
Optimization-based data analysis Fall 2017

Lecture Notes 9:
Constrained Optimization

1 Compressed sensing

1.1 Underdetermined linear inverse problems

Linear inverse problems model measurements of the form

A~x = ~y (1)

where the data ~y ∈ Rn are the result of applying a linear operator represented by the matrix
A ∈ Rm×n to a signal ~x ∈ Rm. The aim is to recover ~x from ~y, assuming we know A. Math-
ematically, this is exactly equivalent to the linear-regression problem discussed in Lecture Notes
6. The difference is that in linear regression the matrix consists of measured features, whereas in
inverse problems the linear operator usually has a physical interpretation. For example, in imaging
problems the operator depends on the optical system used to obtain the data.

Each entry of ~y can be interpreted as a separate measurement of ~x

~y[i] = 〈Ai:, ~x〉 , 1 ≤ i ≤ n, (2)

where Ai: is the ith row of A. In many applications, it is desirable to reduce the number of
measurements as much as possible. However, by basic linear algebra, the number of measurements
must be at least equal to m. If m > n the system of equations (1) is underdetermined. Even if A
is full rank, its null space has dimension m− n by Corollary 1.16 in Lecture Notes 2. Any signal
of the form ~x+ ~w where ~w belongs to the null space of A is a solution to the system.

As we discussed in Lecture Notes 4 and 5, natural images, speech and other signals are often
compressible: they can be represented as sparse combinations of predefined atoms such as sinusoids
or wavelets. The goal of compressed sensing is to exploit the compressibility of signals in order
to reconstruct them from a smaller number of measurements. The idea is that although it is
impossible to recover an arbitrary m-dimensional signal from n measurements if m > n, it may be
possible to recover an m-dimensional signal that is parametrized by an s-dimensional vector, as
long as s < n. The simplest example of compressible structure is sparsity. We will mostly focus
on this case to illustrate the main ideas behind compressed sensing.

Example 1.1 (Compressed sensing in magnetic-resonance imaging). Magnetic resonance imaging
(MRI) is a popular medical-imaging technique that measures the response of the atomic nuclei
of body tissues to high-frequency radio waves when placed in a strong magnetic field. MRI
measurements can be modeled as samples from the 2D or 3D Fourier transform of the object that
is being imaged, for example a slice of a human brain. An estimate of the corresponding image
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Figure 1: Image of a brain obtained by MRI, along with the magnitude of its 2D discrete Fourier
transform (DFT) and the logarithm of this magnitude.

can be obtained by computing the inverse Fourier transform of the data, as shown in Figure 1. An
important challenge in MRI is to reduce measurement time: long acquisition times are expensive
and bothersome for the patients, especially for those that are seriously ill and for infants. Gathering
less measurements, or equivalently undersampling the 2D or 3D Fourier transform of the image of
interest, results in shorter data-acquisition times, but poses the challenge of recovering the image
from undersampled data. Fortunately, MR images tend to be compressible in the wavelet domain.
Compressed sensing of MR images consists of recovering the sparse wavelet coefficients from a
small number of Fourier measurements. 4

Example 1.2 (1D subsampled Fourier measurements). This cartoon example is inspired by com-
pressed sensing in MRI. We consider the problem of recovering a sparse signal from undersampled
Fourier data. The rows of the measurement matrix are a subset of the rows of a DFT matrix,
extracted following two strategies: regular and random subsampling. In regular subsampling we
select the odd rows of the matrix, whereas in random subsampling we just select the rows uniformly
at random. Figure 2 shows the real part of the matrices. Figure 3 shows the underdetermined
linear system corresponding to each of the subsampling strategies for a simple example where the
signal has sparsity 3. 4

1.2 When is sparse estimation well posed?

A first question that arises when we consider sparse recovery from underdetermined measurements
is under what conditions the problem is well posed. In other words, is it possible that there may
be other sparse signals that produce the same measurements? If that is the case, it is impossible to
determine which sparse signal actually generated the data and the problem is ill posed. Whether
this situation may arise or not depends on the spark of the measurement matrix.

Definition 1.3 (Spark). The spark of a matrix is the smallest subset of columns that is linearly
dependent.
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Figure 2: Real part of the DFT matrix, as well as the corresponding regularly-subsampled and randomly-
subsampled measurement matrix, represented as a heat map (above) and as samples from continuous
sinusoids (below).

Regular x2 subsampling Random x2 subsampling

Figure 3: Underdetermined linear system of equations corresponding to the subsampled Fourier matrices
in Figure 2.
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The spark sets a fundamental limit to the sparsity of vectors that can be recovered uniquely from
linear measurements.

Theorem 1.4. Let ~y := A~x ∗, where A ∈ Rm×n, ~y ∈ Rn and ~x ∗ ∈ Rm is a sparse vector with s
nonzero entries. The vector ~x ∗ is guaranteed to be the only vector with sparsity level equal to s
consistent with the measurements, i.e. the solution of

min
~x
||~x||0 subject to A~x = ~y, (3)

for any choice of ~x ∗ if and only if

spark (A) > 2s. (4)

Proof. ~x ∗ is the only sparse vector consistent with the data if and only if there is no other vector
~x′ with sparsity s such that A~x ∗ = A~x′. This occurs for any choice of ~x ∗ if and only if for any
pair of vectors ~x1 and ~x2 with sparsity level s, we have

A (~x1 − ~x2) 6= ~0. (5)

Let T1 and T2 denote the support of the nonzero entries of ~x1 and ~x2. Equation (5) can be written
as

AT1∪T2~α 6= ~0 for any ~α ∈ R|T1∪T2|. (6)

This is equivalent to all submatrices with at most 2s columns (the difference between 2 s-sparse
vectors can have at most 2s nonzero entries) having no nonzero vectors in their null space and
therefore being full rank, which is exactly the meaning of spark (A) > 2s.

If the spark of a matrix is greater than 2s then the matrix represents a linear operator that is
invertible when restricted to act upon s-sparse signals. However, it may still be the case that
two different sparse vectors could generate data that are extremely close, which would make it
challenging to distinguish them if the measurements are noisy. In order to ensure that stable
inversion is possible, we must in addition require that the distance between sparse vectors is
preserved, so that if ~x1 is far from ~x2 then A~x1 is guaranteed to be far from A~x2. Mathematically,
the linear operator should be an isometry when restricted to act upon sparse vectors.

Definition 1.5 (Restricted-isometry property). A matrix A satisfies the restricted-isometry prop-
erty with constant κs if for any s-sparse vector ~x

(1− κs) ||~x||2 ≤ ||A~x||2 ≤ (1 + κs) ||~x||2 . (7)

If a matrix A satisfies the restricted-isometry property (RIP) for a sparsity level 2s then for any pair
of vectors ~x1 and ~x2 with sparsity level s, the distance between their corresponding measurements
~y1 and ~y2 is lower bounded by the difference between the two vectors

||~y2 − ~y1||2 = A (~x1 − ~x2) (8)

≥ (1− κ2s) ||~x2 − ~x1||2 . (9)

4



Regular x2 subsampling Random x2 subsampling

0 10 20 30 40 50 60

0.0

0.2

0.4

0.6

0.8

1.0

C
o
rr

e
la

ti
o
n

0 10 20 30 40 50 60
0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

C
o
rr

e
la

ti
o
n

Figure 4: Correlation between the 20th column and the rest of the columns for the matrices described
in Example 1.2.

Figure 4 shows the correlation between one of the columns in the matrices matrices described
in Example 1.2 and the rest of the columns. For the regularly-subsampled Fourier matrix, there
exists another column that is exactly the same. No method will be able to distinguish the data
corresponding to even 1-sparse vectors, since the contributions of these two columns will be im-
possible to distinguish. The matrix does not even satisfy the RIP for a sparsity level equal to
two.

In the case of the randomly-subsampled Fourier matrix, column 20 is not highly correlated with any
other column. This does not immediately mean that the matrix satisfies the restricted-isometry
property. Unfortunately, verifying that a matrix satisfies the spark or the restricted-isometry
property is not computationally tractable (essentially, one has to check all possible sparse subma-
trices). However, we can prove that the RIP holds with high probability for random matrices. In
the following theorem we prove this statement for Gaussian iid matrices. The proof for random
Fourier measurements is more complicated [8, 10].

Theorem 1.6 (Restricted-isometry property for Gaussian matrices). Let A ∈ Rm×n be a random
matrix with iid standard Gaussian entries. 1√

m
A satisfies the restricted-isometry property for a

constant κs with probability 1− C2

n
as long as the number of measurements

m ≥ C1s

κ2s
log
(n
s

)
(10)

for two fixed constants C1, C2 > 0.

Proof. Let us fix an arbitrary support T of size s. The m × s submatrix AT of A that contains
the columns indexed by T has iid Gaussian entries, so by Theorem 3.7 in Lecture Notes 3 (in
particular equation (81)), its singular values are bounded by

√
m (1− κs) ≤ σs ≤ σ1 ≤

√
m (1 + κs) (11)
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with probability at least

1− 2

(
12

κs

)s
exp

(
−mκ

2
s

32

)
. (12)

This implies that for any vector ~x with support T

√
1− κs ||~x||2 ≤

1√
m
||A~x||2 ≤

√
1 + κs ||~x||2 . (13)

This is not enough for our purposes, we need this to hold for all supports of size s, i.e. on all
possible combinations of s columns selected from the n columns in A. A simple bound on the
binomial coefficient yields the following bound on the number of such combinations(

n

s

)
≤
(en
s

)s
. (14)

By the union bound (Theorem 3.4 in Lecture Notes 3), we consequently have that the bounds (13)
hold for any sparse-s vector with probability at least

1− 2
(en
s

)s(12

κs

)s
exp

(
−mκ

2
s

32

)
= 1− exp

(
log 2 + s+ s log

(n
s

)
+ s log

(
12

κs

)
− mκ2s

2

)
≤ 1− C2

n
(15)

for some constant C2 as long as m satisfies (10).

1.3 Sparse recovery via `1-norm minimization

Choosing the sparsest vector consistent with the available data is computationally intractable,
due to the nonconvexity of the `0 “norm” ball. Instead, we can minimize the `1 norm in order to
promote sparse solutions.

Algorithm 1.7 (Sparse recovery via `1-norm minimization). Given data ~y ∈ Rn and a matrix
A ∈ Rm×n, the minimum-`1-norm estimate is the solution to the optimization problem

min
~x
||~x||1 subject to A~x = ~y. (16)

Figure 5 shows the minimum `2- and `1-norm estimates of the sparse vector in the sparse re-
covery problem described in Example 1.2. In the case of the regularly-subsampled matrix, both
methods yield erroneous solutions that are sparse. As discussed previously, for that matrix the
sparse-recovery problem is ill posed. In the case of the randomly-subsampled matrix, `2-norm
minimization promotes a solution that contains a lot of small entries. The reason is that large
entries are very expensive because we are minimizing the square of the magnitudes. Such large
entries are not as expensive for the `1-norm cost function. As a result, the algorithm produces
a sparse solution that is exactly equal to the original signal. Figure 6 provides some geometric
intuition as to why the `1-norm minimization problem promotes sparse solutions.
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Figure 5: Minimum `2- and `1-norm estimates of the sparse vector in the sparse recovery problem
described in Example 1.2.

`2 norm `1 norm

Figure 6: Cartoon of the `2- and `1-norm minimization problems for a two-dimensional signal. The
lines represent the hyperplane of signals such that A~x = ~y. The `1-norm ball is spikier, so that as a result
the solution lies on a low-dimensional face of the norm ball. In contrast, the `2-norm ball is rounded and
this does not occur.
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Undersampling pattern Min. `2-norm estimate

Regular
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Figure 7: Two different sampling strategies in 2D k space: regular undersampling in one direction (top)
and random undersampling (bottom). The original data is the same as in Figure 1. On the right we see
the corresponding minimum-`2-norm estimate for each undersampling pattern.

Regular Random

Figure 8: Minimum-`1-norm for the two undersampling patterns shown in Figure 7.
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1.4 Sparsity in a transform domain

If the signal is sparse in a transform domain, then we can modify the optimization problem to
take this into account. Let W represent a wavelet transform, such that we assume that the
corresponding wavelet coefficients of the image are sparse. In that case, we solve the optimization
problem,

min
~x
||~c||1 subject to AW~c = ~y. (17)

If we want to recover the original ~c ∗ then we would need to verify that AW should satisfy the
RIP, which would require analyzing the inner products between the rows of the measurement A
(the measurement vectors) and the columns of W (the sparsifying basis functions). However, we
might be fine with any ~c ′ such that A~c ′ = ~x ∗. In that case, characterizing when the problem is
well posed is more challenging.

Figure 8 shows the result of applying `1-norm minimization to recover an image from the data
corresponding to the images shown in Figure 7. For regular undersampling, then the estimate is
essentially the same as the minimum-`2-norm estimate. This is not surprising, since the minimum-
`2-norm estimate is also sparse in the wavelet domain because it is equal to a superposition of
two shifted copies of the image. In contrast, `1-norm minimization recovers the original image
perfectly when coupled with random projections. Intuitively, `1-norm minimization cleans up the
noisy aliasing caused by random undersampling.

2 Constrained optimization

2.1 Convex sets

A set is convex if it contains all segments connecting points that belong to it.

Definition 2.1 (Convex set). A convex set S is any set such that for any ~x, ~y ∈ S and θ ∈ (0, 1)

θ~x+ (1− θ) ~y ∈ S. (18)

Figure 9 shows a simple example of a convex and a nonconvex set.

The following lemma establishes that the intersection of convex sets is convex.

Lemma 2.2 (Intersection of convex sets). Let S1, . . . ,Sm be convex subsets of Rn, ∩mi=1Si is convex.

Proof. Any ~x, ~y ∈ ∩mi=1Si also belong to S1. By convexity of S1 θ~x + (1− θ) ~y belongs to S1 for
any θ ∈ (0, 1) and therefore also to ∩mi=1Si.

The following theorem shows that projection onto non-empty closed convex sets is unique.

9



Theorem 2.3 (Projection onto convex set). Let S ⊆ Rn be a non-empty closed convex set. The
projection of any vector vx ∈ Rn onto S

PS (~x) := arg min
~y∈S
||~x− ~y||2 (19)

exists and is unique.

Proof. Existence

Since S is non-empty we can choose an arbitrary point ~y ′ ∈ S. Minimizing ||~x− ~y||2 over S
is equivalent to minimizing ||~x− ~y||2 over S ∩ {~y | ||~x− ~y||2 ≤ ||~x− ~y ′||2}. Indeed, the solution
cannot be a point that is farther away from ~x than ~y ′. By Weierstrass’s extreme-value theorem,
the optimization problem

minimize ||~x− ~y||22 (20)

subject to s ∈ S ∩ {~y | ||~x− ~y||2 ≤ ||~x− ~y ′||2} (21)

has a solution because ||~x− ~y||22 is a continuous function and the feasibility set is bounded and
closed, and hence compact. Note that this also holds if S is not convex.

Uniqueness

Assume that there are two distinct projections ~y1 6= ~y2. Consider the point

~y ′ :=
~y1 + ~y2

2
, (22)

which belongs to S because S is convex. The difference between ~x and ~y ′ and the difference
between ~y1 and ~y ′ are orthogonal vectors,

〈~x− ~y ′, ~y1 − ~y ′〉 =

〈
~x− ~y1 + ~y2

2
, ~y1 −

~y1 + ~y2
2

〉
(23)

=

〈
~x− ~y1

2
+
~x− ~y2

2
,
~x− ~y1

2
− ~x− ~y2

2

〉
(24)

=
1

4

(
||~x− ~y1||2 + ||~x− ~y2||2

)
(25)

= 0, (26)

because ||~x− ~y1|| = ||~x− ~y2|| by assumption. By Pythagoras’ theorem this implies

||~x− ~y1||22 = ||~x− ~y ′||22 + ||~y1 − ~y ′||22 (27)

= ||~x− ~y ′||22 +

∣∣∣∣∣∣∣∣~y1 − ~y22

∣∣∣∣∣∣∣∣2
2

(28)

> ||~x− ~y ′||22 (29)

because ~y1 6= ~y2 by assumption. We have reached a contradiction, so the projection is unique.

A convex combination of n points is any linear combination of the points with nonnegative coeffi-
cients that add up to one. In the case of two points, this is just the segment between the points.
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Nonconvex Convex

Figure 9: An example of a nonconvex set (left) and a convex set (right).

Definition 2.4 (Convex combination). Given n vectors ~x1, ~x2, . . . , ~xn ∈ Rn,

~x :=
n∑
i=1

θi~xi (30)

is a convex combination of ~x1, ~x2, . . . , ~xn as along as the real numbers θ1, θ2, . . . , θn are nonnegative
and add up to one,

θi ≥ 0, 1 ≤ i ≤ n, (31)
n∑
i=1

θi = 1. (32)

The convex hull of a set S contains all convex combination of points in S. Intuitively, it is the
smallest convex set that contains S.

Definition 2.5 (Convex hull). The convex hull of a set S is the set of all convex combinations of
points in S.

A possible justification of why we penalize the `1-norm to promote sparse structure is that the
`1-norm ball is the convex hull of 1-sparse vectors with unit norm, which form the intersection
between the `0 “norm” ball and the `∞-norm ball. The lemma is illustrated in 2D in Figure 10.

Lemma 2.6 (`1-norm ball). The `1-norm ball is the convex hull of the intersection between the `0
“norm” ball and the `∞-norm ball.

Proof. We prove that the `1-norm ball B`1 is equal to the convex hull of the intersection between
the `0 “norm” ball B`0 and the `∞-norm ball B`∞ by showing that the sets contain each other.

B`1 ⊆ C (B`0 ∩ B`∞)

Let ~x be an n-dimensional vector in B`1 . If we set θi := |~x[i]|, where ~x[i] is the ith entry of ~x by
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~x[i], and θ0 = 1−∑n
i=1 θi we have

∑n
i=0 θi = 1 by construction, θi = |~x[i]| ≥ 0 and

θ0 = 1−
n+1∑
i=1

θi (33)

= 1− ||~x||1 (34)

≥ 0 because ~x ∈ B`1 . (35)

We can express now ~x as a convex combination of the standard basis vectors multiplied by the
sign of the entries of ~x sign (~x[1])~e1, sign (~x[2])~e2, . . . , sign (~x[n])~en, which belong to B`0 ∩ B`∞
since they have a single nonzero entry with magnitude equal to one, and the zero vector ~0, which
also belongs to B`0 ∩ B`∞ ,

~x =
n∑
i=1

θi sign (~x[i])~ei + θ0~0. (36)

C (B`0 ∩ B`∞) ⊆ B`1
Let ~x be an n-dimensional vector in C (B`0 ∩ B`∞). By the definition of convex hull, we can write

~x =
m∑
i=1

θi~yi, (37)

where m > 0, ~y1, . . . , ~ym ∈ Rn have a single entry bounded by one, θi ≥ 0 for all 1 ≤ i ≤ m and∑m
i=1 θi = 1. This immediately implies ~x ∈ B`1 , since

||~x||1 ≤
m∑
i=1

θi ||~yi||1 by the Triangle inequality (38)

≤
m∑
i=1

θi ||~yi||∞ because each ~yi only has one nonzero entry (39)

≤
m∑
i=1

θi (40)

≤ 1. (41)

2.2 Constrained convex programs

In this section we discuss convex optimization problems, which are problems in which a convex
function is minimized over a convex set.

Definition 2.7 (Convex optimization problem). An optimization problem is a convex optimization
problem if it can be written in the form

minimize f0 (~x) (42)

subject to fi (~x) ≤ 0, 1 ≤ i ≤ m, (43)

hi (~x) = 0, 1 ≤ i ≤ p, (44)

where f0, f1, . . . , fm, h1, . . . , hp : Rn → R are functions satisfying the following conditions
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Figure 10: Illustration of Lemma (2.6) The `0 “norm” ball is shown in black, the `∞-norm ball in blue
and the `1-norm ball in a reddish color.

• The cost function f0 is convex.

• The functions that determine the inequality constraints f1, . . . , fm are convex.

• The functions that determine the equality constraints h1, . . . , hp are affine, i.e. hi (~x) =
~aTi ~x+ bi for some ~ai ∈ Rn and bi ∈ R.

Any vector that satisfies all the constraints in a convex optimization problem is said to be feasible.
A solution to the problem is any vector ~x ∗ such that for all feasible vectors ~x

f0 (~x) ≥ f0 (~x ∗) . (45)

If a solution exists f (~x ∗) is the optimal value or optimum of the optimization problem.

Under the conditions in Definition 2.7 we can check that the feasibility set of the optimization
problem is indeed convex. Indeed, it corresponds to the intersection of several convex sets: the
0-sublevel sets of f1, . . . , fm, which are convex by Lemma 2.9 below, and the hyperplanes hi (~x) =
~aTi ~x+ bi. The intersection is convex by Lemma 2.2.

Definition 2.8 (Sublevel set). The γ-sublevel set of a function f : Rn → R, where γ ∈ R, is the
set of points in Rn at which the function is smaller or equal to γ,

Cγ := {~x | f (~x) ≤ γ} . (46)

Lemma 2.9 (Sublevel sets of convex functions). The sublevel sets of a convex function are convex.

Proof. If ~x, ~y ∈ Rn belong to the γ-sublevel set of a convex function f then for any θ ∈ (0, 1)

f (θ~x+ (1− θ) ~y) ≤ θf (~x) + (1− θ) f (~y) by convexity of f (47)

≤ γ (48)
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because both ~x and ~y belong to the γ-sublevel set. We conclude that any convex combination of
~x and ~y also belongs to the γ-sublevel set.

If both the cost function and the constraint functions of a convex optimization problem are affine,
the problem is a linear program.

Definition 2.10 (Linear program). A linear program is a convex optimization problem of the form

minimize ~aT~x (49)

subject to ~cTi ~x ≤ di, 1 ≤ i ≤ m, (50)

A~x = ~b. (51)

It turns out that `1-norm minimization can be cast as a linear program.

Theorem 2.11 (`1-norm minimization as a linear program). The optimization problem

minimize ||~x||1 (52)

subject to A~x = ~b (53)

can be recast as the linear program

minimize
n∑
i=1

~t[i] (54)

subject to ~t[i] ≥ ~ei
T~x, (55)

~t[i] ≥ −~ei T~x, (56)

A~x = ~b. (57)

Proof. To show that the linear problem and the `1-norm minimization problem are equivalent, we
show that they have the same set of solutions.

Let us denote an arbitrary solution of the linear program by
(
~x lp,~t lp

)
. For any solution ~x `1 of the

`1-norm minimization problem, we define ~t `1 such that ~t `1 [i] :=
∣∣~x `1 [i]∣∣. (~x `1 ,~t `1) is feasible for

the LP so

∣∣∣∣~x `1∣∣∣∣
1

=
n∑
i=1

~t `1 [i] (58)

≥
n∑
i=1

~t lp[i] by optimality of ~t lp (59)

≥
∣∣∣∣~x lp

∣∣∣∣
1

by constraints (55) and (56). (60)

This implies that any solution of the linear program is also a solution of the `1-norm minimization
problem.

14



To prove the converse, we fix a solution ~x `1 of the `1-norm minimization problem. Setting ~t `1 [i] :=∣∣~x `1 [i]∣∣, we show that
(
~x `1 ,~t `1

)
is a solution of the linear program. Indeed,

n∑
i=1

t`1i =
∣∣∣∣~x `1∣∣∣∣

1
(61)

≤
∣∣∣∣~x lp

∣∣∣∣
1

by optimality of ~x `1 (62)

≤
n∑
i=1

~t lp[i] by constraints (55) and (56). (63)

If the cost function is a positive semidefinite quadratic form and the constraints are affine a convex
optimization problem is called a quadratic program (QP).

Definition 2.12 (Quadratic program). A quadratic program is a convex optimization problem of
the form

minimize ~xTQ~x+ ~aT~x (64)

subject to ~cTi ~x ≤ di, 1 ≤ i ≤ m, (65)

A~x = ~b, (66)

where Q ∈ Rn×n is positive semidefinite.

A corollary of Theorem 2.11 is that `1-norm regularized least squares can be cast as a QP.

Corollary 2.13 (`1-norm regularized least squares as a QP). The optimization problem

minimize ||A~x− y||22 + λ ||~x||1 (67)

can be recast as the quadratic program

minimize ~xTATA~x− 2~y T~x+ λ
n∑
i=1

~t[i] (68)

subject to ~t[i] ≥ ~ei
T~x, (69)

~t[i] ≥ −~ei T~x. (70)

2.3 Duality

The Lagrangian of an optimization problem combines the cost function and the constraints.

Definition 2.14. The Lagrangian of the optimization problem in Definition 2.7 is defined as the
cost function augmented by a weighted linear combination of the constraint functions,

L (~x, ~α, ~ν) := f0 (~x) +
m∑
i=1

~α[i] fi (~x) +

p∑
j=1

~ν[j]hj (~x) , (71)

where the vectors ~α ∈ Rm, ~ν ∈ Rp are called Lagrange multipliers or dual variables, whereas ~x is
the primal variable.
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The Lagrangian yields a family of lower bounds to the cost function of the optimization problem
at every feasible point.

Lemma 2.15. As long as ~α[i] ≥ 0 for 1 ≤ i ≤ m, the Lagrangian of the optimization problem in
Definition 2.7 lower bounds the cost function at all feasible points, i.e. if ~x is feasible then

L (~x, ~α, ~ν) ≤ f0 (~x) . (72)

Proof. If ~x is feasible and ~α[i] ≥ 0 for 1 ≤ i ≤ m then

~α[i] fi (~x) ≤ 0, (73)

~ν[j]hj (~x) = 0, (74)

which immediately implies (72).

Minimizing over the primal variable yields a family of lower bounds that only depends on the dual
variables. We call the corresponding function the Lagrange dual function.

Definition 2.16 (Lagrange dual function). The Lagrange dual function is the infimum of the
Lagrangian over the primal variable ~x

l (~α, ~ν) := inf
~x∈Rn

L (~x, ~α, ~ν) . (75)

Theorem 2.17 (Lagrange dual function as a lower bound of the primal optimum). Let ~x ∗ denote
an optimal value of the optimization problem in Definition 2.7,

l (~α, ~ν) ≤ ~x ∗, (76)

as long as ~α[i] ≥ 0 for 1 ≤ i ≤ n.

Proof. The result follows directly from (72),

~x ∗ = f0 (~x ∗) (77)

≥ L (~x ∗, ~α, ~ν) (78)

≥ l (~α, ~ν) . (79)

Optimizing the lower bound provided by the Lagrange dual function yields an optimization prob-
lem that is called the dual problem of the original optimization problem. The original problem is
called the primal problem in this context.

Definition 2.18 (Dual problem). The dual problem of the optimization problem from Defini-
tion 2.7 is

maximize l (~α, ~ν) (80)

subject to ~α[i] ≥ 0, 1 ≤ i ≤ m. (81)
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Note that the cost function is a pointwise supremum of linear (and hence convex) functions.

Lemma 2.19 (Supremum of convex functions). Pointwise supremum of a family of convex func-
tions indexed by a set I

fsup (~x) := sup
i∈I

fi (~x) . (82)

is convex.

Proof. For any 0 ≤ θ ≤ 1 and any ~x, ~y ∈ R,

fsup (θ~x+ (1− θ) ~y) = sup
i∈I

fi (θ~x+ (1− θ) ~y) (83)

≤ sup
i∈I

θfi (~x) + (1− θ) fi (~y) by convexity of the fi (84)

≤ θ sup
i∈I

fi (~x) + (1− θ) sup
j∈I

fj (~y) (85)

= θfsup (~x) + (1− θ) fsup (~y) (86)

As a result of the lemma, the dual problem is a convex optimization problem even if the primal is
nonconvex! The following result, which is an immediate corollary to Theorem 2.17, states that the
optimum of the dual problem is a lower bound for the primal optimum. This is known as weak
duality.

Corollary 2.20 (Weak duality). Let ~x ∗ denote an optimum of the optimization problem in Defi-
nition 2.7 and d∗ an optimum of the corresponding dual problem,

d∗ ≤ ~x ∗. (87)

In the case of convex functions, the optima of the primal and dual problems are often equal, i.e.

d∗ = ~x ∗. (88)

This is known as strong duality. A simple condition that guarantees strong duality for convex
optimization problems is Slater’s condition.

Definition 2.21 (Slater’s condition). A vector x ∈ Rn satisfies Slater’s condition for a convex
optimization problem if

fi (~x) < 0, 1 ≤ i ≤ m, (89)

Ax = b. (90)

A proof of strong duality under Slater’s condition can be found in Section 5.3.2 of [2].

The following theorem derives the dual problem for the `1-norm minimization problem with equal-
ity constraints.
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Theorem 2.22 (Dual of `1-norm minimization). The dual of the optimization problem of

min
~x
||~x ∈ Rm||1 subject to A~x = ~y (91)

is

max
~ν∈Rn

~y T~ν subject to
∣∣∣∣AT~ν∣∣∣∣∞ ≤ 1. (92)

Proof. The Lagrangian is equal to

L (~x, ~ν) = ||~x||1 + ~ν T (~y − A~x) , (93)

so the Lagrange dual function equals

l (~α, ~ν) := inf
~x∈Rn
||~x||1 − (AT~ν)T~x+ ~ν T~y. (94)

If (AT~ν)[i] > 1 then one can set ~x[i] arbitrarily large so that l (~α, ~ν) → −∞. The same happens
if (AT~ν)[i] < 1. If

∣∣∣∣AT~ν∣∣∣∣∞ ≤ 1, by Hölder’s inequality (Theorem 3.16 in Lecture Notes 1)∣∣(AT~ν)T~x
∣∣ ≤ ||~x||1 ∣∣∣∣AT~ν∣∣∣∣∞ (95)

≤ ||~x||1 , (96)

so the Lagrangian is minimized by setting ~x to zero and l (~α, ~ν) = ~ν T~y. This completes the
proof.

Interestingly, the solution to the dual of the `1-norm minimization problem can often be used to
estimate the support of the primal solution. Figure 11 shows that the vector AT~ν ∗, where A is
the underdetermined linear operator and ~ν ∗ is a solution to Problem (92), reveals the support of
the original signal for the randomly-subsampled data in Example 1.2.

Lemma 2.23. If the exists a feasible vector for the primal problem, then the solution ~ν ∗ to
Problem (92) satisfies

(AT~ν ∗)[i] = sign(~x ∗[i]) for all ~x ∗[i] 6= 0 (97)

for all solutions ~x ∗ to the primal problem.

Proof. If there is a feasible vector for the primal problem, then strong duality holds because the
optimization problem is a linear program with finite cost function. By strong duality

||~x ∗||1 = ~y T~ν ∗ (98)

= (A~x ∗)T~ν ∗ (99)

= (~x ∗)T (AT~ν ∗) (100)

=
m∑
i=1

(AT~ν ∗)[i]~x ∗[i]. (101)
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Figure 11: The vector AT~ν ∗, where A is the underdetermined linear operator and ~ν ∗ is a solution to
Problem (92), reveals the support of the original signal for the randomly-subsampled data in Example 1.2.

By Hölder’s inequality

||~x ∗||1 ≥
m∑
i=1

(AT~ν ∗)[i]~x ∗[i] (102)

with equality if and only if

(AT~ν ∗)[i] = sign(~x ∗[i]) for all ~x ∗[i] 6= 0. (103)

Consider the following algorithm for sparse recovery. Our goal is to find nonzero locations of a
sparse vector ~x from ~y = A~x. We have access to inner products of ~x and AT ~w for any ~w, since

~yT ~w = (A~x)T ~w (104)

= ~xT (AT ~w). (105)

This suggests maximizing AT ~w, while bounding its magnitude entries by 1. In that case, the
entries where ~x is nonzero should saturate to 1 or -1. This is exactly Problem (92)!

3 Analysis of constrained convex programs

3.1 Minimum `2-norm solution

The best-case scenario for the analysis of constrained convex program is that the optimization
problem has a closed-form solution. This is the case for `2-norm minimization.
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Theorem 3.1. Let A ∈ Rm×n be a full rank matrix such that m < n. For any ~y ∈ Rn the solution
to the optimization problem

arg min
~x
||~x||2 subject to A~x = ~y. (106)

is

~x ∗ := V S−1UT~y = AT
(
ATA

)−1
~y. (107)

Proof. Let us decompose ~x into its projection on the row space of A and on its orthogonal com-
plement

~x = Prow(A) ~x+ Prow(A)⊥ ~x. (108)

Let A = USV T be the reduced SVD of A where S contains the nonzero singular values. Since A
is full rank V contains an orthonormal basis of row (A) and we can write Prow(A) ~x = V ~c for some
vector ~c ∈ Rn. We have

A~x = AProw(A) ~x (109)

= USV TV ~c (110)

= US~c. (111)

So that the equality constraint is equivalent to

US~c = ~y, (112)

where US is square and invertible because A is full rank, so that

~c = S−1UT~y (113)

and hence for all feasible vectors ~x

Prow(A) ~x = V S−1UT~y. (114)

By Pythagoras’ theorem, minimizing ||~x||2 is equivalent to minimizing

||~x||22 =
∣∣∣∣Prow(A) ~x

∣∣∣∣2
2

+
∣∣∣∣∣∣Prow(A)⊥ ~x

∣∣∣∣∣∣2
2
. (115)

Since Prow(A) ~x is fixed by the equality constraint, the minimum is achieved by setting Prow(A)⊥ ~x
to zero and the solution equals

~x ∗ := V S−1UT~y = AT
(
ATA

)−1
~y. (116)

The next lemma exploits the closed-form solution of the minimum `2-norm to explain the aliasing
that occurs for the regularly-subsampled data in Figure 5.
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Lemma 3.2 (Regular subsampling). Let A be the regularly-subsampled DFT matrix in Exam-
ple 1.2 and let

~x :=

[
~xup
~xdown

]
(117)

be the original signal. The minimum `2-norm estimate equals

~x`2 := arg min
A~x=~y

||~x||2 (118)

=
1

2

[
~xup + ~xdown

~xup + ~xdown

]
. (119)

Proof. As is obvious in Figure 2 and we discussed in Example 1.15 of Lecture Notes 4, the matrix
A is equal to two concatenated DFT matrices of size m/2 (for simplicity we assume m is even)

A :=
1√
2

[
Fm/2 Fm/2

]
, (120)

where F ∗m/2Fm/2 = Fm/2F
∗
m/2 = I. By Theorem 3.1

~x`2 = AT
(
ATA

)−1
~y (121)

=
1√
2

[
F ∗m/2
F ∗m/2

](
1√
2

[
Fm/2 Fm/2

] 1√
2

[
F ∗m/2
F ∗m/2

])−1
1√
2

[
Fm/2 Fm/2

] [ ~xup
~xdown

]
(122)

=
1

2

[
F ∗m/2
F ∗m/2

](
1

2

[
Fm/2F

∗
m/2 + Fm/2F

∗
m/2

])−1 (
Fm/2~xup + Fm/2~xdown

)
(123)

=
1

2

[
F ∗m/2
F ∗m/2

]
I−1

(
Fm/2~xup + Fm/2~xdown

)
(124)

=
1

2

[
F ∗m/2

(
Fm/2~xup + Fm/2~xdown

)
F ∗m/2

(
Fm/2~xup + Fm/2~xdown

)] (125)

=
1

2

[
~xup + ~xdown

~xup + ~xdown

]
. (126)

3.2 Minimum `1-norm solution

Unfortunately, the solution to `1-norm minimization with linear constraints does not have a closed-
form solution. When we considered unconstrained nondifferentiable convex problems without
closed-form solutions in Lecture Notes 8, we characterized the solutions by exploiting the fact
that the zero vector is a subgradient of a convex cost function at a point if and only if the point
is a minimizer. Here we will use a different argument based on the dual problem (which can often
also be interpreted geometrically in terms of subgradients as we discuss below). The main idea is
to construct a dual feasible vector whose existence implies that the original signal which we aim
to recover is the unique solution to the primal.
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Consider a certain sparse vector ~x ∗ ∈ Rm with support T such that A~x ∗ = ~y. If there exists
a vector ~ν ∈ Rn such that AT~ν is equal to the sign of ~x on T and has magnitude smaller than
one elsewhere, then ν is feasible for the dual problem 92, so by weak duality ||~x||1 ≥ ~yT~ν for any
~x ∈ Rm that is feasible for the primal. We then have

||~x||1 ≥ ~yT~ν (127)

= (A~x ∗)T~ν (128)

= (~x ∗)T (AT~ν) (129)

=
m∑
i=1

~x ∗[i] sign(~x ∗[i]) (130)

= ||~x ∗||1 . (131)

Geometrically, AT~ν is a subgradient of the `1 norm at ~x ∗. The subgradient is orthogonal to
the feasibility hyperplane given by A~x = ~y (any vector ~v within the hyperplane is the difference
between two feasible vectors and therefore satisfies A~v = ~0). As a result, for any other feasible
vector ~x

||~x||1 ≥ ||~x ∗||1 + (AT~ν)T (~x− ~x ∗) (132)

= ||~x ∗||1 + ~νT (A~x− A~x ∗) (133)

= ||~x ∗||1 . (134)

These two arguments show that the existence of a certain dual vector can be used to establish
that a certain primal feasible vector is a solution, but they do not establish uniqueness. It turns
out that requiring that the magnitude of AT~ν be strictly smaller than one on T c is enough to
guarantee it (as long as A is full rank). In that case, we call the dual variable ~ν a dual certificate
for the `1-norm minimization problem.

Theorem 3.3 (Dual certificate for `1-norm minimization). Let ~x ∗ ∈ Rm with support T such that
A~x ∗ = ~y and the submatrix AT containing the columns of A indexed by T is full rank. If there
exists a vector ~ν ∈ Rn such that

(AT~ν)[i] = sign(~x ∗[i]) if ~x ∗[i] 6= 0 (135)∣∣(AT~ν)[i]
∣∣ < 1 if ~x ∗[i] = 0 (136)

then ~x ∗ is the unique solution to the `1-norm minimization problem (16).

Proof. For any feasible ~x ∈ Rm, let ~h := ~x − ~x ∗. If AT is full rank then ~hT c 6= 0 unless ~h = 0
because otherwise ~hT would be a nonzero vector in the null space of AT . Condition (136) implies∣∣∣∣∣∣~hT c

∣∣∣∣∣∣
1
> (AT~ν)T~hT c , (137)

where ~hT c denotes ~h restricted to the entries indexed by T c. Let PT (·) denote a projection that
sets to zero all entries of a vector except the ones indexed by T . We have

||~x||1 =
∣∣∣∣∣∣~x ∗ + PT (~h)

∣∣∣∣∣∣
1

+
∣∣∣∣∣∣~hT c

∣∣∣∣∣∣
1

because ~x ∗ is supported on T (138)

> ||~x ∗||1 + (AT~ν)TPT (~h) + (AT~ν)TPT c (~h) by (137) (139)

= ||~x ∗||1 + ~νTA~h (140)

= ||~x ∗||1 . (141)
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A strategy to prove that compressed sensing succeeds for a class of signals is to propose a dual-
certificate construction and show that it produces a valid certificate for any signal in the class.
We illustrate this with Gaussian matrices, but similar arguments can be extended to random
Fourier matrices [7] and other measurements [4] (see also [6] for a more recent proof technique
based on approximate dual certificates that provides better guarantees). It is also worth noting
that the restricted-isometry property can be directly used to prove exact recovery via `1-norm
minimization [5], but this technique is less general. Dual certificates can also be used to analyze
other problems such as matrix completion, super-resolution and phase retrieval.

Theorem 3.4 (Exact recovery via `1-norm minimization). Let A ∈ Rm×n be a random matrix with
iid standard Gaussian entries and ~x ∗ ∈ Rm a vector with s nonzero entries such that A~x ∗ = ~y.
Then ~x ∗ is the unique solution to the `1-norm minimization problem (16) with probability at least
1− 1

n
as long as the number of measurements satisfies

m ≥ Cs log n, (142)

for a fixed numerical constant C.

Proof. By Theorem 3.3 all we need to show is that for any support T of size s and any possible
sign pattern ~w := ~x ∗T ∈ Rs of the nonzero entries of ~x ∗ there exists a valid dual certificate ~ν. The
certificate must satisfy

AT
T~ν = ~w. (143)

Ideally we would like to analyze the vector ~ν satisfying this underdetermined system of s equations
such that AT

T c~ν has the smallest possible `∞ norm. Unfortunately, the solution to the optimization
problem

min
ν

∣∣∣∣AT
T c~ν
∣∣∣∣
∞ subject to AT

T~ν = ~w (144)

does not have a closed-form solution. However, the solution to

min
~ν
||~ν||2 subject to AT

T~ν = ~w (145)

does, so we can analyze it instead. By Theorem 3.1 the solution is

~ν`2 := AT
T

(
AT
TAT

)−1
~w. (146)

To control ~ν`2 we resort to the bound on the singular values of a fixed m × s submatrix in
equation (11). Setting κs := 0.5 we denote by E the event that

0.5
√
m ≤ σs ≤ σ1 ≤ 1.5

√
m, (147)

where

P (E) ≥ 1− exp
(
−C ′m

s

)
(148)
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for a fixed constant C ′. Conditioned on E AT is full rank and AT
TAT is invertible, so ~ν`2 guarantees

condition (135). In order to verify condition (136), we need to bound AT
i ~ν`2 for all indices i ∈ T c.

Let USVT be the SVD of AT . Conditioned on E we have

||~ν`2||2 =
∣∣∣∣VS−1UT ~w

∣∣∣∣
2

(149)

≤ ||~w||2
σs

(150)

≤ 2

√
s

m
. (151)

For a fixed i ∈ T c and a fixed vector ~v ∈ Rn, AT
i ~v/ ||~v||2 is a standard Gaussian random variable,

which implies

P
(∣∣AT

i ~v
∣∣ ≥ 1

)
= P

(∣∣AT
i ~v
∣∣

||~v||2
≥ ||~v||2

)
(152)

≤ 2 exp
(
− ||~v||22 /2

)
(153)

by the following lemma.

Lemma 3.5 (Proof in Section 4.1). For a Gaussian random variable u with zero mean and unit
variance and any t > 0

P (|u| ≥ t) ≤ 2 exp

(
−t

2

2

)
. (154)

Note that if i /∈ T then Ai and ~ν`2 are independent (they depend on different and hence indepen-
dent entries of A). This means that due to equation 151

P
(∣∣AT

i ~ν`2
∣∣ ≥ 1 | E

)
= P

(∣∣AT
i ~v
∣∣ ≥ 1 for ||ν||2 ≤ 2

√
s

m

)
(155)

≤ 2 exp
(
−m

8s

)
. (156)

As a result,

P
(∣∣AT

i ~ν`2
∣∣ ≥ 1

)
≤ P

(∣∣AT
i ~ν`2

∣∣ ≥ 1 | E
)

+ P (Ec) (157)

≤ 2 exp
(
−m

8s

)
+ exp

(
−C ′m

s

)
. (158)

We now apply the union bound to obtain a bound that holds for all i ∈ T c. Since T c has cardinality
at most n

P

(⋃
i∈T c

{∣∣AT
i ~ν`2

∣∣ ≥ 1
})
≤ n

(
2 exp

(
−m

8s

)
+ exp

(
−C ′m

s

))
. (159)

We can consequently choose a constant C so that if the number of measurements satisfies

m ≥ Cs log n (160)

we have exact recovery with probability 1− 1
n
.
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4 Proofs

4.1 Proof of Lemma 3.5

By symmetry of the Gaussian probability density function, we just need to bound the probability
that u > t. Applying Markov’s inequality (Theorem 2.6 in Lecture Notes 3) we have

P (u ≥ t) = P
(
exp (ut) ≥ exp

(
t2
))

(161)

≤ E
(
exp

(
ut− t2

))
(162)

= exp

(
−t

2

2

)
1√
2π

∫ ∞
−∞

exp

(
−(x− t)2

2

)
dx (163)

= exp

(
−t

2

2

)
. (164)
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