

Signal Representations

DS-GA 1013 / MATH-GA 2824 Mathematical Tools for Data Science https://cims.nyu.edu/~cfgranda/pages/MTDS_spring20/index.html

Carlos Fernandez-Granda

Motivation

Limitation of frequency representation: no time resolution

Limitation of Wiener filtering: cannot adapt to noisy signal

Windowing

Short-time Fourier transform

Multiresolution analysis

Denoising via thresholding

Speech signal

Problem: How to capture local fluctuations

First segment signal, then compute DFT

Naive segmentation: multiplication by rectangular window

Rectangular window

Rectangular window $\vec{\pi} \in \mathbb{C}^N$ with width 2w:

$$ec{\pi}\left[j
ight] := egin{cases} 1 & ext{if } \left|j
ight| \leq w, \ 0 & ext{otherwise.} \end{cases}$$

Is this a good choice?

Signal

1.00 -	1 1 1	1.	111	111	115	: 1	111	ļ
0.75 -								
0.50 -								
0.25 -								
0.00 -	•							
-0.25 -								
-0.50 -								
-0.75 -								
-1.00 -	11	4 1 1	* 1 1	111	14	11*	111	1
-100	-75	-50	-25	Ó	25	50	75	100
				Time				

Window

Windowed signal

DFT of windowed signal

DFT of signal

Multiplication in time is convolution in frequency

Let
$$y := x_1 \circ x_2$$
 for $x_1, x_2 \in \mathbb{C}^N$

The DFT of y equals

$$\hat{y} = \frac{1}{N}\hat{x}_1 * \hat{x}_2,$$

 \hat{x}_1 and \hat{x}_2 are the DFTs of x_1 and x_2 respectively

Proof

$$\hat{y} [k] := \sum_{j=1}^{N} x_1(j) x_2(j) \exp\left(-\frac{i2\pi k j}{N}\right)$$

= $\sum_{j=1}^{N} \frac{1}{N} \sum_{l=1}^{n} \hat{x}_1(l) \exp\left(\frac{i2\pi l j}{N}\right) x_2(j) \exp\left(-\frac{i2\pi k j}{N}\right)$
= $\frac{1}{N} \sum_{l=1}^{N} \hat{x}_1(l) \sum_{j=1}^{N} x_2(j) \exp\left(-\frac{i2\pi (k-l) j}{N}\right)$
= $\frac{1}{N} \sum_{l=1}^{N} \hat{x}_1(l) \hat{x}_2^{\downarrow l} [k]$

Rectangular window

$$ec{\pi}\left[j
ight] := egin{cases} 1 & ext{if } |j| \leq w, \ 0 & ext{otherwise,} \end{cases}$$

DFT of rectangular window

DFT of signal

DFT of windowed signal

Hann window

Hann window

The Hann window $h \in \mathbb{C}^N$ of width 2w equals

$$h[j] := \begin{cases} \frac{1}{2} \left(1 + \cos\left(\frac{\pi j}{w}\right) \right) & \text{if } |j| \le w, \\ 0 & \text{otherwise} \end{cases}$$

DFT of Hann window

Signal

1.00 -	1 1 1	1 .	111	111	115	: 1	111	ļ
0.75 -								
0.50 -								
0.25 -								
0.00 -	•							
-0.25 -								
-0.50 -								
-0.75 -								
-1.00 -	11	4 1 1	* 1 1	111	14	11*	111	1
-100	-75	-50	-25	Ó	25	50	75	100
				Time				

Hann window

Windowed signal

DFT of signal

DFT of Hann window

DFT of windowed signal

Time-frequency resolution

Time resolution governed by width of window

Can we just make the window arbitrarily narrow?

Compressing in time dilates in frequency and vice versa

 $x \in \mathcal{L}_2\left[-\mathcal{T}/2, \mathcal{T}/2
ight]$ is nonzero in a band of width 2w around zero

Let y be such that

$$y(t) = x(\alpha t)$$
, for all $t \in [-T/2, T/2]$,

for some positive real number α such that $\textit{w}/\alpha < \textit{T}$

The Fourier series coefficients of y equal

$$\hat{y}[k] = \frac{1}{\alpha} \left\langle x, \phi_{k/\alpha} \right\rangle$$

Proof

$$\hat{y}[k] = \int_{t=-T/2}^{T/2} y(t) \exp\left(-\frac{i2\pi kt}{T}\right) dt$$
$$= \int_{t=-w/\alpha}^{w/\alpha} x(\alpha t) \exp\left(-\frac{i2\pi kt}{T}\right) dt$$
$$= \frac{1}{\alpha} \int_{\tau=-w}^{w} x(\tau) \exp\left(-\frac{i2\pi k\tau}{\alpha T}\right) d\tau$$
$$= \frac{1}{\alpha} \int_{\tau=-T/2}^{T/2} x(\tau) \exp\left(-\frac{i2\pi k\tau}{\alpha T}\right) d\tau$$

w = 90

w = 30

w = 5

Time-frequency resolution

Fundamental trade-off

Uncertainty principle: cannot resolve in time and frequency simultaneously

Windowing

Short-time Fourier transform

Multiresolution analysis

Denoising via thresholding

Short-time Fourier transform

- 1. Segment in overlapping intervals of length ℓ
- 2. Multiply by window vector
- 3. Compute DFT of length ℓ

Short-time Fourier transform

The short-time Fourier transform of $x \in \mathbb{C}^N$ is

$$\mathsf{STFT}_{[\ell]}(x)[k,s] := \left\langle x, \xi_k^{\downarrow \, s(1-lpha_{\mathsf{ov}})\ell} \right\rangle, \quad 0 \le k \le \ell - 1, \ 0 \le s \le \frac{N}{(1-lpha_{\mathsf{ov}})\ell},$$

$$\xi_k[j] := egin{cases} w_{[\ell]}(j) \exp\left(rac{i2\pi k j}{\ell}
ight) & ext{if } 1 \leq j \leq \ell \ 0 & ext{otherwise} \end{cases}$$

Overlap between adjacent segments equals $\alpha_{\mathsf{ov}}\ell$
$k = 3 \ s = 2 \ (N := 500, \ \ell := 128, \ \alpha_{ov} := 0.5)$

 $k = 3 \ s = 3 \ (N := 500, \ \ell := 128, \ \alpha_{ov} := 0.5)$

 $k = 8 \ s = 2 \ (N := 500, \ \ell := 128, \ \alpha_{ov} := 0.5)$

 $k = 23 \ s = 6 \ (N := 500, \ \ell := 128, \ \alpha_{ov} := 0.5)$

Matrix representation of STFT

Computing the STFT

Number of segments: $n_{seg} := N/(1 - \alpha_{ov})\ell$

Complexity of multiplication by window: $n_{seg}\ell$

Complexity of applying DFT: $n_{seg} \ell \log \ell$ (FFT)

Total complexity: $O(N \log \ell)$ (overlap is a fixed fraction)

Inverting the STFT

Apply inverse DFT to each segment

Combine segments

Same complexity

Speech signal (window length = 62.5 ms)

Speech signal (window length = 62.5 ms)

Windowing

Short-time Fourier transform

Multiresolution analysis

Denoising via thresholding

Image

Vertical line (column 135)

Multiresolution analysis

Scale / resolution at which information is encoded is not uniform Goal: Decompose signals into components at different resolutions

Multiresolution decomposition

Let $N := 2^{K}$ for some K, a multiresolution decomposition of \mathbb{C}^{N} is a sequence of nested subspaces $\mathcal{V}_{K} \subset \mathcal{V}_{K-1} \subset \ldots \subset \mathcal{V}_{0}$ satisfying:

 $\blacktriangleright \mathcal{V}_0 = \mathbb{C}^N$

▶ \mathcal{V}_k is invariant to translations of scale 2^k for $0 \le k \le K$. If $x \in \mathcal{V}_k$ then

$$x^{\downarrow 2^k} \in \mathcal{V}_k$$
 for all $I \in \mathbb{Z}$

For any x ∈ V_j that is nonzero only between 1 and N/2, the dilated vector x_{↔2} belongs to V_{j+1}

Dilation

Let $x \in \mathbb{C}^N$ be such that x[j] = 0 for all $j \ge N/M$, where M is a positive integer

The dilation of x by a factor of M is

$$x_{\leftrightarrow M}[j] = x\left[\left\lceil \frac{j}{M} \right\rceil\right]$$

How to build a multiresolution decomposition

Set the coarsest subspace to be spanned by a low-frequency vector φ, called a scaling vector or father wavelet

$$\mathcal{V}_{\mathcal{K}} := \operatorname{span}(\varphi)$$
.

How to build a multiresolution decomposition

Decompose the finer subspaces into the direct sum

$$\mathcal{V}_k := \mathcal{W}_k \oplus \mathcal{V}_{k+1}, \qquad 0 \le k \le K - 1,$$

where \mathcal{W}_k captures the finest resolution available at level k

Set W_k to be spanned by shifts of a vector μ dilated to have the appropriate resolution:

$$\begin{split} \mathcal{V}_k &:= \mathcal{W}_k \oplus \mathcal{V}_{k+1}, \qquad 0 \le k \le K - 1, \\ \mathcal{W}_{K-1} &:= \bigoplus_{m=0}^{\frac{N-1}{2^{k+1}}} \operatorname{span} \left(\mu_{\leftrightarrow 2^k}^{\downarrow \, m2^{k+1}} \right). \end{split}$$

The vector μ is called a mother wavelet

Challenge

How to choose mother and father wavelets?

If chosen appropriately, basis vectors can be orthonormal

Haar wavelet basis

The Haar father wavelet φ is a constant vector, such that

$$\varphi[j] := \frac{1}{\sqrt{N}}, \qquad 1 \le j \le N$$

The mother wavelet μ satisfies

$$\mu[j] := \begin{cases} -\frac{1}{\sqrt{2}}, & j = 1, \\ \frac{1}{\sqrt{2}}, & j = 2, \\ 0, & j > 2 \end{cases}$$

Other options: Meyer, Daubechies, coiflets, symmlets, etc.

Haar wavelets

Multiresolution decomposition

 $\mathcal{P}_{\mathcal{V}_k} x$ is an approximation of x at scale 2^k

Vertical line (column 135)

Scale 2⁹

Approximation

Coefficients

Approximation

Coefficients

Coefficients Approximation 1.0 Data Approximation 0.8 0.8 0.6 0.6 0.4 0.2 0.4 0.0 0.2 0.0 0.2 0.4 0.6 0.8 1.0 ۰. 100 200 300 400 500 ò

Approximation

Scale 2⁵

Coefficients 1.0 Data Approximation 0.8 0.6 0.5 0.4 0.6 0.3 0.2 0.4 0.1 0.0 0.2 ż 4 Ó 6 100 200 300 400 500 ò

Approximation

ò

Coefficients Approximation 1.0 Data • Approximation 0.4 0.8 0.3 0.6 0.2 0.1 0.4 0.0 0.2 -0.1 20 10 ò 100 200 300 400 500

30

Approximation

Coefficients

125

Haar wavelets in the frequency domain

Time-frequency support of basis vectors

Extension to 2D by using outer products of 1D basis vectors

To build a 2D basis vector at scale (m_1, m_2) and shift (s_1, s_2) we set

$$v_{[s_1,s_2,m_1,m_2]}^{2D} := v_{[s_1,m_1]}^{1D} \left(v_{[s_2,m_2]}^{1D} \right)^T$$

where v^{1D} can refer to 1D father or mother wavelets

Nonseparable designs: steerable pyramid, curvelets, bandlets...

2D Haar wavelet basis vectors

Image

Approximation

Windowing

Short-time Fourier transform

Multiresolution analysis

Denoising via thresholding

Aim: Estimate signal x from data of the form

$$y = x + z$$

STFT coefficients of audio and wavelet coefficients of images are sparse

Coefficients of noise are dense

Idea: Get rid of small entries in

$$Ay = Ax + A\vec{z}$$

Why are noise coefficients dense?

- If \tilde{z} is Gaussian with mean μ and covariance matrix Σ , then for any A, $A\tilde{z}$ is Gaussian with mean $A\mu$ and covariance matrix $A\Sigma A^*$
- If A is orthogonal, iid zero mean noise is mapped to iid zero mean noise

Example

Thresholding

Hard-thresholding operator

$$\mathcal{H}_{\eta}\left(v
ight)\left[j
ight] := egin{cases} v\left[j
ight] & ext{if } \left|v\left[j
ight]
ight| > \eta \\ 0 & ext{otherwise} \end{cases}$$

Denoising via hard thresholding

Denoising via hard thresholding

Given data y and a sparsifying linear transform A

- 1. Compute coefficients *Ay*
- 2. Apply the hard-thresholding operator $\mathcal{H}_{\eta}: \mathbb{C}^n \to \mathbb{C}^n$ to Ay
- 3. Invert the transform

$$x_{\mathsf{est}} := \mathcal{LH}_{\eta}(Ay),$$

where L is a left inverse of A

Speech signal

STFT coefficients

Noisy signal

STFT coefficients

Thresholded STFT coefficients

Denoised signal

Denoised signal

Denoised signal (Wiener filtering)

Image

Wavelet coefficients

Noisy signal

Wavelet coefficients

Thresholded wavelet coefficients

Denoised signal

Comparison

Wiener filtering

Wavelet thresholding

Coefficients are structured

Coefficients are structured

Assumption: Coefficients are *group sparse*, nonzero coefficients *cluster* together

Threshold according to block of surrounding coefficients \mathcal{I}_j

$$\mathcal{B}_{\eta}\left(v\right)\left[j\right] := \begin{cases} v\left[j\right] & \text{if } j \in \mathcal{I}_{j} \quad \text{such that } \left|\left|v_{\mathcal{I}_{j}}\right|\right|_{2} > \eta,, \\ 0 & \text{otherwise}, \end{cases}$$

Denoising via block thresholding

Given data y and a sparsifying linear transform A

- 1. Compute coefficients Ay
- 2. Apply the block-thresholding operator $\mathcal{H}_{\eta}: \mathbb{C}^n \to \mathbb{C}^n$ to Ay
- 3. Inverting the transform

$$x_{\mathsf{est}} := L \mathcal{B}_{\eta} (Ay),$$

where L is a left inverse of A

Noisy STFT coefficients

Thresholded STFT coefficients

Block-thresholded STFT coefficients (block of length 5)

Thresholding

Block thresholding

Noisy wavelet coefficients

Thresholded wavelet coefficients

Block thresholded wavelet coefficients

Denoised signal

Comparison

