
Optimization-based data analysis Fall 2017

Lecture Notes 6: Linear Models

1 Linear regression

1.1 The regression problem

In statistics, regression is the problem of characterizing the relation between a quantity of interest
y, called the response or the dependent variable, and several observed variables x1, x2, . . . , xp,
known as covariates, features or independent variables. For example, the response could be the
price of a house and the covariates could correspond to the extension, the number of rooms, the
year it was built, etc. A regression model would describe how house prices are affected by all of
these factors.

More formally, the main assumption in regression models is that the predictor is generated accord-
ing to a function h applied to the features and then perturbed by some unknown noise z, which
is often modeled as additive,

y = h (~x) + z. (1)

The aim is to learn h from n examples of responses and their corresponding features(
y(1), ~x (1)

)
,
(
y(2), ~x (2)

)
, . . . ,

(
y(n), ~x (n)

)
. (2)

If the regression function h in a model of the form (1) is linear, then the response is modeled as a
linear combination of the predictors:

y(i) =
〈
~x (i), ~β∗

〉
+ z(i), 1 ≤ i ≤ n, (3)

where z(i) is an entry of the unknown noise vector. The function is parametrized by a vector of
coefficients ~β∗ ∈ Rp. All we need to fit the linear model to the data is to estimate these coefficients.

Expressing the linear system (3) in matrix form, we have
y(1)

y(2)

· · ·
y(n)

 =


~x (1)[1] ~x (1)[2] · · · ~x (1)[p]

~x (2)[1] ~x (2)[2] · · · ~x (2)[p]

· · · · · · · · · · · ·
~x (n)[1] ~x (n)[2] · · · ~x (n)[p]




~β∗[1]

~β∗[2]

· · ·
~β∗[p]

+


z(1)

z(2)

· · ·
z(n)

 . (4)

This yields a more succinct representation of the linear-regression model:

~y = X~β∗ + ~z, (5)
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where X is a n × p matrix containing the features, ~y ∈ Rn contains the response and ~z ∈ Rn

represents the noise.

For simplicity we mostly discuss the linear model (3), but in practice we usually fit an affine model
that includes a constant term β0,

y(i) = β0 +
〈
~x (i), ~β∗

〉
+ z(i), 1 ≤ i ≤ n. (6)

This term is called an intercept, because if there is no noise y(i) is equal to β0 when the features
are all equal to zero. For a least-squares fit (see Section 2 below), β0 can be shown to equal zero as
long as the response ~y and the features ~x1, . . . , ~xp are all centered. This is established rigorously
in Lemma 2.2. In addition to centering, it is common to normalize the response and the features
before fitting a regression model, in order to ensure that all the variables have the same order of
magnitude and the model is invariant to changes in units.

Example 1.1 (Linear model for GDP). We consider the problem of building a linear model to pre-
dict the gross domestic product (GDP) of a state in the US from its population and unemployment
rate. We have available the following data:

GDP Population Unemployment

(USD millions) rate (%)





North Dakota 52 089 757 952 2.4

Alabama 204 861 4 863 300 3.8

Mississippi 107 680 2 988 726 5.2

Arkansas 120 689 2 988 248 3.5

Kansas 153 258 2 907 289 3.8

Georgia 525 360 10 310 371 4.5

Iowa 178 766 3 134 693 3.2

West Virginia 73 374 1 831 102 5.1

Kentucky 197 043 4 436 974 5.2

Tennessee ??? 6 651 194 3.0

In this example, the GDP is the response, whereas the population and the unemployment rate
are the features. Our goal is to fit a linear model to the data so that we can predict the GDP of
Tennessee, using a linear model. We begin by centering and normalizing the data. The averages
of the response and of the features are

av (~y) = 179 236, av (X) =
[
3 802 073 4.1

]
. (7)

The empirical standard deviations are

std (~y) = 396 701, std (X) =
[
7 720 656 2.80

]
. (8)
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We subtract the average and divide by the standard deviations so that both the response and the
features are centered and on the same scale,

~y =



−0.321

0.065

−0.180

−0.148

−0.065

0.872

−0.001

−0.267

0.045



, X =



−0.394 −0.600

0.137 −0.099

−0.105 0.401

−0.105 −0.207

−0.116 −0.099

0.843 0.151

−0.086 −0.314

−0.255 0.366

0.082 0.401



. (9)

To obtain the estimate for the GDP of Tennessee we fit the model

~y ≈ X~β, (10)

rescale according to the standard deviations (8) and recenter using the averages (7). The final
estimate is

~yTen = av (~y) + std (~y)
〈
~xTen

norm,
~β
〉

(11)

where ~xTen
norm is centered using av (X) and normalized using std (X). 4

1.2 Overfitting

Imagine that a friend tells you:

I found a cool way to predict the daily temperature in New York: It’s just a linear combination of
the temperature in every other state. I fit the model on data from the last month and a half and
it’s perfect!

Your friend is not lying. The problem is that in this example the number of data points is roughly
the same as the number of parameters. If n ≤ p we can find a ~β such that ~y = X~β exactly, even
if ~y and X have nothing to do with each other! This is called overfitting : the model is too flexible
given the available data. Recall from linear algebra that for a matrix A ∈ Rn×p that is full rank,
the linear system of equations

A~b = ~c (12)

is (1) underdetermined if n < p, meaning that it has infinite solutions, (2) determined if n = p,
meaning that there is a unique solution, and (3) overdetermined if n > p. Fitting a linear model
without any additional assumptions only makes sense in the overdetermined regime. In that case,
an exact solution exists if ~b ∈ col (A), which is never the case in practice due to the presence of

noise. However, if we manage to find a vector ~b such that A~b is a good approximation to ~c when
n > p then this is an indication that the linear model is capturing some underlying structure in
the problem. We make this statement more precise in Section 2.4
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Figure 1: Linear model learned via least-squares fitting for a simple example where there is just one
feature (p = 1) and 40 examples (n = 40).

2 Least-squares estimation

2.1 Minimizing the `2-norm approximation error

To calibrate the linear regression model ~y ≈ X~β it is necessary to choose a metric to evaluate the
fit achieved by the model. By far, the most popular metric is the sum of the squares of the fitting
error,

n∑
i=1

(
y(i) −

〈
~x (i), ~β

〉)2

=
∣∣∣∣∣∣~y −X~β

∣∣∣∣∣∣2
2
. (13)

The least-squares estimate ~βLS is the vector of coefficients that minimizes this cost function,

~βLS := arg min
~β

∣∣∣∣∣∣~y −X~β
∣∣∣∣∣∣

2
. (14)

The least-squares cost function is convenient from a computational view, since it is convex and
can be minimized efficiently (in fact, as we will see in a moment it has a closed-form solution).
In addition, it has intuitive geometric and probabilistic interpretations. Figure 1 shows the linear
model learned using least squares in a simple example where there is just one feature (p = 1) and
40 examples (n = 40).

Theorem 2.1. If X is full rank and n ≥ p, for any ~y ∈ Rn we have

~βLS := arg min
~β

∣∣∣∣∣∣~y −X~β
∣∣∣∣∣∣

2
(15)

= V S−1UT~y (16)

=
(
XTX

)−1
XT~y, (17)

where USV T is the SVD of X.
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Proof. We consider the decomposition of ~y into its orthogonal projection UUT~y onto the column
space of X col (X) and its projection

(
I − UUT

)
~y onto the orthogonal complement of col (X).

X~β belongs to col (X) for any β and is consequently orthogonal to
(
I − UUT

)
~y (as is UUT~y), so

that

arg min
~β

∣∣∣∣∣∣~y −X~β
∣∣∣∣∣∣2

2
= arg min

~β

∣∣∣∣(I − UUT
)
~y
∣∣∣∣2

2
+
∣∣∣∣∣∣UUT~y −X~β

∣∣∣∣∣∣2
2

(18)

= arg min
~β

∣∣∣∣∣∣UUT~y −X~β
∣∣∣∣∣∣2

2
(19)

= arg min
~β

∣∣∣∣∣∣UUT~y − USV T ~β
∣∣∣∣∣∣2

2
. (20)

Since U has orthonormal columns, for any vector ~v ∈ Rp ||U~v||2 = ||~v||2, which implies

arg min
~β

∣∣∣∣∣∣~y −X~β
∣∣∣∣∣∣2

2
= arg min

~β

∣∣∣∣∣∣UT~y − SV T ~β
∣∣∣∣∣∣2

2
(21)

If X is full rank and n ≥ p, then SV T is square and full rank. It therefore has a unique inverse,

which is equal to V S−1. As a result V S−1UT~y =
(
XTX

)−1
XT~y is the unique solution to the

optimization problem (it is the only vector that yields a value of zero for the cost function).

The following lemma shows that centering the data before computing the least-squares fit is exactly
equivalent to fitting an affine model with the same cost function.

Lemma 2.2 (Proof in Section 5.1). For any matrix X ∈ Rn×m and any vector ~y, let{
βLS,0, ~βLS

}
:= arg min

β0,~β

∣∣∣∣∣∣~y −X~β − β0
~1
∣∣∣∣∣∣2

2
(22)

be the coefficients corresponding to an affine fit, where ~1 is a vector containing n ones, and let

~β cent
LS := arg min

~β

∣∣∣∣∣∣~y cent −X cent~β
∣∣∣∣∣∣2

2
(23)

be the coefficients of a linear fit after centering both X and ~y using their respective averages (in
the case of X, the column-wise average). Then,

X~βLS + βLS,0 = X cent~β cent
LS + av (y) . (24)

Example 2.3 (Linear model for GDP (continued)). The least-squares estimate for the regression
coefficients in the linear GDP model is equal to

~βLS =

 1.019

−0.111

 . (25)

The GDP seems to be proportional to the population and inversely proportional to the unemploy-
ment rate. We now compare the fit provided by the linear model to the original data, as well as
its prediction of the GDP of Tennessee:
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GDP Estimate





North Dakota 52 089 46 241

Alabama 204 861 239 165

Mississippi 107 680 119 005

Arkansas 120 689 145 712

Kansas 153 258 136 756

Georgia 525 360 513 343

Iowa 178 766 158 097

West Virginia 73 374 59 969

Kentucky 197 043 194 829

Tennessee 328 770 345 352

4

Example 2.4 (Global warming). In this example we describe the application of linear regression
to climate data. In particular, we analyze temperature data taken in a weather station in Oxford
over 150 years.1 Our objective is not to perform prediction, but rather to determine whether
temperatures have risen or decreased during the last 150 years in Oxford.

In order to separate the temperature into different components that account for seasonal effects
we use a simple linear with three predictors and an intercept

y ≈ β0 + β1 cos

(
2πt

12

)
+ β2 sin

(
2πt

12

)
+ β3 t (26)

where t denotes the time in months. The corresponding matrix of predictors is

X :=


1 cos

(
2πt1
12

)
sin
(

2πt1
12

)
t1

1 cos
(

2πt2
12

)
sin
(

2πt2
12

)
t2

· · · · · · · · · · · ·

1 cos
(

2πtn
12

)
sin
(

2πtn
12

)
tn

 . (27)

The intercept β0 represents the mean temperature, β1 and β2 account for periodic yearly fluctua-
tions and β3 is the overall trend. If β3 is positive then the model indicates that temperatures are
increasing, if it is negative then it indicates that temperatures are decreasing.

The results of fitting the linear model using least squares are shown in Figures 2 and 3. The fitted
model indicates that both the maximum and minimum temperatures have an increasing trend of
about 0.8 degrees Celsius (around 1.4 degrees Fahrenheit). 4

1The data are available at http://www.metoffice.gov.uk/pub/data/weather/uk/climate/stationdata/

oxforddata.txt.
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Figure 2: Temperature data together with the linear model described by (26) for both maximum and
minimum temperatures.
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Figure 3: Temperature trend obtained by fitting the model described by (26) for both maximum and
minimum temperatures.

2.2 Geometric interpretation of least-squares regression

The following corollary of Theorem 2.1 provides an intuitive geometric interpretation of the linear
approximation obtained from a least-squares fit. The least-squares fit yields the vector X~β in
the column space col (X) of the features that is closest to ~y in `2 norm. X~βLS is therefore the
orthogonal projection of ~y onto col (X), as depicted in Figure 4.

Corollary 2.5. The least-squares approximation of ~y obtained by solving problem (14)

~yLS = X~βLS (28)

is equal to the orthogonal projection of ~y onto the column space of X.

Proof.

X~βLS = USV TV S−1UT~y (29)

= UUT~y (30)

Example 2.6 (Denoising of face images). In Example 7.4 of Lecture Notes 1, we denoised a noisy
image by projecting it onto the span of a set of clean images. This is equivalent to solving a
least-squares linear-regression problem in which the response is the noisy images and the columns
of the matrix of features correspond to the clean faces. The regression coefficients are used to
combine the different clean faces linearly to produce the estimate. 4

8



Figure 4: Illustration of Corollary 2.5. The least-squares solution is the orthogonal projection of the
data onto the subspace spanned by the columns of X, denoted by X1 and X2.

2.3 Probabilistic interpretation of least-squares regression

In this section we derive the least-squares regression estimate as a maximum-likelihood (ML)
estimator. ML estimation is a popular method for learning parametric models. In parametric
estimation we assume that the data are sampled from a known distribution that depends on some
unknown parameters, which we aim to estimate. The likelihood function is the joint pmf or pdf
of the data, interpreted as a function of the unknown parameters.

Definition 2.7 (Likelihood function). Given a realization ~y ∈ Rn of random vector ~y with joint

pdf f~β parameterized by a vector of parameters ~β ∈ Rm, the likelihood function is

L~y
(
~β
)

:= f~β (~y) . (31)

The log-likelihood function is equal to the logarithm of the likelihood function logL~y
(
~β
)

.

The likelihood function represents the probability density of the parametric distribution at the ob-
served data, i.e. it quantifies how likely the data are according to the model. Therefore, higher like-
lihood values indicate that the model is better adapted to the samples. The maximum-likelihood
(ML) estimator is a very popular parameter estimator based on maximizing the likelihood (or
equivalently the log-likelihood).

Definition 2.8 (Maximum-likelihood estimator). The maximum likelihood (ML) estimator of the
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vector of parameters ~β ∈ Rm is

~βML (~y) := arg max
~β
L~y
(
~β
)

(32)

= arg max
~β

logL~y
(
~β
)
. (33)

The maximum of the likelihood function and that of the log-likelihood function are at the same
location because the logarithm is a monotone function.

The following lemma shows that the least-squares estimate can be interpreted as an ML estimator.

Lemma 2.9. Let ~y ∈ Rn be a realization of a random vector

~y := X~β + ~z, (34)

where ~z is iid Gaussian with mean zero and variance σ2. If X ∈ Rn×m is known, then the ML
estimate of ~β is equal to the least-squares estimate

~βML = arg min
~β

∣∣∣∣∣∣~y −X~β
∣∣∣∣∣∣2

2
. (35)

Proof. For a fixed ~β, the joint pdf of ~y is equal to

f~β (~y) =
n∏
i=1

1√
2πσ

exp

(
− 1

2σ2

(
~y[i]−

(
X~β
)

[i]
)2
)

(36)

=
1√

(2π)nσn
exp

(
− 1

2σ2

∣∣∣∣∣∣~y −X~β
∣∣∣∣∣∣2

2

)
. (37)

The likelihood is the probability density function of ~y evaluated at the observed data ~y and
interpreted as a function of the coefficient vector ~β,

L~y
(
~β
)

=
1√

(2π)n
exp

(
−1

2

∣∣∣∣∣∣~y −X~β
∣∣∣∣∣∣2

2

)
. (38)

To find the ML estimate, we maximize the log likelihood

~βML = arg max
~β
L~y
(
~β
)

(39)

= arg max
~β

logL~y
(
~β
)

(40)

= arg min
~β

∣∣∣∣∣∣~y −X~β
∣∣∣∣∣∣2

2
. (41)
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2.4 Analysis of the least-squares estimate

In this section we analyze the solution of the least-squares regression fit under the assumption
that the data are indeed generated according to a linear model with additive noise,

~y := X~β∗ + ~z, (42)

where X ∈ Rn×m and ~z ∈ Rn. In that case, we can express the least-squares solution in terms
of the true coefficients ~β∗, the feature matrix X and the noise ~z applying Theorem 2.1. The
estimation error equals

~βLS − ~β∗ =
(
XTX

)−1
XT

(
X~β∗ + ~z

)
(43)

=
(
XTX

)−1
XT~z, (44)

as long as X is full rank.

Equation (44) implies that if the noise is random and has zero mean, then the expected error is
equal to zero. In statistics lingo, the least-squares estimate is unbiased, which means that the
estimator is centered at the true coefficient vector ~β∗.

Lemma 2.10 (Least-squares estimator is unbiased). If the noise ~z is a random vector with zero
mean, then

E
(
~βLS − ~β∗

)
= 0. (45)

Proof. By (44) and linearity of expectation

E
(
~βLS − ~β∗

)
=
(
XTX

)−1
XTE (~z) = 0. (46)

We can bound the error incurred by the least-squares estimate in terms of the noise and the
singular values of the feature matrix X.

Theorem 2.11 (Least-squares error). For data of the form (42), we have

||~z||2
σ1

≤
∣∣∣∣∣∣~βLS − ~β∗

∣∣∣∣∣∣
2
≤ ||~z||2

σp
, (47)

as long as X is full rank, where σ1 and σp denote the largest and smallest singular value of X
respectively.

Proof. By (44)

~βLS − ~β∗ = V S−1UT~z. (48)

The smallest and largest singular values of V S−1U are 1/σ1 and 1/σp respectively so by Theorem
2.7 in Lecture Notes 2

||~z||2
σ1

≤
∣∣∣∣V S−1UT~z

∣∣∣∣
2
≤ ||~z||2

σp
. (49)

11



5000 10000 15000 2000050
n

0.00

0.02

0.04

0.06

0.08

0.10

R
e
la

ti
v
e
 c

o
e
ff

ic
ie

n
t 

e
rr

o
r 

(l
2

 n
o
rm

)

p=50

p=100

p=200

1/
√
n

Figure 5: Relative `2-norm error of the least-squares coefficient estimate as n grows. The entries of X,
~β∗ and ~z are sampled iid from a standard Gaussian distribution. The error scales as 1/

√
n as predicted

by Theorem 2.12.

Let us assume that the norm of the noise ||~z||2 is fixed. In that case, by (48) the largest error
occurs when ~z is aligned with ~up, the singular vector corresponding to σp, whereas the smallest
error occurs when ~z is aligned with ~u1, the singular vector corresponding to σ1. To analyze what
happens in a typical linear-regression problem, we can assume that X and ~z are sampled from
a Gaussian distribution. The following theorem shows that in this case, the ratio between the
norms of the error and the noise (or equivalently the error when the norm of the noise is fixed to
one) concentrates around

√
p/n. In particular, for a fixed number of features it decreases as 1/

√
n

with the number of available data, becoming arbitrarily small as n → ∞. This is illustrated by
Figure 5, which shows the results of a numerical experiment that match the theoretical analysis
very closely.

Theorem 2.12 (Non-asymptotic bound on least-squares error). Let

~y := X~β∗ + ~z, (50)

where the entries of the n×p matrix X and the n-dimensional vector ~z are iid standard Gaussians.
The least-squares estimate satisfies√

(1− ε)
(1 + ε)

√
p

n
≤
∣∣∣∣∣∣~βLS − ~β∗

∣∣∣∣∣∣
2
≤

√
(1 + ε)

(1− ε)

√
p

n
(51)

with probability at least 1− 1/p− 2 exp (−pε2/8) as long as n ≥ 64p log(12/ε)/ε2.

Proof. By the same argument used to derive (49), we have∣∣∣∣UT~z
∣∣∣∣

2

σ1

≤
∣∣∣∣VS−1UT~z

∣∣∣∣
2
≤
∣∣∣∣UT~z

∣∣∣∣
2

σp
. (52)
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By Theorem 2.10 in Lecture Notes 3 with probability 1− 2 exp (−pε2/8)

(1− ε) p ≤
∣∣∣∣UT~z

∣∣∣∣2
2
≤ (1 + ε) p, (53)

where U contains the left singular vectors of X. By Theorem 3.7 in Lecture Notes 3 with proba-
bility 1− 1/p √

n (1− ε) ≤ σp ≤ σ1 ≤
√
n (1 + ε) (54)

as long as n ≥ 64p log(12/ε)/ε2. The result follows from combining (52) with (53) and (54) which
hold simultaneously with probability at least 1− 1/p− 2 exp (−pε2/8) by the union bound.

3 Regularization

3.1 Noise amplification

Theorem 2.12 characterizes the performance of least-squares regression when the feature matrix
is well-conditioned, which means that its smallest singular value is not too small with respect to
the largest singular value.

Definition 3.1 (Condition number). The condition number of a matrix A ∈ Rn×p, n ≥ p, is equal
to the ratio σ1/σp of its largest and smallest singular values σ1 and σp.

In numerical linear algebra, a system of equations is said to be ill conditioned if the condition
number is large. The reason is that perturbations aligned with the singular vector corresponding
to the smallest singular value may be amplified dramatically when inverting the system. This is
exactly what happens in linear regression problems when the feature matrix X is not well condi-
tioned. The component of the noise that falls in the direction of the singular vector corresponding
to the smallest singular value blows up, as proven in the following theorem.

Lemma 3.2 (Noise amplification). Let X ∈ Rn×p be a matrix such that m singular values are
smaller than η and let

~y := X~β∗ + z, (55)

where the entries of ~z are iid standard Gaussians. Then, with probability at least 1−2 exp (−mε2/8)∣∣∣∣∣∣~βLS − ~β∗
∣∣∣∣∣∣

2
≥ m

√
1− ε
η

. (56)

Proof. Let X = USV T be the SVD of X, ~u1, . . . , ~up the columns of U and σ1, . . . , σp the singular
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values. By (44) ∣∣∣∣∣∣~βLS − ~β∗
∣∣∣∣∣∣2

2
=
∣∣∣∣V S−1UT~z

∣∣∣∣2
2

(57)

=
∣∣∣∣S−1UT~z

∣∣∣∣2
2

V is an orthogonal matrix (58)

=

p∑
i

(
~uTi ~z

)2

σ2
i

(59)

≥ 1

η2

m∑
i

(
~uTi ~z

)2
. (60)

The result follows because
∑m

i

(
~uTi ~z

)2 ≥ 1 − ε with probability at least 1 − 2 exp (−mε2/8) by
Theorem 2.10 in Lecture Notes 3 .

We illustrate noise amplification in least-squares regression through a simple example.

Example 3.3 (Noise amplification). Consider a linear-regression problem with data of the form

~y := X~β∗ + ~z, (61)

where

X :=



0.212 −0.099

0.605 −0.298

−0.213 0.113

0.589 −0.285

0.016 0.006

0.059 0.032


, ~β∗ :=

 0.471

−1.191

 , ~z :=



0.066

−0.077

−0.010

−0.033

0.010

0.028


. (62)

The `2 norm of the noise is 0.11. The feature matrix is ill conditioned, its condition number is
100,

X = USV T =



−0.234 0.427

−0.674 −0.202

0.241 0.744

−0.654 0.350

0.017 −0.189

0.067 0.257



1.00 0

0 0.01

−0.898 0.440

0.440 0.898

 . (63)

As a result, the component of ~z in the direction of the second singular vector is amplified by a
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factor of 100! By (44), the error in the coefficient estimate is

~βLS − ~β∗ = V S−1UT~z (64)

= V

1.00 0

0 100.00

UT~z (65)

= V

0.058

3.004

 (66)

=

1.270

2.723

 , (67)

so that the norm of the error satisfies ∣∣∣∣∣∣~βLS − ~β∗
∣∣∣∣∣∣

2

||~z||2
= 27.00. (68)

4

The feature matrix is ill conditioned if any subset of columns is close to being linearly dependent,
since in that case there must be a vector that is almost in the null space of the matrix. This occurs
when some of the feature vectors are highly correlated, a phenomenon known as multicollinearity
in the statistics ling. The following lemma shows how two feature vectors being very correlated
results in poor conditioning.

Lemma 3.4 (Proof in Section 5.2). For any matrix X ∈ Rn×p, with columns normalized to have
unit `2 norm, if any two distinct columns Xi and Xj satisfy

〈Xi, Xj〉2 ≥ 1− ε2 (69)

then σp ≤ ε, where σp is the smallest singular value of X.

3.2 Ridge regression

As described in the previous section, if the feature matrix is ill conditioned, then small shifts in
the data produce large changes in the least-squares solution. In particular, some of the coefficients
may blow up due to noise amplification. In order to avoid this, we can add a term penalizing the
norm of the coefficient vector to the least-squares cost function. The aim is to promote solutions
that yield a good fit with small coefficients. Incorporating prior assumptions on the desired
solution– in this case that the coefficients should not be too large– is called regularization. Least-
squares regression combined with `2-norm regularization is called ridge regression in statistics and
Tikhonov regularization in the inverse-problems literature.

Definition 3.5 (Ridge regression / Tikhonov regularization). For any X ∈ Rn×p and ~y ∈ Rp the
ridge-regression estimate is the minimizer of the optimization problem

~βridge := arg min
~β

∣∣∣∣∣∣~y −X~β
∣∣∣∣∣∣2

2
+ λ

∣∣∣∣∣∣~β∣∣∣∣∣∣2
2
, (70)

where λ > 0 is a fixed regularization parameter.
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As in the case of least-squares regression, the ridge-regression estimate has a closed form solution.

Theorem 3.6 (Ridge-regression estimate). For any X ∈ Rn×p and ~y ∈ Rn we have

~βridge :=
(
XTX + λI

)−1
XT~y. (71)

Proof. The ridge-regression estimate is the solution to a modified least-squares problem

~βridge = arg min
~β

∣∣∣∣∣∣
∣∣∣∣∣∣
~y

0

−
 X
√
λI

 ~β
∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

. (72)

By Theorem 2.1 the solution equals

~βridge :=

 X
√
λI

T  X
√
λI

−1  X
√
λI

T ~y
0

 (73)

=
(
XTX + λI

)−1
XT~y. (74)

When λ → 0 then ~βridge converges to the least-squares estimator. When λ → ∞, it converges to
zero.

The approximation X~βridge corresponding to the ridge-regression estimate is no longer the orthog-
onal projection of the data onto the column space of the feature matrix. It is a modified projection
where the component of the data in the direction of each left singular vector of the feature matrix
is shrunk by a factor of σ2

i / (σ2
i + λ) where σi is the corresponding singular value. Intuitively, this

reduces the influence of the directions corresponding to the smaller singular values which are the
ones responsible for more noise amplification.

Corollary 3.7 (Modified projection). For any X ∈ Rn×p and ~y ∈ Rn we have

~yridge := X~βridge (75)

=

p∑
i=1

σ2
i

σ2
i + λ

〈~y, ~ui〉 ~ui, (76)

where ~u1, . . . , ~up are the left singular vectors of X and σ1 ≥ . . . ≥ σp the corresponding singular
values.

Proof. Let X = USV T be the SVD of X. By the theorem,

X~βridge := X
(
XTX + λI

)−1
XT~y (77)

= USV T
(
V S2V T + λV V T

)−1
V SUT~y (78)

= USV TV
(
S2 + λI

)−1
V TV SUT~y (79)

= US
(
S2 + λI

)−1
SUT~y, (80)

since V is an orthogonal matrix.
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The following theorem shows that, under the assumption that the data indeed follow a linear
model, the ridge-regression estimator can be decomposed into a term that depends on the signal
and a term that depends on the noise.

Theorem 3.8 (Ridge-regression estimate). If ~y := X~β∗ + ~z, where X ∈ Rn×p, ~z ∈ Rn and
~β∗ ∈ Rp, then the solution of Problem (70) is equal to

~βridge = V



σ2
1

σ2
1+λ

0 · · · 0

0
σ2
2

σ2
2+λ

· · · 0

· · ·

0 0 · · · σ2
p

σ2
p+λ

V
T ~β∗ + V


σ1

σ2
1+λ

0 · · · 0

0 σ2
σ2
2+λ

· · · 0

· · ·

0 0 · · · σp
σ2
p+λ

U
T~z, (81)

where X = USV T is the SVD of X and σ1, . . . , σp are the singular values.

Proof. By Theorem 2.1 the solution equals

~βridge =
(
XTX + λI

)−1
XT

(
X~β∗ + ~z

)
(82)

=
(
V S2V T + λV V T

)−1
(
V S2V T ~β∗ + V SUT~z

)
(83)

= V
(
S2 + λI

)−1
V T
(
V S2V T ~β∗ + V SUT~z

)
(84)

= V
(
S2 + λI

)−1
S2V T ~β∗ + V

(
S2 + λI

)−1
SUT~z, (85)

because V is an orthogonal matrix.

If we consider the difference between the true coefficients ~β∗ and the ridge-regression estimator,
the term that depends on ~β∗ is usually known as the bias of the estimate, whereas the term that
depends on the noise is the variance. The reason is that if we model the noise as being random
and zero mean, then the mean or bias of the ridge-regression estimator equals the first term and
the variance is equal to the variance of the second term.

Corollary 3.9 (Bias of ridge-regression estimator). If the noise vector ~z is random and zero mean,

E
(
~βridge − ~β∗

)
= V


λ

σ2
1+λ

0 · · · 0

0 λ
σ2
2+λ

· · · 0

· · ·
0 0 · · · λ

σ2
p+λ

V T ~β∗. (86)

Proof. The result follows from the lemma and linearity of expectation.

Increasing λ increases the bias, moving the mean of the estimator farther from the true value of the
coefficients, but in exchange dampens the noise component. In statistics jargon, we introduce bias
in order to reduce the variance of the estimator. Calibrating the regularization parameter allows
us to adapt to the conditioning of the predictor matrix and the noise level in order to achieve a
good tradeoff between both terms.
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Figure 6: Coefficients in the ridge-regression model (blue) for different values of the regularization
parameter λ (horizontal axis). The fit to the data improves as we reduce λ (green). The relative error of

the coefficient estimate
∣∣∣∣∣∣~β∗ − ~βridge

∣∣∣∣∣∣
2
/
∣∣∣∣∣∣~β∗∣∣∣∣∣∣

2
is equal to one when λ is large (because ~βridge = 0), then

it decreases as λ is reduced and finally it blows up due to noise amplification (red).

Example 3.10 (Noise amplification (continued)). By Theorem 3.8, the ridge-regression estimator
for the regression problem in Example 3.3 equals

~βridge − ~β∗ = V

 λ
1+λ

0

0 λ
0.012+λ

V T ~β∗ − V

 1
1+λ

0

0 0.01
0.012+λ

UT~z, (87)

The regularization λ should be set so to achieve a good balance between the two terms in the
error. Setting λ = 0.01

~βridge − ~β∗ = −V

0.001 0

0 0.99

V T ~β∗ + V

0.99 0

0 0.99

UT~z (88)

=

0.329

0.823

 . (89)

The error is reduced significantly with respect to the least-squares estimate, we have∣∣∣∣∣∣~βridge − ~β∗
∣∣∣∣∣∣

2

||~z||2
= 7.96. (90)

Figure 6 shows the values of the coefficients for different values of the regularization parameter.
They vary wildly due to the ill conditioning of the problem. The figure shows how least squares
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(to the left where λ → 0) achieves the best fit to the data, but this does not result in a smaller
error in the coefficient vector. λ = 0.01 achieves a good compromise. At that point the coefficients
are smaller, while yielding a similar fit to the data as least squares. 4

3.3 Ridge regression as maximum-a-posteriori estimation

From a probabilistic point of view, we can view the ridge-regression estimate as a maximum-a-
posteriori (MAP) estimate. In Bayesian statistics, the MAP estimate is the mode of the posterior
distribution of the parameter that we aim to estimate given the observed data.

Definition 3.11 (Maximum-a-posteriori estimator). The maximum-a-posteriori (MAP) estimator

of a random vector of parameters ~β ∈ Rm given a realization of the data vector ~y is

~βMAP (~y) := arg max
~β
f~β | ~y

(
~β | ~y

)
, (91)

where f~β | ~y is the conditional pdf of the parameter ~β given the data ~y.

In contrast to ML estimation, the parameters of interest (in our case the regression coefficients)
are modeled as random variables, not as deterministic quantities. This allows us to incorporate
prior assumptions about them through their marginal distribution. Ridge regression is equivalent
to modeling the distribution of the coefficients as an iid Gaussian random vector.

Lemma 3.12 (Proof in Section 5.3). Let ~y ∈ Rn be a realization of a random vector

~y := X~β + ~z, (92)

where ~β and ~z are iid Gaussian random vectors with mean zero and variance σ2
1 and σ2

2, re-

spectively. If X ∈ Rn×m is known, then the MAP estimate of ~β is equal to the ridge-regression
estimate

~βMAP = arg min
~β

∣∣∣∣∣∣~y −X~β
∣∣∣∣∣∣2

2
+ λ

∣∣∣∣∣∣~β∣∣∣∣∣∣2
2
, (93)

where λ := σ2
2/σ

2
1.

3.4 Cross validation

An important issue when applying ridge regression, and also other forms of regularization, is how
to calibrate the regularization parameter λ. With real data, we do not know the true value of the
coefficients as in Example 3.3 (otherwise we wouldn’t need to do regression in the first place!). In
addition, we cannot rely on how well the model fits the data, since this will always occur for λ = 0,
which can lead to overfitting and noise amplification. However, we can evaluate the fit achieved by
the model on new data, different from the ones used to estimate the regression coefficients. If the
fit is accurate, this is a strong indication that the model is not overfitting the noise. Calibrating
the regularization parameter using a different set of data is known as cross validation.
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Algorithm 3.13 (Cross validation). Given a set of examples(
y(1), ~x (1)

)
,
(
y(2), ~x (2)

)
, . . . ,

(
y(n), ~x (n)

)
, (94)

which are centered and normalized, to determine the best value for λ we:

1. Partition the data into a training set Xtrain ∈ Rntrain×p, ~ytrain ∈ Rntrain and a validation set
Xval ∈ Rnval×p, ~yval ∈ Rnval, such that ntrain + nval = n.

2. Fit the model using the training set for every λ in a set Λ (usually a logarithmic grid of
values)

~βridge (λ) := arg min
~β

∣∣∣∣∣∣~ytrain −Xtrain
~β
∣∣∣∣∣∣2

2
+ λ

∣∣∣∣∣∣~β∣∣∣∣∣∣2
2

(95)

and evaluate the fitting error on the validation set

err (λ) :=
∣∣∣∣∣∣~ytrain −Xtrain

~βridge(λ)
∣∣∣∣∣∣2

2
. (96)

3. Choose the value of λ that minimizes the validation-set error

λcv := arg min
λ∈Λ

err (λ) . (97)

In practice, more sophisticated cross-validation procedures are applied to make an efficient use of
the data. For example, in k-fold cross validation we randomly partition the data into k sets of
equal size. Then we evaluate the fitting error k times, each time using one of the k sets as the
validation set and the rest as the training set.

Finally, it is important to note that if we have used the validation set to fit the regularization
parameter, we cannot use it to evaluate our results. This wouldn’t be fair, since we have calibrated
one the parameter to do well precisely on those data! It is crucial to evaluate the model on a test
set that is completely different from both the training and validation tests.

Example 3.14 (Prediction of house prices). In this example we consider the problem of predicting
the price of a house2. The features that we consider are:

1. Area of the living room.

2. Condition (an integer between 1 and 5 evaluating the state of the house).

3. Grade (an integer between 7 and 12 evaluating the house).

4. Area of the house without the basement.

5. Area of the basement.

6. The year it was built.

7. Latitude.

8. Longitude.

2The data are available at http://www.kaggle.com/harlfoxem/housesalesprediction
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Figure 7: Coefficients in the ridge-regression model (blue) for different values of the regularization
parameter λ (horizontal axis). The relative `2-norm error evaluated on the training data is shown in
green. The relative `2-norm error evaluated on the validation data is shown in purple.

9. Average area of the living room of the houses within 15 blocks.

We use 15 houses to train the data, a validation set of 15 houses to calibrate the regularization
parameter of the ridge regression model and a test set of 15 houses to evaluate the results. The
feature matrix has significant correlations (the condition number is equal to 9.94), so we decide to
apply ridge regression. Figure 7 shows the value of the coefficients obtained by fitting the model
to the training set for different values of λ. It also shows the corresponding relative `2-norm fit∣∣∣∣∣∣~y −X~βridge

∣∣∣∣∣∣
2

||~y||2
(98)

to the training and validation sets. For small λ the model fits the training set much better than
the validation set, a clear indication that it is overfitting. The validation-set error is minimized
for λ = 0.27. For that value the error is 0.672 on the validation set and 0.799 on the test set. In
contrast, the error of the least-squares estimator is 0.906 on the validation set and 1.186 on the
test set. Figure 8 shows the prices estimated by the least-squares and the ridge-regression models
plotted against the true prices. The least-squares estimate is much more accurate on the training
set than on the validation and test sets due to overfitting. Adding regularization and computing
a ridge-regression estimate substantially improves the prediction results on the test set. 4

4 Classification

In this section, we consider the problem of classification. The goal is to learn a model that assigns
one of several predefined categories to a set of examples, represented by the values of certain
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Figure 8: Prices estimated by the least-squares (blue) and the ridge-regression (orange) models plotted
against the true prices for the training, validation and test sets.

features, as in the case of regression. To be more precise, we have available n examples of category
labels and their corresponding features(

y(1), ~x (1)
)
,
(
y(2), ~x (2)

)
, . . . ,

(
y(n), ~x (n)

)
. (99)

The label y(i) indicates what category example i belongs to. Here, we consider the simple case
where there are only two categories and set the labels to equal either 0 or 1. Our aim is to predict
the label y(i) ∈ {0, 1} from p real-valued features ~x (i) ∈ Rp. This is a regression problem, where
the response is binary.

4.1 Perceptron

Inspired by linear regression, let us consider how to use a linear model to perform classification.
A reasonable idea is to fit a vector of coefficients ~β such that the label is predicted to equal 1 if
〈~x (i), ~β〉 is larger than a certain quantity, and 0 if it is smaller. This requires finding ~β ∈ Rp and
β0 such that

y(i) =

{
1 if β0 + 〈~x (i), ~β〉 > 0

0 otherwise
(100)

for as many 1 ≤ i ≤ n as possible. This method is called the perceptron algorithm. The model is
fit by considering each feature vector sequentially and updating ~β if the current classification is
wrong. This method is guaranteed to converge if the data are linearly separable, i.e. if there is a
hyperplane in the p-dimensional feature space Rp separating the two classes. However, if this is
not the case, then the method becomes unstable.

4.2 Logistic regression

Logistic regression is an example of a generalized linear model. Generalized linear models extend
the linear regression paradigm by incorporating a link function that performs an entry-wise non-
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Figure 9: The logistic function used as a link function in logistic regression.

linear transformation of the output of a linear model. In the case of logistic regression, this link
function is the logistic function

g (t) :=
1

1 + exp(−t)
, (101)

depicted in Figure 9. The output of g is always between 0 and 1. We can interpret the function as
a smoothed version of the step function used by the perceptron algorithm, as it maps large values
to 1 and small values to 0.

The logistic-regression model is of the form

y(i) ≈ g
(
β0 + 〈~x (i), ~β〉

)
. (102)

To simplify notation, from now on we assume that one of the feature vectors is equal to a constant,
so that β0 is included in ~β. The logistic-regression estimator is obtained by calibrating ~β in order
to optimize the fit to the training data. This can be achieved by maximizing the log-likelihood
function derived in the following theorem.

Theorem 4.1 (Logistic-regression cost function). Assume that y(1), . . . , y(n) are independent
samples from Bernoulli random variables with parameter

py(i) (1) := g
(
〈~x (i), ~β〉

)
, (103)

where the vectors ~x (1), . . . , ~x (n) ∈ Rp are known. The maximum-likelihood estimate of ~β given
y(1), . . . , y(n) is equal to

~βML :=
n∑
i=1

y(i) log g
(
〈~x (i), ~β〉

)
+
(
1− y(i)

)
log
(

1− g
(
〈~x (i), ~β〉

))
. (104)
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Proof. The likelihood L
(
~β
)

is defined as the joint pmf of the random variables y(1), . . . , y(n)

interpreted as a function of the coefficient vector. Due to the independence assumption,

L
(
~β
)

:= py(1),...,y(n)

(
y(1), . . . , y(n)

)
(105)

=
n∏
i=1

g
(
〈~x (i), ~β〉

)y(i) (
1− g

(
〈~x (i), ~β〉

))1−y(i)
. (106)

Maximizing this nonnegative function is the same as maximizing its logarithm, so the proof is
complete.

Even though it is quite implausible that the probabilistic assumptions assumed in this theorem
actually hold in practice, the corresponding log-likelihood function is very useful. It penalizes
classification errors in a smooth way and is easy to optimize (as we will see later on).

Definition 4.2 (Logistic-regression estimator). Given a set of examples
(
y(1), ~x (1)

)
,
(
y(2), ~x (2)

)
,

. . . ,
(
y(n), ~x (n)

)
, we define the logistic-regression coefficient vector as

~βLR :=
n∑
i=1

y(i) log g
(
〈~x (i), ~β〉

)
+
(
1− y(i)

)
log
(

1− g
(
〈~x (i), ~β〉

))
, (107)

where we assume that one of the features is always equal to one, so we don’t have to fit an intercept.
For a new feature vector ~x the logistic-regression prediction is

yLR :=

{
1 if g

(
〈~x, ~βLR〉

)
≥ 0,

0 otherwise.
(108)

The value g
(
〈~x, ~βLR〉

)
can be interpreted as the probability under the model that the label of the

example equals 1.

Example 4.3 (Flower classification). The Iris data set was compiled by the statistician Ronald
Fisher in 1936. It contains examples of three species of flowers, together with measurements
of the length and width of their sepal and petal. In this example, we consider the problem of
distinguishing between two of the species using only the sepal lengths and widths.

We assume that we just have access to 5 examples of Iris setosa (label 0) with sepal lengths 5.4,
4.3, 4.8, 5.1 and 5.7, and sepal widths 3.7, 3, 3.1, 3.8 and 3.8, and to 5 examples of Iris versicolor
(label 1) with sepal lengths 6.5, 5.7, 7, 6.3 and 6.1, and sepal widths 2.8, 2.8, 3.2, 2.3 and 2.8.
We want to classify two new examples: one has a sepal length of 5.1 and width 3.5, the other
has length 5 and width 2. β0 = 2.06. After centering and normalizing the data set (note that we
ignore the labels to center and normalize), we fit a logistic regression model, where the coefficient
vector equals

~βLR =

 32.1

−29.6

 (109)

and the intercept β0 equals 2.06. The coefficients suggest that versicolor has larger sepal length
than setosa, but smaller sepal width. The following table shows the values of the features, their
inner product with ~βLR and the output of the logistic function.
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Figure 10: The data used in Example 4.3 is plotted in different colors depending on the corresponding
flower species. The direction of ~βLR is shown as a black arrow. The heat map corresponds to the value

of g
(
〈~x, ~βLR〉+ β0

)
at every point. The two new examples are depicted as white diamonds.
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Figure 11: The data from the Iris data set plotted in different colors depending on the corresponding
flower species. The direction of ~βLR is shown as a black arrow. The heat map corresponds to the value

of g
(
〈~x, ~βLR〉+ β0

)
at every point.

25



0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

Figure 12: The coefficient vector ~βLR obtained by fitting a logistic-regression model to distinguish be-
tween 6 and 9. The vector is reshaped so that each coefficient is shown at the position of the corresponding
pixel.

i 1 2 3 4 5 6 7 8 9 10

~x (i)[1] -0.12 -0.56 -0.36 -0.24 0.00 0.33 0.00 0.53 0.25 0.17

~x (i)[2] 0.38 -0.09 -0.02 0.45 0.45 -0.22 -0.22 0.05 -0.05 -0.22

〈~x (i), ~βLR〉+ β0 -12.9 -13.5 -8.9 -18.8 -11.0 19.1 8.7 17.7 26.3 13.9

g
(
〈~x (i), ~βLR〉+ β0

)
0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00

Figure 10 shows the data, which are linearly separable, the direction of ~βLR (black arrow) and

a heat map of values for g
(
〈~x, ~βLR〉

)
which shows are assigned to what category and with how

much certainty. The two new examples are depicted as white diamonds, the first is assigned to
setosa and the second to versicolor with almost total certainty. Both decisions are correct.

Figure 11 shows the result of trying to classify between Iris virginica and Iris versicolor based
on petal length and sepal width. In this case the data is not linearly separable, but the logistic-
regression model still partitions the space in a way that approximately separates the two classes.

The value of the likelihood g
(
〈~x, ~βLR〉

)
allows us to quantify the certainty with which the model

classifies each example. Note that the examples that are misclassified are assigned low values. 4

Example 4.4 (Digit classification). In this example we use the MNIST data set3 to illustrate
image classification. We consider the task of distinguishing a digit from another. The feature
vector ~xi contains the pixel values of an image of a 6 (~yi = 1) or a 9 (~yi = 0). We use 2000
training examples to fit a logistic regression model. The coefficient vector is shown in Figure 12,
the intercept is equal to 0.053. The model manages to fit the training set perfectly. When tested
on 2000 new examples, it achieves a test error rate of 0.006. Figure 13 shows some test examples
and the corresponding probabilities assigned by the model. 4

3Available at http://yann.lecun.com/exdb/mnist/
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~x ~βT~x g
(
~βT~x+ β0

)
Pred.

True
label

~x ~βT~x g
(
~βT~x+ β0

)
Pred.

True
label

20.88 1.00 6 6 18.22 1.00 6 6

16.41 1.00 6 6 -14.71 0.00 9 9

-15.83 0.00 9 9 -17.02 0.00 9 9

7.612 0.9995 6 9 0.434 0.606 6 9

7.822 0.9996 6 9 -5.984 0.0025 9 6

-2.384 0.084 9 6 -1.164 0.238 9 6

Figure 13: Examples of digits in the MNIST data set along with the value of ~βT~x+β0 and the probability
assigned by the model.
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5 Proofs

5.1 Proof of Lemma 2.2

To ease notation let X̃ := X cent and x̃ := XT~1. Note that

~y cent = ~y − 1

n
~1~1T~y, (110)

X̃ = X − 1

n
~1 x̃T . (111)

By Theorem 2.1  ~βLS

βLS,0

 =

([
X ~1

]T [
X ~1

])−1 [
X ~1

]T
~y (112)

=

XTX x̃

x̃T n

−1 XT~y

~1T~y

 . (113)

We now apply the following lemma.

Lemma 5.1. For any matrices A ∈ Rm×, let

B = A− 1

n
x̃x̃T (114)

be invertible, then A x̃

x̃T n

−1

=

 B−1 − 1
n
B−1x̃

− 1
n
x̃TB−1 1

n
+ 1

n2 x̃
TB−1x̃

 (115)

Proof. One can check the result by multiplying the two matrices and verifying that the product
is the identity.

Setting A := XTX, we have

B = XTX − 1

n
x̃x̃T (116)

=

(
X − 1

n
~1 x̃T

)T (
X − 1

n
~1 x̃T

)
(117)

= X̃T X̃. (118)

As a result, by the lemma ~βLS

βLS,0

 =

 (
X̃T X̃

)−1

− 1
n

(
X̃T X̃

)−1

x̃

− 1
n
x̃T
(
X̃T X̃

)−1
1
n

+ 1
n2 x̃

T
(
X̃T X̃

)−1

x̃

XT~y

~1T~y

 (119)

=

 (
X̃T X̃

)−1

XT
(
~y − 1

n
~1~1T~y

)
− 1
n
x̃T
(
X̃T X̃

)−1

XT
(
~y − 1

n
~1~1T~y

)
+

~1T ~y
n

 , (120)
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which implies

X~βLS + βLS,0
~1 = X

(
X̃T X̃

)−1

XT~y cent − 1

n
~1x̃T

(
X̃T X̃

)−1

XT~y cent + av (~y)~1 (121)

= X̃
(
X̃T X̃

)−1

XT~y cent + av (~y)~1 (122)

= X̃
(
X̃T X̃

)−1

X̃T~y cent + av (~y)~1, (123)

where the last inequality follows from

X̃T~y cent =

(
X − 1

n
~1~1TX

)T (
~y − 1

n
~1~1T~y

)
(124)

= XT~y − 1

n
XT~1~1T~y − 1

n
XT~1~1T~y +

1

n2
XT~1~1T~1~1T~y (125)

= XT~y − 1

n
XT~1~1T~y (126)

= XT~y cent. (127)

Since ~β cent
LS =

(
X̃T X̃

)−1

X̃T~y cent the proof is complete.

5.2 Proof of Lemma 3.4

The orthogonal projection of Xi onto the span of Xj equals

Pspan(Xj) Xi = 〈Xi, Xj〉Xj (128)

so ∣∣∣∣Pspan(Xj) Xi

∣∣∣∣2
2

= 〈Xi, Xj〉2 ||Xj||22 = 1− ε2 (129)

and ∣∣∣∣∣∣Pspan(Xj)⊥ Xi

∣∣∣∣∣∣2
2

= ||Xi||22 −
∣∣∣∣Pspan(Xj) Xi

∣∣∣∣2
2

= ε2. (130)

Consider the unit norm vector ~w ∈ Rp

~w[l] :=


1√
2

if l = i

− 1√
2

if l = j

0 otherwise.

(131)
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We have

||X ~w||22 =
1

2
||Xi −Xj||22 (132)

=
1

2

∣∣∣∣∣∣Pspan(Xj) Xi + Pspan(Xj)⊥ Xi −Xj

∣∣∣∣∣∣2
2

(133)

=
1

2

∣∣∣∣Pspan(Xj) Xi −Xj

∣∣∣∣2
2

+
1

2

∣∣∣∣∣∣Pspan(Xj)⊥ Xi

∣∣∣∣∣∣2
2

(134)

=
1

2
||〈Xi, Xj〉Xj −Xj||22 +

ε2

2
(135)

=
〈Xi, Xj〉2

2
||Xj||22 +

ε2

2
(136)

= ε2. (137)

Finally by Theorem 2.7 in Lecture Notes 2

σp = min
||v||2=1

||X~v||2 ≥ ||X ~w||2 = ε. (138)

5.3 Proof of Lemma 3.12

By Bayes’ rule, the posterior pdf of ~x given ~y is equal to

f~β | ~y

(
~β | ~y

)
=
f~β,~y

(
~β, ~y
)

f~y (~y)
(139)

so for fixed ~y

arg max
~β
f~β | ~y

(
~β | ~y

)
= arg max

~β
f~β,~y

(
~β, ~y
)

(140)

= arg max
~β
f~β

(
~β
)
f~y | ~β

(
~y | ~β

)
. (141)

Since all the quantities are nonnegative, we can take logarithms

arg max
~β
f~β | ~y

(
~β | ~y

)
= arg max

~β
log f~β

(
~β
)

+ log f~y | ~β

(
~y | ~β

)
. (142)

Since, conditioned on ~β = ~β, ~y is iid Gaussian with mean X~β and variance σ2
2

log f~y | ~β

(
~y | ~β

)
= log

n∏
i=1

1√
2πσ2

exp

(
− 1

2σ2
2

(
~y[i]−

(
X~β
)

[i]
)2
)

(143)

= log
1√

(2π)nσn2
exp

(
− 1

2σ2
2

∣∣∣∣∣∣~y −X~β
∣∣∣∣∣∣2

2

)
(144)

= − 1

2σ2
2

∣∣∣∣∣∣~y −X~β
∣∣∣∣∣∣2

2
+ log

1√
(2π)nσn2

. (145)
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Similarly,

log f~β

(
~β
)

= − 1

2σ2
1

∣∣∣∣∣∣~β∣∣∣∣∣∣2
2

+ log
1√

(2π)nσn1
. (146)

Setting

λ :=
σ2

2

σ2
1

, (147)

combining (142), (145) and (146) and ignoring the terms that do not depend on ~β completes the
proof.
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