Nonconvex optimization

DS-GA 1013 / MATH-GA 2824 Mathematical Tools for Data Science
https://cims.nyu.edu/~cfgranda/pages/MTDS_spring19/index.html

Carlos Fernandez-Granda

Structured matrix factorization

Deep learning for image denoising

Low-rank bilinear model

$$
\begin{array}{r}
y[i, j] \approx \sum_{l=1}^{r} a_{l}[i] b_{l}[j], \quad 1 \leq i \leq m, \quad 1 \leq j \leq n \\
Y \approx A B, \quad A \in \mathbb{R}^{m \times r}, \quad B \in \mathbb{R}^{r \times n}
\end{array}
$$

(A, B) and $\left(A C, C^{-1} B\right)$ yield same model for any invertible C

Low-rank bilinear model

$$
\begin{array}{r}
y[i, j] \approx \sum_{l=1}^{r} a_{l}[i] b_{l}[j], \quad 1 \leq i \leq m, \quad 1 \leq j \leq n \\
Y \approx A B, \quad A \in \mathbb{R}^{m \times r}, \quad B \in \mathbb{R}^{r \times n}
\end{array}
$$

(A, B) and $\left(A C, C^{-1} B\right)$ yield same model for any invertible C
Nonconvex cost function with nonconvex constraints:

$$
\min _{A \in \mathbb{R}^{m \times r, B \in \mathbb{R}^{r} \times n}}\|Y-A B\|_{F} \quad \text { subject to } \quad\left\|\tilde{A}_{i}\right\|_{2}=1, \quad 1 \leq i \leq r
$$

$(1-a b)^{2}$

Singular value decomposition

Let $U S V^{\top}$ be the SVD of Y

The truncated SVD $U_{:, 1: r} S_{1: r, 1: r} V_{:, 1: r}^{T}$ is the best rank- r approximation

$$
U_{:, 1: r} S_{1: r, 1: r} V_{:, 1: r}^{T}=\underset{\{\widetilde{A} \mid \operatorname{rank}(\tilde{A})=r\}}{\arg \min }\|A-\widetilde{A}\|_{F}
$$

Singular value decomposition

Let $U S V^{\top}$ be the SVD of Y

The truncated SVD $U_{:, 1: r} S_{1: r, 1: r} V_{:, 1: r}^{T}$ is the best rank- r approximation

$$
U_{:, 1: r} S_{1: r, 1: r} V_{:, 1: r}^{T}=\underset{\{\widetilde{A} \mid \operatorname{rank}(\tilde{A})=r\}}{\arg \min }\|A-\widetilde{A}\|_{F}
$$

$A^{*}:=U_{:, 1: r}$ and $B:=S_{1: r, 1: r} V_{:, 1: r}^{T}$ is a solution to

$$
\min _{A \in \mathbb{R}^{m \times r}, B \in \mathbb{R}^{r \times n}}\|Y-A B\|_{\mathrm{F}} \quad \text { subject to } \quad\left\|\tilde{A}_{i}\right\|_{2}=1, \quad 1 \leq i \leq r
$$

Nonnegative matrix factorization

Forcing the factors to be nonnegative factors can improve interpretability

$$
X \approx A B, \quad A_{i, j} \geq 0, \quad B_{i, j} \geq 0, \text { for all } i, j
$$

Nonconvex optimization problem:

$$
\begin{array}{ll}
\operatorname{minimize} & \|X-\tilde{A} \tilde{B}\|_{\mathrm{F}}^{2} \\
\text { subject to } & \tilde{A}_{i, j} \geq 0, \\
& \tilde{B}_{i, j} \geq 0, \quad \text { for all } i, j
\end{array}
$$

$\tilde{A} \in \mathbb{R}^{m \times r}$ and $\tilde{B} \in \mathbb{R}^{r \times n}$

Nonnegative matrix factorization

Forcing the factors to be nonnegative factors can improve interpretability

$$
X \approx A B, \quad A_{i, j} \geq 0, \quad B_{i, j} \geq 0, \text { for all } i, j
$$

Nonconvex optimization problem:

$$
\begin{array}{ll}
\operatorname{minimize} & \|X-\tilde{A} \tilde{B}\|_{\mathrm{F}}^{2} \\
\text { subject to } & \tilde{A}_{i, j} \geq 0, \\
& \tilde{B}_{i, j} \geq 0, \quad \text { for all } i, j
\end{array}
$$

$\tilde{A} \in \mathbb{R}^{m \times r}$ and $\tilde{B} \in \mathbb{R}^{r \times n}$

No longer solved by SVD

Faces dataset: SVD

Faces dataset: NMF

Topic modeling

$A:=\left(\begin{array}{cccccccccc}\text { singer } & \text { GDP } & \text { senate } & \text { election } & \text { vote } & \text { stock } & \text { bass } & \text { market } & \text { band } & \text { Articles } \\ 1 & 1 & 1 & 0 & 0 & 1 & 9 & 0 & 8 \\ 1 & 0 & 9 & 5 & 8 & 1 & 0 & 1 & 0 \\ 8 & 1 & 0 & 1 & 0 & 0 & 9 & 1 & 7 & \text { a } \\ 0 & 7 & 1 & 0 & 0 & 9 & 1 & 7 & 0 & \mathrm{c} \\ 0 & 5 & 6 & 7 & 5 & 6 & 0 & 7 & 2 \\ 1 \\ 1 & 0 & 8 & 5 & 9 & 2 & 0 & 0 & 1\end{array}\right)$

SVD

$$
A=U S V^{T}=U\left[\begin{array}{cccccc}
23.64 & 0 & 0 & 0 & & \\
0 & 18.82 & 0 & 0 & 0 & 0 \\
0 & 0 & 14.23 & 0 & 0 & 0 \\
0 & 0 & 0 & 3.63 & 0 & 0 \\
0 & 0 & 0 & 0 & 2.03 & 0 \\
0 & 0 & 0 & 0 & 0 & 1.36
\end{array}\right] V^{T}
$$

Left singular vectors

$$
\begin{aligned}
& \\
& U_{1}
\end{aligned}=\left(\begin{array}{cccccc}
a & b & c & d & e & f \\
U_{2} & =0.24 & -0.47 & -0.24 & -0.32 & -0.58 \\
0.044 & -0.23 & 0.67 & -0.03 & -0.18 & -0.21
\end{array}\right)
$$

Right singular vectors

	singe	GDP	senate	election	vote	stock	bass	market	band
V_{1}	(-0.18	-0.24	-0.51	-0.38	-0.46	-0.34	-0.2	-0.3	-0.22)
V_{2}	(0.47	0.01	-0.22	-0.15	-0.25	-0.07	0.63	-0.05	0.49)
V_{3}	(-0.13	0.47	-0.3	-0.14	-0.37	0.52	-0.04	0.49	-0.07)

Nonnegative matrix factorization

$$
X \approx W H
$$

$$
W_{i, j} \geq 0, H_{i, j} \geq 0, \text { for all } i, j
$$

Right nonnegative factors

	singer	GDP	senate	election	vote	stock	bass	market	band
H_{1}	(0.34	0	3.73	2.54	3.67	0.52	0	0.35	0.35)
H_{2}	0	2.21	0.21	0.45	0	2.64	0.21	2.43	0.22)
H_{3}	(3.22	0.37	0.19	0.2	0	0.12	4.13	0.13	3.43)

Interpretations:

- Count basis function: Counts for each doc are weighted sum of H_{1}, $\mathrm{H}_{2}, \mathrm{H}_{3}$
- Coefficients: They cluster words into politics, music and economics

Left nonnegative factors

W_{1}

0.03 \& 2.23 \& 0 \& 0 \& 1.59 \& 2.24\end{array}\right)\)

Interpretations:

- Count basis function: Counts for each word are weighted sum of W_{1}, W_{2}, W_{3}
- Coefficients: They cluster docs into politics, music and economics

PCA of translation-invariant signals

Sample covariance matrix

Singular values

Principal directions

Principal directions

Image patches

Principal directions

Principal directions

Principal directions

Sparse coding

Aim: Find basis functions that represent data parsimoniously

Equivalently coefficients/codes B should be sparse
ℓ_{1}-norm regularization is used to enforce sparsity

$$
\begin{array}{ll}
\operatorname{minimize} & \|X-\tilde{A} \tilde{B}\|_{2}^{2}+\lambda \sum_{i=1}^{r}\left\|\tilde{B}_{i}\right\|_{1} \\
\text { subject to } & \left\|\tilde{A}_{i}\right\|_{2}=1, \quad 1 \leq i \leq r
\end{array}
$$

Sparse coding (Olshausen and Field 1996)

Structured matrix factorization

Deep learning for image denoising

Image denoising

- Linear translation-invariant estimation: Wiener filtering
- Nonlinear estimation: Thresholding in transform domain
- Nonlinear translation-invariant estimation: Convolutional neural networks

Convolutional neural networks

Large number of learned filters combined with pointwise nonlinearity

$$
\min _{W_{1}, \ldots, W_{L}} \sum_{j=1}^{n}\left\|\vec{x}^{[j]}-W_{L} \rho\left(W_{L-1} \rho\left(\ldots W_{2} \rho\left(W_{1} \vec{y}^{[j]}\right)\right)\right)\right\|_{2}^{2}
$$

$\rho(\vec{v})[i]:=\max \{0, \vec{v}[i]\}$

Noisy image

Wiener filtering

Wavelet block thresholding

Convolutional neural network

Comparison

Jacobian

For fixed input, matrix J such that

$$
J \vec{y}=W_{L} \rho\left(W_{L-1} \rho\left(\ldots W_{2} \rho\left(W_{1} \vec{y}\right)\right)\right)
$$

Rows can be interpreted as filters adapted to specific image

Jacobian

Wiener filter

Location

