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Linear regression

1 Overview

The topic of this chapter is linear regression. In Section 2 we motivate linear estimation, derive
the linear estimate that minimizes mean square error in a probabilistic setting, and introduce
ordinary-least-squares estimation. Section 3 is dedicated to the singular-value decomposition,
a fundamental tool to analyze linear operators. In Section 4 we analyze the error incurred by
the ordinary-least-squares estimator. Section 5 describes ridge regression, a method to enhance
the performance of the least-squares estimators by leveraging regularization. Finally, Section 6
provides an analysis of gradient descent, and of the advantages of early stopping.

2 Mean square error and ordinary least squares

Regression is a fundamental problem in statistics. The goal is to estimate a quantity of interest
called the response or dependent variable from the values of several observed variables known as
covariates, features or independent variables. Let us model the response as a random variable
ỹ, and the features as the entries of a p-dimensional random vector x̃. Our goal is to produce
an estimate of ỹ as a function of x̃. A popular evaluation measure for this problem is mean
square error. If we observe that x̃ equals a fixed value x, the uncertainty about ỹ is captured
by the distribution of ỹ given x̃ = x. Let ỹ′ be a random variable that follows that distribution.
Minimizing the mean square error for the fixed observation x̃ = x is exactly equivalent to finding
a constant vector c that minimizes E[(ỹ′ − c)2]. Lemma 4.1 in the notes on PCA establishes that
the optimal vector is the mean of the distribution. Consequently, the optimal estimator is the
conditional mean E(ỹ | x̃ = x), as stated in the following theorem.

Theorem 2.1 (MMSE estimator). Let x̃ and ỹ be real-valued random variables or random vectors.
If x̃ = x then the minimum-mean-square-error (MMSE) estimator of ỹ given x̃ is the conditional
expectation of ỹ given x̃ = x, i.e.

E(ỹ | x̃ = x) = arg min
w

E
[
(ỹ − w)2 | x̃ = x

]
. (1)

The theorem suggests that in order to solve the regression problem, all we need to do is compute
the average value of the response corresponding to every possible value of the features. The catch
is that when there is more than one or two features this requires too many data. As a simple
example, consider a problem with p features each taking d different values. In order to be able to
perform estimation, we need to compute the expected value of the response conditioned on every
possible value of the feature vector. However there are N = dp possible values! For even moderate
values of p and d the number is huge: if p = 5, and d = 100 then N = 1010! This is known as the
curse of dimensionality (where dimensionality refers to the dimension of the feature vector).
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Figure 1: Regression models for weather measurements gathered at a weather station in Oxford
over 150 years. On the left, the response is the monthly amount of rain, and the feature the
maximum temperature during the same month. On the right, the response and the feature are
the minimum and maximum monthly temperature respectively. The linear regression model is
compute by minimizing the least-squares fit. The nonlinear regression model is computed by
averaging the response over all values of the feature in bins of width equal to 1.5 degrees. In the
case of the rain, the linear model cannot capture the fact that at high temperatures, rain and
temperature are negatively correlated (see Figure 2 in the lecture notes on PCA).

In general, tackling the regression problem requires making assumptions about the relationship
between the response and the features. A simple, yet often surprisingly effective, assumption is
that the relationship is linear (or rather affine), i.e. that there exists a constant vector β ∈ Rp

and a constant β0 ∈ R such that

ỹ ≈ βT x̃+ β0. (2)

Mathematically, the gradient of the regression function is constant, which means that the rate of
change in the response with respect to the features does not depend on the feature values. This
is illustrated in Figure 1, which compares a linear model with a nonlinear model for two simple
examples where there is only one feature1. The slope of the nonlinear estimate varies depending
on the feature, but the slope of the linear model is constrained to be constant.

The following lemma establishes that when fitting an affine model by minimizing mean square
error, we can just center the response and the features, and fit a linear model without additive
constants.

Lemma 2.2. For any β ∈ Rp and any random variable ỹ and p-dimensional random vector x̃,

min
β0

E
[
(ỹ − x̃Tβ − β0)2

]
= E

[
(c(ỹ)− c(x̃)Tβ)2

]
, (3)

where c(ỹ) := ỹ − E(ỹ) and c(x̃) := x̃− E(x̃).

1The data are available here.
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Proof. By Lemma 4.1 in the notes on PCA, the optimal β0 equals E(ỹ − x̃Tβ), so

min
β0

E
[
(ỹ − x̃Tβ − β0)2

]
= E

[
(ỹ − x̃Tβ − E(ỹ) + E(x̃)Tβ)2

]
(4)

= E
[
(c(ỹ)− βT c(x̃))2

]
. (5)

From now on, we will assume that the response and the features are centered. The following
theorem derives the optimal linear estimator in terms of MSE when the response and features are
modeled as random variables.

Theorem 2.3 (Linear MMSE). Let ỹ be a zero-mean random variable and x̃ a zero mean random
vector with a full-rank covariance matrix equal to Σx̃, then

Σ−1x̃ Σx̃ỹ = arg min
β

E
[
(ỹ − x̃Tβ)2

]
, (6)

where Σx̃ỹ is the cross-covariance between x̃ and ỹ:

Σx̃ỹ[i] := E (x̃[i]ỹ) , 1 ≤ i ≤ p. (7)

The MSE of this estimator equals Var(ỹ)− ΣT
x̃ỹΣ

−1
x̃ Σx̃ỹ.

Proof. We have

E((ỹ − x̃Tβ)2) = E
(
ỹ2
)
− 2E (ỹx̃)T β + βTE(x̃x̃T )β (8)

= βTΣx̃β − 2ΣT
x̃ỹβ + Var (ỹ) := f(β). (9)

The function f is a quadratic form. Its gradient and Hessian equal

∇f(β) = 2Σx̃β − 2Σx̃ỹ, (10)

∇2f(β) = 2Σx̃. (11)

Covariance matrices are positive semidefinite. For any vector v ∈ Rp

vTΣx̃v = Var
(
vT x̃

)
≥ 0. (12)

Since Σx̃ is full rank, it is actually positive definite, i.e. the inequality is strict as long as v 6= 0.
This means that the quadratic function is strictly convex and we can set its gradient to zero to
find its unique minimum. For the sake of completeness, we provide a simple proof of this. The
quadratic form is exactly equal to its second-order Taylor expansion around any point β1 ∈ Rp.
For all β2 ∈ Rp

f(β2) =
1

2
(β2 − β1)T∇2f(β1)(β2 − β1) +∇f(β1)

T (β2 − β1) + f(β1). (13)

The equality can be verified by expanding the expression. This means that if ∇f(β∗) = 0 then
for any β 6= β∗

f(β) =
1

2
(β − β∗)T∇2f(β∗)(β − β∗) + f(β∗) > f(β∗) (14)
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because ∇2f(β∗) = Σx̃ is positive definite. The unique minimum can therefore be found by setting
the gradient to zero. Finally, the corresponding MSE equals

E
[
(ỹ − x̃TΣ−1x̃ Σx̃ỹ)

2
]

= E(ỹ2) + ΣT
x̃ỹΣ

−1
x̃ E(x̃x̃T )Σ−1x̃ Σx̃ỹ − 2E(ỹx̃T )Σ−1x̃ Σx̃ỹ

= Var(ỹ)− ΣT
x̃ỹΣ

−1
x̃ Σx̃ỹ. (15)

The theorem shows that the optimal linear estimator only depends on the covariance and cross-
covariance of the random variables. In practice, we must estimate these quantities from a finite
number of data. Assume that we have available n examples consisting of feature vectors coupled
with their respective response: (y1, x1), (y2, x2), . . . , (yn, xn), where yi ∈ R and xi ∈ Rp for
1 ≤ i ≤ n. We define a response vector y ∈ Rn, such that y[i] := yi, and a feature matrix
X ∈ Rp×n with columns equal to the feature vectors,

X :=
[
x1 x2 · · · xn

]
. (16)

If we interpret the feature data as samples of x̃ and the corresponding response values as samples
of ỹ, a reasonable estimate for the covariance matrix is the sample covariance matrix,

1

n
XXT =

1

n

n∑
i=1

xix
T
i . (17)

Similarly, the cross-covariance can be approximated by the sample cross-covariance, which contains
the sample covariance between each feature and the response,

1

n
Xy =


1
n

∑n
i=1 xi[1]y[1]

1
n

∑n
i=1 xi[2]y[2]

· · ·
1
n

∑n
i=1 xi[p]y[p]

 . (18)

We therefore obtain the following approximation to the linear MMSE estimate derived in Theo-
rem 2.3,

Σ−1x̃ Σx̃ỹ ≈ (XXT )−1Xy. (19)

This estimate has an alternative interpretation, which does not require probabilistic assumptions:
it minimizes the least-squares fit between the observed values of the response and the linear model.
In the statistics literature, this method is known as ordinary least squares (OLS).

Theorem 2.4 (Ordinary least squares). If X :=
[
x1 x2 · · · xn

]
∈ Rp×n is full rank and n ≥ p,

for any y ∈ Rn we have

βOLS := arg min
β

n∑
i=1

(
yi − xTi β

)2
(20)

= (XXT )−1Xy. (21)
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Figure 2: Performance of the least-squares estimator on the temperature data described in Ex-
ample 2.5. The graph shows the square root of the MSE (RMSE) achieved by the model on the
training and test sets, and on the 2016 data, for different number of training data and compares
it to the RMSE of the best single-station estimate.

Proof.

n∑
i=1

(
yi − xTi β

)2
= ‖y −XTβ‖22 (22)

= βTXXTβ − 2yTXTβ + yTy := f(β). (23)

The function f is a quadratic form. Its gradient and Hessian equal

∇f(β) = 2XXTβ − 2Xy, (24)

∇2f(β) = 2XXT . (25)

Since X is full rank, XXT is positive definite because for any nonzero vector v

vTXXTv =
∣∣∣∣XTv

∣∣∣∣2
2
> 0. (26)

By the same argument in Theorem 2.3, the unique minimum can be found by setting the gradient
to zero.

In practice, large-scale least-squares problems are not solved by using the closed-form solution,
due to the computational cost of inverting the sample covariance matrix of the features, but rather
by applying iterative optimization methods such as conjugate gradients.

Example 2.5 (Temperature prediction via linear regression). We consider a dataset of hourly
temperatures measured at weather stations all over the United States2. Our goal is to design a

2The data are available at http://www1.ncdc.noaa.gov/pub/data/uscrn/products

5

http://www1.ncdc.noaa.gov/pub/data/uscrn/products


model that can be used to estimate the temperature in Yosemite Valley from the temperatures
of 133 other stations, in case the sensor in Yosemite fails. We perform estimation by fitting a
linear model where the response is the temperature in Yosemite and the features are the rest of
the temperatures (p = 133). We use 103 measurements from 2015 as a test set, and train a linear
model using a variable number of training data also from 2015 but disjoint from the test data. In
addition, we test the linear model on data from 2016. Figure 2 shows the results. With enough
data, the linear model achieves an error of roughly 2.5°C on the test data, and 2.8°C on the 2016
data. The linear model outperforms a naive single-station estimate, which uses the station that
best predicts the temperature in Yosemite for the training data. 4

3 The singular-value decomposition

In order to gain further insight into linear models we introduce a fundamental tool in linear algebra:
the singular-value decomposition.

Theorem 3.1 (Singular-value decomposition). Every real matrix A ∈ Rm×k, m ≥ k, has a
singular-value decomposition (SVD) of the form

A =
[
u1 u2 · · · uk

]

s1 0 · · · 0
0 s2 · · · 0

. . .

0 0 · · · sk

 [v1 v2 · · · vk
]T

(27)

= USV T , (28)

where the singular values s1 ≥ s2 ≥ · · · ≥ sk are nonnegative real numbers, the left singular vectors
u1, u2, . . .uk ∈ Rm form an orthonormal set, and the right singular vectors v1, v2, . . . vk ∈ Rk

also form an orthonormal set.

If m < k then the SVD is of the form

A =
[
u1 u2 · · · um

]

s1 0 · · · 0
0 s2 · · · 0

. . .

0 0 · · · sm

 [v1 v2 · · · vm
]T

(29)

= USV T , (30)

where s1 ≥ s2 ≥ · · · ≥ sm are nonnegative real numbers, and the singular vectors u1, u2, . . .um ∈
Rm, and v1, v2, . . . vm ∈ Rk form orthonormal sets.

Proof. We prove the case m ≥ k; the case m < k then follows directly by applying the result to
the transpose of the matrix. Let V ΛV T be the eigendecomposition of ATA, where Λ contains the
eigenvalues λ1 ≥ λ2 ≥ . . . λk. These eigenvalues are nonnegative, because for the ith eigenvector
vi

||Avi||22 = vTi A
TAvi (31)

= λiv
T
i vi (32)

= λi. (33)
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Let k+ denote the number of nonzero eigenvalues. For 1 ≤ i ≤ k+ we define si :=
√
λi and

ui :=
1

si
Avi. (34)

These vectors are unit norm,

||ui||22 =
1

s2i
vTi A

TAvi (35)

=
λi
λi
vTi vi (36)

= 1, (37)

and orthogonal,

〈ui, uj〉 =
vTi A

TAvj
sisj

(38)

=
λjv

T
i vj

sisj
(39)

= 0, (40)

because vTi vj = 0 for i 6= j. Let uk++1, uk++2, . . . , uk be an orthonormal set of vectors, which are
also orthogonal to u1, . . . , uk+ , and let si := 0, for k+ < i ≤ k. We define an orthogonal matrix
U :=

[
u1 u2 · · · uk

]
and a diagonal matrix S, such that Sii := si for 1 ≤ i ≤ k. Then,

AV = US. (41)

Since V is an orthogonal matrix,

A = USV T . (42)

The SVD provides a very intuitive geometric interpretation of the action of a matrix A ∈ Rm×k

on a vector w ∈ Rk, as illustrated in Figure 3:

1. Rotation of w to align the component of w in the direction of the ith right singular vector
vi with the ith axis:

V Tw =
k∑
i=1

〈vi, w〉ei, (43)

where ei is the ith standard basis vector.

2. Scaling of each axis by the corresponding singular value

SV Tw =
k∑
i=1

si〈vi, w〉ei. (44)
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Figure 3: The action of any matrix can be decomposed into three steps: rotation to align the
right singular vectors to the axes, scaling by the singular values and a final rotation to align the
axes with the left singular vectors. In image (b) the second singular value is zero, so the matrix
projects two-dimensional vectors onto a one-dimensional subspace.
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3. Rotation to align the ith axis with the ith left singular vector

USV Tw =
k∑
i=1

si〈vi, w〉ui. (45)

A consequence of the spectral theorem for symmetric matrices is that the maximum scaling pro-
duced by a matrix is equal to the maximum singular value. The maximum is achieved when the
matrix is applied to any vector in the direction of the right singular vector v1. If we restrict our
attention to the orthogonal complement of v1, then the maximum scaling is the second singular
value, due to the orthogonality of the singular vectors. In general, the direction of maximum
scaling orthogonal to the first i − 1 left singular vectors is equal to the ith singular value and
occurs in the direction of the ith singular vector.

Theorem 3.2. For any matrix A ∈ Rm×k, the singular values satisfy

s1 = max
{‖w‖2=1 | w∈Rk}

‖Aw‖2, (46)

si = max
{‖w‖2=1 | w∈Rk, w⊥v1,...,vi−1}

‖Aw‖2, (47)

(48)

and the right singular vectors satisfy

v1 = arg max
{‖w‖2=1 | w∈Rk}

‖Aw‖2, (49)

vi = arg max
{‖w‖2=1 | w∈Rk, w⊥v1,...,vi−1}

‖Aw‖2, 2 ≤ i ≤ k. (50)

Proof. If USV T is the SVD of A, then the eigendecomposition of ATA equals V TS2V where S2

is a diagonal matrix containing the square singular values in its diagonal. The result then follows
by Theorem 5.3 in the lecture notes on PCA applied to the symmetric matrix ATA, since for any
w ||Aw||22 = wTATAw.

The SVD provides a geometric interpretation of the OLS estimator derived in Theorem 2.4. Let
X = USV T be the SVD of the feature matrix, then

βOLS =
(
XXT

)−1
Xy (51)

= (US2UT )−1USV Ty (52)

= US−2UTUSV Ty (53)

= US−1V Ty. (54)

The OLS estimator is obtained by inverting the action of the feature matrix. This is achieved by
computing the components of the response vector in the direction of the right singular vectors,
scaling by the inverse of the corresponding singular values, and then rotating so that each com-

ponent is aligned with the corresponding left singular vector. The matrix
(
XXT

)−1
X is called a

left inverse or pseudoinverse of XT because
(
XXT

)−1
XXT = I.
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Figure 4: Illustration of Lemma 3.3 for a problem with two features corresponding to the two rows
of the feature matrix X1: and X2:. The least-squares solution is the orthogonal projection of the
data onto the subspace spanned by these vectors.

The OLS estimator can be derived from a purely geometric viewpoint. The goal is to approximate
the response vector y by a linear combination of the corresponding features. Each feature is
represented by a row of X. The linear coefficients weight these rows. Equivalently, we want
to find the vector in the row space of the feature matrix X that is closest to y. By definition,
that vector is the orthogonal projection of y onto row(X). Figure 4 illustrates this geometric
perspective. The following lemma provides a formal proof.

Lemma 3.3. Let X ∈ Rp×n be full-rank feature matrix, where n ≥ p, and let y ∈ Rn be a response
vector. The OLS estimate XTβOLS of y given X, where

βOLS := arg min
β∈Rp

∣∣∣∣y −XTβ
∣∣∣∣
2
, (55)

is equal to the orthogonal projection of y onto the row space of X.

Proof. Let USV T be the SVD of X. By Eq. (54)

XTβOLS = XTUS−1V Ty (56)

= V SUTUS−1V Ty (57)

= V V Ty. (58)

Since the rows of V form an orthonormal basis for the row space of X the proof is complete.
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4 Analysis of ordinary least squares for an additive model

In this section we analyze the OLS estimator for a regression problem when the data are indeed
generated by a linear model, perturbed by an additive term that accounts for model inaccuracy
and noisy fluctuations. The model is parametrized by a vector of true linear coefficients βtrue ∈ Rp.
We first consider a probabilistic perspective where the features are modeled by a p-dimensional
random vector x̃, the noise by a scalar random variable z̃, and the response equals

ỹ = x̃Tβtrue + z̃. (59)

If the noise z̃ and the feature vector are independent, then the MSE achieved by the MMSE
estimator equals the variance of the noise.

Theorem 4.1 (MSE for additive model). Let x̃ and z̃ in Eq. (59) be zero mean and independent.
Then the MSE achieved of the MMSE estimator of ỹ given x̃ is equal to the variance of z̃.

Proof. By independence of x̃ and z̃, and linearity of expectation we have

Var(ỹ) = Var(x̃Tβtrue + z̃) (60)

= βTtrueE
(
x̃x̃T

)
βtrue + Var (z̃) (61)

= βTtrueΣx̃βtrue + Var (z̃) , (62)

Σx̃ỹ = E
(
x̃(x̃Tβtrue + z̃)

)
(63)

= Σx̃βtrue (64)

By Theorem 2.1,

MSE = Var(ỹ)− ΣT
x̃ỹΣ

−1
x̃ Σx̃ỹ (65)

= βTtrueΣx̃βtrue + Var(z̃)− βTtrueΣx̃Σ
−1
x̃ Σx̃βtrue (66)

= Var(z̃). (67)

Achieving an error equal to the variance of the noise is the best case scenario, because we cannot
possibly estimate the noise from the features if they are independent. However, the result assumes
that we have access to the true joint statistics of the response and the features, which are not
available in practice. Instead, the coefficient vector is computed using a finite training set of
examples, and the goal is to use the coefficients to predict the response on new data. In order to
analyze this more realistic setting, we assume that the available data are equal to the n-dimensional
vector

ỹtrain := XTβtrue + z̃train, (68)

where X ∈ Rp×n contains n p-dimensional feature vectors and the noise z̃train is modeled as an
n-dimensional iid Gaussian vector with zero mean and variance σ2. In contrast to the model the
feature matrix X is fixed and deterministic. OLS is equivalent to maximum-likelihood estimation
under this model.
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Figure 5: Deterministic quadratic component of the least-squares cost function (see Eq. (74))
for an example with two features where the left singular vectors of X align with the horizontal
and vertical axes, and the singular values equal 1 and 0.1. The quadratic form is an ellipsoid
centered at βtrue with axes aligned with the left singular vectors. The curvature of the quadratic
is proportional to the square of the singular values.

Lemma 4.2. If the training data are interpreted as a realization of the random vector in Eq. (68)
the maximum-likelihood estimate of the coefficients is equal to the OLS estimate.

Proof. The likelihood is the probability density function of ỹtrain evaluated at the observed data
ytrain and interpreted as a function of the coefficient vector β,

Lytrain(β) =
1√

(2πσ2)n
exp

(
− 1

2σ2

∣∣∣∣ytrain −XTβ
∣∣∣∣2
2

)
. (69)

The maximum-likelihood estimator equals

βML = arg max
β
Lytrain(β) (70)

= arg max
β

logLytrain(β) (71)

= arg min
β

∣∣∣∣ytrain −XTβ
∣∣∣∣2
2
. (72)

The OLS cost function can be decomposed into a deterministic quadratic form centered at βtrue
and a random linear function that depends on the noise,

arg min
β
‖ỹtrain −XTβ‖22 = arg min

β
‖z̃train −XT (β − βtrue)‖22 (73)

= arg min
β

(β − βtrue)TXXT (β − βtrue)− 2z̃TtrainX
T (β − βtrue) + z̃Ttrainz̃train

= arg min
β

(β − βtrue)TXXT (β − βtrue)− 2z̃TtrainX
Tβ. (74)
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Figure 6: The left column show two realizations of the random linear component of the least-
squares cost function (see Eq. (74)) for the example in Figure 5. The right column shows the
corresponding cost function, which is a quadratic centered at a point that does not coincide with
βtrue due to the linear term. The minimum of the quadratic is denoted by βOLS.

Figure 5 shows the quadratic component for a simple example with two features. Let X = USV T

be the SVD of the feature matrix. The contour lines of the quadratic form are ellipsoids, defined
by the equation

(β − βtrue)TXXT (β − βtrue) = (β − βtrue)TUS2UT (β − βtrue) (75)

=

p∑
i=1

s2i (u
T
i (β − βtrue))2 = c2 (76)

for a constant c. The axis of the ellipsoid are the left singular vectors of X. The curvature in
those directions is proportional to the square of the singular values, as shown in Figure 5. Due
to the random linear component, the minimum of the least-squares cost function is not at βtrue.
Figure 5 shows this for a simple example. The following theorem shows that the minimum of the
cost function is a Gaussian random vector centered at βtrue.
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Figure 7: The left image is a scatterplot of OLS estimates corresponding to different noise re-
alizations for the example in Figure 6. The right image is a heatmap of the distribution of the
OLS estimate, which is centered at βtrue and has covariance matrix σ2US−2UT , as established in
Theorem 4.3.

Theorem 4.3. If the training data follow the additive model in Eq. (68) and X is full rank, the
OLS coefficient

β̃OLS := arg min
β

∣∣∣∣ỹtrain −XTβ
∣∣∣∣
2
, (77)

is a Gaussian random vector with mean βtrue and covariance matrix σ2US−2UT , where X = USV T

is the SVD of the feature matrix.

Proof. We have

βOLS = (XXT )−1Xỹtrain (78)

= (XXT )−1XXTβtrue + (XXT )−1Xz̃train (79)

= βtrue + (XXT )−1Xz̃train (80)

= βtrue + US−1V T z̃train. (81)

The result then follows from Theorem 8.6 in the PCA lecture notes.

Figure 7 shows a scatterplot of OLS estimators corresponding to different noise realizations, as
well as the distribution of the OLS estimator. The contour lines of the distribution are ellipsoidal
with axes aligned with the left singular vectors of the feature matrix. The variance along those
axes is proportional to the inverse of the squared singular values. If there are singular values that
are very small, the variance in the direction of the corresponding singular vector can be very large,
as is the case along the horizontal axis of Figure 7.

In practice, we cannot verify the coefficient error for most datasets, because there is no true
underlying linear model. Instead, the models are evaluated in terms of feature prediction. In the
next two sections we analyze the prediction error of the OLS estimator on training and test data.
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4.1 Training error

The training error achieved by OLS has an intuitive geometric interpretation: it is the projection
of the noise vector onto the subspace spanned by the feature vectors.

Lemma 4.4. If the training data follow the additive model in Eq. (68) and X is full rank, the
training error of the OLS estimate XT β̃OLS is the projection of the noise onto the orthogonal
complement of the row space of X.

Proof. By Lemma 3.3

ỹtrain −XT β̃OLS = ỹtrain − Prow(X) ỹtrain (82)

= XTβtrue + z̃train − Prow(X) (XTβtrue + z̃train) (83)

= XTβtrue + z̃train −XTβtrue − Prow(X) z̃train (84)

= Prow(X)⊥ z̃train. (85)

We define the average training square error as

Ẽ2
train :=

1

n

∣∣∣∣∣∣ỹtrain −XT β̃OLS

∣∣∣∣∣∣2
2
. (86)

This quantity captures the average error incurred by the OLS estimate on the training data. By
Lemma 4.4, if the noise is Gaussian, then the training error is the projection of an n-dimensional
iid Gaussian random vector onto the subspace orthogonal to the span of the feature vectors. The
iid assumption means that the Gaussian distribution is isotropic. The dimension of this subspace
equals n − p, so the fraction of the variance in the Gaussian vector that lands on it should be
approximately equal to 1− p/n. The following theorem establishes that this is indeed the case.

Theorem 4.5. If the training data follow the additive model in Eq. (68) and X is full rank, then
the mean of the average training error defined in Eq. (86) equals

E
(
Ẽ2

train

)
= σ2

(
1− p

n

)
, (87)

and its variance equals

Var(Ẽ2
train) =

2σ4(n− p)
n2

. (88)

Proof. By Lemma 4.4

nẼ2
train =

∣∣∣∣Prow(X)⊥ z̃train
∣∣∣∣2
2

(89)

= z̃TtrainV⊥V
T
⊥ V⊥V

T
⊥ z̃train (90)

=
∣∣∣∣V T
⊥ z̃train

∣∣∣∣2
2
, (91)
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where the columns of V⊥ are an orthonormal basis for row(X)⊥. By Theorem 8.6 in the notes on
PCA V T

⊥ z̃train is a Gaussian vector of dimension n− p with covariance matrix

ΣV T
⊥ z̃train

= V T
⊥ Σz̃trainV⊥ (92)

= V T
⊥ σ

2IV⊥ (93)

= σ2I. (94)

The error is therefore equal to the square `2 norm of an iid Gaussian random vector. Let w̃ be a
d-dimensional zero-mean Gaussian random vector w̃ with unit variance. The expected value of its
square `2 norm is

E
(
||w̃||22

)
= E

(
d∑
i=1

w̃[i]2

)
(95)

=
d∑
i=1

E
(
w̃[i]2

)
(96)

= d. (97)

The mean square equals

E
[(
||w̃||22

)2]
= E

( d∑
i=1

w̃[i]2

)2
 (98)

=
d∑
i=1

d∑
j=1

E
(
w̃[i]2w̃[j]2

)
(99)

=
d∑
i=1

E
(
w̃[i]4

)
+ 2

d−1∑
i=1

d∑
j=i+1

E
(
w̃[i]2

)
E
(
w̃[j]2

)
(100)

= 3d+ d(d− 1) (the 4th moment of a standard Gaussian equals 3) (101)

= d(d+ 2), (102)

so the variance equals

Var
(
||w̃||22

)
= E

[(
||w̃||22

)2]− E2
(
||w̃||22

)
(103)

= 2d. (104)

As d grows, the relative deviation of the squared norm of the Gaussian vector from its mean
decreases proportionally to

√
2/d, as shown in Figure 8. Geometrically, the probability density

concentrates close to the surface of a sphere with radius
√
d. By definition of the training error,

we have

Ẽ2
train =

1

n

∣∣∣∣V T
⊥ z̃train

∣∣∣∣2
2

(105)

=
σ2

n
||w̃||22 , (106)

so the result follows from setting d := n− p in Eqs. (97) and (104).
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Figure 8: The graphs shows the `2 norm of 100 independent samples from standard Gaussian
random vectors in different dimensions. The norms of the samples concentrate around the square
root of the dimension.

The variance of the square error scales with 1/n, which implies that the error concentrates around
its mean with high probability as the number of examples in the training set grows. This can be
made precise using Chebyshev’s inequality, which is a direct consequence of Markov’s inequality.

Lemma 4.6 (Chebyshev’s inequality). Let r̃ be a random variable with finite variance. For any
positive constant c > 0,

P((ã− E (ã))2 ≥ c) ≤ Var(ã)

c
. (107)

Proof. Apply Markov’s inequality (Theorem in the notes on PCA) to the random variable (ã −
E (ã))2.

Corollary 4.7. If the training data follow the additive model in Eq. (68) and X is full rank, then
for any ε > 0 we have

P
((
Ẽ2

train − σ2
(

1− p

n

))
> ε
)
<

2σ4

nε2
. (108)

Proof. By Theorem 4.5 Var(Ẽ2
train) ≤ 2σ4

n
.

The bound in this corollary can be improved significantly by using sharper concentration bounds
that exploit higher-order moments. In any case, the important conclusion is that the training error
concentrates around σ2

(
1− p

n

)
. For large n, the error equals the variance of the noisy component

σ2, which is the error achieved by the true coefficients βtrue. When n ≈ p, however, the error can
be much smaller. This is bad news. If an estimator achieves an error of less than σ it must be
overfitting the training noise, which will result in a higher generalization error on held-out data.
This suggests that the OLS estimator overfits the training data when the number of examples is
small with respect to the number of features. Figure 9 shows that this is indeed the case for the
dataset in Example 2.5. In fact, the training error is proportional to

(
1− p

n

)
as predicted by our

theoretical result.
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4.2 Test error

The test error of an estimator quantifies its performance on held-out data, which have not been
used to fit the model. We model the test data as

ỹtest := x̃Ttestβtrue + z̃test. (109)

The linear coefficients are the same as in the training set, but the features and noise are different.
The features are modeled as a p-dimensional random vector x̃test with zero mean (the features
are assumed to be centered) and the noise z̃test is a zero-mean Gaussian random variable with the
same variance σ2 as the training noise. The training and test noise are assumed to be independent
from each other and from the features. Our goal is to characterize the test error

Ẽtest := ỹtest − x̃Ttestβ̃OLS (110)

= z̃test + x̃Ttest

(
βtrue − β̃OLS

)
, (111)

where β̃OLS is computed from the training data.

Theorem 4.8 (Test mean square error). If the training data follow the additive model in Eq. (68),
X is full rank, and the test data follow the model in Eq. (109), then the mean square of the test
error equals

E(Ẽ2
test) = σ2

(
1 +

p∑
i=1

Var(uTi x̃test)

s2i

)
, (112)

where Σx̃test is the covariance matrix of the feature vector, s1, . . . , sp are the singular values of X
and v1, . . . , vp are the right singular vectors.

Proof. By assumption, the two components of the test error in Eq. (111) are independent, so the
variance of their sum is the sum of their variances:

Var
(
ỹtest − x̃Ttestβ̃OLS

)
= σ2 + Var

(
x̃Ttest

(
βtrue − β̃OLS

))
(113)

Since everything is zero mean, this also holds for the mean square. Let USV T be the SVD of X.
The coefficient error equals

βOLS − βtrue =

p∑
i=1

vTi z̃train
si

ui, (114)

by Theorem 4.3. This implies

E

[(
x̃Ttest

(
βtrue − β̃OLS

))2]
= E

( p∑
i=1

vTi z̃train u
T
i x̃test

si

)2
 (115)

=

p∑
i=1

E
[
(vTi z̃train)2

]
E
[
(uTi x̃test)

2
]

s2i
, (116)
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Figure 9: Comparison of the theoretical approximation for the training and test error of the OLS
with the actual errors on the temperature data described in Example 2.5. The parameter σ is
fixed based on the asymptotic value of the error.

where the second equality holds because when we expand the square, the cross terms cancel due
to the independence assumptions and linearity of expectation. For i 6= j

E

(
vTi z̃train u

T
i x̃test

si

vTj z̃train u
T
j x̃test

sj

)
=

E
(
uTi x̃testu

T
j x̃test

)
sisj

vTi E
(
z̃trainz̃

T
train

)
vj (117)

=
E
(
uTi x̃testu

T
j x̃test

)
sisj

vTi vj (118)

= 0. (119)

By linearity of expectation, we conclude

E

[(
x̃Ttest

(
βtrue − β̃OLS

))2]
=

p∑
i=1

vTi E(z̃trainz̃
T
train)viu

T
i E(x̃testx̃

T
test)ui

s2i
(120)

= σ2

p∑
i=1

uTi Σx̃testui
s2i

, (121)

because the covariance matrix of the training noise z̃train equals σ2I.

The square of the ith singular value of the training covariance matrix is proportional to the sample
variance of the training data in the direction of the ith singular value ui,

s2i
n

=
uiXX

Tui
n

(122)

= uTi ΣXui (123)

= var (Pui X ) . (124)
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Figure 10: Singular values of the training matrix in Example 2.5 for different numbers of training
data.

If this sample variance is a good approximation to the variance of the test data in that direction
then

E(Ẽ2
test) ≈ σ2

(
1 +

p

n

)
. (125)

However, if the training data is not large enough, the sample covariance matrix may not provide
a good estimate of the feature variance in every direction. In that case, there may be terms in the
test error where si is very small, due to correlations between the features, but the true directional
variance is not. Figure 10 shows that some of the singular values of the training matrix in the
temperature prediction are indeed minuscule. Unless the test variance in that direction cancel
them out, this results in a large test error.

Intuitively, estimating the contribution of low-variance components of the feature vector to the
linear coefficients requires amplifying them. This also amplifies the training noise in those direc-
tions. When estimating the response, this amplification is neutralized by the corresponding small
directional variance of the test features as long as it occurs in the right directions (which is the
case if the sample covariance matrix is a good approximation to the test covariance matrix). Oth-
erwise, it will result in a high response error. This typically occurs when the number of training
data is small with respect to the number of features. The effect is apparent in Figure 2 for small
values of n. In the next sections, we describe techniques to alleviate this issue.

5 Ridge regression

As we saw in the previous section, the least-squares estimator can suffer from significant noise
amplification when the number of training data are small. This results in coefficients with very
large amplitudes, which overfit the noise in the training set, as illustrated by the left image in Fig-
ure 21. A popular approach to avoid this problem is to add an extra term to the least-squares cost
function, which penalizes the norm of the coefficient vector . The goal is to promote solutions that
yield a good fit to the data using linear coefficients that are not too large. Modifying cost func-
tions to favor structured solutions is called regularization. Least-squares regression combined with
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Least squares Ridge regression
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Figure 11: Coefficients of the least-squares (left) and ridge-regression (right) estimators computed
from the data described in Example 2.5 for different values of training data. All coefficients
are depicted in light blue except the three that have the largest magnitudes for large n, which
correspond to the stations of Moose in Wyoming, and Montrose and La Junta in Colorado.

`2-norm regularization is known as ridge regression in statistics and as Tikhonov regularization in
the literature on inverse problems.

Definition 5.1 (Ridge regression). For any X ∈ Rp×n and y ∈ Rn the ridge-regression estimator
is the minimizer of the optimization problem

βRR := arg min
β
‖y −XTβ‖22 + λ‖β‖22, (126)

where λ > 0 is a fixed regularization parameter.

As in the case of least-squares regression, the ridge-regression estimator has a closed form solution.

Theorem 5.2 (Ridge-regression estimate). For any X ∈ Rp×n and y ∈ Rn we have

βRR =
(
XXT + λI

)−1
Xy. (127)

Proof. The cost function can be reformulated to equal a modified least-squares problem

βRR := arg min
β

∣∣∣∣∣∣∣∣[y0
]
−
[
XT
√
λI

]
β

∣∣∣∣∣∣∣∣2
2

. (128)

By Theorem 2.4 the solution equals

βRR =
([
X
√
λI
] [
X
√
λI
]T)−1 [

X
√
λI
] [y

0

]
(129)

=
(
XXT + λI

)−1
Xy. (130)
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Figure 12: The left graph shows the training and validation errors of the ridge-regression estimator
applied to the data described in Example 2.5 for different values of the regularization parameter
λ. The number of training data is fixed to n = 202 training data. The right figure shows the
values of the model coefficients for the different λ values. All coefficients are depicted in light blue
except the three that have the largest magnitudes for large n, which correspond to the stations of
Moose in Wyoming, and Montrose and La Junta in Colorado.

Notice that when λ→0, βRR converges to the least-squares estimator. When λ→∞, βRR converges
to zero.

The regularization parameter λ governs the trade-off between the term that promotes a good
model fit on the training set and the term that controls the magnitudes of the coefficients. Ideally
we would like to set the value of λ that achieves the best test error. However, we do not have
access to the test set when training the regression model (and even if we did, one should never use
test data for anything else other than evaluating test error!). We cannot use the training data to
determine λ, since λ = 0 obviously achieves the minimum error on the training data. Instead, we
use validation data, separate from the training and test data, to evaluate the error of the model for
different values of λ and select the best value. This approach for setting model hyper parameters
is commonly known as cross validation.

As shown in Figure 12, in the regime where the least-squares estimator overfits the training
data, the ridge-regression estimator typically also overfits for small values of λ, which is reflected
in a high validation error. Increasing λ improves the validation error, up until a point where
the error increases again, because the least-squares term loses too much weight with respect to
the regularization term. Figure 12 also shows the coefficients of the model applied to the data
described in Example 2.5 for different values of λ. When λ is small, many coefficients are large,
which makes it possible to overfit the training noise through cancellations. For larger λ their
magnitudes decrease, eventually becoming too small to produce an accurate fit.

Figure 13 shows that ridge regression outperforms least-squares regression on the dataset of Ex-
ample 2.5 for small values of n, and has essentially the same performance for larger values, when
the least-squares estimator does not overfit the training data (this is expected as the estimators
are equivalent for small λ values). The figure also shows that λ values selected by cross validation
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Figure 13: Performance of the ridge-regression estimator on the temperature data described in
Example 2.5. The left image shows the RMSE achieved by the model on the training and test
sets, and on the 2016 data, for different number of training data and compares it to the RMSE of
least-squares regression. The right graph shows the values of λ selected from a validation dataset
of size 100 for each number of training data.

are larger for small values of n, where regularization is more useful.

In order to analyze the ridge-regression estimator, we consider data generated by a linear model
as in Eq. (68). In that case, the ridge-regression cost function can be decomposed into the sum of
two deterministic quadratic forms centered at βtrue and at the origin, and a random linear function
that depends on the noise. By the same argument used to derive Eq. (74)

arg min
β
‖ỹtrain −XTβ‖22 + λ‖β‖22 = arg min

β
(β − βtrue)TXXT (β − βtrue) + λβTβ − 2z̃TtrainX

Tβ.

Figure 14 shows the different components for a simple example with two features. The proof of the
following theorem derives the distribution of the ridge-regression coefficient estimate by analyzing
these components.

Theorem 5.3 (Ridge-regression coefficient estimate). If the training data follow the additive model
in Eq. (68), then the ridge regression coefficient estimate is a Gaussian random vector with mean

βbias :=

p∑
j=1

s2j 〈uj, βtrue〉
s2j + λ

uj (131)

and covariance matrix

ΣRR := σ2U diag p
j=1

(
s2j

(s2j + λ)2

)
UT , (132)

where diag p
j=1 (di) denotes a diagonal matrix with entries d1, . . . , dp.
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Figure 14: Visualization of the different components of the ridge-regression cost function for the
example in Figure 5. The regularization parameter is set to λ := 0.05. The top row shows
the two deterministic quadratic forms cost function: the least square component (left) and the
regularization component (right). The bottom left plot shows the combination of both quadratic
components. The resulting quadratic is centered at a point βbias, which is the expected value of
the ridge-regression coefficient estimate. Finally, the bottom right plot shows a realization of the
ridge-regression cost function obtained by adding the deterministic quadratic components with the
random linear component that depends on the training response. The minimum of the resulting
cost function is denoted by βRR. For comparison, we also include the minimum of the OLS cost
function βOLS.
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Figure 15: Different realizations of the ridge-regression cost function corresponding to different
realizations of the noise (the true coefficients and the feature matrix remain the same) for the
example in Figure 14. The regularization parameter is set to λ := 0.05.

Proof. By Theorem 5.2 the solution equals

β̃RR =
(
XXT + λI

)−1
X
(
XTβtrue + z̃train

)
(133)

=
(
US2UT + λUUT

)−1 (
US2UTβtrue + USV T z̃train

)
(134)

=
(
U(S2 + λI)UT

)−1 (
US2UTβtrue + USV T z̃train

)
(135)

= U(S2 + λI)−1UT
(
US2UTβtrue + USV T z̃train

)
(136)

= U(S2 + λI)−1S2UTβtrue + U
(
S2 + λI

)−1
SV T z̃train, (137)

because V is an orthogonal matrix. The result then follows from Theorem 8.6 in the PCA lecture
notes.

In contrast to the OLS estimator, the ridge-regression estimator is not centered at the true coeffi-
cients. Instead, it is centered at βbias, which is the center of the deterministic quadratic component
in the cost function,

(β − βtrue)TXXT (β − βtrue) + λβTβ. (138)
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Figure 16: The left image is a scatterplot of the ridge-regression estimate corresponding to different
noise realizations of the example in Figure 15. The right image is a heatmap of the distribution of
the estimate, which follows a Gaussian distribution with the mean and covariance matrix derived
in Theorem 5.3. Each row corresponds to a different choice of the regularization parameter λ,
illustrating the corresponding bias-variance tradeoff.
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As a result, the estimator has a systematic error equal to

βtrue − E
(
β̃RR

)
= βtrue − U(S2 + λI)−1S2UTβtrue (139)

=

p∑
j=1

〈uj, βtrue〉uj −
p∑
j=1

s2j 〈uj, βtrue〉
s2j + λ

uj (140)

=

p∑
j=1

λ 〈uj, βtrue〉
s2j + λ

uj. (141)

The expected error is called bias in statistics. The bias of ridge regression increases with λ, since
the derivative of (λ/(si+λ))2 with respect to λ equals 2λsi/(si+λ)3. As λ increases, the expected
value of the estimate is shrunk towards zero. This may seem puzzling at first: why not just set
λ to zero, and just use the OLS estimate which is unbiased? The reason is the variance of the
estimate. Increasing λ decreases the variance of the estimator.

In OLS (λ = 0) the variance in the direction of each left singular vector of the feature matrix is
proportional to σ2/s2i , where si is the corresponding singular value. This produces severe noise
amplification if any of the singular values are very small. As explained at the end of Section 4.2,
this results in significant test error if the sample covariance matrix is not a good approximation
of the true covariance matrix, which often occurs when the number of training data is small. The
role of λ is to neutralize the contribution of the small singular values. If λ� s2i , then the variance
in the direction of the corresponding singular vector is approximately equal to σ2s2i /λ

2, which
is much smaller than σ2/s2i . The ideal value of λ strikes a balance between increasing the bias
and decreasing the variance. In statistics this is known as the bias-variance tradeoff. Figure 16
shows the distribution of the ridge-regression estimator for a simple example when the value of λ
varies. When λ is very small, the estimate resembles the OLS estimate: it is almost centered at
the true coefficients, but it varies wildly in the direction of the singular vectors associated with
small singular values. As λ increases the variance decreases, but the center of the distribution
strays farther and farther away from the true coefficients.

6 Gradient descent

Gradient descent is the simplest and most popular iterative optimization method. The idea is
to make progress towards the minimum of a cost function by moving in the direction of steepest
descent3. In this section we analyze the properties of a linear-regression estimate obtained by
applying gradient descent to the least-squares cost function. For a response vector y ∈ Rn and a
feature matrix X :=

[
x1 x2 · · · xn

]
∈ Rp×n the gradient of function equals

∇f(β) = XXTβ −Xy. (142)

3For a cost function f , the directional derivative in the direction of a unit-norm vector v at a point x equals
〈∇f(x), v〉. In the direction −∇f(x) it equals − ||∇f(x)||2. This is the smallest possible derivative since
〈∇f(x), v〉 ≥ − ||v||2 ||∇f(x)||2 by the Cauchy-Schwarz inequality.
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The gradient-descent updates are

β(k+1) := β(k) + αkX
(
y −XTβ(k)

)
(143)

= β(k) + αk

n∑
i=1

(
y[i]− 〈xi, β(k)〉

)
xi, (144)

where β(k) ∈ Rp and αk > 0 are the coefficient estimate and the step size respectively at iteration
k. Gradient descent iteratively corrects the coefficient vector. If an entry of the response vector
y[i] is larger than the linear estimate 〈xi, β(k)〉 we add a small multiple of x(i) in order to reduce
the difference. If it is smaller we subtract it.

The following theorem provides a closed-form solution for the iterations of gradient descent in
terms of the SVD of the feature matrix when the step size is constant.

Theorem 6.1. Let Xp×n, n ≥ p, be full rank. The k + 1th iteration of gradient descent with a
constant step size α > 0 applied to the least-squares cost function equals

β(k+1) = U diag p
j=1

((
1− αs2j

)k+1
)
UTβ(0) + U diag p

j=1

(
1−

(
1− αs2j

)k+1

sj

)
V Ty, k = 1, 2, 3 . . . ,

where USV T is the SVD of X, β(0) ∈ Rp is the initial coefficient vector, and diag p
j=1 (di) denotes

a diagonal matrix with entries d1, . . . , dp.

Proof. We reformulate Eq. (143) as

β(k+1) =
(
I − αXXT

)
β(k) + αXy, (145)

which yields

β(k+1) =
(
I − αXXT

)k+1
β(0) +

k∑
i=0

(
I − αXXT

)i
αXy. (146)

Since p ≤ n and X is full rank, we have UUT = UTU = I, so that

β(k+1) =
(
UUT − αUS2UT

)k+1
β(0) + α

k∑
i=0

(
UUT − αUS2UT

)i
USV Ty (147)

= U
(
I − αS2

)k+1
UTβ(0) + αU

k∑
i=0

(
I − αS2

)i
SV Ty (148)

= U diag p
j=1

((
1− αs2j

)k+1
)
UTβ(0) + αU diag p

j=1

(
k∑
i=0

(
1− αs2j

)i)
SV Ty. (149)

By the geometric-sum formula we conclude:

β(k+1) = U diag p
j=1

((
1− αs2j

)k+1
)
UTβ(0) + αU diag p

j=1

(
1−

(
1− αs2j

)k+1

αs2j

)
SV Ty. (150)
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An immediate consequence is that gradient descent converges to the optimal solution if the step
size is small enough.

Corollary 6.2. Let 0 < α < 2/s21, where s1 is the largest singular value of X. If X is full rank,
gradient descent with step size α converges to the minimum of the least-squares cost function.

Proof. If 0 < α < 2/s21 ≤ 2/s2j for 1 ≤ j ≤ p then
∣∣1− αs2j ∣∣ < 1 so limk→∞

(
1− αs2j

)k
= 0. This

implies

lim
k→∞

β(k) = lim
k→∞

U diag p
j=1

((
1− αs2j

)k)
UTβ(0) + U diag p

j=1

(
1−

(
1− αs2j

)k
sj

)
V Ty (151)

= US−1V Ty, (152)

which is the solution to the least-squares problem.

The response estimate produced by gradient descent consequently converges to the OLS prediction.
The rate of convergence is governed by the condition number of the feature matrix. To simplify
the exposition, we assume that the coefficient estimate is initialized to equal the zero vector.

Corollary 6.3. Let yOLS := XTβOLS, where βOLS is the solution to the least-squares problem, and
y (k) := Xβ (k), where β (k) is the kth iteration of gradient descent initialized with the zero vector.
If the step size is set to α := 1/s21 then∣∣∣∣yOLS − y (k)

∣∣∣∣
2

||y||2
≤
(

1− s2p
s21

)k
, (153)

where s1 is the largest singular value of X and sp is the smallest.

Proof. By Theorem 6.1, if β(0) is the zero vector,

y (k) := XTβ(k) (154)

= V SUTU diag p
j=1

(
1−

(
1− αs2j

)k
sj

)
V Ty (155)

= V V Ty − V diag p
j=1

((
1− αs2j

)k)
V Ty. (156)

The operator norm ||M || of a matrix M is equal to its largest singular value. By Theorem 3.2, for
any vector w ||Mw|| ≤ ||M || ||w||2. Since yOLS = V V Ty by Lemma 3.3, this implies∣∣∣∣yOLS − y (k)

∣∣∣∣
2

=
∣∣∣∣∣∣V diag p

j=1

((
1− αs2j

)k)
V Ty

∣∣∣∣∣∣
2

(157)

≤ ||V ||
∣∣∣∣∣∣diag p

j=1

((
1− αs2j

)k)∣∣∣∣∣∣ ∣∣∣∣V Ty
∣∣∣∣
2

(158)

≤
∣∣∣∣1− s2p

s21

∣∣∣∣k ||y||2 (159)

because
(
1− αs2p

)k
is the largest singular value of the diagonal matrix, and V has orthonormal

columns.

29



−3 −2 −1 0 1 2 3 4 5 6

β[1]

−2

−1

0

1

2

3

4

β[2]

βOLS

βtrue

0.50

0.50

1.00

1.00

2.50

2.50

5.00

5.00

Gradient descent iterates

−3 −2 −1 0 1 2 3 4 5 6

β[1]

−2

−1

0

1

2

3

4

β[2]

βOLS

βtrue

0.50

1.00

1.00

2.50

2.50

5.00

5.00

Gradient descent iterates

−3 −2 −1 0 1 2 3 4 5 6

β[1]

−2

−1

0

1

2

3

4

β[2]
βOLS

βtrue

0.50

0.50

1.00

1.00

2.50

2.50

5.00

5.00
Gradient descent iterates

−3 −2 −1 0 1 2 3 4 5 6

β[1]

−2

−1

0

1

2

3

4

β[2]
βOLS

βtrue

0.50

0.50

1.00

1.00

2.50

2.50

5.00

5.00

Gradient descent iterates

Figure 17: Iterates of gradient descent initialized at the origin with a fixed step size for the example
in Figure 6. Each image corresponds to a different noise realization.

If the feature matrix is well conditioned, convergence is fast, but if there are singular values that
are much smaller than the rest, gradient descent can take very long to converge. Large condition
numbers are common in practical applications: the feature matrix in the temperature-prediction
example has condition number around 103 (see Figure 10). If one cares about finding the least-
squares solution fast, the method of choice should instead be conjugate gradients method, an
optimization technique designed to achieve fast convergence. However, what we really care about
is achieving a good estimate. It may therefore be of interest to evaluate the estimate produced by
gradient descent for a fixed value of k, before convergence occurs. This technique is known as early
stopping in the machine-learning literature. The following theorem provides a characterization of
the estimate obtained via early stopping for data generated according to an additive generative
model.

Theorem 6.4 (Gradient-descent coefficient estimate). If the training data follow the additive
model in Eq. (68), then the coefficient estimate obtained by running gradient descent initialized at
the origin until the kth iteration with a constant step size α > 0 is a Gaussian random vector with
mean

βbias :=

p∑
j=1

(
1− (1− αs2j)k

)
〈uj, βtrue〉uj (160)
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Figure 18: The left image is a scatterplot of the gradient-descent estimate corresponding to differ-
ent noise realizations of the example in Figure 17. The right image is a heatmap of the distribution
of the estimate, which follows a Gaussian distribution with the mean and covariance matrix de-
rived in Theorem 6.4. Each row corresponds to a different choice of the number of iterations k,
illustrating the corresponding bias-variance tradeoff.
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and covariance matrix

ΣGD := σ2U diag p
j=1

(
(1− (1− αs2j)k)2

s2j

)
UT , (161)

where diag p
j=1 (di) denotes a diagonal matrix with entries d1, . . . , dp.

Proof. To ease notation, let τj := 1− αs2j . By Theorem 6.1

β̃(k) = U diag p
j=1

(
1− τ kj
sj

)
V T
(
XTβtrue + z̃train

)
(162)

= U diag p
j=1

(
1− τ kj
sj

)
V T
(
V SUTβtrue + z̃train

)
(163)

= U diag p
j=1

(
1− τ kj

)
UTβtrue + U diag p

j=1

(
1− τ kj
sj

)
V T z̃train. (164)

The result then follows from Theorem 8.6 in the PCA lecture notes.

As shown in Figure 17 the first iterates of gradient descent make fast progress along the directions
of left singular vectors of the feature matrix corresponding to large singular values. Afterwards,
the iterates move along the directions corresponding to the smaller singular values, until they
converge to the OLS estimate. As a result, if we stop at iteration k, the expected value of the
iterate is not centered at βtrue; it is closer to the point at which gradient descent is initialized (the
origin, in our analysis and examples). This produces a bias equal to

∑p
j=1(1− αs2j)k 〈uj, βtrue〉uj

in the estimate, which decreases as k increases. As in the case of ridge regression, the reduction
in bias is counterbalanced by an increase of the variance. Because the algorithm mostly makes
progress in the direction of the singular vectors corresponding to the largest singular values, there
is not as much variance in the direction of those corresponding to the small singular values. This
is good news, because that is the source of most of the variance in the OLS estimate. At iteration
k, the variance in the direction of the jth left singular vector equals

σ2(1− (1− αs2j)k)2
s2j

. (165)

For small k and small αsj, we have (1−αs2j)k ≈ 1−kαs2j (because for x ≈ 0 (1−x)k ≈ 1−kx), so
the variance of the corresponding component approximately equals α2k2σ2. Then, as k increases,
the variance also increases, eventually approaching σ2/s2j , as in OLS. The ideal value of k should
optimize the bias-variance tradeoff, as in ridge regression. Figure 18 shows the distribution of the
gradient-descent estimator for a simple example when k varies. For large k, the estimate resembles
the OLS estimate: it is almost centered at the true coefficients, but it varies wildly in the direction
of the singular vectors associated with small singular values. As k decreases the variance along
those directions also decreases, but the center of the distribution strays farther and farther away
from the true coefficients.
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Figure 19: The left graph shows the training and validation errors of the gradient-descent estimator
applied to the temperature-prediction task as the iterations progress. The number of training data
is fixed to n = 200 training data. The right figure shows the values of the corresponding model
coefficients. All coefficients are depicted in light blue except the three that have the largest
magnitudes for large n, which correspond to the stations of Moose in Wyoming, and Montrose
and La Junta in Colorado.

Example 6.5 (Temperature prediction via gradient descent with early stopping). We apply gradi-
ent descent to minimize the least-squares cost function for the data in Example 2.5. The coefficients
are initialized to be zero. The number of iterations of gradient descent are chosen by minimizing
the error over a separate validation set. In addition, we test the model on data from 2016. The
left image in Figure 19 shows training and validation errors of the gradient-descent estimator for
n = 200 training data as the iterations progress. Both initially decrease, but at one point the
validation error starts increasing due to overfitting. The right image shows that the coefficients
amplitudes increase until they reach the value of the least-squares estimator. The minimum vali-
dation error is reached when the coefficients are still not too large. Figure 20 shows the number
of iterations selected for different numbers of training data based on validation error. Figure 21
shows the corresponding coefficients and compares them the OLS coefficients. The effect achieved
by early stopping is reminiscent of ridge regression. Figure 22 compares the error obtained by
the estimator on training and test data compared to least squares and ridge regression. The
method avoids the overfitting issues of least squares when the number of training data is small,
and achieves very similar results to ridge regression. 4
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Figure 20: Results of selecting the number of iterations via cross-validation for the experiment
described in Example 6.5. The image shows the number of iterations at which the gradient-descent
estimator achieves minimum validation error for different numbers of training data. The maximum
number of iterations was limited to 105.
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Figure 21: Coefficients of the least-squares (left) and gradient-descent (right) estimators for the
experiment described in Example 6.5 for different values of training data. All coefficients are de-
picted in light blue except the three that have the largest magnitudes for large n, which correspond
to the stations of Moose in Wyoming, and Montrose and La Junta in Colorado.
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Figure 22: Performance of the gradient-descent estimator for the experiment described in Exam-
ple 6.5. The left image compares the method to the least-squares estimator on the training and
test sets, and on the 2016 data, for different number of training data. The right image shows the
same comparison to the ridge-regression estimator.
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