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Frames

Short-time Fourier transform (STFT)

Wavelets

Thresholding



Definition

Let V be an inner-product space

A frame of V is a set of vectors F := {~v1, ~v2, . . .} such that for
every ~x ∈ V

cL ||~x ||2〈·,·〉 ≤
∑
v∈F
|〈~x , ~v〉|2 ≤ cU ||~x ||2〈·,·〉

for fixed positive constants cU ≥ cL ≥ 0

The frame is a tight frame if cL = cU



Frames span the whole space

Any frame F := {~v1, ~v2, . . .} of V spans V

Proof:

Assume ~y /∈ span (~v1, ~v2, . . .)

Then Pspan(~v1,~v2,...)⊥
~y is nonzero and

∑
~v∈F

∣∣∣〈Pspan(~v1,~v2,...)⊥
~y , ~v

〉∣∣∣2 = 0
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Orthogonal bases are tight frames

Any orthonormal basis B :=
{
~b1, ~b2, . . .

}
is a tight frame

Proof:

For any vector ~x ∈ V

||~x ||2〈·,·〉 =

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
~b∈B

〈
~x , ~b
〉
~b

∣∣∣∣∣∣
∣∣∣∣∣∣
2

〈·,·〉

=
∑
~b∈B

∣∣∣〈~x , ~b〉∣∣∣2 ∣∣∣∣∣∣~b∣∣∣∣∣∣2
〈·,·〉

=
∑
~b∈B

∣∣∣〈~x , ~b〉∣∣∣2
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Analysis operator

The analysis operator Φ of a frame maps a vector to its coefficients

Φ (~x) [k] = 〈~x , ~vk〉

For any finite frame {~v1, ~v2, . . . , ~vm} of Cn the analysis operator is

F :=


~v∗1
~v∗2
. . .
~v∗m





Frames in finite-dimensional spaces

~v1, ~v2, . . . , ~vm are a frame of Cn if and only F is full rank

In that case,

cU = σ2
1

cL = σ2
n

Proof:

σ2
n ≤ ||F~x ||

2
2 =

m∑
j=1

〈~x , ~vj〉2 ≤ σ2
1



Pseudoinverse

If an n ×m tall matrix A, m ≥ n, is full rank, then its pseudoinverse

A† := (A∗A)−1 A∗

is well defined, is a left inverse of A

A†A = I

and equals

A† = VS−1U∗

where A = USV ∗ is the SVD of A



Proof

A† := (A∗A)−1 A∗

= (VSU∗USV ∗A)−1 VSU∗

=
(
VS2V ∗

)−1
VSU∗

= VS−2V ∗VSU∗

= VS−1U

A†A = VS−1UV ∗USV ∗ = I
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Motivation

Spectrum of speech, music, etc. varies over time

Idea: Compute frequency representation of time segments of the signal



Short-time Fourier transform

The short-time Fourier transform (STFT) of a function
f ∈ L2[−1/2, 1/2] is

STFT {f } (k , τ) :=

∫ 1/2

−1/2
f (t)w (t − τ)e−i2πkt dt

where w ∈ L2[−1/2, 1/2] is a window function

Frame vectors: vk,τ (t) := w (t − τ) e i2πkt



Discrete short-time Fourier transform

The STFT of a vector ~x ∈ Cn is

STFT {f } (k, l) :=
〈
~x ◦ ~w[l ], ~hk

〉
where w ∈ Cn is a window vector

Frame vectors: vk,l (t) := ~w[l ] ◦ ~hk



STFT

Length of window and shifts are chosen so that shifted windows overlap

In that case the STFT is a frame

We can invert it using fast algorithms based on the FFT

Window should not produce spurious high-frequency artifacts



Rectangular window

Signal Window

× =

Spectrum ∗ =



Hann window

Signal Window

× =

Spectrum ∗ =



Frame vector l = 0, k = 0

Real part Imaginary part

Spectrum



Frame vector l = 1/32, k = 0

Real part Imaginary part

Spectrum



Frame vector l = 0, k = 64

Real part Imaginary part

Spectrum



Frame vector l = 1/32, k = 64

Real part Imaginary part

Spectrum



Speech signal



Spectrum



Spectrogram (log magnitude of STFT coefficients)

Time
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u
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n
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Frames

Short-time Fourier transform (STFT)

Wavelets

Thresholding



Wavelet transform

Motivation: Extracting features at different scales

Idea: Frame vectors are scaled, shifted copies of a fixed function

An additional function captures low-pass component at largest scale



Wavelet transform

The wavelet transform of a function f ∈ L2[−1/2, 1/2] depends on a
choice of scaling function (or father wavelet) φ and wavelet function
(or mother wavelet) ψ

The scaling coefficients are

Wφ {f } (τ) :=
1√
s

∫
f (t)φ (t − τ) dt

The wavelet coefficients are

Wψ {f } (s, τ) :=
1√
s

∫ 1

0
f (t)ψ

(
t − τ
s

)
dt

Wavelets can be designed to be bases or frames



Haar wavelet

Scaling function Mother wavelet

Wavelets are band-pass filters, scaling functions are low-pass filters



Discrete wavelet transform

The discrete wavelet transform depends on a choice of scaling vector ~φ
and wavelet ~ψ

The scaling coefficients are

W~φ
{f } (l) :=

〈
~x , ~φ[l ]

〉
The wavelet coefficients are

W ~ψ
{f } (s, l) :=

〈
~x , ~ψ[s,l ]

〉
,

where

~ψ[s,l ][j ] := ~ψ

[
j − l

s

]
Wavelets can be designed to be bases or frames



Orthonormal wavelet basis

Scale Basis functions

20
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Orthonormal wavelet basis

Scale Basis functions
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Orthonormal wavelet basis

Scale Basis functions

20

21

22

23 (scaling
vector)



Multiresolution decomposition

Sequence of subspaces V0,V1, . . . ,VK representing different scales

Fix a scaling vector ~φ and a wavelet ~ψ

VK is the span of ~φ

VK
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Multiresolution decomposition

Vk :=Wk ⊕ Vk+1

Wk is the span of ~ψ dilated by 2k and shifted by multiples of 2k+1

W0

W2

PVk ~x is an approximation of ~x at scale 2k
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Multiresolution decomposition
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Multiresolution decomposition

Properties

I V0 = Cn (approximation at scale 20 is perfect)

I Vk is invariant to translations of scale 2k

I Dilating vectors in Vj by 2 yields vectors in Vj+1



Electrocardiogram

Signal Haar transform



Scale 29

PW9 ~x PV9 ~x



Scale 28

PW8 ~x PV8 ~x



Scale 27

PW7 ~x PV7 ~x



Scale 26

PW6 ~x PV6 ~x



Scale 25

PW5 ~x PV5 ~x



Scale 24

PW4 ~x PV4 ~x



Scale 23

PW3 ~x PV3 ~x



Scale 22

PW2 ~x PV2 ~x



Scale 21

PW1 ~x PV1 ~x



Scale 20

PW0 ~x PV0 ~x



2D Wavelets

Extension to 2D by using outer products of 1D atoms

ξ2D
s1,s2,k1,k2

:= ξ1D
s1,k1

(
ξ1D
s2,k2

)T
The JPEG 2000 compression standard is based on 2D wavelets

Many extensions:

Steerable pyramid, ridgelets, curvelets, bandlets, . . .



2D Haar transform



2D wavelet transform



2D wavelet transform
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Denoising

Aim: Extracting information (signal) from data in the presence of
uninformative perturbations (noise)

Additive noise model

data = signal + noise
~y = ~x + ~z

Prior knowledge about structure of signal vs structure of noise is required



Assumption

I Signal is a sparse superposition of basis/frame vectors

I Noise is not

Example:

Gaussian noise ~z with covariance matrix σ2I , distribution of F~z?
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Example

Data

Signal



Thresholding

Hard-thresholding operator

Hη (~v) [j ] :=

{
~v [j ] if |~v [j ]| > η

0 otherwise



Denoising via hard thresholding

Estimate

Signal



Multisinusoidal signal

~y F~y

Data

Signal

Data



Denoising via hard thresholding

Data: ~y = ~x + ~z
Assumption: F~x is sparse, F~z is not
1. Apply the hard-thresholding operator Hη to F~y

2. If F is a basis, then

~xest := F−1Hη (F~y)

If F is a frame,

~xest := F †Hη (F~y) ,

where F † is the pseudoinverse of F (other left inverses of F also work)



Denoising via hard thresholding in Fourier basis

~y F~y

Data

Signal

Data



Denoising via hard thresholding in Fourier basis

F−1Hη (F~y) Hη (F~y)

Estimate

Signal

Estimate



Image denoising

~x F~x



Image denoising

~z F~z



Data (SNR=2.5)

~y F~y



F~y



Hη (F~y)



F−1Hη (F~y)



~y



Data (SNR=1)

~y F~y



F~y



Hη (F~y)



F−1Hη (F~y)



~y



Image denoising

~y F−1Hη (F~y) ~x



Denoising via thresholding

~y F−1Hη (F~y) ~x



Speech denoising

http://www.cims.nyu.edu/~cfgranda/pages/OBDA_spring16/material/noisy_signal.wav


Time thresholding

http://www.cims.nyu.edu/~cfgranda/pages/OBDA_spring16/material/time_thresh.wav


Spectrum



Frequency thresholding

http://www.cims.nyu.edu/~cfgranda/pages/OBDA_spring16/material/freq_thresh.wav


Frequency thresholding

 

 

Data

DFT thresholding



Spectrogram (STFT)
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STFT thresholding

Time

F
re

q
u
e
n
c
y

http://www.cims.nyu.edu/~cfgranda/pages/OBDA_spring16/material/stft_thresh.wav


STFT thresholding

 

 

Data
STFT thresholding



Coefficients are structured

Time

F
re

q
u
e
n
c
y



Coefficients are structured

~x F~x



Block thresholding

Assumption: Coefficients are group sparse, nonzero coefficients
cluster together

Partition coefficients into blocks I1, I2, . . . , Ik
and threshold whole blocks

Bη (~v) [j ] :=

{
~v [j ] if j ∈ Ij such that

∣∣∣∣~vIj ∣∣∣∣2 > η, ,

0 otherwise,



Denoising via block thresholding

1. Apply the hard-thresholding operator Bη to F~y

2. If F is a basis, then

~xest := F−1Bη (F~y)

If F is a frame,

~xest := F †Bη (F~y) ,

where F † is the pseudoinverse of F (other left inverses of F also work)



Image denoising (SNR=2.5)

~y F~y



F~y



Hη (F~y)



Bη (F~y)



F−1Hη (F~y)



F−1Bη (F~y)



Image denoising (SNR=1)

~y F~y



F~y



Hη (F~y)



Bη (F~y)



F−1Hη (F~y)



F−1Bη (F~y)



Denoising via thresholding

~y F−1Hη (F~y) ~x
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Denoising via thresholding
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Denoising via thresholding

~y F−1Bη (F~y) ~x



Speech denoising

http://www.cims.nyu.edu/~cfgranda/pages/OBDA_spring16/material/noisy_signal.wav


Spectrogram (STFT)

Time
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STFT thresholding

Time

F
re

q
u
e
n
c
y

http://www.cims.nyu.edu/~cfgranda/pages/OBDA_spring16/material/stft_thresh.wav


STFT thresholding

 

 

Data
STFT thresholding



STFT block thresholding

Time

F
re

q
u
e
n
c
y

http://www.cims.nyu.edu/~cfgranda/pages/OBDA_spring16/material/stft_block_thresh.wav


STFT block thresholding

 

 

Data

STFT block thresh.
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