Background Material

DS-GA 1013 / MATH-GA 2824 Mathematical Tools for Data Science https://cims.nyu.edu/~cfgranda/pages/MTDS_spring20/index.html

Sreyas Mohan and Carlos Fernandez-Granda

Vector spaces

Inner product

Norms

Mean, Variance and Correlation

Sample mean, variance and correlation

Orthogonality

Orthogonal projection

Denoising

Vector space

Consists of:

- A set \mathcal{V}
- A scalar field (usually \mathbb{R} or \mathbb{C})
- Two operations + and .

Properties

- For any $\vec{x}, \vec{y} \in \mathcal{V}, \vec{x}+\vec{y}$ belongs to \mathcal{V}
- For any $\vec{x} \in \mathcal{V}$ and any scalar $\alpha, \alpha \cdot \vec{x} \in \mathcal{V}$
- There exists a zero vector $\overrightarrow{0}$ such that $\vec{x}+\overrightarrow{0}=\vec{x}$ for any $\vec{x} \in \mathcal{V}$
- For any $\vec{x} \in \mathcal{V}$ there exists an additive inverse \vec{y} such that $\vec{x}+\vec{y}=\overrightarrow{0}$, usually denoted by $-\vec{x}$

Properties

- The vector sum is commutative and associative, i.e. for all $\vec{x}, \vec{y}, \vec{z} \in \mathcal{V}$

$$
\vec{x}+\vec{y}=\vec{y}+\vec{x}, \quad(\vec{x}+\vec{y})+\vec{z}=\vec{x}+(\vec{y}+\vec{z})
$$

- Scalar multiplication is associative, for any scalars α and β and any $\vec{x} \in \mathcal{V}$

$$
\alpha(\beta \cdot \vec{x})=(\alpha \beta) \cdot \vec{x}
$$

- Scalar and vector sums are both distributive, i.e. for any scalars α and β and any $\vec{x}, \vec{y} \in \mathcal{V}$

$$
(\alpha+\beta) \cdot \vec{x}=\alpha \cdot \vec{x}+\beta \cdot \vec{x}, \quad \alpha \cdot(\vec{x}+\vec{y})=\alpha \cdot \vec{x}+\alpha \cdot \vec{y}
$$

Concept Check

Let $\mathcal{V}=\{x \mid x \in \mathbb{R}, x \geq 0\}$. Define addition operation for $x, y \in \mathcal{V}$ as $x+y=x+y$ (normal addition) and scalar multiplication for $x \in \mathcal{V}$ and $\alpha \in \mathbb{R}$ as $\alpha x=\alpha . x$ (regular scaling). Is \mathcal{V} a vector field?

Subspaces

A subspace of a vector space \mathcal{V} is any subset of \mathcal{V} that is also itself a vector space

Linear dependence/independence

A set of m vectors $\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{m}$ is linearly dependent if there exist m scalar coefficients $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ which are not all equal to zero and

$$
\sum_{i=1}^{m} \alpha_{i} \vec{x}_{i}=\overrightarrow{0}
$$

Equivalently, any vector in a linearly dependent set can be expressed as a linear combination of the rest

Span

The span of $\left\{\vec{x}_{1}, \ldots, \vec{x}_{m}\right\}$ is the set of all possible linear combinations
$\operatorname{span}\left(\vec{x}_{1}, \ldots, \vec{x}_{m}\right):=\left\{\vec{y} \mid \vec{y}=\sum_{i=1}^{m} \alpha_{i} \vec{x}_{i} \quad\right.$ for some scalars $\left.\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right\}$
The span of any set of vectors in \mathcal{V} is a subspace of \mathcal{V}

Basis and dimension

A basis of a vector space \mathcal{V} is a set of independent vectors $\left\{\vec{x}_{1}, \ldots, \vec{x}_{m}\right\}$ such that

$$
\mathcal{V}=\operatorname{span}\left(\vec{x}_{1}, \ldots, \vec{x}_{m}\right)
$$

If \mathcal{V} has a basis with finite cardinality then every basis contains the same number of vectors

The dimension $\operatorname{dim}(\mathcal{V})$ of \mathcal{V} is the cardinality of any of its bases
Equivalently, the dimension is the number of linearly independent vectors that span \mathcal{V}

Standard basis

$$
\vec{e}_{1}=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right], \quad \vec{e}_{2}=\left[\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right], \quad \ldots, \quad \vec{e}_{n}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right]
$$

The dimension of \mathbb{R}^{n} is n

Concept Check

- (True/False) If S is a subset of vector space \mathcal{V}, then $\operatorname{span}(S)$ contains the intersection of all subspace of \mathcal{V} that contain S.
- The set of all $n \times n$ matrices with trace as zero forms a subspace W of the space of $n \times n$ matrices. Find a basis for W and calculate it's dimension.

Concept Check - Answers

- True.
- We need to enforce that the sum of diagonal entries is zero, or that $A_{11}+A_{22}+\cdots+A_{n n}=0$. The basis vectors can be $\left\{E_{i j}\right\}_{i \neq j} \cup\left\{E_{i i}-E_{n n}\right\}_{i=1,2, \ldots, n-1}$. The dimension of W is $n^{2}-1$

Vector spaces

Inner product
Norms

Mean, Variance and Correlation
Sample mean, variance and correlation

Orthogonality

Orthogonal projection

Denoising

Inner product

Operation $\langle\cdot, \cdot\rangle$ that maps a pair of vectors to a scalar

Properties

- If the scalar field is \mathbb{R}, it is symmetric. For any $\vec{x}, \vec{y} \in \mathcal{V}$

$$
\langle\vec{x}, \vec{y}\rangle=\langle\vec{y}, \vec{x}\rangle
$$

If the scalar field is \mathbb{C}, then for any $\vec{x}, \vec{y} \in \mathcal{V}$

$$
\langle\vec{x}, \vec{y}\rangle=\overline{\langle\vec{y}, \vec{x}\rangle},
$$

where for any $\alpha \in \mathbb{C} \bar{\alpha}$ is the complex conjugate of α

Properties

- It is linear in the first argument, i.e. for any $\alpha \in \mathbb{R}$ and any $\vec{x}, \vec{y}, \vec{z} \in \mathcal{V}$

$$
\begin{aligned}
\langle\alpha \vec{x}, \vec{y}\rangle & =\alpha\langle\vec{x}, \vec{y}\rangle, \\
\langle\vec{x}+\vec{y}, \vec{z}\rangle & =\langle\vec{x}, \vec{z}\rangle+\langle\vec{y}, \vec{z}\rangle .
\end{aligned}
$$

If the scalar field is \mathbb{R}, it is also linear in the second argument

- It is positive definite: $\langle\vec{x}, \vec{x}\rangle$ is nonnegative for all $\vec{x} \in \mathcal{V}$ and if $\langle\vec{x}, \vec{x}\rangle=0$ then $\vec{x}=\overrightarrow{0}$

Dot product

Inner product between $\vec{x}, \vec{y} \in \mathbb{R}^{n}$

$$
\vec{x} \cdot \vec{y}:=\sum_{i} \vec{x}[i] \vec{y}[i]
$$

\mathbb{R}^{n} endowed with the dot product is usually called a Euclidean space of dimension n

If $\vec{x}, \vec{y} \in \mathbb{C}^{n}$

$$
\vec{x} \cdot \vec{y}:=\sum_{i} \vec{x}[i] \overline{\vec{y}[i]}
$$

Matrix inner product

The inner product between two $m \times n$ matrices A and B is

$$
\begin{aligned}
\langle A, B\rangle & :=\operatorname{tr}\left(A^{T} B\right) \\
& =\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j} B_{i j}
\end{aligned}
$$

where the trace of an $n \times n$ matrix is defined as the sum of its diagonal

$$
\operatorname{tr}(M):=\sum_{i=1}^{n} M_{i i}
$$

For any pair of $m \times n$ matrices A and B

$$
\operatorname{tr}\left(B^{T} A\right):=\operatorname{tr}\left(A B^{T}\right)
$$

Function inner product

The inner product between two complex-valued square-integrable functions f, g defined in an interval $[a, b]$ of the real line is

$$
\vec{f} \cdot \vec{g}:=\int_{a}^{b} f(x) \overline{g(x)} \mathrm{d} x
$$

```
Vector spaces
Inner product
Norms
Mean, Variance and Correlation
Sample mean, variance and correlation
Orthogonality
Orthogonal projection
Denoising
```


Norms

Let \mathcal{V} be a vector space, a norm is a function $\|\cdot\|$ from \mathcal{V} to \mathbb{R} with the following properties

- It is homogeneous. For any scalar α and any $\vec{x} \in \mathcal{V}$

$$
\|\alpha \vec{x}\|=|\alpha|\|\vec{x}\| .
$$

- It satisfies the triangle inequality

$$
\|\vec{x}+\vec{y}\| \leq\|\vec{x}\|+\|\vec{y}\| .
$$

In particular, $\|\vec{x}\| \geq 0$

- $\|\vec{x}\|=0$ implies $\vec{x}=\overrightarrow{0}$

Inner-product norm

Square root of inner product of vector with itself

$$
\|\vec{x}\|_{\langle\cdot,\rangle}:=\sqrt{\langle\vec{x}, \vec{x}\rangle}
$$

Inner-product norm

- Vectors in \mathbb{R}^{n} or $\mathbb{C}^{n}: \ell_{2}$ norm

$$
\|\vec{x}\|_{2}:=\sqrt{\vec{x} \cdot \vec{x}}=\sqrt{\sum_{i=1}^{n} \vec{x}[i]^{2}}
$$

- Matrices in $\mathbb{R}^{m \times n}$ or $\mathbb{C}^{m \times n}$: Frobenius norm

$$
\|A\|_{F}:=\sqrt{\operatorname{tr}\left(A^{T} A\right)}=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j}^{2}}
$$

- Square-integrable complex-valued functions: \mathcal{L}_{2} norm

$$
\|f\|_{\mathcal{L}_{2}}:=\sqrt{\langle f, f\rangle}=\sqrt{\int_{a}^{b}|f(x)|^{2} \mathrm{~d} x}
$$

Cauchy-Schwarz inequality

For any two vectors \vec{x} and \vec{y} in an inner-product space

$$
|\langle\vec{x}, \vec{y}\rangle| \leq\|\vec{x}\|_{\langle\langle,\rangle}|\vec{y}|_{\langle(,\rangle\rangle}
$$

Assume $\|\vec{x}\|_{\langle\cdot,\rangle} \neq 0$, then

$$
\begin{aligned}
\langle\vec{x}, \vec{y}\rangle=-\|\vec{x}\|_{\langle\cdot, \cdot\rangle}\|\vec{y}\|_{\langle\cdot,\rangle} & \Longleftrightarrow \vec{y}=-\frac{\|\vec{y}\|_{\langle\cdot, \cdot\rangle}}{\|\vec{x}\|_{\langle\cdot,\rangle}} \vec{x} \\
\langle\vec{x}, \vec{y}\rangle=\|\vec{x}\|_{\langle\cdot,\rangle}\|\vec{y}\|_{\langle\cdot,\rangle} & \Longleftrightarrow \vec{y}=\frac{\|\vec{y}\|_{\langle\cdot, \cdot\rangle}}{\|\vec{x}\|_{\langle\cdot, \cdot\rangle}} \vec{x}
\end{aligned}
$$

ℓ_{1} and ℓ_{∞} norms

Norms in \mathbb{R}^{n} or \mathbb{C}^{n} not induced by an inner product

$$
\begin{aligned}
& \|\vec{x}\|_{1}:=\sum_{i=1}^{n}|\vec{x}[i]| \\
& \|\vec{x}\|_{\infty}:=\max _{i}|\vec{x}[i]|
\end{aligned}
$$

Norm balls

ℓ_{2}
ℓ_{∞}

Distance

The distance between two vectors \vec{x} and \vec{y} induced by a norm $\|\cdot\|$ is

$$
d(\vec{x}, \vec{y}):=\|\vec{x}-\vec{y}\|
$$

Classification

Aim: Assign a signal to one of k predefined classes
Training data: n pairs of signals (represented as vectors) and labels: $\left\{\vec{x}_{1}, I_{1}\right\}, \ldots,\left\{\vec{x}_{n}, I_{n}\right\}$

Nearest-neighbor classification

Face recognition

Training set: 36064×64 images from 40 different subjects (9 each)
Test set: 1 new image from each subject
We model each image as a vector in \mathbb{R}^{4096} and use the ℓ_{2}-norm distance

Face recognition

Training set

Nearest-neighbor classification

Errors: 4 / 40

Test
image


```
Vector spaces
Inner product
Norms
Mean, Variance and Correlation
Sample mean, variance and correlation
Orthogonality
Orthogonal projection
Denoising
```


Mean, Variance and Correlation

- Consider real-valued data corresponding to a single quantity or feature. We model such data as a scalar continuous random variable.
- In reality we usually have access to a finite number of data points, not to a continuous distribution.
- Mean of a random variable is the point that minimizes the expected distance to the random variable.
- Intuitively, it is the center of mass of the probability density, and hence of the dataset.

Mean

Lemma: For any random variable ã with mean $\mathrm{E}(\tilde{a})$,

$$
\mathrm{E}(\tilde{a})=\arg \min _{c \in \mathbb{R}} \mathrm{E}\left((c-\tilde{a})^{2}\right) .
$$

Proof

Let $g(c):=\mathrm{E}\left((c-\tilde{a})^{2}\right)=c^{2}-2 c \mathrm{E}(\tilde{a})+\mathrm{E}\left(\tilde{a}^{2}\right)$, we have

$$
\begin{aligned}
f^{\prime}(c) & =2(c-E(\tilde{a})), \\
f^{\prime \prime}(c) & =2 .
\end{aligned}
$$

The function is strictly convex and has a minimum where the derivative equals zero, i.e. when c is equal to the mean.

Variance

The variance of a random variable \tilde{a}

$$
\operatorname{Var}(\tilde{a}):=\mathrm{E}\left((\tilde{a}-\mathrm{E}(\tilde{a}))^{2}\right)
$$

quantifies how much it fluctuates around its mean. The standard deviation, defined as the square root of the variance, is therefore a measure of how spread out the dataset is around its center.

Covariance

- Consider data containing two features, each represented by a random variable.
- The covariance of two random variables ã and \tilde{b} quantifies their joint fluctuations around their respective means.

$$
\operatorname{Cov}(\tilde{a}, \tilde{b}):=\mathrm{E}[(\tilde{a}-\mathrm{E}(\tilde{a})(\tilde{b}-\mathrm{E}(\tilde{b}))]
$$

Concept Check: Zero Mean RVs

- The space of zero mean random variables form a vector space. Why?
- What will be the origin (zero vector) of the space?
- Does $\operatorname{Cov}(\tilde{a}, \tilde{b})$ define a valid inner product in this space?

Vector Space of Zero Mean RVs

- Zero-mean random variables form a vector space because linear combinations of zero-mean random variables are also zero mean.
- The origin of the vector space (the zero vector) is the random variable equal to zero with probability one.
- The covariance is a valid inner product because it is (1) symmetric, (2) linear in its first argument, i.e. for any $\alpha \in \mathbb{R} \mathrm{E}(\alpha \tilde{a} \tilde{b})=\alpha \mathrm{E}(\tilde{a} \tilde{b})$, and (3) positive definite, i.e. $\mathrm{E}\left(\tilde{a}^{2}\right)>0$ if $\tilde{a} \neq 0$ and $\mathrm{E}\left(\tilde{a}^{2}\right)=0$ if and only if $\tilde{a}=0$ with probability one. To prove this last property, we use a fundamental inequality in probability theory.

Markov's Inequality

Theorem (Markov's inequality)
Let \tilde{r} be a nonnegative random variable. For any positive constant $c>0$,

$$
\mathrm{P}(\tilde{r} \geq c) \leq \frac{\mathrm{E}(\tilde{r})}{c} .
$$

Proof

Consider the indicator variable $1_{\tilde{r} \geq c}$. We have

$$
\tilde{r}-c 1_{\tilde{r} \geq c} \geq 0,
$$

Proof

Consider the indicator variable $1_{\tilde{r} \geq c}$. We have

$$
\tilde{r}-c 1_{\tilde{r} \geq c} \geq 0,
$$

By linearity of expectation and the fact that $1_{\tilde{r} \geq c}$ is a Bernoulli random variable with expectation $\mathrm{P}(\tilde{r} \geq c)$ we have

$$
\mathrm{E}(\tilde{r}) \geq c \mathrm{E}\left(1_{\tilde{r} \geq c}\right)=c \mathrm{P}(\tilde{r} \geq c)
$$

Corollary

If the mean square $\mathrm{E}\left[\tilde{a}^{2}\right]$ of a random variable ã equals zero, then

$$
\mathrm{P}(\tilde{a} \neq 0)=0 .
$$

Corollary

If the mean square $\mathrm{E}\left[\tilde{a}^{2}\right]$ of a random variable ã equals zero, then

$$
\mathrm{P}(\tilde{a} \neq 0)=0 .
$$

Proof:

- If $\mathrm{P}(\tilde{a} \neq 0) \neq 0$ then there exists an ϵ such that $\mathrm{P}\left(\tilde{a}^{2} \geq \epsilon\right) \neq 0$.

Corollary

If the mean square $\mathrm{E}\left[\tilde{a}^{2}\right]$ of a random variable ã equals zero, then

$$
\mathrm{P}(\tilde{a} \neq 0)=0 .
$$

Proof:

- If $\mathrm{P}(\tilde{a} \neq 0) \neq 0$ then there exists an ϵ such that $\mathrm{P}\left(\tilde{a}^{2} \geq \epsilon\right) \neq 0$.
- This is impossible.
- Applying Markov's inequality to the nonnegative random variable \tilde{a}^{2} we have

$$
\begin{aligned}
\mathrm{P}\left(\tilde{a}^{2} \geq \epsilon\right) & \leq \frac{\mathrm{E}\left(\tilde{a}^{2}\right)}{\epsilon} \\
& =0
\end{aligned}
$$

Correlation Coefficient

- When comparing two vectors, a natural measure of their similarity is the cosine of the angle between them which ranges from -1 to 1 .
- The cosine equals the inner product between the vectors normalized by their norms.
- In the vector space of zero-mean random variables this quantity is called the correlation coefficient,

$$
\rho_{\tilde{a}, \tilde{b}}:=\frac{\operatorname{Cov}(\tilde{a}, \tilde{b})}{\sqrt{\operatorname{Var}(\tilde{a}) \operatorname{Var}(\tilde{b})}},
$$

Correlation Coefficient

- When comparing two vectors, a natural measure of their similarity is the cosine of the angle between them which ranges from -1 to 1 .
- The cosine equals the inner product between the vectors normalized by their norms.
- In the vector space of zero-mean random variables this quantity is called the correlation coefficient,

$$
\rho_{\tilde{a}, \tilde{b}}:=\frac{\operatorname{Cov}(\tilde{a}, \tilde{b})}{\sqrt{\operatorname{Var}(\tilde{a}) \operatorname{Var}(\tilde{b})}},
$$

$-1 \leq \rho_{\tilde{a}, \tilde{b}} \leq 1$. Why?

Cauchy-Schwarz inequality for random variables

Theorem (Cauchy-Schwarz inequality for random variables)
Let ã and \tilde{b} be two random variables. Their correlation coefficient satisfies

$$
-1 \leq \rho_{\tilde{a}, \tilde{B}} \leq 1
$$

with equality if and only if \tilde{b} is a linear function of ã with probability one.

Proof

Consider the standardized random variables (centered and normalized),

$$
\mathrm{s}(\tilde{a}):=\frac{\tilde{a}-\mathrm{E}(\tilde{a})}{\sqrt{\operatorname{Var}(\tilde{a})}}, \quad \mathrm{s}(\tilde{b}):=\frac{\tilde{b}-\mathrm{E}(\tilde{b})}{\sqrt{\operatorname{Var}(\tilde{b})}} .
$$

Proof

Consider the standardized random variables (centered and normalized),

$$
\mathrm{s}(\tilde{a}):=\frac{\tilde{a}-\mathrm{E}(\tilde{a})}{\sqrt{\operatorname{Var}(\tilde{a})}}, \quad \mathrm{s}(\tilde{b}):=\frac{\tilde{b}-\mathrm{E}(\tilde{b})}{\sqrt{\operatorname{Var}(\tilde{b})}}
$$

The mean square distance between them equals

$$
\begin{aligned}
\mathrm{E}\left[(\mathrm{~s}(\tilde{b})-\mathrm{s}(\tilde{a}))^{2}\right] & =\mathrm{E}\left(\mathrm{~s}(\tilde{a})^{2}\right)+\mathrm{E}\left(\mathrm{~s}(\tilde{b})^{2}\right)-2 \mathrm{E}(\mathrm{~s}(\tilde{a}) \mathrm{s}(\tilde{b})) \\
& =2(1-\mathrm{E}(\mathrm{~s}(\tilde{a}) \mathrm{s}(\tilde{b}))) \\
& =2\left(1-\rho_{\tilde{a}, \tilde{b}}\right)
\end{aligned}
$$

This implies that $\rho_{\tilde{a}, \tilde{b}} \leq 1$. Why?

Proof

$$
\mathrm{E}\left[(s(\tilde{b})-s(\tilde{a}))^{2}\right]=2\left(1-\rho_{\tilde{a}, \tilde{b}}\right)
$$

- Recall that if the mean square $\mathrm{E}\left[\tilde{a}^{2}\right]$ of a random variable ã equals zero, then $\mathrm{P}(\tilde{a} \neq 0)=0$.
- When $\rho_{\tilde{a}, \tilde{b}}=1, \mathrm{E}\left[(\mathrm{s}(\tilde{b})-\mathrm{s}(\tilde{a}))^{2}\right]=0$. This means that $\mathrm{s}(\tilde{a})=\mathrm{s}(\tilde{b})$ with probability one, which implies the linear relationship.

Proof

$$
\mathrm{E}\left[(\mathrm{~s}(\tilde{b})-\mathrm{s}(\tilde{a}))^{2}\right]=2\left(1-\rho_{\tilde{a}, \tilde{b}}\right)
$$

- Recall that if the mean square $\mathrm{E}\left[\tilde{a}^{2}\right]$ of a random variable ã equals zero, then $\mathrm{P}(\tilde{a} \neq 0)=0$.
- When $\rho_{\tilde{a}, \tilde{b}}=1, \mathrm{E}\left[(\mathrm{s}(\tilde{b})-\mathrm{s}(\tilde{a}))^{2}\right]=0$. This means that $\mathrm{s}(\tilde{a})=\mathrm{s}(\tilde{b})$ with probability one, which implies the linear relationship.
- Similarly, using

$$
\mathrm{E}\left[(\mathrm{~s}(\tilde{b})-(-\mathrm{s}(\tilde{a})))^{2}\right]=2\left(1+\rho_{\tilde{a}, \tilde{b}}\right)
$$

the same argument applies when $\rho_{\tilde{a}, \tilde{b}}=-1$.

Geometric Interpretation of Correlation Coefficient

Vector spaces

Inner product

Norms

Mean, Variance and Correlation

Sample mean, variance and correlation

Orthogonality

Orthogonal projection

Denoising

Sample mean, variance and correlation

- When analyzing data we do not have access to a probability distribution, but rather to a set of points.
- Adapt our previous analysis to this setting.
- Main Idea: Approximate expectations by averaging over the data

Sample mean, variance and correlation

- Consider a dataset containing n real-valued data with two real valued features $\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)$. Let $\mathcal{A}:=\left\{a_{1}, \ldots, a_{n}\right\}$ and $\mathcal{B}:=\left\{b_{1}, \ldots, b_{n}\right\}$
- Sample Mean:

$$
\operatorname{av}(\mathcal{A}):=\frac{1}{n} \sum_{i=1}^{n} a_{i}
$$

- Sample Covariance

$$
\operatorname{cov}(\mathcal{A}, \mathcal{B}):=\frac{1}{n} \sum_{i=1}^{n}\left(a_{i}-\operatorname{av}(\mathcal{A})\right)\left(b_{i}-\operatorname{av}(\mathcal{B})\right.
$$

- Sample Variance,

$$
\operatorname{var}(\mathcal{A}):=\frac{1}{n} \sum_{i=1}^{n}\left(a_{i}-\operatorname{av}(\mathcal{A})\right)^{2}
$$

Sample mean converges to true mean

Theorem (Sample mean converges to true mean)
Let $\tilde{\mathcal{A}}_{n}$ contain n iid copies $\tilde{a}_{1}, \ldots, \tilde{a}_{n}$ of a random variable ã with finite variance. Then,

$$
\lim _{n} \mathrm{E}\left(\left(\operatorname{av}\left(\tilde{\mathcal{A}}_{n}\right)-\mathrm{E}(\tilde{\mathrm{a}})\right)^{2}\right)=0 .
$$

Proof

By linearity of expection

$$
\begin{aligned}
\mathrm{E}\left(\operatorname{av}\left(\tilde{\mathcal{A}}_{n}\right)\right) & =\frac{1}{n} \sum_{i=1}^{n} \mathrm{E}\left(\tilde{a}_{i}\right) \\
& =\mathrm{E}(\tilde{a}),
\end{aligned}
$$

Proof

By linearity of expection

$$
\begin{aligned}
\mathrm{E}\left(\operatorname{av}\left(\tilde{\mathcal{A}}_{n}\right)\right) & =\frac{1}{n} \sum_{i=1}^{n} \mathrm{E}\left(\tilde{a}_{i}\right) \\
& =\mathrm{E}(\tilde{a})
\end{aligned}
$$

which implies

$$
\begin{aligned}
\mathrm{E}\left(\left(\operatorname{av}\left(\tilde{\mathcal{A}}_{n}\right)-\mathrm{E}(\tilde{a})\right)^{2}\right) & =\operatorname{Var}\left(\operatorname{av}\left(\tilde{\mathcal{A}}_{n}\right)\right) \\
& =\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}\left(\tilde{a}_{i}\right) \quad \text { by independence } \\
& =\frac{\operatorname{Var}(\tilde{a})}{n} .
\end{aligned}
$$

The same proof can be applied to the sample variance and the sample covariance, under the assumption that higher-order moments of the distribution are bounded.

Sample Mean is the Center

Lemma (The sample mean is the center)
For any set of real numbers $\mathcal{A}:=\left\{a_{1}, \ldots, a_{n}\right\}$,

$$
\operatorname{av}(\mathcal{A})=\arg \min _{c \in \mathbb{R}} \sum_{i=1}^{n}\left(c-a_{i}\right)^{2} .
$$

Proof

Let $f(c):=\sum_{i=1}^{n}\left(c-a_{i}\right)^{2}$, we have

$$
\begin{aligned}
f^{\prime}(c) & =2 \sum_{i=1}^{n}\left(c-a_{i}\right) \\
& =2\left(n c-\sum_{i=1}^{n} a_{i}\right), \\
f^{\prime \prime}(c) & =2 n .
\end{aligned}
$$

The function is strictly convex and has a minimum where the derivative equals zero, i.e. when c is equal to the sample mean.

Proof

- Note that the proof is essentially the same as that of the probabilistic setting.
- The reason is that both expectation and averaging operators are linear.
- Analogously to the probabilistic setting, we can show that the sample covariance is a valid inner product between centered sets of samples, and the sample standard deviation- defined as the square root of the sample variance- is its corresponding norm.

$$
\rho_{\mathcal{A}, \mathcal{B}}:=\frac{\operatorname{cov}(\mathcal{A}, \mathcal{B})}{\sqrt{\operatorname{var}(\mathcal{A}) \operatorname{var}(\mathcal{B})}}
$$

Correlation coefficient

Oxford Data

$$
\rho=0.962
$$

$$
\rho=0.019
$$

$$
\rho=-0.468
$$

Oxford Data - Takeaways

- The maximum temperature is highly correlated with the minimum temperature ($\rho=0.962$).
- Rainfall is almost uncorrelated with the maximum temperature ($\rho=0.019$), but this does not mean that the two quantities are not related; the relation is just not linear.
- When we only consider the rain and temperature in August, then the two quantities are linearly related to some extent. Their correlation is negative ($\rho=-0.468$): when it is warmer it tends to rain less.
- If the relationship between each pair of features were perfectly linearly then they would lie on the dashed red diagonal lines.

```
Vector spaces
Inner product
Norms
Mean, Variance and Correlation
Sample mean, variance and correlation
```


Orthogonality

```
Orthogonal projection
Denoising
```


Orthogonality

Two vectors \vec{x} and \vec{y} are orthogonal if and only if

$$
\langle\vec{x}, \vec{y}\rangle=0
$$

A vector \vec{x} is orthogonal to a set \mathcal{S}, if

$$
\langle\vec{x}, \vec{s}\rangle=0, \quad \text { for all } \vec{s} \in \mathcal{S}
$$

Two sets of $\mathcal{S}_{1}, \mathcal{S}_{2}$ are orthogonal if for any $\vec{x} \in \mathcal{S}_{1}, \vec{y} \in \mathcal{S}_{2}$

$$
\langle\vec{x}, \vec{y}\rangle=0
$$

The orthogonal complement of a subspace \mathcal{S} is

$$
\mathcal{S}^{\perp}:=\{\vec{x} \mid\langle\vec{x}, \vec{y}\rangle=0 \quad \text { for all } \vec{y} \in \mathcal{S}\}
$$

Pythagorean theorem

If \vec{x} and \vec{y} are orthogonal

$$
\|\vec{x}+\vec{y}\|_{\langle\cdot,\rangle}^{2}=\|\vec{x}\|_{\langle\cdot,\rangle}^{2}+\|\vec{y}\|_{\langle\cdot,\rangle}^{2}
$$

Orthonormal basis

Basis of mutually orthogonal vectors with inner-product norm equal to one

If $\left\{\vec{u}_{1}, \ldots, \vec{u}_{n}\right\}$ is an orthonormal basis of a vector space \mathcal{V}, for any $\vec{x} \in \mathcal{V}$

$$
\vec{x}=\sum_{i=1}^{n}\left\langle\vec{u}_{i}, \vec{x}\right\rangle \vec{u}_{i}
$$

Gram-Schmidt

Builds orthonormal basis from a set of linearly independent vectors $\vec{x}_{1}, \ldots, \vec{x}_{m}$ in \mathbb{R}^{n}

1. Set $\vec{u}_{1}:=\vec{x}_{1} /\left\|\vec{x}_{1}\right\|_{2}$
2. For $i=1, \ldots, m$, compute

$$
\vec{v}_{i}:=\vec{x}_{i}-\sum_{j=1}^{i-1}\left\langle\vec{u}_{j}, \vec{x}_{i}\right\rangle \vec{u}_{j}
$$

and set $\vec{u}_{i}:=\vec{v}_{i} /\left\|\vec{v}_{i}\right\|_{2}$
Vector spaces
Inner product
Norms
Mean, Variance and Correlation
Sample mean, variance and correlationOrthogonality
Orthogonal projection
Denoising

Orthogonal projection

The orthogonal projection of \vec{x} onto a subspace \mathcal{S} is a vector denoted by $\mathcal{P}_{\mathcal{S}} \vec{x}$ such that

$$
\vec{x}-\mathcal{P}_{\mathcal{S}} \vec{x} \in \mathcal{S}^{\perp}
$$

The orthogonal projection is unique

Orthogonal projection

Orthogonal projection

Any vector \vec{x} can be decomposed into

$$
\vec{x}=\mathcal{P}_{\mathcal{S}} \vec{x}+\mathcal{P}_{\mathcal{S}^{\perp}} \vec{x}
$$

For any orthonormal basis $\vec{b}_{1}, \ldots, \vec{b}_{m}$ of \mathcal{S},

$$
\mathcal{P}_{\mathcal{S}} \vec{x}=\sum_{i=1}^{m}\left\langle\vec{x}, \vec{b}_{i}\right\rangle \vec{b}_{i}
$$

The orthogonal projection is a linear operation. For \vec{x} and \vec{y}

$$
\mathcal{P}_{\mathcal{S}}(\vec{x}+\vec{y})=\mathcal{P}_{\mathcal{S}} \vec{x}+\mathcal{P}_{\mathcal{S}} \vec{y}
$$

Orthogonal projection is closest

The orthogonal projection $\mathcal{P}_{\mathcal{S}} \vec{x}$ of a vector \vec{x} onto a subspace \mathcal{S} is the solution to the optimization problem

$$
\begin{array}{lc}
\underset{\vec{u}}{\operatorname{minimize}} & \|\vec{x}-\vec{u}\| \\
\text { subject to } & \vec{u} \in \mathcal{S}
\end{array}
$$

Proof

Take any point $\vec{s} \in \mathcal{S}$ such that $\vec{s} \neq \mathcal{P}_{\mathcal{S}} \vec{x}$

$$
\|\vec{x}-\vec{s}\|_{\langle\cdot \cdot,\rangle}^{2}
$$

Proof

Take any point $\vec{s} \in \mathcal{S}$ such that $\vec{s} \neq \mathcal{P}_{\mathcal{S}} \vec{x}$

$$
\|\vec{x}-\vec{s}\|_{\langle\cdot, \cdot\rangle}^{2}=\left\|\vec{x}-\mathcal{P}_{\mathcal{S}} \vec{x}+\mathcal{P}_{\mathcal{S}} \vec{x}-\vec{s}\right\|_{\langle\cdot, \cdot\rangle}^{2}
$$

Proof

Take any point $\vec{s} \in \mathcal{S}$ such that $\vec{s} \neq \mathcal{P}_{\mathcal{S}} \vec{x}$

$$
\begin{aligned}
\|\vec{x}-\vec{s}\|_{\langle\cdot, \cdot\rangle}^{2} & =\left\|\vec{x}-\mathcal{P}_{\mathcal{S}} \vec{x}+\mathcal{P}_{\mathcal{S}} \vec{x}-\vec{s}\right\|_{\langle\cdot, \cdot\rangle}^{2} \\
& =\left\|\vec{x}-\mathcal{P}_{\mathcal{S}} \vec{x}\right\|_{\langle\cdot,\rangle}^{2}+\left\|\mathcal{P}_{\mathcal{S}} \vec{x}-\vec{s}\right\|_{\langle\cdot, \cdot\rangle}^{2}
\end{aligned}
$$

Proof

Take any point $\vec{s} \in \mathcal{S}$ such that $\vec{s} \neq \mathcal{P}_{\mathcal{S}} \vec{x}$

$$
\begin{aligned}
\|\vec{x}-\vec{s}\|_{\langle\cdot, \cdot\rangle}^{2} & =\left\|\vec{x}-\mathcal{P}_{\mathcal{S}} \vec{x}+\mathcal{P}_{\mathcal{S}} \vec{x}-\vec{s}\right\|_{\langle\cdot, \cdot\rangle}^{2} \\
& =\left\|\vec{x}-\mathcal{P}_{\mathcal{S}} \vec{x}\right\|_{\langle\cdot, \cdot\rangle}^{2}+\left\|\mathcal{P}_{\mathcal{S}} \vec{x}-\vec{s}\right\|_{\langle\cdot,\rangle}^{2} \\
& >\left\|\vec{x}-\mathcal{P}_{\mathcal{S}} \vec{x}\right\|_{\langle\cdot, \cdot\rangle}^{2} \quad \text { if } \vec{s} \neq \mathcal{P}_{\mathcal{S}} \vec{x}
\end{aligned}
$$

```
Vector spaces
Inner product
Norms
Mean, Variance and Correlation
Sample mean, variance and correlation
Orthogonality
Orthogonal projection
```

Denoising

Denoising

Aim: Estimating a signal from perturbed measurements
If the noise is additive, the data are modeled as the sum of the signal \vec{x} and a perturbation \vec{z}

$$
\vec{y}:=\vec{x}+\vec{z}
$$

The goal is to estimate \vec{x} from \vec{y}
Assumptions about the signal and noise structure are necessary

Denoising via orthogonal projection

Assumption: Signal is well approximated as belonging to a predefined subspace \mathcal{S}

Estimate: $\mathcal{P}_{\mathcal{S}} \vec{y}$, orthogonal projection of the noisy data onto \mathcal{S}
Error:

$$
\left\|\vec{x}-\mathcal{P}_{\mathcal{S}} \vec{y}\right\|_{2}^{2}=\left\|\mathcal{P}_{\mathcal{S}^{\perp}} \vec{x}\right\|_{2}^{2}+\left\|\mathcal{P}_{\mathcal{S}} \vec{z}\right\|_{2}^{2}
$$

Proof

$$
\vec{x}-\mathcal{P}_{\mathcal{S}} \vec{y}
$$

Proof

$$
\vec{x}-\mathcal{P}_{\mathcal{S}} \vec{y}=\vec{x}-\mathcal{P}_{\mathcal{S}} \vec{x}-\mathcal{P}_{\mathcal{S}} \vec{z}
$$

Proof

$$
\begin{aligned}
\vec{x}-\mathcal{P}_{\mathcal{S}} \vec{y} & =\vec{x}-\mathcal{P}_{\mathcal{S}} \vec{x}-\mathcal{P}_{\mathcal{S}} \vec{z} \\
& =\mathcal{P}_{\mathcal{S}^{\perp}} \vec{x}-\mathcal{P}_{\mathcal{S}} \vec{z}
\end{aligned}
$$

Error

Face denoising

Training set: 36064×64 images from 40 different subjects (9 each)

Noise: iid Gaussian noise

$$
\text { SNR }:=\frac{\|\vec{x}\|_{2}}{\|\vec{z}\|_{2}}=6.67
$$

We model each image as a vector in \mathbb{R}^{4096}

Face denoising

We denoise by projecting onto:

- \mathcal{S}_{1} : the span of the 9 images from the same subject
- \mathcal{S}_{2} : the span of the 360 images in the training set

Test error:

$$
\begin{aligned}
& \frac{\left\|\vec{x}-\mathcal{P}_{\mathcal{S}_{1}} \vec{y}\right\|_{2}}{\|\vec{x}\|_{2}}=0.114 \\
& \frac{\left\|\vec{x}-\mathcal{P}_{\mathcal{S}_{2}} \vec{y}\right\|_{2}}{\|\vec{x}\|_{2}}=0.078
\end{aligned}
$$

\mathcal{S}_{1}

Denoising via projection onto \mathcal{S}_{1}

Estimate

\mathcal{S}_{2}

Denoising via projection onto \mathcal{S}_{2}

Estimate
$\mathcal{P}_{\mathcal{S}_{1}} \vec{z}$ and $\mathcal{P}_{\mathcal{S}_{2}} \vec{z}$

$$
\mathcal{P}_{\mathcal{S}_{1}} \vec{z}
$$

$$
\mathcal{P}_{\mathcal{S}_{2}} \vec{z}
$$

$$
0.007=\frac{\left\|\mathcal{P}_{\mathcal{S}_{1}} \vec{z}\right\|_{2}}{\|\vec{x}\|_{2}}<\frac{\left\|\mathcal{P}_{\mathcal{S}_{2}} \vec{z}\right\|_{2}}{\|\vec{x}\|_{2}}=0.043
$$

$$
\frac{0.043}{0.007}=6.14 \approx \sqrt{\frac{\operatorname{dim}\left(\mathcal{S}_{2}\right)}{\operatorname{dim}\left(\mathcal{S}_{1}\right)}} \quad \text { (not a coincidence) }
$$

$\mathcal{P}_{\mathcal{S}_{1}^{\perp}} \vec{x}$ and $\mathcal{P}_{\mathcal{S}_{2}^{\perp}} \vec{x}$

$$
\mathcal{P}_{\mathcal{S}_{1}^{\perp}} \vec{x}
$$

$$
\mathcal{P}_{\mathcal{S}_{2}^{\perp}} \vec{x}
$$

$$
0.063=\frac{\left\|\mathcal{P}_{\mathcal{S}_{2}^{\perp}} \vec{x}\right\|_{2}}{\|\vec{x}\|_{2}}<\frac{\left\|\mathcal{P}_{\mathcal{S}_{1}^{\perp}} \vec{x}\right\|_{2}}{\|\vec{x}\|_{2}}=0.190
$$

$\mathcal{P}_{\mathcal{S}_{1}} \vec{y}$ and $\mathcal{P}_{\mathcal{S}_{2}} \vec{y}$

\vec{x}

