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Motivating applications



Dimensionality reduction

Data with a large number of features can be difficult to analyze
Data modeled as vectors in RP (p very large)

Aim: Reduce dimensionality of representation

SVD provides optimal subspace for dimensionality reduction
Problem: Computationally expensive + must see dataset beforehand

What if we compute inner products with some random vectors?



Dimensionality reduction for visualization

Motivation: Visualize high-dimensional features projected onto 2D or 3D
Example:
Seeds from three different varieties of wheat: Kama, Rosa and Canadian

Features:

> Area

» Perimeter

» Compactness

» Length of kernel

» Width of kernel

» Asymmetry coefficient

» Length of kernel groove



Projection onto two first PDs
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Projection onto two random vectors
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Projection onto two random vectors

2.0

1.5 1
1.0 A
0.5 -
0.0
—0.5 1
—1.0 A
-1.5
—2.0

o * oS %%
mp RN
< Aol . o |l.'n :;a%&

-2.5 T
—-2.5 -2

.0-15-1.0-05 0.0 05 1.0 15 2.0



Projection onto two random vectors
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Compressed sensing in MRI

Important goal in MRI: reduce scan time
Can be achieved by measuring less frequency coefficients

What happens if we undersample in the Fourier domain?



MR image
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Fourier coefficients
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x2 regular undersampling
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Recovered image
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x2 random undersampling
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Recovered image
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Gaussian random variables



Gaussian random variables

The pdf of a Gaussian or normal random variable with mean u and
standard deviation o is given by

1 (x=p)?

e 202

fx (X) =

2mo

A standard Gaussian has 4 :=0and o :=1



Gaussian random variables
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Linear transformation of Gaussian

If x is a Gaussian random variable with mean p and standard deviation o,
then for any a,b € R

y:=ax-+b

is a Gaussian random variable with mean au + b and standard deviation
ElKy



Proof

Let a > 0 (proof for a < 0 is very similar), to

Fy (y)



Proof

Let a > 0 (proof for a < 0 is very similar), to

Fy(y)=P(y<y)
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Let a > 0 (proof for a < 0 is very similar), to



Proof

Let a > 0 (proof for a < 0 is very similar), to




Proof

Let a > 0 (proof for a < 0 is very similar), to

Fy(y) =Py
P (ax
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Proof

Let a > 0 (proof for a < 0 is very similar), to

Fy(y)=P(y<y)
P(ax+b<y
-P< )
y—
:/ dx
27m
/ _ (w—ap—b)
= e 22252
_oo V2Tao

dW

change of variables w = ax + b



Proof

Let a > 0 (proof for a < 0 is very similar), to

1 (x—p)?
a _ (x=p
/ e 202 dx
— o0 210

y 1 _ (w—ap—b)? )
= / e 222 dw change of variables w = ax + b
—oo V2mao

Differentiating with respect to y:




Gaussian random vector

A Gaussian random vector X is a random vector with joint pdf

(R =t ep (-t )T (i
£ = e (5T E - )

where i € R? is the mean and ¥ € R9%9 the covariance matrix

A standard Gaussian vector has ji :=0 and ¥ :=/



Uncorrelation implies independence

If the covariance matrix is diagonal,

0% 0
0 o2
Y, — 2
0 O

the entries are independent



Proof

o qu‘ =

qu‘ = O

Q.
an™



Proof



Proof




Proof




Proof




Linear transformations

Let X be a Gaussian random vector of dimension d with mean /i and
covariance matrix X

—

For any matrix A € R™*9 and beRM y = AX+ b is Gaussian with
mean Aji + b and covariance matrix AXAT (as long as it is full rank)

This is why Fourier and wavelet coefficients of Gaussian noise are also
Gaussian noise



Subvectors are also Gaussian




Audio data
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Noisy image




Wavelet coefficients




Direction of iid standard Gaussian vectors

If the covariance matrix of a Gaussian vector X is /, then X is isotropic
It does not favor any direction

For any orthogonal matrix UX has the same distribution, Gaussian
with mean and covariance matrix



Direction of iid standard Gaussian vectors

If the covariance matrix of a Gaussian vector X is /, then X is isotropic
It does not favor any direction

For any orthogonal matrix UX has the same distribution, Gaussian
with mean U0 = 0 and covariance matrix



Direction of iid standard Gaussian vectors

If the covariance matrix of a Gaussian vector X is /, then X is isotropic
It does not favor any direction

For any orthogonal matrix UX has the same distribution, Gaussian
with mean U0 = 0 and covariance matrix UIUT = UUT = |



Magnitude of iid standard Gaussian vectors

In low dimensions joint pdf is mostly concentrated around the origin

What about in high dimensions?



¢y norm of samples

£> norm of samples
=




Y2 random variable

x? (chi squared) random variable with d degrees of freedom

d
o 2
y = E X;
i=1
where x1, ..., x4 are standard Gaussians

Equal to squared ¢> norm of d-dimensional standard Gaussian vector



Squared ¢, norm divided by d
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Mean

B (K1)



Mean

E(IK3) =E (izmz)

i=1



Mean

E(IK3) =E (i 12)

i=1
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Mean

E(IK3) =E (i 12)

i=1
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Variance

5 ((1x12)°)






Variance
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Variance

5 ((1x12)°)
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Variance

d
E((ZX[F )
d d
E (ZZ?[ ]”L/]Z)
e
Z (X[1P<00°)
B d-1 d
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Variance

e
=2 >_E(IPSUP)
i=1 j=1
d d-1 d
:Z (K1Y +2) Y BT E (<[T?)
i=1 i=1 j=i4+1

=3d +d(d —1) 4th moment of standard Gaussian equals 3



Variance

e
=2 >_E(IPSUP)
i=1 j=1
d d-1 d
Z (K1) +2) > EXIT)E(XIP)
= i=1 j=i4+1

=3d +d(d —1) 4th moment of standard Gaussian equals 3
=d(d+2)



Variance

var (1%18) = & ((1418)”) & (1<18)°

=d(d+2)—d*=2d

Relative standard deviation around mean scales as \/2/d

Geometrically, probability density concentrates close to surface of a
sphere with radius v/d



Non-asymptotic tail bound

Let X be an iid standard Gaussian random vector of dimension d

For any e > 0

2

P(d1-e<IfE<d(1+e) >1-—



Markov's inequality

Let x be a nonnegative random variable

For any positive constant a > 0,

E(x)

P(x>a) <
(x2a) < =




Proof

Define the indicator variable 1>,

X—aly>32>0



Proof

Define the indicator variable 1>,

Xx—aly>3>0

E(x) > aE(1x>5) = aP (x> a)



Chebyshev bound

)
Let y == [[X][3,

P (ly — d| > de)



Chebyshev bound

)
Let y == [[X][3,

P(y—dl > de) =P ((y - E(y)’ = &%)



Chebyshev bound

)
Let y == [[X][3,

P(y—dl > de) =P ((y - E(y)’ = &%)
E(y-EW)Y)

< 7222 by Markov's inequality




Chebyshev bound

)
Let y == [[X][3,

P(y—dl > de) =P ((y - E(y)’ = &%)
E(y-EW)Y)

d2e?
Var (y)
T 422

< by Markov's inequality




Chebyshev bound

)
Let y == [[X][3,

P(y—dl > de) =P ((y - E(y)’ = &%)
E(y-EW)Y)

d2e?
_ Var (y)
 d?e?

B 2

T de?

< by Markov's inequality



Non-asymptotic Chernoff tail bound

Let X be an iid standard Gaussian random vector of dimension d

For any ¢ > 0

2
P(d1-<RE<d(1+0)>1-2e <_d8>



Proof

Lety = H)?||§ The result is implied by

Ply>d(1+0)<exp (—



Proof

Fix t >0

P(y > a)



Proof

Fix t >0

P(y > a) = P (exp(ty) > exp(at))



Proof

Fix t >0

P(y > a) = P (exp(ty) > exp(at))
< exp(—at) E (exp (ty)) by Markov's inequality



Proof

Fix t >0

P(y > a) = P (exp(ty) > exp(at))
< exp(—at) E (exp (ty)) by Markov's inequality
d

<exp(—at) E (exp tx;2)>
i=1



Proof

Fix t >0

P(y > a) = P (exp(ty) > exp(at))
< exp(—at) E (exp (ty)) by Markov's inequality

<exp(—at) E (exp (Z tx;2)>

d
< exp (—at) H E (exp (tx;z)) by independence of x1,...,Xq
i=1



Proof

Lemma (by direct integration)

1
Vv1-—2t

E (exp (txz)) =

Equivalent to controlling higher-order moments since




Proof

Fix t >0

d
P(y > a) < exp(—at) H E (exp (txiz))
i=1
_ exp (—at)

(1—2t)



Proof

Setting a := d (1 +¢) and

we conclude

Ply>d(1+6) < (1+e)2exp <_d€>

2
< exp (—dez)
- 8



Projection onto a fixed subspace

Probability density is isotropic and has variance d

Projection onto fixed k-dimensional subspace should
capture fraction of variance equal to k/d

Variance of projection should be k



Projection onto a fixed subspace

Let S be a k-dimensional subspace of RY and X a d-dimensional
standard Gaussian vector

Ps (X) = UUTX is not a Gaussian vector

Covariance:

Yps () = UUTEZUUT



Projection onto a fixed subspace

Let S be a k-dimensional subspace of RY and X a d-dimensional
standard Gaussian vector

Ps (X) = UUTX is not a Gaussian vector

Covariance:

Yps ) = UUTEzUUT
=uuT”



Projection onto a fixed subspace

Let S be a k-dimensional subspace of RY and X a d-dimensional
standard Gaussian vector

Ps (X) = UUTX is not a Gaussian vector

Covariance:

Yps ) = UUTEzUUT
=uuT”

Not full rank



Projection onto a fixed subspace

Coefficients UTX are a Gaussian vector with covariance

Yyurg=UTSU=UTU=1



Projection onto a fixed subspace

Coefficients UTX are a Gaussian vector with covariance
Tyrg=UT5U=UTU=1
We have
I1Ps ()3 = (UUT)TUUTx
= [Jum4[]
2




Projection onto a fixed subspace

Coefficients UTX are a Gaussian vector with covariance
Tyrg=UT5U=UTU=1
We have
I1Ps ()3 = (UUT)TUUTx
= [Jum4[]
2

For any ¢ > 0

ke?

P<k(1—6) <|IPs (®)II3 < k(1+6)) 2 1-2exp <_8)



Linear regression

To analyze the performance of the least-squares estimator we assume a
linear model with additive iid Gaussian noise

ytrain = Xtrainﬁtrue + Zirain
The LS estimator equals

ELS = arg m/éi,n H)_/:crain - Xtrain/g||2



Training error

The training error is the projection of the noise onto the orthogonal
complement of the column space of Xiyain

)Zcrain - )7LS = Pcol(Xtrain)J- Ztrain
Dimension of orthogonal complement of col(Xirain) equals n — p

||}7train - VLSH%
n

%01/178
n

Training RMSE :=



Temperature prediction via linear regression
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Randomized dimensionality reduction



Randomized linear maps

We use Gaussian matrices as randomized linear maps from RY to R,
k<d

Each entry is sampled independently from standard Gaussian
Question: Do we preserve distances between points in set?

Equivalently, are any fixed vectors in the null space?



Fixed vector

Let A be a kK x d matrix with iid standard Gaussian entries

If ¥ € R? is a deterministic vector with unit £5 norm, then AV is a
k-dimensional standard Gaussian vector



Fixed vector

Let A be a kK x d matrix with iid standard Gaussian entries

If ¥ € R? is a deterministic vector with unit £5 norm, then AV is a
k-dimensional standard Gaussian vector

Proof:
(AV)[i], 1 <i < k is Gaussian with mean zero and variance

Var (A7) = 77%a, 7



Fixed vector

Let A be a kK x d matrix with iid standard Gaussian entries

If ¥ € R? is a deterministic vector with unit £5 norm, then AV is a
k-dimensional standard Gaussian vector

Proof:
(AV)[i], 1 <i < k is Gaussian with mean zero and variance

Var (A,T\7> = VTZA.V:V'



Fixed vector

Let A be a kK x d matrix with iid standard Gaussian entries

If ¥ € R? is a deterministic vector with unit £5 norm, then AV is a
k-dimensional standard Gaussian vector

Proof:
(AV)[i], 1 <i < k is Gaussian with mean zero and variance

Var (A,T\7> = VTZA.V:V'

A;., 1 <<k are all independent



Non-asymptotic Chernoff tail bound

Let X be an iid standard Gaussian random vector of dimension k

For any ¢ > 0

ke
P k(1= < RIE < k(1+9) 21200 (-5 )



Fixed vector

Let A be a kK x d matrix with iid standard Gaussian entries

For any v € R? with unit norm and any ¢ € (0, 1)

—

v

<vl+e

2

1—€e<

1
—A
Iz

with probability at least 1 — 2 exp (—ke?/8)



Distance between two vectors

The result implies that if we fix two vectors X; and %
and define y := X, — xj then

1
¢1—e|y|rstfAyH < VITelyl,
k 2

with high probability (just set vV := y/||y||,)

What about distances between a set of vectors?



Johnson-Lindenstrauss lemma

Let A be a kK x d matrix with iid standard Gaussian entries
Let X1, ..., X, € RY be any fixed set of p deterministic vectors

For any pair X;,%; and any € € (0,1)

1P o2
(- 9l5 -5k < || as - Tag <+ 9lk- 1
with probability at least % as long as
k> 16|o§ (p)

€



Johnson-Lindenstrauss lemma

Let A be a kK x d matrix with iid standard Gaussian entries
Let X1, ..., X, € RY be any fixed set of p deterministic vectors

For any pair X;,%; and any € € (0,1)

1P o2
(- 9l5 -5k < || as - Tag <+ 9lk- 1
with probability at least % as long as
k> 16|o§ (p)

€

No dependence on d!



Proof

Aim: Control action of A the normalized differences

N
A AT

Our event of interest is the intersection of the events

G ={kl- <|AGIE<k(l+a} 1<i<p i<j<p



Proof

Aim: Control action of A the normalized differences

N
A AT

Our event of interest is the intersection of the events

G ={kl- <|AGIE<k(l+a} 1<i<p i<j<p

Is it equal to []; ; €57



Fixed vector

Let A be a kK x d matrix with iid standard Gaussian entries

For any v € R? with unit norm and any € € (0,1)

VvV1—-e< HAV <+V1+e€

with probability at least 1 — 2 exp (—k62/8)

This implies

if k> 16 log (p)

P(Es) < o itk O



Union bound

For any events S1,55,...,S, in a probability space

P (U,'S,') < i P (5,) .
i=1



Proof

By the union bound

)



Proof

By the union bound

P (ﬂ&) =1-P <U51>



Proof

By the union bound

P (ﬂ&) =1-P <U51>
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Proof

By the union bound

P (ﬂ&) =1-P <U51>

>1- P(&)
iJ

Number of events &;7?



Proof

By the union bound

P (ﬂa) =1-P <U51>

Number of events &7 (5) =p(p—1)/2



Proof

By the union bound

Number of events £;? (5)

>1-> P(&
i
-1 PP-1)
= 2
1
27
p
p(p—1)/2



Nearest-neighbor classification

Training set of points and labels {xi, h}, ..., {Xh, In}
To classify a new data point y € R?, find

. e o

" = arg min_ 1y — il
and assign ;< to ¥

Cost: O (dnp) to classify p new points



Nearest neighbors in random subspace

Use a k x d iid standard Gaussian matrix to project onto
k-dimensional space

Cost:
» dkn operations to project training set
» dkp operations to project test set

» knp to perform nearest-neighbor classification

Much faster!



Face recognition

Training set: 360 64 x 64 images from 40 different subjects (9 each)
Test set: 1 new image from each subject

We model each image as a vector in R*0% (d = 4096)

To classify we:

1. Project onto random a k-dimensional subspace

2. Apply nearest-neighbor classification using the ¢>-norm distance in R¥
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Compressed sensing



Compressed sensing

Goal: Recovering signals from small number of data

Arbitrary vector of dimension d cannot be recovered from m < d
linear measurements

However, signals of interest are highly structured
For example, images are sparse in wavelet basis
If signal is parametrized by s < m parameters, recovery may be possible

We focus on simplified problem: recovering sparse vectors
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Fourier coefficients
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x2 regular undersampling
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Recovered image
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x2 random undersampling
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Recovered image
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DFT regular undersampling




DFT regular undersampling
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DFT regular undersampling
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DFT random undersampling




DFT random undersampling
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DFT random undersampling

2.5

2.0 1

1.5

1.0 1

0.5 1

0.0 1

_05 T T T T T T
0 200 400 600 800 1000



Gaussian measurements




Gaussian measurements
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Restricted-isometry property

Different sparse vectors should never produce similar data
If two s-sparse vectors X1, X» are far, then Axy, AX should be far

The measurement operator should preserve distances (be an isometry)
when restricted to act upon sparse vectors



Restricted-isometry property

A satisfies the restricted isometry property (RIP) with constant e if
(1 =) [IX][, < [IAX]l; < (L +€)[Ix]],

for any s-sparse vector X
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12 = Xl



Restricted-isometry property

A satisfies the restricted isometry property (RIP) with constant e if
(1 =) [IX][, < [IAX]l; < (L +€)[Ix]],
for any s-sparse vector X
If A satisfies the RIP for a sparsity level 2s then for any s-sparse X1, X

)2 —xll, = [[AGG — %),
> (1—e) %2 —xll,



Restricted-isometry property

Deterministic matrices tend to not satisfy the RIP
It is NP-hard to check if spark or RIP hold
Random matrices satisfy RIP with high probability

We prove it for Gaussian iid matrices, ideas in proof for random Fourier
matrices are similar



Restricted-isometry property for Gaussian matrices

Let A € R™*9 be a random matrix with iid standard Gaussian entries

ﬁA satisfies the RIP for a constant ¢ with probability 1 — % as long as

C15 (d>
m> —log | —
€ s

for two fixed constants C;, G, > 0



Restricted-isometry property for Gaussian matrices

Let A € R™*9 be a random matrix with iid standard Gaussian entries

1

ﬁA satisfies the RIP for a constant ¢ with probability 1 — % as long as

C15 (d>
m> —log | —
€ s

for two fixed constants C;, G, > 0

Measurements proportional to sparsity (up to log factor)



Singular values of submatrix

Fix subset of s indices T C {1,...,d}
Any matrix A € R™*d m < d, satisfies

os(Ar) < ||AX]|; < 01(AT)
for all vectors X € RY with support restricted to T

At is the m x s submatrix of A containing columns indexed by T

01(A1) and o5(A1) are the largest and smallest singular value of At



Proof

For any vector X € R? with support restricted to T
AX = ATXT

where X7 € R® is the subvector of X that contains its nonzero entries



Proof strategy

Control singular values for fixed submatrix

Apply union bound to extend bounds to all submatrices



Singular values of m x s matrix, s = 100
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Singular values of m x s matrix, s = 1000
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Singular values of a Gaussian matrix

For large enough m
M=~ U(Vml) VT ={/mUuvT,

Standard Gaussian vectors in high dimensions are almost orthogonal



Singular values of a Gaussian matrix

Let M be a m x s matrix with iid standard Gaussian entries such that
m>s

For any fixed € > 0, the singular values of M satisfy
vVm(l—e€)<os<or<yvm(l+e)

with probability at least 1 — 2 (172)5 exp (—%)



Union bound

For any events S1,55,...,S, in a probability space

P (U,'S,') < i P (5,) .
i=1



Proof

Number of different supports of size s



Proof
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Proof

Number of different supports of size s

(d) (ed>s
S -

s s

By the union bound

V1—ellx]], < [AX][; < V1+ellx]

2L
m

holds for any s-sparse vector X with probability at least
ed\® [12\° me?
1-2(— — -
(5) (7)== (-5)
d 12\  me?
=1—exp|log2+s+slog|— | +slog| — | — —
s €

C C d
gl—gz as long as m>€125|og<s>



Singular values of a Gaussian matrix

Let M be a m x s matrix with iid standard Gaussian entries such that
m>s

For any fixed € > 0, the singular values of M satisfy
vVm(l—e)<os<o1<yvm(l+e)

with probability at least 1 — 2 (1?2)5 exp (—”;;2>

How do we prove this?



More of the same?

We need to prove that for any vector v of the s-dimensional sphere
S linR®

Vm(1—e) <M, < Vm(1+¢)

Can we prove it for a fixed vector and use the union bound?



Proof strategy

1. Consider spread-out finite subset N, C S°~! such that any point in
S5 1is close to a point in AV,

2. Prove bound on N,

3. Show that bounds hold for all points that are close to N,



e-net

An e-net of a set X C R® is a subset N, C X such that for every vector
X € X there exists y € N, for which

IX=¥ll; <e

The covering number N/ (X, €) of a set X’ at scale € is the minimal
cardinality of an e-net of X






Covering number of a sphere

The covering number of the s-dimensional sphere S*~1 at scale e satisfies

ooz (22 =)




Covering number of a sphere

» Initialize NV, to the empty set
» Choose a point X € S°~! such that

|X = y||, > € forany ye N

» Add X to N, until there are no points in S*~! that are ¢ away from
any point in N,






Covering number of a sphere

Vol (Bf+€/2 (6)) > Vol <U>‘<‘6NEB:/2 (;{))



Covering number of a sphere

Vol (Bi../2 (0) ) = Vol (Usen. B2 (7))

STUIENC)



Covering number of a sphere

Vol (Bi../2 (0) ) = Vol (Usen. B2 (7))

STUIENC)

By multivariable calculus

Vol (Bf (6)) — Vol (Bf (6))



Covering number of a sphere

Vol (Bi../2 (0) ) = Vol (Usen. B2 (7))

- (7 6)
Vol (Bf (6)) — Vol (Bf (6))

so we conclude

(1+¢/2)° = [Nl (¢/2)°



Proof

1. We prove the bounds
n(l—e) < |IMV|5<n(l+e)

where €2 := ¢/2 on an €1 := ¢/4 net of the sphere

2. We show that by the triangle inequality, this implies that the bounds
hold on all the sphere



Fixed vector

Let M be a a x b matrix with iid standard Gaussian entries

For any v € R® with unit norm and any € € (0,1
y

Va(l—e) <|MV]|; < va(l+e)

with probability at least 1 — 2 exp (—ae?/8)



Bound on the €;-net

We define the event

_, =12 =2
Erer = {m(1 =) [I7]}3 < IMVI3 < m(1+ ) ||7113}

P (UVENel 5‘262)



Bound on the €;-net

We define the event

= ) 12
Erer = {m(1 =) [I7]}3 < IMVI3 < m(1+ ) ||7113}

P( VENelg\fez) = Z (5552)

VGNel



Bound on the €;-net

We define the event

_, =12 =2
Erer = {m(1 =) [I7]}3 < IMVI3 < m(1+ ) ||7113}

P (ren,E50) < 3 P(E5,,)

VEN
Nl P (&5,

IN



Bound on the €;-net

We define the event

_, =12 =2
Erer = {m(1 =) [I7]}3 < IMVI3 < m(1+ ) ||7113}

P( VENelg\fez) = Z (5552)

VGNel
< WLl P(£,,)

<> 12\° ] me2
22\ exp [T
- € P 32



Upper bound on the sphere

Let X € S51

There exists vV € N (X, €1) such that ||X — V||, < ¢/4

[IMX],



Upper bound on the sphere

Let X € S51

There exists vV € N (X, €1) such that ||X — V||, < ¢/4

[IMX]l; < [IMV][; + [[M (X = V)l
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Let X € S51

There exists vV € N (X, €1) such that ||X — V||, < ¢/4

[IMX]], < [[MV]]; + [[M (X = V)]
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Upper bound on the sphere

Let X € S51

There exists vV € N (X, €1) such that ||X — V||, < ¢/4

[IMX]], < [[MV]]; + [[M (X = V)]
<vm <1 + %) + |IM (X = V)||, assuming Uyenr. ES . holds

€1 V,€e2
€ - o
<vm(1+2) +orlf—vl,



Upper bound on the sphere

Let X € S51

There exists vV € N (X, €1) such that ||X — V||, < ¢/4

[IMX]], < [[MV]]; + [[M (X = V)]
€ L :
<vm <1 + 5) + |IM (X = V)||, assuming Uyep,, €5, holds
<vm(1+2) +orlf—vl,

<vm(1+5)+3°



Upper bound on the sphere

€ gie€
o1 < vm(1+5)+ T

e (1)

Cum(ire 1029
< Vm(l+e)




Lower bound on the sphere

[IMX]l



Lower bound on the sphere

[IMX][; = [[MV][, = [[M (X = V) ],



Lower bound on the sphere

[IMX][; = [[MV][, = [[M (X = V) ],

> /m (1 - g) — A~ )|,  assuming Ugen;, ES., holds



Lower bound on the sphere

IMX][, = [IMV]], = [[M (X = V)||,
€ N _ .
> /m (1 - 5) — A~ )|,  assuming Ugen;, ES., holds

€ = N
Z\/E(l—§>—UIHX—V||2



Lower bound on the sphere

IMX][, = [IMV]], = [[M (X = V)||,
€ N _ .
> /m (1 - 5) — A~ )|,  assuming Ugen;, ES., holds
€ - i
Z\/E(l—i) —o1||X =V,

> Vm(1-5) = Svm(i+e)



Lower bound on the sphere

[IMX][; = [[MV][, = [[M (X = V) ],

zwﬁo—f)+MW—mm

v

m

v (
(1

m(1—

1—

=) —olig =,

5)—7 m(1l+e)
€)

assuming Ugen,, €5,

holds
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