Optimization-based data analysis Fall 2017

Lecture Notes 5: Multiresolution Analysis

1 Frames

A frame is a generalization of an orthonormal basis. The inner products between the vectors in a
frame and an arbitrary vector preserve the inner-product norm of the vector.

Definition 1.1 (Frame). Let V be an inner-product space. A frame of V is a set of vectors
F :={Uy, ¥, ...} such that for every & € V
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for fized positive constants cy > ¢, > 0. The frame is a tight frame if cp, = cy.

A direct consequence of the definition is that frames span the ambient space.

Lemma 1.2 (Frames span the whole space). Any frame F = {0, 0,...} of a vector space V
spans V.

Proof. Assume that there exists a vector i that does not belong to the span, then Ppan(in,in,...) - y
O

is nonzero and orthogonal to all the vectors in the frame and cannot satisfy (1).

Orthonormal bases are examples of frames. They are frames that contain a minimum number of
vectors.

Lemma 1.3 (Orthonormal bases are tight frames). Any orthonormal basis B := {51, 52, .. } of a

vector space V s a tight frame.

Proof. For any vector & € V, by the Pythagorean theorem
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The operator that maps vectors to their frame coefficients is called the analysis operator of the
frame.

Definition 1.4 (Analysis operator). The analysis operator ® of a frame maps a vector to its
coefficients in the frame representation

® (Z) [k] = (Z, V) - (5)
For any finite frame {¥y,0s, ..., v} of C* the analysis operator corresponds to the matrix
v
Fee|® (6)
U,

In finite-dimensional spaces, any full rank square or tall matrix can be interpreted as the analysis
operator of a frame.

Lemma 1.5 (Frames in finite-dimensional spaces). A set of vectors {v, Vs, ..., Uy} form a frame
of C™ if and only the matriz F defined by equation (6) is full rank. In that case,

Cuy = 0%7 (7
L = 0-1217 (8)

where oy s the largest singular value of F' and o, is the smallest.

Proof. By Theorem 2.7 in Lecture Notes 2, for any vector ¥ € C"
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To recover a vector from its frame coefficients, we need to invert the action of the analysis operator.
In finite dimensions this can be achieved using the pseudoinverse of the corresponding matrix.

Lemma 1.6 (Pseudoinverse). If an nxm tall matriz A, m > n, is full rank, then its pseudoinverse

At = (A A) T A (10)
is well defined, is a left inverse of A
ATA=1 (11)
and equals
Al =VSTU~, (12)

where A = USV™ is the SVD of A.



Proof.

Al = (44" A (13)
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where S and S~! are diagonal matrices containing 0;2 and crj_l in the jth entry of the diagonal,

where o; denotes the jth singular value of A. These matrices are well defined as long as all the
singular values are nonzero, or equivalently A is full rank. In that case,

ATA =VvS tuvusv* (18)

=1 (19)
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Corollary 1.7 (Recovering the signal). Let & be the representation of a vector T in terms of a

frame {U1,7s, ..., U} of C". Then applying the pseudoinverse of F recovers the signal from the
coefficients

i=F'é (20)

2 Short-time Fourier transform

The motivation to consider frames instead of bases is that they often make it possible to build
signal decompositions that are more flexible. An important example is the short-time Fourier
transform (STFT). Frequency representations such as the Fourier series and the DFT provide
global information about the fluctuations of a signal, but they do not capture local information.
However, the spectrum of speech, music and other sound signals changes continuously with time.
The STFT is designed to describe these localized fluctuations. It consists of computing the fre-
quency representation of a time segment of the signal, extracted through multiplication with a
window.

Definition 2.1 (Short-time Fourier transform). The short-time Fourier transform (STFT) of a
function f € Lo[—1/2,1/2] is defined as

STFT {f} (k,7) := v f)w(t—71)e 2™ qt, (21)
—1/2

where w € Lo[—1/2,1/2] is a window function. In words, it is equal to the Fourier series coeffi-
cients of the pointwise product between f and a shifted window wy;.

The STFT coefficients are equal to the inner product between the signal and vectors of the form
vk, (1) == w (t — 7) e®™* which corresponds to the window function w shifted by 7 in time and by
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Figure 1: Examples of STFT frame vectors along with their Fourier representation.
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k in frequency. As long as the shifts are chosen so that the windows overlap, the STFT coefficients
form a frame. Figure 1 shows some of these frame vectors.

The discrete version of the short-time Fourier transform acts upon finite-dimensional vectors and
is usually also known as STFT.

Definition 2.2 (Discrete short-time Fourier transform). The STFT of a vector ¥ € C" is defined
as

STET {f} (k,1) := <I:o i, ﬁk> : (22)

where W is a window vector and ﬁ;cn] is the discrete complex sinusoidal vector from Definition 1.5
i Lecture Notes 4.

As in the continuous case, if the shifts overlap sufficiently, then this transformation is a frame
in a finite-dimensional space. This means that there is a tall matrix that represents the analysis
operator, and that we can invert it with the pseudoinverse by Lemma 1.6. However this would be
very inefficient computationally! The STFT operator is usually applied and inverted using fast
algorithms based on the FFT.

The simplest window function that we can use is a rectangular function, i.e. just selecting intervals
of coefficients. Unfortunately, this introduces an artificial discontinuity at the ends of the interval.
Mathematically, multiplying the coefficients by the rectangular function is equivalent to convolving
with a Dirichlet kernel in the spectral domain, which becomes apparent when we compute the
Fourier coefficients of the windowed data, as shown in Figure 2. In contrast, Gaussian-like windows
that taper off at the ends smooth the borders of the windowed signal and avoid the high-frequency
artifacts introduced by the side lobes of the Dirichlet kernel.

The STF'T is an important tool for sound processing. Variations in the spectral components of
signals are visualized using the spectrogram, which is equal to the logarithm of the magnitude
of the STFT coefficients. Figure 4 shows the spectrogram of a real speech signal. The time
and frequency representation of the same signal are shown in Figure 3. In contrast to these
representations, the spectrogram reveals how the frequency components of the speech signal vary
over time. The resolution at which we track these variations depends on the width of the window
chosen to compute the spectrogram. Shorter windows provide higher temporal resolution (we
can track quicker changes), but are not able to detect lower-frequency components whose periods
are longer than the chosen window. This motivates using windows of different lengths to extract
information at multiple resolutions. The next section discusses signal representations designed to
achieve this.

3 Wavelets

3.1 Definition

Wavelets are designed to capture signal structure at different scales. This is achieved with an
analysis operator that contains scaled copies of a fixed function called a wavelet.
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Figure 2: The spectrum of a time segment may contain spurious high-frequency content produced by the
sudden transition at the ends of the segment. In the frequency domain, the spectrum is being convolved
by a sinc function, which has a very heavy tail. Multiplying the signal by a localized window that has a
faster decay in the frequency domain alleviates the problem.
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Figure 3: Time and frequency representation of a speech signal.
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Figure 4: Spectrogram (log magnitude of STFT coefficients) of the speech signal in Figure 3.
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Figure 5: Scaling and wavelet function of the Haar wavelet transform.

Definition 3.1 (Wavelet transform). The wavelet transform of a function f € Ly depends on a
choice of wavelet (or mother wavelet) ¥ € Ly and scaling function ¢ € Ly (or father wavelet).
The scaling coefficients are obtained through an inner product with shifted copies of ¢

Wy {f}(7): \/_/f ot —7)dt (23)

whereas the wavelet coefficients are obtained through an inner product with dilated, shifted copies

of ¥
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Intuitively, W {f} (s, 7) captures the information at scale s and location 7. The scaling function
can be interpreted as a low-pass filter that extracts the global features that are not captured by
the wavelet coefficients. The Haar wavelet is an example of a wavelet. Figure 5 shows its scaling
and wavelet functions.

Definition 3.2 (Haar wavelet). The scaling function for the Haar wavelet is a rectangular function

<t< (25)
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The Haar wavelet is of the form

The discrete wavelet transform acts upon finite-dimensional vectors.

Definition 3.3 (Discrete wavelet transform). The wavelet transform of a function f € C" depends
on a choice of wavelet (or mother wavelet) ¥ € C* and scaling vector ¢ € C"™ (or father wavelet).
The scaling coefficients are obtained through an inner product with shifted copies of ¢

W) = (7.60). 27)



whereas the wavelet coefficients are obtained through an inner product with scaled, shifted copies

of &
Wi df}(s.0) = (& e (28)

where

S

Gealil =5 [11]. (29)

The discrete Haar wavelet is the discrete counterpart of the Haar wavelet.

Definition 3.4 (Discrete Haar wavelet). The scaling function for the Haar wavelet is a rectangular
function

dij=1, 1<j<n (30)
The Haar wavelet is of the form
. _]-7 ] = %7
viil=191  i=3+1 (31)
0, otherwise.

3.2 Multiresolution decomposition
The discrete Haar wavelet and its corresponding scaling vector can be used to construct a basis
of C".

Definition 3.5 (Haar wavelet basis). Let n := 2K for some integer K. We fiz a single scaling
vector

"y 1 .
olj] = ok l<j<n (32)
We fiz K + 1 scales equal to 2°, 21, ..., 25, The wavelets at the finest scale 2° are given by
Jil={L =2 (33)
0 j>2

and copies | oflp shifted by 2, so that they do not overlap. The wavelets at scale 2%, 1 < k < K are
copies 0f¢ dilated by 2%, multiplied by a factor of 1/\/_ (their Ly norm equals one) and shifted
by multiples of 281 (so the basis vectors at each scale do not overlap).

The Haar wavelet basis contains n unit-norm vector that are all orthogonal, so they form an
orthonormal basis of C". Figure 6 shows the basis vectors for n = 8. Figure 7 shows the coefficients
of an electrocardiogram signal in the basis.

Wavelet bases can be interpreted as a multiresolution representation, where the coefficients cor-
responding to different dilations of the wavelet capture information at the corresponding scales.
This is made more precise in the following definition.
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Figure 6: Basis functions in the Haar wavelet basis for C5.
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Figure 7: Electrocardiogram signal (left) and its corresponding Haar wavelet coefficients (right).
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Definition 3.6 (Multiresolution wavelet decomposition). Let n := 25 for some integer K. Given

a scaling vector gg € C" and a wavelet 1/7 € C", a multiresolution decomposition of C" is a sequence
of subspaces Vo, V1, ..., Vi where:

o Vi is spanned by the scaling vector (E

oV, := W, @ Viy1 where Wy, is the span of ¢ dilated by 2% and shifted by multiples of 28+,

For any vector T € C", Py, T is the approzimation of T at scale 2*.

To be a valid multiresolution decomposition, the subspaces must satisfy the following properties:

e Vy = C", the approximation at scale 2° is perfect.
e V), is invariant to translations of scale 2% for 0 < k < K. If ¥ € V) then
Tpory € Vi foralll € Z, (34)
where the shifts are circular.

e Dilating vectors in V; by 2 yields vectors in V;i1. Let T € V; be nonzero only between 1 and
n/2, the dilated vector i defined by

glal = Z[15/21] (35)

belongs to Vjii.

By construction, the Haar wavelet basis in Definition 3.5 provides a multiresolution decomposition
of C". In Figure 8 the decomposition is applied to obtain approximations of an electrocardiogram
signal at different scales. Many other wavelet bases apart from the Haar yield multiresolution
decompositions: Meyer, Daubechies, Battle-Lemarie, ... We refer the interested reader to Chapter
7 in [?] for a detailed and rigorous description of the construction of orthonormal wavelet bases.

3.3 Multidimensional wavelet decompositions

Two-dimensional wavelets can be obtained by taking outer products of one-dimensional wavelets,
as in the case of the two-dimensional discrete Fourier transform. 2D wavelets are of the form,

2D . ¢1D 1D *
f[Sl,Sz,kl,kz] T é[sl,lﬂ] (f[sz,kﬂ) ) (36>

where £ can refer to both 1D scaling and wavelet functions. We consider shifts ki, ks in two
dimensions and a two-dimensional scaling s;,ss. The corresponding two-dimensional transform
allows to obtain multiscale representations of images. An example is shown in Figure 10. The
coefficients are grouped by their scale (which is decreasing as we move down and to the right) and
arranged in two dimensions, according to the location of the corresponding shifted wavelet with
respect to the image. Figure 9 shows the vectors in a 2D Haar wavelet basis.

Designing multidimensional transforms that are more effective at providing sparse representations
for images has been a vibrant research subject for many years. Some of these extensions include
the steerable pyramid, ridgelets, curvelets, and bandlets. We refer to Section 9.3 in [?] for more
details.
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Figure 8: Multiresolution decomposition of the electrocardiogram signal in Figure 7. On the left, the

projection of the signal onto W), extracts information at scale 2. On the right, projection onto V, yields
an approximation of the signal at scale 2*.

12



Figure 9: Basis vectors of the 2D Haar wavelet transform.

Wavelet coefficients

Figure 10: An image (left) and its coefficients in a 2D Haar wavelet basis (right). The coefficients are
arranged so that the scaling coefficients are on the top left and coefficients corresponding to increasingly
fine scales are situated below and to the right.
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Wavelet coefficients

Figure 11: Gaussian iid noise (left) and its Haar wavelet coefficients (left).

4 Denoising via thresholding

The STFT and wavelet transforms often yield sparse signal representations, meaning that many
coefficients are equal to zero. In the case of the STFT, this occurs when only a few spectral com-
ponents are active at a particular time, which is typical of speech or music signals (see Figure 4).
In the case of wavelets, sparsity results from the fact that large regions of natural images (and
many other signals) are smooth and mostly contain coarse-scale features, whereas most of the
fine-scale features are confined to edges or regions with high-frequency textures.

In contrast, noisy perturbations usually have dense coefficients in any fixed frame or basis. As
we establish in Lecture Notes 3, if 7 is a Gaussian random vector with covariance matrix 21,
for some fixed 62 > 0 then F7Z is a Gaussian random vector with covariance matrix FF*. In
particular, if F' is a basis, then F'Z is iid Gaussian, which means that the magnitude of most
entries is approximately equal to the standard deviation o. Figure 11 shows the Haar wavelet
coefficients of iid Gaussian noise. As expected, the coefficients are also noisy and dense in this
representation.

Let us consider the problem of denoising measurements i € C" of a signal ¥ € C" corrupted by
additive noise 7 € C"

yi=a+ 7z (37)

Under the assumptions that (1) F'Z is sparse representation where F'is a certain frame or basis and
(2) the entries of F'Z' are small and dense, thresholding F'y makes it possible to suppress the noise
while preserving the signal. Figure 12 shows an example of two noisy images with different signal-
to-noise ratios (SNR), defined as the ratio between the ¢ norm of the signal and the noise. In the
wavelet domain, the coefficients corresponding to the signal lie above a sea of noisy coefficients.
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Figure 12: The two noisy images on the left are obtained by adding Gaussian noise to the image in
Figure 10 to obtain an SNR of 2.5 (above) and 1 (below). The coefficients of the images in the 2D Haar
basis are shown on the right.
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Figure 13: Denoising via hard thresholding.

To motivate thresholding-based denoising, consider the case where ¥ itself is sparse and 2. In that
case we can denoise by setting to zero the entries in ¢ that are below a certain value. Figure 13
illustrates this with a simple example. Most signals are not sparse, but in many cases we can
design a linear transform that sparsifies them. We can then apply the same idea to the coefficients
of the measurements in this representation.

Algorithm 4.1 (Denoising via hard thresholding). Let ¢ follow the model in equation (37). To
estimate the signal we:

1. Compute a decomposition F'y, where F' is a frame or basis which sparsifies the signal .

2. Apply the hard-thresholding operator H, : C* — C" to Fy

M ()] = {Um if 1701l > . 38)

0 otherwise,

for 1 < 5 <mn, where n is adjusted according to the standard deviation of F'Z. If F' is a basis
and Z is itd Gaussian with standard deviation o, 1 should be set larger than o.

3. Compute the estimate by inverting the transform. If F is a basis, then
Test == F'H, (FY). (39)
If F is a frame,
Tt := FIH, (Fy), (40)

where F' is the pseudoinverse of F (any other left inverse of F would also work).

Figure 14 shows the result of denoising a multisinusoidal signal by thresholding its Fourier coeffi-
cients. Figure 15 shows the result of denoising the images in Figure 12 by thresholding their 2D
wavelet coefficients.
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Figure 14: Denoising via hard thresholding in a Fourier basis.

When we apply transforms that capture localized details of signals, such as the wavelet transform
or the STFT, sparse representations tend to be highly structured. For example, nonzero wavelet
coefficients are often clustered around edges. This is apparent in Figure 10. The reason is that
several localized atoms are needed to reproduce sharp variations, whereas a small number of
coarse-scale atoms suffice to represent smooth areas of the image.

Thresholding-based denoising can be enhanced by taking into account the group sparsity of the
signal of interest. If we have a reason to believe that nonzero coefficients in the signal tend to be
close to each other, then we should threshold small isolated coefficients, but not similar coefficients
that are in the vicinity of large coefficients and therefore may contain useful information. This
can be achieved by applying block thresholding.

Algorithm 4.2 (Denoising via block thresholding). Let i follow the model in equation (37). To
estimate the signal we:

1. Compute a decomposition F'y, where F' is a frame or basis which sparsifies the signal .
2. Partition the indices of F'y into blocks Ty, T, ..., Z;.

3. Apply the hard-block-thresholding operator B, : C* — C" to F'yj

vlj] ifj €Z; such that HUIJ.HQ >n,,

B, () 5] == {

0 otherwise,

17
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Figure 15: Thresholding-based denoising applied to the images in Figure 12.
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Figure 16: Block-thresholding-based denoising applied to the images in Figure 12.
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Figure 17: Comparison between thresholding and block-thresholding applied to denoise the images in
Figure 12.

where n is adjusted according to the standard deviation of FZ. If F is a basis and Z is 1id
Gaussian with standard deviation o, n should be set larger than bo, where b is the number
of indices in each block.

4. Compute the estimate by inverting the transform. If F' is a basis, then
Tet = F'B, (F). (42)
If F is a frame,
Lo == F'B, (Fy), (43)

where F' is the pseudoinverse of F (any other left inverse of F would also work).

Figure 16 shows the result of denoising the images in Figure 12 by partitioning its 2D Haar
coefficients in 4 x 4 blocks and applying block thresholding. As illustrated by Figure 17 block-
thresholding recovers regular such as the vertical lines on the Empire State building more effec-
tively.

We conclude this section with an application of thresholding-based denoising to speech.

Example 4.3 (Speech denoising). The recording shown in Figures 3 and 4 is a short snippet from
the movie Apocalypse Now where one of the character talks over the noise of a helicopter. We
denoise the data using the following methods (click on the links to hear the result):

e Time thresholding: The result, which is plotted in Figure 18, sounds terrible because the
thresholding eliminates parts of the speech.
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Figure 18: Time thresholding (top row) applied to the noisy data shown in Figure 3. The result sounds
terrible because the thresholding eliminates parts of the speech. Below, frequency thresholding is applied
to the same data. The result is very low pitch because the thresholding eliminates the high frequencies
of both the speech and the noise.
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e [requency thresholding: The result has very low pitch because the thresholding eliminates
the high frequencies of both the speech and the noise. The spectrum is shown in Figure 77
before and after thresholding.

o STF'T thresholding: The result is significantly better but isolated STFT coefficients that are
not discarded produce musical noise artifacts. The corresponding spectrogram is shown in
Figure 19.

e STF'T block thresholding: The result does not suffer from musical noise and retains some of
the high-pitch speech. The corresponding spectrogram is shown in Figure 19.

The results are compared visually for a small time segment of the data in Figure 20. A

References

For more information on multiresolution approximations and time-frequency signal processing we
refer to the excellent book [?] and references therein.
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Figure 19: Spectrograms of the noisy signal (above) compared to the estimates obtained by simple
thresholding (center) and block thresholding (bottom). The result of simple thresholding contains musical
noise caused by particularly large STFT coeflicients caused by the noise that were not thresholded. The
result of block thresholding does not suffer from these artifacts.
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Figure 20: Comparison of the original noisy data (blue) with the denoised signal for the data shown in
Figure 3. We compare frequency thresholding (above) and thresholding (center) and block thresholding
(below) of STFT coefficients.
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