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Low-rank models



Motivation

Quantity y[/,j] depends on indices i and j
We observe examples and want to predict new instances

In collaborative filtering, y[i,/] is rating given to a movie i by a user j



Collaborative filtering

Bob Molly Mary Larry

1 1 5 4 The Dark Knight
2 1 4 5 Spiderman 3
y — 4 5 2 1 Love Actually
5 4 2 1 Bridget Jones's Diary
4 5 1 2 Pretty Woman
1 2 5 5 Superman 2



Simple model

Assumptions:

v

Some movies are more popular in general

» Some users are more generous in general

yli-J] = alilblj]

v

a[i] quantifies popularity of movie i

v

b[j] quantifies generosity of user j



Simple model

Problem: Fitting a and b to the data yields nonconvex problem

Example: 1 movie, 1 user, rating 1 yields cost function
(1 — ab)?

To fix scale set |a| = 1
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Rank-1 model

Assume m movies are all rated by n users

Model becomes

We can fit it by solving

min
FERM, bERn

Y—SETHF subject to  ||a]|, =1

Equivalent to



Rank-1 model

Assume m movies are all rated by n users

Model becomes

We can fit it by solving

min
FERM, bERn

Y—SETHF subject to  ||a]|, =1

Equivalent to

min ||Y — X||¢ subject to  rank(X) =1
XeRan



Best rank-k approximation

Let USV'T be the SVD of a matrix A € R™*n

The truncated SVD U. 1.k S1:4,1:k \/:Tl:k is the best rank-k approximation

U.1:6S1:k,1:k V;,Tl;k = argmin HA - ZH
{A| rank(A)=k} F



Rank-1 model

oy vy =arg_min ||Y — X||g

XeRmxn
The solution to
min Y — EET’ ‘
FERm beRn F
is
é'min =

subject to

subject to

rank (X) =1

lall, =1



Rank-1 model

o1V, =arg min ||Y — X|| subject to rank (X) =1
XERan
The solution to
min Y—EETH subject to  ||a]|, =1
FERm beRn F
is
é'min = L_”l

—

bmin = 011



Rank-r model

Certain people like certain movies: r factors

r

yli, 1= alilbil]

I=1

For each factor /

> a[i]: movie i is positively (> 0), negatively (< 0) or not (~ 0)
associated to factor /

> by[j]: user j likes (> 0), hates (< 0) or is indifferent (= 0) to factor /



Rank-r model

Equivalent to
Y ~ AB, AcR™, BeR™"
SVD solves
min I|Y —AB||g subject to  ||a1ll, =1, ...,[|a|[, =1

AERMXr BERrxn

—

Problem: Many possible ways of choosing ai, ..., a, by, ..., b,

SVD constrains them to be orthogonal



Collaborative filtering

Bob Molly Mary Larry

1 1 5 4 The Dark Knight
2 1 4 5 Spiderman 3
y — 4 5 2 1 Love Actually
5 4 2 1 Bridget Jones's Diary
4 5 1 2 Pretty Woman
1 2 5 5 Superman 2



SVD



Rank 1 model

Bob Molly Mary Larry
1.19(1) 4.66(5) 4.81(4
4.58(5) | Spiderman 3

1.42(1) | Love Actually

(1) )
(2) (1) (4) )
(4) (5) (2) )
4.43(5) 4.56(4) 1.57(2) 1.44(1)| B.J.’s Diary
(4) (5) (1) )
(1) (2) (5) )

The Dark Knight

n — ST
A+o1thvy =

1.44(2
481(5

Pretty Woman
Superman 2



Movies

D. Knight Sp. 3 Love Act. B.J.'s Diary  P. Woman  Sup. 2
( —0.45 —0.39 0.39 0.39 0.39 —0.45)

—

al

Coefficients cluster movies into action (+) and romantic (-)



Users

. Bob Molly Mary Larry
by = (374 4.05 -3.74 —4.05)

Coefficients cluster people into action (-) and romantic (+)



Matrix completion



Netflix Prize

PAvEoAvk oA QR Apk oAy ond




Matrix completion

Bob Molly Mary Larry

1 ? 5 4 The Dark Knight
Spiderman 3
Love Actually
Bridget Jones's Diary
Pretty Woman
Superman 2
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Matrix completion as an inverse problem

1 75
73 2

For a fixed sampling pattern, underdetermined system of equations

Y11
10000 0| |va| [1]
00010 0|V |3
00001 0||vml |5
0000 0 1]|vs| |2
| Y23



Isn't this completely ill posed?

Assumption: Matrix is low rank, depends on = r (m + n) parameters

As long as data > parameters recovery is possible (in principle)

N R e
==
=
=
Y )
= s



Matrix cannot be sparse

|

000 0 0O
0 00 23 00
000 0 0O
000 0 0O

|



Singular vectors cannot be sparse

111 1]+ 1 2 3 4] =

— O O O

N = = =

W = ==

I

Gl = ==



Incoherence

The matrix must be incoherent: its singular vectors must be spread out

Forl/v/n<pu<1

max Ui <
1gigr,1gjgm’ il < p

max Vil <p
1<i<r,1<<n

for the left Uy, ..., U, and right V4,..., V, singular vectors



Measurements

We must see an entry in each row/column at least

11 1 1]

[ S I e §
[ T S I =}

11
77
11
11

[ T S T = ¢

Assumption: Random sampling (usually does not hold in practice!)



Low-rank matrix estimation

First idea:

min rank (X) such that Xo =y
XERmxn

Q: indices of revealed entries
y: revealed entries

Computationally intractable because of missing entries

Tractable alternative:

min [|X such that Xq =
i [IX]1, 2=y



Exact recovery

Guarantees by Gross 2011, Candés and Recht 2008, Candés and Tao 2009

min || X]||, such that Xo =y
XeRan

achieves exact recovery with high probability as long as the number of
samples is proportional to r (n+ m) up to log terms

The proof is based on the construction of a dual certificate



Low-rank matrix estimation

If data are noisy

. 12
min || Xqo — + M||IX
min[1Xa = 713+ AIXI.

where A > 0 is a regularization parameter



Matrix completion via nuclear-norm minimization

Bob

Molly Mary Larry

2 (1)

N O s O

5
4
2
2
1

5 (5)

The Dark Knight
Spiderman 3

Love Actually
Bridget Jones's Diary
Pretty Woman
Superman 2



Proximal gradient method

Method to solve the optimization problem
minimize f (X) + h(X),

where f is differentiable and prox,, is tractable

Proximal-gradient iteration:

%(©) = arbitrary initialization
x (k1) — Prox,, p ()?(k) —ay Vf ()?(k)))



Proximal operator of nuclear norm

The solution X to

o1
min -

2
min S = XIE+ X,

is obtained by soft-thresholding the SVD of Y
Xprox — DT (Y)

D, (M):=US,(S)VT  where M=USVT

5,',' —7 if 5,',' >T
0 otherwise

S-(5); = {



Subdifferential of the nuclear norm

Let X € R™*" be a rank-r matrix with SVD USV'T, where U € R™*",
V € R™" and S € R™*r

A matrix G is a subgradient of the nuclear norm at X if and only if
G:=UVT+W
where W satisfies

Wil <1
Urw =0
WYV =0



Proximal operator of nuclear norm

The subgradients of

1 2

5 1Y = Xllg + 71X,
are of the form

Y-X+71G6

where G is a subgradient of the nuclear norm at X
D, (Y) is a minimizer if and only if

G=—(Y D (Y))

is a subgradient of the nuclear norm at D, (Y)



Proximal operator of nuclear norm

Separate SVD of Y into singular values greater or smaller than 7
Yy=usv’

= [Uo U] {50 0

-
0 S )

} Vo V1
D, (Y)= Uy (So—71)Vy, so

1 1
(Y =D (Y)) = UV +=-UiS1Vy"
T T



Proximal gradient method

Proximal gradient method for the problem
min || Xq — 7|3+ A||X
min_[1Xa = 713+ A X1

X = arbitrary initialization
MO = x(0) o, (Xf(z") - y)

x(k+1) Do (M(k)>



Real data

Movielens database

v

671 users

v

300 movies

v

v

Training set: 9 135 ratings

v

Test set: 1 016



Real data

Average Absolute Rating Error

Train Error
— Test Error

0 n . . .
1072 10! 10° 10! 102 103 104



Low-rank matrix completion

Intractable problem

min rank (X) such that Xqo = ¢y
XER"’X" ( ) Q y

Nuclear norm: convex but computationally expensive
due to SVD computations



Alternative

» Fix rank k beforehand
» Parametrize the matrix as AB where A € R™*" and B € R™*"
» Solve

min
ZGR’”X’,EGR’X"

(48), =1,

by alternating minimization



Alternating minimization

Sequence of least-squares problems (much faster than computing SVDs)

» To compute AK) fix B(k—1) and solve

(39), 7

min
AVER'"X'

2

» To compute BK) fix AK) and solve
_min (A(k)é) -y
BeRan Q

2

Theoretical guarantees: Jain, Netrapalli, Sanghavi 2013



Structured low-rank models



Nonnegative matrix factorization

Nonnegative atoms/coefficients can make results easier to interpret

X~A B, A,'}j > 0, B,'J > O7 for all i,j

Nonconvex optimization problem:

-~ ~112
minimize ’X .y B‘ i
subject to A,J >0,
B;;>0, foralli,j

Ac R™ and B € R"*n



Faces dataset: PCA




Faces dataset: NMF

A
= EmE S

) S
el 7




Topic modeling

singer GDP senate election vote stock bass market band Articles

6 1 1 0 0 1 9 0 8y a
1 0 9 5 8 1 0 1 0] b
A_| 8 1 o 1 0 0o 9 1 7/[c
o 7 1 0o o0 9 1 7 0] d
o 5 6 7 5 6 0 7 2] e
1 o 8 5 9 2 0o o0 1/ f



SVD

0
18.82

23.64

0
14.23

0

0
0
2.03

0
3.63

0
0

o o

o

1.36

A=USVT =U



Left singular vectors

a b c d e f
U = (—0.24 —0.47 —-0.24 —-0.32 —-0.58 —0.47)
Us (0.64 —-023 067 —-0.03 -0.18 -0.21)
Us = (-0.08 —-0.39 -0.08 0.77 0.28 —0.40)



Right singular vectors

Vi
2]
V3

singer GDP senate election vote stock bass

= (-0.18 —0.24 —0.51 —0.38 —0.46 —0.34 —0.2

(0.47 0.01 -0.22 —0.15 —0.25 —0.07 0.63

market band

—0.3 —0.22)
—0.05 0.49 )

= (-0.13 047 -03 -0.14 —0.37 052 -0.04 0.49 -0.07)



Nonnegative matrix factorization

X~WH

W;; >0, H;; >0, for all 7,



Right nonnegative factors

singer

H = (034
H, = (0
Hy = (3.22

GDP senate

0 373
221 0.21
0.37 0.19

Interpretations:

» Count atom

election

254 3.67
0.45 0
0.2 0

vote

stock bass market

0.52 0 0.35
2.64 0.21 2.43
0.12 4.13 0.13

band

0.35)
0.22)
3.43)

: Counts for each doc are weighted sum of Hy, Hy, H3

» Coefficients: They cluster words into politics, music and economics



Left nonnegative factors

a b c d e f
W, = (0.03 2.23 0 0 1.59 2.24)
W, = (0.1 0 008 313 232 0)
W = (2.13 0 2.22 0 0 0.03)

Interpretations:

» Count atom: Counts for each word are weighted sum of Wy, Ws, Ws

» Coefficients: They cluster docs into politics, music and economics



Sparse PCA

Sparse atoms can make results easier to interpret

X ~AB, Asparse

Nonconvex optimization problem:

A,-\
1

k

- ~]12
inimi X—ABH Ay
minimize H 2+ 2

subject to H/Z\, =1, 1<i<k

‘2

Ac R™ and B € R7*"



Faces dataset

-
- -
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