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Motivation

Quantity y [i , j ] depends on indices i and j

We observe examples and want to predict new instances

In collaborative filtering, y [i , j ] is rating given to a movie i by a user j



Collaborative filtering

Y :=

Bob Molly Mary Larry


1 1 5 4 The Dark Knight
2 1 4 5 Spiderman 3
4 5 2 1 Love Actually
5 4 2 1 Bridget Jones’s Diary
4 5 1 2 Pretty Woman
1 2 5 5 Superman 2



Simple model

Assumptions:

I Some movies are more popular in general

I Some users are more generous in general

y [i , j ] ≈ a[i ]b[j ]

I a[i ] quantifies popularity of movie i

I b[j ] quantifies generosity of user j



Simple model

Problem: Fitting a and b to the data yields nonconvex problem

Example: 1 movie, 1 user, rating 1 yields cost function

(1− ab)2

To fix scale set |a| = 1



(1− ab)2

a = −1 a = +1
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Rank-1 model

Assume m movies are all rated by n users

Model becomes

Y ≈ ~a ~b T

We can fit it by solving

min
~a∈Rm, ~b∈Rn

∣∣∣∣∣∣Y − ~a ~b T
∣∣∣∣∣∣

F
subject to ||~a||2 = 1

Equivalent to

min
X∈Rm×n

||Y − X ||F subject to rank (X ) = 1
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Best rank-k approximation

Let USV T be the SVD of a matrix A ∈ Rm×n

The truncated SVD U:,1:kS1:k,1:kV
T
:,1:k is the best rank-k approximation

U:,1:kS1:k,1:kV
T
:,1:k = argmin

{Ã | rank(Ã)=k}

∣∣∣∣∣∣A− Ã
∣∣∣∣∣∣

F



Rank-1 model

σ1~u1~v
T
1 = arg min

X∈Rm×n
||Y − X ||F subject to rank (X ) = 1

The solution to

min
~a∈Rm, ~b∈Rn

∣∣∣∣∣∣Y − ~a ~b T
∣∣∣∣∣∣

F
subject to ||~a||2 = 1

is

~amin =

~u1

~bmin =

σ1~v1
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Rank-r model

Certain people like certain movies: r factors

y [i , j ] ≈
r∑

l=1

al [i ]bl [j ]

For each factor l

I al [i ]: movie i is positively (> 0), negatively (< 0) or not (≈ 0)
associated to factor l

I bl [j ]: user j likes (> 0), hates (< 0) or is indifferent (≈ 0) to factor l



Rank-r model

Equivalent to

Y ≈ AB, A ∈ Rm×r , B ∈ Rr×n

SVD solves

min
A∈Rm×r ,B∈Rr×n

||Y − AB||F subject to ||~a1||2 = 1, . . . , ||~ar ||2 = 1

Problem: Many possible ways of choosing ~a1, . . . , ~ar , ~b1, . . . , ~br

SVD constrains them to be orthogonal



Collaborative filtering

Y :=

Bob Molly Mary Larry


1 1 5 4 The Dark Knight
2 1 4 5 Spiderman 3
4 5 2 1 Love Actually
5 4 2 1 Bridget Jones’s Diary
4 5 1 2 Pretty Woman
1 2 5 5 Superman 2



SVD

A− µ~1~1T = USV T = U


7.79 0 0 0
0 1.62 0 0
0 0 1.55 0
0 0 0 0.62

V T

µ :=
1
n

m∑
i=1

n∑
j=1

Aij



Rank 1 model

Ā + σ1~u1~v
T
1 =

Bob Molly Mary Larry


1.34 (1) 1.19 (1) 4.66 (5) 4.81 (4) The Dark Knight
1.55 (2) 1.42 (1) 4.45 (4) 4.58 (5) Spiderman 3
4.45 (4) 4.58 (5) 1.55 (2) 1.42 (1) Love Actually
4.43 (5) 4.56 (4) 1.57 (2) 1.44 (1) B.J.’s Diary
4.43 (4) 4.56 (5) 1.57 (1) 1.44 (2) Pretty Woman
1.34 (1) 1.19 (2) 4.66 (5) 4.81 (5) Superman 2



Movies

~a1 =
D. Knight Sp. 3 Love Act. B.J.’s Diary P. Woman Sup. 2

( )−0.45 −0.39 0.39 0.39 0.39 −0.45

Coefficients cluster movies into action (+) and romantic (-)



Users

~b1 =
Bob Molly Mary Larry

( )3.74 4.05 −3.74 −4.05

Coefficients cluster people into action (-) and romantic (+)
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Matrix completion

Structured low-rank models



Netflix Prize
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Matrix completion

Bob Molly Mary Larry


1 ? 5 4 The Dark Knight
? 1 4 5 Spiderman 3
4 5 2 ? Love Actually
5 4 2 1 Bridget Jones’s Diary
4 5 1 2 Pretty Woman
1 2 ? 5 Superman 2



Matrix completion as an inverse problem

[
1 ? 5
? 3 2

]

For a fixed sampling pattern, underdetermined system of equations


1 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1





Y11

Y21

Y12

Y22

Y13

Y23


=


1

3

5

2





Isn’t this completely ill posed?

Assumption: Matrix is low rank, depends on ≈ r (m + n) parameters

As long as data > parameters recovery is possible (in principle)


1 1 1 1 ? 1
1 1 1 1 1 1
1 1 1 1 1 1
? 1 1 1 1 1





Matrix cannot be sparse


0 0 0 0 0 0
0 0 0 23 0 0
0 0 0 0 0 0
0 0 0 0 0 0





Singular vectors cannot be sparse


1
1
1
1

 [1 1 1 1
]

+


0
0
0
1

 [1 2 3 4
]

=


1 1 1 1
1 1 1 1
1 1 1 1
2 3 4 5





Incoherence

The matrix must be incoherent: its singular vectors must be spread out

For 1/
√
n ≤ µ ≤ 1

max
1≤i≤r ,1≤j≤m

|Uij | ≤ µ

max
1≤i≤r ,1≤j≤n

|Vij | ≤ µ

for the left U1, . . . ,Ur and right V1, . . . ,Vr singular vectors



Measurements

We must see an entry in each row/column at least
1 1 1 1
? ? ? ?
1 1 1 1
1 1 1 1

 =


1
?
1
1

 [1 1 1 1
]

Assumption: Random sampling (usually does not hold in practice!)



Low-rank matrix estimation

First idea:

min
X∈Rm×n

rank (X ) such that XΩ = y

Ω: indices of revealed entries
y : revealed entries

Computationally intractable because of missing entries

Tractable alternative:

min
X∈Rm×n

||X ||∗ such that XΩ = y



Exact recovery

Guarantees by Gross 2011, Candès and Recht 2008, Candès and Tao 2009

min
X∈Rm×n

||X ||∗ such that XΩ = y

achieves exact recovery with high probability as long as the number of
samples is proportional to r (n + m) up to log terms

The proof is based on the construction of a dual certificate



Low-rank matrix estimation

If data are noisy

min
X∈Rm×n

||XΩ − ~y ||22 + λ ||X ||∗

where λ > 0 is a regularization parameter



Matrix completion via nuclear-norm minimization

Bob Molly Mary Larry


1 2 (1) 5 4 The Dark Knight

2 (2) 1 4 5 Spiderman 3
4 5 2 2 (1) Love Actually
5 4 2 1 Bridget Jones’s Diary
4 5 1 2 Pretty Woman
1 2 5 (5) 5 Superman 2



Proximal gradient method

Method to solve the optimization problem

minimize f (~x) + h (~x) ,

where f is differentiable and proxh is tractable

Proximal-gradient iteration:

~x (0) = arbitrary initialization

~x (k+1) = proxαk h

(
~x (k) − αk ∇f

(
~x (k)

))



Proximal operator of nuclear norm

The solution X to

min
X∈Rm×n

1
2
||Y − X ||2F + τ ||X ||∗

is obtained by soft-thresholding the SVD of Y

Xprox = Dτ (Y )

Dτ (M) := U Sτ (S)V T where M = U SV T

Sτ (S)ii :=

{
Sii − τ if Sii > τ

0 otherwise



Subdifferential of the nuclear norm

Let X ∈ Rm×n be a rank-r matrix with SVD USV T , where U ∈ Rm×r ,
V ∈ Rn×r and S ∈ Rr×r

A matrix G is a subgradient of the nuclear norm at X if and only if

G := UV T + W

where W satisfies

||W || ≤ 1

UTW = 0
W V = 0



Proximal operator of nuclear norm

The subgradients of

1
2
||Y − X ||2F + τ ||X ||∗

are of the form

Y − X + τG

where G is a subgradient of the nuclear norm at X

Dτ (Y ) is a minimizer if and only if

G =
1
τ

(Y − Dτ (Y ))

is a subgradient of the nuclear norm at Dτ (Y )



Proximal operator of nuclear norm

Separate SVD of Y into singular values greater or smaller than τ

Y = U SV T

=
[
U0 U1

] [S0 0
0 S1

] [
V0 V1

]T
Dτ (Y ) = U0 (S0 − τ I )V T

0 , so

1
τ

(Y − Dτ (Y )) = U0V
T
0 +

1
τ
U1S1V

T
1



Proximal gradient method

Proximal gradient method for the problem

min
X∈Rm×n

||XΩ − ~y ||22 + λ ||X ||∗

X (0) = arbitrary initialization

M(k) = X (k) − αk

(
X

(k)
Ω − ~y

)
X (k+1) = Dαkλ

(
M(k)

)



Real data

I Movielens database

I 671 users

I 300 movies

I Training set: 9 135 ratings

I Test set: 1 016



Real data
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Low-rank matrix completion

Intractable problem

min
X∈Rm×n

rank (X ) such that XΩ ≈ ~y

Nuclear norm: convex but computationally expensive
due to SVD computations



Alternative

I Fix rank k beforehand

I Parametrize the matrix as AB where A ∈ Rm×r and B ∈ Rr×n

I Solve

min
Ã∈Rm×r ,B̃∈Rr×n

∣∣∣∣∣∣(ÃB̃)
Ω
− ~y
∣∣∣∣∣∣

2

by alternating minimization



Alternating minimization

Sequence of least-squares problems (much faster than computing SVDs)

I To compute A(k) fix B(k−1) and solve

min
Ã∈Rm×r

∣∣∣∣∣∣(ÃB(k−1)
)

Ω
− ~y
∣∣∣∣∣∣

2

I To compute B(k) fix A(k) and solve

min
B̃∈Rr×n

∣∣∣∣∣∣(A(k)B̃
)

Ω
− ~y
∣∣∣∣∣∣

2

Theoretical guarantees: Jain, Netrapalli, Sanghavi 2013
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Nonnegative matrix factorization

Nonnegative atoms/coefficients can make results easier to interpret

X ≈ A B, Ai ,j ≥ 0, Bi ,j ≥ 0, for all i , j

Nonconvex optimization problem:

minimize
∣∣∣∣∣∣X − Ã B̃

∣∣∣∣∣∣2
F

subject to Ãi ,j ≥ 0,

B̃i ,j ≥ 0, for all i , j

Ã ∈ Rm×r and B̃ ∈ Rr×n



Faces dataset: PCA



Faces dataset: NMF



Topic modeling

A :=

singer GDP senate election vote stock bass market band Articles


6 1 1 0 0 1 9 0 8 a
1 0 9 5 8 1 0 1 0 b
8 1 0 1 0 0 9 1 7 c
0 7 1 0 0 9 1 7 0 d
0 5 6 7 5 6 0 7 2 e
1 0 8 5 9 2 0 0 1 f



SVD

A = USV T = U



23.64 0 0 0
0 18.82 0 0 0 0
0 0 14.23 0 0 0
0 0 0 3.63 0 0
0 0 0 0 2.03 0
0 0 0 0 0 1.36

V T



Left singular vectors

a b c d e f
( )U1 = −0.24 −0.47 −0.24 −0.32 −0.58 −0.47
( )U2 = 0.64 −0.23 0.67 −0.03 −0.18 −0.21
( )U3 = −0.08 −0.39 −0.08 0.77 0.28 −0.40



Right singular vectors

singer GDP senate election vote stock bass market band

( )V1 = −0.18 −0.24 −0.51 −0.38 −0.46 −0.34 −0.2 −0.3 −0.22
( )V2 = 0.47 0.01 −0.22 −0.15 −0.25 −0.07 0.63 −0.05 0.49
( )V3 = −0.13 0.47 −0.3 −0.14 −0.37 0.52 −0.04 0.49 −0.07



Nonnegative matrix factorization

X ≈W H

Wi ,j ≥ 0, Hi ,j ≥ 0, for all i , j



Right nonnegative factors

singer GDP senate election vote stock bass market band

( )H1 = 0.34 0 3.73 2.54 3.67 0.52 0 0.35 0.35
( )H2 = 0 2.21 0.21 0.45 0 2.64 0.21 2.43 0.22
( )H3 = 3.22 0.37 0.19 0.2 0 0.12 4.13 0.13 3.43

Interpretations:

I Count atom: Counts for each doc are weighted sum of H1, H2, H3

I Coefficients: They cluster words into politics, music and economics



Left nonnegative factors

a b c d e f
( )W1 = 0.03 2.23 0 0 1.59 2.24
( )W2 = 0.1 0 0.08 3.13 2.32 0
( )W3 = 2.13 0 2.22 0 0 0.03

Interpretations:

I Count atom: Counts for each word are weighted sum of W1, W2, W3

I Coefficients: They cluster docs into politics, music and economics



Sparse PCA

Sparse atoms can make results easier to interpret

X ≈ A B, A sparse

Nonconvex optimization problem:

minimize
∣∣∣∣∣∣X − Ã B̃

∣∣∣∣∣∣2
2

+ λ

k∑
i=1

∣∣∣∣∣∣Ãi

∣∣∣∣∣∣
1

subject to
∣∣∣∣∣∣Ãi

∣∣∣∣∣∣
2

= 1, 1 ≤ i ≤ k

Ã ∈ Rm×r and B̃ ∈ Rr×n



Faces dataset
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