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Frames



Definition

Let V be an inner-product space

A frame of V is a set of vectors F := {Vi, Vb, ...} such that for
every X € V

=12
e |I9IE,, < ST IR 9P < cullRIR,

veF

for fixed positive constants ¢y > ¢; > 0

The frame is a tight frame if ¢, = ¢y
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Any frame F := {Vi, vp,...} of V spans V
Proof:

Assume y ¢ span (Vq, va, . . .)
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Orthogonal bases are tight frames

Any orthonormal basis B := {51, 52, .. } is a tight frame

Proof:
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Orthogonal bases are tight frames

Any orthonormal basis B := {51, 52, .. } is a tight frame
Proof:

For any vector X € V
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Analysis operator

The analysis operator ® of a frame maps a vector to its coefficients

& (X) [k] = (X, Vi)

For any finite frame {V4, V%, ..., V} of C" the analysis operator is

NSRRN
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Frames in finite-dimensional spaces

Vi, V3, ...,V are a frame of C" if and only F is full rank
In that case,

cy = U%

CcL = U%
Proof:

m
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Pseudoinverse

If an n x m tall matrix A, m > n, is full rank, then its pseudoinverse
Al .= (A*A) 7T A*
is well defined, is a left inverse of A
ATA = |
and equals
Al = vs—tu*

where A = USV* is the SVD of A



Proof

Al = (A*A) T A*
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Proof

Al = (A*A) T A*
= (VSU*USV*A)~t vsu*
— (vs2v*) Tt vsus
= VS2V*VSU*
= Vstu

ATA = VS1uv*usv* = |



Short-time Fourier transform (STFT)



Motivation

Spectrum of speech, music, etc. varies over time

Idea: Compute frequency representation of time segments of the signal



Short-time Fourier transform

The short-time Fourier transform (STFT) of a function
f e Lo]-1/2,1/2] is
1/2 - .
STFT {f} (k,7) ::/ f(t)w(t—71)e 2"kt dt
~1/2

where w € £5[—1/2,1/2] is a window function

Frame vectors: vy (t) := w (t — 7) &>k



Discrete short-time Fourier transform

The STFT of a vector X € C" is
STET {f} (k, 1) := <>?o W, Hk>
where w € C" is a window vector

Frame vectors: vy (t) := w0 By



STFT

Length of window and shifts are chosen so that shifted windows overlap
In that case the STFT is a frame
We can invert it using fast algorithms based on the FFT

Window should not produce spurious high-frequency artifacts



Rectangular window

Signal Window

Spectrum *




Hann window

Signal Window

Spectrum *
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Frame vector | =1/32, k =0
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Frame vector | =0, k = 64

Real part Imaginary part
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Frame vector | = 1/32, k = 64
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Speech signal




Spectrum




Spectrogram (log magnitude of STFT coefficients)

Frequency




Wavelets



Wavelet transform

Motivation: Extracting features at different scales
Idea: Frame vectors are scaled, shifted copies of a fixed function

An additional function captures low-pass component at largest scale



Wavelet transform

The wavelet transform of a function f € £5[—1/2,1/2] depends on a
choice of scaling function (or father wavelet) ¢ and wavelet function
(or mother wavelet) 1

The scaling coefficients are

Wy {f}(7): \[/ t)o(t—7)d

The wavelet coefficients are

Wy {F} (s,7) = \Z/Olf(t)imm&

Wavelets can be designed to be bases or frames




Haar wavelet

Scaling function Mother wavelet

Wavelets are band-pass filters, scaling functions are low-pass filters



Discrete wavelet transform

The discrete wavelet transform depends on a choice of scaling vector 5
and wavelet v

The scaling coefficients are
W5 {F} (1) = (%.d)
The wavelet coefficients are
Wqﬁ{f} (57 l) = <)?7 ¢[S,I]> )

where

S

Pisnlil =4 [J_l}

Wavelets can be designed to be bases or frames



Orthonormal wavelet basis
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Orthonormal wavelet basis
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Orthonormal wavelet basis

Scale

Basis functions
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Orthonormal wavelet basis
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Multiresolution decomposition

Sequence of subspaces Vg, V1, ..., Vk representing different scales

Fix a scaling vector ¢ and a wavelet v
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Multiresolution decomposition

Vi = Wik @ Vi1

Wi is the span of ¢ dilated by 2% and shifted by multiples of 2k+1



Multiresolution decomposition

Vi = Wik @ Vi1

Wi is the span of ¢ dilated by 2% and shifted by multiples of 2k+1

T [ T T
l l l

Wo l




Multiresolution decomposition

Vi = Wik @ Vi1
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Multiresolution decomposition

Vi = Wik @ Vi1

Wi is the span of Q; dilated by 2% and shifted by multiples of 2k+1
I I I T
| | |

[ I

Wo l

" N

Py, X is an approximation of X at scale 2%



Multiresolution decomposition

Properties

» Vo = C" (approximation at scale 2° is perfect)
» V), is invariant to translations of scale 2%

» Dilating vectors in V; by 2 yields vectors in V1



Electrocardiogram

Signal Haar transform
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2D Wavelets

Extension to 2D by using outer products of 1D atoms
T
2D ._ ¢1D 1D
é‘51,52,/<1,k2 T éS1,k1 ( S27k2)

The JPEG 2000 compression standard is based on 2D wavelets
Many extensions:

Steerable pyramid, ridgelets, curvelets, bandlets, ...



2D Haar transform




2D

wavelet transform




2D wavelet transform




Thresholding



Denoising

Aim: Extracting information (signal) from data in the presence of
uninformative perturbations (noise)

Additive noise model

data = signal + noise

y=R+7

Prior knowledge about structure of signal vs structure of noise is required



Assumption

» Signal is a sparse superposition of basis/frame vectors

» Noise is not



Assumption

» Signal is a sparse superposition of basis/frame vectors
» Noise is not
Example:

Gaussian noise Z with covariance matrix o2/, distribution of FZ?



Example

.7 Data
® ®_¢? Signal




Thresholding

Hard-thresholding operator

vil if VUl >

0 otherwise

Hy (7) ] = {



Denoising via hard thresholding

® ¢ Estimate
®_¢ Signal




Multisinusoidal signal
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Denoising via hard thresholding

Data: y =X+ 7
Assumption: FX is sparse, FZ is not

1. Apply the hard-thresholding operator H,, to Fy

2. If Fis a basis, then
Fest 1= F 11, (FY)
If Fis a frame,
Xest 1= FTHU (F)7)7

where FT is the pseudoinverse of F (other left inverses of F also work)



Denoising via hard thresholding in Fourier basis
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Denoising via hard thresholding in Fourier basis

F=YH, (Fy)

Hy (FY)

— Estimate
— Signal

® ¢ Estimate




Image denoising




Image denoising




Data (SNR=2.5)
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Image denoising




Denoising via thresholding

X




Speech denoising



http://www.cims.nyu.edu/~cfgranda/pages/OBDA_spring16/material/noisy_signal.wav

Time thresholding



http://www.cims.nyu.edu/~cfgranda/pages/OBDA_spring16/material/time_thresh.wav

Spectrum




Frequency thresholding



http://www.cims.nyu.edu/~cfgranda/pages/OBDA_spring16/material/freq_thresh.wav

Frequency thresholding

—Data
—DFT thresholding




Spectrogram (STFT)

Frequency

Time



STFT thresholding

Frequency



http://www.cims.nyu.edu/~cfgranda/pages/OBDA_spring16/material/stft_thresh.wav

STFT thresholding

—Data
—STFT thresholding




Coefficients are structured

Frequency




Coefficients are structured




Block thresholding

Assumption: Coefficients are group sparse, nonzero coefficients
cluster together

Partition coefficients into blocks 771, 7>, ..., Zx
and threshold whole blocks

B, (7 [] v[j] ifj€Z; such that H\?’IJ.H2>17,,
V) [j] .=
! 0 otherwise,



Denoising via block thresholding

1. Apply the hard-thresholding operator B, to Fy

2. If F is a basis, then
Sest = F 1By (FY)
If Fis a frame,
Fest = F1B, (FY),

where FT is the pseudoinverse of F (other left inverses of F also work)



Image denoising (SNR=2.5)
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Image denoising (SNR=1
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Denoising via thresholding

X1

F~YH, (Fy)
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Denoising via thresholding




Denoising via thresholding

X




Denoising via thresholding

X




Speech denoising



http://www.cims.nyu.edu/~cfgranda/pages/OBDA_spring16/material/noisy_signal.wav

Spectrogram (STFT)

Frequency

Time



STFT thresholding

Frequency



http://www.cims.nyu.edu/~cfgranda/pages/OBDA_spring16/material/stft_thresh.wav

STFT thresholding

—Data
—STFT thresholding




STFT block thresholding

Frequency

Time


http://www.cims.nyu.edu/~cfgranda/pages/OBDA_spring16/material/stft_block_thresh.wav

STFT block thresholding

—Data
—STFT block thresh.
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