
Mathematical Tools for Data Science Spring 2019

Principal Component Analysis

1 Overview

This chapter describes how to analyze a dataset from a geometric perspective using tools inspired
by probability theory. Section 2 explains how to characterize the center of a dataset and its
fluctuations around it from a probabilistic viewpoint. It also introduces the concept of correlation,
which captures to what extent two quantities are linearly related. Section 3 applies these ideas to
finite datasets, providing some geometric intuition. Section 4 introduces the covariance matrix, and
shows that it captures the average variation of the data in every direction. This motivates Section 5,
dedicated to the spectral theorem, which shows that the eigendecomposition of symmetric matrices
has a very intuitive geometric interpretation. This interpretation motivates principal component
analysis, described in Section 5. Section 7 applies this technique to dimensionality reduction.
Finally, Section 7 establishes a connection to Gaussian random vectors.

2 Mean, variance, and correlation

Let us consider real-valued data corresponding to a single quantity or feature. We model such data
as a scalar continuous random variable. This is of course an abstraction, in reality we usually have
access to a finite number of data points, not to a continuous distribution. The mean of a random
variable is the point that minimizes the expected distance to the random variable. Intuitively, it
is the center of mass of the probability density, and hence of the dataset.

Lemma 2.1. For any random variable ã with mean E(ã),

E (ã) = arg min
c∈R

E
(
(c− ã)2

)
. (1)

Proof. Let g(c) := E ((c− ã)2) = c2 − 2cE (ã) + E (ã2), we have

f ′(c) = 2(c− E(ã)), (2)

f ′′(c) = 2. (3)

The function is strictly convex and has a minimum where the derivative equals zero, i.e. when c
is equal to the mean.

The variance of a random variable ã

Var(ã) := E
(
(ã− E(ã))2

)
(4)

quantifies how much it fluctuates around its mean. The standard deviation, defined as the square
root of the variance, is therefore a measure of how spread out the dataset is around its center.
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Let us consider data containing two features, each represented by a random variable. The covari-

ance of two random variables ã and b̃ Cov(ã, b̃) := E
[
(ã− E(ã)(b̃− E(b̃))

]
quantifies their joint

fluctuations around their respective means. If we center the random variables, so that their mean
is zero, then the covariance is equal to the expected dot product, Cov(ã, b̃) = E(ãb̃). In fact, the
covariance itself is a valid inner product if we interpret the centered random variables as vectors
in a vector space. Zero-mean random variables form a vector space because linear combinations of
zero-mean random variables are also zero mean. The origin of the vector space (the zero vector)
is the random variable equal to zero with probability one. The covariance is a valid inner product
because it is (1) symmetric, (2) linear in its first argument, i.e. for any α ∈ R

E(αãb̃) = αE(ãb̃), (5)

and (3) positive definite, i.e.

E(ã2) = 0, (6)

if and only if ã = 0 with probability one. To prove this last property, we use a fundamental
inequality in probability theory.

Theorem 2.2 (Markov’s inequality). Let r̃ be a nonnegative random variable. For any positive
constant c > 0,

P(r̃ ≥ c) ≤ E(r̃)

c
. (7)

Proof. Consider the indicator variable 1r̃≥c. We have

r̃ − c 1r̃≥c ≥ 0, (8)

which implies that its expectation is nonnegative (it is the sum or integral of a nonnegative
quantity). By linearity of expectation and the fact that 1r̃≥c is a Bernoulli random variable with
expectation P(r̃ ≥ c) we have

E(r̃) ≥ cE (1r̃≥c) = cP(r̃ ≥ c). (9)

Corollary 2.3. If the mean square E [ã2] of a random variable ã equals zero, then

P(ã 6= 0) = 0. (10)

Proof. If P(ã 6= 0) 6= 0 then there exists an ε such that P(ã2 ≥ ε) 6= 0. This is impossible.
Applying Markov’s inequality to the nonnegative random variable ã2 we have

P(ã2 ≥ ε) ≤ E (ã2)

ε
(11)

= 0. (12)
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The standard deviation is the norm induced by this inner product since Cov(ã, ã) = Var (ã).

When comparing two vectors, a natural measure of their similarity is the cosine of the angle
between them, which ranges from 1 when they are collinear, through 0 when they are orthogonal,
to -1 when they are collinear but point in opposite directions. The cosine equals the inner product
between the vectors normalized by their norms. In the vector space of zero-mean random variables
this quantity is called the correlation coefficient,

ρã,b̃ :=
Cov(ã, b̃)√

Var(ã)Var(b̃)
, (13)

and it also ranges between -1 and 1.

Theorem 2.4 (Cauchy-Schwarz inequality for random variables). Let ã and b̃ be two random
variables. Their correlation coefficient satisfies

−1 ≤ ρã,b̃ ≤ 1 (14)

with equality if and only if b̃ is a linear function of ã with probability one.

Proof. Consider the standardized random variables (centered and normalized),

s(ã) :=
ã− E(ã)√

Var(ã)
, s(b̃) :=

b̃− E(b̃)√
Var(b̃)

. (15)

The mean square distance between them equals

E
[
(s(b̃)− s(ã))2

]
= E

(
s(ã)2

)
+ E(s(b̃)2)− 2E(s(ã) s(b̃)) (16)

= 2(1− E(s(ã) s(b̃))) (17)

= 2(1− ρã,b̃) (18)

because E (s(ã)2) = E((s(b̃)2) = 1. This directly implies ρã,b̃ ≤ 1. Otherwise the right hand
side would be negative, which is impossible because the left hand side is the expectation of a
nonnegative quantity. By the same argument,

E
[
(s(b̃)− (− s(ã)))2

]
= 2(1 + ρã,b̃). (19)

implies ρã,b̃ ≥ −1. When ρã,b̃ equals 1, the left hand side of Eq. (18) equals zero. By Lemma 2.3,

this means that s(ã) = s(b̃) with probability one, which implies the linear relationship. The same
argument applies to Eq. (19) when ρã,b̃ = −1.

The correlation coefficient quantifies to what extent two quantities have a linear relationship.
Consider the standardized variables s(ã) and s(b̃) defined in Eq. (15). We can decompose s(b̃)
into two components: one collinear with s(ã), the other orthogonal to s(ã). This is illustrated in
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s(ã)ρã,b̃s(ã)

s(b̃)

s(b̃)− ρã,b̃s(ã)

Figure 1: Geometric interpretation of the correlation coefficient in terms of the inner product
between two unit-norm vectors representing two standardized random variables ã and b̃.

Figure 1. The covariance of the standardized variables equals the correlation coefficient, so the
decomposition equals

s(b̃) = 〈s(ã), s(b̃)〉 s(ã) +
(

s(b̃)− 〈s(ã), s(b̃)〉 s(ã)
)

(20)

= ρã,b̃ s(ã) +
(

s(b̃)− ρã,b̃ s(ã)
)
. (21)

The second component is indeed orthogonal to s(ã),

〈s(ã), s(b̃)− ρã,b̃ s(ã)〉 = ρã,b̃ − ρã,b̃ (22)

= 0. (23)

By Pythagoras’ theorem

‖ s(b̃)− ρã,b̃ s(ã)‖2 = ‖ s(b̃)‖2 −
∣∣∣∣ρã,b̃ s(ã)

∣∣∣∣2 + (24)

= 1− ρ2
ã,b̃
. (25)

The collinear component equals ρã,b̃ and the magnitude of the orthogonal component equals√
1− ρ2

ã,b̃
. When ρã,b̃ = ±1 then there is no orthogonal component and the relationship is purely

linear. Otherwise, the value ρã,b̃ represents the relative importance of the collinear component.
When it is positive, we say that the two random variables are positively correlated. When it
is negative, we say they are negatively correlated (or anticorrelated). When it equals zero, the
random variables are uncorrelated, which indicates that the variables are not linearly dependent.
Note that two uncorrelated features may be highly dependent, just not linearly.

3 Sample mean, variance and correlation

When analyzing data we do not have access to a probability distribution, but rather to a set of
points. In this section, we show how to adapt the analysis described in the previous section to
this setting. In an nutshell, we approximate expectations by averaging over the data. Consider
a dataset containing n real-valued data with two real valued features (a1, b1), . . . , (an, bn). Let
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A := {a1, . . . , an} and B := {b1, . . . , bn}. If we average instead of taking expectations, the resulting
estimators for the mean, the covariance, and the variance are the sample mean

av (A) :=
1

n

n∑
i=1

ai, (26)

the sample covariance

cov(A,B) :=
1

n

n∑
i=1

(ai − av(A))(bi − av(B), (27)

and the sample variance,

var (A) :=
1

n

n∑
i=1

(ai − av (A))2 . (28)

These estimates converge in mean square to the correct values if the data are independent samples
from a distribution with a finite higher-order moments.

Theorem 3.1 (Sample mean converges to true mean). Let Ãn contain n iid copies ã1, . . . , ãn of
a random variable ã with finite variance. Then,

lim
n

E
(

(av(Ãn)− E(ã))2
)

= 0. (29)

Proof. By linearity of expection

E
(

av(Ãn)
)

=
1

n

n∑
i=1

E(ãi) (30)

= E(ã), (31)

which implies

E
(

(av(Ãn)− E(ã))2
)

= Var
(

av(Ãn)
)

(32)

=
1

n2

n∑
i=1

Var(ãi) by independence (33)

=
Var(ã)

n
. (34)

The same proof can be applied to the sample variance and the sample covariance, under the
assumption that higher-order moments of the distribution are bounded.

The sample mean, covariance and variance have geometric interpretations in their own right. The
sample mean is the center of the dataset, if we use the square difference as a metric.
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Lemma 3.2 (The sample mean is the center). For any set of real numbers A := {a1, . . . , an},

av (A) = arg min
c∈R

n∑
i=1

(c− ai)2. (35)

Proof. Let f(c) :=
∑n

i=1(c− ai)2, we have

f ′(c) = 2
n∑
i=1

(c− ai) (36)

= 2

(
nc−

n∑
i=1

ai

)
, (37)

f ′′(c) = 2n. (38)

The function is strictly convex and has a minimum where the derivative equals zero, i.e. when c
is equal to the sample mean.

Note that the proof is essentially the same as the one of Lemma 2.1. The reason is that the
expectation and averaging operators are both linear. In fact, analogously to the probabilistic
setting, we can show that the sample covariance is a valid inner product between centered sets
of samples (it is a scaled dot product between the vectorized sets), and the sample standard
deviation– defined as the square root of the sample variance– is its corresponding norm. We can
therefore interpret the sample correlation coefficient

ρA,B :=
cov(A,B)√

var(A) var(B)
(39)

as a measure of collinearity between the samples of the two quantities. The same argument used
to establish Theorem 2.4, shows that the coefficient is indeed restricted between -1 and 1.

Theorem 3.3 (Cauchy-Schwarz inequality). Let A := {a1, . . . , an} and B := {b1, . . . , bn} be real-
valued sets of features. The sample correlation coefficient satisfies

−1 ≤ ρA,B ≤ 1 (40)

with equality if and only if bi is a linear function of ai for all 1 ≤ i ≤ n.

Proof. The standardized data (also called z-scores) equal

s(a)i :=
ai − av(A)√

var(A)
, s(b)i :=

bi − av(B)√
var(B)

, 1 ≤ i ≤ n. (41)

We have

1

n

n∑
i=1

(s(b)i − s(a)i)
2 = 2 (1− ρA,B) , (42)

1

n

n∑
i=1

(s(b)i + s(a)i)
2 = 2 (1 + ρA,B) , . (43)
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Figure 2: The top row shows scatterplots of the monthly maximum and minimum temperatures
(left column), and the monthly rain and maximum temperature (middle column) in Oxford over
150 years. The bottom row shows the scatterplots of the same quantities after standardizing. If
the relationship between each pair of features were perfectly linearly then they would lie on the
dashed red diagonal lines.

Geometrically these quantities equal the average squared deviation of the standardized data from
the lines with slopes +1 and -1. Eq. (42) directly implies ρA,B ≤ 1. Otherwise the right hand side
is negative, which is impossible because the left hand side is clearly nonnegative. By the same
argument Eq. (43) implies ρA,B ≥ −1. When ρA,B equals 1 or −1, the left hand side of Eq. (42)
or Eq. (43) respectively is zero, which immediately implies the linear relationship.

Example 3.4 (Oxford weather). Figure 2 shows the sample correlation coefficient between dif-
ferent weather measurements gathered at a weather station in Oxford over 150 years.1 Each data
point corresponds to a different month. The maximum temperature is highly correlated with the
minimum temperature (ρ = 0.962). Rainfall is almost uncorrelated with the maximum tempera-
ture (ρ = 0.019), but this does not mean that the two quantities are not related; the relation is just
not linear. When we only consider the rain and temperature in August, then the two quantities

1The data are available at http://www.metoffice.gov.uk/pub/data/weather/uk/climate/stationdata/

oxforddata.txt.
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Figure 3: Scatterplot of the latitude and longitude of the main 248 cities in Canada.

are linearly related to some extent. Their correlation is negative (ρ = −0.468): when it is warmer
it tends to rain less. 4

4 The covariance matrix

We now consider the analysis of datasets containing multiple features. We represent the data as a
set of n d-dimensional vectors X := {x1, . . . , xn}. This embeds the points in the Euclidean vector
space Rd. We begin from a probabilistic perspective, interpreting the data as samples from a
d-dimensional random vector x̃. Our overall strategy is the same as in one dimension: first we find
the center of the dataset, and then we characterize the variation around the center. To illustrate
the different concepts we use the data shown in Figure 3. Each data point consists of the latitude
and longitude of a city in Canada2, so d = 2 in this case.

The mean of a random vector is the center of its distribution if we use the expected Euclidean
distance as a metric.

Lemma 4.1. For any d-dimensional random vector x̃ with finite mean,

E(x̃) := arg min
w∈Rd

E
(
||x̃− w||22

)
. (44)

Proof. The cost function decouples into d separate terms

E
(
||x̃− w||22

)
=

d∑
j=1

E
(
(x̃[j]− w[j])2

)
, (45)

so the entry-wise mean achieves the minimum by Lemma 2.1.

Similarly, the sample mean

av(X ) :=
1

n

n∑
i=1

xi, (46)

2The data are available at http://https://simplemaps.com/data/ca-cities
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which equals the entry-wise sample mean of each feature, is the center of the dataset under the
Euclidean norm, by essentially the same argument.

Lemma 4.2 (The sample mean is the center). For any set of n d-dimensional real-valued vectors
X := {x1, . . . , xn},

av(X ) = arg min
w∈Rd

n∑
i=1

||xi − w||22 . (47)

Proof. The result follows from Lemma 3.2 because the cost function decouples into

n∑
i=1

||xi − w||22 =
d∑
j=1

n∑
i=1

(xi[j]− w[j])2. (48)

From the probabilistic viewpoint, a reasonable measure of the variation of the random vector
around the center of the distribution is its variance in different directions of space. Let v be
an arbitrary unit-norm vector. The component of x̃ in the direction of v is given by vT x̃. The
variance of this random variable consequently quantifies the variance in that direction. By linearity
of expectation,

Var
(
vT x̃

)
= E

(
(vT x̃− E(vT x̃))2

)
(49)

= E
(
(vT c(x̃))2

)
(50)

= vTE
(
c(x̃)c(x̃)T

)
v, (51)

where c(x̃) := x̃ − E(x̃) is the centered random vector. This motivates defining the covariance
matrix of the random vector as follows.

Definition 4.3 (Covariance matrix). The covariance matrix of a d-dimensional random vector x̃
is the d× d matrix

Σx̃ := E
(
c(x̃)c(x̃)T

)
(52)

=


Var (x̃[1]) Cov (x̃[1], x̃[2]) · · · Cov (x̃[1], x̃[d])

Cov (x̃[1], x̃[2]) Var (x̃[2]) · · · Cov (x̃[2], x̃[d])
...

...
. . .

...
Cov (x̃[1], x̃[d]) Cov (x̃[2], x̃[d]) · · · Var (x̃[d])

 . (53)

The covariance matrix encodes the variance of the random vector in every direction of space.

Lemma 4.4. For any random vector x̃ with covariance matrix Σx̃, and any vector v with unit
`2-norm

Var
(
vT x̃

)
= vTΣx̃v. (54)

Proof. This follows immediately from Eq. (51).
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Figure 4: The left scatterplot shows the centered data from Figure 3, and a fixed direction of the
two-dimensional space represented by a line going through the origin. The right plot shows the
components of each data point in the direction of the line and their density. The variance of the
components equals 229, so their standard deviation is 15.1.

For a dataset X = {x1, . . . , xn}, a natural estimator for the covariance matrix is the sample
covariance matrix

ΣX :=
1

n

n∑
i=1

c(xi)c(xi)
T (55)

=


var (X [1]) cov (X [1],X [2]) · · · cov (X [1],X [d])

cov (X [1],X [2]) var (X [2]) · · · cov (X [2],X [d])
...

...
. . .

...
cov (X [1],X [d]) cov (X [2],X [d]) · · · var (X [d])

 , (56)

where X [j] := {x1[j], . . . , xn[j]} for 1 ≤ j ≤ d and c(xi) := xi − av (X ) for 1 ≤ i ≤ n. The entries
of the sample covariance matrix converge to the entries of the covariance matrix if the data are
sampled from a random vector such that the higher moments of the entries and their products
are bounded. However, beyond this probabilistic viewpoint, the sample covariance matrix has
a meaningful geometric interpretation in its own right. Let v again be a unit-norm vector in a
fixed direction of space. The component of each point in that direction equals vTxi. Consider the
set of components Pv X :=

{
vTx1, . . . , v

Txn
}

. We quantify the variation of the dataset around
its sample mean using the sample variance of Pv X . Figure 4 illustrates this using the data in
Figure 3. Analogously to the probabilistic setting, the sample covariance matrix encodes the
sample variance in every direction.

Lemma 4.5. For any dataset X = {x1, . . . , xn} and any vector v with unit `2 norm

var (Pv X ) = vTΣXv. (57)
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Figure 5: The left plot shows the contours of the quadratic form vTΣXv, where ΣX is the sample
covariance matrix of the data in Figure 3. The unit circle, where ||v||2 = 1, is drawn in red. The
red arrow is a unit vector collinear with the dashed red line on the left plot of Figure 4. The right
plot shows the value of the quadratic function when restricted to the unit circle. The red dot
marks the value of the function corresponding to the unit vector represented by the red arrow on
the left plot. This value is the sample variance of the data in that direction.

Proof.

var (Pv X ) =
1

n

n∑
i=1

(
vTxi − av (Pv X )

)2
(58)

=
1

n

n∑
i=1

(
vT (xi − av (X ))

)2
(59)

= vT

(
1

n

n∑
i=1

c(xi)c(xi)
T

)
v

= vTΣXv. (60)

Figure 5 illustrates the result using the quadratic form corresponding to the sample covariance
matrix of the data in Figure 3.

5 The spectral theorem

In this section, we study the properties of functions of the form

f(x) := xTAx, (61)
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where A is a d × d symmetric matrix, and f : Rd → R. Such functions are called quadratic
forms, because they are multidimensional extensions of quadratic functions. In particular, we are
interested in the value of f(x) for vectors lying in the unit sphere, i.e. such that ||x||2 = 1. The
motivation is that for covariance matrices and sample covariance matrices, which are symmetric
by definition, the quadratic form on the sphere is equal to the variance in the direction of the
vector x.

We begin by investigating whether the quadratic function reaches a maximum value on the unit
sphere (in the case of covariance matrices, this would be the direction of maximum variance). The
following lemma establishes that this indeed the case. The exact same argument can be used to
establish that the function attains a minimum value on the unit sphere.

Lemma 5.1. For any symmetric matrix A ∈ Rd×d, there exists a vector u1 ∈ Rd such that

u1 = arg max
||x||2=1

xTAx, (62)

and a vector ud ∈ Rd such that

ud = arg min
||x||2=1

xTAx. (63)

Proof. We prove the existence of u1, the existence of ud follows by the same argument applied
to −A. The unit sphere is closed and bounded, and the quadratic function is continuous (it is a
second-order polynomial). The result follows from the extreme value theorem, which states that a
continuous function on a closed and bounded set attains its extreme values. Proving the extreme
value theorem is beyond the scope of these notes, but the idea is the following: If a set is closed
and bounded, a continuous function maps it to a set of values (called its image) that is also closed
and bounded. This means that the image contains all its limit points, and in particular cannot
grow indefinitely towards a limit that it does not contain.

Now we would like to characterize the direction that attains the maximum. The quadratic function
is differentiable because it is a second-order polynomial. Consider the gradient of the quadratic
function

∇f(x) = 2Ax. (64)

Figure 6 shows the direction of the gradient on the unit circle for the quadratic form associated
to the sample covariance matrix of the data in Figure 3. The projection of the gradient at a point
x onto a unit vector v is equal to the directional derivative in that direction. If the derivative is
positive, vT∇f(x) > 0, then the function increases in that direction, i.e. for a small enough ε > 0
f(x + εv) > f(x). If u1 is the point at which the maximum is attained, this cannot happen for
directions that stay in our set of interest, which is the unit sphere. Here we hit a minor difficulty:
since u1 is on the sphere, u1 + εv is never on the sphere, because the sphere is a curved surface.
However, u1 + εv is arbitrarily close to the sphere for small ε if v belongs to the tangent plane of
the sphere at u1.

The unit sphere is a level surface of the function g(x) := xTx (it contains every point x such that
g(x) = 1). The tangent plane T of the level surface of a differentiable function g at a point x is
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Figure 6: Each red arrow indicates the direction of the gradient of the quadratic form associated
to the sample covariance matrix of the data in Figure 3 for a different point of the unit circle.

the set of vectors orthogonal to the gradient of g. A point y belongs to T if

∇g(x)T (y − x) = 0. (65)

For such points, if y − x is small, then g(y) ≈ g(x) +∇g(x)T (y − x) = g(x), so y is almost on the
level surface.

If f attains its maximum at u1 then there cannot be any points y in the tangent plane of the sphere
at u1 such that ∇f(u1)T (y−u1) > 0. If that is the case, then for small enough ε we can find a point
y′ on the sphere that is close enough to u1 + ε(y − u1), so that f(y′) ≈ f(u1 + ε(y − u1)) > f(u1).
To avoid this, ∇f(u1) must be orthogonal to the tangent plane, and therefore collinear with the
gradient of g. Figure 7 illustrates this: the tangent plane is drawn in purple, the direction of the
gradient of g is drawn in green, and the direction of the gradient of f is represented by a red
arrow. On the left, the gradients of f and g are not collinear, so we can find a direction in which
the quadratic form increases on the unit circle. On the right, the gradients are collinear for all
four points: these points correspond to the maxima and minima (the argument for the minima
is exactly the same) of the quadratic form. Collinearity of the gradients implies that there exists
a constant λ1 ∈ R such that ∇f(u1) = λ1∇g(u1), so that Au1 = λ1u1. In words, the maximum
is attained at an eigenvector of the matrix A. The following lemma makes this mathematically
precise.

Lemma 5.2 (The maximum and minimum are attained at eigenvectors). For any symmetric
matrix A ∈ Rd×d, a vector u1 ∈ Rd such that

u1 = arg max
||x||2=1

xTAx (66)

is an eigenvector of A. There exists λ1 ∈ R such that

Au1 = λ1u1, (67)
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Figure 7: The tangent plane to the unit circle at several points is drawn in purple. The direction
of the gradient of the function g(x) := xTx at those same points is drawn in green. The direction
of the gradient of the quadratic form f associated to the sample covariance matrix of the data in
Figure 3 is represented by a red arrow. On the left, the gradients of f and g are not collinear, so
we can find a direction in which the quadratic form increases on the unit circle. On the right, the
gradients are collinear for all four points: these points correspond to the maxima and minima of
the quadratic form.

so that

λ1 = max
||x||2=1

xTAx. (68)

Similarly, a vector ud ∈ Rd such that

ud = arg min
||x||2=1

xTAx (69)

is an eigenvector of A, and its corresponding eigenvalue λd ∈ R satisfies

λd = min
||x||2=1

xTAx. (70)

Proof. We prove the statement for the maximum. The statement for the minimum follows from
the same argument applied to −A. We decompose Au1 into two orthogonal components, one in
the direction of u1 and the other one in the tangent plane to the sphere,

Au1 = uT1Au1u1 + x⊥, (71)

x⊥ := Au1 − uT1Au1u1. (72)

Our goal is to show that if u1 attains the maximum then x⊥ must be zero. Let

y := u1 + εx⊥ (73)
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for some ε > 0 to be chosen later. The vector x⊥ is orthogonal to u1 so by Pythagoras’ theorem

||y||22 = ||u1||22 + ε2 ||x⊥||22 (74)

= 1 + ε2 ||x⊥||22 . (75)

We now show that unless x⊥ is zero, normalizing y yields a unit-norm vector that achieves a value
larger than f(u1):(

y

||y||2

)T
A

y

||y||2
=
yTAy

||y||22
(76)

=
uT1Au1 + 2εxT⊥Au1 + ε2xT⊥Ax⊥

1 + ε2 ||x⊥||22
(77)

=
uT1Au1 + 2ε ||x⊥||22 + ε2xT⊥Ax⊥

1 + ε2 ||x⊥||22
(78)

= uT1Au1 +
2ε ||x⊥||22 + ε2(xT⊥Ax⊥ − ||x⊥||22 uT1Au1)

1 + ε2 ||x⊥||22
(79)

> uT1Au1 (80)

if we choose

ε <
2 ||x⊥||22

|xT⊥Ax⊥|+ ||x⊥||22 |uT1Au1|
. (81)

We can now analyze the landscape of the quadratic function f in directions orthogonal to the
eigenvector u1, by applying essentially the same argument to f restricted to the orthogonal com-
plement of the span of u1. The result is that the maximum of f on that subspace must be attained
at another eigenvector of the symmetric matrix A. Repeating this argument d times yields the
spectral theorem for symmetric matrices (the spectrum is the set of eigenvalues of a linear op-
erator), which is a fundamental result in linear algebra: every symmetric d × d matrix A has d
orthogonal eigenvectors.

Theorem 5.3 (Spectral theorem for symmetric matrices). If A ∈ Rd×d is symmetric, then it has
an eigendecomposition of the form

A =
[
u1 u2 · · · ud

] 
λ1 0 · · · 0
0 λ2 · · · 0

· · ·
0 0 · · · λd

 [u1 u2 · · · ud
]T
, (82)

where the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λd are real and the eigenvectors u1, u2, . . . , un are real
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and orthogonal. In addition,

λ1 = max
||x||2=1

xTAx, (83)

u1 = arg max
||x||2=1

xTAx, (84)

λk = max
||x||2=1,x⊥u1,...,uk−1

xTAx, 2 ≤ k ≤ d− 1, (85)

uk = arg max
||x||2=1,x⊥u1,...,uk−1

xTAx, 2 ≤ k ≤ d− 1, (86)

λd = min
||x||2=1,x⊥u1,...,uk−1

xTAx, (87)

ud = arg min
||x||2=1,x⊥u1,...,uk−1

xTAx. (88)

Proof. The statements for ud and λd follow directly from Lemmas 5.1 and 5.2. For the rest, apply
a proof by induction on the dimension d of the matrix. If d = 1 the result is trivial: A = a ∈ R,
so we can set u1 := 1 and λ1 := a.

Assume that the theorem holds for d− 1, and let A ∈ Rd×d be a symmetric matrix. Lemmas 5.1
and 5.2 provide an eigenvector u1 that achieves the maximum, equal to λ1. Consider the matrix

A− λ1u1u
T
1 . (89)

Its column space is orthogonal to u1,

(A− λ1u1u
T
1 )u1 = Au1 − λ1u1 (90)

= 0, (91)

where 0 denotes the n-dimensional zero vector. Its row space is also orthogonal by the same
argument. Both subspaces are therefore contained in span(u1)⊥, the orthogonal complement of
the span of u1, which is a subspace of dimension d− 1. Let V⊥ be a d× d− 1 orthogonal matrix
whose columns are an orthonormal basis of span(u1)⊥. V⊥V

T
⊥ is a projection matrix that projects

onto span(u1)⊥, so that

A− λ1u1u
T
1 = V⊥V

T
⊥ (A− λ1u1u

T
1 )V⊥V

T
⊥ . (92)

We define B := V T
⊥ (A− λ1u1u

T
1 )V⊥, which is a d− 1× d− 1 symmetric matrix. By the induction

hypothesis there exist γ1, . . . , γd−1 and w1, . . . , wd−1 such that

γ1 = max
||y||2=1

yTBy, (93)

w1 = arg max
||y||2=1

yTBy, (94)

γk = max
||y||2=1,y⊥w1,...,wk−1

yTBy, 2 ≤ k ≤ d− 2, (95)

wk = arg max
||y||2=1,y⊥w1,...,wk−1

yTBy, 2 ≤ k ≤ d− 2. (96)

For any x ∈ span(u1)⊥, we have

xT (A− λ1u1u
T
1 )x = xTAx (97)
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and x = V⊥y for a vector y ∈ Rd−1 such that ||x||22 = yTV T
⊥ V⊥y = ||y||22. This implies

max
||x||2=1,x⊥u1

xTAx = max
||x||2=1,x⊥u1

xTV⊥V
T
⊥ (A− λ1u1u

T
1 )V⊥V

T
⊥ x (98)

= max
||y||2=1

yTBy (99)

= γ1. (100)

Inspired by this, we set uk := V⊥wk−1 for k = 2, . . . , d. Each uk is an eigenvector of A with
eigenvalue λk := γk−1:

Auk = V⊥V
T
⊥ (A− λ1u1u

T
1 )V⊥V

T
⊥ V⊥wk−1 (101)

= V⊥Bwk−1 (102)

= γk−1V⊥wk−1 (103)

= λkuk. (104)

Note that these vectors are all orthogonal and unit norm. Also, we can express any x ∈ span(u1)⊥

orthogonal to uk′ , where 2 ≤ k′ ≤ d, as x = V⊥y, y ∈ Rd−1, where y ⊥ wk′−1, because uTk′x =
wTk′−1V

T
⊥ V⊥y = wTk′−1y. This implies

max
||x||2=1,x⊥u1,...,uk−1

xTAx = max
||x||2=1,x⊥u1,...,uk−1

xTV⊥V
T
⊥ (A− λ1u1u

T
1 )V⊥V

T
⊥ x (105)

= max
||x||2=1,x⊥u1,...,uk−1

xTV⊥V
T
⊥ (A− λ1u1u

T
1 )V⊥V

T
⊥ x (106)

= max
||y||2=1,y⊥w1,...,wk−2

yTBy (107)

= γk−1 (108)

= λk. (109)

6 Principal component analysis

We now reap the rewards for our hard work in the previous section. By the spectral theorem (The-
orem 5.3) combined with Lemma 4.4, in order to characterize the variance of a random vector
in different directions of space, we just need to perform an eigendecomposition of its covariance
matrix. The first eigenvector u1 is the direction of highest variance, which is equal to the cor-
responding eigenvalue. In directions orthogonal to u1 the maximum variance is attained by the
second eigenvector u2, and equals the corresponding eigenvalue λ2. In general, when restricted to
the orthogonal complement of the span of u1, . . . , uk for 1 ≤ k ≤ d− 1, the variance is highest in
the direction of the k + 1th eigenvector uk+1.

Theorem 6.1. Let x̃ be a random vector d-dimensional with covariance matrix Σx̃, and let u1,
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. . . , ud, and λ1 > . . . > λd denote the eigenvectors and corresponding eigenvalues of Σx̃. We have

λ1 = max
||v||2=1

Var(vT x̃), (110)

u1 = arg max
||v||2=1

Var(vT x̃), (111)

λk = max
||v||2=1,v⊥u1,...,uk−1

Var(vT x̃), 2 ≤ k ≤ d, (112)

uk = arg max
||v||2=1,v⊥u1,...,uk−1

Var(vT x̃), 2 ≤ k ≤ d. (113)

We call the directions of the eigenvectors principal directions. The component of the centered
random vector c(x̃) := x̃− E(x̃) in each principal direction is called a principal component,

p̃c[i] := uTi c(x̃), 1 ≤ i ≤ d (114)

By Theorem 6.1 the variance of each principal component is the corresponding eigenvalue of the
covariance matrix. Geometrically, we are rotating the random vector to make the axes align with
the principal directions. The principal components are uncorrelated,

E(p̃c[i]p̃c[j]) = E(uTi c(x̃)uTj c(x̃)) (115)

= uTi E(c(x̃)c(x̃)T )uj (116)

= uTi Σx̃uj (117)

= λju
T
i uj (118)

= 0, (119)

so there is no linear relationship between them.

In practice, the principal directions and principal components are computed by performing an
eigendecomposition of the sample covariance matrix of the data.

Algorithm 6.2 (Principal component analysis (PCA)). Given a dataset X containing n vectors
x1, x2, . . . , xn ∈ Rd with d features each, where n > d.

1. Compute the sample covariance matrix of the data ΣX .

2. Compute the eigendecomposition of ΣX , to find the principal directions u1, . . . , ud.

3. Center the data and compute the principal components

pci[j] := uTj c(xi), 1 ≤ i ≤ n, 1 ≤ j ≤ d, (120)

where c(xi) := xi − av(X )

As in the case of the sample mean, variance and covariance, when we perform PCA on a dataset,
the result has a geometric interpretation which does not require the existence of any underlying
distribution. This again follows from the spectral theorem (Theorem 5.3), in this case combined
with Lemma 4.5.
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Figure 8: The scatterplots in the left column show the centered data from Figure 3, and the first
(top) and second (bottom) principal directions of the data represented by lines going through the
origin. The right column shows the first (top) and second (bottom) principal components of each
data point and their density. The sample variance of the first component equals 531 (standard
deviation: 23.1). For the second it equals 46.2 (standard deviation: 6.80)

Theorem 6.3. Let X contain n vectors x1, x2, . . . , xn ∈ Rd with sample covariance matrix ΣX ,
and let u1, . . . , ud, and λ1 > . . . > λd denote the eigenvectors and corresponding eigenvalues of
ΣX . We have

λ1 = max
||v||2=1

var (Pv X ) , (121)

u1 = arg max
||v||2=1

var (Pv X ) , (122)

λk = max
||v||2=1,v⊥u1,...,uk−1

var (Pv X ) , 2 ≤ k ≤ d, (123)

uk = arg max
||v||2=1,v⊥u1,...,uk−1

var (Pv X ) , 2 ≤ k ≤ d. (124)

In words, u1 is the direction of maximum sample variance, u2 is the direction of maximum sam-
ple variance orthogonal to u1, and in general uk is the direction of maximum variation that is
orthogonal to u1, u2, . . . , uk−1. The sample variances in each of these directions are given by
the eigenvalues. Figure 8 shows the principal directions and the principal components for the
data in Figure 3. Comparing the principal components to the component in the direction shown
in Figure 4, we confirm that the first principal component has larger sample variance, and the
second principal component has smaller sample variance.

Example 6.4 (PCA of faces). The Olivetti Faces dataset3 contains 400 64×64 images taken from

3Available at http://www.cs.nyu.edu/~roweis/data.html
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Center PD 1 PD 2 PD 3 PD 4 PD 5

330 251 192 152 130

PD 10 PD 15 PD 20 PD 30 PD 40 PD 50

90.2 70.8 58.7 45.1 36.0 30.8

PD 100 PD 150 PD 200 PD 250 PD 300 PD 359

19.0 13.7 10.3 8.01 6.14 3.06

Figure 9: The top row shows the data corresponding to three different individuals in the Olivetti
dataset. The sample mean and the principal directions (PD) obtained by applying PCA to the
centered data are depicted below. The sample standard deviation of each principal component is
listed below the corresponding principal direction.
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40 different subjects (10 per subject). We vectorize each image so that each pixel is interpreted
as a different feature. Figure 9 shows the center of the data and several principal directions, to-
gether with the standard deviations of the corresponding principal components. The first principal
components seem to capture low-resolution structure, which account for more sample variance,
whereas the last incorporate more intricate details. 4

7 Dimensionality reduction via PCA

Data containing a large number of features can be difficult to analyze and process. The goal
of dimensionality-reduction techniques is to embed the data points in a low-dimensional space
where they can be described with a small number of variables. This is a crucial preprocessing
step in many applications. A popular choice is to perform linear dimensionality reduction, where
the lower-dimensional representation is obtained by computing the inner products of each data
point with a small number of basis vectors. Let X := {x1, . . . , xn} be a dataset containing n d-
dimensional vectors, and let v1, . . . , vk be a set of k < d orthonormal vectors. The k-dimensional
representation of the ith data point consists of vT1 xi, . . . , vTk xi. This preserves the component of the
data point contained in the k-dimensional subspace spanned by v1, . . . , vk. An important question
is how to choose these vectors, or equivalently how to choose the low-dimensional subspace that
will be preserved. This is a difficult question, as it depends on what we want to do with the data.
However, PCA provides a compelling option: it uncovers subspaces that are optimal in the sense
that they capture the maximum possible sample variance in the data. This is a direct consequence
of the following theorem.

Theorem 7.1. Let A ∈ Rd×d be a symmetric matrix, and u1, . . . , uk be its first k eigenvectors.
For any set of k orthonormal vectors v1, . . . , vk

k∑
i=1

uTi Aui ≥
k∑
i=1

vTi Avi. (125)

Proof. We prove the result by induction on k. The base case k = 1 follows immediately from (84).
To complete the proof we show that if the result is true for k − 1 ≥ 1 (the induction hypothesis)
then it also holds for k. Let S := span(v1, . . . , vk). For any orthonormal basis b1, . . . , bk of S the
projection matrix V V T , whose columns are v1, . . . , vk, is equal to the projection matrix BBT ,
whose columns are b1, . . . , bk. This implies∑k

i=1 v
T
i Avi = trace

(
V TAV

)
(126)

= trace
(
AV V T

)
(127)

= trace
(
ABBT

)
(128)

=
∑k

i=1 b
T
i Abi, (129)

so we are free to choose an arbitrary basis for S. Because it has dimension k, S contains at least
one vector b that is orthogonal to u1, u2,. . . , uk−1. By (86),

uTkAuk ≥ bTAb. (130)
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We now build an orthonormal basis b1, b2, . . . , bk for S such that bk := b (we can construct such a
basis by Gram-Schmidt, starting with b). By the induction hypothesis,

k−1∑
i=1

uTi Aui ≥
k−1∑
i=1

bTi Abi. (131)

Combining (131) and (130) yields the desired result.

Corollary 7.2. For any dataset X = {x1, . . . , xn} of dimension d, any dimension k < d, and any
set of k orthonormal vectors v1, . . . , vk

k∑
i=1

var(pc[i]) ≥
k∑
i=1

var(Pvi X ), (132)

where pc[i] := {pc1[i], . . . , pcn[i]} = Pui X denotes the ith principal component of the data.

Proof. Let u1, . . . , uk be the first k eigenvectors of ΣX

k∑
i=1

var(pc[i]) =
k∑
i=1

1

n

n∑
j=1

uTi c(xj)c(xj)
Tui (133)

=
k∑
i=1

uTi ΣXui (134)

≥
k∑
i=1

vTi ΣXvi (135)

=
k∑
i=1

1

n

n∑
j=1

vTi c(xj)c(xj)
Tvi. (136)

Example 7.3 (PCA of faces (continued)). Figure 10 shows the result of representing one of the
faces in the dataset from Example 6.4 using its first 7 principal components. To visualize the
result, we project the representation onto the image space using the principal directions,

xreduced
i := av(X ) +

7∑
j=1

pci[j]uj, (137)

where xi is the chosen face, and X is the set of faces. Figure 11 shows representations of increasing
dimensionality of the same face. As suggested by the visualization of the principal directions in
Figure 9, the lower-dimensional projections produce blurry images. 4

Example 7.4 (Nearest neighbors in principal-component space). To illustrate a possible use of
PCA-based dimensionality reduction, we consider the problem of face classification.The nearest-
neighbor algorithm is a classical method to perform classification. Assume that we have access to
a training set of n pairs of data encoded as vectors in Rd along with their corresponding labels:
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Center PD 1 PD 2 PD 3

= 8613 - 2459 + 665 - 180

+ 301 + 566 + 638 + 403

PD 4 PD 5 PD 6 PD 7

Figure 10: Representation of one of the faces in the dataset from Example 6.4 using the first 7
principal components. We visualize the representation by projecting onto the image space using
the corresponding principal directions.

Signal 5 PDs 10 PDs 20 PDs 30 PDs 50 PDs

100 PDs 150 PDs 200 PDs 250 PDs 300 PDs 359 PDs

Figure 11: Representation of one of the faces in the dataset from Example 6.4 using different
numbers of principal components. We visualize the representation by projecting onto the image
space using the corresponding principal directions.
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Figure 12: Errors for nearest-neighbor classification combined with PCA-based dimensionality
reduction for different dimensions.
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Test image

Projection

Closest
projection

Corresponding
image

Figure 13: Results of nearest-neighbor classification combined with PCA-based dimensionality
reduction of order 41 for four of the people in Example 7.4. The assignments of the first three
examples are correct, but the fourth is wrong.
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Figure 14: Projection of 7-dimensional vectors describing different wheat seeds onto the first two
(left) and the last two (right) principal dimensions of the dataset. Each color represents a variety
of wheat.

{x1, l1}, . . . , {xn, ln}. To classify a new data point y we find the closest element of the training
set,

i∗ := arg min
1≤i≤n

||y − xi||2 , (138)

and assign the corresponding label li∗ to y. Every time we classify a new point, we need to compute
n distances in a d-dimensional space. The computational cost is O (nd). To alleviate the cost,
we can perform PCA and apply the algorithm in a space of reduced dimensionality k, so that the
cost is now O (nk). Applying PCA to the training data is costly, but only needs to be done once.

In this example we explore this idea using the faces dataset from Example 6.4. The training set
consists of 360 64×64 images taken from 40 different subjects (9 per subject). The test set consists
of an image of each subject, which is different from the ones in the training set. We apply the
nearest-neighbor algorithm to classify the faces in the test set, modeling each image as a vector
in R4096 and using the `2-norm distance. The algorithm classifies 36 of the 40 subjects correctly.

Figure 12 shows the accuracy of the algorithm when we compute the distance using k principal
components, obtained by applying PCA to the training set, for different values of k. The accuracy
increases with the dimension at which the algorithm operates. Interestingly, this is not necessarily
always the case because projections may actually be helpful for tasks such as classification (for
example, factoring out small shifts and deformations). The same precision as in the ambient
dimension (4 errors out of 40 test images) is achieved using just k = 41 principal components
(in this example n = 360 and d = 4096). Figure 13 shows some examples of the projected
data represented in the original d-dimensional space along with their nearest neighbors in the
k-dimensional space. 4

Example 7.5 (Dimensionality reduction for visualization). Dimensionality reduction is very useful
for visualization. When visualizing data the objective is usually to project it down to 2D or 3D
in a way that preserves its structure as much as possible. In this example, we consider a dataset
where each data point corresponds to a seed with seven features: area, perimeter, compactness,
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length of kernel, width of kernel, asymmetry coefficient and length of kernel groove. The seeds
belong to three different varieties of wheat: Kama, Rosa and Canadian.4

Figure 14 shows the data represented by the first two and the last two principal components. In
the latter case, there is almost no discernible variation. As predicted by our theoretical analysis
of PCA, the structure in the data is much better conserved by the two first principal components,
which allow to clearly visualize the difference between the three types of seeds. Note that using
the first few principal components only ensures that we preserve as much variation as possible;
this does not necessarily mean that these are the best low-dimensional features for tasks such as
clustering or classification. 4

8 Gaussian random vectors

The Gaussian or normal random variable is arguably the most popular random variable in statisti-
cal modeling and signal processing. The reason is that sums of independent random variables often
converge to Gaussian distributions, a phenomenon characterized by the central limit theorem. As
a result any quantity that results from the additive combination of several unrelated factors will
tend to have a Gaussian distribution. For example, in signal processing and engineering, noise is
often modeled as Gaussian.

Definition 8.1 (Gaussian). The pdf of a Gaussian or normal random variable ã with mean µ and
standard deviation σ is given by

fã (a) =
1√
2πσ

e−
(a−µ)2

2σ2 . (139)

One can verify that the parameters µ and σ correspond to the mean and standard deviation of
the distribution, i.e.

µ =

∫ ∞
a=−∞

afã (a) da, (140)

σ2 =

∫ ∞
a=−∞

(a− µ)2fã (a) da. (141)

An important property of Gaussian random variables is that scaling and shifting Gaussians pre-
serves their distribution.

Lemma 8.2. If ã is a Gaussian random variable with mean µ and standard deviation σ, then for
any α, β ∈ R

b̃ := αã+ β (142)

is a Gaussian random variable with mean αµ+ β and standard deviation |α|σ.

4The data can be found at https://archive.ics.uci.edu/ml/datasets/seeds.
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Proof. We assume α > 0 (the argument for α < 0 is very similar), to obtain

Fb̃ (b) = P
(
b̃ ≤ b

)
(143)

= P (αã+ β ≤ b) (144)

= P

(
ã ≤ b− β

α

)
(145)

=

∫ b−β
α

−∞

1√
2πσ

e−
(a−µ)2

2σ2 da (146)

=

∫ b

−∞

1√
2πασ

e−
(w−αµ−β)2

2α2σ2 dw by the change of variables w = αa+ β. (147)

Differentiating with respect to b yields

fb̃ (b) =
1√

2πασ
e−

(b−αµ−β)2

2α2σ2 (148)

so b̃ is indeed a standard Gaussian random variable with mean αµ + β and standard deviation
|α|σ.

Gaussian random vectors are a multidimensional generalization of Gaussian random variables.
They are parametrized by a vector and a matrix that are equal to their mean and covariance
matrix (this can be verified by computing the corresponding integrals).

Definition 8.3 (Gaussian random vector). A Gaussian random vector x̃ of dimension d is a
random vector with joint pdf

fx̃ (x) =
1√

(2π)d |Σ|
exp

(
−1

2
(x− µ)T Σ−1 (x− µ)

)
, (149)

where |Σ| denotes the determinant of Σ. The mean vector µ ∈ Rd and the covariance matrix
Σ ∈ Rd×d, which is symmetric and positive definite (all eigenvalues are positive), parametrize the
distribution.

In order to better understand the geometry of the pdf of Gaussian random vectors, we analyze
its contour surfaces. The contour surfaces are sets of points where the density is constant. The
spectral theorem (Theorem 5.3) ensures that Σ = UΛUT , where U is an orthogonal matrix and Λ
is diagonal, and therefore Σ−1 = UΛ−1UT . Let c be a fixed constant. We can express the contour
surfaces as

c = xTΣ−1x (150)

= xTUΛ−1Ux (151)

=
d∑
i=1

(uTi x)2

λi
. (152)

The equation corresponds to an ellipsoid with axes aligned with the directions of the eigenvectors.
The length of the ith axis is proportional to

√
λi. We have assumed that the distribution is

centered around the origin (µ is zero). If µ is nonzero then the ellipsoid is centered around µ.
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Figure 15: The left image shows a contour plot of the probability density function of the two-
dimensional Gaussian random vector defined in Example 8.4. The axes align with the eigenvectors
of the covariance matrix, and are proportional to the square root of the eigenvalues, as shown on
the right image for a specific contour.

Example 8.4 (Two-dimensional Gaussian). We illustrate the geometry of the Gaussian proba-
bility distribution function with a two-dimensional example where µ is zero and

Σ =

[
0.5 −0.3
−0.3 0.5

]
. (153)

The eigendecomposition of Σ yields λ1 = 0.8, λ2 = 0.2, and

u1 =

[
1/
√

2

−1/
√

2

]
, u2 =

[
1/
√

2

1/
√

2

]
. (154)

The left plot of Figure 15 shows several contours of the density. The right plot shows the axes for
the contour line

(uT1 x)2

λ1

+
(uT2 x)2

λ2

= 1, (155)

where the density equals 0.24. 4

When the entries of a Gaussian random vector are uncorrelated, then they are also independent.
The relationship between the entries is purely linear. This is not the case for most other random
distributions,

Lemma 8.5 (Uncorrelation implies mutual independence for Gaussian random variables). If all
the components of a Gaussian random vector x̃ are uncorrelated, then they are also mutually
independent.
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Proof. If all the components are uncorrelated then the covariance matrix is diagonal

Σx̃ =


σ2

1 0 · · · 0
0 σ2

2 · · · 0
...

...
. . .

...
0 0 · · · σ2

d

 , (156)

where σi is the standard deviation of the ith component. Now, the inverse of this diagonal matrix
is just

Σ−1
x̃ =


1
σ2
1

0 · · · 0

0 1
σ2
2
· · · 0

...
...

. . .
...

0 0 · · · 1
σ2
d

 , (157)

and its determinant is |Σ| = ∏d
i=1 σ

2
i so that

fx̃ (x) =
1√

(2π)d |Σ|
exp

(
−1

2
(x− µ)T Σ−1 (x− µ)

)
(158)

=
d∏
i=1

1√
(2π)σi

exp

(
−(xi − µi)2

2σ2
i

)
(159)

=
d∏
i=1

fx̃i (xi) . (160)

Since the joint pdf factors into the product of the marginals, the entries are all mutually indepen-
dent.

A fundamental property of Gaussian random vectors is that performing linear transformations on
them always yields vectors with joint distributions that are also Gaussian. This is a multidimen-
sional generalization of Lemma 8.2. We omit the proof, which is very similar.

Theorem 8.6 (Linear transformations of Gaussian random vectors are Gaussian). Let x̃ be a
Gaussian random vector of dimension d with mean µx̃ and covariance matrix Σx̃. For any matrix
A ∈ Rm×d and b ∈ Rm, ỹ = Ax̃ + b is a Gaussian random vector with mean µx̃ := Aµx̃ + b and
covariance matrix Σỹ := AΣx̃A

T , as long as Σỹ is full rank.

By Theorem 8.6 and Lemma 8.5, the principal components of a Gaussian random vector are
independent. Let Σ := UΛUT be the eigendecomposition of the covariance matrix of a Gaussian
vector x̃. The vector containing the principal components

p̃c := UT x̃ (161)

has covariance matrix UTΣU = Λ, so the principal components are all independent. It is important
to emphasize that this is the case because x̃ is Gaussian. In most cases, there will be nonlinear
dependencies between the principal components (see Figures 8 and 14 for example).
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In order to fit a Gaussian distribution to a dataset X := {x1, . . . , xn} of d-dimensional points,
a common approach is to maximize the log-likelihood of the data with respect to the mean and
covariance parameters assuming independent samples,

(µML,ΣML) := arg max
µ∈Rd,Σ∈Rd×d

log
n∏
i=1

1√
(2π)d |Σ|

exp

(
−1

2
(xi − µ)T Σ−1 (xi − µ)

)
(162)

= arg min
µ∈Rd,Σ∈Rd×d

n∑
i=1

(xi − µ)T Σ−1 (xi − µ) +
n

2
log |Σ| . (163)

The optimal parameters turn out to be the sample mean and the sample covariance matrix (we
omit the proof, which relies heavily on matrix calculus). One can therefore interpret the analysis
described in this chapter as fitting a Gaussian distribution to the data, but– as we hopefully have
made clear– the analysis is meaningful even if the data are not Gaussian.
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