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Motivating applications

Gaussian random variables

Randomized dimensionality reduction

Compressed sensing



Dimensionality reduction

Data with a large number of features can be difficult to analyze

Data modeled as vectors in Rp (p very large)

Aim: Reduce dimensionality of representation

SVD provides optimal subspace for dimensionality reduction

Problem: Computationally expensive + must see dataset beforehand

What if we compute inner products with some random vectors?



Dimensionality reduction for visualization

Motivation: Visualize high-dimensional features projected onto 2D or 3D

Example:

Seeds from three different varieties of wheat: Kama, Rosa and Canadian

Features:
I Area
I Perimeter
I Compactness
I Length of kernel
I Width of kernel
I Asymmetry coefficient
I Length of kernel groove



Projection onto two first PDs
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Projection onto two random vectors
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Projection onto two random vectors
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Projection onto two random vectors
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Compressed sensing in MRI

Important goal in MRI: reduce scan time

Can be achieved by measuring less frequency coefficients

What happens if we undersample in the Fourier domain?



MR image
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Fourier coefficients
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x2 regular undersampling
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Recovered image
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x2 random undersampling
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Recovered image
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Motivating applications

Gaussian random variables

Randomized dimensionality reduction

Compressed sensing



Gaussian random variables

The pdf of a Gaussian or normal random variable with mean µ and
standard deviation σ is given by

fX (x) =
1√
2πσ

e−
(x−µ)2

2σ2

A standard Gaussian has µ := 0 and σ := 1



Gaussian random variables
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Linear transformation of Gaussian

If x is a Gaussian random variable with mean µ and standard deviation σ,
then for any a, b ∈ R

y := ax + b

is a Gaussian random variable with mean aµ+ b and standard deviation
|a|σ



Proof

Let a > 0 (proof for a < 0 is very similar), to

Fy (y)

= P (y ≤ y)

= P (ax + b ≤ y)

= P
(

x ≤ y − b

a

)
=

∫ y−b
a

−∞

1√
2πσ

e−
(x−µ)2

2σ2 dx

=

∫ y

−∞

1√
2πaσ

e−
(w−aµ−b)2

2a2σ2 dw change of variables w = ax + b

Differentiating with respect to y :

fy (y) =
1√
2πaσ

e−
(w−aµ−b)2

2a2σ2
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Gaussian random vector

A Gaussian random vector ~x is a random vector with joint pdf

f~x (~x) =
1√

(2π)n |Σ|
exp
(
−1
2

(~x − ~µ)T Σ−1 (~x − ~µ)

)
where ~µ ∈ Rd is the mean and Σ ∈ Rd×d the covariance matrix

A standard Gaussian vector has ~µ := 0 and Σ := I



Uncorrelation implies independence

If the covariance matrix is diagonal,

Σ~x =


σ2

1 0 · · · 0
0 σ2

2 · · · 0
...

...
. . .

...
0 0 · · · σ2

d

 ,
the entries are independent



Proof

Σ−1
~x =


1
σ2

1
0 · · · 0

0 1
σ2

2
· · · 0

...
...

. . .
...

0 0 · · · 1
σ2
d



|Σ| =
d∏

i=1

σ2
i



Proof
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−1
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1√
(2π)σi
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(
−(~xi − µi )2

2σ2
i

)

=
d∏

i=1

f~xi (~xi )
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Linear transformations

Let ~x be a Gaussian random vector of dimension d with mean ~µ and
covariance matrix Σ

For any matrix A ∈ Rm×d and ~b ∈ Rm ~y = A~x + ~b is Gaussian with
mean A~µ+ ~b and covariance matrix AΣAT (as long as it is full rank)

This is why Fourier and wavelet coefficients of Gaussian noise are also
Gaussian noise



Subvectors are also Gaussian
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Audio data

4.0 4.1 4.2 4.3 4.4 4.5
Time (s)

7500

5000

2500

0

2500

5000

7500



DFT

4000 3000 2000 1000 0 1000 2000 3000 4000
Frequency (Hz)

10 3

10 2

10 1

100

101

102

103



Noisy image



Wavelet coefficients



Direction of iid standard Gaussian vectors

If the covariance matrix of a Gaussian vector ~x is I , then ~x is isotropic

It does not favor any direction

For any orthogonal matrix U~x has the same distribution, Gaussian
with mean

U~0 = ~0

and covariance matrix

UIUT = UUT = I
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Direction of iid standard Gaussian vectors

If the covariance matrix of a Gaussian vector ~x is I , then ~x is isotropic

It does not favor any direction

For any orthogonal matrix U~x has the same distribution, Gaussian
with mean U~0 = ~0 and covariance matrix UIUT = UUT = I



Magnitude of iid standard Gaussian vectors

In low dimensions joint pdf is mostly concentrated around the origin

What about in high dimensions?



`2 norm of samples
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χ2 random variable

χ2 (chi squared) random variable with d degrees of freedom

y :=
d∑

i=1

x2
i

where x1, . . . , xd are standard Gaussians

Equal to squared `2 norm of d-dimensional standard Gaussian vector



Squared `2 norm divided by d
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Variance
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= 3d + d(d − 1) 4th moment of standard Gaussian equals 3
= d(d + 2)



Variance

E
((
||~x||22

)2
)

= E

( d∑
i=1

~x[i ]2

)2

= E

 d∑
i=1

d∑
j=1

~x[i ]2~x[j ]2


=

d∑
i=1

d∑
j=1

E
(
~x[i ]2~x[j ]2

)
=

d∑
i=1

E
(
~x[i ]4

)
+ 2

d−1∑
i=1

d∑
j=i+1

E
(
~x[i ]2

)
E
(
~x[j ]2

)
= 3d + d(d − 1) 4th moment of standard Gaussian equals 3
= d(d + 2)



Variance

E
((
||~x||22

)2
)

= E

( d∑
i=1

~x[i ]2

)2
= E

 d∑
i=1

d∑
j=1

~x[i ]2~x[j ]2



=
d∑

i=1

d∑
j=1

E
(
~x[i ]2~x[j ]2

)
=

d∑
i=1

E
(
~x[i ]4

)
+ 2

d−1∑
i=1

d∑
j=i+1

E
(
~x[i ]2

)
E
(
~x[j ]2

)
= 3d + d(d − 1) 4th moment of standard Gaussian equals 3
= d(d + 2)



Variance

E
((
||~x||22

)2
)

= E

( d∑
i=1

~x[i ]2

)2
= E

 d∑
i=1

d∑
j=1

~x[i ]2~x[j ]2


=

d∑
i=1

d∑
j=1

E
(
~x[i ]2~x[j ]2

)

=
d∑

i=1

E
(
~x[i ]4

)
+ 2

d−1∑
i=1

d∑
j=i+1

E
(
~x[i ]2

)
E
(
~x[j ]2

)
= 3d + d(d − 1) 4th moment of standard Gaussian equals 3
= d(d + 2)



Variance

E
((
||~x||22

)2
)

= E

( d∑
i=1

~x[i ]2

)2
= E

 d∑
i=1

d∑
j=1

~x[i ]2~x[j ]2


=

d∑
i=1

d∑
j=1

E
(
~x[i ]2~x[j ]2

)
=

d∑
i=1

E
(
~x[i ]4

)
+ 2

d−1∑
i=1

d∑
j=i+1

E
(
~x[i ]2

)
E
(
~x[j ]2

)

= 3d + d(d − 1) 4th moment of standard Gaussian equals 3
= d(d + 2)



Variance

E
((
||~x||22

)2
)

= E

( d∑
i=1

~x[i ]2

)2
= E

 d∑
i=1

d∑
j=1

~x[i ]2~x[j ]2


=

d∑
i=1

d∑
j=1

E
(
~x[i ]2~x[j ]2

)
=

d∑
i=1

E
(
~x[i ]4

)
+ 2

d−1∑
i=1

d∑
j=i+1

E
(
~x[i ]2

)
E
(
~x[j ]2

)
= 3d + d(d − 1) 4th moment of standard Gaussian equals 3

= d(d + 2)



Variance

E
((
||~x||22

)2
)

= E

( d∑
i=1

~x[i ]2

)2
= E

 d∑
i=1

d∑
j=1

~x[i ]2~x[j ]2


=

d∑
i=1

d∑
j=1

E
(
~x[i ]2~x[j ]2

)
=

d∑
i=1

E
(
~x[i ]4

)
+ 2

d−1∑
i=1

d∑
j=i+1

E
(
~x[i ]2

)
E
(
~x[j ]2

)
= 3d + d(d − 1) 4th moment of standard Gaussian equals 3
= d(d + 2)



Variance

Var
(
||~x||22

)
= E

((
||~x||22

)2
)
− E

(
||~x||22

)2

= d(d + 2)− d2 = 2d

Relative standard deviation around mean scales as
√

2/d

Geometrically, probability density concentrates close to surface of a
sphere with radius

√
d



Non-asymptotic tail bound

Let ~x be an iid standard Gaussian random vector of dimension d

For any ε > 0

P
(
d (1− ε) < ||~x||22 < d (1 + ε)

)
≥ 1− 2

dε2



Markov’s inequality

Let x be a nonnegative random variable

For any positive constant a > 0,

P (x ≥ a) ≤ E (x)

a



Proof

Define the indicator variable 1x≥a

x− a 1x≥a ≥ 0

E (x) ≥ aE (1x≥a) = aP (x ≥ a)
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Chebyshev bound

Let y := ||~x||22,

P (|y − d | ≥ dε)

= P
(

(y − E (y))2 ≥ d2ε2
)

≤
E
(

(y − E (y))2
)

d2ε2
by Markov’s inequality

=
Var (y)

d2ε2

=
2
dε2
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Non-asymptotic Chernoff tail bound

Let ~x be an iid standard Gaussian random vector of dimension d

For any ε > 0

P
(
d (1− ε) < ||~x||22 < d (1 + ε)

)
≥ 1− 2 exp

(
−dε2

8

)



Proof

Let y := ||~x||22. The result is implied by

P (y > d (1 + ε)) ≤ exp
(
−dε2

8

)

P (y < d (1− ε)) ≤ exp
(
−dε2

8

)



Proof

Fix t > 0

P (y > a)

= P (exp (ty) > exp (at))

≤ exp (−at) E (exp (ty)) by Markov’s inequality

≤ exp (−at) E

(
exp

(
d∑

i=1

txi
2

))

≤ exp (−at)
d∏

i=1

E
(
exp
(
txi

2)) by independence of x1, . . . , xd
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E
(
exp
(
txi

2)) by independence of x1, . . . , xd



Proof

Lemma (by direct integration)

E
(
exp
(
tx2)) =

1√
1− 2t

Equivalent to controlling higher-order moments since

E
(
exp
(
tx2)) = E

( ∞∑
i=0

(
tx2)i
i !

)

=
∞∑
i=0

E
(
t i
(
x2i))

i !
.



Proof

Fix t > 0

P (y > a) ≤ exp (−at)
d∏

i=1

E
(
exp
(
txi

2))
=

exp (−at)

(1− 2t)
d
2



Proof

Setting a := d (1 + ε) and

t :=
1
2
− 1

2 (1 + ε)
,

we conclude

P (y > d (1 + ε)) ≤ (1 + ε)d 2 exp
(
−dε

2

)
≤ exp

(
−dε2

8

)



Projection onto a fixed subspace

Probability density is isotropic and has variance d

Projection onto fixed k-dimensional subspace should
capture fraction of variance equal to k/d

Variance of projection should be k



Projection onto a fixed subspace

Let S be a k-dimensional subspace of Rd and ~x a d-dimensional
standard Gaussian vector

PS (~x) = UUT~x is not a Gaussian vector

Covariance:

ΣPS (~x) = UUTΣ~xUU
T

= UUT

Not full rank
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Projection onto a fixed subspace

Coefficients UT~x are a Gaussian vector with covariance

ΣUT~x = UTΣ~xU = UTU = I

We have

||PS (~x)||22 = (UUT~x)TUUT~x

=
∣∣∣∣∣∣UT~x

∣∣∣∣∣∣2
2

For any ε > 0

P
(
k (1− ε) < ||PS (~x)||22 < k (1 + ε)

)
≥ 1− 2 exp

(
−kε2

8

)
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Linear regression

To analyze the performance of the least-squares estimator we assume a
linear model with additive iid Gaussian noise

~ytrain := Xtrain~βtrue + ~ztrain

The LS estimator equals

~βLS := argmin
~β
‖~ytrain − Xtrain~β‖2



Training error

The training error is the projection of the noise onto the orthogonal
complement of the column space of Xtrain

~ytrain − ~yLS = Pcol(Xtrain)⊥
~ztrain

Dimension of orthogonal complement of col(Xtrain) equals n − p

Training RMSE :=

√
||~ytrain − ~yLS||22

n

≈ σ
√

1− p

n



Temperature prediction via linear regression
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Motivating applications

Gaussian random variables

Randomized dimensionality reduction

Compressed sensing



Randomized linear maps

We use Gaussian matrices as randomized linear maps from Rd to Rk ,
k < d

Each entry is sampled independently from standard Gaussian

Question: Do we preserve distances between points in set?

Equivalently, are any fixed vectors in the null space?



Fixed vector

Let A be a k × d matrix with iid standard Gaussian entries

If ~v ∈ Rd is a deterministic vector with unit `2 norm, then A~v is a
k-dimensional standard Gaussian vector

Proof:

(A~v) [i ], 1 ≤ i ≤ k is Gaussian with mean zero and variance

Var
(
AT
i ,:~v
)

= ~vTΣAi,:
~v

= ~vT I~v

= ||~v ||22 = 1

Ai ,:, 1 ≤ i ≤ k are all independent
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Non-asymptotic Chernoff tail bound

Let ~x be an iid standard Gaussian random vector of dimension k

For any ε > 0

P
(
k (1− ε) < ||~x||22 < k (1 + ε)

)
≥ 1− 2 exp

(
−kε2

8

)



Fixed vector

Let A be a k × d matrix with iid standard Gaussian entries

For any ~v ∈ Rd with unit norm and any ε ∈ (0, 1)

√
1− ε ≤

∣∣∣∣∣∣∣∣ 1√
k
A~v
∣∣∣∣∣∣∣∣

2
≤
√
1 + ε

with probability at least 1− 2 exp
(
−kε2/8

)



Distance between two vectors

The result implies that if we fix two vectors ~x1 and ~x2
and define ~y := ~x2 − ~x1 then

√
1− ε ||y ||2 ≤

∣∣∣∣∣∣∣∣ 1√
k
Ay

∣∣∣∣∣∣∣∣
2
≤
√
1 + ε ||y ||2

with high probability (just set ~v := ~y/ ||y ||2)

What about distances between a set of vectors?



Johnson-Lindenstrauss lemma

Let A be a k × d matrix with iid standard Gaussian entries

Let ~x1, . . . , ~xp ∈ Rd be any fixed set of p deterministic vectors

For any pair ~xi , ~xj and any ε ∈ (0, 1)

(1− ε) ||~xi − ~xj ||22 ≤
∣∣∣∣∣∣∣∣ 1√

k
A~xi −

1√
k
A~xj

∣∣∣∣∣∣∣∣2
2
≤ (1 + ε) ||~xi − ~xj ||22

with probability at least 1
p as long as

k ≥ 16 log (p)

ε2

No dependence on d !
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Proof

Aim: Control action of A the normalized differences

~vij :=
~xi − ~xj
||~xi − ~xj ||2

Our event of interest is the intersection of the events

Eij =
{
k (1− ε) < ||A~vij ||22 < k (1 + ε)

}
1 ≤ i < p, i < j ≤ p

Is it equal to
∏

i ,j Eij?
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Fixed vector

Let A be a k × d matrix with iid standard Gaussian entries

For any ~v ∈ Rd with unit norm and any ε ∈ (0, 1)

√
1− ε ≤

∣∣∣∣∣∣∣∣ 1√
k
A~v
∣∣∣∣∣∣∣∣

2
≤
√
1 + ε

with probability at least 1− 2 exp
(
−kε2/8

)
This implies

P
(
Ecij
)
≤ 2

p2 if k ≥ 16 log (p)

ε2



Union bound

For any events S1, S2, . . . ,Sn in a probability space

P (∪iSi ) ≤
n∑

i=1

P (Si ) .



Proof

By the union bound
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= p (p − 1) /2
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Nearest-neighbor classification

Training set of points and labels {~x1, l1}, . . . , {~xn, ln}

To classify a new data point ~y ∈ Rd , find

i∗ := arg min
1≤i≤n

||~y − ~xi ||2 ,

and assign li∗ to ~y

Cost: O (dnp) to classify p new points



Nearest neighbors in random subspace

Use a k × d iid standard Gaussian matrix to project onto
k-dimensional space

Cost:
I dkn operations to project training set
I dkp operations to project test set
I knp to perform nearest-neighbor classification

Much faster!



Face recognition

Training set: 360 64× 64 images from 40 different subjects (9 each)

Test set: 1 new image from each subject

We model each image as a vector in R4096 (d = 4096)

To classify we:

1. Project onto random a k-dimensional subspace

2. Apply nearest-neighbor classification using the `2-norm distance in Rk



Performance

0 20 40 60 80 100 120 140 160 180 200

0

10

20

30

40

5

10

15

25

30

35

Dimension

Er
ro

rs

Average
Maximum
Minimum



Nearest neighbor in R50

Test image

Projection

Closest
projection

Corresponding
image



Motivating applications

Gaussian random variables

Randomized dimensionality reduction

Compressed sensing



Compressed sensing

Goal: Recovering signals from small number of data

Arbitrary vector of dimension d cannot be recovered from m < d
linear measurements

However, signals of interest are highly structured

For example, images are sparse in wavelet basis

If signal is parametrized by s < m parameters, recovery may be possible

We focus on simplified problem: recovering sparse vectors



MR image
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Fourier coefficients

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0
k2 (1/cm)

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0
k 1

 (1
/c

m
)

10 6

10 5

10 4

10 3

10 2



x2 regular undersampling
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Recovered image
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x2 random undersampling
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DFT regular undersampling



DFT regular undersampling
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DFT regular undersampling
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DFT random undersampling
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DFT random undersampling
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Gaussian measurements



Gaussian measurements
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Restricted-isometry property

Different sparse vectors should never produce similar data

If two s-sparse vectors ~x1, ~x2 are far, then A~x1, A~x2 should be far

The measurement operator should preserve distances (be an isometry)
when restricted to act upon sparse vectors



Restricted-isometry property

A satisfies the restricted isometry property (RIP) with constant ε if

(1− ε) ||~x ||2 ≤ ||A~x ||2 ≤ (1 + ε) ||~x ||2

for any s-sparse vector ~x

If A satisfies the RIP for a sparsity level 2s then for any s-sparse ~x1, ~x2

||~x2 − ~x1||2 = ||A (~x1 − ~x2)||2
≥ (1− ε) ||~x2 − ~x1||2
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Restricted-isometry property

Deterministic matrices tend to not satisfy the RIP

It is NP-hard to check if spark or RIP hold

Random matrices satisfy RIP with high probability

We prove it for Gaussian iid matrices, ideas in proof for random Fourier
matrices are similar



Restricted-isometry property for Gaussian matrices

Let A ∈ Rm×d be a random matrix with iid standard Gaussian entries

1√
m

A satisfies the RIP for a constant ε with probability 1− C2
d as long as

m ≥ C1s

ε2
log
(
d

s

)
for two fixed constants C1,C2 > 0

Measurements proportional to sparsity (up to log factor)



Restricted-isometry property for Gaussian matrices

Let A ∈ Rm×d be a random matrix with iid standard Gaussian entries

1√
m

A satisfies the RIP for a constant ε with probability 1− C2
d as long as

m ≥ C1s

ε2
log
(
d

s

)
for two fixed constants C1,C2 > 0

Measurements proportional to sparsity (up to log factor)



Singular values of submatrix

Fix subset of s indices T ⊂ {1, . . . , d}

Any matrix A ∈ Rm×d , m < d , satisfies

σs(AT ) ≤ ||A~x ||2 ≤ σ1(AT )

for all vectors ~x ∈ Rd with support restricted to T

AT is the m × s submatrix of A containing columns indexed by T

σ1(AT ) and σs(AT ) are the largest and smallest singular value of AT



Proof

For any vector ~x ∈ Rd with support restricted to T

A~x = AT~xT

where ~xT ∈ Rs is the subvector of ~x that contains its nonzero entries



Proof strategy

Control singular values for fixed submatrix

Apply union bound to extend bounds to all submatrices



Singular values of m × s matrix, s = 100
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Singular values of m × s matrix, s = 1000
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Singular values of a Gaussian matrix

For large enough m

M ≈ U
(√

m I
)
V T =

√
mUV T ,

Standard Gaussian vectors in high dimensions are almost orthogonal



Singular values of a Gaussian matrix

Let M be a m × s matrix with iid standard Gaussian entries such that
m > s

For any fixed ε > 0, the singular values of M satisfy√
m (1− ε) ≤ σs ≤ σ1 ≤

√
m (1 + ε)

with probability at least 1− 2
(12
ε

)s exp(−mε2

32

)



Union bound

For any events S1, S2, . . . ,Sn in a probability space

P (∪iSi ) ≤
n∑

i=1

P (Si ) .



Proof

Number of different supports of size s

(
d

s

)
≤
(
ed

s

)s

By the union bound

√
1− ε ||~x ||2 ≤

1√
m
||A~x ||2 ≤

√
1 + ε ||~x ||2

holds for any s-sparse vector ~x with probability at least

1− 2
(
ed

s

)s (12
ε

)s

exp
(
−mε2

32

)
= 1− exp

(
log 2 + s + s log

(
d

s

)
+ s log

(
12
ε

)
− mε2

2

)
≤ 1− C2

d
as long as m ≥ C1s

ε2
log
(
d

s
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Singular values of a Gaussian matrix

Let M be a m × s matrix with iid standard Gaussian entries such that
m > s

For any fixed ε > 0, the singular values of M satisfy√
m (1− ε) ≤ σs ≤ σ1 ≤

√
m (1 + ε)

with probability at least 1− 2
(12
ε

)s exp(−mε2

32

)
How do we prove this?



More of the same?

We need to prove that for any vector ~v of the s-dimensional sphere
Ss−1 in Rs

√
m (1− ε) < ||M~v ||2 <

√
m (1 + ε)

Can we prove it for a fixed vector and use the union bound?



Proof strategy

1. Consider spread-out finite subset Nε ⊂ Ss−1 such that any point in
Ss−1 is close to a point in Nε

2. Prove bound on Nε

3. Show that bounds hold for all points that are close to Nε



ε-net

An ε-net of a set X ⊆ Rs is a subset Nε ⊆ X such that for every vector
~x ∈ X there exists ~y ∈ Nε for which

||~x − ~y ||2 ≤ ε.

The covering number N (X , ε) of a set X at scale ε is the minimal
cardinality of an ε-net of X



ε-net

ǫ



Covering number of a sphere

The covering number of the s-dimensional sphere Ss−1 at scale ε satisfies

N
(
Ss−1, ε

)
≤
(
2 + ε

ε

)s

≤
(
3
ε

)s



Covering number of a sphere

I Initialize Nε to the empty set
I Choose a point ~x ∈ Ss−1 such that

||~x − ~y ||2 > ε for any ~y ∈ Nε

I Add ~x to Nε until there are no points in Ss−1 that are ε away from
any point in Nε



Covering number of a sphere

ǫ/2

1 + ǫ/2



Covering number of a sphere

Vol
(
Bs1+ε/2

(
~0
))
≥ Vol

(
∪~x∈NεBsε/2 (~x)

)

= |Nε|Vol
(
Bsε/2

(
~0
))
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Proof

1. We prove the bounds

n (1− ε2) < ||M~v ||22 < n (1 + ε2)

where ε2 := ε/2 on an ε1 := ε/4 net of the sphere

2. We show that by the triangle inequality, this implies that the bounds
hold on all the sphere



Fixed vector

Let M be a a× b matrix with iid standard Gaussian entries

For any ~v ∈ Rb with unit norm and any ε ∈ (0, 1)√
a (1− ε) ≤ ||M~v ||2 ≤

√
a (1 + ε)

with probability at least 1− 2 exp
(
−aε2/8

)



Bound on the ε1-net

We define the event

E~v ,ε2 :=
{
m (1− ε2) ||~v ||22 ≤ ||M~v ||22 ≤ m (1 + ε2) ||~v ||22

}

P
(
∪~v∈Nε1E

c
~v ,ε2

)

≤
∑
~v∈Nε1

P
(
Ec~v ,ε2

)
≤ |Nε1 |P

(
Ec~v ,ε2

)
≤ 2

(
12
ε

)s

exp
(
−mε2

32
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Upper bound on the sphere

Let ~x ∈ Ss−1

There exists ~v ∈ N (X , ε1) such that ||~x − ~v ||2 ≤ ε/4

||M~x ||2

≤ ||M~v ||2 + ||M (~x − ~v)||2
≤
√
m
(
1 +

ε

2

)
+ ||M (~x − ~v)||2 assuming ∪~v∈Nε1E

c
~v ,ε2

holds

≤
√
m
(
1 +

ε

2

)
+ σ1 ||~x − ~v ||2

≤
√
m
(
1 +

ε

2

)
+

σ1ε
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Upper bound on the sphere

σ1 ≤
√
m
(
1 +

ε

2

)
+

σ1ε

4

σ1 ≤
√
m

(
1 + ε/2
1− ε/4

)
=
√
m

(
1 + ε− ε (1− ε)

4− ε

)
≤
√
m (1 + ε)



Lower bound on the sphere
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