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Sparse Regression

1 Overview

In this chapter we consider the problem of sparse regression, where the goal is to obtain a linear
model that only depends on a small number of features. In Section 2 we motivate the use of the
`1 norm for this purpose. In Section 3 we introduce the lasso, which combines least squares with
`1 norm regularization. In Section 4 we describe convex functions and some of their properties.
In Section 5 we present a geometric characterization of convex functions based on subgradients.
Finally, in Section 6 we analyze the lasso cost function for a simple example with two features.

2 Promoting sparsity

In this chapter we describe how to promote sparsity by minimizing the `1 norm. We will start
with a motivating example that illustrates the advantages of this approach. Consider a vector,
parametrized by a single real variable t ∈ R,

vt :=

 t
t− 1
t− 1

 . (1)

Our objective is to fit t so that vt is as sparse as possible. This amounts to minimizing the number
of nonzeros of vt, which is sometimes known as the `0 “norm” of vt. Note, however, that this is
not a valid norm because it is not homogeneous: for any x ||2x||0 = ||x||0 6= 2 ||x||0. The graph of
||vt||0 is depicted in Figure 1. It is constant except at two isolated points. We essentially have to
evaluate the function everywhere to find the global minimum. This is a problem, because trying
out all possible options is computationally infeasible. Let us consider an alternative approach:
minimizing

f (t) := ||vt|| (2)

where ||·|| is a norm. Intuitively, norms represent how large a vector is, so perhaps performing the
minimization might lead to a sparse solution.

As shown in Figure 1, the `2 or `∞ norms do not result in sparse solutions, but the `1 norm does:
its global minimum is at the same location as the minimum `0 “norm” solution. This is not a
coincidence: minimizing the `1 norm tends to promote sparsity. When compared to the `2 norm,
it penalizes small entries more (ε2 is much smaller than |ε| for small ε), as a result it tends to
produce solutions that contain a small number of nonzero entries. In contrast to the `0 “norm”,
the `1 norm can be minimized by local descent methods. Following the direction in which the
function decreases eventually reaches the global minimum. It is therefore an ideal candidate for
producing sparse estimates in practice.
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Figure 1: Graph of the function in Eq. (2) for different norms and for the nonconvex `0 “norm”.

3 The lasso

In the chapter on linear regression, we observed that the performance of linear regression degrades
when the number of features is close to the number of training data. This makes sense: the number
of parameters of a model should be significantly smaller than the number of measurements used to
fit it. However, when the number of features is very large, it is often possible to achieve accurate
prediction using only a subset of them. Selecting a useful subset of features is a crucial problem
in statistics, known as model selection. Consider a linear regression problem with p features
associated to a coefficient vector β ∈ Rp. The goal of model selection is to find a set of indices
I ⊂ {1, . . . , p}, such that the response y ∈ R is well approximated by the corresponding features,

y ≈
∑
i∈I

β[i]x[i], (3)

where we assume that the feature and the response are centered so we don’t need an intercept.
Equivalently, we would like to find a sparse coefficient vector β ∈ Rp such that

y ≈ 〈x, β〉 . (4)

The problem of finding sparse coefficients that achieve a good fit to the data is called sparse
regression. In these notes, we study the lasso, a popular sparse-regression method based on
regularization.

When fitting a sparse linear model we have two objectives:

• Achieving a good fit to the data; i.e. minimizing ‖Xβ − y‖22.

• Using a small number of features; i.e. making β as sparse as possible.
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This suggests minimizing a cost function that simultaneously minimizes the fitting error and
maximizes the sparsity of the coefficients. In the lecture notes on linear regression we describe
ridge regression, where an `2-norm regularization term penalizes coefficients that are too large to
reduce overfitting. Here we would like to penalize the number of nonzeros in the support of the
coefficient, i.e. its `0 “norm” instead. As explained in Section 2, this “norm” is intractable to
minimize, whereas the `1 norm is convex and promotes sparsity. This suggests leveraging it as
a regularizer. In statistics, the solution to an `1-norm-regularized least-squares problem is called
the lasso estimator, introduced in [3] (see also [1]).

Definition 3.1 (The lasso). For X ∈ Rn×p and y ∈ Rp, the lasso estimate is the minimizer of the
optimization problem

βlasso := arg min
β

1

2
‖y −XTβ‖22 + λ‖β‖1, (5)

where λ > 0 is a regularization parameter.

The following example with real data illustrates that the lasso can be quite effective.

Example 3.2 (Temperature prediction via sparse regression). We consider the same dataset of
hourly temperatures measured at weather stations all over the United States1 that we used in the
lecture notes on linear regression. Our goal is to design a model that can be used to estimate
the temperature in Jamestown (North Dakota) from the temperatures of 133 other stations. We
perform estimation by fitting a linear model where the response is the temperature in Jamestown
and the features are the rest of the temperatures (p = 133). We use 103 measurements from 2015
as a test set, and train a ridge-regression and a lasso model using a variable number of training
data also from 2015 but disjoint from the test data. In addition, we test both models on data
from 2016.

Figure 2 compares the coefficients obtained by the lasso and ridge regression for different values
of the regularization parameter λ when the number of data n equals 135. Since the number of
features is just 133, the least-squares estimator severely overfits the training data. This is evident
in the large magnitude of the coefficients for small values of λ. As λ increases the coefficients of
the ridge-regression and lasso estimators shrink, limiting the overfitting effect. However, there is
a striking difference: the ridge-regression coefficients all shrink simultaneously, whereas the lasso
coefficients shrink sequentially yielding increasingly sparse models. The left image in Figure 3
shows that this shrinkage indeed controls overfitting and results in an improved validation error
for the lasso. The right image shows the values of λ that minimize validation error for different
values of n. As expected, larger values of λ are more useful for smaller values of n, where we need
regularization to avoid overfitting.

Figure 4 shows the ridge-regression and lasso coefficients corresponding to the optimal λ for dif-
ferent values of n. The lasso results in a much sparser linear model, except for very large values of
n where both estimators approach the least-squares solution. Finally, Figure 5 shows the perfor-
mance of the lasso and ridge-regression estimators on a held-out test set, as well as on data from
another year. The lasso achieves better prediction for all values of n, up until the point where the
estimators approach the least-squares solution. 4
1The data are available at http://www1.ncdc.noaa.gov/pub/data/uscrn/products
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Figure 2: Coefficients of the ridge-regression (left) and lasso (right) estimators computed from the data
described in Example 3.2 for different values of the regularization parameter λ. The number of training
data is fixed to n := 135 training data. All coefficients are depicted in light blue except the three that
have the largest magnitudes for large n.
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Figure 3: The left image shows the training and validation RMSE of the lasso estimator on the tem-
perature data described in Example 3.2 when the number of training data is fixed to n := 135 training
data. The right graph shows the values of λ selected from a validation dataset of size 100 for different
values of n.

4



Ridge regression Lasso

102 103 104

Number of training data
0.6

0.4

0.2

0.0

0.2

0.4

0.6

Co
ef

fic
ie

nt
s

WolfPoint, MT
Aberdeen, SD
Buffalo, SD

102 103 104

Number of training data
0.6

0.4

0.2

0.0

0.2

0.4

0.6

Co
ef

fic
ie

nt
s

WolfPoint, MT
Aberdeen, SD
Buffalo, SD

Figure 4: Coefficients of the ridge-regression (left) and lasso (right) estimators computed from the data
described in Example 3.2 for different sizes of the training dataset. The coefficients to a value of λ chosen
via cross validation. All coefficients are depicted in light blue except the three that have the largest
magnitudes for large n.
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Figure 5: Performance of the lasso estimator on the temperature data described in Example 3.2. The
graph shows the RMSE achieved by the models on the training and test sets, and on the 2016 data, for
different number of training data and compares it to the RMSE achieved by ridge regression.
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f (θx+ (1− θ)y)
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f (x)
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Figure 6: Illustration of condition (6) in Definition 4.1. The curve corresponding to the function must
lie below any chord joining two of its points.

4 Convexity

Convex functions are of crucial importance in data analysis because they can be efficiently mini-
mized. In this section we introduce the concept of convexity and then discuss norms, which are
often used to design convex cost functions when fitting models to data. A function is convex if
and only if its curve lies below any chord joining two of its points. Figure 6 shows a 1D convex
function.

Definition 4.1 (Convex function). A function f : Rn → R is convex if for any x, y ∈ Rn and any
θ ∈ (0, 1),

θf (x) + (1− θ) f (y) ≥ f (θx+ (1− θ) y) . (6)

The function is strictly convex if the inequality is always strict, i.e. if x 6= y implies that

θf (x) + (1− θ) f (y) > f (θx+ (1− θ) y) . (7)

The following lemmas illustrate some simple cases.

Lemma 4.2. Linear functions are convex but not strictly convex.

Proof. If f is linear, for any x, y ∈ Rn and any θ ∈ (0, 1),

f (θx+ (1− θ) y) = θf (x) + (1− θ) f (y) . (8)

Lemma 4.3. Positive semidefinite quadratic forms are convex. Positive definite quadratic func-
tions are strictly convex.
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Proof. Let f(x) := xTAx, where A is symmetric and consequently has orthonormal eigenvectors.
Let λ1, . . . , λn, u1, . . . , un be the eigenvalues and eigenvectors of A. For any x, y ∈ Rn and any
θ ∈ (0, 1),

f (θx+ (1− θ) y) = θ2
n∑
i=1

λi(u
T
i x)2 + (1− θ)2

n∑
i=1

λi(u
T
i y)2 + 2θ(1− θ)

n∑
i=1

λi(u
T
i y)(uTi x) (9)

≤ θ

n∑
i=1

λi(u
T
i x)2 + (1− θ)

n∑
i=1

λi(u
T
i x)2 (10)

= θf (x) + (1− θ) f (y) . (11)

If the eigenvalues are all positive then the inequality is strict. The inequality follows from the fact
that for any a, b ∈ R, 2ab < a2 + b2 if a 6= b, so

θ2a2 + (1− θ)2b2 + 2θ(1− θ)ab < θ2a2 + (1− θ)2b2 + θ(1− θ)a2 + θ(1− θ)b2 (12)

= θa2 + (1− θ) b2. (13)

Lemma 4.4. Adding two convex functions results in a convex function. If at least one of them is
strictly convex, then the result is also strictly convex.

Lemma 4.5. Scaling a convex function by a nonnegative factor results in a convex function.

We omit the proof of the two last results because they directly follow from the definition of
convexity.

All norms including the `1 norm are convex.

Lemma 4.6 (Norms are convex). Any valid norm ||·|| is a convex function.

Proof. By the triangle inequality inequality and homogeneity of the norm, for any x, y ∈ Rn and
any θ ∈ (0, 1)

||θx+ (1− θ) y|| ≤ ||θx||+ ||(1− θ) y|| (14)

= θ ||x||+ (1− θ) ||y|| . (15)

However, the `0 “norm” is not convex, which corroborates what we observed in the toy example
of Section 2.

Lemma 4.7. The `0 “norm” defined as the number of nonzero entries in a vector is not convex.

Proof. We provide a simple counterexample with vectors in R2 that can be easily extended to
vectors in Rn. Let x := ( 1

0 ) and y := ( 0
1 ), then for any θ ∈ (0, 1)

||θx+ (1− θ) y||0 = 2 > 1 = θ ||x||0 + (1− θ) ||y||0 . (16)
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We conclude that the cost function of the lasso is a convex function.

Lemma 4.8. The cost function of the lasso,

f(β) :=
1

2
‖y −XTβ‖22 + λ‖β‖1, (17)

where X ∈ Rp×n and y ∈ Rn, is a convex function. If p < n and X is full rank then it is strictly
convex.

Proof. If we expand the square `2-norm term, the function is the sum of a positive semidefinite
quadratic, a linear term, a constant, and a nonnegative scaling of the `1 norm. By Lemmas 4.2,
4.3, 4.4, and 4.5 the function is convex. If p < n and X then the quadratic term is positive definite,
and hence strictly convex, which implies that f is strictly convex.

A crucial property of convex functions is that they cannot have suboptimal local minima.

Theorem 4.9 (Local minima are global). Any local minimum of a convex function is also a global
minimum.

Proof. We prove the result by contradiction. Let xloc be a local minimum and xglob a global
minimum such that f (xglob) < f (xloc). Since xloc is a local minimum, there exists γ > 0 for which
f (xloc) ≤ f (x) for all x ∈ Rn such that ||x− xloc||2 ≤ γ. If we choose θ ∈ (0, 1) small enough,
xθ := θxloc + (1− θ)xglob satisfies ||xθ − xloc||2 ≤ γ and therefore

f (xloc) ≤ f (xθ) (18)

≤ θf (xloc) + (1− θ) f (xglob) by convexity of f (19)

< f (xloc) because f (xglob) < f (xloc). (20)

If a function is strictly convex then any local minimum is both global and unique: every other
point is guaranteed to yield a larger value.

Corollary 4.10. Strictly convex functions have at most one global minimum, and no other local
minima.

Proof. By Theorem 4.9 all local minima of the function are global minima and hence have the
same value vmin := f(x) = f(y). Let x and y be two such minima. By strict convexity

f (0.5x+ 0.5y) < 0.5f(x) + 0.5f(y) (21)

= vmin, (22)

which contradicts the assumption that x and y are global minima.
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Figure 7: Epigraph of a function.

5 Subgradients

We now provide a geometric characterization of convex functions that will be useful to analyze the
lasso. We define the epigraph of a function as the subset of Rn+1 that lies above its graph. The
graph is the set of vectors in Rn+1 obtained by concatenating x ∈ Rn and f (x) for every x ∈ Rn.
Figure 7 shows the epigraph of a convex function.

Definition 5.1 (Epigraph). The epigraph of a function f : Rn → R is the set

epi (f) :=

x | f
x[1]
· · ·
x[n]

 ≤ x[n+ 1]

 . (23)

A supporting hyperplane is a hyperplane that touches a set but does not cut through it.

Definition 5.2 (Supporting hyperplane). A hyperplane H is a supporting hyperplane of a set S
at x if

• H and S intersect at x,

• S is contained in one of the half-spaces bounded by H.

Convex functions have supporting hyperplanes at any point of their epigraph, i.e. for any convex
function f and any point x we can find a linear function that has the same value as f at x and lies
under f otherwise. Moreover, any function that satisfies this property is convex. Figure 8 shows
a 1D example.

Theorem 5.3. A function f : Rn → R is convex if and only if for all x ∈ Rn there exists a
subgradient g ∈ Rn such that

f (y) ≥ f (x) + g T (y − x) , for all y ∈ Rn. (24)

The inequality is always strict if and only if the function is strictly convex.
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Figure 8: A nondifferentiable convex function (blue). The red lines are supporting hyperplanes (lines
in this case).

Proof. One can prove that g exists by applying the Supporting-Hyperplane Theorem, we refer the
interested reader to Section 3.1.5 in [2].

To prove the converse statement, assume that for any x, y ∈ Rn and θ ∈ (0, 1) there exists such a
g. This implies

f (y) ≥ f (θx+ (1− θ) y) + g T (y − θx− (1− θ) y) (25)

= f (θx+ (1− θ) y) + θ g T (y − x) , (26)

f (x) ≥ f (θx+ (1− θ) y) + g T (x− θx− (1− θ) y) (27)

= f (θx+ (1− θ) y) + (1− θ) g T (y − x) . (28)

Multiplying Eq. (26) by 1− θ and Eq. (28) by θ and adding them together yields

θf (x) + (1− θ) f (y) ≥ f (θx+ (1− θ) y) . (29)

The vector g that determines a supporting hyperplane of a convex function is called a subgradient.

Definition 5.4 (Subgradient). The subgradient of a function f : Rn → R at x ∈ Rn is a vector
g ∈ Rn such that

f (y) ≥ f (x) + g T (y − x) , for all y ∈ Rn. (30)

The set of all subgradients is called the subdifferential of the function at x.

If a function is differentiable at a given point, then the gradient is the only subgradient at that
point.

Theorem 5.5 (Subdifferential of differentiable functions). If a convex function f : Rn → R is
differentiable at x ∈ Rn, then its subdifferential at x only contains ∇f (x).
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Proof. By the definition of subgradient, for any 1 ≤ i ≤ n

f (x+ α ei) ≥ f (x) + g Tα ei (31)

= f (x) + g[i]α, (32)

f (x) ≤ f (x− α ei) + g Tα ei (33)

= f (x− α ei) + g[i]α, (34)

where ei is the ith vector in the standard basis (all its entries are equal to zero, except the ith
entry which is equal to one). Combining both inequalities

f (x)− f (x− α ei)
α

≤ g[i] ≤ f (x+ α ei)− f (x)

α
. (35)

If we let α→ 0, this implies g[i] = ∂f(x)
∂x[i]

. Consequently, g = ∇f(x).

Subgradients are a useful tool to characterize the minima of nondifferentiable convex functions.

Theorem 5.6 (Optimality condition). A convex function attains its minimum value at a vector
x if and only if the zero vector is a subgradient of f at x. If the function is strictly convex, then
the minimum is unique.

Proof. By the definition of subgradient, if g := 0 is a subgradient at x, then for any y ∈ Rn

f (y) ≥ f (x) + g T (y − x) = f (x) , (36)

which is equivalent to x being a global minimum of the function. If the function is strictly convex,
then the inequality is strict for all y 6= x.

This optimality condition has a very intuitive geometric interpretation in terms of the supporting
hyperplane associated to the subgradient. If g = 0 then the hyperplane is horizontal. Since the
graph of the function lies above the hyperplane, the point at which they intersect must be a
minimum of the function.

The sum of subgradients of two or more functions is a subgradient of their sum.

Lemma 5.7 (Sum of subgradients). Let g1 and g2 be subgradients at x ∈ Rn of f1 : Rn → R and
f2 : Rn → R respectively. Then g := g1 + g2 is a subgradient of f := f1 + f2 at x.

Proof. For any y ∈ Rn

f (y) = f1 (y) + f2 (y) (37)

≥ f1 (x) + g T1 (y − x) + f2 (y) + g T2 (y − x) (38)

≥ f (x) + g T (y − x) . (39)

The subgradient of a function scaled by a constant can be obtained by scaling the subgradient.
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f(x) = |x|

Figure 9: Examples of supporting lines of the absolute value function at the origin. The subgradients
at the origin determine the slope of the lines.

Lemma 5.8 (Subgradient of scaled function). Let g1 be a subgradient at x ∈ Rn of f1 : Rn → R.
Then for any nonnegative α ∈ R g2 := αg1 is a subgradient of f2 := αf1 at x.

Proof. For any y ∈ Rn

f2 (y) = αf1 (y) (40)

≥ α
(
f1 (x) + g T1 (y − x)

)
(41)

≥ f2 (x) + g T2 (y − x) . (42)

Finally. we derive the subdifferential of the `1 norm, which is crucial to analyze the effect of
`1-norm regularization. We begin by characterizing the subdifferential in one dimension, where
the `1-norm is just the absolute-value function. Figure 9 shows the supporting hyperplanes (in
this case 1D lines) corresponding to a few subgradients.

Lemma 5.9 (Subdifferential of absolute value). The subdifferential of the absolute value function
|·| : R→ R at x is equal to {sign (x)} if x 6= 0 and to {g ∈ R | |g| ≤ 1} if x = 0.

Proof. If x 6= 0 the function is differentiable and the only subgradient is equal to the derivative
by Theorem 5.5. At x = 0, we need

|y| = f (0 + y) (43)

≥ f (0) + g (y − 0) (44)

≥ gy (45)

for all y ∈ R, which holds if and only if |g| ≤ 1.

The following theorem characterizes the subdifferential of the `1 norm. Figure 10 shows several
examples, as well as a supporting hyperplane corresponding to a specific subgradient.
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Figure 10: On the left the blue lines are contour lines of the `1 norm in R2. The red arrows correspond
to subgradients at a point where the function is nondifferentiable. On the right, the graph of the function
is shown in blue, and the supporting hyperplane corresponding to one of the subgradients (plotted as a
red line with the label g) is shown in brown.

Theorem 5.10 (Subdifferential of `1 norm). The subdifferential of the `1 norm at x ∈ Rn is the
set of vectors g ∈ Rn that satisfy

g[i] = sign (x[i]) if x[i] 6= 0, (46)

|g[i]| ≤ 1 if x[i] = 0. (47)

The result is a direct consequence of Lemma 5.9 and the following result.

Lemma 5.11. The vector g ∈ Rn is a subgradient of ||·||1 : Rn → R at x if and only if g[i] is a
subgradient of |·| : R→ R at x[i] for all 1 ≤ i ≤ n.

Proof. If g is a subgradient of ||·||1 at x then for any y ∈ R

|y| = ||yei||1 (48)

= |x[i]|+ ||x+ (y − x[i]) ei||1 − ||x||1 (49)

≥ |x[i]|+ ||x||1 + g T (y − x[i]) ei − ||x||1 (50)

= |x[i]|+ g[i] (y − x[i]) , (51)

so g[i] is a subgradient of |·| at |x[i]| for any 1 ≤ i ≤ n.

If g[i] is a subgradient of |·| at |x[i]| for 1 ≤ i ≤ n then for any y ∈ Rn

||y||1 =
n∑
i=1

|y [i]| (52)

≥
n∑
i=1

|x[i]|+ g[i] (y [i]− x[i]) (53)

= ||x||1 + g T (y − x) (54)
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so g is a subgradient of ||·||1 at x.

6 Analysis of the lasso for a simple example

In order to gain some intuition about why the lasso promotes sparsity, we consider a simple sparse
regression problem where the response only depends on one feature,

ỹ := xtrue + z̃, (55)

where ỹ ∈ Rn is a random response vector, xtrue ∈ Rn contains the corresponding feature values
and z̃ ∈ Rn is a random vector containing additive noise. In our dataset, there is an additional
feature xother ∈ Rn, which is not part of the generative model. However, we don’t know this a
priori, so we use the feature matrix

X :=
[
xtrue xother

]T
, (56)

to fit a linear-regression model with both features. Notice that each column of the matrix X
corresponds to a two-dimensional feature example, where the first entry is the true feature, and
the second entry is the irrelevant feature. The lasso cost function can be decomposed into a deter-
ministic quadratic form centered at the true coefficients, a random linear function that depends
on the noise, and the weighted `1 norm term (see Eq. (74) in the notes on linear regression):

arg min
β
‖ỹtrain −XTβ‖22 + λ ||β||1 = arg min

β
(β − βtrue)TXXT (β − βtrue) + λ ||β||1 − 2z̃TtrainX

Tβ.

where the true coefficients are

βtrue :=

[
1
0

]
. (57)

Figure 11 shows the different components for a specific example. The `1-norm regularization
term pulls the minimum of the deterministic component towards the origin along the horizontal
axis, which preserves the sparsity pattern of the minimum. Even after incorporating the noise
component, the minimum of the cost function is still sparse. This is in contrast to the OLS
coefficient estimate, which would not be sparse at all. Figure 12 shows the landscape of the cost
function and the corresponding minimum for different noise realizations. Again, the solutions to
the lasso are sparse. Figure 13 shows a scatterplot of the minima corresponding to 200 noise
realizations for different values of the regularization parameter λ. For small λ the minima are
spread out following the eigenvectors of the covariance matrix of the features, as in least squares.
As λ increases, more and more of the minima become sparse. When λ is very large the minima
shrink on the horizontal axis towards zero.

As opposed to the OLS or the ridge-regression coefficient estimate, there is no closed-form ex-
pression for the minimizer of the lasso cost function. However, we can still characterize it using
subgradients. The following lemma derives the lasso solution for our simple example with two
features. Intuitively, the analysis boils down to proving the existence of a horizontal supporting
hyperplane at a sparse solution under certain conditions.
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Figure 11: Visualization of the different components of the lasso cost function for a specific example
with two features. The regularization parameter is set to λ := 2. The top row shows the two deterministic
quadratic forms cost function: the least square component (left) and the regularization component (right).
The bottom left plot shows the combination of the quadratic component and the `1-norm component.
The resulting function has a sparse minimum. Finally, the bottom right plot shows a realization of the
lasso cost function obtained by adding the deterministic terms with the random linear component that
depends on the noise. The minimum of the resulting cost function is denoted by βlasso. For comparison,
we also include the minimum of the OLS cost function βOLS.
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Figure 12: Different realizations of the lasso cost function corresponding to different realizations of the
noise (the true coefficients and the feature matrix remain the same) for the example in Figure 11. The
regularization parameter is set to λ := 2.
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Figure 13: Scatterplot of the lasso estimate corresponding to 200 noise realizations of the example in
Figure 12. Each image corresponds to a different choice of the regularization parameter λ.
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Lemma 6.1 (Sparse regression with two features). Let xtrue ∈ Rn be a fixed vector with n examples
of a feature. Assume that the response is equal to the feature corrupted by some additive noise
z ∈ Rn, y := xtrue+z. We consider a regression model that incorporates an additional feature vector
xother ∈ Rn. Both features are centered and normalized, in particular ||xtrue||2 = ||xother||2 = 1. If
the regularization parameter λ of the lasso satisfies∣∣xTotherz − ρxTtruez∣∣

1− |ρ| ≤ λ ≤ 1 + xTtruez, (58)

then the lasso coefficient estimate equals

βlasso =

[
1 + xTtruez − λ

0

]
(59)

where ρ := xTtruexother.

Proof. The lasso cost function is strictly convex if n ≥ 2 and the matrix X is full rank (i.e. |ρ| 6= 1)
by Lemma 4.8. By Theorem 5.6, to establish that βlasso is the unique minimizer it suffices to prove
that the zero vector is a subgradient of the cost function at βlasso. Geometrically, this amounts to
showing that there is a horizontal hyperplane supporting the graph of the function at βlasso.

The gradient of the quadratic term

q (β) :=
1

2

∣∣∣∣XTβ − y
∣∣∣∣2
2

(60)

at βlasso equals

∇q (βlasso) = X
(
XTβlasso − y

)
. (61)

By Theorem 5.10, if only the first entry of βlasso is nonzero and nonnegative, then

g`1 :=

[
1
γ

]
(62)

is a subgradient of the `1 norm at βlasso for any γ ∈ R such that |γ| ≤ 1. By Lemmas 5.7 and 5.8,
the sum of ∇q (βlasso) and λg`1 is a subgradient of the lasso cost function at βlasso. If only the first
entry of βlasso is nonzero, this subgradient equals

glasso := X
(
XTβlasso − y

)
+ λ

1

γ

 (63)

= X (βlasso[1]xtrue − xtrue − z) + λ

1

γ

 (64)

=

 xTtrue ((βlasso[1]− 1)xtrue − z) + λ

xTother ((βlasso[1]− 1)xtrue − z) + λγ

 (65)

=

 βlasso[1]− 1− xTtruez + λ

ρ(βlasso[1]− 1)− xTotherz + λγ

 . (66)
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Figure 14: Coefficients of the lasso estimates for different values of the regularization parameter λ for
an example where n = 5 and ρ := −0.43.

Setting glasso equal to zero we obtain

βlasso[1] = 1− λ+ xTtruez, (67)

γ =
ρ+ xTotherz − ρβlasso[1]

λ
(68)

=
xTotherz − ρxTtruez

λ
+ ρ. (69)

In order to ensure that glasso is a valid subgradient, we need to check that (1) βlasso[1] is indeed
nonnegative, which is the case if λ satisfies Eq. (58), and (2) that |γ| ≤ 1. By the triangle
inequality

|γ| ≤
∣∣∣∣w T z − ρxT z

λ

∣∣∣∣+ |ρ| (70)

≤ 1, (71)

as long as λ satisfies Eq. (58). We conclude that 0 is a subgradient of the cost function at
βlasso, which establishes that βlasso as given by Eq. (59) is the unique solution to the optimization
problem.

The lemma establishes that the lasso estimator detects the relevant feature vector, setting the
coefficient of the irrelevant feature vector to zero, for a certain range of λ. Within that range
the coefficient corresponding to the relevant predictor scales linearly with λ. This is confirmed in
Figure 14.
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