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Vector space

Consists of:

I A set V

I A scalar field (usually R or C)

I Two operations + and ·



Properties

I For any ~x , ~y ∈ V, ~x + ~y belongs to V

I For any ~x ∈ V and any scalar α, α · ~x ∈ V

I There exists a zero vector ~0 such that ~x +~0 = ~x for any ~x ∈ V

I For any ~x ∈ V there exists an additive inverse ~y such that ~x + ~y = ~0,
usually denoted by −~x



Properties

I The vector sum is commutative and associative, i.e. for all ~x , ~y , ~z ∈ V

~x + ~y = ~y + ~x , (~x + ~y) + ~z = ~x + (~y + ~z)

I Scalar multiplication is associative, for any scalars α and β and any
~x ∈ V

α (β · ~x) = (αβ) · ~x

I Scalar and vector sums are both distributive, i.e. for any scalars α and
β and any ~x , ~y ∈ V

(α+ β) · ~x = α · ~x + β · ~x , α · (~x + ~y) = α · ~x + α · ~y



Concept Check

Let V = {x |x ∈ R, x ≥ 0}. Define addition operation for x , y ∈ V as
x + y = x + y (normal addition) and scalar multiplication for x ∈ V and
α ∈ R as αx = α.x (regular scaling). Is V a vector field?



Subspaces

A subspace of a vector space V is any subset of V that is also itself
a vector space



Linear dependence/independence

A set of m vectors ~x1, ~x2, . . . , ~xm is linearly dependent if there exist
m scalar coefficients α1, α2, . . . , αm which are not all equal to zero and

m∑
i=1

αi ~xi = ~0

Equivalently, any vector in a linearly dependent set can be
expressed as a linear combination of the rest



Span

The span of {~x1, . . . , ~xm} is the set of all possible linear combinations

span (~x1, . . . , ~xm) :=

{
~y | ~y =

m∑
i=1

αi ~xi for some scalars α1, α2, . . . , αm

}

The span of any set of vectors in V is a subspace of V



Basis and dimension

A basis of a vector space V is a set of independent vectors {~x1, . . . , ~xm}
such that

V = span (~x1, . . . , ~xm)

If V has a basis with finite cardinality then every basis contains
the same number of vectors

The dimension dim (V) of V is the cardinality of any of its bases

Equivalently, the dimension is the number of linearly independent vectors
that span V



Standard basis

~e1 =


1
0
...
0

 , ~e2 =


0
1
...
0

 , . . . , ~en =


0
0
...
1



The dimension of Rn is n



Concept Check

I (True/False) If S is a subset of vector space V, then span(S) contains
the intersection of all subspace of V that contain S .

I The set of all n × n matrices with trace as zero forms a subspace W
of the space of n × n matrices. Find a basis for W and calculate it’s
dimension.



Concept Check - Answers

I True.

I We need to enforce that the sum of diagonal entries is zero, or that
A11 + A22 + · · ·+ Ann = 0. The basis vectors can be
{Eij}i 6=j ∪ {Eii − Enn}i=1,2,...,n−1. The dimension of W is n2 − 1
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Inner product

Operation 〈·, ·〉 that maps a pair of vectors to a scalar



Properties

I If the scalar field is R, it is symmetric. For any ~x , ~y ∈ V

〈~x , ~y〉 = 〈~y , ~x〉

If the scalar field is C, then for any ~x , ~y ∈ V

〈~x , ~y〉 = 〈~y , ~x〉,

where for any α ∈ C α is the complex conjugate of α



Properties

I It is linear in the first argument, i.e. for any α ∈ R and any ~x , ~y , ~z ∈ V

〈α~x , ~y〉 = α 〈~x , ~y〉 ,
〈~x + ~y , ~z〉 = 〈~x , ~z〉+ 〈~y , ~z〉 .

If the scalar field is R, it is also linear in the second argument

I It is positive definite: 〈~x , ~x〉 is nonnegative for all ~x ∈ V and if
〈~x , ~x〉 = 0 then ~x = ~0



Dot product

Inner product between ~x , ~y ∈ Rn

~x · ~y :=
∑
i

~x [i ] ~y [i ]

Rn endowed with the dot product is usually called a Euclidean space of
dimension n

If ~x , ~y ∈ Cn

~x · ~y :=
∑
i

~x [i ] ~y [i ]



Matrix inner product

The inner product between two m × n matrices A and B is

〈A,B〉 := tr
(
ATB

)
=

m∑
i=1

n∑
j=1

AijBij

where the trace of an n × n matrix is defined as the sum of its diagonal

tr (M) :=
n∑

i=1

Mii

For any pair of m × n matrices A and B

tr
(
BTA

)
:= tr

(
ABT

)



Function inner product

The inner product between two complex-valued square-integrable
functions f , g defined in an interval [a, b] of the real line is

~f · ~g :=

∫ b

a
f (x) g (x) dx
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Norms

Let V be a vector space, a norm is a function ||·|| from V to R with
the following properties

I It is homogeneous. For any scalar α and any ~x ∈ V

||α~x || = |α| ||~x || .

I It satisfies the triangle inequality

||~x + ~y || ≤ ||~x ||+ ||~y || .

In particular, ||~x || ≥ 0

I ||~x || = 0 implies ~x = ~0



Inner-product norm

Square root of inner product of vector with itself

||~x ||〈·,·〉 :=
√
〈~x , ~x〉



Inner-product norm

I Vectors in Rn or Cn: `2 norm

||~x ||2 :=
√
~x · ~x =

√√√√ n∑
i=1

~x [i ]2

I Matrices in Rm×n or Cm×n: Frobenius norm

||A||F :=
√

tr (ATA) =

√√√√ m∑
i=1

n∑
j=1

A2
ij

I Square-integrable complex-valued functions: L2 norm

||f ||L2
:=
√
〈f , f 〉 =

√∫ b

a
|f (x)|2 dx



Cauchy-Schwarz inequality

For any two vectors ~x and ~y in an inner-product space

|〈~x , ~y〉| ≤ ||~x ||〈·,·〉 ||~y ||〈·,·〉

Assume ||~x ||〈·,·〉 6= 0, then

〈~x , ~y〉 = − ||~x ||〈·,·〉 ||~y ||〈·,·〉 ⇐⇒ ~y = −
||~y ||〈·,·〉
||~x ||〈·,·〉

~x

〈~x , ~y〉 = ||~x ||〈·,·〉 ||~y ||〈·,·〉 ⇐⇒ ~y =
||~y ||〈·,·〉
||~x ||〈·,·〉

~x



`1 and `∞ norms

Norms in Rn or Cn not induced by an inner product

||~x ||1 :=
n∑

i=1

|~x [i ]|

||~x ||∞ := max
i
|~x [i ]|



Norm balls

`1 `2 `∞



Distance

The distance between two vectors ~x and ~y induced by a norm ||·|| is

d (~x , ~y) := ||~x − ~y ||



Classification

Aim: Assign a signal to one of k predefined classes

Training data: n pairs of signals (represented as vectors) and
labels: {~x1, l1}, . . . , {~xn, ln}



Nearest-neighbor classification

nearest neighbor



Face recognition

Training set: 360 64× 64 images from 40 different subjects (9 each)

Test set: 1 new image from each subject

We model each image as a vector in R4096 and use the `2-norm distance



Face recognition

Training set



Nearest-neighbor classification

Errors: 4 / 40

Test
image

Closest
image
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Mean, Variance and Correlation

I Consider real-valued data corresponding to a single quantity or
feature. We model such data as a scalar continuous random variable.

I In reality we usually have access to a finite number of data points, not
to a continuous distribution.

I Mean of a random variable is the point that minimizes the expected
distance to the random variable.

I Intuitively, it is the center of mass of the probability density, and hence
of the dataset.



Mean

Lemma: For any random variable ã with mean E(ã) ,

E (ã) = argmin
c∈R

E
(
(c − ã)2

)
.



Proof

Let g(c) := E
(
(c − ã)2

)
= c2 − 2cE (ã) + E

(
ã2), we have

f ′(c) = 2(c − E(ã)),
f ′′(c) = 2.

The function is strictly convex and has a minimum where the derivative
equals zero, i.e. when c is equal to the mean.



Variance

The variance of a random variable ã

Var(ã) := E
(
(ã− E(ã))2

)
quantifies how much it fluctuates around its mean. The standard deviation,
defined as the square root of the variance, is therefore a measure of how
spread out the dataset is around its center.



Covariance

I Consider data containing two features, each represented by a random
variable.

I The covariance of two random variables ã and b̃ quantifies their joint
fluctuations around their respective means.

Cov(ã, b̃) := E
[
(ã− E(ã)(b̃ − E(b̃))

]



Concept Check: Zero Mean RVs

I The space of zero mean random variables form a vector space. Why?

I What will be the origin (zero vector) of the space?

I Does Cov(ã, b̃) define a valid inner product in this space?



Vector Space of Zero Mean RVs

I Zero-mean random variables form a vector space because linear
combinations of zero-mean random variables are also zero mean.

I The origin of the vector space (the zero vector) is the random variable
equal to zero with probability one.

I The covariance is a valid inner product because it is (1) symmetric,
(2) linear in its first argument, i.e. for any α ∈ R E(αãb̃) = αE(ãb̃),
and (3) positive definite, i.e. E(ã2) > 0 if ã 6= 0 and E(ã2) = 0 if and
only if ã = 0 with probability one. To prove this last property, we use
a fundamental inequality in probability theory.



Markov’s Inequality

Theorem (Markov’s inequality)

Let r̃ be a nonnegative random variable. For any positive constant c > 0,

P(r̃ ≥ c) ≤ E(r̃)
c

.



Proof

Consider the indicator variable 1r̃≥c . We have

r̃ − c 1r̃≥c ≥ 0,

By linearity of expectation and the fact that 1r̃≥c is a Bernoulli random
variable with expectation P(r̃ ≥ c) we have

E(r̃) ≥ c E (1r̃≥c) = c P(r̃ ≥ c).



Proof

Consider the indicator variable 1r̃≥c . We have

r̃ − c 1r̃≥c ≥ 0,

By linearity of expectation and the fact that 1r̃≥c is a Bernoulli random
variable with expectation P(r̃ ≥ c) we have

E(r̃) ≥ c E (1r̃≥c) = c P(r̃ ≥ c).



Corollary

If the mean square E
[
ã2] of a random variable ã equals zero, then

P(ã 6= 0) = 0.

Proof:

I If P(ã 6= 0) 6= 0 then there exists an ε such that P(ã2 ≥ ε) 6= 0.
I This is impossible.
I Applying Markov’s inequality to the nonnegative random variable ã2

we have

P(ã2 ≥ ε) ≤ E
(
ã2)
ε

= 0.
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Correlation Coefficient

I When comparing two vectors, a natural measure of their similarity is
the cosine of the angle between them which ranges from −1 to 1.

I The cosine equals the inner product between the vectors normalized by
their norms.

I In the vector space of zero-mean random variables this quantity is
called the correlation coefficient,

ρã,b̃ :=
Cov(ã, b̃)√

Var(ã)Var(b̃)
,



Correlation Coefficient

I When comparing two vectors, a natural measure of their similarity is
the cosine of the angle between them which ranges from −1 to 1.

I The cosine equals the inner product between the vectors normalized by
their norms.

I In the vector space of zero-mean random variables this quantity is
called the correlation coefficient,

ρã,b̃ :=
Cov(ã, b̃)√

Var(ã)Var(b̃)
,

I −1 ≤ ρã,b̃ ≤ 1. Why?



Cauchy-Schwarz inequality for random variables

Theorem (Cauchy-Schwarz inequality for random variables)

Let ã and b̃ be two random variables. Their correlation coefficient satisfies

−1 ≤ ρã,b̃ ≤ 1

with equality if and only if b̃ is a linear function of ã with probability one.



Proof

Consider the standardized random variables (centered and normalized),

s(ã) :=
ã− E(ã)√

Var(ã)
, s(b̃) :=

b̃ − E(b̃)√
Var(b̃)

.

The mean square distance between them equals

E
[
(s(b̃)− s(ã))2

]
= E

(
s(ã)2

)
+ E(s(b̃)2)− 2E(s(ã) s(b̃))

= 2(1− E(s(ã) s(b̃)))
= 2(1− ρã,b̃)

This implies that ρã,b̃ ≤ 1. Why?
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Proof

I

E
[
(s(b̃)− s(ã))2

]
= 2(1− ρã,b̃)

I Recall that if the mean square E
[
ã2] of a random variable ã equals

zero, then P(ã 6= 0) = 0.

I When ρã,b̃ = 1, E
[
(s(b̃)− s(ã))2

]
= 0. This means that s(ã) = s(b̃)

with probability one, which implies the linear relationship.

I Similarly, using

E
[
(s(b̃)− (− s(ã)))2

]
= 2(1+ ρã,b̃).

the same argument applies when ρã,b̃ = −1.



Proof

I

E
[
(s(b̃)− s(ã))2

]
= 2(1− ρã,b̃)

I Recall that if the mean square E
[
ã2] of a random variable ã equals

zero, then P(ã 6= 0) = 0.

I When ρã,b̃ = 1, E
[
(s(b̃)− s(ã))2

]
= 0. This means that s(ã) = s(b̃)

with probability one, which implies the linear relationship.
I Similarly, using

E
[
(s(b̃)− (− s(ã)))2

]
= 2(1+ ρã,b̃).

the same argument applies when ρã,b̃ = −1.



Geometric Interpretation of Correlation Coefficient

s(ã)ρã,b̃s(ã)

s(b̃)

s(b̃)− ρã,b̃s(ã)
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Sample mean, variance and correlation

I When analyzing data we do not have access to a probability
distribution, but rather to a set of points.

I Adapt our previous analysis to this setting.

I Main Idea: Approximate expectations by averaging over the data



Sample mean, variance and correlation

I Consider a dataset containing n real-valued data with two real valued
features (a1, b1), . . . , (an, bn). Let A := {a1, . . . , an} and
B := {b1, . . . , bn}

I Sample Mean:

av (A) := 1
n

n∑
i=1

ai ,

I Sample Covariance

cov(A,B) := 1
n

n∑
i=1

(ai − av(A))(bi − av(B),

I Sample Variance,

var (A) := 1
n

n∑
i=1

(ai − av (A))2 .



Sample mean converges to true mean

Theorem (Sample mean converges to true mean)

Let Ãn contain n iid copies ã1, . . . , ãn of a random variable ã with finite
variance. Then,

lim
n

E
(
(av(Ãn)− E(ã))2

)
= 0.



Proof

By linearity of expection

E
(
av(Ãn)

)
=

1
n

n∑
i=1

E(ãi )

= E(ã),

which implies

E
(
(av(Ãn)− E(ã))2

)
= Var

(
av(Ãn)

)
=

1
n2

n∑
i=1

Var(ãi ) by independence

=
Var(ã)

n
.

The same proof can be applied to the sample variance and the sample covariance, under
the assumption that higher-order moments of the distribution are bounded.



Proof

By linearity of expection

E
(
av(Ãn)

)
=

1
n

n∑
i=1

E(ãi )

= E(ã),

which implies

E
(
(av(Ãn)− E(ã))2

)
= Var

(
av(Ãn)

)
=

1
n2

n∑
i=1

Var(ãi ) by independence

=
Var(ã)

n
.

The same proof can be applied to the sample variance and the sample covariance, under
the assumption that higher-order moments of the distribution are bounded.



Sample Mean is the Center

Lemma (The sample mean is the center)

For any set of real numbers A := {a1, . . . , an},

av (A) = argmin
c∈R

n∑
i=1

(c − ai )
2.



Proof

Let f (c) :=
∑n

i=1(c − ai )
2, we have

f ′(c) = 2
n∑

i=1

(c − ai )

= 2

(
nc −

n∑
i=1

ai

)
,

f ′′(c) = 2n.

The function is strictly convex and has a minimum where the derivative
equals zero, i.e. when c is equal to the sample mean.



Proof

I Note that the proof is essentially the same as that of the probabilistic
setting.

I The reason is that both expectation and averaging operators are linear.

I Analogously to the probabilistic setting, we can show that the sample
covariance is a valid inner product between centered sets of samples,
and the sample standard deviation– defined as the square root of the
sample variance– is its corresponding norm.

ρA,B :=
cov(A,B)√
var(A) var(B)



Correlation coefficient

ρA,B 0.50 0.90 0.99

ρA,B 0.00 -0.90 -0.99



Oxford Data

ρ = 0.962 ρ = 0.019 ρ = −0.468
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Oxford Data - Takeaways

I The maximum temperature is highly correlated with the minimum
temperature (ρ = 0.962).

I Rainfall is almost uncorrelated with the maximum temperature
(ρ = 0.019), but this does not mean that the two quantities are
not related; the relation is just not linear.

I When we only consider the rain and temperature in August, then the
two quantities are linearly related to some extent. Their correlation is
negative (ρ = −0.468): when it is warmer it tends to rain less.

I If the relationship between each pair of features were perfectly linearly
then they would lie on the dashed red diagonal lines.
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Orthogonality

Two vectors ~x and ~y are orthogonal if and only if

〈~x , ~y〉 = 0

A vector ~x is orthogonal to a set S, if

〈~x , ~s〉 = 0, for all ~s ∈ S

Two sets of S1,S2 are orthogonal if for any ~x ∈ S1, ~y ∈ S2

〈~x , ~y〉 = 0

The orthogonal complement of a subspace S is

S⊥ := {~x | 〈~x , ~y〉 = 0 for all ~y ∈ S}



Pythagorean theorem

If ~x and ~y are orthogonal

||~x + ~y ||2〈·,·〉 = ||~x ||2〈·,·〉 + ||~y ||2〈·,·〉



Orthonormal basis

Basis of mutually orthogonal vectors with inner-product norm
equal to one

If {~u1, . . . , ~un} is an orthonormal basis of a vector space V,
for any ~x ∈ V

~x =
n∑

i=1

〈~ui , ~x〉 ~ui



Gram-Schmidt

Builds orthonormal basis from a set of linearly independent vectors
~x1, . . . , ~xm in Rn

1. Set ~u1 := ~x1/ ||~x1||2

2. For i = 1, . . . ,m, compute

~vi := ~xi −
i−1∑
j=1

〈~uj , ~xi 〉 ~uj

and set ~ui := ~vi/ ||~vi ||2
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Orthogonal projection

The orthogonal projection of ~x onto a subspace S is a vector
denoted by PS ~x such that

~x − PS ~x ∈ S⊥

The orthogonal projection is unique



Orthogonal projection



Orthogonal projection

Any vector ~x can be decomposed into

~x = PS ~x + PS⊥ ~x .

For any orthonormal basis ~b1, . . . , ~bm of S,

PS ~x =
m∑
i=1

〈
~x , ~bi

〉
~bi

The orthogonal projection is a linear operation. For ~x and ~y

PS (~x + ~y) = PS ~x + PS ~y



Orthogonal projection is closest

The orthogonal projection PS ~x of a vector ~x onto a subspace S is
the solution to the optimization problem

minimize
~u

||~x − ~u||〈·,·〉
subject to ~u ∈ S



Proof

Take any point ~s ∈ S such that ~s 6= PS ~x

||~x − ~s||2〈·,·〉

= ||~x − PS ~x + PS ~x − ~s||2〈·,·〉
= ||~x − PS ~x ||2〈·,·〉 + ||PS ~x − ~s||2〈·,·〉
> ||~x − PS ~x ||2〈·,·〉 if ~s 6= PS ~x
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Denoising

Aim: Estimating a signal from perturbed measurements

If the noise is additive, the data are modeled as the sum of the signal ~x
and a perturbation ~z

~y := ~x + ~z

The goal is to estimate ~x from ~y

Assumptions about the signal and noise structure are necessary



Denoising via orthogonal projection

Assumption: Signal is well approximated as belonging to a predefined
subspace S

Estimate: PS ~y , orthogonal projection of the noisy data onto S

Error:

||~x − PS ~y ||22 = ||PS⊥ ~x ||22 + ||PS ~z ||22



Proof

~x − PS ~y

= ~x − PS ~x − PS ~z
= PS⊥ ~x − PS ~z



Proof

~x − PS ~y = ~x − PS ~x − PS ~z

= PS⊥ ~x − PS ~z



Proof

~x − PS ~y = ~x − PS ~x − PS ~z
= PS⊥ ~x − PS ~z



Error

error

0

S

PS~y

~y

~x ~z

PS⊥~x

PS~z



Face denoising

Training set: 360 64× 64 images from 40 different subjects (9 each)

Noise: iid Gaussian noise

SNR :=
||~x ||2
||~z ||2

= 6.67

We model each image as a vector in R4096



Face denoising

We denoise by projecting onto:

I S1: the span of the 9 images from the same subject

I S2: the span of the 360 images in the training set

Test error:

||~x − PS1 ~y ||2
||~x ||2

= 0.114

||~x − PS2 ~y ||2
||~x ||2

= 0.078



S1

S1 := span

( )



Denoising via projection onto S1

Projection
onto S1

Projection
onto S⊥1

Signal
~x

= 0.993 + 0.114

+

Noise
~z

= 0.007 + 0.150

=

Data
~y

= +

Estimate



S2

S2 := span

(

· · · )



Denoising via projection onto S2

Projection
onto S2

Projection
onto S⊥2

Signal
~x

= 0.998 + 0.063

+

Noise
~z

= 0.043 + 0.144

=

Data
~y

= +

Estimate



PS1 ~z and PS2 ~z

PS1 ~z PS2 ~z

0.007 =
||PS1 ~z ||2
||~x ||2

<
||PS2 ~z ||2
||~x ||2

= 0.043

0.043
0.007

= 6.14 ≈
√

dim (S2)

dim (S1)
(not a coincidence)



PS⊥1 ~x and PS⊥2 ~x

PS⊥1 ~x PS⊥2 ~x

0.063 =

∣∣∣∣∣∣PS⊥2 ~x∣∣∣∣∣∣2
||~x ||2

<

∣∣∣∣∣∣PS⊥1 ~x∣∣∣∣∣∣2
||~x ||2

= 0.190



PS1 ~y and PS2 ~y

~x PS1 ~y PS2 ~y
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