

Nonconvex optimization

DS-GA 1013 / MATH-GA 2824 Mathematical Tools for Data Science

https://cims.nyu.edu/~cfgranda/pages/MTDS_spring19/index.html

Carlos Fernandez-Granda

Structured matrix factorization

Deep learning for image denoising

Low-rank bilinear model

$$y[i,j] \approx \sum_{l=1}^{r} a_l[i]b_l[j], \quad 1 \le i \le m, \ 1 \le j \le n$$

 $Y \approx AB, \qquad A \in \mathbb{R}^{m \times r}, \quad B \in \mathbb{R}^{r \times n}$

(A, B) and $(AC, C^{-1}B)$ yield same model for any invertible C

Low-rank bilinear model

$$y[i,j] \approx \sum_{l=1}^{r} a_l[i]b_l[j], \quad 1 \leq i \leq m, \ 1 \leq j \leq n$$

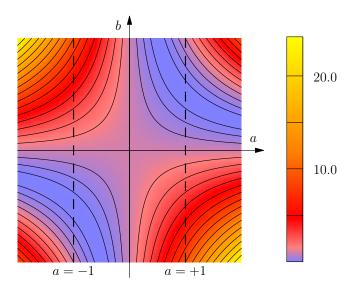
$$Y \approx AB, \qquad A \in \mathbb{R}^{m \times r}, \quad B \in \mathbb{R}^{r \times n}$$

(A, B) and $(AC, C^{-1}B)$ yield same model for any invertible C

Nonconvex cost function with nonconvex constraints:

 $\min_{A \in \mathbb{R}^{m \times r}, B \in \mathbb{R}^{r \times n}} \left| \left| Y - A B \right| \right|_{\mathsf{F}} \qquad \text{subject to} \quad \left| \left| \tilde{A}_i \right| \right|_2 = 1, \qquad 1 \leq i \leq r$

 $(1 - ab)^2$



Singular value decomposition

Let USV^T be the SVD of Y

The truncated SVD $U_{:,1:r}S_{1:r,1:r}V_{:,1:r}^{T}$ is the best rank-*r* approximation

$$U_{:,1:r}S_{1:r,1:r}V_{:,1:r}^{T} = \arg\min_{\{\widetilde{A} \mid \operatorname{rank}(\widetilde{A})=r\}} \left\| \left| A - \widetilde{A} \right| \right|_{\mathsf{F}}$$

Singular value decomposition

Let USV^T be the SVD of Y

The truncated SVD $U_{:,1:r}S_{1:r,1:r}V_{:,1:r}^{T}$ is the best rank-r approximation

$$U_{:,1:r}S_{1:r,1:r}V_{:,1:r}^{T} = \arg\min_{\{\widetilde{A} \mid \operatorname{rank}(\widetilde{A})=r\}} \left\| \left| A - \widetilde{A} \right| \right|_{\mathsf{F}}$$

 $A^* := U_{:,1:r}$ and $B := S_{1:r,1:r}V_{:,1:r}^T$ is a solution to

 $\min_{A \in \mathbb{R}^{m \times r}, B \in \mathbb{R}^{r \times n}} ||Y - AB||_{\mathsf{F}} \qquad \text{subject to} \quad \left| \left| \tilde{A}_i \right| \right|_2 = 1, \qquad 1 \leq i \leq r$

Nonnegative matrix factorization

Forcing the factors to be nonnegative factors can improve interpretability

$$X pprox A B$$
, $A_{i,j} \ge 0$, $B_{i,j} \ge 0$, for all i, j

Nonconvex optimization problem:

$$\begin{array}{ll} \text{minimize} & \left\| \left| X - \tilde{A} \ \tilde{B} \right\| \right|_{\mathsf{F}}^{2} \\ \text{subject to} & \tilde{A}_{i,j} \geq 0, \\ & \tilde{B}_{i,j} \geq 0, \end{array} \text{ for all } i, j \end{array}$$

 $ilde{A} \in \mathbb{R}^{m imes r}$ and $ilde{B} \in \mathbb{R}^{r imes n}$

Nonnegative matrix factorization

Forcing the factors to be nonnegative factors can improve interpretability

$$X pprox A B$$
, $A_{i,j} \ge 0$, $B_{i,j} \ge 0$, for all i, j

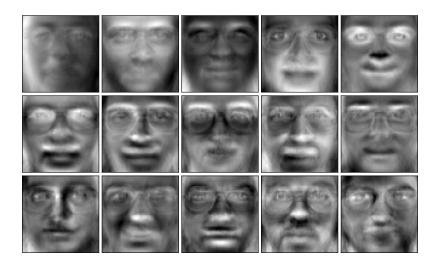
Nonconvex optimization problem:

$$\begin{array}{ll} \text{minimize} & \left\| \left| X - \tilde{A} \; \tilde{B} \right\| \right|_{\mathsf{F}}^{2} \\ \text{subject to} & \tilde{A}_{i,j} \geq 0, \\ & \tilde{B}_{i,j} \geq 0, \end{array} \text{ for all } i, j \end{array}$$

 $ilde{A} \in \mathbb{R}^{m imes r}$ and $ilde{B} \in \mathbb{R}^{r imes n}$

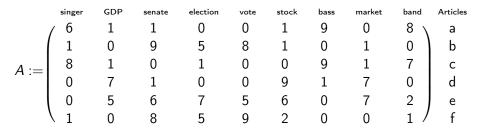
No longer solved by SVD

Faces dataset: SVD



Faces dataset: NMF

Topic modeling

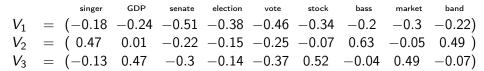


 SVD

$$A = USV^{T} = U \begin{bmatrix} 23.64 & 0 & 0 & 0 & \\ 0 & 18.82 & 0 & 0 & 0 & 0 \\ 0 & 0 & 14.23 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3.63 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2.03 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1.36 \end{bmatrix} V^{T}$$

Left singular vectors

Right singular vectors



Nonnegative matrix factorization

 $X \approx W H$

 $W_{i,j} \ge 0, \ H_{i,j} \ge 0, \ \text{for all} \ i,j$

Right nonnegative factors

	singer	GDP	senate	election	vote	stock	bass	market	band
H_1	= (0.34	0	3.73	2.54	3.67	0.52	0	0.35	0.35)
H_2	= (0	2.21	0.21	0.45	0	2.64	0.21	2.43	0.22)
H_3	= (3.22	0.37	0.19	0.2	0	0.12	4.13	0.13	3.43)

Interpretations:

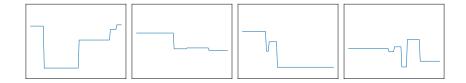
- ► Count basis function: Counts for each doc are weighted sum of H₁, H₂, H₃
- ► Coefficients: They cluster words into politics, music and economics

Left nonnegative factors

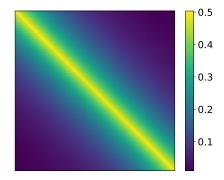
Interpretations:

- Count basis function: Counts for each word are weighted sum of W₁, W₂, W₃
- ► Coefficients: They cluster docs into politics, music and economics

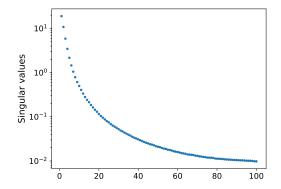
PCA of translation-invariant signals

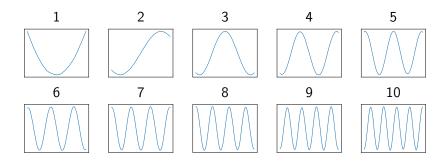


Sample covariance matrix



Singular values





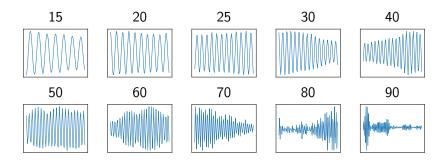
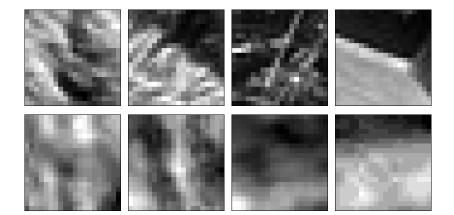
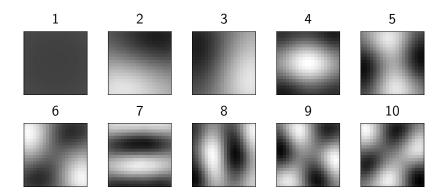
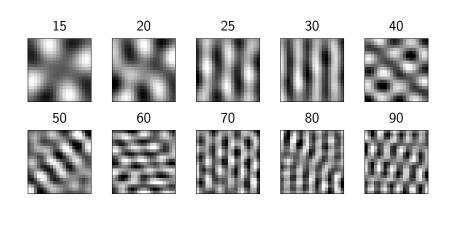
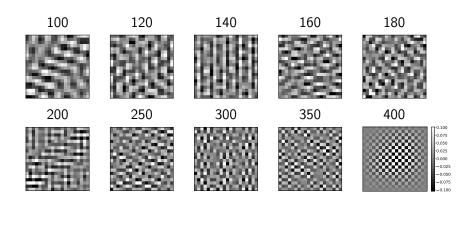


Image patches









Sparse coding

Aim: Find basis functions that represent data parsimoniously

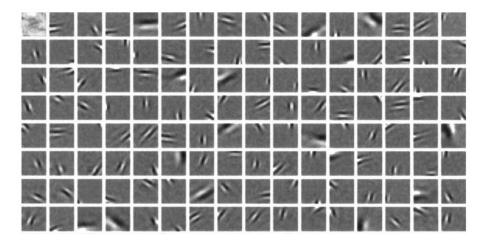
Equivalently coefficients/codes B should be sparse

 ℓ_1 -norm regularization is used to enforce sparsity

minimize
$$\left\| X - \tilde{A} \, \tilde{B} \right\|_{2}^{2} + \lambda \sum_{i=1}^{r} \left\| \tilde{B}_{i} \right\|_{1}$$

subject to $\left\| \tilde{A}_{i} \right\|_{2} = 1, \quad 1 \le i \le r$

Sparse coding (Olshausen and Field 1996)



Structured matrix factorization

Deep learning for image denoising

Image denoising

- Linear translation-invariant estimation: Wiener filtering
- ► Nonlinear estimation: Thresholding in transform domain
- Nonlinear translation-invariant estimation: Convolutional neural networks

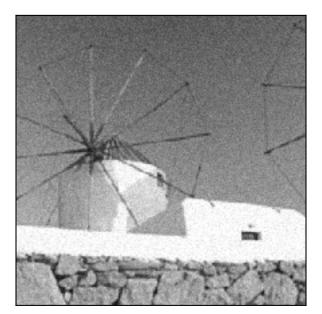
Convolutional neural networks

Large number of learned filters combined with pointwise nonlinearity

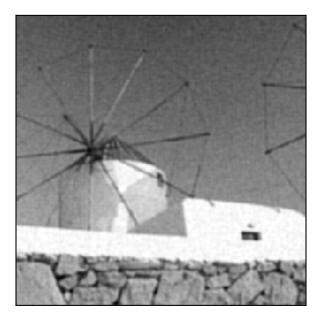
$$\min_{W_1,\ldots,W_L} \sum_{j=1}^n \left\| \left| \vec{x}^{[j]} - W_L \rho \left(W_{L-1} \rho \left(\ldots W_2 \rho \left(W_1 \vec{y}^{[j]} \right) \right) \right) \right\|_2^2$$

 $\rho(\vec{v})[i] := \max\left\{0, \vec{v}[i]\right\}$

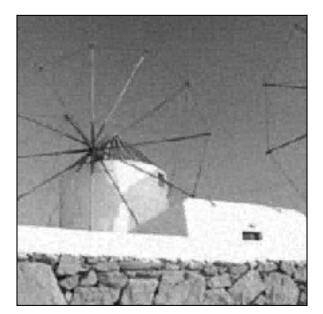
Noisy image



Wiener filtering

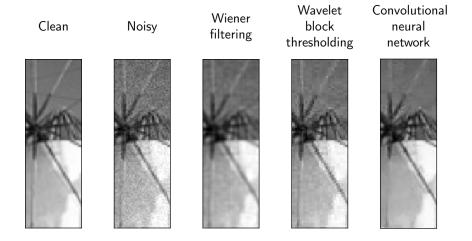


Wavelet block thresholding



Convolutional neural network

Comparison



For fixed input, matrix J such that

$$J\vec{y} = W_L\rho\left(W_{L-1}\rho\left(\ldots W_2\rho\left(W_1\vec{y}\right)\right)\right)$$

Rows can be interpreted as filters adapted to specific image

