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Compressed sensing

Convex constrained problems

Analyzing optimization-based methods



Magnetic resonance imaging

2D DFT (magnitude) 2D DFT (log. of magnitude)



Magnetic resonance imaging

Data: Samples from spectrum

Problem: Sampling is time consuming (annoying, kids move . . . )

Images are compressible (sparse in wavelet basis)

Can we recover compressible signals from less data?



2D wavelet transform
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Toy example



Regular subsampling



Random subsampling



Linear inverse problems

Linear inverse problem

A~x = ~y

Linear measurements, A ∈ Rm×n

~y [i ] = 〈Ai :, ~x〉 , 1 ≤ i ≤ n,

Aim: Recover data signal ~x ∈ Rm from data ~y ∈ Rn

We need n ≥ m, otherwise the problem is underdetermined

If n < m there are infinite solutions ~x + ~w where ~w ∈ null (A)



Sparse recovery

Aim: Recover sparse ~x from linear measurements

A~x = ~y

When is the problem well posed?

There shouldn’t be two sparse vectors ~x1 and ~x2 such that A~x1 = A~x2



Spark

The spark of a matrix is the smallest subset of columns that is linearly
dependent

Let ~y := A~x ∗, where A ∈ Rm×n, ~y ∈ Rn and ~x ∗ ∈ Rm is a sparse vector
with s nonzero entries

The vector ~x ∗ is the only vector with sparsity s consistent with the data,
i.e. it is the solution of

min
~x
||~x ||0 subject to A~x = ~y

for any choice of ~x ∗ if and only if

spark (A) > 2s
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Proof

Equivalent statements

I For any ~x ∗, ~x ∗ is the only vector with sparsity s consistent with the
data

I For any pair of s-sparse vectors ~x1 and ~x2

A (~x1 − ~x2) 6= ~0

I For any pair of subsets of s indices T1 and T2

AT1∪T2~α 6= ~0 for any ~α ∈ R|T1∪T2|

I All submatrices with at most 2s columns have no nonzero vectors in
their null space

I All submatrices with at most 2s columns are full rank
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Restricted-isometry property

Robust version of spark

If two s-sparse vectors ~x1, ~x2 are far, then A~x1, A~x2 should be far

The linear operator should preserve distances (be an isometry) when
restricted to act upon sparse vectors



Restricted-isometry property

A satisfies the restricted isometry property (RIP) with constant κs if

(1− κs) ||~x ||2 ≤ ||A~x ||2 ≤ (1+ κs) ||~x ||2

for any s-sparse vector ~x

If A satisfies the RIP for a sparsity level 2s then for any s-sparse ~x1, ~x2

||~y2 − ~y1||2

= A (~x1 − ~x2)

≥ (1− κ2s) ||~x2 − ~x1||2
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Correlation with column 20
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Random subsampling



Random subsampling



Correlation with column 20
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Restricted-isometry property

Deterministic matrices tend to not satisfy the RIP

It is NP-hard to check if spark or RIP hold

Random matrices satisfy RIP with high probability

We prove it for Gaussian iid matrices, ideas in proof for random Fourier
matrices are similar



Restricted-isometry property for Gaussian matrices

Let A ∈ Rm×n be a random matrix with iid standard Gaussian entries

1√
m

A satisfies the RIP for a constant κs with probability 1− C2
n as long as

m ≥ C1s

κ2
s

log
(n
s

)
for two fixed constants C1,C2 > 0



Proof

For a fixed support T of size s bounds follow from bounds on singular
values of Gaussian matrices



Singular values of m × s matrix, s = 100
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Singular values of m × s matrix, s = 1000
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Proof

For a fixed submatrix the singular values are bounded by
√
m (1− κs) ≤ σs ≤ σ1 ≤

√
m (1+ κs)

with probability at least

1− 2
(
12
κs

)s

exp
(
−mκ2

s

32

)
For any vector ~x with support T

√
1− κs ||~x ||2 ≤

1√
m
||A~x ||2 ≤

√
1+ κs ||~x ||2



Union bound

For any events S1, S2, . . . ,Sn in a probability space

P (∪iSi ) ≤
n∑

i=1

P (Si ) .



Proof

Number of different supports of size s
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Sparse recovery via `1-norm minimization

`0-“norm" minimization is intractable

(As usual) we can minimize `1 norm instead, estimate ~x`1 is the solution
to

min
~x
||~x ||1 subject to A~x = ~y



Minimum `2-norm solution (regular subsampling)
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Minimum `2-norm solution (random subsampling)
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Geometric intuition

`2 norm `1 norm



Sparse recovery via `1-norm minimization

If the signal is sparse in a transform domain then

min
~x
||~c ||1 subject to AW ~c = ~y

If we want to recover the original ~c ∗ then AW should satisfy the RIP

However, we might be fine with any ~c ′ such that A~c ′ = ~x ∗
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Minimum `2-norm solution (random subsampling)



Minimum `1-norm solution (random subsampling)



Compressed sensing

Convex constrained problems

Analyzing optimization-based methods



Convex sets

A convex set S is any set such that for any ~x , ~y ∈ S and θ ∈ (0, 1)

θ~x + (1− θ) ~y ∈ S

The intersection of convex sets is convex



Convex vs nonconvex

Nonconvex Convex



Epigraph

f

epi (f )

A function is convex if and only if its epigraph is convex



Projection onto convex set

The projection of any vector ~x onto a non-empty closed convex set S

PS (~x) := argmin
~y∈S
||~x − ~y ||2

exists and is unique



Proof

Assume there are two distinct projections ~y1 6= ~y2

Consider

~y ′ :=
~y1 + ~y2

2

~y ′ belongs to S (why?)



Proof

〈
~x − ~y ′, ~y1 − ~y ′

〉
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~y1 + ~y2

2
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~y1 + ~y2

2
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~x − ~y1

2
+
~x − ~y2

2
,
~x − ~y1

2
−
~x − ~y2

2

〉

=
1
4

(
||~x − ~y1||2 + ||~x − ~y2||2

)
= 0

By Pythagoras’ theorem

||~x − ~y1||22 =
∣∣∣∣~x − ~y ′∣∣∣∣22 + ∣∣∣∣~y1 − ~y ′

∣∣∣∣2
2

=
∣∣∣∣~x − ~y ′∣∣∣∣22 + ∣∣∣∣∣∣∣∣~y1 − ~y2

2

∣∣∣∣∣∣∣∣2
2

>
∣∣∣∣~x − ~y ′∣∣∣∣22
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Convex combination

Given n vectors ~x1, ~x2, . . . , ~xn ∈ Rn,

~x :=
n∑

i=1

θi~xi

is a convex combination of ~x1, ~x2, . . . , ~xn if

θi ≥ 0, 1 ≤ i ≤ n
n∑

i=1

θi = 1



Convex hull

The convex hull of S is the set of convex combinations of points in S

The `1-norm ball is the convex hull of the intersection between the
`0 “norm" ball and the `∞-norm ball



`1-norm ball



B`1 ⊆ C (B`0 ∩ B`∞)

Let ~x ∈ B`1

Set θi := |~x [i ]|, θ0 = 1−
∑n

i=1 θi∑n
i=0 θi = 1 by construction, θi ≥ 0 and

θ0 = 1−
n+1∑
i=1

θi

= 1− ||~x ||1
≥ 0 because ~x ∈ B`1

~x ∈ B`0 ∩ B`∞ because

~x =
n∑

i=1

θi sign (~x [i ]) ~ei + θ0~0
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C (B`0 ∩ B`∞) ⊆ B`1

Let ~x ∈ C (B`0 ∩ B`∞), then

~x =
m∑
i=1

θi~yi

||~x ||1 ≤
m∑
i=1

θi ||~yi ||1 by the Triangle inequality

≤
m∑
i=1

θi ||~yi ||∞ ~yi only has one nonzero entry

≤
m∑
i=1

θi

≤ 1
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Convex optimization problem

f0, f1, . . . , fm, h1, . . . , hp : Rn → R

minimize f0 (~x)

subject to fi (~x) ≤ 0, 1 ≤ i ≤ m,

hi (~x) = 0, 1 ≤ i ≤ p,



Definitions

I A feasible vector is a vector that satisfies all the constraints

I A solution is any vector ~x ∗ such that for all feasible vectors ~x

f0 (~x) ≥ f0 (~x
∗)

I If a solution exists f (~x ∗) is the optimal value or optimum of the
problem



Convex optimization problem

The optimization problem is convex if

I f0 is convex

I f1, . . . , fm are convex

I h1, . . . , hp are affine, i.e. hi (~x) = ~aT
i ~x + bi for some ~ai ∈ Rn and

bi ∈ R



Linear program

minimize ~aT~x

subject to ~c T
i ~x ≤ di , 1 ≤ i ≤ m

A~x = ~b



`1-norm minimization as an LP

The optimization problem

minimize ||~x ||1
subject to A~x = ~b

can be recast as the LP

minimize
m∑
i=1

~t[i ]

subject to ~t[i ] ≥ ~ei
T~x

~t[i ] ≥ −~ei T~x

A~x = ~b



Proof

Solution to `1-norm min. problem: ~x `1

Solution to linear program:
(
~x lp, ~t lp)

Set ~t `1 [i ] :=
∣∣~x `1 [i ]∣∣(

~x `1 , ~t `1
)
is feasible for linear program

∣∣∣∣∣∣~x `1∣∣∣∣∣∣
1
=

m∑
i=1

~t `1 [i ]

≥
m∑
i=1

~t lp[i ] by optimality of ~t lp

≥
∣∣∣∣∣∣~x lp

∣∣∣∣∣∣
1

~x lp is a solution to the `1-norm min. problem
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Quadratic program

For a positive semidefinite matrix Q ∈ Rn×n

minimize ~xTQ~x + ~aT~x

subject to ~c T
i ~x ≤ di , 1 ≤ i ≤ m,

A~x = ~b



`1-norm regularized least squares as a QP

The optimization problem

minimize ||A~x − y ||22 + ~α ||~x ||1

can be recast as the QP

minimize ~xTATA~x − 2~yT~x + ~α
n∑

i=1

~t[i ]

subject to ~t[i ] ≥ ~ei
T~x

~t[i ] ≥ −~ei T~x



Lagrangian

The Lagrangian of a canonical optimization problem is

L (~x , ~α, ~ν) := f0 (~x) +
m∑
i=1

~α[i ] fi (~x) +

p∑
j=1

~ν[j ] hj (~x) ,

~α ∈ Rm, ~ν ∈ Rp are called Lagrange multipliers or dual variables

If ~x is feasible and ~α[i ] ≥ 0 for 1 ≤ i ≤ m

L (~x , ~α, ~ν) ≤ f0 (~x)



Lagrange dual function

The Lagrange dual function of the problem is

l (~α, ~ν) := inf
~x∈Rn

f0 (~x) +
m∑
i=1

~α[i ]fi (~x) +

p∑
j=1

~ν[j ]hj (~x)

Let p∗ be an optimum of the optimization problem

l (~α, ~ν) ≤ p∗

as long as ~α[i ] ≥ 0 for 1 ≤ i ≤ n



Dual problem

The dual problem of the (primal) optimization problem is

maximize l (~α, ~ν)

subject to ~α[i ] ≥ 0, 1 ≤ i ≤ m.

The dual problem is always convex, even if the primal isn’t!



Maximum/supremum of convex functions

Pointwise maximum of m convex functions f1, . . . , fm

fmax (x) := max
1≤i≤m

fi (x)

is convex

Pointwise supremum of a family of convex functions indexed by a set I

fsup (x) := sup
i∈I

fi (x)

is convex



Proof

For any 0 ≤ θ ≤ 1 and any ~x , ~y ∈ R,

fsup (θ~x + (1− θ) ~y) = sup
i∈I

fi (θ~x + (1− θ) ~y)

≤ sup
i∈I

θfi (~x) + (1− θ) fi (~y) by convexity of the fi

≤ θ sup
i∈I

fi (~x) + (1− θ) sup
j∈I

fj (~y)

= θfsup (~x) + (1− θ) fsup (~y)
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Weak duality

If p∗ is a primal optimum and d∗ a dual optimum

d∗ ≤ p∗



Strong duality

For convex problems

d∗ = p∗

under very weak conditions

LPs: The primal optimum is finite

General convex programs (Slater’s condition):

There exists a point that is strictly feasible

fi (~x) < 0 1 ≤ i ≤ m



`1-norm minimization

The dual problem of

min
~x
||~x ||1 subject to A~x = ~y

is

max
~ν
~yT~ν subject to

∣∣∣∣∣∣AT~ν
∣∣∣∣∣∣
∞
≤ 1



Proof

Lagrangian L (~x , ~ν) = ||~x ||1 + ~νT (~y − A~x)

Lagrange dual function

l (~α, ~ν) := inf
~x∈Rn

||~x ||1 − (AT~ν)T~x + ~νT~y

If AT~ν[i ] > 1? We can set ~x [i ]→∞ and l (~α, ~ν)→ −∞

If
∣∣∣∣AT~ν

∣∣∣∣
∞ ≤ 1?

(AT~ν)T~x ≤ ||~x ||1
∣∣∣∣∣∣AT~ν

∣∣∣∣∣∣
∞
≤ ||~x ||1

so l (~α, ~ν) = ~νT~y
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Strong duality

The solution ~ν ∗ to

max
~ν
~yT~ν subject to

∣∣∣∣∣∣AT~ν
∣∣∣∣∣∣
∞
≤ 1

satisfies

(AT~ν ∗)[i ]= sign(~x ∗[i ]) for all ~x ∗[i ] 6= 0

for all solutions ~x ∗ to the primal problem

min
~x
||~x ||1 subject to A~x = ~y



Dual solution
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Proof

By strong duality

||~x ∗||1 = ~yT~ν ∗

= (A~x ∗)T~ν ∗

= (~x ∗)T (AT~ν ∗)

=
m∑
i=1

(AT~ν ∗)[i ]~x ∗[i ]

By Hölder’s inequality

||~x ∗||1 ≥
m∑
i=1

(AT~ν ∗)[i ]~x ∗[i ]

with equality if and only if

(AT~ν ∗)[i ] = sign(~x ∗[i ]) for all ~x ∗[i ] 6= 0



Another algorithm for sparse recovery

Aim: Find nonzero locations of a sparse vector ~x from ~y = A~x

Insight: We have access to inner products of ~x and AT ~w for any ~w

~yT ~w

= (A~x)T ~w

= ~xT (AT ~w)

Idea: Maximize AT ~w , bounding magnitude of entries by 1

Entries where ~x is nonzero should saturate to 1 or -1
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Compressed sensing

Convex constrained problems

Analyzing optimization-based methods



Analyzing optimization-based methods

Best case scenario: Primal solution has closed form

Otherwise: Use dual solution to characterize primal solution



Minimum `2-norm solution

Let A ∈ Rm×n be a full rank matrix such that m < n

For any ~y ∈ Rn the solution to the optimization problem

argmin
~x
||~x ||2 subject to A~x = ~y .

is

~x ∗ := VS−1UT~y

= AT
(
ATA

)−1
~y

where A = USV T is the SVD of A



Proof

~x = Prow(A) ~x + Prow(A)⊥ ~x

Since A is full rank V , Prow(A) ~x = V ~c for some vector ~c ∈ Rn

A~x = AProw(A) ~x

= USV TV ~c

= US~c

A~x = ~y is equivalent to US~c = ~y and ~c = S−1UT~y
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A~x = AProw(A) ~x

= USV TV ~c

= US~c
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Proof

For all feasible vectors ~x

Prow(A) ~x = VS−1UT~y

By Pythagoras’ theorem, minimizing ||~x ||2 is equivalent to minimizing

||~x ||22 =
∣∣∣∣Prow(A) ~x

∣∣∣∣2
2 +

∣∣∣∣∣∣Prow(A)⊥ ~x
∣∣∣∣∣∣2

2



Regular subsampling



Minimum `2-norm solution (regular subsampling)
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Regular subsampling

A :=
1√
2

[
Fm/2 Fm/2

]
F ∗m/2Fm/2 = I

Fm/2F
∗
m/2 = I

~x :=

[
~xup
~xdown

]
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Regular subsampling
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Minimum `1-norm solution

Problem: argminA~x=~y ||~x ||1 doesn’t have a closed form

Instead we can use a dual variable to certify optimality



Dual solution

The solution ~ν ∗ to

max
~ν
~yT~ν subject to

∣∣∣∣∣∣AT~ν
∣∣∣∣∣∣
∞
≤ 1

satisfies

(AT~ν ∗)[i ]= sign(~x ∗[i ]) for all ~x ∗[i ] 6= 0

where ~x ∗[i ] is a solution to the primal problem

min
~x
||~x ||1 subject to A~x = ~y



Dual certificate

If there exists a vector ~ν ∈ Rn such that

(AT~ν)[i ] = sign(~x ∗[i ]) if ~x ∗[i ] 6= 0∣∣∣(AT~ν)[i ]
∣∣∣<1 if ~x ∗[i ] = 0

then ~x ∗ is the unique solution to the primal problem

min
~x
||~x ||1 subject to A~x = ~y

as long as the submatrix AT is full rank



Proof 1

~ν is feasible for the dual problem, so for any primal feasible ~x

||~x ||1 ≥ ~y
T~ν

= (A~x ∗)T~ν

= (~x ∗)T (AT~ν)

=
∑
i∈T

~x ∗[i ] sign(~x ∗[i ])

= ||~x ∗||1

~x ∗ must be a solution
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Proof 2

AT~ν is a subgradient of the `1 norm at ~x ∗

For any other feasible vector ~x

||~x ||1 ≥ ||~x
∗||1 + (AT~ν)T (~x − ~x ∗)

= ||~x ∗||1 + ~νT (A~x − A~x ∗)

= ||~x ∗||1
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Random subsampling



Minimum `1-norm solution (random subsampling)
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Exact sparse recovery via `1-norm minimization

Assumption: There exists a signal ~x ∗ ∈ Rm with s nonzeros such that

A~x ∗ = ~y

for a random A ∈ Rm×n (random Fourier, Gaussian iid, . . . )

Exact recovery: If the number of measurements satisfies

m ≥ C ′s log n

the solution of the problem

minimize ||~x ||1 subject to A ~x = y

is the original signal with probability at least 1− 1
n



Proof

Show that dual certificate always exists

We need

AT
T~ν = sign(~x ∗T ) s constraints∣∣∣∣∣∣AT

T c~ν
∣∣∣∣∣∣
∞
< 1

Idea: Impose AT~ν = sign(~x ∗) and minimize
∣∣∣∣AT

T c~ν
∣∣∣∣
∞

Problem: No closed-form solution

How about minimizing `2 norm?



Proof of exact recovery

Prove that dual certificate exists for any s-sparse ~x ∗

Dual certificate candidate: Solution of

minimize ||~v ||2
subject to AT

T~v = sign (~x ∗T )

Closed-form solution ~ν`2 := AT

(
AT
TAT

)−1 sign (~x ∗T )

AT
TAT is invertible with high probability

We need to prove that AT~ν`2 satisfies∣∣∣∣∣∣(AT~ν`2)T c

∣∣∣∣∣∣
∞
< 1



Dual certificate
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Proof of exact recovery

To control (AT~ν`2)T c , we need to bound

AT
i

(
AT
TAT

)−1
sign (~x ∗T )

for i ∈ T c

Let ~w :=
(
AT
TAT

)−1 sign (~x ∗T )

|AT
i ~w| can be bounded using independence

Result then follows from union bound
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