
Optimization-based data analysis Fall 2017

Lecture Notes 3: Randomness

1 Gaussian random variables

The Gaussian or normal random variable is arguably the most popular random variable
in statistical modeling and signal processing. The reason is that sums of independent
random variables often converge to Gaussian distributions, a phenomenon characterized
by the central limit theorem (see Theorem 1.3 below). As a result any quantity that results
from the additive combination of several unrelated factors will tend to have a Gaussian
distribution. For example, in signal processing and engineering, noise is often modeled
as Gaussian. Figure 1 shows the pdfs of Gaussian random variables with different means
and variances. When a Gaussian has mean zero and unit variance, we call it a standard
Gaussian.

Definition 1.1 (Gaussian). The pdf of a Gaussian or normal random variable with mean
µ and standard deviation σ is given by

fX (x) =
1√
2πσ

e−
(x−µ)2

2σ2 . (1)

A Gaussian distribution with mean µ and standard deviation σ is usually denoted by
N (µ, σ2).

An important property of Gaussian random variables is that scaling and shifting Gaussians
preserves their distribution.

Lemma 1.2. If x is a Gaussian random variable with mean µ and standard deviation σ,
then for any a, b ∈ R

y := ax + b (2)

is a Gaussian random variable with mean aµ+ b and standard deviation |a|σ.

Proof. We assume a > 0 (the argument for a < 0 is very similar), to obtain

Fy (y) = P (y ≤ y) (3)

= P (ax + b ≤ y) (4)

= P

(
x ≤ y − b

a

)
(5)

=

∫ y−b
a

−∞

1√
2πσ

e−
(x−µ)2

2σ2 dx (6)

=

∫ y

−∞

1√
2πaσ

e−
(w−aµ−b)2

2a2σ2 dw by the change of variables w = ax+ b. (7)
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Figure 1: Gaussian random variable with different means and standard deviations.

Differentiating with respect to y yields

fy (y) =
1√

2πaσ
e−

(w−aµ−b)2

2a2σ2 (8)

so y is indeed a standard Gaussian random variable with mean aµ + b and standard
deviation |a|σ.

The distribution of the average of a large number of random variables with bounded
variances converges to a Gaussian distribution.

Theorem 1.3 (Central limit theorem). Let x1, x2, x3, . . . be a sequence of iid random
variables with mean µ and bounded variance σ2. We define the sequence of averages a1,
a2, a3, . . . , as

ai :=
1

i

i∑

j=1

xj. (9)

The sequence b1, b2, b3, . . .

bi :=
√
i(ai − µ) (10)

converges in distribution to a Gaussian random variable with mean 0 and variance σ2,
meaning that for any x ∈ R

lim
i→∞

fbi (x) =
1√
2πσ

e−
x2

2σ2 . (11)

For large i the theorem suggests that the average ai is approximately Gaussian with
mean µ and variance σ/

√
n. This is verified numerically in Figure 2. Figure 3 shows

the histogram of the heights in a population of 25,000 people and how it is very well
approximated by a Gaussian random variable1, suggesting that a person’s height may
result from a combination of independent factors (genes, nutrition, etc.).

1The data is available here.

2



Exponential with λ = 2 (iid)

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65

1

2

3

4

5

6

7

8

9

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65

5

10

15

20

25

30

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65

10

20

30

40

50

60

70

80

90

i = 102 i = 103 i = 104

Geometric with p = 0.4 (iid)

1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2

0.5

1.0

1.5

2.0

2.5

1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2

1

2

3

4

5

6

7

1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2

5

10

15

20

25

i = 102 i = 103 i = 104

Figure 2: Empirical distribution of the average, defined as in equation (9), of an iid exponential
sequence with parameter λ = 2 (top) and an iid geometric sequence with parameter p = 0.4
(bottom). The empirical distribution is computed from 104 samples in all cases. The estimate
provided by the central limit theorem is plotted in red.
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Figure 3: Histogram of heights in a population of 25,000 people (blue) and its approximation
using a Gaussian distribution (orange).

2 Gaussian random vectors

2.1 Definition and basic properties

Gaussian random vectors are a multidimensional generalization of Gaussian random vari-
ables. They are parametrized by a vector and a matrix that correspond to their mean
and covariance matrix.

Definition 2.1 (Gaussian random vector). A Gaussian random vector ~x is a random
vector with joint pdf (|Σ| denotes the determinant of Σ)

f~x (~x) =
1√

(2π)n |Σ|
exp

(
−1

2
(~x− ~µ)T Σ−1 (~x− ~µ)

)
(12)

where the mean vector ~µ ∈ Rn and the covariance matrix Σ ∈ Rn×n, which is symmetric
and positive definite, parametrize the distribution. A Gaussian distribution with mean ~µ
and covariance matrix Σ is usually denoted by N (~µ,Σ).

When the covariance matrix of a Gaussian vector is diagonal, then its components are all
independent.

Lemma 2.2 (Uncorrelation implies mutual independence for Gaussian random vectors).
If all the components of a Gaussian random vector ~x are uncorrelated, then they are also
mutually independent.
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Proof. If all the components are uncorrelated then the covariance matrix is diagonal

Σ~x =




σ2
1 0 · · · 0

0 σ2
2 · · · 0

...
...

. . .
...

0 0 · · · σ2
n


 , (13)

where σi is the standard deviation of the ith component. Now, the inverse of this diagonal
matrix is just

Σ−1~x =




1
σ2
1

0 · · · 0

0 1
σ2
2
· · · 0

...
...

. . .
...

0 0 · · · 1
σ2
n



, (14)

and its determinant is |Σ| = ∏n
i=1 σ

2
i so that

f~x (~x) =
1√

(2π)n |Σ|
exp

(
−1

2
(~x− ~µ)T Σ−1 (~x− ~µ)

)
(15)

=
n∏

i=1

1√
(2π)σi

exp

(
−(~xi − µi)2

2σ2
i

)
(16)

=
n∏

i=1

f~xi (~xi) . (17)

Since the joint pdf factors into a product of the marginals, the components are all mutually
independent.

When the covariance matrix of a Gaussian vector is the identity and its mean is zero,
then its entries are iid standard Gaussians with mean zero and unit variance. We refer to
such vectors as iid standard Gaussian vectors.

A fundamental property of Gaussian random vectors is that performing linear transfor-
mations on them always yields vectors with joint distributions that are also Gaussian.
This is a multidimensional generalization of Lemma 1.2. We omit the proof, which is
similar to that of Lemma 1.2.

Theorem 2.3 (Linear transformations of Gaussian random vectors are Gaussian). Let ~x
be a Gaussian random vector of dimension n with mean ~µ and covariance matrix Σ. For
any matrix A ∈ Rm×n and ~b ∈ Rm, ~Y = A~x +~b is a Gaussian random vector with mean
A~µ+~b and covariance matrix AΣAT .

An immediate consequence of Theorem 2.3 is that subvectors of Gaussian vectors are also
Gaussian. Figure 4 show the joint pdf of a two-dimensional Gaussian vector together with
the marginal pdfs of its entries.
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Figure 4: Joint pdf of a two-dimensional Gaussian vector ~x and marginal pdfs of its two entries.

Another consequence of Theorem 2.3 is that an iid standard Gaussian vector is isotropic.
This means that the vector does not favor any direction in its ambient space. More
formally, no matter how you rotate it, its distribution is the same. More precisely, for any
orthogonal matrix U , if ~x is an iid standard Gaussian vector, then by Theorem 2.3 U~x
has the same distribution, since its mean equals U~0 = ~0 and its covariance matrix equals
UIUT = UUT = I. Note that this is a stronger statement than saying that its variance
is the same in every direction, which is true for any vector with uncorrelated entries.

2.2 Concentration in high dimensions

In the previous section we established that the direction of iid standard Gaussian vectors is
isotropic. We now consider their magnitude. As we can see in Figure 4, in low dimensions
the joint pdf of Gaussian vectors is mostly concentrated around the origin. Interestingly,
this is not the case as the dimension of the ambient space grows. The squared `2-norm
of an iid standard k-dimensional Gaussian vector ~x is the sum of k independent standard
Gaussian random variables, which is known as a χ2 (chi squared) random variable with
k degrees of freedom. As shown in Figure 5, as k grows the pdf of this random variable
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concentrates around k, which is the mean of the squared `2-norm:

E
(
||~x||22

)
= E

(
k∑

i=1

~x[i]2

)
(18)

=
k∑

i=1

E
(
~x[i]2

)
(19)

= k. (20)

The following lemma shows that the standard deviation of ||~x||22 is
√

2k.

Lemma 2.4 (Variance of the squared `2 norm of a Gaussian vector). Let ~x be an iid
Gaussian random vector of dimension k. The variance of ||~x||22 is 2k.

Proof. Recall that Var
(
||~x||22

)
= E

((
||~x||22

)2)− E
(
||~x||22

)2
. The result follows from

E
((
||~x||22

)2)
= E



(

k∑

i=1

~x[i]2

)2

 (21)

= E

(
k∑

i=1

k∑

j=1

~x[i]2~x[j]2

)
(22)

=
k∑

i=1

k∑

j=1

E
(
~x[i]2~x[j]2

)
(23)

=
k∑

i=1

E
(
~x[i]4

)
+ 2

k−1∑

i=1

k∑

j=i

E
(
~x[i]2

)
E
(
~x[j]2

)
(24)

= 3k + k(k − 1) since the 4th moment of a standard Gaussian equals 3
(25)

= k(k + 2). (26)

The result implies that as k grows the relative deviation of the norm from its mean
decreases proportionally to 1/

√
k. Consequently, the squared norm is close to k with

increasing probability. This is made precise in the following theorem, which yields a
concrete non-asymptotic bound on the probability that it deviates by more than a small
constant.

Theorem 2.5 (Chebyshev tail bound for the `2 norm of an iid standard Gaussian vector).
Let ~x be an iid standard Gaussian random vector of dimension k. For any ε > 0 we have

P
(
k (1− ε) < ||~x||22 < k (1 + ε)

)
≥ 1− 2

kε2
. (27)
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Figure 5: Pdfs of y/k for different values of k, where y is a χ2 random variable with k degrees
of freedom.

Proof. The bound is a consequence of Markov’s inequality, which quantifies the intuitive
idea that if a random variable is nonnegative and small then the probability that it takes
large values must be small.

Theorem 2.6 (Markov’s inequality, proof in Section 5.1). Let x be a nonnegative random
variable. For any positive constant a > 0,

P (x ≥ a) ≤ E (x)

a
. (28)

Let y := ||~x||22,

P (|y − k| ≥ kε) = P
(
(y − E (y))2 ≥ k2ε2

)
(29)

≤ E
(
(y − E (y))2

)

k2ε2
by Markov’s inequality (30)

=
Var (y)

k2ε2
(31)

=
2

kε2
by Lemma 2.4. (32)

When Markov’s inequality is applied to bound the deviation from the mean like this, it
is usually called Chebyshev’s inequality.

The bound in Theorem 2.5 only relies on the variance to bound the probability that the
magnitude deviates from its mean. As a result, it is significantly weaker than the following
result, which exploits the fact that the higher moments of a standard Gaussian are well
behaved.
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Theorem 2.7 (Chernoff tail bound for the `2 norm of an iid standard Gaussian vector).
Let ~x be an iid standard Gaussian random vector of dimension k. For any ε ∈ (0, 1) we
have

P
(
k (1− ε) < ||~x||22 < k (1 + ε)

)
≥ 1− 2 exp

(
−kε

2

8

)
. (33)

Proof. Let y := ||~x||22. The result is implied by

P (y > k (1 + ε)) ≤ exp

(
−kε

2

8

)
, (34)

P (y < k (1− ε)) ≤ exp

(
−kε

2

8

)
. (35)

We present the proof of (34). The proof of (35) is essentially the same and is presented
in Section 5.3. Let t > 0 be an arbitrary positive number, and note that

P (y > a) = P (exp (ty) > exp (at)) (36)

≤ exp (−at) E (exp (ty)) by Markov’s inequality (37)

≤ exp (−at) E

(
exp

(
k∑

i=1

txi
2

))
(38)

≤ exp (−at)
k∏

i=1

E
(
exp

(
txi

2
))

by independence of x1, . . . ,xk (39)

=
exp (−at)
(1− 2t)

k
2

, (40)

where the last step is a consequence of the following lemma.

Lemma 2.8 (Proof in Section 5.2). For x standard Gaussian and t < 1/2,

E
(
exp

(
tx2
))

=
1√

1− 2t
. (41)

Note that the lemma implies a bound on the higher-order moments of a standard Gaussian
x, since

E
(
exp

(
tx2
))

= E

(
∞∑

i=0

(tx2)
i

i!

)
(42)

=
∞∑

i=0

E (ti (x2i))

i!
. (43)

Bounds that exploit the behavior of higher-order moments to control tail probabilities
through the expectation of an exponential are often called Chernoff bounds.
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We set a := k (1 + ε) and

t :=
1

2
− 1

2 (1 + ε)
, (44)

by minimizing over t ∈ (0, 1/2) in (40). This gives

P (y > k (1 + ε)) ≤ (1 + ε)k 2 exp

(
−kε

2

)
(45)

= exp

(
−k

2
(ε− log (1 + ε))

)
(46)

≤ exp

(
−kε

2

8

)
, (47)

where the last step follows from the fact that the function g (x) := x− x2

4
− log (1 + x) is

nonnegative between 0 and 1 (the derivative is nonnegative and g (0) = 0).

In the next section we apply this result to characterize the projection of an iid standard
Gaussian vector on a subspace.

2.3 Projection onto a fixed subspace

In Example 7.4 of Lecture Notes 1 we observed that the `2-norm of the projection of iid
standard Gaussian noise onto a fixed subspace is proportional to the square root of the
dimension of that subspace. In this section we make this precise, using that the fact that
the coefficients of the projection in an orthonormal basis of the subspace are themselves
iid standard Gaussians.

Lemma 2.9 (Projection of an iid Gaussian vector onto a subspace). Let S be a k-
dimensional subspace of Rn and ~z ∈ Rn a vector of iid standard Gaussian noise. ||PS ~z||22
is a χ2 random variable with k degrees of freedom, i.e. it has the same distribution as the
random variable

y :=
k∑

i=1

xi
2 (48)

where x1, . . . ,xk are iid standard Gaussian random variables.

Proof. Let UUT be a projection matrix for the subspace S, where the columns of U ∈ Rn×k
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are orthonormal. We have

||PS ~z||22 =
∣∣∣∣UUT~z

∣∣∣∣2
2

(49)

= ~zTUUTUUT~z (50)

= ~zTUUT~z (51)

= ~wT ~w (52)

=
k∑

i=1

~w[i]2, (53)

where by Theorem 2.3 the random vector ~w := UT~z is Gaussian with mean zero and
covariance matrix

Σ~w = UTΣ~zU (54)

= UTU (55)

= I, (56)

so the entries are independent standard Gaussians.

Since the coefficients are standard Gaussians, we can bound the deviation of their norm
using Theorem 2.7.

Theorem 2.10. Let S be a k-dimensional subspace of Rn and ~z ∈ Rn a vector of iid
Gaussian noise. For any ε ∈ (0, 1)

√
k (1− ε) ≤ ||PS ~z||2 ≤

√
k (1 + ε) (57)

with probability at least 1− 2 exp (−kε2/8).

Proof. The result follows from Theorem 2.7 and Lemma 2.9.

3 Gaussian matrices

3.1 Randomized projections

As we discussed in Section 3.3 of Lecture Notes 2, dimensionality reduction via PCA
consists of projecting the data on low-dimensional subspaces that are optimal in the sense
that they preserve most of the energy. The principal directions are guaranteed to lie in
the directions of maximum variation of the data, but finding them requires computing
the SVD, which can be computationally expensive or not possible at all if the aim is to
project a stream of data in real time. For such cases we need a non-adaptive alternative
to PCA that chooses the projection before seeing the data. A simple method to achieve
this is to project the data using a random linear map, represented by a random matrix A
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built by sampling each entry independently from a standard Gaussian distribution. The
following lemma shows that the distribution of the result of applying such a matrix to a
fixed deterministic vector is Gaussian.

Lemma 3.1. Let A be an a× b matrix with iid standard Gaussian entries. If ~v ∈ Rb is a
deterministic vector with unit `2 norm, then A~v is an a-dimensional iid Gaussian vector.

Proof. By Theorem 2.3, (A~v) [i], 1 ≤ i ≤ a is Gaussian, since it is the inner product
between ~v and the ith row Ai,: (interpreted as a vector in Rb), which is an iid standard
Gaussian vector. The mean of the entry is zero because the mean of Ai,: is zero and the
variance equals

Var
(
AT
i,:~v
)

= ~vTΣAi,:
~v (58)

= ~vT I~v (59)

= ||~v||22 (60)

= 1, (61)

so the entries of A~v are all standard Gaussians. Finally, they are independent because
each is just a function of a specific row, and all the rows in the matrix are mutually
independent.

A direct consequence of this result is a non-asymptotic bound on the `2 norm of A~v for
any fixed deterministic vector ~v.

Lemma 3.2. Let A be a a× b matrix with iid standard Gaussian entries. For any ~v ∈ Rb

with unit norm and any ε ∈ (0, 1)

√
a (1− ε) ≤ ||A~v||2 ≤

√
a (1 + ε) (62)

with probability at least 1− 2 exp (−aε2/8).

Proof. The result follows from Theorem 2.7 and Lemma 3.1.

Dimensionality-reduction techniques are useful if they preserve the information that we
are interested in. In many cases, we would like the projection to conserve the distances
between the different data points. This allows us to apply algorithms such as nearest
neighbors in the lower-dimensional space. The following lemma guarantees that random
projections do not distort the distances between points in a non-asymptotic sense. The
result is striking because the lower bound on k – the dimension of the approximate pro-
jection – does not depend on n – the ambient dimension of the data – and its dependence
on the number of points p in the data set is only logarithmic. The proof is based on the
arguments in [3].
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Lemma 3.3 (Johnson-Lindenstrauss lemma). Let A be a k× n matrix with iid standard
Gaussian entries. Let ~x1, . . . , ~xp ∈ Rn be any fixed set of p deterministic vectors. For
any pair ~xi, ~xj and any ε ∈ (0, 1)

(1− ε) ||~xi − ~xj||22 ≤
∣∣∣∣
∣∣∣∣

1√
k

A~xi −
1√
k

A~xj

∣∣∣∣
∣∣∣∣
2

2

≤ (1 + ε) ||~xi − ~xj||22 , (63)

with probability at least 1
p

as long as

k ≥ 16 log (p)

ε2
. (64)

Proof. To prove the result we control the action of the matrix on the normalized difference
of the vectors

~vij :=
~xi − ~xj
||~xi − ~xj||2

, (65)

which has unit `2-norm unless ~xi = ~xj (in which case the norm of the difference is preserved
exactly). We denote the event that the norm of the action of A on ~vij concentrates around
k by

Eij =
{
k (1− ε) < ||A~vij||22 < k (1 + ε)

}
1 ≤ i < p, i < j ≤ p.

Lemma 3.2 implies that each of the Eij hold with high probability as long as condition (64)
holds

P
(
Ecij
)
≤ 2

p2
. (66)

However, this is not enough. Our event of interest is the intersection of all the Eij.
Unfortunately, the events are dependent (since the vectors are hit by the same matrix),
so we cannot just multiply their individual probabilities. Instead, we apply the union
bound to control the complement of the intersection.

Theorem 3.4 (Union bound, proof in Section 5.4). Let S1, S2, . . . , Sn be a collection of
events in a probability space. Then

P (∪iSi) ≤
n∑

i=1

P (Si) . (67)

The number of events in the intersection is
(
p
2

)
= p (p− 1) /2, because that is the number
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Randomized projection PCA

Figure 6: Approximate projection of 7-dimensional vectors describing different wheat seeds
onto two random directions. Each color represents a variety of wheat.

of different pairs of vectors in the set {~x1, . . . , ~xp}. The union bound yields

P

(⋂

i,j

Eij
)

= 1− P

(⋃

i,j

Ecij

)
(68)

≥ 1−
∑

i,j

P
(
Ecij
)

(69)

≥ 1− p (p− 1)

2

2

p2
(70)

≥ 1

p
. (71)

Example 3.5 (Dimensionality reduction via randomized projections). We consider the
same data as in Example 3.6 of Lecture Notes 2. Each data point corresponds to a
seed with seven features: area, perimeter, compactness, length of kernel, width of kernel,
asymmetry coefficient and length of kernel groove. The seeds belong to three different
varieties of wheat: Kama, Rosa and Canadian.2 The objective is to project the data
onto 2D for visualization. In Figure 6 we compare the result of randomly projecting the
data by applying a 2 × 7 iid standard Gaussian matrix, with the result of PCA-based
dimensionality reduction. In terms of keeping the different types of wheat separated, the
randomized projection preserves the structure in the data as effectively as PCA. 4

2The data can be found at https://archive.ics.uci.edu/ml/datasets/seeds.
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Figure 7: Average, maximum and minimum number of errors (over 50 tries) for nearest-
neighbor classification after a randomized dimensionality reduction for different dimensions.
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Figure 8: Results of nearest-neighbor classification combined with randomized dimensionality
reduction of dimension 50 for four of the people in Example 3.6. The assignments of the first
two examples are correct, but the other two are wrong.
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Example 3.6 (Nearest neighbors after random projection). The nearest neighbors algo-
rithm for classification (Algorithm 4.2 in Lecture Notes 1) requires computing n distances
in an m-dimensional space (where m is the number of features) to classify each new ex-
ample. The computational cost is O (nm), so if we need to classify p points the total
cost is O (nmp). If we perform a random projection of each of the points onto a lower-
dimensional space k before classifying them, then the computational cost is:

• kmn operations to project the training data using a k ×m iid standard Gaussian
matrix.

• kmp operations to project each point in the test set using the same matrix.

• knp to perform nearest-neighbor classification in the lower-dimensional space.

The overall cost is O (kpmax {m,n}), which is a significant reduction from O (nmp). It
is also more efficient than the PCA-based approach of Example 3.5 in Lecture Notes 2,
which includes an additional O (mnmin {m,n}) step to compute an SVD.

Figure 7 shows the accuracy of the algorithm on the same data as Example 4.3 in Lecture
Notes 1. A similar average precision as in the ambient dimension (5 errors out of 40
test images compared to 4 out of 40) is achieved for a dimension of k = 50. Figure 8
shows some examples of the projected data represented in the original m-dimensional
space along with their nearest neighbors in the k-dimensional space. 4

3.2 Singular values

In this section we analyze the singular values of matrices with iid standard Gaussian
entries. In particular we consider an k × n matrix A where n > k. Numerically, we
observe that as n grows, all k singular values converge to

√
n, as shown in Figure 9. As

a result,

A ≈ U
(√

n I
)
V T =

√
nUV T , (72)

i.e. A is close to an orthogonal matrix. Geometrically, this implies that if we generate a
fixed number of iid Gaussian vectors at increasing ambient dimensions, the vectors will
tend to be almost orthogonal as the dimension grows.

The following result establishes a non-asymptotic bound on the singular values using
a covering number argument from [1] that can be applied to other distributions and
situations. See also [6] for some excellent notes on high-dimensional probability techniques
in this spirit.

Theorem 3.7 (Singular values of a Gaussian matrix). Let A be a n× k matrix with iid
standard Gaussian entries such that n > k. For any fixed ε > 0, the singular values of A
satisfy

√
n (1− ε) ≤ σk ≤ σ1 ≤

√
n (1 + ε) (73)
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Figure 9: Singular values of n × k matrices with iid standard Gaussian entries for different
values of k and n.

with probability at least 1− 1/k as long as

n >
64k

ε2
log

12

ε
. (74)

By Theorem 2.7 in Lecture Notes 2, the bounds on the singular values are equivalent to
the following bounds

√
n (1− ε) < ||A~v||2 <

√
n (1 + ε) (75)

where ~v is any vector in the k-dimensional sphere Sk−1, which contains the unit-`2-norm
vectors in Rk. This set has infinite cardinality, so we cannot apply the union bound to
establish the bounds as in the proof of the Johnson-Lindenstrauss lemma. To overcome
this obstacle, we consider a set, called an ε-net, which covers the sphere in the sense that
every other point is not too far from one of its elements. We prove that the bounds hold
on the net using the union bound and then establish that as a result they hold for the
whole sphere.

Definition 3.8 (ε-net). An ε-net of a set X ⊆ Rk is a subset Nε ⊆ X such that for every
vector ~x ∈ X there exists ~y ∈ Nε for which

||~x− ~y||2 ≤ ε. (76)

Figure 10 shows an ε-net for the two-dimensional sphere S1. The smallest possible number
of points in the ε-net of a set is called its covering number.

Definition 3.9 (Covering number). The covering number N (X , ε) of a set X at scale ε
is the minimal cardinality of an ε-net of X , or equivalently the minimal number of balls
of radius ε with centers in X required to cover X .
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ǫ

Figure 10: ε-net for the two-dimensional sphere S1, which is just a circle.

The following theorem, proved in Section 5.5 of the appendix, provides a bound for the
covering number of the k-dimensional sphere Sk−1.

Theorem 3.10 (Covering number of a sphere). The covering number of the n-dimensional
sphere Sk−1 at scale ε satisfies

N
(
Sk−1, ε

)
≤
(

2 + ε

ε

)k
≤
(

3

ε

)k
. (77)

Let ε1 := ε/4 and ε2 := ε/2. Consider an ε1-net Nε1 of Sk−1. We define the event

E~v,ε2 :=
{
n (1− ε2) ||~v||22 ≤ ||A~v||

2
2 ≤ n (1 + ε2) ||~v||22

}
. (78)

By Lemma 3.2 for any fixed ~v ∈ Rk P
(
Ec~v,ε2

)
≤ 2 exp (−nε2/32), so by the union bound

P
(
∪~v∈Nε1E

c
~v,ε2

)
≤
∑

~v∈Nε1

P
(
Ec~v,ε2

)
(79)

≤ |Nε1 |P
(
Ec~v,ε2

)
(80)

≤ 2

(
12

ε

)k
exp

(
−nε

2

32

)
(81)

≤ 1

k
if (74) holds. (82)

Now, to finish the proof we need to show that if ∪~v∈Nε1Ec~v,ε2 holds then the bound holds

for every element in Sk−1, not only for those in the ε1-net. For any arbitrary vector
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~x ∈ Sk−1 on the sphere there exists a vector in the ε/4-covering set ~v ∈ N (X , ε1) such
that ||~x− ~v||2 ≤ ε/4. By the triangle inequality this implies

||A~x||2 ≤ ||A~v||2 + ||A (~x− ~v)||2 (83)

≤ √n
(

1 +
ε

2

)
+ ||A (~x− ~v)||2 assuming ∪~v∈Nε1E

c
~v,ε2

holds (84)

≤ √n
(

1 +
ε

2

)
+ σ1 ||~x− ~v||2 by Theorem 2.7 in Lecture Notes 2 (85)

≤ √n
(

1 +
ε

2

)
+

σ1ε

4
. (86)

By Theorem 2.7 in Lecture Notes 2 σ1 is the smallest upper bound on ||A~x||2 for all ~x in
the sphere, so the bound in equation (86) cannot be smaller:

σ1 ≤
√
n
(

1 +
ε

2

)
+

σ1ε

4
, (87)

so that

σ1 ≤
√
n

(
1 + ε/2

1− ε/4

)
(88)

=
√
n

(
1 + ε− ε (1− ε)

4− ε

)
(89)

≤ √n (1 + ε) . (90)

The lower bound on σk follows from a similar argument combined with (90). By the
triangle inequality

||A~x||2 ≥ ||A~v||2 − ||A (~x− ~v)||2 (91)

≥ √n
(

1− ε

2

)
− ||A (~x− ~v)||2 assuming ∪~v∈Nε1E

c
~v,ε2

holds (92)

≥ √n
(

1− ε

2

)
− σ1 ||~x− ~v||2 by Theorem 2.7 in Lecture Notes 2 (93)

≥ √n
(

1− ε

2

)
− ε

4

√
n (1 + ε) by (90) (94)

=
√
n (1− ε) . (95)

By Theorem 2.7 in Lecture Notes 2 σk is the largest lower bound on ||A~x||2 for all ~x on
the sphere, so σk ≥

√
n (1− ε) as long as ∪~v∈Nε1Ec~v,ε2 holds.

4 Randomized singular-value decomposition

4.1 Fast SVD

In this section we describe an algorithm to compute the SVD of a low-rank matrix very
efficiently assuming that we have access to an orthonormal basis of its column space.
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Figure 11: Sketch of the matrices in Algorithm 4.1.

Algorithm 4.1 (Fast SVD). Given a matrix M ∈ Rm×n which is well-approximated as
a k-rank matrix:

1. Find a matrix Ũ ∈ Rm×(k+p) with k + p orthonormal columns that approximately
span the column space of M .

2. Compute W ∈ R(k+p)×n defined by W := ŨTM .

3. Compute the SVD of W = UWSWV
T
W .

4. Output U := (ŨUW ):,1:k, S := (SW )1:k,1:k and V := (VW ):,1:k as the SVD of M .

Figure 11 shows the dimensions of the matrices. Computing the SVD of W has complexity
O (k2n), so overall the complexity of the algorithm is governed by the second step which
has complexity O (kmn). This is a dramatic reduction from O (mnmin {m,n}).
The following lemma establishes that the algorithm works in the idealized situation where
the matrix is exactly low rank and we have access to an orthonormal basis of its column
space.

Lemma 4.2. Algorithm 4.1 outputs the SVD of a matrix M ∈ Rm×n as long as M is
rank k and Ũ spans its column space.

Proof. If Ũ spans the column space of M then

M = Ũ ŨTM (96)

= ŨW (97)

= ŨUWSWV
T
W , (98)
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where U := ŨUW is an m× k matrix with orthonormal columns since

UTU = UT
W Ũ

T ŨUW (99)

= UT
WUW (100)

= I, (101)

SW ∈ Rk×k is a diagonal matrix with nonnegative entries and VW ∈ Rn×k has orthonormal
columns. We conclude that the output of Algorithm 4.1 is a valid SVD of M .

The following sections describe two methods for estimating the column space based on ran-
domization (i.e., step 1 of Algorithm 4.1). In practice, most matrices of interest will only
be approximately low rank. In that case, the performance of the column-approximation
algorithms depends on the gap between the k first singular values and the k + 1th. To
enhance the performance, a popular preprocessing procedure is to use power iterations to
increase the gap. Instead of M , the idea is to apply Step 1 of Algorithm 4.1 to

M̃ :=
(
MMT

)q
M, (102)

for a small integer q. Expressing M in terms of its SVD, we have

M̃ =
(
UMS

2
MU

T
M

)q
UMSMV

T
M (103)

= UMS
2q+1
M V T

M . (104)

M̃ has the same singular vectors as M but its singular values are raised to the power of
2q + 1, so the gap between small and large singular values is amplified. The idea is very
similar to the power method for computing eigenvectors (Algorithm 4.4 in Lecture Notes
2). More details on the power iterations will be given in the next two subsections.

4.2 Randomized column-space approximation

Random projections make it possible to estimate the column space of a low-rank matrix
very efficiently. Here we just outline the method and provide some intuition. We refer
to [4, 5] for a more detailed description and theoretical guarantees.

Algorithm 4.3 (Randomized column-space approximation). Given a matrix M ∈ Rm×n

which is well-approximated as a k-rank matrix:

1. Create an n × (k + p) iid standard Gaussian matrix A, where p is a small integer
(e.g. 5).

2. Compute the m× (k + p) matrix B = MA.

3. Compute an orthonormal basis for col(B) and output them as a matrix Ũ ∈ Rm×(k+p).
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Figure 12: Four randomly selected frames from the video in Example 4.7.

Consider the matrix

B = MA (105)

= UMSMV
T
MA (106)

= UMSMC. (107)

If M is exactly low rank, by Theorem 2.3 C is a k× (k + p) iid standard Gaussian matrix
since V T

MVM = I. In that case the column space of B is the same as that of M because
C is full rank with high probability. When M is only approximately low rank, then C
is a min {m,n} × (k + p) iid standard Gaussian matrix. Surprisingly, for p equal to a
small integer, the product with C conserves the subspace corresponding to the largest k
singular values with high probability, as long as the k + 1th singular values is sufficiently
small. See the seminal paper [4] for more details.

We can improve the accuracy of Algorithm 4.3 by using power iterations as detailed below.

Algorithm 4.4 (Power Iterations for Randomized column-space approximation). Given
a matrix M ∈ Rm×n which is well-approximated as a k-rank matrix:

1. Create an n × (k + p) iid standard Gaussian matrix A, where p is a small integer
(e.g. 5).

2. Compute the m× (k + p) matrix B = MA and let Ũ0 denote the matrix formed by
orthonormalizing the columns of B.

3. For i from 1 to q (inclusive) :

(a) Let F̃i be formed by orthonormalizing the columns of MT Ũi−1.

(b) Let Ũi be formed by orthonormalizing the columns of MF̃i.

4. Output Ũq.

Example 4.5 (Randomized SVD of a video). In this example we consider a data set
that consists of a video with 160 1080× 1920 frames. Four sample frames are show in 12.
We interpret each frame as a vector in R20,736,000. The matrix obtained by stacking these
vectors as columns is approximately low rank due to the correlation between the frames,
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Figure 13: Singular values of the 160× 20, 736, 000 matrix in Example 4.7.

as can be seen in Figure 13. Computing the SVD of this matrix takes 12 seconds on
our machine. Applying Algorithm 4.1 combined with Algorithm 4.4 we obtain a rank-10
approximation in 5.8 seconds. If we consider a larger video with 691 frames, computing
the SVD takes 281.1 seconds, whereas the randomized algorithm only takes 10.4 seconds.
Figure 14 shows a comparison between the true left singular values and the estimate
produced by the randomized algorithm, using power iterations with parameter q = 2 and
setting p = 7 in Algorithm 4.4. 4

4.3 Random column selection

An alternative procedure for estimating the column space of a low-rank matrix is to
randomly select a subset of columns and obtain an orthonormal basis from them.

Algorithm 4.6 (Randomized column-space approximation). Given a matrix M ∈ Rm×n

which is well-approximated as a k-rank matrix:

1. Select a random subset of column indices I := {i1, i2, . . . , ik′} with k′ ≥ k.

2. Compute an orthonormal basis for the columns of the submatrix corresponding to
I:

MI :=
[
M:,i1 M:,i2 · · · M:,ik′

]
(108)

and output them as a matrix Ũ ∈ Rm×k′.

The random submatrix MI can be expressed in terms of the left singular vectors and
singular values of M , and a submatrix of the right-singular-vector matrix,

MI = UMSM (VM)I . (109)
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Figure 14: First 10 singular values of the 160×20, 736, 000 matrix in Example 4.7 and their esti-
mate using Algorithm 4.1 combined with Algorithm 4.4 and Algorithm 4.6 with power iteration.
The estimates are almost perfect.
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Figure 15: The first 4 left singular vectors of the movie computed using the standard SVD
algorithm, and the randomized Algorithm 4.4.
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In order for the algorithm to capture the column space of M , we need (VM)I to be full
rank (and ideally to not have very small singular values). Moreover, if the matrix is only
approximately low rank, we need the right singular vectors corresponding to large singular
values to be spread out so that they are not missed when we subsample. Let us illustrate
this with a simple example. Consider the rank-2 matrix

M :=




−3 2 2 2
3 2 2 2
−3 2 2 2
3 2 2 2


 (110)

and its SVD

M = UM SMV
T
M =




0.5 −0.5
0.5 0.5
0.5 −0.5
0.5 0.5



[
6.9282 0

0 6

] [
0 0.577 0.577 0.577
1 0 0 0

]
(111)

(112)

Any submatrix of columns that do not include the first one will have a column space that
only consists of the first left singular vector. For example if I = {2, 3}

MI =




2 2
2 2
2 2
2 2


 =




0.5
0.5
0.5
0.5


 6.9282

[
0.577 0.577

]
. (113)

Column subsampling tends to ignore left singular vectors corresponding to sparse (or ap-
proximately sparse) right singular vectors. Depending on the application, this may not be
a disadvantage: sparse right singular vectors arise due to columns in M that are almost
orthogonal to every other column and can consequently be interpreted as outliers. In
contrast, column subsampling preserves the part of the column space corresponding to
spread-out right singular vectors with high probability (see [2] for a theoretical character-
ization of this phenomenon).

To use power iteration with column subsampling, define B := Ũ obtained from 4.6, and
apply steps 3,4 from Algorithm 4.4. Although power iteration can be helpful, it will not
alleviate the issue with sparse columns described above.

Example 4.7 (Randomized SVD of a video using subset of columns). In this example we
consider the same data set as in Example 4.7. We estimate a rank-10 approximation of
the 160× 20, 736, 000 matrix by randomly selecting k′ = 17 columns as in Algorithm 4.6
and then applying Algorithm 4.1. The running time is 5.2 seconds, even faster than if we
use Algorithm 4.1. Figure 14 shows a comparison between the true left singular values
and the estimate produced by the randomized algorithm, using power iterations with
parameter q = 2. In Figure 16 we show the top 4 estimated singular vectors compared
to the true ones. The approximation is very precise, indicating that the first 10 right
singular vectors of the matrix are not sparse or approximately sparse. 4
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Figure 16: The first 4 left singular vectors of the movie computed using the standard SVD
algorithm, and the randomized Algorithm 4.6.

5 Proofs

5.1 Proof of Theorem 2.6

Consider the indicator variable 1x≥a. We have

x− a 1x≥a ≥ 0. (114)

In particular its expectation is nonnegative (as it is the sum or integral of a nonnegative
quantity over the positive real line). By linearity of expectation and the fact that 1x≥a is
a Bernoulli random variable with expectation P (x ≥ a) we have

E (x) ≥ aE (1x≥a) = aP (x ≥ a) . (115)

5.2 Proof of Lemma 2.8

E
(
exp

(
tx2
))

=
1√
2π

∫ ∞

−∞
exp

(
−u

2

2

)
exp

(
tu2
)

du (116)

=
1√
2π

∫ ∞

−∞
exp

(
−(1− 2t)u2

2

)
du finite for 1− 2t > 0 (117)

=
1√

2π (1− 2t)

∫ ∞

−∞
exp

(
−v

2

2

)
dv change of variables v = (2− t)u

=
1√

1− 2t
. (118)
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5.3 Proof of (35)

A very similar argument to the one that yields (39) gives

P (y < a′) = P (exp (−t′y) > exp (−a′t′)) (119)

≤ exp (a′t′)
k∏

i=1

E
(
exp

(
−t′xi

2
))
. (120)

Setting t′ = t in (41), we have

E
(
exp

(
−t′x2

))
=

1√
1 + 2t′

. (121)

This implies

P (y < a′) ≤ exp (a′t′)

(1 + 2t′)
k
2

. (122)

Setting

t′ := −1

2
+

1

2 (1− ε) , (123)

a′ := k (1− ε) (124)

we have

P (y < k (1− ε)) ≤ (1− ε) k2 exp

(
kε

2

)
(125)

= exp

(
−k

2
(−ε− log (1− ε))

)
. (126)

The function h (x) := −x− x2

2
− log (1− x) is nonnegative between 0 and 1 (the derivative

is nonnegative and g (0) = 0). We conclude that

P (y < k (1− ε)) ≤ exp

(
−kε

2

2

)
(127)

≤ exp

(
−kε

2

8

)
. (128)

5.4 Proof of Theorem 3.4

Let us define the sets:

S̃i = Si ∩ ∩i−1j=1S
c
j . (129)
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Figure 17: Sketch of the proof of Theorem 3.10 in two dimensions. Bk1+ε/2
(
~0
)

is the big red

circle. The smaller shaded circles correspond to Bkε/2 (~x) for each ~x in the ε-net.

It is straightforward to show by induction that ∪nj=1Sj = ∪nj=1S̃j for any n, so ∪iSi = ∪iS̃i.
The sets S̃1, S̃2, . . . are disjoint by construction, so

P (∪iSi) = P
(
∪iS̃i

)
=
∑

i

P
(
S̃i

)
(130)

≤
∑

i

P (Si) because S̃i ⊆ Si. (131)

5.5 Proof of Theorem 3.10

We construct an ε-covering set Nε ⊆ Sk−1 recursively:

• We initialize Nε to the empty set.

• We choose a point ~x ∈ Sk−1 such that ||~x− ~y||2 > ε for any ~y ∈ Nε. We add ~x to
Nε until there are no points in Sk−1 that are ε away from any point in Nε.

This algorithm necessarily ends in a finite number of steps because the n-dimensional
sphere is compact (otherwise we would have an infinite sequence such that no subsequence
converges).

Now, let us consider the balls of radius ε/2 centered at each of the points in Nε. These
balls do not intersect since their centers are at least ε apart and they are all inside the
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ball of radius 1 + ε/2 centered at the origin ~0 because Nε ⊆ Sk−1. This means that

Vol
(
Bk1+ε/2

(
~0
))
≥ Vol

(
∪~x∈NεBkε/2 (~x)

)
(132)

= |Nε|Vol
(
Bkε/2

(
~0
))

(133)

where Bkr (~x) is the ball of radius r centered at ~x. By multivariable calculus

Vol
(
Bkr
(
~0
))

= rk Vol
(
Bk1
(
~0
))

, (134)

so (132) implies

(1 + ε/2)k ≥ |Nε| (ε/2)k . (135)
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