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Signal Representations

1 Motivation

Fourier representations, including the Fourier series and the DFT, are a pillar of signal processing,
but they have a fundamental limitation: Fourier coefficients capture global fluctuations of a signal,
and hence do not provide information about events that are localized in time or space. In this
chapter we study signal representations that address this issue. Section 2 describes the short-time
Fourier transform, designed to capture frequency information that is localized in time. Section 3
introduces wavelet transforms, which decompose signals into components with different resolutions.
As explained, in Section 4, these transformations can be used to generate sparse representations
of audio and image signals, which are useful for tasks like denoising.

2 Time-frequency representations

2.1 Signal segmentation using windows

The Fourier series and the DFT reveal the periodic components of signals. However, they do
not provide any information about the time structure of these periodic components. Consider
the audio signal in Figure 1. Like most speech and music signals, the signal consists of periodic
oscillations that change over time. An effective way of capturing such structure is to compute the
Fourier coefficients of a signal after segmenting it into intervals. Segmentation can be achieved
through multiplication with a window function, which is nonzero only over a specific interval. The
simplest possible choice is the rectangular window.

Definition 2.1 (Rectangular window). The rectangular window ~π ∈ CN with width w is defined
as

~π [j] :=

{
1 if |j| ≤ w,

0 otherwise.
(1)

The rectangular window does not distort the signal at all within the segment over which it is
nonzero. However, we are interested in obtaining a local frequency representation, so we need
to evaluate the distortion in the frequency domain. As established in the following theorem,
multiplying a signal by a window is equivalent to convolving their DFTs.

Theorem 2.2 (Multiplication in time is convolution in frequency). Let y := x1◦x2 for x1, x2 ∈ CN .
Then the DFT of y equals

ŷ =
1

N
x̂1 ∗ x̂2, (2)
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Figure 1: Audio signal of a person saying the word no in Hebrew.

x̂1 and x̂2 are the DFTs of x1 and x2 respectively.

Proof. We have

ŷ [k] :=
N∑
j=1

x1(j)x2(j) exp

(
−i2πkj

N

)
(3)

=
N∑
j=1

1

N

n∑
l=1

x̂1(l) exp

(
i2πlj

N

)
x2(j) exp

(
−i2πkj

N

)
(4)

=
1

N

N∑
l=1

x̂1(l)
N∑
j=1

x2(j) exp

(
−i2π(k − l)j

N

)
(5)

=
1

N

N∑
l=1

x̂1(l)x̂ ↓l2 [k]. (6)

The following lemma derives the DFT of the rectangular window, which is called a discretized sinc
in the signal-processing literature. To simplify the exposition we index the vector and its DFT
from −N/2 + 1 to N/2, assuming that N is even.

Lemma 2.3. The DFT coefficients of the rectangular window ~π ∈ CN with width 2w from Defi-
nition 2.1

~π [j] :=

{
1 if |j| ≤ w,

0 otherwise,
(7)

equal

π̂[k] =

2w + 1 for k = 0
sin( 2πk(w+1/2)

N )
sin(πkN )

, for k ∈ {−N/2 + 1,−N/2 + 2, . . . , N/2} /0,
(8)
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Proof. We have

π̂ (0) =

N/2∑
j=−N/2+1

~π [j] (9)

=
w∑

j=−w

1 (10)

= 2w + 1. (11)

For k 6= 0,

π̂ (k) =

N/2∑
j=−N/2+1

x [j] exp

(
−i2πkj

N

)
(12)

=
w∑

j=−w

exp

(
−i2πk

N

)j
(13)

=
exp

(
i2πkw
N

)
− exp

(
− i2πk(w+1)

N

)
1− exp

(
− i2πk

N

) (14)

=
exp

(
− i2πk

2N

)
2i sin

(
2πk(w+1/2)

N

)
exp

(
− i2πk

2N

)
2i sin

(
πk
N

) (15)

=
sin
(

2πk(w+1/2)
N

)
sin
(
πk
N

) . (16)

Unfortunately, the sinc function has side lobes and does not decay rapidly. As a result, convolving
the DFT of a signal by the DFT of a rectangular window produces significant distortion in the
frequency domain, as shown in Figure 2. The reason is the discontinuity in the rectangular window.
It introduces an artificial discontinuity in the windowed function, which gives rise to spurious high-
frequency components. The solution is to use a tapered window, which decreases smoothly to zero
at the borders. A popular choice is the Hann window. As we can see in Figure 2, this window
produces much less distortion in the frequency domain.

Definition 2.4. The Hann window h ∈ RN of width 2w equals

h [j] :=

{
1
2

(
1 + cos

(
πj
w

))
if |j| ≤ w,

0 otherwise.
(17)

Multiplying by a Hann window (or other similar options) and then computing the DFT is a
popular technique for analyzing the frequency content of signals locally. The time resolution of
the analysis is governed by the width of the window. Reducing the window therefore increases the
resolution in time. However, there is a price to pay. The frequency resolution of the analysis is
governed by the width of the window in the frequency domain. The following theorem shows that
compressing a signal in time, dilates it in frequency, and vice versa.
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Figure 2: The right column shows the results of multiplying a sinusoidal signal (left column) by a
rectangular or a Hann window (central column) in the time domain.
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Figure 3: Dilations and contractions of a Hann window in time and the corresponding effect on
the DFT of the window.

Theorem 2.5. Let x ∈ L2 [−T/2, T/2], T > 0, which is nonzero only in a band of width 2w
around zero, i.e. x (t) = 0 for t > |w| where w > 0. The Fourier series coefficients of the signal y
that satisfies

y(t) = x(αt), for all t ∈ [−T/2, T/2] , (18)

equal

ŷ [k] =
1

α

〈
x, φk/α

〉
(19)

for any positive real number α such that w/α < T/2.

Proof. By definition of the Fourier series coefficients

ŷ [k] =

∫ T/2

t=−T/2
y(t) exp

(
−i2πkt

T

)
dt (20)

=

∫ w/α

t=−w/α
x(αt) exp

(
−i2πkt

T

)
dt (21)

=
1

α

∫ w

τ=−w
x(τ) exp

(
−i2πkτ

αT

)
dτ (22)

=
1

α

∫ T/2

τ=−T/2
x(τ) exp

(
−i2πkτ

αT

)
dτ. (23)
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There is consequently a fundamental trade-off between the resolution in time and frequency that
we can achieve simultaneously. If we make a window narrower to increase the time resolution,
its DFT will become wider. As a result, the convolution in the frequency domain will blur the
frequency content of the signal to a greater extent, decreasing the frequency resolution of the
analysis. This fundamental tradeoff is known as the uncertainty principle. We refer the interested
reader to Section 2.3.2 of Ref. [1] for more details.

2.2 Short-time Fourier transform

As discussed in the previous section, frequency representations such as the Fourier series and
the DFT provide global information about the fluctuations of a signal, but they do not capture
local information. The short-time Fourier transform (STFT) is designed to describe localized
fluctuations. The STFT coefficients are equal to the DFT of time segments of the signal, extracted
through multiplication with a window. Here we focus on the discrete STFT; it is also possible to
define continuous versions.

Definition 2.6 (Short-time Fourier transform). The short-time Fourier transform of a vector
x ∈ CN is given by

STFT[`](x)[k, s] :=
〈
x, ξ

↓ s(1−αov)`
k

〉
, 0 ≤ k ≤ `− 1, 0 ≤ s ≤ N

(1− αov)`
, (24)

where the basis vectors are defined as

ξk[j] :=

{
w[`](j) exp

(
i2πkj
`

)
if 1 ≤ j ≤ `

0 otherwise.
(25)

The overlap between adjacent segments equals αov`. The STFT is parametrized by the choice of
segment length `, window function w[`] ∈ C`, and overlap factor αov.

The STFT coefficients are defined as the inner product between the signal and basis vectors
obtained by shifting the window both in time and in frequency. The frequency shifts are achieved
through multiplication with complex sinusoids (as you will prove in the homework). Figure 4
shows the different basis vectors for a specific example.

Due to the overlap between the shifted signals in time, the STFT is an overcomplete transforma-
tion. If the overlap factor αov := 0.5 then there the dimensionality of the STFT is approximately
double (up to border effects) that of the original vector. This is apparent in the following matrix
representation of the STFT,

STFT[`] (x) [0, 0]
· · ·
STFT[`] (x) [`− 1, 0]
STFT[`] (x) [0, 1]
· · ·
STFT[`] (x) [`− 1, 1]
STFT[`] (x) [0, 2]
· · ·
STFT[`] (x) [`− 1, 2]
· · ·


:=



F[`]
0 0 0 0 · · ·
0 0 0 0 · · ·

0 0
F[`]

0 0 · · ·
0 0 0 0 · · ·
0 0 0 0

F[`]
· · ·

0 0 0 0 · · ·
· · · · · · · · · · · · · · · · · · · · ·





diag
(
w[`]

) 0 0 · · ·
0 0 · · ·

0
diag

(
w[`]

) 0 · · ·
0 0 · · ·
0 0

diag
(
w[`]

) · · ·
0 0 · · ·
· · · · · · · · · · · · · · ·


x,
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Basis vector STFT coefficient
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Figure 4: The left columns shows different basis functions of the STFT for a signal of length
N := 500 when ` := 128 and αov := 0.5 and the window is a Hann window. The right column
shows the corresponding STFT coefficient. Only the positive frequency axis is shown.
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Figure 5: The top image shows the time representation of an audio signal where someone is saying
no four times and then yes four times in Hebrew. The heatmap below shows the magnitude of
the STFT coefficients of the signal computed using Hann windows of length 62.5 ms. Only the
positive frequency axis is shown.

where F[`] is an `× ` DFT matrix, 0 represents a `/2× `/2 matrix full of zeros, and diag
(
w[`]

)
is a

diagonal matrix that has the window function as its diagonal. Overcomplete representations are
known as frames in signal processing.

The STFT can be computed very efficiently using the FFT algorithm to obtain the DFT of the
signal segments. The complexity of multiplying a segment by a window and applying the FFT is
O(` log `). The number of segments is approximately N/(1 − αov)` (ignoring the borders). The
complexity of computing the STFT of a vector of length N is therefore O(N log `) (the overlap
factor is usually equal to 0.5 or a similar fraction). To recover a signal from its STFT coefficients
we can compute the inverse DFT of each segment, again applying the FFT algorithm, and then
combine the scaled segments. The complexity is also O(N log `).

Figure 5 shows the magnitude of the STFT coefficients of a real-world speech signal. This repre-
sentation, known as the spectrogram, is a fundamental tool in audio analysis. It is used to visualize
how the signal energy in each frequency band evolves over time.
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Figure 6: An image of New York City and the values of a subset of pixels situated on a vertical
line (if the image is interpreted as a 500× 500 image the pixels correspond to column 135).

3 Multiresolution analysis

3.1 Wavelets

The scale at which information is encoded in signals is usually not uniform. For example, the top
half of the image in Figure 6 is very smooth, whereas the bottom half has a lot of high-resolution
details. The aim of multiresolution analysis is to reveal this structure, by decomposing signals into
components corresponding to different scales. To make this precise, we define a decomposition of
the ambient signal space into subspaces, each of which encodes information at a certain resolution.
This is a discrete version of the framework introduced by Mallat and Meyer (see Chapter 7 in [1]).

Definition 3.1 (Multiresolution decomposition). Let N := 2K for some integer K. A multiresolu-
tion decomposition of RN is a sequence of nested subspaces VK ⊂ VK−1 ⊂ . . . ⊂ V0. The subspaces
must satisfy the following properties:

• V0 = RN , the approximation at scale 20 = 1 is perfect.

• Vk is invariant to translations of scale 2k+1 for 0 ≤ k ≤ K. If x ∈ Vk then

x ↓ l2
k+1 ∈ Vk for all l ∈ Z. (26)

• Dilating vectors in Vj by 2 yields vectors in Vj+1. Let x ∈ Vj be nonzero only between 1 and
N/2, the dilated vector x↔2 belongs to Vj+1 (see Def. 3.2 below).

Definition 3.2 (Discrete dilation). Let vector x ∈ RN , with entries indexed between 0 and N − 1,
satisfy x[j] = 0 for all j ≥ N/M , where M is a fixed positive integer. We define the dilation of x
by a factor of M as

x↔M [j] = x

[⌈
j

M

⌉]
. (27)
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Intuitively, subspace Vj contains information encoded at a scale 2j. If we dilate a signal in Vj by a
factor of 2, thereby doubling its scale and halving its resolution, then it is guaranteed to belong to
Vj+1. By projecting a signal onto Vj we obtain an approximation at the corresponding resolution.

Mallat and Meyer suggested the following strategy to build multiresolution decompositions:

• Set the coarsest subspace to be spanned by a low-frequency vector ϕ, called a scaling vector
or father wavelet:

VK := span (ϕ) . (28)

• Decompose the finer subspaces into the direct sum

Vk :=Wk ⊕ Vk+1, 0 ≤ k ≤ K − 1, (29)

where Wk captures the finest resolution available at level k. Set Wk to be spanned by shifts
of a vector µ dilated to have the appropriate resolution:

Vk :=Wk ⊕ Vk+1, 0 ≤ k ≤ K − 1, (30)

Wk :=

N−1

2k+1⊕
m=0

span
(
µ ↓m2k+1

↔2k

)
. (31)

The vector µ is called a mother wavelet.

Each subspace is spanned by scaled and shifted copies of the mother wavelet, except for the
coarsest resolution, which is spanned by the father wavelet (alternatively, it could be spanned
by shifted copies of the father wavelet). Designing valid multiresolution decompositions requires
selecting a specific father and mother wavelet pair, such that the corresponding subspaces satisfy
the requirements. The simplest example is the Haar wavelet.

Definition 3.3 (Haar wavelet basis). The Haar father wavelet ϕ ∈ RN is a constant vector, such
that

ϕ[j] :=
1√
N
, 1 ≤ j ≤ N. (32)

The mother wavelet µ ∈ RN satisfies

µ[j] :=


− 1√

2
, j = 1,

1√
2
, j = 2,

0, j > 2.

(33)

One can easily check that the Haar wavelet provides a valid multiresolution decomposition. The
basis vectors are all orthogonal and unit norm when rescaled appropriately, so they can be used
to form an orthonormal basis of RN . Figure 7 shows the basis vectors for N = 8. In Figure 8
the decomposition is applied to obtain a multiscale decomposition of the 1D signal corresponding
to a vertical line of the image in Figure 6. Approximations obtained using the Haar wavelet

10
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Figure 7: Basis vectors in the Haar wavelet basis for R8. Each row shows the vectors corresponding
to the corresponding scale in different colors.
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Figure 8: Multiresolution decomposition of the 1D signal corresponding to a vertical line of the
image in Figure 6 using the 1D Haar wavelet basis. The corresponding wavelet coefficients are
plotted on the right for each scale.
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STFT Wavelets

Figure 10: Diagram of the time-frequency support of STFT (left) and wavelet basis vectors (right).
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Figure 11: Basis vectors of the 2D Haar wavelet decomposition.

are piecewise constant, which may not be desirable. It is also possible to build multiresolution
decompositions with smoother wavelets. Examples include Meyer wavelets, Daubechies wavelets,
coiflets, symmlets, etc. We refer the interested reader to Chapter 7 in [1] for a detailed description.

In contrast to the STFT, multiresolution analysis provides a time-frequency decomposition of
signals where different coefficients have different resolutions. Figure 9 shows the DFT of Haar
wavelets corresponding to different scales. As established in Theorem 2.5, when the wavelet
contracts (decreasing the time resolution), its DFT dilates (increasing the frequency resolution).
Note that the Haar wavelet is not very localized in frequency due to its discontinuity, just like
the rectangular window (see Lemma 2.3). Figure 10 provides a cartoon illustration of the time-
frequency supports of STFT and wavelet basis vectors. The STFT tiles the time-frequency plane
regularly, whereas wavelet vectors have very different time and frequency resolutions.
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Figure 12: Multiresolution decomposition of the image in Figure 6 using the 2D Haar wavelet
basis. The corresponding wavelet coefficients are plotted on the right for each scale.
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3.2 Multidimensional wavelets

Multiresolution decompositions are an important tool in image processing, where they are applied
to 2D and 3D signals. A simple way to design multidimensional decompositions is to leverage
1D multiresolution decompositions. The basis vectors of each subspace are constructed by taking
outer products of the corresponding one-dimensional wavelets. Let v1D

[m,s] denote a basis vector at

scale m shifted by s (depending on the resolution it can be a father or mother wavelet). To build
a 2D basis vector at scale (m1,m2) and shift (s1, s2) we set

v2D
[s1,s2,m1,m2] := v1D

[s1,m1]

(
v1D

[s2,m2]

)T
, (34)

where v1D can refer to 1D father or mother wavelets.

Figure 11 shows the resulting 2D basis vectors for the Haar wavelet basis. Two-dimensional wavelet
transforms are a popular tool to perform multiresolution decompositions of images. Figure 12
shows a multiresolution decomposition of the image in Figure 6 using the 2D Haar wavelet basis.
One can use any 1D wavelets to build a 2D multiresolution decomposition. However, better
performance can be achieved by designing non-separable basis vectors. Examples of non-separable
2D wavelets include the steerable pyramid, curvelets, and bandlets. See here and Section 9.3 in [1]
for more details.

4 Denoising via thresholding

4.1 Hard thresholding

The STFT and wavelet transforms often yield sparse representations of signals, where many coeffi-
cients are close to zero. In the case of the STFT, this occurs when only a few spectral components
are active at a particular time, which is typical of speech or music signals (see Figure 5). In the
case of wavelets, sparsity results from the fact that large regions of natural images (and many
other signals) are smooth and mostly contain coarse-scale features, whereas most of the fine-scale
features are confined to edges or regions with high-frequency textures (see Figure 12).

In contrast, noisy perturbations usually have dense coefficients in any fixed frame or basis. A linear
transformation Az̃ of a Gaussian vector with mean µ and covariance matrix Σ is still Gaussian with
mean Aµ and covariance matrix AΣA∗. If A is an orthogonal matrix and the noise is iid Gaussian
with mean zero and variance σ2, then Az̃ is also iid Gaussian with mean zero and variance σ2

(the covariance matrix equals Aσ2IA∗ = Nσ2I). This means, for example, that the Haar wavelet
coefficients of the noise will not be sparse like the ones of a natural image.

Let us consider the problem of denoising measurements y ∈ Cn of a signal x ∈ Cn corrupted by
additive noise z ∈ Cn

y := x+ z. (35)

Under the assumptions that (1) Ax is sparse representation where A contains the basis vectors of
a basis or a frame, and (2) the entries of Az are small and dense, eliminating small entries in the
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Figure 13: Denoising via hard thresholding.

coefficients

Ay = Ax+ Az (36)

should therefore suppress the noise while preserving the signal. Figure 13 shows a simple example,
where the signal itself is sparse (A is just the identity matrix).

Algorithm 4.1 (Denoising via hard thresholding). Let y follow the model in equation (35) and
let A be a full-rank linear transformation that sparsifies the signal x. To denoise we:

1. Compute the coefficients Ay.

2. Apply the hard-thresholding operator Hη : Cn → Cn to the coefficients. Let v ∈ CN , the
operator is defined as

Hη (v) [j] :=

{
v [j] if |v [j]| > η,

0 otherwise,
(37)

for 1 ≤ j ≤ N . The threshold η can be adjusted according to the standard deviation of Az,
or by cross validation.

3. Compute the estimate by inverting the transform, i.e. setting

xest := LHη (Ay) , (38)

where L is a left inverse of A.

Recall that in Wiener filtering the denoising procedure is linear and therefore does not depend on
the specific input. Thresholding is nonlinear: different inputs are scaled by different factors (1 or
0). This makes it possible to adapt to the local structure of the signal and usually results in more
effective denoising. Figures 14, 15 and 16 show the results of denoising a speech signal applying
hard thresholding. Figures 17 and 18 show the results of denoising an image by thresholding its 2D
Haar wavelet coefficients. In both cases the threshold is chosen by cross validation on a separate
set of signals.
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Figure 14: The top row shows the spectrogram of a test audio signal before and after being
corrupted by additive iid Gaussian noise with standard deviation σ = 0.1. The bottom row shows
the spectrogram of the signal denoised via STFT thresholding and block thresholding. Only the
positive frequency axis is shown.
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Figure 15: The top two images show the clean and noisy signals in Figure 14 in the time domain.
Below, the signal denoised by Wiener filtering is compared to the result of applying STFT thresh-
olding and block thresholding. Click on these links to listen to the audio: clean signal, noisy signal,
denoised signal obtained by Wiener filtering, STFT thresholding, STFT block thresholding.
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Figure 16: Zoomed-in plots of the signals in Figure 15.
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4.2 Block thresholding

When we compute representations that capture localized details of signals, such as the wavelet
transform or the STFT, the coefficients tend to be highly structured. Nonzero STFT coefficients
of audio signals are often clustered near each other (see Figure 5). Similarly, nonzero wavelet
coefficients of images are often concentrated close to edges and areas with high-frequency textures.
This is apparent in Figure 12.

Thresholding-based denoising can be enhanced by taking into account prior assumptions on co-
efficient structure. If we have a reason to believe that nonzero coefficients in the signal tend to
be close to each other, then we should modify our thresholding scheme. Small coefficients that
are isolated probably correspond to noise, and should be suppressed. However, small coefficients
in the vicinity of large coefficients may contain useful information and should be left alone. This
strategy is known as block thresholding.

Algorithm 4.2 (Denoising via block thresholding). Let y follow the model in equation (35) and
let A be a full-rank linear transformation that sparsifies the signal x. To denoise we:

1. Compute the coefficients Ay.

2. Apply the hard-block-thresholding operator Bη : Cn → Cn to the coefficients

Bη (v) [j] :=

{
v [j] if j ∈ Ij such that

∣∣∣∣vIj ∣∣∣∣2 > η, ,

0 otherwise,
(39)

for 1 ≤ j ≤ N . The set Ij is a block of coefficients surrounding index j. The size of each
block captures to what extent we expect the coefficients to cluster, and can be adjusted by
cross validation. The threshold η can be set according to the standard deviation of Az, or
also by cross validation.

3. Compute the estimate by inverting the transform, i.e. setting

xest := LBη (Ay) , (40)

where L is a left inverse of A.

Figures 14, 15 and 16 show the results of denoising a speech signal applying block thresholding
with blocks of length 5. Figures 17 and 18 show the results of denoising an image by applying
block thresholding to its 2D Haar wavelet coefficients, with a block size of 5 × 5. As in simple
hard thresholding, the threshold is chosen by cross validation on a separate set of signals.

Compared to Wiener filtering, STFT or wavelet thresholding tends to preserve high-frequency
features better, as it can adapt to the local structure of the noisy signal. Hard thresholding tends
to produce artifacts due to particularly large noise coefficients. In audio, these coefficients can
be heard as musical noise. Block thresholding alleviates this problem, since it is very rare for
neighboring noisy coefficients to be large at the same time.
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Figure 17: The top row shows the 2D Haar wavelet coefficients of a natural image before and after
being corrupted by additive iid Gaussian noise with standard deviation σ = 0.04. The bottom
row shows the result of applying thresholding and block thresholding to the coefficients. The
coefficients are grouped by their scale (which is decreasing as we move down and to the right) and
arranged in two dimensions, according to the location of the corresponding shifted wavelet with
respect to the image.
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Figure 18: Images corresponding to the coefficients in Figure 17. In addition, the result of applying
Wiener filtering to the image is shown for comparison.
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