Matrix Factorization

DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis

 http://www.cims.nyu.edu/~cfgranda/pages/OBDA_fall17/index.htmlCarlos Fernandez-Granda

Low-rank models

Matrix completion

Structured low-rank models

Motivation

Quantity $y[i, j]$ depends on indices i and j
We observe examples and want to predict new instances
In collaborative filtering, $y[i, j]$ is rating given to a movie i by a user j

Collaborative filtering

$$
Y:=\left(\begin{array}{cccc}
\text { Bob } & \text { Molly } & \text { Mary } & \text { Larry } \\
1 & 1 & 5 & 4 \\
2 & 1 & 4 & 5 \\
4 & 5 & 2 & 1 \\
5 & 4 & 2 & 1 \\
4 & 5 & 1 & 2 \\
1 & 2 & 5 & 5
\end{array}\right) \begin{aligned}
& \text { The Dark Knight } \\
& \text { Spiderman 3 } \\
& \text { Love Actually } \\
& \text { Bridget Jones's Diary } \\
& \text { Pretty Woman } \\
& \text { Superman 2 }
\end{aligned}
$$

Simple model

Assumptions:

- Some movies are more popular in general
- Some users are more generous in general

$$
y[i, j] \approx a[i] b[j]
$$

- a[i] quantifies popularity of movie i
- $b[j]$ quantifies generosity of user j

Simple model

Problem: Fitting a and b to the data yields nonconvex problem
Example: 1 movie, 1 user, rating 1 yields cost function

$$
(1-a b)^{2}
$$

To fix scale set $|a|=1$

$(1-a b)^{2}$

Rank-1 model

Assume m movies are all rated by n users

Model becomes

$$
Y \approx \vec{a} \vec{b}^{T}
$$

We can fit it by solving

$$
\min _{\vec{a} \in \mathbb{R}^{m}, \vec{b} \in \mathbb{R}^{n}}\left\|Y-\vec{a} \vec{b}^{T}\right\|_{F} \quad \text { subject to } \quad\|\vec{a}\|_{2}=1
$$

Equivalent to

Rank-1 model

Assume m movies are all rated by n users

Model becomes

$$
Y \approx \vec{a} \vec{b}^{T}
$$

We can fit it by solving

$$
\min _{\vec{a} \in \mathbb{R}^{m}, \vec{b} \in \mathbb{R}^{n}}\left\|Y-\vec{a} \vec{b}^{T}\right\|_{F} \quad \text { subject to } \quad\|\vec{a}\|_{2}=1
$$

Equivalent to

$$
\min _{X \in \mathbb{R}^{m \times n}}\|Y-X\|_{F} \quad \text { subject to } \quad \operatorname{rank}(X)=1
$$

Best rank-k approximation

Let $U S V^{\top}$ be the $S V D$ of a matrix $A \in \mathbb{R}^{m \times n}$

The truncated SVD $U_{:, 1: k} S_{1: k, 1: k} V_{:, 1: k}^{T}$ is the best rank- k approximation

$$
U_{:, 1: k} S_{1: k, 1: k} V_{:, 1: k}^{T}=\underset{\{\widetilde{A} \mid \operatorname{rank}(\tilde{A})=k\}}{\arg \min }\|A-\widetilde{A}\|_{F}
$$

Rank-1 model

$$
\sigma_{1} \vec{u}_{1} \vec{v}_{1}^{T}=\arg \min _{X \in \mathbb{R}^{m \times n}}\|Y-X\|_{F}
$$

subject to $\operatorname{rank}(X)=1$

The solution to

$$
\min _{\vec{a} \in \mathbb{R}^{m}, \vec{b} \in \mathbb{R}^{n}}\left\|Y-\vec{a} \vec{b}^{T}\right\|_{F} \quad \text { subject to } \quad\|\vec{a}\|_{2}=1
$$

is

$$
\begin{aligned}
& \vec{a}_{\min }= \\
& \vec{b}_{\min }=
\end{aligned}
$$

Rank-1 model

$$
\sigma_{1} \vec{u}_{1} \vec{v}_{1}^{T}=\arg \min _{X \in \mathbb{R}^{m \times n}}\|Y-X\|_{F} \quad \text { subject to } \quad \operatorname{rank}(X)=1
$$

The solution to

$$
\min _{\vec{a} \in \mathbb{R}^{m}, \vec{b} \in \mathbb{R}^{n}}\left\|Y-\vec{a} \vec{b}^{T}\right\|_{F} \quad \text { subject to } \quad\|\vec{a}\|_{2}=1
$$

is

$$
\begin{aligned}
& \vec{a}_{\min }=\vec{u}_{1} \\
& \vec{b}_{\min }=\sigma_{1} \vec{v}_{1}
\end{aligned}
$$

Rank- r model

Certain people like certain movies: r factors

$$
y[i, j] \approx \sum_{l=1}^{r} a_{l}[j] b_{l}[j]
$$

For each factor 1

- $a_{l}[i]:$ movie i is positively (>0), negatively (<0) or not (≈ 0) associated to factor $/$
- $b_{l}[j]$: user j likes (>0), hates (<0) or is indifferent (≈ 0) to factor I

Rank- r model

Equivalent to

$$
Y \approx A B, \quad A \in \mathbb{R}^{m \times r}, \quad B \in \mathbb{R}^{r \times n}
$$

SVD solves
$\min _{A \in \mathbb{R}^{m \times r}, B \in \mathbb{R}^{r \times n}}\|Y-A B\|_{F} \quad$ subject to $\quad\left\|\vec{a}_{1}\right\|_{2}=1, \ldots,\left\|\vec{a}_{r}\right\|_{2}=1$
Problem: Many possible ways of choosing $\vec{a}_{1}, \ldots, \vec{a}_{r}, \vec{b}_{1}, \ldots, \vec{b}_{r}$
SVD constrains them to be orthogonal

Collaborative filtering

$$
Y:=\left(\begin{array}{cccc}
\text { Bob } & \text { Molly } & \text { Mary } & \text { Larry } \\
1 & 1 & 5 & 4 \\
2 & 1 & 4 & 5 \\
4 & 5 & 2 & 1 \\
5 & 4 & 2 & 1 \\
4 & 5 & 1 & 2 \\
1 & 2 & 5 & 5
\end{array}\right) \begin{aligned}
& \text { The Dark Knight } \\
& \text { Spiderman 3 } \\
& \text { Love Actually } \\
& \text { Bridget Jones's Diary } \\
& \text { Pretty Woman } \\
& \text { Superman 2 }
\end{aligned}
$$

SVD

$$
\begin{aligned}
A-\mu \overrightarrow{1} \overrightarrow{1}^{T} & =U S V^{T}=U\left[\begin{array}{cccc}
7.79 & 0 & 0 & 0 \\
0 & 1.62 & 0 & 0 \\
0 & 0 & 1.55 & 0 \\
0 & 0 & 0 & 0.62
\end{array}\right] V^{T} \\
\mu & :=\frac{1}{n} \sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j}
\end{aligned}
$$

Rank 1 model

\(\bar{A}+\sigma_{1} \vec{u}_{1} \vec{v}_{1}{ }^{T}=\left(\begin{array}{cccc}Bob \& Molly \& Mary \& Larry

1.34(1) \& 1.19(1) \& 4.66(5) \& 4.81(4)

1.55(2) \& 1.42(1) \& 4.45(4) \& 4.58(5)

4.45(4) \& 4.58(5) \& 1.55(2) \& 1.42(1)

4.43(5) \& 4.56(4) \& 1.57(2) \& 1.44(1)

4.43(4) \& 4.56(5) \& 1.57(1) \& 1.44(2)

1.34(1) \& 1.19(2) \& 4.66(5) \& 4.81(5)\end{array}\right) \quad\)| The Dark Knight |
| :--- |
| Spiderman 3 |
| Love Actually |
| B.J.'s Diary |
| Pretty Woman |
| Superman 2 |

Movies

$\vec{a}_{1}=\left(\begin{array}{cccccc}\text { D. Knight } & \text { Sp. } 3 & \text { Love Act. } & \text { B.J.'s Diary } & \text { P. Woman } & \text { Sup. 2 } \\ -0.45 & -0.39 & 0.39 & 0.39 & 0.39 & -0.45\end{array}\right)$

Coefficients cluster movies into action (+) and romantic (-)

Users

$$
\left.\vec{b}_{1}=\begin{array}{cccc}
\text { Bob } & \text { Molly } & \text { Mary } & \text { Larry } \\
3.74 & 4.05 & -3.74 & -4.05
\end{array}\right)
$$

Coefficients cluster people into action (-) and romantic (+)

Low-rank models

Matrix completion

Structured low-rank models

Netflix Prize

Matrix completion

$$
\begin{array}{cccc}
\text { Bob } & \text { Molly } & \text { Mary } & \text { Larry } \\
\left(\begin{array}{cccc}
1 & ? & 5 & 4 \\
? & 1 & 4 & 5 \\
4 & 5 & 2 & ? \\
5 & 4 & 2 & 1 \\
4 & 5 & 1 & 2 \\
1 & 2 & ? & 5
\end{array}\right) \text { The Dark Knight } \begin{array}{l}
\text { Sove Actually } \\
\text { Bridget Jones's Diary } \\
\text { Pretty Woman } \\
\text { Superman } 2
\end{array}
\end{array}
$$

Matrix completion as an inverse problem

$$
\left[\begin{array}{lll}
1 & ? & 5 \\
? & 3 & 2
\end{array}\right]
$$

For a fixed sampling pattern, underdetermined system of equations

$$
\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
Y_{11} \\
Y_{21} \\
Y_{12} \\
Y_{22} \\
Y_{13} \\
Y_{23}
\end{array}\right]=\left[\begin{array}{l}
1 \\
3 \\
5 \\
2
\end{array}\right]
$$

Isn't this completely ill posed?

Assumption: Matrix is low rank, depends on $\approx r(m+n)$ parameters
As long as data $>$ parameters recovery is possible (in principle)

$$
\left[\begin{array}{llllll}
1 & 1 & 1 & 1 & ? & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
? & 1 & 1 & 1 & 1 & 1
\end{array}\right]
$$

Matrix cannot be sparse

$$
\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 23 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Singular vectors cannot be sparse

$$
\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]\left[\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]\left[\begin{array}{llll}
1 & 2 & 3 & 4
\end{array}\right]=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
2 & 3 & 4 & 5
\end{array}\right]
$$

Incoherence

The matrix must be incoherent: its singular vectors must be spread out

$$
\text { For } 1 / \sqrt{n} \leq \mu \leq 1
$$

$$
\begin{aligned}
& \max _{1 \leq i \leq r, 1 \leq j \leq m}\left|U_{i j}\right| \leq \mu \\
& \max _{1 \leq i \leq r, 1 \leq j \leq n}\left|V_{i j}\right| \leq \mu
\end{aligned}
$$

for the left U_{1}, \ldots, U_{r} and right V_{1}, \ldots, V_{r} singular vectors

Measurements

We must see an entry in each row/column at least

$$
\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
? & ? & ? & ? \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]=\left[\begin{array}{l}
1 \\
? \\
1 \\
1
\end{array}\right]\left[\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right]
$$

Assumption: Random sampling (usually does not hold in practice!)

Low-rank matrix estimation

First idea:

$$
\min _{X \in \mathbb{R}^{m \times n}} \operatorname{rank}(X) \quad \text { such that } X_{\Omega}=y
$$

Ω : indices of revealed entries
y : revealed entries
Computationally intractable because of missing entries

Tractable alternative:

$$
\min _{X \in \mathbb{R}^{m \times n}}\|X\|_{*} \quad \text { such that } X_{\Omega}=y
$$

Exact recovery

Guarantees by Gross 2011, Candès and Recht 2008, Candès and Tao 2009

$$
\min _{X \in \mathbb{R}^{m \times n}}\|X\|_{*} \quad \text { such that } X_{\Omega}=y
$$

achieves exact recovery with high probability as long as the number of samples is proportional to $r(n+m)$ up to log terms

The proof is based on the construction of a dual certificate

Low-rank matrix estimation

If data are noisy

$$
\min _{X \in \mathbb{R}^{m \times n}}\left\|X_{\Omega}-\vec{y}\right\|_{2}^{2}+\lambda\|X\|_{*}
$$

where $\lambda>0$ is a regularization parameter

Matrix completion via nuclear-norm minimization

$$
\begin{gathered}
\text { Bob } \\
\left(\begin{array}{cccc}
1 & \text { Molly } & \text { Mary } & \text { Larry } \\
2(2) & 5 & 4 \\
4 & 1 & 4 & 5 \\
5 & 4 & 2 & 2(1) \\
4 & 5 & 2 & 1 \\
1 & 2 & 5(5) & 5
\end{array}\right) \begin{array}{l}
\text { The Dark Knight } \\
\text { Spiderman 3 } \\
\text { Love Actually } \\
\text { Bridget Jones's Diary } \\
\text { Pretty Woman } \\
\text { Superman 2 }
\end{array}
\end{gathered}
$$

Proximal gradient method

Method to solve the optimization problem

$$
\operatorname{minimize} \quad f(\vec{x})+h(\vec{x}),
$$

where f is differentiable and prox $_{h}$ is tractable

Proximal-gradient iteration:

$$
\begin{aligned}
& \vec{x}^{(0)}=\text { arbitrary initialization } \\
& \vec{x}^{(k+1)}=\operatorname{prox}_{\alpha_{k} h}\left(\vec{x}^{(k)}-\alpha_{k} \nabla f\left(\vec{x}^{(k)}\right)\right)
\end{aligned}
$$

Proximal operator of nuclear norm

The solution X to

$$
\min _{X \in \mathbb{R}^{m \times n}} \frac{1}{2}\|Y-X\|_{F}^{2}+\tau\|X\|_{*}
$$

is obtained by soft-thresholding the SVD of Y

$$
\begin{aligned}
X_{\text {prox }} & =\mathcal{D}_{\tau}(Y) \\
\mathcal{D}_{\tau}(M) & :=U \mathcal{S}_{\tau}(S) V^{T} \quad \text { where } M=U S V^{T} \\
\mathcal{S}_{\tau}(S)_{i i} & := \begin{cases}S_{i i}-\tau & \text { if } S_{i i}>\tau \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Subdifferential of the nuclear norm

Let $X \in \mathbb{R}^{m \times n}$ be a rank- r matrix with SVD $U S V^{T}$, where $U \in \mathbb{R}^{m \times r}$, $V \in \mathbb{R}^{n \times r}$ and $S \in \mathbb{R}^{r \times r}$

A matrix G is a subgradient of the nuclear norm at X if and only if

$$
G:=U V^{T}+W
$$

where W satisfies

$$
\begin{aligned}
\|W\| & \leq 1 \\
U^{T} W & =0 \\
W V & =0
\end{aligned}
$$

Proximal operator of nuclear norm

The subgradients of

$$
\frac{1}{2}\|Y-X\|_{F}^{2}+\tau\|X\|_{*}
$$

are of the form

$$
Y-X+\tau G
$$

where G is a subgradient of the nuclear norm at X
$\mathcal{D}_{\tau}(Y)$ is a minimizer if and only if

$$
G=\frac{1}{\tau}\left(Y-D_{\tau}(Y)\right)
$$

is a subgradient of the nuclear norm at $\mathcal{D}_{\tau}(Y)$

Proximal operator of nuclear norm

Separate SVD of Y into singular values greater or smaller than τ

$$
\begin{gathered}
Y=U S V^{T} \\
=\left[\begin{array}{ll}
U_{0} & U_{1}
\end{array}\right]\left[\begin{array}{cc}
S_{0} & 0 \\
0 & S_{1}
\end{array}\right]\left[\begin{array}{ll}
V_{0} & V_{1}
\end{array}\right]^{T} \\
D_{\tau}(Y)=U_{0}\left(S_{0}-\tau I\right) V_{0}^{T}, \text { so } \\
\frac{1}{\tau}\left(Y-D_{\tau}(Y)\right)=U_{0} V_{0}^{T}+\frac{1}{\tau} U_{1} S_{1} V_{1}^{T}
\end{gathered}
$$

Proximal gradient method

Proximal gradient method for the problem

$$
\min _{X \in \mathbb{R}^{m \times n}}\left\|X_{\Omega}-\vec{y}\right\|_{2}^{2}+\lambda\|X\|_{*}
$$

$X^{(0)}=$ arbitrary initialization

$$
\begin{aligned}
& M^{(k)}=X^{(k)}-\alpha_{k}\left(X_{\Omega}^{(k)}-\vec{y}\right) \\
& X^{(k+1)}=\mathcal{D}_{\alpha_{k} \lambda}\left(M^{(k)}\right)
\end{aligned}
$$

Real data

- Movielens database
- 671 users
- 300 movies
- Training set: 9135 ratings
- Test set: 1016

Real data

Low-rank matrix completion

Intractable problem

$$
\min _{X \in \mathbb{R}^{m \times n}} \operatorname{rank}(X) \quad \text { such that } X_{\Omega} \approx \vec{y}
$$

Nuclear norm: convex but computationally expensive due to SVD computations

Alternative

- Fix rank k beforehand
- Parametrize the matrix as $A B$ where $A \in \mathbb{R}^{m \times r}$ and $B \in \mathbb{R}^{r \times n}$
- Solve

$$
\min _{\tilde{A} \in \mathbb{R}^{m \times r}, \widetilde{B} \in \mathbb{R}^{r \times n}}\left\|(\widetilde{A} \widetilde{B})_{\Omega}-\vec{y}\right\|_{2}
$$

by alternating minimization

Alternating minimization

Sequence of least-squares problems (much faster than computing SVDs)

- To compute $A^{(k)}$ fix $B^{(k-1)}$ and solve

$$
\min _{\tilde{A} \in \mathbb{R}^{m \times r}}\left\|\left(\widetilde{A} B^{(k-1)}\right)_{\Omega}-\vec{y}\right\|_{2}
$$

- To compute $B^{(k)}$ fix $A^{(k)}$ and solve

$$
\min _{\widetilde{B} \in \mathbb{R}^{r \times n}}\left\|\left(A^{(k)} \widetilde{B}\right)_{\Omega}-\vec{y}\right\|_{2}
$$

Theoretical guarantees: Jain, Netrapalli, Sanghavi 2013

Low-rank models

Matrix completion

Structured low-rank models

Nonnegative matrix factorization

Nonnegative atoms/coefficients can make results easier to interpret

$$
X \approx A B, \quad A_{i, j} \geq 0, \quad B_{i, j} \geq 0, \text { for all } i, j
$$

Nonconvex optimization problem:

$$
\begin{array}{ll}
\operatorname{minimize} & \|X-\tilde{A} \tilde{B}\|_{\mathrm{F}}^{2} \\
\text { subject to } & \tilde{A}_{i, j} \geq 0, \\
& \tilde{B}_{i, j} \geq 0, \quad \text { for all } i, j
\end{array}
$$

$\tilde{A} \in \mathbb{R}^{m \times r}$ and $\tilde{B} \in \mathbb{R}^{r \times n}$

Faces dataset: PCA

Faces dataset: NMF

Topic modeling

$A:=\left(\begin{array}{cccccccccc}\text { singer } & \text { GDP } & \text { senate } & \text { election } & \text { vote } & \text { stock } & \text { bass } & \text { market } & \text { band } & \text { Articles } \\ 1 & 1 & 1 & 0 & 0 & 1 & 9 & 0 & 8 \\ 1 & 0 & 9 & 5 & 8 & 1 & 0 & 1 & 0 \\ 8 & 1 & 0 & 1 & 0 & 0 & 9 & 1 & 7 & \text { a } \\ 0 & 7 & 1 & 0 & 0 & 9 & 1 & 7 & 0 & \mathrm{c} \\ 0 & 5 & 6 & 7 & 5 & 6 & 0 & 7 & 2 \\ 1 \\ 1 & 0 & 8 & 5 & 9 & 2 & 0 & 0 & 1\end{array}\right)$

SVD

$$
A=U S V^{T}=U\left[\begin{array}{cccccc}
23.64 & 0 & 0 & 0 & & \\
0 & 18.82 & 0 & 0 & 0 & 0 \\
0 & 0 & 14.23 & 0 & 0 & 0 \\
0 & 0 & 0 & 3.63 & 0 & 0 \\
0 & 0 & 0 & 0 & 2.03 & 0 \\
0 & 0 & 0 & 0 & 0 & 1.36
\end{array}\right] V^{T}
$$

Left singular vectors

$$
\begin{aligned}
& \\
& U_{1}
\end{aligned}=\left(\begin{array}{cccccc}
a & b & c & d & e & f \\
U_{2} & =0.24 & -0.47 & -0.24 & -0.32 & -0.58 \\
0.044 & -0.23 & 0.67 & -0.03 & -0.18 & -0.21
\end{array}\right)
$$

Right singular vectors

	singe	GDP	senate	election	vote	stock	bass	market	band
V_{1}	(-0.18	-0.24	-0.51	-0.38	-0.46	-0.34	-0.2	-0.3	-0.22)
V_{2}	(0.47	0.01	-0.22	-0.15	-0.25	-0.07	0.63	-0.05	0.49)
V_{3}	(-0.13	0.47	-0.3	-0.14	-0.37	0.52	-0.04	0.49	-0.07)

Nonnegative matrix factorization

$$
X \approx W H
$$

$$
W_{i, j} \geq 0, H_{i, j} \geq 0, \text { for all } i, j
$$

Right nonnegative factors

		singer	GDP	senate	election	vote	stock	bass	market	band
H_{1}	$=$	(0.34	0	3.73	2.54	3.67	0.52	0	0.35	0.35)
H_{2}	$=$	(0	2.21	0.21	0.45	0	2.64	0.21	2.43	0.22)
H_{3}	$=$	(3.22	0.37	0.19	0.2	0	0.12	4.13	0.13	3.43)

Interpretations:

- Count atom: Counts for each doc are weighted sum of H_{1}, H_{2}, H_{3}
- Coefficients: They cluster words into politics, music and economics

Left nonnegative factors

$$
\begin{aligned}
& \\
& W_{1}
\end{aligned}=\left(\begin{array}{cccccc}
a & b & c & d & e & f \\
0.03 & 2.23 & 0 & 0 & 1.59 & 2.24
\end{array}\right)
$$

Interpretations:

- Count atom: Counts for each word are weighted sum of W_{1}, W_{2}, W_{3}
- Coefficients: They cluster docs into politics, music and economics

Sparse PCA

Sparse atoms can make results easier to interpret

$$
X \approx A B, \quad A \text { sparse }
$$

Nonconvex optimization problem:

$$
\begin{array}{ll}
\operatorname{minimize} & \|X-\tilde{A} \tilde{B}\|_{2}^{2}+\lambda \sum_{i=1}^{k}\left\|\tilde{A}_{i}\right\|_{1} \\
\text { subject to } & \left\|\tilde{A}_{i}\right\|_{2}=1, \quad 1 \leq i \leq k
\end{array}
$$

$\tilde{A} \in \mathbb{R}^{m \times r}$ and $\tilde{B} \in \mathbb{R}^{r \times n}$

Faces dataset

