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Basic properties



Column and row space

The column space col (A) of a matrix A is the span of its columns

The row space row (A) is the span of its rows.



Rank

For any matrix A

dim (col (A)) = dim (row (A))

This is the rank of A



Orthogonal column spaces

If the column spaces of A, B € R™*" are orthogonal then
(A,B) =0

Proof:

n

(A, B) = tr (ATB) S (A.B.)

i=1

Consequence:

2 2 2
IA+ Bl[e = [|Alls + Bl



Linear maps

Given two vector spaces V and R associated to the same scalar field,
a linear map  : V — R is a map from vectors in V to vectors in R
such that for any scalar o and any vectors X, % € V



Matrix-vector product

The product of a matrix A € C™*" and a vector X € C" is a vector
Ax € C™, such that

(AR [ =) Ax 1]
j=1

AX is a linear combination of the columns of A

AX = Z)_('[f] A
j=1



Equivalence between matrices and linear maps

For finite m, n every linear map f : C™ — C" can be uniquely
represented by a matrix F € C™*"



Proof

The matrix is
F=[f(&) f(&) --- f(&)],

the columns are the result of applying f to the standard basis

For any vector X € C"



Projecting and lifting

When a matrix C™*" is fat, i.e., n > m, we say that it projects vectors
onto a lower dimensional space (this is not an orthogonal projection!)

When a matrix is tall, i.e., m > n, we say that it lifts vectors to a
higher-dimensional space



Adjoint

Given two vector spaces V and R with inner products (-, -),, and (-, )%,
the adjoint f* : R — V of a linear map f : V — R satisfies

(F(X).Y)r = X ()

forall X Vand yeR



Conjugate transpose

The entries of the conjugate transpose A* € C"™*™ of A € C™*" are

(A); =Ai, 1<i<n 1<j<m.

If the entries are all real, this is just the transpose

The adjoint f*: C" — C™ of a f : C™ — C" represented by a
matrix F corresponds to F*



Symmetric and Hermitian

A symmetric matrix is equal to its transpose

A Hermitian or self-adjoint matrix is equal to its conjugate transpose



Range

Let V and R be vector spaces associated to the same scalar field, the
range of a map f : V — R is the set of vectors in R reached by f

range (f) :={y |y = f(X) for some X € V}

The range of a matrix is the range of its associated linear map



The range is the column space

For any matrix A € C™*"

range (A) = col (A)

Proof:
col (A) C range (A) because A;; = Ag; for 1 < i <n

range (A) C col (A) because AX is a linear combination of the columns of
A for any X € C"



Null space

Let ¥V and R be vector spaces, the null space of amap f : V — R is the
set of vectors that are mapped to zero:

null (£) := {z| f(X) = 6}
The null space of a matrix is the null space of its associated linear map

The null space of a linear map is a subspace



Null space and row space

For any matrix A € R™*"

null (A) = row (A)*

Proof:
Any vector X € row (A) can be written as X = AT Z, for some 7 € R™

If y € null (A) then



Null space and row space

For any matrix A € R™*"

null (A) = row (A)*

Proof:
Any vector X € row (A) can be written as X = AT Z, for some 7 € R™

If y € null (A) then

59 = (7.472)



Null space and row space

For any matrix A € R™*"

null (A) = row (A)*

Proof:
Any vector X € row (A) can be written as X = AT Z, for some 7 € R™
If y € null (A) then

7.5 = (7.A7Z)
= (A47.2)



Null space and row space

For any matrix A € R™*"

null (A) = row (A)*

Proof:
Any vector X € row (A) can be written as X = AT Z, for some 7 € R™
If y € null (A) then

7.5 = (7.A7Z)

(AY,2)
=0



Null space and range

Let A e RM*n

dim (range (A)) + dim (null (A)) = n



|dentity matrix

The identity matrix of dimensions n x n is

Forany xe C", IX=X



Matrix inverse

The inverse of A € C"™" is a matrix A—1 € C"*" such that

AAL = A 1A=



Orthogonal matrices

An orthogonal matrix is a square matrix such that
utu=uU" =1
The columns U.1, U, ..., U., form an orthonormal basis

For any X € R”



Product of orthogonal matrices

If U,V € R™" are orthogonal matrices, then UV is also an
orthogonal matrix

(YT (uv)y=vTuTuv =1



Orthogonal matrices

Orthogonal matrices change the direction of vectors, not their magnitude

2112
HUX]13



Orthogonal matrices

Orthogonal matrices change the direction of vectors, not their magnitude

|Ux||3 = xTUT U



Orthogonal matrices

Orthogonal matrices change the direction of vectors, not their magnitude

|Ux||3 = xTUT U

=xTx



Orthogonal matrices

Orthogonal matrices change the direction of vectors, not their magnitude

|Ux||3 = xTUT U
HT)?

12
:HXH2



Orthogonal-projection matrix

Given a subspace S C R” of dimension d, the matrix

P.=UUT
where the columns of U.q, Us, ..., U.g are an orthonormal basis of S,
maps any vector X to Ps X
Px = UUTX
d
— <U:i7)?> UI



Singular value decomposition



Singular value decomposition

Every rank r real matrix A € R™*" has a singular-value decomposition
(SVD) of the form

o1 0 -~ 0] W
0 092 e O \77—
A= [ul > ur] 2
0 O o, vil

r



Singular value decomposition

v

The singular values o1 > g5 > --- > o, are positive real numbers

v

The left singular vectors iy, i, ... d, form an orthonormal set

v

The right singular vectors Vi, V5, ...V, also form an orthonormal set

v

The SVD is unique if all the singular values are different

v

If o; = 0j31 = ... =04k, then &;, ..., i1k can be replaced by any
orthonormal basis of their span (the same holds for v, ..., Viik)

v

The SVD of an m x n matrix with m > n can be computed in O (mn2)



Column and row space

» The left singular vectors iy, i, ... U, are a basis for the column space
» The right singular vectors vi, V4, ...V, are a basis for the row space
Proof:

span (ify, ..., 4,) C col (A) since &; = A (o7 ')

col (A) C span (i, ..., i) because A; = U (SVT§&)



Singular value decomposition

o1 0 0 --- 0
0 0 0 -~ 0
P, 0 o 0 - 0 I, T
A= u < ur ur Un Vive -V, V, et Vp
[ & i o 0 0 .. o0 |A% -V Va .|

Basis of range(A) e e Basis of row(A) Basis of null(A)



Rank and numerical rank

The rank of a matrix is equal to the number of nonzero singular values

Given a tolerance € > 0, the numerical rank is the number of singular
values greater than ¢



Linear maps

The SVD decomposes the action of a matrix A € R™*" on a vector
X € R" into:

1. Rotation
n
VTR =3 (7% &
i=1
2. Scaling
n
SVIR=> 0i(V,%)é
i=1
3. Rotation



Linear maps

VT




Linear maps

VT

UsvTz

f=1

usvty



Singular values

For any orthogonal matrices U eR™M and V € R™" the singular
values of UA and AV are the same as those of A

Proof:

U:

v,

uu
vTv

are orthogonal, so USV'T and USV " are valid SVDs for UA and AV



Singular values

The singular values satisfy

o1 = max [|AX]],
{IIxll,=1 | xer}
= max HAT)?
{I7ll=1] yerm} 2
oj = max [|AX]],
{||’?||2:1 | ’?ER"XLUM---,J,‘A}
= max HAT)?'
{lI7l,=1| yeR™, 71 #4,....G; 1 }

2 9

2 <i<min{m,n}



Proof

Consider X € R" such that ||X||, =1 and for a fixed 1 <i<n
XL, . viq

We decompose X into
n
X = § :aJVJ + lProw(A)J‘ X
j=i

where 1 = ||%]12 > 320, o2



Proof

)
HAtz



Proof

n n
I|A||5 = <Z O (Vier R) ey > 0k (Vier %) Jk>

k=1 k=1



Proof

)
HAtz—

:/\



Proof

)
HAtz

I
—

n n
Tk { Vi, X) tTk,ZUk (Vik, X) Uk>
k=1 k=1
n

S n2 = -
o2 (Vi,X)* because iy, ..., i, are orthonormal
1

n n 2
2/ o _ N
o <vk, E aj\/j‘i‘PrOW(A)J_ x>
1

j=i

>
Il

k



Proof

n n

Ok {Vik, X) U, Zak (Vie, X) Uk
i i
n

)
HAXH2:

—

S n2 = -
o2 (Vi,X)* because iy, ..., i, are orthonormal
1

>
Il

n 2

n
2/ o = N
Ok Vi, E Qv +PrOW(A)J_X

J=1

x
s |l
—
N
N

because v, ..., V, are orthonormal

Il
.
I
A
R



Proof

n n

Ok {Vik, X) U, Zak (Vie, X) Uk
i i
n

)
HAXH2:

—

S n2 = -
o2 (Vi,X)* because iy, ..., i, are orthonormal
1

>
Il

n 2

n
2/ o _ N
o vk,g Oéj\/j—i‘PrOW(A)J_X
1 j=i

x
s |l

2
gj

N

because v, ..., V, are orthonormal

L

i

-.
Il

n
< o? o? because o > 041> ... > 0p
i g +
j=i



Proof

n n

Ok {Vik, X) U, Zak (Vie, X) Uk
i i
n

)
HAXH2:

—

S n2 = -
o2 (Vi,X)* because iy, ..., i, are orthonormal
1

>
Il

n 2

n
2/ o = N
Ok Vi, E Qv +PrOW(A)J_X

k=1 j=i

n
= g afaf because v, ..., V, are orthonormal

j=i
n
< o2 2 p > o> >
> 0; OCJ €cause 0; =2 0j41 = ... = Op
j=i

2
g;

IN



Singular vectors

The right singular vectors satisfy

vi = argmax [|AX]|,
{II%l1,=1 | XeRn}

Vi = arg max

{lI¥1l,=1 | R€R", R L¥A,...,V;_1 }

and the left singular vectors satisfy

Uy =  argmax HATY

{II711,=1 | yeRrm} 2

—

u; = arg max
{lIFll;=1| yeR™, y Lin,...,d;—1 }

2



Proof

V: achieves the maximum

- 112
1AV |3

Same proof for if; replacing A by AT



Proof

V: achieves the maximum

n n
A5 = <Zak (Vie, %) ik, Y 0k (Vi V) ﬁk>

k=1 k=1

Same proof for if; replacing A by AT



Proof

V: achieves the maximum

n
1AG|2 = < (Vi ) 3 0 (s ) ﬁk>

k=1

= £<Vk>vl>

x
Il
—

Same proof for if; replacing A by AT



Proof

V: achieves the maximum

n n
A5 = <Zak (Vie, %) ik, Y 0k (Vi V) ﬁk>
k=1 k=1
n

o2 (Vi, V)2
k=1
o7

Same proof for if; replacing A by AT



Optimal subspace for orthogonal projection

Given a set of vectors 31, 3>, ... a, and a fixed dimension k < n, the
SVD of

A= [31 a - En]GRmxn

provides the k-dimensional subspace that captures the most energy

n n
Z Hpspan(ﬁl,ﬁz,.‘.,ﬁk) 5/} @ > Z ||P3 5'”3
i=1 i=1

for any subspace S of dimension k



Proof

Because iy, i, . . ., by are orthonormal

n
Z { ‘Pspan(ﬁl,ﬁz,...,ﬁk) 51‘ ‘;
i=1



Proof

Because iy, i, . . ., by are orthonormal

n ) n k
Z Hpspan(ﬁlvﬁév“»’jk) 5’“2 = ZZ <L73751>2
i=1

i=1 j=1



Proof

Because iy, i, . . ., by are orthonormal

n ) n k
Z Hpspan(ﬁlvﬁév“»’jk) 5’“2 = ZZ <L73’5I>2
i=1

i=1 j=1

k IR

=>_||a7a]
- 2
J=1



Proof

Because iy, i, . . ., by are orthonormal

n ) n k
Z Hpspan(ﬁlvﬁév“»’jk) 5’“2 = ZZ <L73751>2
i=1

i=1 j=1

k IR
=>_||a7a]

- 2

J=1

Induction on k



Proof

Because iy, i, . . ., by are orthonormal

n ) n k
Z Hpspan(ﬁlvﬁé"“»’jk) 5’“2 = ZZ <L73751>2
i=1

i=1 j=1

k IR
=>_||a7a]

- 2

J=1

Induction on k

The base case k = 1 follows from

i = arg max HATYH
q _ 2
{II71l,=1 | yer™}



Proof

Let S be a subspace of dimension k
S Nspan (ui, .. ., LTk_l)L contains a nonzero vector b

If diim (V) has dimension n, S1,S2 €V and dim (S1) + dim (S2) > n,
then dim (51N &y) > 1



Proof

Let S be a subspace of dimension k
S Nspan (ui, .. ., LTk_l)L contains a nonzero vector b

If diim (V) has dimension n, S1,S2 CV and dim (S1) +dim (S2) > n
then dim (51N &y) > 1

There exists an orthonormal basis b1, b2, e bi for S such that by := b
is orthogonal to iy, i, ..., k_1



Induction hypothesis

k—1
> |[aTa
i=1

2 - =112
2 - Z HPSPa”(‘717L727---,l7k—1) a"’ ‘2
i=1

2

n
> Z Hpspan(glygzp_"g,(71) a,-‘
i=1

k—1
S
i=1

2

2
2




Proof

Recall that

by = arg max HATYH
_ _ I 2
{lI¥ll,=1| yeR™, ¥ Li,...,d0—1}

’ 2
2

which implies

2 -
7], 2 475,




Proof

Recall that

by = arg max HATYH
_ _ oL - 2
{lI7ll;=1| yeR™, y Lin,...,G01}

’ 2
2

which implies

2 -
7], 2 475,

We conclude

n k
- 112 Z T - 2
Z H’Pspan("7171727”'717k) al‘ ‘2 = HA U, 2
i=1 i=1
k - 5
> [T
: 2
i=1

n
=Y |IPs il
i=1



Best rank-k approximation

Let USV'T be the SVD of a matrix A € R™*n

The truncated SVD U. 1.k S1:4,1:k \/:Tl:k is the best rank-k approximation

U.1:6S1:k,1:k V;,Tl;k = argmin HA - ZH
{A| rank(A)=k} F



Proof

Let A be an arbitrary matrix in R™*" with rank(A) = k

Let U € R™<K be a matrix with orthonormal columns such that

col(U) = col(A)

—

2
PCO'(U:,I:k) i 2

5 n
HU:,l:kU:—,q:kA’ ‘F = Z ‘
i=1

n
22\
=1

~~ 2
UUTAH
F

2
2

Pcol(lj) 5’




Orthogonal column spaces

If the column spaces of A, B € R™*" are orthogonal then

2 2 2
|IA+ Bl[e = [[Alls + Bl



Proof

col (A — UUTA) is orthogonal to col (Z) = col (U)

[a=Al = |}a- o07Al| + |4 o07A|



Proof

col (A — UUTA) is orthogonal to col (Z) = col (U)

[a=Al = |}a- 07Al| + |4 07|

~~ 2
- - o0,



Proof

col (A — UUTA) is orthogonal to col (Z) = col (U)
= lfo =}~ oomal[ -+ []A- 074
[la- oo

~~ 2
= [|Al]f - ||UUTA
F F



Proof

col (A — UUTA) is orthogonal to col (Z) = col (U)

~12 ~~ 2 ~ ~ o~ 2
-} = [Ja- g7+ - 00
F F F
~ o~ 2
- - oo
~~ 2
= |lAllz - ||007A||

2
> Al = ||V Ui



Proof

col (A — UUTA) is orthogonal to col (Z) = col (U)

~12 ~~ 2 ~ ~ o~ 2
= = - 507 + - 5074
F F F
~~ 2
- -0,
~~ 2
= |lAllz - ||007A||
2
> Al ~ || U2 UTA]|

2
=[[4- Castlenl



Reminder

For any pair of m x n matrices A and B

tr <BTA> = tr (ABT)



Frobenius norm

For any matrix A € R™*", with singular values o1, ..., omin{m,n}




Frobenius norm

For any matrix A € R™*", with singular values o1, ..., omin{m,n}

Proof:

Al =tr (ATA)



Frobenius norm

For any matrix A € R™*", with singular values o1, ..., omin{m,n}

Proof:
Al =tr (ATA)

— tr (VSUTUSVT)



Frobenius norm

For any matrix A € R™*", with singular values o1, ..., omin{m,n}

min{m,n}
1Al = Z o7

Al =tr (ATA)
vsuTusvT)

Proof:

(
=tr <V55VT> because UT U = |



Frobenius norm

For any matrix A € R™*", with singular values o1, ..., omin{m,n}

min{m,n}
AllF = 4 Z of.
i=1

(474)
tr (vsuTusv )

(

(

Proof:

2
A2 = tr

tr ( VSSV ) because UTU = |

tr vTvss)



Frobenius norm

For any matrix A € R™*", with singular values o1, ..., omin{m,n}

min{m,n}
AllF = 4 Z of.
i=1

(474)
tr (vsuTusv )

(

(

Proof:

2
A2 = tr

tr ( VSSV ) because UTU = |

tr (VTVss)
tr (SS) because VTV =/



Operator norm

The operator norm of a linear map and the corresponding matrix
A e RM*NM s

1A= max [JAX]]
{II%1l,=1 | xern}

:0‘1



Nuclear norm

The nuclear norm of a matrix A € R™*" with singular values

01y -+ -+ Omin{m,n} 1S

min{m,n}

AL = > o
i=1



Multiplication by orthogonal matrices

For any orthogonal matrices U eR™M and V € R™" the singular
values of UA and AV are the same as those of A

Consequence:

The operator, Frobenius and nuclear norm of UA and AV are the same
as those of A



Holder's inequality for matrices

For any matrix A € R™*",

1Al = sup (A, B).
{lIBll<1| Bermxn}

Consequence: nuclear norm satisfies triangle inequality

1A+ B,



Holder's inequality for matrices

For any matrix A € R™*",

1Al = sup (A, B).
{lIBll<1| Bermxn}

Consequence: nuclear norm satisfies triangle inequality

||A+ B||, = sup (A+ B, C)
{lIClI<1| Cermxn}



Holder's inequality for matrices

For any matrix A € R™*",

1Al = sup (A, B).
{lIBll<1| Bermxn}

Consequence: nuclear norm satisfies triangle inequality

||A+ B||, = sup (A+ B, C)
{lIClI<1| Cermxn}
< sp (AQ+  sp  (BD)

 {J|C|I<1]| CeRmxn} {/ID||<1 | DERm*n}



Holder's inequality for matrices

For any matrix A € R™*",

1Al = sup (A, B).
{lIBll<1| Bermxn}

Consequence: nuclear norm satisfies triangle inequality

IA+Bl.=  sp  (A+B,C)
{licli<1| Cermxn}
< sup (A C)+ sup (B, D)
{licli<1| Cermxn} {lIDl|<1 | DeRm=n}

= [[All. + 18Il



Proof

The proof relies on the following lemma:
For any Q € R"*"

max |Qji| < [[Q||

1<i<n

Proof:

Since ||€&]], =1,

max |Q;| < max
1<i<n 1<i<n

= max [|Qéill,

<@l



Proof
Let A:= USVT,

sup Trace <ATB)
1BlI<1



Proof
Let A:= USVT,

sup Trace <ATB) = sup Trace (VS UTB)
l1B[|<1 lIBl|<1
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Proof
Let A:= USVT,

sup Trace <ATB) = sup Trace (VS UTB)
l1B[|<1 lIBl|<1

= sup Trace (5 BUTV>
IBl[<1
< sup Trace(SM) since ||B|| = HBUTVH

IM[]<1
< sup Trace (S M) by the lemma

maxy <j<n|M;|<1
n
< sup E Mii o
max<j<n|Mi| <155

< Zn:ai
i=1



Proof
Let A:= USVT,

sup Trace <ATB) = sup Trace (VS UTB)
l1B[|<1 lIBl|<1

= sup Trace (5 BUTV>
IBl[<1
< sup Trace(SM) since ||B|| = HBUTVH

IM[]<1
< sup Trace (S M) by the lemma

maxy <j<n|M;|<1
n
< sup E Mii o
max<j<n|Mi| <155
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To complete the proof, we show that the equality holds

UV'T has operator norm equal to one

<A, UVT>
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<A, UVT> — tr (ATUVT>

:tr(VS UTUVT)



Proof

To complete the proof, we show that the equality holds

UV'T has operator norm equal to one

<A,UVT> U(ATUVT>
n(vsuTUVT)

u(vTvs)
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To complete the proof, we show that the equality holds

UV'T has operator norm equal to one



Proof

To complete the proof, we show that the equality holds

UV'T has operator norm equal to one



Basic properties

Singular value decomposition
Denoising

Collaborative filtering
Principal component analysis
Probabilistic interpretation
Dimensionality reduction

Eigendecomposition



Denoising correlated signals

Aim: Estimating n m-dimensional signals X1, X, ..., X, € R™ from

Vi =X+ 1z, 1<i<n

Assumption 1: Signals are similar and approximately span an unknown
low-dimensional subspace

Assumption 2: Noisy perturbations are independent / uncorrelated



Denoising correlated signals

Aim: Estimating n m-dimensional signals X1, X, ..., X, € R™ from

Vi =X+ 1z, 1<i<n

Assumption 1: Signals are similar and approximately span an unknown
low-dimensional subspace

Assumption 2: Noisy perturbations are independent / uncorrelated



Denoising correlated signals

By the assumptions

is full rank
If Z is not too large, low-rank approximation to

Y=[n % - Vi
— X427

should correspond mostly to X



Denoising via SVD truncation

1. Stack the vectors as the columns of a matrix Y € R™*"
2. Compute the SVD of Y = USVT

3. Truncate the SVD to produce the low-rank estimate L
L:= U:,l:ksl:k,l:k V;:,i;kv

for a fixed value of k < min{m, n}



Important decision

What rank k to choose?
> Large k

> Small k



Important decision

What rank k to choose?

» Large k will approximate signals well but not suppress noise

> Small k



Important decision

What rank k to choose?
» Large k will approximate signals well but not suppress noise

» Small k will suppress noise but may not approximate signals well



Denoising of digit images

MNIST data
Signals: 6131 28 x 28 images of the number 3
Noise: iid Gaussian so that SNR is 0.5 in ¢> norm

More noise than signal!



Denoising of digit images

T I
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Denoising of digit images
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Collaborative filtering



Collaborative filtering

Bob Molly Mary Larry

1 1 5 4 The Dark Knight
2 1 4 5 Spiderman 3
A-— 4 5 2 1 Love Actually
5 4 2 1 Bridget Jones's Diary
4 5 1 2 Pretty Woman
1 2 5 5 Superman 2



[ntuition

Some people have similar tastes and hence produce similar ratings
Some movies are similar and hence elicit similar reactions

This tends to induce low-rank structure in the matrix of ratings



SVD



Rank 1 model

Bob Molly Mary Larry
1.19(1) 4.66(5) 4.81(4
4.58(5) | Spiderman 3

1.42(1) | Love Actually

(1) )
(2) (1) (4) )
(4) (5) (2) )
4.43(5) 4.56(4) 1.57(2) 1.44(1)| B.J.’s Diary
(4) (5) (1) )
(1) (2) (5) )

The Dark Knight

n — ST
A+o1thvy =

1.44(2
481(5

Pretty Woman
Superman 2



First left singular vector

D. Knight Sp. 3 Love Act. B.J.'s Diary P. Woman  Sup. 2
= (-045 —039  0.39 0.39 039  —0.45)

Coefficients cluster movies into action (+) and romantic (-)



First right singular vector

Bob Molly Mary Larry
Vi = (048 052 048 —0.52)

Coefficients cluster people into action (-) and romantic (+)



Generalization

Each rating is a sum of k terms

k
rating (movie i, user j) = ZU/LT/ [ vi [/j]
=1

Singular vectors cluster users and movies in different ways

Singular values weight the importance of the different factors.



Principal component analysis



Sample covariance matrix

The sample covariance matrix of {x1,%2,...,%,} € R™
_ . 1 s _ W (o N
T (R Ba) = DO (i av (R B)) (8- av (R )
i=1
1 n
aV(Xla)_('27 . 7>?n) - - )?I
i=1

B B var (% [i] - .., %, [i]) if i =],
z X,...,Xn i': - . o o - .
. )i {COV((Xl (1,50 - G il Xn 1) if i #



Variation in a certain direction

For a unit vector d € R™

var (d Ts,...,d T)?,,)



Variation in a certain direction

For a unit vector d € R™

var (d Ts,...,d T)?,,)

1 - -
= 1Z(dT>?,-—av(dT)?1,...
ni

i=1




Variation in a certain direction

For a unit vector d € R™
var (JTYL ce JTF(,,)

1 n

:nilz(dTi}—av(JT)?l,...

i=1

= —=> (d7 i —av(x,..

i=1




Variation in a certain direction

For a unit vector d € R™




Variation in a certain direction

For a unit vector d € R™

var (d Ts,...,d T)?,,)

Covariance matrix captures variance in every direction!



Principal component analysis

Given n data vectors Xi, %, ..., %, € RY,

1. Center the data,
5,-:)?,-—av(>_<’1,>_<’2,...,>_<’,,), ]_SISH

2. Group the centered data as columns of a matrix

3. Compute the SVD of C

The left singular vectors are the principal directions

The principal values are the coefficients of the centered vectors
in the basis of principal directions.



Directions of maximum variance

The principal directions satisfy

i = argmax  var <JT>?1, e JTS(,,>
{lldll,=1 | dern}

u; = arg max var <JT>?1, -
{l|d]|,=1 | dern, d Lin,....dq 1}



Directions of maximum variance

The associated singular values satisfy

n—1 {||d][,=1|der}

= _max_
n—1  {||d]|,=1|dern.dLan...51}

= max std (JT>?1, co.,d T)?,,)

- std (JTx‘l,... d



Proof

=

()?,'—av(il,...

7)_(n)) ()_(; - av()?la"'



Proof

T (R, .., %) = (% — av (R, ..., %)) (% — av (%, ...

n—14%
i=1
1
= ccT
n—1

For any vector d

var(JTzl,...,JTzn) —dTy(%,...,%)d



Proof

Z()?l,...,Xn): (>_<',~—av(>_<’1,...

n—1+4
i=1
1
= ccT
n—1

For any vector d

var (d T)?l,...,dT>?n> =

,Xn)) (Xi —av (X, . ..



Proof

Z()_(»l,...,)_('n): (>_<',~—av(>_<’1,...

n—1

i=1
1
= ccT
n—1

For any vector d

var (d TR,

—

d

9

%)) (% — av (&, ...

dTccT™d
n—l

2

n—1 2




Singular values

The singular values of A satisfy

1= max ||AX]],
{lIx1l,=1 | er}
- o 71
{lIFll;=1| yerm} 2
o; max [|AX]],

{II%l,=1 | XeRn, % Lify,.... 51 }

= max HAT)?
{II7ll,=1 | yeR™, 71 #,....¥; 1 }

I

2 <i<min{m,n}



Singular vectors

The left singular vectors of A satisfy

Uy =  argmax HATY
{I7ll,=1| yerm} 2
TS arg max HATYH , 2<i<n
2

{I17]l,=1| yeR™, 71 #1,....0; 1 }



PCA in 2D

o1/v/m—1 = 0.705, o1/v/m—1 = 0.983, o1/v/n—1 = 1.349,
o2/+v/n—1=0.690 o2/v/n—1=0.356 o2/v/n—1=0.144
i
w’




Centering

o1/v/n—1 =5.077
o2/v/n—1 = 0.889

o1/vV/n—1=1.261
o2/v/n—1=0.139

[

S

@ - - ——— === -

Uncentered data

Centered data




PCA of faces

Data set of 400 64 x 64 images from 40 subjects (10 per subject)

Each face is vectorized and interpreted as a vector in R#096



PCA of faces

Center PD 4 PD 5

=W

oi/V/n— 330 152 130




PCA of faces

PD 10 PD 15 PD 20 PD 30 PD 40 PD 50




PCA of faces

PD 359

PD 100 PD 150




Projection onto first 7 principal directions

Center PD 1

= 8613 - 2459 + 665
- 180 + 301 + 566
+ 638 + 403




Projection onto first k principal directions

Signal 5 PDs 10 PDs 20 PDs 30 PDs 50 PDs

100 PDs 150 PDs 200 PDs 250 PDs 300 PDs 359 PDs




Probabilistic interpretation



Covariance matrix

The covariance matrix of a random vector X is defined as

Var(%[1])  Cov(X[1],%[2]) --- Cov(%[1],%[n])
o |Cor®RELRID VarR[) o Cov (R[]
Cov (R[n] . £[1]) Cov(X[n],[2]) -  Var(%[n])

B (zzT) “E®E®)T

If the covariance matrix is diagonal, the entries are uncorrelated



Covariance matrix after a linear transformation

Let ¥ € R"*" be the covariance matrix of X. For any matrix A € R™*"

Proof:

2 Az



Covariance matrix after a linear transformation

Let ¥ € R"*" be the covariance matrix of X. For any matrix A € R™*"

Proof:



Covariance matrix after a linear transformation

Let ¥ € R"*" be the covariance matrix of X. For any matrix A € R™*"

Proof:



Covariance matrix after a linear transformation

Let ¥ € R"*" be the covariance matrix of X. For any matrix A € R™*"

Proof:

Y= B <(A>?) (A)?)T> ~E(AX)E(A%)7
— A (E (zzT) . E()E’)E()Z’)T) AT
= ATAT



Variance in a fixed direction

The variance of X in the direction of a unit-norm vector v equals

Var (sz) — Ty



SVD of covariance

matrix
op O
— 0 02
u,,]
0 0



Directions of maximum variance

The SVD of the covariance matrix ¥ of a random vector X satisfies
. T =
o1 = max Var (v x)
[IVll,=1

ih = arg max Var (V’Tf(’)
[17l1,=1

oK = max Var (\7T>_(’)
[|V]|,=1,VLi,..., 01

l7k = arg max Var <‘7 T)—(»)
[|V]l,=1,VLif,...,0k—1



Directions of maximum variance

\/0'1:1.22, \/0'2:0.71 ,/0‘1:1, \/0'2:1 ﬁ:138, w/O’2:0.32

N o 3



Probabilistic interpretation of PCA

n=>5 n=20 n =100




Dimensionality reduction



Dimensionality reduction

Data with a large number of features can be difficult to analyze or process
Dimensionality reduction is a useful preprocessing step

If data modeled are vectors in R™ we can reduce the dimension by
projecting onto R¥, where k < m

For orthogonal projections, the new representation is (by, X), (b, X), ...
(by, x) for a basis by, ..., b of the subspace that we project on

Problem: How do we choose the subspace?



Optimal subspace for orthogonal projection

Given a set of vectors 31, 3>, ... a, and a fixed dimension k < n, the
SVD of

A= [31 a - En]GRmxn

provides the k-dimensional subspace that captures the most energy

n n
Z Hpspan(ﬁl,ﬁz,.‘.,ﬁk) 5/} @ > Z ||P3 5'”3
i=1 i=1

for any subspace S of dimension k



Nearest neighbors in principal-component space

Nearest neighbors classification (Algorithm 4.2 in Lecture Notes 1)
computes n distances in R™ for each new example

Cost: O (nmp) for p examples
Idea: Project onto first k main principal directions beforehand

Cost:

v

@ (mzn), if m < n, to compute principal dimensions
» kmn operations to project training set

» kmp operations to project test set

v

knp to perform nearest-neighbor classification

Faster if p > m



Face recognition

Training set: 360 64 x 64 images from 40 different subjects (9 each)
Test set: 1 new image from each subject

We model each image as a vector in R*%% (m = 4096)

To classify we:

1. Project onto first k principal directions

2. Apply nearest-neighbor classification using the ¢>-norm distance in R¥



Performance

301,

20°

Errors

10| "

| |
0O 10 20 30 40 50 60 70 80 90 100
Number of principal components




Nearest neighbor in R*

Test image

Projection

Closest
projection

Corresponding
image




Dimensionality reduction for visualization

Motivation: Visualize high-dimensional features projected onto 2D or 3D
Example:
Seeds from three different varieties of wheat: Kama, Rosa and Canadian

Features:

> Area

» Perimeter

» Compactness

» Length of kernel

» Width of kernel

» Asymmetry coefficient

» Length of kernel groove



Projection onto two first PCs

2.0
1.5
L 10 .
_g L ?. .:.
° .

o 0.5 %o N ¢ “ . ge. . ® . o
(U] e %% 4 o oo ° o ° So% BRooo
(0] . e % °q o0 o .' ° -, °®
7] 0.0 e oo oo . °* . .’. * Sw
o ’ A B A o °° o % o P et . o
e} 0®%,% o 0200 o ¥ o« o @
C ° e ° o 09,00 o o
© _o5 ° ¢ 'y .' °% .’ °
o o .‘ o © °
R % o % o
=
o —-1.0
q) L
g
a -15

-2.0

-2.5

-25 -20 -15 -1.0 -05 0.0 05 1.0 15
Projection onto first PC



Projection onto two last PCs
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Whitening

Motivation: Dominating principal directions are not necessarily the most
informative

Principal directions corresponding to small singular values may contain
information that is drowned by main directions

Intuitively, linear skew obscures useful structure



PCA of faces

Center PD 4 PD 5

=W

oi/V/n— 330 152 130




Whitening

Given X1, %, ..., %, € R? we:
1. Center the data,

Ci=Xi—av (X1, X2,...,Xn), 1<i<n
2. Group the centered data as columns of a matrix

C=[a & - &)

3. Compute the SVD of C = USV'T

4. Whiten by applying the linear map US~1UT

w; = US~tuTe



Covariance of whitened data

Matrix of whitened vectors

W =ustu'c

The covariance matrix of the whitened data is



Covariance of whitened data

Matrix of whitened vectors
W=ustu'c

The covariance matrix of the whitened data is

1
Y(&,...,6) = n_IWWT




Covariance of whitened data

Matrix of whitened vectors
W=ustu'c

The covariance matrix of the whitened data is

1
Y(&,...,6) = n_IWWT

1
= ilus—luchTus—luT
P



Covariance of whitened data

Matrix of whitened vectors
W=ustu'c

The covariance matrix of the whitened data is

1
Y(&,...,6) = n_IWWT

1
=—ystuTccustuT
n—1
1

= 1Us—lUTUSVTVSUTUS—lUT
n_




Covariance of whitened data

Matrix of whitened vectors
W=ustu'c

The covariance matrix of the whitened data is

1
Y(&,...,6) = n_IWWT

1
=—ystuTccustuT
n—1
= 11U5—1UTU5vTv5UTU5—1UT
n_
1
n—1




Whitening

- - T T 1T > —1T
X1, o, Xn U'X, ..., U X, ST'U'"%, ..., STU' X,




Whitened faces

x4

Us—tuTx




Eigendecomposition



Eigenvectors

An eigenvector § of a square matrix A € R"*" satisfies
AG=)\q
for a scalar A which is the corresponding eigenvalue

Even if A is real, its eigenvectors and eigenvalues can be complex



Eigendecomposition

If a matrix has n linearly independent eigenvectors then it is
diagonalizable

Let ¢1,..., 4, be lin. indep. eigenvectors of A € R"*" with eigenvalues
AL A
M O o 0
L 110 X -+ O - L q-1
A=[G G - Gn 2 (g1 & Gn)
0 0 An

= QAQ



Proof

AQ



Proof



Proof

AQ = [AGi AGx --- Adn)
=M@ Xd - XoGh



Proof

AQ=[Aq1 Aq --- Ag
=M@ Xd - XoGh



Not all matrices have an eigendecomposition

¥

Assume A has an eigenvector § associated to an eigenvalue A

X



Not all matrices have an eigendecomposition

¥

Assume A has an eigenvector § associated to an eigenvalue A

) =[5 of el



Not all matrices have an eigendecomposition

01
A [O O]
Assume A has an eigenvector § associated to an eigenvalue A
gl _fo 1] 41
0 0 0| |4][2]

- e



Spectral theorem for symmetric matrices

If Ae R"is symmetric, then it has an eigendecomposition of the form
A=UNUT

where the matrix of eigenvectors U is an orthogonal matrix



Eigendecomposition vs SVD

Symmetric matrices also have singular value decomposition
A=USVT

Left singular vectors = eigenvectors

Singular values = magnitude of eigenvalues

vi=upif \; >0

—

V,':—U,'if)\,'<0



Application of eigendecomposition

Fast computation of

AA. .. AX = Akx

Ak



Application of eigendecomposition

Fast computation of

AA. .. AX = Akx

AF = QAQTIQAQ - QAQ!



Application of eigendecomposition

Fast computation of

AA. .. AX = Akx

A= QAQTIQAQ .- QAQ?
— QAkQ—l



Application of eigendecomposition

Fast computation of

AA. .. AX = Akx

AF = QAQTIQAQ - QAQ!

— QAkQ—l
Moo -0
_0 0 X -0 o

0 0 ... )k



Application of eigendecomposition

For any vector X



Application of eigendecomposition

For any vector X

n
AR =" aAkg;
i=1



Application of eigendecomposition

For any vector X

n
AR =" aAkg;
i=1



Application of eigendecomposition

For any vector X
n
Akx = § ;ARG
i=1

n
k =
i=1

If [A1] > |A2| > ... then g1 will eventually dominate



Power method

Set Xj := X/ ||x]|,, where X is a randomly generated.

For i=1,2,3,..., compute

. AXi_1
Xi =
" |AR ],



Power method




Power method




Power method




Deer and wolfs

Model for deer d,, 1 and wolf w,1 population in year n + 1

5 3

29~ g™

1 1

Wn+1zzdn+ZWn n:O,1,2,...

dn+1 =



Deer and wolfs



Deer and wolfs



Deer and wolfs



Deer and wolfs

311 o0 0.5 —0.5] [do
|1 1/|0 05" |-05 15| |w
_do—Wo 3 +3W0—do 1
2 1 8n 1




Deer and wolfs
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Deer and wolfs
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Deer and wolfs
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