussian noise \vec{z} with covariance matrix $\sigma^{2} I$, distribution of $F \vec{z}$?

Example

Thresholding

Hard-thresholding operator

$$
\mathcal{H}_{\eta}(\vec{v})[j]:= \begin{cases}\vec{v}[j] & \text { if }|\vec{v}[j]|>\eta \\ 0 & \text { otherwise }\end{cases}
$$

Denoising via hard thresholding

Multisinusoidal signal

$F \vec{y}$

Denoising via hard thresholding

Data: $\vec{y}=\vec{x}+\vec{z}$
Assumption: $F \vec{x}$ is sparse, $F \vec{z}$ is not

1. Apply the hard-thresholding operator \mathcal{H}_{η} to $F \vec{y}$
2. If F is a basis, then

$$
\vec{x}_{\text {est }}:=F^{-1} \mathcal{H}_{\eta}(F \vec{y})
$$

If F is a frame,

$$
\vec{x}_{\text {est }}:=F^{\dagger} \mathcal{H}_{\eta}(F \vec{y}),
$$

where F^{\dagger} is the pseudoinverse of F (other left inverses of F also work)

Denoising via hard thresholding in Fourier basis

\vec{y}

$F \vec{y}$

Denoising via hard thresholding in Fourier basis

$$
F^{-1} \mathcal{H}_{\eta}(F \vec{y})
$$

$$
\mathcal{H}_{\eta}(F \vec{y})
$$

Image denoising

\vec{x}
$F \vec{x}$

Image denoising

\vec{Z}

$F \vec{z}$

Data $(\mathrm{SNR}=2.5)$

$F \vec{y}$

$\mathcal{H}_{\eta}(F \vec{y})$

$F^{-1} \mathcal{H}_{\eta}(F \vec{y})$

Data $(S N R=1)$
$F \vec{y}$

$F \vec{y}$

$\mathcal{H}_{\eta}(F \vec{y})$

$F^{-1} \mathcal{H}_{\eta}(F \vec{y})$

Image denoising

\vec{y}

$$
F^{-1} \mathcal{H}_{\eta}(F \vec{y})
$$

$$
\vec{x}
$$

Denoising via thresholding

$$
\vec{y} \quad F^{-1} \mathcal{H}_{\eta}(F \vec{y})
$$

$$
\vec{x}
$$

Speech denoising

Time thresholding

Spectrum

Frequency thresholding

Frequency thresholding

-Data
——DFT thresholding

Spectrogram (STFT)

Time

STFT thresholding

Time

STFT thresholding

```
-Data
—STFT thresholding
```


Coefficients are structured

Time

Coefficients are structured

\vec{x}
$F \vec{x}$

Block thresholding

Assumption: Coefficients are group sparse, nonzero coefficients cluster together

Partition coefficients into blocks $\mathcal{I}_{1}, \mathcal{I}_{2}, \ldots, \mathcal{I}_{k}$ and threshold whole blocks

$$
\mathcal{B}_{\eta}(\vec{v})[j]:= \begin{cases}\vec{v}[j] & \text { if } j \in \mathcal{I}_{j} \text { such that }\left\|\vec{v}_{\mathcal{I}_{j}}\right\|_{2}>\eta, \\ 0 & \text { otherwise },\end{cases}
$$

Denoising via block thresholding

1. Apply the hard-thresholding operator \mathcal{B}_{η} to $F \vec{y}$
2. If F is a basis, then

$$
\vec{x}_{\text {est }}:=F^{-1} \mathcal{B}_{\eta}(F \vec{y})
$$

If F is a frame,

$$
\vec{x}_{\text {est }}:=F^{\dagger} \mathcal{B}_{\eta}(F \vec{y}),
$$

where F^{\dagger} is the pseudoinverse of F (other left inverses of F also work)

Image denoising $(\mathrm{SNR}=2.5)$

$F \vec{y}$

$\mathcal{H}_{\eta}(F \vec{y})$

$\mathcal{B}_{\eta}(F \vec{y})$

$F^{-1} \mathcal{H}_{\eta}(F \vec{y})$

$F^{-1} \mathcal{B}_{\eta}(F \vec{y})$

Image denoising $(S N R=1)$

$F \vec{y}$

$\mathcal{H}_{\eta}(F \vec{y})$

$\mathcal{B}_{\eta}(F \vec{y})$

$F^{-1} \mathcal{H}_{\eta}(F \vec{y})$

$F^{-1} \mathcal{B}_{\eta}(F \vec{y})$

Denoising via thresholding

$$
\vec{y}
$$

$$
F^{-1} \mathcal{H}_{\eta}(F \vec{y})
$$

$$
\vec{x}
$$

Denoising via thresholding

$$
F^{-1} \mathcal{B}_{\eta}(F \vec{y})
$$

$$
\vec{x}
$$

Denoising via thresholding

$$
\vec{y} \quad F^{-1} \mathcal{H}_{\eta}(F \vec{y})
$$

$$
\vec{x}
$$

Denoising via thresholding

$$
F^{-1} \mathcal{B}_{\eta}(F \vec{y})
$$

$$
\vec{x}
$$

Speech denoising

Spectrogram (STFT)

Time

STFT thresholding

Time

STFT thresholding

```
-Data
—STFT thresholding
```


STFT block thresholding

Time

STFT block thresholding

-Data
—STFT block thresh.

