Principal component analysis

DS-GA 1013 / MATH-GA 2824 Mathematical Tools for Data Science https://cims.nyu.edu/~cfgranda/pages/MTDS_spring20/index.html

Carlos Fernandez-Granda

Discussion

Covariance matrix

The spectral theorem

Principal component analysis

Dimensionality reduction via PCA

Gaussian random vectors

Motivation: Multidimensional data

Center of dataset

Probabilistic perspective: Data sampled from random vector \tilde{x}
What is the center of the dataset?

Possible definition: Minimum difference to all the points on average

$$
\begin{aligned}
\text { Center } & :=\arg \min _{w \in \mathbb{R}^{d}} \mathrm{E}\left(\|\tilde{x}-w\|_{2}^{2}\right) \\
& =\arg \min _{w \in \mathbb{R}^{d}} \sum_{j=1}^{d} \mathrm{E}\left((\tilde{x}[j]-w[j])^{2}\right) \\
& =\left[\begin{array}{c}
\mathrm{E}(\tilde{x}[1]) \\
\cdots \\
\mathrm{E}(\tilde{x}[d])
\end{array}\right] \\
& =\mathrm{E}(\tilde{x})
\end{aligned}
$$

Center of dataset

In practice, we have a dataset of $n d$-dimensional vectors $\mathcal{X}:=\left\{x_{1}, \ldots, x_{n}\right\}$

What is the center of the dataset?
Reasonable choise: Sample mean

$$
\operatorname{av}(\mathcal{X}):=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

Geometric interpretation

$$
\begin{aligned}
\text { Geometric center } & :=\arg \min _{w \in \mathbb{R}^{d}} \sum_{i=1}^{n}\left\|x_{i}-w\right\|_{2}^{2} \\
& =\arg \min _{w \in \mathbb{R}^{d}} \sum_{j=1}^{d} \sum_{i=1}^{n}\left(x_{i}[j]-w[j]\right)^{2} \\
& =\left[\begin{array}{c}
\frac{1}{n} \sum_{i} x_{i}[1] \\
\cdots \\
\frac{1}{n} \sum_{i} x_{i}[1]
\end{array}\right] \\
& =\operatorname{av}(\mathcal{X})
\end{aligned}
$$

Centering

$$
c\left(x_{i}\right):=x_{i}-\operatorname{av}(\mathcal{X})
$$

Projection onto a fixed direction

Projection onto a fixed direction

Component in selected direction

Variance in direction of a fixed vector v

$$
\begin{aligned}
\operatorname{Var}\left(v^{\top} \tilde{x}\right) & =\mathrm{E}\left(\left(v^{\top} \tilde{x}-\mathrm{E}\left(v^{\top} \tilde{x}\right)\right)^{2}\right) \\
& =\mathrm{E}\left(\left(v^{\top} c(\tilde{x})\right)^{2}\right) \\
& =v^{\top} \mathrm{E}\left(c(\tilde{x}) c(\tilde{x})^{T}\right) v
\end{aligned}
$$

Covariance matrix

The covariance matrix of a random vector \tilde{x} is defined as

$$
\begin{aligned}
\Sigma_{\tilde{x}} & :=\mathrm{E}\left(c(\tilde{x}) c(\tilde{x})^{T}\right) \\
& =\left[\begin{array}{cccc}
\operatorname{Var}(\tilde{x}[1]) & \operatorname{Cov}(\tilde{x}[1], \tilde{x}[2]) & \cdots & \operatorname{Cov}(\tilde{x}[1], \tilde{x}[d]) \\
\operatorname{Cov}(\tilde{x}[1], \tilde{x}[2]) & \operatorname{Var}(\tilde{x}[2]) & \cdots & \operatorname{Cov}(\tilde{x}[2], \tilde{x}[d]) \\
\vdots & \vdots & \ddots & \vdots \\
\operatorname{Cov}(\tilde{x}[1], \tilde{x}[d]) & \operatorname{Cov}(\tilde{x}[2], \tilde{x}[d]) & \cdots & \operatorname{Var}(\tilde{x}[d])
\end{array}\right]
\end{aligned}
$$

Variance in direction of a fixed vector v

$$
\begin{aligned}
\operatorname{Var}\left(v^{\top} \tilde{x}\right) & =\mathrm{E}\left(\left(v^{\top} \tilde{x}-\mathrm{E}\left(v^{\top} \tilde{x}\right)\right)^{2}\right) \\
& =\mathrm{E}\left(\left(v^{\top} c(\tilde{x})\right)^{2}\right) \\
& =v^{\top} \mathrm{E}\left(c(\tilde{x}) c(\tilde{x})^{T}\right) v \\
& =v^{\top} \Sigma_{\tilde{x}} v
\end{aligned}
$$

Sample covariance matrix

For a dataset $\mathcal{X}=\left\{x_{1}, \ldots, x_{n}\right\}$

$$
\begin{aligned}
\Sigma_{\mathcal{X}} & :=\frac{1}{n} \sum_{i=1}^{n} c\left(x_{i}\right) c\left(x_{i}\right)^{T} \\
& =\left[\begin{array}{cccc}
\operatorname{var}(\mathcal{X}[1]) & \operatorname{cov}(\mathcal{X}[1], \mathcal{X}[2]) & \cdots & \operatorname{cov}(\mathcal{X}[1], \mathcal{X}[d]) \\
\operatorname{cov}(\mathcal{X}[1], \mathcal{X}[2]) & \operatorname{var}(\mathcal{X}[2]) & \cdots & \operatorname{cov}(\mathcal{X}[2], \mathcal{X}[d]) \\
\vdots & \vdots & \ddots & \vdots \\
\operatorname{cov}(\mathcal{X}[1], \mathcal{X}[d]) & \operatorname{cov}(\mathcal{X}[2], \mathcal{X}[d]) & \cdots & \operatorname{var}(\mathcal{X}[d])
\end{array}\right]
\end{aligned}
$$

where $\mathcal{X}_{i}:=\left\{x[i]_{1}, \ldots, x[i]_{n}\right\}$

Sample variance in direction of a fixed vector v

$$
\begin{aligned}
\operatorname{var}\left(\mathcal{P}_{v} \mathcal{X}\right) & :=\frac{1}{n} \sum_{i=1}^{n}\left(v^{T} x_{i}-\operatorname{av}\left(\mathcal{P}_{v} \mathcal{X}\right)\right)^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(v^{T}\left(x_{i}-\operatorname{av}(\mathcal{X})\right)\right)^{2} \\
& =v^{T}\left(\frac{1}{n} \sum_{i=1}^{n} c\left(x_{i}\right) c\left(x_{i}\right)^{T}\right) v \\
& =v^{T} \Sigma_{\mathcal{X}} v
\end{aligned}
$$

Sample variance $=229($ sample std $=15.1)$

Sample variance $=229($ sample std $=15.1)$

Component in selected direction
$f(v):=v^{\top} \Sigma_{\mathcal{X}} v$ for $\|v\|_{2}=1$

$f(v):=v^{T} \Sigma_{\mathcal{X}} v$ for $\|v\|_{2}=1$

Covariance matrix

The spectral theorem

Principal component analysis

Dimensionality reduction via PCA

Gaussian random vectors

Quadratic form

Function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ defined by

$$
f(x):=x^{T} A x
$$

where A is a $d \times d$ symmetric matrix
Generalization of quadratic functions to multiple dimensions
Goal: Study quadratic forms when $\|x\|_{2}=1$
Motivation: If A is a covariance matrix, f encodes directional variance

Does the function necessarily reach a maximum?

Does the function necessarily reach a maximum? Yes

- The function is continuous (second-order polynomial)
- Unit sphere is closed and bounded (contains all limit points)
- Image of unit sphere is also closed and bounded
- Image cannot grow towards limit it does not contain

Does the function necessarily reach a maximum? Yes

For any symmetric matrix $A \in \mathbb{R}^{d \times d}$, there exists $u_{1} \in \mathbb{R}^{d}$ such that

$$
u_{1}=\arg \max _{\|x\|_{2}=1} x^{T} A x
$$

Directional derivative

For any differentiable $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ and any $v \in \mathbb{R}^{d}$ such that $\|v\|_{2}=1$

$$
\begin{aligned}
f_{v}^{\prime}(x) & :=\lim _{h \rightarrow 0} \frac{f(x+h v)-f(x)}{h} \\
& =\langle\nabla f(x), v\rangle
\end{aligned}
$$

If $f_{v}^{\prime}(x)>0$, then $f(x+\epsilon v)>f(x)$ for sufficiently small $\epsilon>0$

Characterizing maximum of quadratic form

At the maximum u_{1}, we cannot have

$$
\begin{aligned}
f_{v}^{\prime}\left(u_{1}\right) & =\left\langle\nabla f\left(u_{1}\right), v\right\rangle \\
& \neq 0
\end{aligned}
$$

for any v such that $u_{1}+\epsilon v$ is in the constraint set
Wait a minute, can $u_{1}+\epsilon v$ be in our constraint set?

Tangent hyperplane

Unit sphere is level surface of

$$
g(x):=x^{\top} x
$$

$x+v$ is in the tangent plane of g at x if

$$
\nabla g(x)^{T} v=0
$$

If v is in the tangent plane, then $g_{v}^{\prime}(x)=0$, so

$$
g(x+\epsilon v) \approx g(x)
$$

i.e. $x+\epsilon v$ is arbitrarily close to the level surface

Can this point be a maximum of the quadratic form?

Red arrow $=$ gradient of quadratic form
Green line $=$ gradient of $g(x):=x^{\top} x$

Characterizing maximum of quadratic form

If

$$
\left\langle\nabla f\left(u_{1}\right), v\right\rangle \neq 0
$$

for some v in the tangent plane, then

$$
f\left(u_{1}+\epsilon v\right)>f\left(u_{1}\right)
$$

for a point that is almost on the unit sphere
Since f is continuous there exists a y on the sphere such that

$$
f(y) \approx f\left(u_{1}+\epsilon v\right)>f\left(u_{1}\right)
$$

Where is the maximum?

Red arrow $=$ gradient of quadratic form

Characterizing maximum of quadratic form

We need

$$
\left\langle\nabla f\left(u_{1}\right), v\right\rangle=0
$$

for all v in the tangent plane

Equivalent to $\nabla f\left(u_{1}\right)=\lambda_{1} \nabla g\left(u_{1}\right)$ for some $\lambda_{1} \in \mathbb{R}$. Then

$$
\begin{aligned}
\left\langle\nabla f\left(u_{1}\right), v\right\rangle & =\lambda_{1}\left\langle\nabla g\left(u_{1}\right), v\right\rangle \\
& =0
\end{aligned}
$$

Maxima and minima satisfy $\nabla f\left(u_{1}\right)=\lambda_{1} \nabla g\left(u_{1}\right)$
Red arrow $=$ gradient of quadratic form
Green line $=$ gradient of $g(x):=x^{\top} x$

Conclusion

Maximum satisfies $\nabla f\left(u_{1}\right)=\lambda_{1} \nabla g\left(u_{1}\right)$

$$
\begin{aligned}
\nabla f(x) & =\nabla x^{T} A x \\
& =2 A x \\
\nabla g(x) & =\nabla x^{T} x \\
& =2 x
\end{aligned}
$$

so $A u_{1}=\lambda_{1} u_{1}$, i.e. u_{1} is an eigenvector!

Conclusion

For any symmetric $A \in \mathbb{R}^{d \times d}$,

$$
u_{1}:=\arg \max _{\|x\|_{2}=1} x^{\top} A x
$$

is an eigenvector of A. There exists $\lambda_{1} \in \mathbb{R}$ such that

$$
A u_{1}=\lambda_{1} u_{1}
$$

Value of the maximum

We have

$$
\begin{aligned}
\max _{\|x\|_{2}=1} x^{T} A x & =u_{1}^{T} A u_{1} \\
& =\lambda_{1}
\end{aligned}
$$

Are there more eigenvectors?

Think about $A \in \mathbb{R}^{3 \times 3}$
We know u_{1} attains maximum
What happens on plane orthogonal to u_{1} ?
Without loss of generality assume $u_{1}=e_{3}$
Constraint set? Circle
Quadratic function?

$$
x^{T} A x=\left[\begin{array}{l}
x[1] \\
x[2]
\end{array}\right]^{T}\left[\begin{array}{ll}
A[1,1] & A[1,2] \\
A[2,1] & A[2,2]
\end{array}\right]\left[\begin{array}{l}
x[1] \\
x[2]
\end{array}\right]
$$

So there exists eigenvector $u_{2} \ldots$

Spectral theorem

If $A \in \mathbb{R}^{d \times d}$ is symmetric, then it has an eigendecomposition

$$
A=\left[\begin{array}{llll}
u_{1} & u_{2} & \cdots & u_{d}
\end{array}\right]\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
& & \cdots & \\
0 & 0 & \cdots & \lambda_{d}
\end{array}\right]\left[\begin{array}{llll}
u_{1} & u_{2} & \cdots & u_{d}
\end{array}\right]^{T},
$$

Eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{d}$ are real
Eigenvectors $u_{1}, u_{2}, \ldots, u_{n}$ are real and orthogonal

Spectral theorem

$$
\begin{aligned}
& \lambda_{1}=\max _{\|x\|_{2}=1} x^{T} A x \\
& u_{1}=\arg \max _{\|x\|_{2}=1} x^{T} A x \\
& \lambda_{k}=\max _{\|x\|_{2}=1, x \perp u_{1}, \ldots, u_{k-1}} x^{T} A x, \quad 2 \leq k \leq d \\
& u_{k}=\arg \max _{\|x\|_{2}=1, x \perp u_{1}, \ldots, u_{k-1}} x^{T} A x, \quad 2 \leq k \leq d
\end{aligned}
$$

How do we prove this?

Formalize intuition from 3×3 case through induction

Mathematical induction

If a statement \mathcal{S}_{d} dependent on d satisfies:

- \mathcal{S}_{1} holds (basis)
- If \mathcal{S}_{d-1} holds then \mathcal{S}_{d} holds (step)

Then \mathcal{S}_{d} is true for all natural numbers $d=1,2, \ldots$

Basis

For $d=1$ what is u_{1} and λ_{1} ?

Step

We know u_{1} exists and satisfies $A u_{1}=\lambda_{1} u_{1}$
Let us consider action of A on orthogonal complement of u_{1}

We want matrix A^{\prime} such that

$$
\begin{aligned}
& A^{\prime} u_{1}=0 \\
& A^{\prime} x=x \quad \text { if } x \perp u_{1}
\end{aligned}
$$

$$
A-\lambda_{1} u_{1} u_{1}^{T} \text { works }
$$

Step

We want to apply assumption about $d-1 \times d-1$ matrices
We need to "compress" $A-\lambda_{1} u_{1} u_{1}^{T}$
Let $V_{\perp} \in \mathbb{R}^{d \times d-1}$ contain orthonormal basis of $\operatorname{span}\left(u_{1}\right)^{\perp}$
$V_{\perp} V_{\perp}^{T}$ is projection matrix

$$
V_{\perp} V_{\perp}^{T}\left(A-\lambda_{1} u_{1} u_{1}^{T}\right) V_{\perp} V_{\perp}^{T}=A-\lambda_{1} u_{1} u_{1}^{T}
$$

We define symmetric $B:=V_{\perp}^{T}\left(A-\lambda_{1} u_{1} u_{1}^{T}\right) V_{\perp} \in \mathbb{R}^{d-1 \times d-1}$

Step

By induction assumption there exist $\gamma_{1}, \ldots, \gamma_{d-1}$ and w_{1}, \ldots, w_{d-1} such that

$$
\begin{aligned}
\gamma_{1} & =\max _{\|y\|_{2}=1} y^{\top} B y \\
w_{1} & =\arg \max _{\|y\|_{2}=1} y^{\top} B y \\
\gamma_{k} & =\max _{\|y\|_{2}=1, y \perp w_{1}, \ldots, w_{k-1}} y^{T} B y, \quad 2 \leq k \leq d-2 \\
w_{k} & =\arg \max _{\|y\|_{2}=1, y \perp w_{1}, \ldots, w_{k-1}} y^{\top} B y, \quad 2 \leq k \leq d-2
\end{aligned}
$$

Step

For any $x \in \operatorname{span}\left(u_{1}\right)^{\perp}, x=V_{\perp} y$ for some $y \in \mathbb{R}^{d-1}$

$$
\begin{aligned}
\max _{\|x\|_{2}=1, x \perp u_{1}} x^{T} A x & =\max _{\|x\|_{2}=1, x \perp u_{1}} x^{T}\left(A-\lambda_{1} u_{1} u_{1}^{T}\right) x \\
& =\max _{\|x\|_{2}=1, x \perp u_{1}} x^{T} V_{\perp} V_{\perp}^{T}\left(A-\lambda_{1} u_{1} u_{1}^{T}\right) V_{\perp} V_{\perp}^{T} x \\
& =\max _{\|y\|_{2}=1} y^{T} B y \\
& =\gamma_{1}
\end{aligned}
$$

Inspired by this: $u_{k}:=V_{\perp} w_{k-1}$ for $k=2, \ldots, d$
u_{1}, \ldots, u_{d} are orthonormal basis

Step: eigenvectors

$$
\begin{aligned}
A u_{k} & =V_{\perp} V_{\perp}^{T}\left(A-\lambda_{1} u_{1} u_{1}^{T}\right) V_{\perp} V_{\perp}^{T} V_{\perp} w_{k-1} \\
& =V_{\perp} B w_{k-1} \\
& =\gamma_{k-1} V_{\perp} w_{k-1} \\
& =\lambda_{k} u_{k}
\end{aligned}
$$

u_{k} is an eigenvector of A with eigenvalue $\lambda_{k}:=\gamma_{k-1}$

Step

Let $x \in \operatorname{span}\left(u_{1}\right)^{\perp}$ be orthogonal to $u_{k^{\prime}}$, where $2 \leq k^{\prime} \leq d$
There is $y \in \mathbb{R}^{d-1}$ such that $x=V_{\perp} y$ and

$$
\begin{aligned}
w_{k^{\prime}-1}^{T} y & =w_{k^{\prime}}^{T} V_{\perp}^{T} V_{\perp} y \\
& =u_{k^{\prime}}^{T} x \\
& =0
\end{aligned}
$$

Step: eigenvalues

Let $x \in \operatorname{span}\left(u_{1}\right)^{\perp}$ be orthogonal to $u_{k^{\prime}}$, where $2 \leq k^{\prime} \leq d$
There is $y \in \mathbb{R}^{d-1}$ such that $x=V_{\perp} y$ and

$$
w_{k^{\prime}-1}^{T} y=0
$$

$$
\begin{aligned}
x^{T} A x & =\max _{\|x\|_{2}=1, x \perp u_{1}, \ldots, u_{k-1}} x^{T} V_{\perp} V_{\perp}^{T}\left(A-\lambda_{1} u_{1} u_{1}^{T}\right) V_{\perp} V_{\perp}^{T} x \\
& =\max _{\|y\|_{2}=1, y \perp w_{1}, \ldots, w_{k-2}} y^{T} B y \\
& =\gamma_{k-1} \\
& =\lambda_{k}
\end{aligned}
$$

The spectral theorem

Principal component analysis

Dimensionality reduction via PCA

Spectral theorem

If $A \in \mathbb{R}^{d \times d}$ is symmetric, then it has an eigendecomposition

$$
A=\left[\begin{array}{llll}
u_{1} & u_{2} & \cdots & u_{d}
\end{array}\right]\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
& & \cdots & \\
0 & 0 & \cdots & \lambda_{d}
\end{array}\right]\left[\begin{array}{llll}
u_{1} & u_{2} & \cdots & u_{d}
\end{array}\right]^{T},
$$

Eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{d}$ are real
Eigenvectors $u_{1}, u_{2}, \ldots, u_{n}$ are real and orthogonal

Variance in direction of a fixed vector v

If random vector \tilde{x} has covariance matrix $\Sigma_{\tilde{x}}$

$$
\operatorname{Var}\left(v^{\top} \tilde{x}\right)=v^{T} \Sigma_{\tilde{x}} v
$$

Principal directions

Let u_{1}, \ldots, u_{d}, and $\lambda_{1}>\ldots>\lambda_{d}$ be the eigenvectors/eigenvalues of $\Sigma_{\tilde{x}}$

$$
\begin{aligned}
\lambda_{1} & =\max _{\|v\|_{2}=1} \operatorname{Var}\left(v^{\top} \tilde{x}\right) \\
u_{1} & =\arg \max _{\|v\|_{2}=1} \operatorname{Var}\left(v^{\top} \tilde{x}\right) \\
\lambda_{k} & =\max _{\|v\|_{2}=1, v \perp u_{1}, \ldots, u_{k-1}} \operatorname{Var}\left(v^{\top} \tilde{x}\right), \quad 2 \leq k \leq d \\
u_{k} & =\arg \max _{\|v\|_{2}=1, v \perp u_{1}, \ldots, u_{k-1}} \operatorname{Var}\left(v^{\top} \tilde{x}\right), \quad 2 \leq k \leq d
\end{aligned}
$$

Principal components

Let $c(\tilde{x}):=\tilde{x}-\mathrm{E}(\tilde{x})$

$$
\widetilde{p c}[i]:=u_{i}^{T} c(\tilde{x}), \quad 1 \leq i \leq d
$$

is the ith principal component

$$
\operatorname{Var}(\widetilde{p c}[i]):=\lambda_{i}, \quad 1 \leq i \leq d
$$

Principal components are uncorrelated

$$
\begin{aligned}
\mathrm{E}(\widetilde{p c}[i] \widetilde{p c}[j]) & =\mathrm{E}\left(u_{i}^{T} c(\tilde{x}) u_{j}^{T} c(\tilde{x})\right) \\
& =u_{i}^{T} \mathrm{E}\left(c(\tilde{x}) c(\tilde{x})^{T}\right) u_{j} \\
& =u_{i}^{T} \Sigma_{\tilde{x}} u_{j} \\
& =\lambda_{i} u_{i}^{T} u_{j} \\
& =0
\end{aligned}
$$

Principal components

For dataset \mathcal{X} containing $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}^{d}$

1. Compute sample covariance matrix $\Sigma_{\mathcal{X}}$
2. Eigendecomposition of $\Sigma_{\mathcal{X}}$ yields principal directions u_{1}, \ldots, u_{d}
3. Center the data and compute principal components

$$
p c_{i}[j]:=u_{j}^{T} c\left(x_{i}\right), \quad 1 \leq i \leq n, 1 \leq j \leq d
$$

where $c\left(x_{i}\right):=x_{i}-\operatorname{av}(\mathcal{X})$

First principal direction

First principal component

First principal component

Second principal direction

Second principal component

Sample variance in direction of a fixed vector v

$$
\operatorname{var}\left(\mathcal{P}_{v} \mathcal{X}\right)=v^{T} \Sigma_{\mathcal{X}} v
$$

Principal directions

Let u_{1}, \ldots, u_{d}, and $\lambda_{1}>\ldots>\lambda_{d}$ be the eigenvectors/eigenvalues of $\Sigma_{\mathcal{X}}$

$$
\begin{aligned}
& \lambda_{1}=\max _{\|v\|_{2}=1} \operatorname{var}\left(\mathcal{P}_{v} \mathcal{X}\right) \\
& u_{1}=\arg \max _{\|v\|_{2}=1} \operatorname{var}\left(\mathcal{P}_{v} \mathcal{X}\right) \\
& \lambda_{k}=\max _{\|v\|_{2}=1, v \perp u_{1}, \ldots, u_{k-1}} \operatorname{var}\left(\mathcal{P}_{v} \mathcal{X}\right), \quad 2 \leq k \leq d \\
& u_{k}=\arg \max _{\|v\|_{2}=1, v \perp u_{1}, \ldots, u_{k-1}} \operatorname{var}\left(\mathcal{P}_{v} \mathcal{X}\right), \quad 2 \leq k \leq d
\end{aligned}
$$

Sample variance $=229($ sample std $=15.1)$

Sample variance $=229($ sample std $=15.1)$

Component in selected direction

Sample variance $=531($ sample std $=23.1)$

Sample variance $=531($ sample std $=23.1$

First principal component

Sample variance $=46.2($ sample std $=6.80)$

Sample variance $=46.2($ sample std $=6.80)$

PCA of faces

Data set of 40064×64 images from 40 subjects (10 per subject)
Each face is vectorized and interpreted as a vector in \mathbb{R}^{4096}

PCA of faces

PCA of faces

PCA of faces

PD 100	PD 150	PD 200	PD 250	PD 300	PD 359
	8	182			
19.0	13.7	10.3	8.01	6.14	3.06

Covariance matrix

The spectral theorem

Principal component analysis

Dimensionality reduction via PCA

Gaussian random vectors

Dimensionality reduction

Data with a large number of features can be difficult to analyze or process

Dimensionality reduction is a useful preprocessing step
If data are modeled as vectors in \mathbb{R}^{p} we can reduce the dimension by projecting onto \mathbb{R}^{k}, where $k<p$

For orthogonal projections, the new representation is $\left\langle v_{1}, x\right\rangle,\left\langle v_{2}, x\right\rangle, \ldots$,
$\left\langle v_{k}, x\right\rangle$ for a basis v_{1}, \ldots, v_{k} of the subspace that we project on
Problem: How do we choose the subspace?
Possible criterion: Capture as much sample variance as possible

Captured variance

For any orthonormal v_{1}, \ldots, v_{k}

$$
\begin{aligned}
\sum_{i=1}^{k} \operatorname{var}\left(\mathcal{P}_{v_{i}} \mathcal{X}\right) & =\sum_{i=1}^{k} \frac{1}{n} \sum_{j=1}^{n} v_{i}^{T} c\left(x_{j}\right) c\left(x_{j}\right)^{T} v_{i} \\
& =\sum_{i=1}^{k} v_{i}^{T} \Sigma_{\mathcal{X}} v_{i}
\end{aligned}
$$

By spectral theorem, eigenvectors optimize each individual term

Eigenvectors also optimize sum

For any symmetric $A \in \mathbb{R}^{d \times d}$ with eigenvectors u_{1}, \ldots, u_{k}

$$
\sum_{i=1}^{k} u_{i}^{T} A u_{i} \geq \sum_{i=1}^{k} v_{i}^{T} A v_{i}
$$

for any k orthonormal vectors v_{1}, \ldots, v_{k}

Proof by induction on k

Base ($k=1$)? Follows from spectral theorem

Step

Let $\mathcal{S}:=\operatorname{span}\left(v_{1}, \ldots, v_{k}\right)$
For any orthonormal basis for $\mathcal{S} b_{1}, \ldots, b_{k}$ of \mathcal{S}

$$
V V^{T}=B B^{T}
$$

Choice of basis does not change cost function

$$
\begin{aligned}
\sum_{i=1}^{k} v_{i}^{T} A v_{i} & =\operatorname{trace}\left(V^{T} A V\right) \\
& =\operatorname{trace}\left(A V V^{T}\right) \\
& =\operatorname{trace}\left(A B B^{T}\right) \\
& =\sum_{i=1}^{k} b_{i}^{T} A b_{i}
\end{aligned}
$$

Let's choose wisely

Step

We choose b orthogonal to u_{1}, \ldots, u_{k-1}
By spectral theorem

$$
u_{k}^{T} A u_{k} \geq b^{T} A b
$$

Now choose orthonormal basis $b_{1}, b_{2}, \ldots, b_{k}$ for \mathcal{S} so that $b_{k}:=b$
By induction assumption

$$
\sum_{i=1}^{k-1} u_{i}^{T} A u_{i} \geq \sum_{i=1}^{k-1} b_{i}^{T} A b_{i}
$$

Conclusion

For any k orthonormal vectors v_{1}, \ldots, v_{k}

$$
\sum_{i=1}^{k} \operatorname{var}(\operatorname{pc}[i]) \geq \sum_{i=1}^{k} \operatorname{var}\left(\mathcal{P}_{v_{i}} \mathcal{X}\right)
$$

where $\mathrm{pc}[i]:=\left\{\mathrm{pc}_{1}[i], \ldots, \mathrm{pc}_{n}[i]\right\}=\mathcal{P}_{u_{i}} \mathcal{X}$

Faces

$$
x_{i}^{\text {reduced }}:=\operatorname{av}(\mathcal{X})+\sum_{j=1}^{7} \mathrm{pc}_{i}[j] u_{j}
$$

Projection onto first 7 principal directions

Projection onto first k principal directions

Nearest-neighbor classification

Training set of points and labels $\left\{x_{1}, l_{1}\right\}, \ldots,\left\{x_{n}, I_{n}\right\}$
To classify a new data point y, find

$$
i^{*}:=\arg \min _{1 \leq i \leq n}\left\|y-x_{i}\right\|_{2}
$$

and assign $I_{i^{*}}$ to y

Cost: $\mathcal{O}(n d)$ to classify new point

Nearest neighbors in principal-component space

Idea: Project onto first k main principal directions beforehand

Costly reduced to $\mathcal{O}(n k)$
Computing eigendecomposition is costly, but only needs to be done once

Face recognition

Training set: 36064×64 images from 40 different subjects (9 each)

Test set: 1 new image from each subject
We model each image as a vector in $\mathbb{R}^{4096}(d=4096)$

To classify we:

1. Project onto first k principal directions
2. Apply nearest-neighbor classification using the ℓ_{2}-norm distance in \mathbb{R}^{k}

Performance

Nearest neighbor in \mathbb{R}^{41}

Dimensionality reduction for visualization

Motivation: Visualize high-dimensional features projected onto 2D or 3D
Example:
Seeds from three different varieties of wheat: Kama, Rosa and Canadian

Features:

- Area
- Perimeter
- Compactness
- Length of kernel
- Width of kernel
- Asymmetry coefficient
- Length of kernel groove

Projection onto two first PDs

Projection onto two last PDs

Covariance matrix

The spectral theorem

Principal component analysis

Dimensionality reduction via PCA

Gaussian random vectors

Gaussian random variables

The pdf of a Gaussian or normal random variable ã with mean μ and standard deviation σ is given by

$$
f_{\tilde{a}}(a)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(a-\mu)^{2}}{2 \sigma^{2}}}
$$

Gaussian random variables

Gaussian random variables

$$
\begin{aligned}
\mu & =\int_{a=-\infty}^{\infty} a f_{\tilde{a}}(a) d a \\
\sigma^{2} & =\int_{a=-\infty}^{\infty}(a-\mu)^{2} f_{\tilde{a}}(a) d a
\end{aligned}
$$

Linear transformation of Gaussian

If \tilde{a} is a Gaussian random variable with mean μ and standard deviation σ, then for any $\alpha, \beta \in \mathbb{R}$

$$
\tilde{b}:=\alpha \tilde{a}+\beta
$$

is a Gaussian random variable with $\alpha \mu+\beta$ and standard deviation $|\alpha| \sigma$

Proof

Let $\alpha>0$ (proof for $a<0$ is very similar),

$$
\begin{aligned}
F_{\tilde{b}}(b) & =\mathrm{P}(\tilde{b} \leq b) \\
& =\mathrm{P}(\alpha \tilde{a}+\beta \leq b) \\
& =\mathrm{P}\left(\tilde{a} \leq \frac{b-\beta}{\alpha}\right) \\
& =\int_{-\infty}^{\frac{b-\beta}{\alpha}} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(a-\mu)^{2}}{2 \sigma^{2}}} \mathrm{~d} a \\
& =\int_{-\infty}^{b} \frac{1}{\sqrt{2 \pi} \alpha \sigma} e^{-\frac{(w-\alpha \mu-\beta)^{2}}{2 \alpha^{2} \sigma^{2}}} \mathrm{~d} w \quad \text { change of variables } w:=\alpha a+\beta
\end{aligned}
$$

Differentiating with respect to b :

$$
f_{\tilde{b}}(b)=\frac{1}{\sqrt{2 \pi} \alpha \sigma} e^{-\frac{(b-\alpha \mu-\beta)^{2}}{2 \alpha^{2} \sigma^{2}}}
$$

Gaussian random vector

A Gaussian random vector \tilde{x} is a random vector with joint pdf

$$
f_{\tilde{x}}(x)=\frac{1}{\sqrt{(2 \pi)^{n}|\Sigma|}} \exp \left(-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right)
$$

where $\mu \in \mathbb{R}^{d}$ is the mean and $\Sigma \in \mathbb{R}^{d \times d}$ the covariance matrix
$\Sigma \in \mathbb{R}^{d \times d}$ is positive definite (positive eigenvalues)

Contour surfaces

Set of points at which pdf is constant

$$
\begin{aligned}
c & =x^{T} \Sigma^{-1} x \quad \text { assuming } \mu=0 \\
& =x^{T} U \Lambda^{-1} U x \\
& =\sum_{i=1}^{d} \frac{\left(u_{i}^{T} x\right)^{2}}{\lambda_{i}}
\end{aligned}
$$

Ellipsoid with axes proportional to $\sqrt{\lambda_{i}}$

2D example

$$
\begin{aligned}
\mu & =0 \\
\Sigma & =\left[\begin{array}{cc}
0.5 & -0.3 \\
-0.3 & 0.5
\end{array}\right] \\
\lambda_{1} & =0.8 \\
\lambda_{2} & =0.2 \\
u_{1} & =\left[\begin{array}{c}
1 / \sqrt{2} \\
-1 / \sqrt{2}
\end{array}\right] \\
u_{2} & =\left[\begin{array}{l}
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right]
\end{aligned}
$$

How does the ellipse look like?

Contour surfaces

Contour surfaces

Uncorrelation implies independence

If the covariance matrix is diagonal,

$$
\Sigma_{\tilde{x}}=\left[\begin{array}{cccc}
\sigma_{1}^{2} & 0 & \cdots & 0 \\
0 & \sigma_{2}^{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \sigma_{d}^{2}
\end{array}\right]
$$

the entries of a Gaussian random vector are independent

Proof

$$
\begin{aligned}
& \Sigma_{\tilde{\chi}}^{-1}=\left[\begin{array}{cccc}
\frac{1}{\sigma_{1}^{2}} & 0 & \cdots & 0 \\
0 & \frac{1}{\sigma_{2}^{2}} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \frac{1}{\sigma_{d}^{2}}
\end{array}\right] \\
& |\Sigma|=\prod_{i=1}^{d} \sigma_{i}^{2}
\end{aligned}
$$

Proof

$$
\begin{aligned}
f_{\tilde{x}}(x) & =\frac{1}{\sqrt{(2 \pi)^{d}|\Sigma|}} \exp \left(-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right) \\
& =\prod_{i=1}^{d} \frac{1}{\sqrt{(2 \pi)} \sigma_{i}} \exp \left(-\frac{\left(x_{i}-\mu_{i}\right)^{2}}{2 \sigma_{i}^{2}}\right) \\
& =\prod_{i=1}^{d} f_{\tilde{x}_{i}}\left(x_{i}\right)
\end{aligned}
$$

Linear transformations

Let \tilde{x} be a Gaussian random vector of dimension d with mean μ and covariance matrix Σ

For any matrix $A \in \mathbb{R}^{m \times d}$ and $b \in \mathbb{R}^{m} \tilde{y}=A \tilde{x}+b$ is Gaussian with mean $A \mu+b$ and covariance matrix $A \Sigma A^{T}$ (as long as it is full rank)

PCA on Gaussian random vectors

Let \tilde{x} be a Gaussian random vector with covariance matrix $\Sigma:=U \wedge U^{T}$
The principal components

$$
\widetilde{p c}:=U^{\top} \tilde{x}
$$

are Gaussian and have covariance matrix

$$
U^{T} \Sigma U=\Lambda
$$

so they are independent

Often not the case in practice!

Maximum likelihood for Gaussian vectors

Log-likelihood of Gaussian parameters
$\left(\mu_{\mathrm{ML}}, \Sigma_{\mathrm{ML}}\right)$
$:=\arg \max _{\mu \in \mathbb{R}^{d}, \Sigma \in \mathbb{R}^{d \times d}} \log \prod_{i=1}^{n} \frac{1}{\sqrt{(2 \pi)^{d}|\Sigma|}} \exp \left(-\frac{1}{2}\left(x_{i}-\mu\right)^{T} \Sigma^{-1}\left(x_{i}-\mu\right)\right)$
$=\arg \min _{\mu \in \mathbb{R}^{d}, \Sigma \in \mathbb{R}^{d \times d}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{T} \Sigma^{-1}\left(x_{i}-\mu\right)+\frac{n}{2} \log |\Sigma|$.
Solution is sample mean and variance

Additional justification, but PCA is useful without Gaussian assumption!

