
Optimization-based data analysis Fall 2017

Lecture Notes 8:
Convex Nondifferentiable Functions

1 Applications

1.1 Sparse regression

In our description of linear regression in Lecture Notes 6, we assume implicitly that all features
are related to the response. However, this is often not the case in applications: some measured
features may be unrelated and should not be included in the model. Selecting relevant features is
a crucial problem in statistics, which is known as model selection. In this section, we consider the
problem of selecting a small subset of relevant features that yield a good linear approximation to
the data. This is equivalent to finding a sparse vector of coefficients ~β such that

y(i) ≈
〈
~x (i), ~β

〉
. (1)

The number of selected features is equal to the number of nonzero entries in ~β.

When fitting a sparse linear model we have two objectives:

• Achieving a good fit to the data;
∣∣∣∣∣∣X~β − ~y

∣∣∣∣∣∣2
2

should be as small as possible.

• Using a small number of features; ~β should be as sparse as possible.

This suggests minimizing a cost function that simultaneously promotes a good fit to the data and
sparsity in the vector of coefficients. In Lecture Notes 6 we describe the ridge-regression estimator,
that uses an `2-norm regularization term to ensure that the norm of the coefficients is not too large.
Here we would like to control the number of nonzeros in the support of the coefficient, i.e. its `0
“norm” instead. However, this “norm” is not convex and very difficult to minimize (see Example
1.8 in Lecture Notes 7). Instead, we incorporate an `1-norm regularization that promotes sparsity,
but is still convex. In statistics, the solution to an `1-norm-regularized least-squares problem is
called the lasso estimator, introduced in [9] (see also [6]).

Definition 1.1 (The lasso). For X ∈ Rn×p and ~y ∈ Rp, the lasso estimate is the minimizer of the
optimization problem

~βlasso := arg min
~β

1

2

∣∣∣∣∣∣~y −X~β
∣∣∣∣∣∣2
2

+ λ
∣∣∣∣∣∣~β∣∣∣∣∣∣

1
, (2)

where λ > 0 is a fixed regularization parameter.
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Figure 1: Coefficients of the lasso and ridge-regression estimates in the sparse regression problem in
Example 1.4 for α = 1, 5 examples (n = 5), ρ := −0.43 and different values of the regularization
parameter λ.

The following lemma shows that sums of convex functions are convex, so the lasso cost function
is indeed convex.

Lemma 1.2 (Nonnegative weighted sums). The weighted sum of m convex functions f1, . . . , fm

f :=
m∑
i=1

αi fi (3)

is convex as long as the weights α1, . . . , α ∈ R are nonnegative.

Proof. By convexity of f1, . . . , fm, for any ~x, ~y ∈ Rm and any θ ∈ (0, 1)

f (θ~x+ (1− θ) ~y) =
m∑
i=1

αi fi (θ~x+ (1− θ) ~y) (4)

≤
m∑
i=1

αi (θfi (~x) + (1− θ) fi (~y)) (5)

= θ f (~x) + (1− θ) f (~y) . (6)

Corollary 1.3 (Regularized least squares). Regularized least-squares cost functions of the form

||A~x− ~y||22 + ||~x|| , (7)

where ||·|| is an arbitrary norm, are convex.

Example 1.4 (Sparse regression with two features). We consider a simple sparse regression prob-
lem where the response only depends on one feature,

~y := α~x1 + ~z, (8)
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where ~y ∈ Rn is the response vector, ~x ∈ Rn contains the relevant feature and ~z ∈ Rn is additive
noise. In our data set, there are two features ~x1 and ~x2, which is irrelevant to the response.
However, we don’t know this a priori, so we use the feature matrix

X :=
[
~x1 ~x2

]
(9)

to fit a linear-regression model with both features by minimizing the least-squares cost function.
Both features are normalized so that ||~x1||2 = ||~x2||2 = 1. The correlation between them equals

ρ := 〈~x1, ~x2〉 . (10)

Unfortunately, the least-square estimate of the vector of coefficients is dense

~βLS =
(
XTX

)−1
XT~y (11)

=

1 ρ

ρ 1

−1 ~xT1 ~y
~xT2 ~y

 (12)

=
1

1− ρ2

 1 −ρ
−ρ 1

 α + ~xT1 ~z

αρ+ ~xT2 ~z

 (13)

=

α
0

+
1

1− ρ2

〈~x1 − ρ~x2, ~z〉
〈~x2 − ρ~x1, ~z〉

 (14)

unless the noise happens to be orthogonal to both ~x1 and ~x2, which is not the case with high
probability. Ridge regression also produces a dense estimate. In contrast, the lasso estimate is
sparse and correctly identifies the right feature. The value of the coefficients for the ridge-regression
and lasso estimators are shown in Figure 1 for α = 1, 5 examples (n = 5) and ρ := −0.43. For
large λ both estimators are equal to zero, as the regularization term dominates. For small λ
the estimators tend to the least-squares estimators. For intermediate values of λ, the `1-norm
regularization term promotes a sparse coefficient vector, whereas the `2-norm regularization term
does not. 4

Example 1.5 (Prostate cancer data set). In this example, we apply the lasso to a sparse regres-
sion problem related to the study of prostate cancer.1 The response is the level of prostate-specific
antigen (PSA) measured for a specific patient (high levels of PSA are an indication of cancer),
whereas the features are characteristics of the patient, including age, weight and other measure-
ments. We fit a sparse linear model to the data using the lasso. The training set contains 60
patients, whereas the test set contains 37 patients. Figure 2 shows the coefficients for different
values of the regularization parameter λ. The least-squares estimate (λ→ 0) achieves the smallest
`2 error on the training set using all of the features. The lasso estimate with λ between 0.1 and
0.5 incurs in a larger training error but achieves a similar, or better test error, with a smaller
number of coefficients (5 instead of 8), suggesting that the 3 remaining features are not related to
the response. 4
1The data is available here.
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Figure 2: Coefficients, training error and test error of the lasso estimate for different values of the
regularization parameter λ when applied to the sparse-regression problem in Example 1.5.

1.2 Robust principal-component analysis

Outliers may severely distort the results of applying principal-component analysis (PCA) to a set
of data that lie close to a low-dimensional subspace. Even one outlier can have a significant effect,
as illustrated in the following example.

Example 1.6 (PCA with an outlier). A data set contains five examples with three features each.
We apply PCA to these data by computing the SVD of the matrix

Y :=

−2 −1 5 1 2
−2 −1 0 1 2
−2 −1 0 1 2

 . (15)

All data points are aligned with the vector
[
1 1 1

]T
except for the third one, due to an outlier

that has corrupted one of the features (shown in red). Due of this outlier, the data matrix has
rank 2 instead of 1 and the principal directions are not aligned on the line that contains most of
the points. Figure 3 shows the data points, as well as the principal directions when the outlier is
present and when it is absent. 4

This is an example of a general phenomenon where a small number of corrupted entries disrupts
low-rank structure in a matrix, making it appear high rank, despite the correlations between
columns (or rows). As a result, computing the SVD does not uncover the low-rank component of
the data. An alternative is to fit a low rank + sparse model to the data, where the sparse com-
ponent accounts for the outliers and the low-rank component reveals the underlying correlations.
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Figure 3: The data points in Example 1.6 are plotted in red. On the left, the data contains no outliers
and the principal direction (blue) corresponding to the only nonzero singular value of the SVD of the data
matrix is aligned with all the points. On the right, adding the outlier distorts the principal directions (in
blue), which are two instead of one because the rank of the matrix increases by one.

+ =

L S Y

Figure 4: Y is obtained by summing a low-rank matrix L and a sparse matrix S.

Figure 4 shows a simulated example of this model. As illustrated in Examples 1.8 and 1.10, it is
usually not tractable to maximize sparsity and minimize rank directly. An alternative that often
works well is to penalize the `1 and nuclear norm respectively. This technique introduced by [3,5]
is often called robust PCA (RPCA), since it aims to obtain a low-rank component that is not
affected by the presence of outliers.

Algorithm 1.7 (Robust PCA). For Y ∈ Rn×m, the robust PCA estimator of the low-rank com-
ponent in Y is the minimizer of the optimization problem

LRPCA := arg min
L
||L||∗ + λ ||Y − L||1 , (16)

where λ > 0 is a fixed regularization parameter. Here ||·||1 denotes the sum of absolute values of
the entries of the matrix; it is the `1 norm of the vectorized matrix. SRPCA := Y − LRPCA is the
estimator of the sparse component.
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Figure 5: Values of the entries of the low-rank and sparse components for different values of λ computed
by applying RPCA to the data in Example 1.6.

Once the low-rank component has been recovered, PCA can be applied to it to determine its
principal directions. Figure 5 shows the result of applying RPCA to the data in Example 1.6.
If the parameter λ is in certain range, then the low-rank component exactly uncovers the rank-1
structure in the data and the sparse component identifies the outlier. In general, the regularization
parameter λ determines the weight of the two structure-inducing terms in the cost function.
Figure 6 shows the low-rank and sparse components of the matrix in Figure 4 for different values
of λ. If λ is too small, then it is cheap to increase the content of the sparse component, which
consequently won’t be very sparse. Similarly, if λ is too large, then the low-rank component
won’t be low-rank, as the nuclear-norm term has less influence. Setting λ correctly allows to
achieve a perfect decomposition. In practice, the regularization parameter is usually set using
cross validation.

Example 1.8 (Background subtraction). In computer vision, the problem of background sub-
traction is that of separating the background and foreground of a video sequence. In particular
we consider a scene with a static background. If we stack the video frames in a matrix Y , where
each column corresponds to a vectorized frame, and the background is completely static, then all
the frames are equal to a certain vector ~x ∈ Rm (m is the number of pixels in each frame) and the
matrix is rank 1,

Y =
[
~x ~x · · · ~x

]
= ~x

[
1 1 · · · 1

]
. (17)

If the background is not completely static, but instead experiences gradual changes, then the
matrix containing the frames will be approximately low rank. If there are sudden events in
the foreground that occupy a small part of the field of view and do not last very long, then
this is equivalent to adding a sparse component (most entries are equal to zero) to the low-rank
background. The two components can consequently be separated using the robust PCA algorithm.
The results of applying this method to a real video sequence are shown in Figure 7. 4
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Figure 6: RPCA estimates of the low-rank and sparse components of the matrix in Figure 4 for different
values of the regularization parameter. For λ := 1/

√
n the components are recovered perfectly.
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Figure 7: Background subtraction results from a video. This example is due to Stephen Becker. The
code is available at http://cvxr.com/tfocs/demos/rpca.
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Figure 8: A nondifferentiable convex function (blue). The red supporting lines are specified by subgra-
dients that determine their slope.

2 Subgradients

2.1 Definition and properties

By Theorem 2.5 in Lecture Notes 7, differentiable functions are convex if and only if their epigraph
has a supporting hyperplane at every point. In more detail, a differentiable function f : Rn → R
is convex if and only at any point ~x ∈ Rn there exists a vector ~g such that

f (~y) ≥ f (~x) + 〈~g, ~y − ~x〉 (18)

for every ~y ∈ Rn. In the case of differentiable functions, ~g is the gradient of f at ~x. Non-
differentiable functions do not have gradients, but the existence of a supporting hyperplane still
characterizes convexity. The vector ~g that corresponds to such a hyperplane is called a subgradient.

Definition 2.1 (Subgradient). The subgradient of a function f : Rn → R at ~x ∈ Rn is a vector
~g ∈ Rn such that

f (~y) ≥ f (~x) + ~g T (~y − ~x) , for all ~y ∈ Rn. (19)

The set of all subgradients is called the subdifferential of the function at ~x.

Figure 8 shows a one-dimensional nondifferentiable convex function, along with some of the hy-
perplanes that support its epigraph. The following theorem establishes that a function is convex
if and only if a subgradient exists at every point.

Theorem 2.2 (Proof in Section 4.1). A function f : Rn → R is convex if and only if it has a
non-empty subdifferential at any ~x ∈ Rn. It is strictly convex if and only for all ~x ∈ Rn there
exists a subgradient ~g ∈ Rn such that

f (~y) ≥ f (~x) + ~g T (~y − ~x) , for all ~y ∈ Rn. (20)

Subgradients are a useful tool to characterize the minima of nondifferentiable convex functions.
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Theorem 2.3 (Optimality condition). A convex function attains its minimum value at a vector
x if and only if the zero vector is a subgradient of f at x. If the function is strictly convex, then
the minimum is unique.

Proof. By the definition of subgradient, if ~g := ~0 is a subgradient at ~x, then for any ~y ∈ Rn

f (~y) ≥ f (~x) + ~g T (~y − ~x) = f (~x) , (21)

which is equivalent to ~x being a global minimum of the function. If the function is strictly convex,
then the inequality is strict for all ~y 6= ~x.

A useful property is that the sum of subgradients of two or more functions is a subgradient of
their sum.

Lemma 2.4 (Sum of subgradients). Let ~g1 and ~g2 be subgradients at ~x ∈ Rn of f1 : Rn → R and
f2 : Rn → R respectively. Then ~g := ~g1 + ~g2 is a subgradient of f := f1 + f2 at ~x.

Proof. For any ~y ∈ Rn

f (~y) = f1 (~y) + f2 (~y) (22)

≥ f1 (~x) + ~g T1 (~y − ~x) + f2 (~y) + ~g T2 (~y − ~x) (23)

≥ f (~x) + ~g T (~y − ~x) . (24)

Another useful property is that the subgradient of a function scaled by a constant can be obtained
by scaling the subgradient.

Lemma 2.5 (Subgradient of scaled function). Let ~g1 be a subgradient at ~x ∈ Rn of f1 : Rn → R.
Then for any nonnegative η ∈ R ~g2 := η~g1 is a subgradient of f2 := ηf1 at ~x.

Proof. For any ~y ∈ Rn

f2 (~y) = ηf1 (~y) (25)

≥ η
(
f1 (~x) + ~g T1 (~y − ~x)

)
(26)

≥ f2 (~x) + ~g T2 (~y − ~x) . (27)

2.2 Examples of subdifferentials

If a function is differentiable at a given point, then the gradient is the only subgradient at that
point.

Theorem 2.6 (Subdifferential of differentiable functions). If a convex function f : Rn → R is
differentiable at ~x ∈ Rn, then its subdifferential at ~x only contains ∇f (~x).
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f(x) = |x|

Figure 9: Examples of supporting lines of the absolute value function at the origin. The subgradients
at the origin determine the slope of the lines.

Proof. By Theorem 2.5 in Lecture Notes 7 ∇f (~x) is a subgradient at ~x. Now, let ~g be an arbitrary
subgradient at ~x. By the definition of subgradient, for any 1 ≤ i ≤ n

f (~x+ α~ei) ≥ f (~x) + ~g Tα~ei (28)

= f (~x) + ~g[i]α, (29)

f (~x) ≥ f (~x− α~ei) + ~g Tα~ei (30)

= f (~x− α~ei) + ~g[i]α, (31)

where ~ei is the ith vector in the standard basis (all its entries are equal to zero, except the ith
entry which is equal to one). Combining both inequalities

f (~x)− f (~x− α~ei)
α

≤ ~g[i] ≤ f (~x+ α~ei)− f (~x)

α
. (32)

If we let α→ 0, this implies ~g[i] = ∂f(~x)
∂~x[i]

. Consequently, ~g = ∇f(~x).

The following lemma characterizes the subdifferential of the absolute value function.

Lemma 2.7 (Subdifferential of absolute value). The subdifferential of the absolute value function
|·| : R→ R at x is equal to {sign (x)} if x 6= 0 and to {g ∈ R | |g| ≤ 1} if x = 0.

Proof. If x 6= 0 the function is differentiable and the only subgradient is equal to the derivative
by Theorem 2.6. At x = 0, we need

|y| = f (0 + y) (33)

≥ f (0) + g (y − 0) (34)

≥ gy (35)

for all y ∈ R, which holds if and only if |g| ≤ 1.

As motivated in Section 1.1, the `1 norm is an important nondifferentiable convex function in data
analysis. The following theorem characterizes its subdifferential.
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Figure 10: On the left the blue lines are contour lines of the `1 norm in R2. The red arrows correspond
to subgradients at a point where the function is nondifferentiable. On the right the graph of the function
is shown in blue, and the supporting hyperplane corresponding to one of the subgradients (denoted by ~g
and a red line) is plotted in brown.

Theorem 2.8 (Subdifferential of `1 norm). The subdifferential of the `1 norm at ~x ∈ Rn is the
set of vectors ~g ∈ Rn that satisfy

~g[i] = sign (~x[i]) if ~x[i] 6= 0, (36)

|~g[i]| ≤ 1 if ~x[i] = 0. (37)

The theorem is a direct consequence of Lemma 2.7 and the following result.

Lemma 2.9. The vector ~g ∈ Rn is a subgradient of ||·||1 : Rn → R at ~x if and only if q[i] is a
subgradient of |·| : R→ R at ~x[i] for all 1 ≤ i ≤ n.

Proof. If ~g is a subgradient of ||·||1 at ~x then for any y ∈ R

|y| = |~x[i]|+ ||~x+ (y − ~x[i])~ei||1 − ||~x||1 (38)

≥ |~x[i]|+ ||~x||1 + ~g T (y − ~x[i])~ei − ||~x||1 (39)

= |~x[i]|+ ~g[i] (y − ~x[i]) , (40)

so ~g[i] is a subgradient of |·| at |~x[i]| for any 1 ≤ i ≤ n.

If ~g[i] is a subgradient of |·| at |~x[i]| for 1 ≤ i ≤ n then for any ~y ∈ Rn

||~y||1 =
n∑
i=1

|~y [i]| (41)

≥
n∑
i=1

|~x[i]|+ ~g[i] (~y [i]− ~x[i]) (42)

= ||~x||1 + ~g T (~y − ~x) (43)

so ~g is a subgradient of ||·||1 at ~x.
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Another important nondifferentiable convex function in data analysis is the nuclear norm (see
Section 1.2). The following theorem characterizes its subdifferential.

Theorem 2.10 (Subdifferential of the nuclear norm). Let X ∈ Rm×n be a rank-r matrix with
SVD USV T , where U ∈ Rm×r, V ∈ Rn×r and S ∈ Rr×r contains the nonzero singular values of
X. The subdifferential of the nuclear norm at X is the set of matrices of the form

G := UV T +W (44)

where W satisfies

||W || ≤ 1, (45)

UTW = 0, (46)

W V = 0. (47)

Proof. We only prove that a matrix of the form (44) is a valid subgradient. For the converse (all
subgradients are of this form) see [12]. By Pythagoras’ Theorem, for any ~x ∈ Rm with unit `2
norm we have ∣∣∣∣Prow(X) ~x

∣∣∣∣2
2

+
∣∣∣∣∣∣Prow(X)⊥ ~x

∣∣∣∣∣∣2
2

= ||~x||22 (48)

= 1. (49)

As result, since the rows of UV T are all in row (X) and the rows of W are in row (X)⊥ by
Condition (47)

||G||2 := max
{||~x||2=1 | ~x∈Rn}

||G~x||22 (50)

= max
{||~x||2=1 | ~x∈Rn}

∣∣∣∣UV T ~x
∣∣∣∣2
2

+ ||W ~x||22 (51)

= max
{||~x||2=1 | ~x∈Rn}

∣∣∣∣UV T Prow(X) ~x
∣∣∣∣2
2

+
∣∣∣∣∣∣W Prow(X)⊥ ~x

∣∣∣∣∣∣2
2

(52)

≤
∣∣∣∣UV T

∣∣∣∣2 ∣∣∣∣Prow(X) ~x
∣∣∣∣2
2

+ ||W ||2
∣∣∣∣∣∣Prow(X)⊥ ~x

∣∣∣∣∣∣2
2

(53)

≤ 1 by condition (45). (54)

Equality (51) follows from Pythagoras’ Theorem because the column spaces of U and W are
orthogonal by condition (46), which also implies

〈W,X〉 = 0. (55)

By equation (191) in Lecture Notes 2 〈
UV T , X

〉
= ||X||∗ . (56)

For any matrix Y ∈ Rm×n

||Y ||∗ ≥ 〈G, Y 〉 by (54) and Theorem 2.6 in Lecture Notes 2 (57)

= 〈G,X〉+ 〈G, Y −X〉 (58)

=
〈
UV T , X

〉
+ 〈G, Y −X〉 by (55) (59)

= ||X||∗ + 〈G, Y −X〉 by (56). (60)
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2.3 Analysis of the lasso estimator

In this section we derive an exact characterization of the solution to the lasso estimator for Ex-
ample 1.4. This illustrates how to use the subdifferential of a convex cost function to understand
the performance of its minimizer as an estimator.

Lemma 2.11 (Sparse regression with two features). Assume that α ≥ 0 and n ≥ 2. The lasso
estimator for the sparse-regression problem in Example 1.4 is of the form

~βlasso =

[
α + ~xT1 ~z − λ

0

]
(61)

as long as ∣∣~xT2 ~z − ρ~xT1 ~z∣∣
1− |ρ| ≤ λ ≤ α + ~xT1 ~z. (62)

Proof. The lasso cost function is strictly convex if n ≥ 2 and the matrix X is full rank (i.e. ρ 6= 0),
because the quadratic term corresponds to a positive definite quadratic form. By Theorem 2.3, to
establish that ~βlasso is the unique minimizer it suffices to prove that the zero vector is a subgradient
of the cost function at ~βlasso.

The gradient of the quadratic term

q
(
~β
)

:=
1

2

∣∣∣∣∣∣X~β − ~y
∣∣∣∣∣∣2
2

(63)

at ~βlasso equals

∇q
(
~βlasso

)
= XT

(
X~βlasso − ~y

)
. (64)

By Theorem 2.8, if only the first entry of ~βlasso is nonzero and nonnegative, then

~g`1 :=

[
1
γ

]
(65)

is a subgradient of the `1 norm at ~βlasso for any γ ∈ R such that |γ| ≤ 1. By Lemmas 2.4 and 2.5,

the sum of ∇q
(
~βlasso

)
and λ~g`1 is a subgradient of the lasso cost function at ~βlasso. If only the

first entry of ~βlasso is nonzero, this subgradient equals

~glasso := XT
(
X~βlasso − ~y

)
+ λ

[
1
γ

]
(66)

= XT
(
~βlasso[1]~x1 − α~x1 − ~z

)
+ λ

[
1
γ

]
(67)

=

 ~xT1 (~βlasso[1]~x1 − α~x1 − ~z
)

+ λ

~xT2

(
~βlasso[1]~x1 − α~x1 − ~z

)
+ λγ

 (68)

=

[
~βlasso[1]− α− ~xT1 ~z + λ

ρ~βlasso[1]− ρα− ~xT2 ~z + λγ

]
. (69)
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Figure 11: Coefficients of the lasso estimates in the sparse regression problem in Example 1.4 for α = 1,
5 examples (n = 5), ρ := −0.43 and different values of the regularization parameter λ.

The expression is equal to zero if

~βlasso[1] = α + ~xT1 ~z − λ, (70)

γ =
ρα + ~xT2 ~z − ρ~βlasso[1]

λ
(71)

=
~xT2 ~z − ρ~xT1 ~z

λ
+ ρ. (72)

In order to ensure that ~glasso is a valid subgradient for this choice, we need to check that (1) ~βlasso[1]
is indeed nonnegative, which is the case if λ satisfies equation (62), and (2) that |γ| ≤ 1. By the
triangle inequality

|γ| ≤
∣∣∣∣~xT2 ~z − ρ~xT1 ~zλ

∣∣∣∣+ |ρ| (73)

≤ 1, (74)

as long as λ satisfies equation (62). We conclude that ~0 is a subgradient of the cost function

at ~βlasso, which establishes that ~βlasso as given by equation (61) is the unique solution to the
optimization problem.

The lemma establishes that in this example the lasso estimator detects the relevant feature vector,
setting the coefficient of the irrelevant feature vector to zero, for a certain range of λ. Within
that range the coefficient corresponding to the relevant predictor scales linearly with λ. This is
confirmed in Figure 11.
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2.4 Analysis of robust PCA

In this section we analyze the RPCA estimator showing that it succeeds for the data in Exam-
ple 1.6. This is a cartoon example, but similar arguments can be used to analyze the algorithm in
a more general setting [4]. The main idea is to construct a subgradient of the cost function at the
ground truth that is equal to zero. This implies that the true low-rank and sparse components are
a solution to the problem, but not necessarily the unique solution. The following result shows that
if the subgradient satisfies two small additional constraints, then the solution is indeed unique.

Lemma 2.12 (Lemma 2.4 in [4]). Let L∗, S∗ ∈ Rm×n and

Y := L∗ + S∗. (75)

L∗ is a rank-r matrix with SVD UL∗SL∗V
T
L∗, where UL∗ ∈ Rm×r, VL∗ ∈ Rn×r and SL∗ ∈ Rr×r

contains the nonzero singular values of L∗. Assume there exists a matrix

G∗ := UL∗V
T
L∗ +W, (76)

where W is a matrix satisfying

||W || < 1 (77)

UTW = 0, (78)

W V = 0, (79)

and there also exists a matrix G`1 satisfying

G`1 [i, j] = − sign (S∗[i, j]) if S∗[i, j] 6= 0, (80)

|G`1 [i, j]| < 1 otherwise, (81)

where S∗ := Y − L∗, such that

G∗ + λG`1 = 0. (82)

Then the solution to the robust PCA problem (16) is unique and equal to L∗.

Proof. By Theorem 2.10 G∗ := UL∗V
T
L∗+W is a subgradient of the nuclear norm at L∗, whereas by

Theorem 2.8 G`1 is a subgradient of ||· − Y ||1 at L∗. As a result by Lemmas 2.4 and 2.5 G∗+λG`1

is a subgradient of the RPCA cost function at L∗. By Theorem 2.3 G∗ + λG`1 = 0 consequently
implies that L∗ is a solution. Uniqueness follows from the strict inequalities (77) and (81). The
proof is more involved and can be found in [4].

The following lemma establishes that the RPCA estimator recovers the low-rank and sparse com-
ponents for the data in Example 1.6 for any value of the outlier.

Lemma 2.13. Let

Y :=

−2 −1 α 1 2
−2 −1 0 1 2
−2 −1 0 1 2

 . (83)
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For any value of α the unique solution to the optimization problem

min
L
||L||∗ + λ ||Y − L||1 (84)

is

L∗ :=

−2 −1 0 1 2
−2 −1 0 1 2
−2 −1 0 1 2

 (85)

as long as

2√
30

< λ <

√
2

3
. (86)

Proof. In order to satisfy (80) and (76) at L∗, we set

G∗ = UL∗V
T
L∗ +W (87)

=
1√
30

1
1
1

 [−2 −1 0 1 2
]

+W, (88)

G`1 [1, 3] = − sign (α) . (89)

To ensure G∗ + λG`1 = 0 we set

W := λ sign (α)

0 0 1 0 0
0 0 −0.5 0 0
0 0 −0.5 0 0

 , (90)

where the entries are chosen so that (78) and (79) both hold, and

G`1 =


2

λ
√
30

1
λ
√
30
− sign (α) − 1

λ
√
30
− 2
λ
√
30

2
λ
√
30

1
λ
√
30

sign(α)
2

− 1
λ
√
30
− 2
λ
√
30

2
λ
√
30

1
λ
√
30

sign(α)
2

− 1
λ
√
30
− 2
λ
√
30

 . (91)

To complete the proof we need to check conditions (77) and (81). We have

||W ||2 =
3λ2

2
< 1, if λ <

√
2

3
, (92)

|G`1 [i, j]| ≤ max

{
1

2
,

2

λ
√

30

}
< 1, if λ >

2√
30
. (93)
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3 Minimizing nondifferentiable convex functions

3.1 Subgradient method

Consider the optimization problem

minimize f (~x) (94)

where f is convex but nondifferentiable. This implies that we cannot compute a gradient and
advance in the steepest descent direction as in gradient descent. However, we can generalize the
idea by using subgradients, which exist because f is convex. This is useful as long as it is efficient
to compute the subgradient of the function.

Algorithm 3.1 (Subgradient method). We set the initial point ~x (0) to an arbitrary value in Rn.
Then we compute

~x (k+1) = ~x (k) − αk ~g (k), (95)

where ~g (k) is a subgradient of f at ~x (k), until a convergence criterion is satisfied.

Interestingly, the subgradient method is not a descent method. The value of the cost function can
actually increase as the iterations progress. However, the method can be shown to converge at a
rate of order O (1/ε2) as long as the step size decreases along iterations, see [11].

We now apply the subgradient method to solve the lasso problem, i.e. least-squares regression
with `1-norm regularization. The cost function in the optimization problem,

minimize
1

2
||A~x− ~y||22 + λ ||~x||1 , (96)

is convex but not differentiable. By Theorem 2.8 sign (~x) is a subgradient of the `1 norm at ~x, so

~g(k) = AT
(
A~x (k) − ~y

)
+ λ sign

(
~x (k)

)
(97)

is a subgradient of the cost function at ~x (k).

Algorithm 3.2 (Subgradient method for sparse regression). Set the initial point ~x (0) to an arbi-
trary value in Rn. Update by setting

~x (k+1) := ~x (k) − αk
(
AT
(
A~x (k) − ~y

)
+ λ sign

(
~x (k)

))
, (98)

where αk > 0 is the step size, until a stopping criterion is met.

Figure 12 shows the result of applying this algorithm to an example in which A ∈ R2000×1000,
y = A~x∗+ ~z where ~x∗ is 100-sparse and ~z is iid Gaussian. The example illustrates that decreasing
the step size at each iteration achieves faster convergence.
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Figure 12: Subgradient method applied to least-squares regression with `1-norm regularization for
different choices of step size (α0 is a constant).
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3.2 Proximal gradient method

As we saw in the previous section, convergence of subgradient method is slow, both in terms of
theoretical guarantees and in the example of Figure 12. In this section we introduce an alternative
method that can be applied to a class of functions which is very useful for optimization-based data
analysis.

Definition 3.3 (Composite function). A composite function is a function that can be written as
the sum

f (~x) + h (~x) (99)

where f convex and differentiable and h is convex but not differentiable.

Clearly, the least-squares regression cost function with `1-norm regularization is of this form.

In order to motivate proximal methods, let us begin by interpreting the gradient-descent iteration
as the solution to a local linearization of the function.

Lemma 3.4. The minimum of the function

h (~x) := f
(
~x (k)

)
+∇f

(
~x (k)

)T (
~x− ~x (k)

)
+

1

2α

∣∣∣∣~x− ~x (k)
∣∣∣∣2
2

(100)

is ~x (k) − α∇f
(
~x (k)

)
.

Proof.

~x (k+1) := ~x (k) − αk∇f
(
~x (k)

)
(101)

= arg min
~x

∣∣∣∣~x− (~x (k) − αk∇f
(
~x (k)

))∣∣∣∣2
2

(102)

= arg min
~x
f
(
~x (k)

)
+∇f

(
~x (k)

)T (
~x− ~x (k)

)
+

1

2αk

∣∣∣∣~x− ~x (k)
∣∣∣∣2
2
. (103)

A natural generalization of gradient descent is to minimize the sum of h and the local first-order
approximation of f .

~x (k+1) = arg min
~x
f
(
~x (k)

)
+∇f

(
~x (k)

)T (
~x− ~x (k)

)
+

1

2αk

∣∣∣∣~x− ~x (k)
∣∣∣∣2
2

+ h (~x) (104)

= arg min
~x

1

2

∣∣∣∣x− (~x (k) − αk∇f
(
~x (k)

))∣∣∣∣2
2

+ αk h (~x) (105)

= proxαk h

(
~x (k) − αk∇f

(
~x (k)

))
. (106)

We have written the iteration in terms of the proximal operator of the function h.

Definition 3.5 (Proximal operator). The proximal operator of a function h : Rn → R is

proxh (~y) := arg min
~x
h (~x) +

1

2
||~x− ~y||22 . (107)
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Solving the modified local first-order approximation of the composite function iteratively yields
the proximal-gradient method, which will be useful if the proximal operator of h can be computed
efficiently.

Algorithm 3.6 (Proximal-gradient method). We set the initial point ~x (0) to an arbitrary value
in Rn. Then we compute

~x (k+1) = proxαk h

(
~x (k) − αk∇f

(
~x (k)

))
, (108)

until a convergence criterion is satisfied.

This algorithm may be interpreted as a fixed-point method. Indeed, fixed points of the proximal-
gradient iteration are a minima of the composite function and vice versa. This suggests applying
the iteration repeatedly to minimize the function, although it does not prove convergence (for this
we would need to prove that the operator is contractive, see [11]).

Theorem 3.7 (Fixed point of proximal operator). A vector ~x∗ is a solution to

minimize f (~x) + h (~x) , (109)

if and only if it is a fixed point of the proximal-gradient iteration

~x∗ = proxαh (~x∗ − α∇f (~x∗)) (110)

for any α > 0.

Proof. ~x∗ is a solution to the optimization problem if and only if there exists a subgradient ~g of h
at ~x∗ such that ∇f (~x∗) + ~g = 0. ~x∗ is the solution to

minimize αh (~x) +
1

2
||~x∗ − α∇f (~x∗)− x||22 , (111)

which is the case if and only if there exists a subgradient ~g of h at ~x∗ such that α∇f (~x∗)+α~g = 0.
As long as α > 0 the two conditions are equivalent.

Proximal methods are very useful for fitting sparse models because the proximal operator of the
`1 norm is very tractable.

Theorem 3.8 (Proximal operator of `1 norm). The proximal operator of the `1 norm weighted by
a constant α > 0 is the soft-thresholding operator

proxα ||·||1 (y) = Sα (~y) (112)

where

Sα (~y) [i] :=

{
~y [i]− sign (~y [i])α if |~y [i]| ≥ α,

0 otherwise.
(113)
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Proof. Writing the function as a sum,

α ||~x||1 +
1

2
||~y − ~x||22 =

n∑
i=1

α |~x[i]|+ 1

2
(~y[i]− ~x[i])2 (114)

reveals that it decomposes into independent nonnegative terms. The univariate function

h (x) := α |x|+ 1

2
(~y[i]− x)2 (115)

is strictly convex and consequently has a unique global minimum. It is also differentiable every-
where except at zero. If x ≥ 0 the derivative is λ+x−~y[i], so if ~y[i] ≥ α, the minimum is achieved
at ~y[i] − α. If ~y[i] < α the function is increasing for x ≥ 0, so the minimizer must be smaller or
equal to zero. The derivative for x < 0 is −α + x− ~y[i] so the minimum is achieved at ~y[i] + α if
~y[i] ≤ −α. Otherwise the function is decreasing for all x < 0. As a result, if −α < ~y[i] < α the
minimum must be at zero.

This result yields the following algorithm for least-squares with `1-norm regularization.

Algorithm 3.9 (Iterative Shrinkage-Thresholding Algorithm (ISTA)). We set the initial point
~x (0) to an arbitrary value in Rn. Then we compute

~x (k+1) = Sαk λ

(
~x (k) − αk AT

(
A~x (k) − ~y

))
, (116)

until a convergence criterion is satisfied.

ISTA can be accelerated using a momentum term as in Nesterov’s accelerated gradient method.
This yields a fast version of the algorithm called FISTA.

Algorithm 3.10 (Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)). We set the initial
point ~x (0) to an arbitrary value in Rn. Then we compute

~z (0) = ~x (0) (117)

~x (k+1) = Sαk λ

(
~z (k) − αk AT

(
A~z (k) − ~y

))
, (118)

~z (k+1) = ~x (k+1) +
k

k + 3

(
~x (k+1) − ~x (k)

)
, (119)

until a convergence criterion is satisfied.

ISTA and FISTA were proposed by Beck and Teboulle in [1]. ISTA is a descent method. It has
the same convergence rate as gradient descent O (1/ε) both with a constant step size and with
a backtracking line search, under the condition that ∇f be L-Lipschitz continuous. FISTA in
contrast is not a descent method, but it can be shown to converge in O (1/

√
ε) to an ε-optimal

solution.

To illustrate the performance of ISTA and FISTA, we apply them to the same example used in
Figure 12. Even without applying a backtracking line search both methods converge to a solution
of middle precision (around 10−3 or 10−4) much more rapidly than the subgradient method. The
results are shown in Figure 13.
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Figure 13: ISTA and FISTA applied to least-squares regression with `1-norm regularization.

4 Proofs

4.1 Proof of Theorem 2.2

We prove the statement about convexity. The statement about strict convexity can be proved in
a similar way.

The epigraph of a convex function is a convex set, meaning that it contains the line between any
of its points. As a consequence of the separating-hyperplane theorem, which states that there is
a separating hyperplane between any two disjoint convex sets (we omit the proof which can be
found in any text on convex analysis), such sets have a supporting hyperplane at every point. This
establishes that convex functions defined on Rn have a subgradient at every point.

Now assume that a function has a subgradient at every point. The for any ~x, ~y ∈ Rn and α ∈ R
there exists a subgradient ~g of f at α~x+ (1− α) ~y. This implies

f (~y) ≥ f (α~x+ (1− α) ~y) + ~g T (y − α~x− (1− α) ~y) (120)

= f (α~x+ (1− α) ~y) + α~g T (y − ~x) , (121)

f (~x) ≥ f (α~x+ (1− α) ~y) + ~g T (~x− α~x− (1− α) ~y) (122)

= f (α~x+ (1− α) ~y) + (1− α)~g T (y − ~x) . (123)

Multiplying equation (121) by 1− α and equation (123) by α and adding them together yields

αf (~x) + (1− α) f (~y) ≥ f (α~x+ (1− α) ~y) . (124)

We conclude that the function is convex.
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