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Structured matrix factorization

Deep learning for image denoising



Low-rank bilinear model

y [i , j ] ≈
r∑

l=1

al [i ]bl [j ], 1 ≤ i ≤ m, 1 ≤ j ≤ n

Y ≈ AB, A ∈ Rm×r , B ∈ Rr×n

(A,B) and (AC ,C−1B) yield same model for any invertible C

Nonconvex cost function with nonconvex constraints:

min
A∈Rm×r ,B∈Rr×n

||Y − AB||F subject to
∣∣∣∣∣∣Ãi

∣∣∣∣∣∣
2
= 1, 1 ≤ i ≤ r
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Singular value decomposition

Let USV T be the SVD of Y

The truncated SVD U:,1:rS1:r ,1:rV
T
:,1:r is the best rank-r approximation

U:,1:rS1:r ,1:rV
T
:,1:r = argmin

{Ã | rank(Ã)=r}

∣∣∣∣∣∣A− Ã
∣∣∣∣∣∣

F

A∗ := U:,1:r and B := S1:r ,1:rV
T
:,1:r is a solution to

min
A∈Rm×r ,B∈Rr×n

||Y − AB||F subject to
∣∣∣∣∣∣Ãi

∣∣∣∣∣∣
2
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∣∣∣∣∣∣
2
= 1, 1 ≤ i ≤ r



Nonnegative matrix factorization

Forcing the factors to be nonnegative factors can improve interpretability

X ≈ A B, Ai ,j ≥ 0, Bi ,j ≥ 0, for all i , j

Nonconvex optimization problem:

minimize
∣∣∣∣∣∣X − Ã B̃

∣∣∣∣∣∣2
F

subject to Ãi ,j ≥ 0,

B̃i ,j ≥ 0, for all i , j

Ã ∈ Rm×r and B̃ ∈ Rr×n

No longer solved by SVD
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Faces dataset: SVD



Faces dataset: NMF



Topic modeling

A :=

singer GDP senate election vote stock bass market band Articles


6 1 1 0 0 1 9 0 8 a
1 0 9 5 8 1 0 1 0 b
8 1 0 1 0 0 9 1 7 c
0 7 1 0 0 9 1 7 0 d
0 5 6 7 5 6 0 7 2 e
1 0 8 5 9 2 0 0 1 f



SVD

A = USV T = U



23.64 0 0 0
0 18.82 0 0 0 0
0 0 14.23 0 0 0
0 0 0 3.63 0 0
0 0 0 0 2.03 0
0 0 0 0 0 1.36

V T



Left singular vectors

a b c d e f
( )U1 = −0.24 −0.47 −0.24 −0.32 −0.58 −0.47
( )U2 = 0.64 −0.23 0.67 −0.03 −0.18 −0.21
( )U3 = −0.08 −0.39 −0.08 0.77 0.28 −0.40



Right singular vectors

singer GDP senate election vote stock bass market band

( )V1 = −0.18 −0.24 −0.51 −0.38 −0.46 −0.34 −0.2 −0.3 −0.22
( )V2 = 0.47 0.01 −0.22 −0.15 −0.25 −0.07 0.63 −0.05 0.49
( )V3 = −0.13 0.47 −0.3 −0.14 −0.37 0.52 −0.04 0.49 −0.07



Nonnegative matrix factorization

X ≈W H

Wi ,j ≥ 0, Hi ,j ≥ 0, for all i , j



Right nonnegative factors

singer GDP senate election vote stock bass market band

( )H1 = 0.34 0 3.73 2.54 3.67 0.52 0 0.35 0.35
( )H2 = 0 2.21 0.21 0.45 0 2.64 0.21 2.43 0.22
( )H3 = 3.22 0.37 0.19 0.2 0 0.12 4.13 0.13 3.43

Interpretations:

I Count basis function: Counts for each doc are weighted sum of H1,
H2, H3

I Coefficients: They cluster words into politics, music and economics



Left nonnegative factors

a b c d e f
( )W1 = 0.03 2.23 0 0 1.59 2.24
( )W2 = 0.1 0 0.08 3.13 2.32 0
( )W3 = 2.13 0 2.22 0 0 0.03

Interpretations:

I Count basis function: Counts for each word are weighted sum of W1,
W2, W3

I Coefficients: They cluster docs into politics, music and economics



PCA of translation-invariant signals



Sample covariance matrix
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Principal directions
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Principal directions
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Image patches
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Sparse coding

Aim: Find basis functions that represent data parsimoniously

Equivalently coefficients/codes B should be sparse

`1-norm regularization is used to enforce sparsity

minimize
∣∣∣∣∣∣X − Ã B̃

∣∣∣∣∣∣2
2
+ λ

r∑
i=1

∣∣∣∣∣∣B̃i

∣∣∣∣∣∣
1

subject to
∣∣∣∣∣∣Ãi

∣∣∣∣∣∣
2
= 1, 1 ≤ i ≤ r



Sparse coding (Olshausen and Field 1996)



Structured matrix factorization

Deep learning for image denoising



Image denoising

I Linear translation-invariant estimation: Wiener filtering

I Nonlinear estimation: Thresholding in transform domain

I Nonlinear translation-invariant estimation: Convolutional neural
networks



Convolutional neural networks

Large number of learned filters combined with pointwise nonlinearity

min
W1,...,WL

n∑
j=1

∣∣∣∣∣∣~x [j] −WLρ
(
WL−1ρ

(
. . .W2ρ

(
W1~y

[j]
)))∣∣∣∣∣∣2

2

ρ(~v)[i ] := max {0, ~v [i ]}



Noisy image



Wiener filtering



Wavelet block thresholding



Convolutional neural network



Comparison

Clean Noisy Wiener
filtering

Wavelet
block

thresholding

Convolutional
neural
network



Jacobian

For fixed input, matrix J such that

J~y = WLρ (WL−1ρ (. . .W2ρ (W1~y)))

Rows can be interpreted as filters adapted to specific image



Jacobian

Wiener filter Row of Jacobian Location
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