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Compressed sensing

Goal: Recovering signals from small number of data

Arbitrary vector of dimension d cannot be recovered from m < d
linear measurements

However, signals of interest are highly structured

For example, images are sparse in wavelet basis

If signal is parametrized by s < m parameters, recovery may be possible

We focus on simplified problem: recovering sparse vectors



Restricted-isometry property

Different sparse vectors should never produce similar data

If two s-sparse vectors ~x1, ~x2 are far, then A~x1, A~x2 should be far

The measurement operator should preserve distances (be an isometry)
when restricted to act upon sparse vectors

This is true for random operators with high probability



Simplified problem

Recover sparse signal ~xtrue ∈ Rm from measurements

A~xtrue = ~y

where ~y ∈ Rn, A ∈ Rm×n, and m < n

Minimize nonzero entries subject to equality constraints?



Promoting sparsity

Toy problem: Find t such that

~vt :=

 t
t − 1
t − 1


is sparse

Strategy: Minimize

f (t) := ||~vt ||



Promoting sparsity
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`1-norm minimization with equality constraints

min
~x
||~x ||1 subject to A~x = ~y



`2-norm minimization with equality constraints
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Another algorithm for sparse recovery

Imagine we have access to inner products with sparse vector

〈~u, ~xtrue〉

Strategy: Solve

max
~u∈Rn
〈~u, ~xtrue〉

subject to ||~u||∞ ≤ 1
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Another algorithm for sparse recovery

If we have ~y = A~xtrue

〈~v , ~y〉

= 〈~v ,A~xtrue〉
= 〈AT~v , ~xtrue〉

We can solve

max
~v∈Rm

〈~v , ~y〉 subject to
∣∣∣∣∣∣AT~v

∣∣∣∣∣∣
∞
≤ 1

Equivalent to `1-norm minimization!
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Matrix completion
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Promoting low-rank structure

Finding low-rank matrices consistent with data is often very useful

Toy problem: Find t such that

M (t) :=

0.5 + t 1 1
0.5 0.5 t
0.5 1− t 0.5

 ,
is low rank

Strategy: Minimize

f (t) := ||M (t)||



Promoting low-rank structure
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Nuclear-norm minimization for matrix completion

~y contains the observed entries indexed by set Ω

min
X∈Rn1×n2

||X ||∗ such that XΩ = ~y



Results for movie dataset
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Constrained optimization problem

min
~x∈Rn

f (~x) subject to ~x ∈ S ⊂ Rn

Any ~x ∈ S is a feasible point



Convex functions

A function f : Rn → R is convex if for any ~x , ~y ∈ Rn and any θ ∈ (0, 1)

θf (~x) + (1− θ) f (~y) ≥ f (θ~x + (1− θ) ~y)



Convex sets

A convex set S is any set such that for any ~x , ~y ∈ S and θ ∈ (0, 1)

θ~x + (1− θ) ~y ∈ S



Convex vs nonconvex

Nonconvex Convex



Separating hyperplane

There exists a hyperplane separating any nonempty disjoint convex sets
S1, S2 ⊂ Rn

There exists ~a ∈ Rn, b ∈ R such that

for all ~x1 ∈ S1 〈~a, ~x1〉 ≤ b

for all ~x2 ∈ S2 〈~a, ~x2〉 ≤ b



Proof

Simplifying assumption:

||~y2 − ~y1||2 = min
~x1∈S1, ~x2∈S2

||~x2 − ~x1||2

Hyperplane orthogonal to ~y2 − ~y1 between ~y1 and ~y2:

h(~x) :=

〈
~y2 − ~y1, ~x −

~y1 + ~y2

2

〉
= 0

Goal: Show h(~x) > 0 for all S2



Proof

Assume that h(~u) < 0 for ~u ∈ S2

h(~u) =

〈
~y2 − ~y1, ~u −

~y1 + ~y2

2

〉

= 〈~y2 − ~y1, ~u − ~y2〉+

〈
~y2 − ~y1,

~y2 − ~y1

2

〉
= 〈~y2 − ~y1, ~u − ~y2〉+

1
2
||~y2 − ~y1||22

so

〈~y2 − ~y1, ~u − ~y2〉 < 0
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Proof

~yθ := θ~u + (1− θ)~y2 ∈ S2

||~yθ − ~y1||22 = ||θ(~u − ~y2) + ~y2 − ~y1||22

= ||~y2 − ~y1||22 + θ2 ||~u − ~y2||22 + 2θ 〈~y2 − ~y1, ~u − ~y2〉
= ||~y2 − ~y1||22 + g(θ)

g(0) = 0 and g ′(0) = 〈~y2 − ~y1, ~u − ~y2〉 < 0

For small enough θ ~yθ is closer to ~y1 than ~y2
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Hyperplanes are convex

Let H :=
{
~x | A~x = ~b

}
For any ~x , ~y ∈ H and any θ ∈ (0, 1)

A (θ~x + (1− θ) ~y) =

θA~x + (1− θ)A~y

= ~b

so θ~x + (1− θ) ~y ∈ H
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Sublevel sets

Sγ := {~x | f (~x) ≤ γ}



Sublevel sets of convex functions are convex

Let ~x , ~y ∈ Sγ

f (θ~x + (1− θ) ~y)

≤ θf (~x) + (1− θ) f (~y)

≤ γ



Sublevel sets of convex functions are convex

Let ~x , ~y ∈ Sγ

f (θ~x + (1− θ) ~y) ≤ θf (~x) + (1− θ) f (~y)

≤ γ



Sublevel sets of convex functions are convex

Let ~x , ~y ∈ Sγ

f (θ~x + (1− θ) ~y) ≤ θf (~x) + (1− θ) f (~y)

≤ γ



Intersection of convex sets

If S1, . . . ,Sm are convex, ∩mi=1Si is convex



Constrained optimization

Any optimization problem of the form,

min
~x∈Rn

f0(~x) subject to fi (~x) ≤ 0, 1 ≤ i ≤ k ,

A~x = ~b,

where A ∈ Rm×n, ~b ∈ Rm, has a convex feasibility set
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Optimization problem with equality constraints

A ∈ Rm×n, ~b ∈ Rm

min
~x∈Rn

f (~x) subject to A~x = ~b



Example

min
~x∈R2

||~x ||1 subject to 2~x [1]− 3~x [2] = 4
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Lagrangian

L (~x , ~α) := f (~x) + ~αT
(
~b − A~x

)

~α ∈ Rm is called a Lagrange multiplier



Lagrangian

At any feasible point the Lagrangian is equal to the cost function

L (~x , ~α) = f (~x)



Example

L (~x , α) = ||~x ||1 + α(4− 2~x [1] + 3~x [2])



α = −1.5
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α = −0.2

4 2 0 2 4

4

2

0

2

4

0.0

2.5

2.5

5.0

7.5

7.5

7.5 10.0 12.5 0

2

4

6

8

10

12

14

16



α = 0
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α = 0.2
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α = 1.0
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Lagrange dual function

g (~α) := inf
~x∈Rn

L (~x , ~α)



Lagrange dual function as a lower bound

Let p ∗ be a minimum of the primal, for any ~α

p ∗

= f (~x ∗)

= L (~x ∗, ~α)

≥ g (~α)



Lagrange dual function as a lower bound

Let p ∗ be a minimum of the primal, for any ~α

p ∗ = f (~x ∗)

= L (~x ∗, ~α)

≥ g (~α)



Lagrange dual function as a lower bound

Let p ∗ be a minimum of the primal, for any ~α

p ∗ = f (~x ∗)

= L (~x ∗, ~α)

≥ g (~α)



Lagrange dual function as a lower bound

Let p ∗ be a minimum of the primal, for any ~α

p ∗ = f (~x ∗)

= L (~x ∗, ~α)

≥ g (~α)



Dual problem

max
α∈Rm

g (α)

−g (α) := sup~x∈Rn L (~x , ~α) is a pointwise supremum of linear functions



Maximum/supremum of convex functions

Pointwise maximum of m convex functions f1, . . . , fm

fmax (x) := max
1≤i≤m

fi (x)

is convex

Pointwise supremum of a family of convex functions indexed by a set I

fsup (x) := sup
i∈I

fi (x)

is convex



Proof

For any 0 ≤ θ ≤ 1 and any ~x , ~y ∈ R,

fsup (θ~x + (1− θ) ~y) = sup
i∈I

fi (θ~x + (1− θ) ~y)

≤ sup
i∈I

θfi (~x) + (1− θ) fi (~y) by convexity of the fi

≤ θ sup
i∈I

fi (~x) + (1− θ) sup
j∈I

fj (~y)

= θfsup (~x) + (1− θ) fsup (~y)
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Weak duality

Let d∗ be a maximum of the dual problem

d∗ ≤ p ∗



Strong duality

Let d∗ be a maximum of the dual problem

d∗ = p ∗

Not so obvious...



Norm minimization

The Lagrange dual function of

min
~x∈Rn

||~x || subject to A~x = ~b

where A ∈ Rm×n, ~b ∈ Rm, equals

max
~α∈Rm

〈~α, ~b 〉 subject to
∣∣∣∣∣∣AT ~α

∣∣∣∣∣∣
d
≤ 1

||~y ||d := max
||~x ||≤1

〈~y , ~x〉



Proof

L(~x , ~α) := ||~x ||+ ~αT
(
~b − A~x

)

= ||~x || − 〈AT ~α, ~x〉+ ~αT~b

=

(
1−

〈
AT ~α,

~x

||~x ||

〉)
||~x ||+ ~αT~b

≥ a
(
1−

∣∣∣∣∣∣AT ~α
∣∣∣∣∣∣
d

)
+ ~αT~b

= a
(
1− 〈AT ~α, ~u〉

)
+ ~αT~b

= L(a~u, ~α)

a := ||~x ||
~u := arg max

||~x ||≤1

〈
AT ~α, ~x

〉
so that

〈
AT ~α, ~u

〉
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∣∣∣∣∣∣AT ~α
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d
≤ 1,

−∞ otherwise.
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`1-norm minimization

Let A ∈ Rm×n, ~b ∈ Rm. The dual of

min
~x∈Rn

||~x ||1 subject to A~x = ~b

is

max
~α∈Rm

〈~α, ~y 〉 subject to
∣∣∣∣∣∣AT ~α

∣∣∣∣∣∣
∞
≤ 1
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`1-norm minimization

The solution ~α ∗ to

max
~α∈Rm

〈~α, ~y 〉 subject to
∣∣∣∣∣∣AT ~α

∣∣∣∣∣∣
∞
≤ 1

satisfies

(AT ~α ∗)[i ] = sign(~x ∗[i ]) for all ~x ∗[i ] 6= 0

for any solution ~x ∗ to the primal problem



`1-norm minimization with equality constraints
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`1-norm minimization with equality constraints
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Proof

By strong duality

||~x ∗||1 = ~y T ~α ∗

= (A~x ∗)T ~α ∗

= (~x ∗)T (AT ~α ∗)

=
m∑
i=1

(AT ~α ∗)[i ]~x ∗[i ]

By Hölder’s inequality

||~x ∗||1 ≥
m∑
i=1

(AT ~α ∗)[i ]~x ∗[i ]

Equality if and only if

(AT ~α ∗)[i ] = sign(~x ∗[i ]) for all ~x ∗[i ] 6= 0
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Motivating applications

Convex sets

Lagrangian duality

Proof of strong duality

Compressed sensing

Matrix completion



Proof of strong duality

A :=
{

(~v , t) | ~b − A~x = ~v and f (~x) ≤ t for some ~x ∈ Rn
}

p∗ = inf
{
t | (~0, t) ∈ A

}
g(~α) = inf {〈~α, ~v〉+ t | (~v , t) ∈ A}
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Geometrically

The hyperplane

〈~α, ~v〉+ t = g(~α)

is a supporting hyperplane to A

Implies weak duality

p∗ = 〈~α,~0〉+ p∗ ≥ g(~α)
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Example

min
~x∈R2

||~x ||1 subject to 2~x [1]− 3~x [2] = 4

Fix v := 4− 2~x [1] + 3~x [2], then

||~x ||1 = |~x [1]|+
∣∣∣∣v − 4 + 2~x [1]

3

∣∣∣∣
Piecewise linear function with two kinks at ~x [1] = 0 and ~x [1] = (4− v)/2

min
v=4−2~x[1]+3~x[2]

||~x ||1 = min
{∣∣∣∣v − 4

3

∣∣∣∣ , ∣∣∣∣v − 4
2

∣∣∣∣}
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A is convex

Let (~v1, t1), (~v2, t2) ∈ A

There exists ~x1 and ~x2 such that

~v1 = ~b − A~x1, f (~x1) ≤ t1

~v2 = ~b − A~x2, f (~x2) ≤ t2

This implies

θ~v1 + (1− θ)~v2 = ~b − A(~v1~x1 + (1− θ)~x2)

and by convexity of f

f (θ~x1 + (1− θ)~x2) ≤ θf (~x1) + (1− θ)f (~x2)

≤ θt1 + (1− θ)t2,

so θ(~v1, t1) + (1− θ)(~v2, t2) ∈ A



Another convex set

B :=
{

(~0, t) | t < p∗
}

A and B are disjoint

If t ∈ A ∩ B there exists ~x such that f (~x) ≤ t < p∗



Another convex set

B :=
{

(~0, t) | t < p∗
}

A and B are disjoint

If t ∈ A ∩ B there exists ~x such that f (~x) ≤ t < p∗



Another convex set

B :=
{

(~0, t) | t < p∗
}

A and B are disjoint

If t ∈ A ∩ B there exists ~x such that f (~x) ≤ t < p∗



Example

4 2 0 2 4 6 8 10
v

-2

0

4/3
2

4

t

Set 
Set 



Separating hyperplane

There exists a hyperplane separating A and B

There exists ~w ∈ Rm and z ∈ R such that

~wT~v + zt ≥ q for all (~v , t) ∈ A

~wT~v + zt ≤ q for all (~v , t) ∈ B

Assume z > 0 (z < 0 is impossible, argument for z = 0 is similar)



Separating hyperplane

z−1~wT~v + t ≥ z−1q for all (~v , t) ∈ A

z−1~wT~v + t ≤ z−1q for all (~v , t) ∈ B



Separating hyperplane

z−1~wT~v + t ≤ z−1q for all (~v , t) ∈ B

implies

p∗ ≤ z−1q



Separating hyperplane

z−1~wT~v + t ≥ z−1q for all (~v , t) ∈ A

implies

L(z−1~w , ~x) = f (~x) + z−1~wT (~b − A~x)

= z−1~wT~v + t

≥ z−1q

≥ p∗ for all ~x!

p∗ ≥ d∗ ≥ g(z−1~w) := inf
~x
L(z−1~w , ~x) ≥ p∗
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Motivating applications

Convex sets

Lagrangian duality

Proof of strong duality

Compressed sensing

Matrix completion



Compressed sensing

Goal: Recovering signals from small number of data

Arbitrary vector of dimension d cannot be recovered from m < d
linear measurements

However, signals of interest are highly structured

For example, images are sparse in wavelet basis

If signal is parametrized by s < m parameters, recovery may be possible

We focus on simplified problem: recovering sparse vectors



Exact recovery

Let A ∈ Rm×d have iid standard Gaussian entries

Let ~xtrue ∈ Rd have s nonzero entries

If A~xtrue = ~y , then ~xtrue is the unique solution of the problem

min
~x∈Rd

||~x ||1 subject to A~x = ~y

with probability at least 1− 1
d as long as

m ≥ Cs log d



Sparsity in a transform domain

If ~x is sparse in the wavelet domain, ~xtrue = W ~ctrue

min
~c
||~c ||1 subject to AW ~c = ~y



Undersampling pattern



Direct reconstruction



Min. `1-norm estimate (wavelet coefficients)



How to prove exact recovery

Need to prove that no other ~x such that A~x = ~y has smaller `1 norm
than ~xtrue

Idea: Use duality



How to prove exact recovery

Assume there exists a feasible vector ~α ′ for the dual

max
~α∈Rm

〈~α, ~y 〉 subject to
∣∣∣∣∣∣AT ~α

∣∣∣∣∣∣
∞
≤ 1

such that

||~xtrue||1 = 〈~α ′, ~y 〉

then by weak duality, for any feasible ~x

||~x ||1 ≥ 〈~α ′, ~y 〉
= ||~xtrue||1
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Proof strategy

Show that for any sparse vector ~xtrue, there exists ~α ′ such that
||~xtrue||1 = 〈~α ′, ~y 〉



`1-norm minimization

The solution ~v ∗ to

max
~α∈Rm

〈~α, ~b 〉 subject to
∣∣∣∣∣∣AT ~α

∣∣∣∣∣∣
∞
≤ 1

satisfies

(AT~v ∗)[i ] = sign(~x ∗[i ]) for all ~x ∗[i ] 6= 0

for any solution ~x ∗ to the primal problem



Proof strategy

Show that for any sparse vector ~xtrue, there exists ~α ′ such that

∣∣∣∣∣∣AT ~α ′
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∞
≤ 1

(AT ~α ′)[i ] = sign(~xtrue[i ]) for all ~xtrue[i ] 6= 0



Subdifferential of `1 norm

~g is a subgradient of the `1 norm at ~x ∈ Rn if and only if

~g [i ] = sign (x [i ]) if x [i ] 6= 0

|~g [i ]| ≤ 1 if ~x [i ] = 0
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Proof strategy

Show that for any sparse vector ~xtrue, there exists ~α ′ such that

∣∣∣∣∣∣AT ~α ′
∣∣∣∣∣∣
∞
≤ 1

(AT ~α ′)[i ] = sign(~xtrue[i ]) for all ~xtrue[i ] 6= 0

Alternative justification: ~g := AT ~α ′ is a subgradient of the `1 norm
at ~xtrue so for any ~x such that A~x = ~y

||~x ||1 ≥ ||~xtrue||1 + 〈~g , ~x − ~xtrue〉
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Dual certificate for `1-norm minimization

For ~xtrue ∈ Rd with support S such that A~xtrue = ~y

Assume the submatrix AS is full rank

If there exists ~αcert ∈ Rm such that ~gcert := AT ~αcert satisfies

~gcert[i ] = sign(~xtrue[i ]) if ~xtrue[i ] 6= 0 (1)
|~gcert[i ]| < 1 if ~xtrue[i ] = 0 (2)

then ~xtrue is the unique solution to the `1-norm minimization problem



Proof
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1

+
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1
because ~xtrue is supported on S

> ||~xtrue||1 + ~gT
certPS (~h) + ~gT

certPSc (~h)
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cert
~h

= ||~xtrue||1 + (AT ~αcert)
T~h

= ||~xtrue||1 + ~αT
certA

~h

= ||~xtrue||1
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Proof of exact recovery

Goal: Build dual certificate

Interpolate sign pattern using vector in row space of A

Consider correlation vector

~ci := ATAi , 1 ≤ i ≤ m



x2 random undersampling (Fourier)



x2 random undersampling (Fourier)

0 10 20 30 40 50 60 70

Column

-0.5

0

0.5

1
C

o
rr

e
la

ti
o
n
 w

it
h
 c

o
lu

m
n
 1

9



x2 random undersampling (Fourier)

0 10 20 30 40 50 60 70

Column

-0.5

0

0.5

1
C

o
rr

e
la

ti
o
n
 w

it
h
 c

o
lu

m
n
 5

2



x2 random Gaussian measurements



x2 random Gaussian measurements

0 10 20 30 40 50 60 70

Column

-0.5

0

0.5

1
C

o
rr

e
la

ti
o
n
 w

it
h
 c

o
lu

m
n
 1

9



x2 random Gaussian measurements

0 10 20 30 40 50 60 70

Column

-0.5

0

0.5

1
C

o
rr

e
la

ti
o
n
 w

it
h
 c

o
lu

m
n
 5

2



x2 regular undersampling (Fourier)



x2 regular undersampling (Fourier)

0 10 20 30 40 50 60 70

Column

-0.5

0

0.5

1
C

o
rr

e
la

ti
o
n
 w

it
h
 c

o
lu

m
n
 1

9



x2 regular undersampling (Fourier)

0 10 20 30 40 50 60 70

Column

-0.5

0

0.5

1
C

o
rr

e
la

ti
o
n
 w

it
h
 c

o
lu

m
n
 5

2



Proof of exact recovery

Idea: Use correlation vectors to interpolate

~gcert :=
∑
i∈S

wi~ci

where weights wi , i ∈ S are set so that for all j ∈ S

sign (~xtrue) [j ] = ~gcert[j ]
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Proof of exact recovery

Challenge: Analyzing certificate for all sign patterns

sign (~xtrue)S = (
∑
i∈S

wi~ci )S

=
∑
i∈S

wiAT
SAi

= AT
SAS ~w

Solving for ~w yields

~w :=
(
AT
SAS

)−1
sign (~xtrue)S
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Certificate candidate

~gcert =
∑
i∈S

wi~ci

= ATAS ~wcert

= ATAS
(
AT
SAS

)−1
sign (~xtrue)S

Is AT
SAS invertible?

What about

|~gcert[i ]| < 1 if ~xtrue[i ] = 0 ?
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Singular values of a Gaussian matrix

Let M be a m × s matrix with iid standard Gaussian entries such that
m > s

For any fixed ε > 0, the singular values of M satisfy√
m (1− ε) ≤ σs ≤ σ1 ≤

√
m (1 + ε)

with probability at least 1− 2
(12
ε

)s exp(−mε2

32

)



Singular values of AS

σs is the smallest singular value of AS

Setting ε := 0.5, let E denote the event that

0.5
√
m ≤ σs ≤ σ1 ≤ 1.5

√
m.

For a constant C ′

P (E) ≥ 1− exp
(
−C ′m

s

)
Conditioned on E AS is full rank, so AT

SAS is invertible

~gcert interpolates the sign
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What about |~gcert[i ]| < 1 on Sc?

~αcert := AS ~wcert

= AS
(
AT
SAS

)−1
sign (~xtrue)S

~gcert = AT ~αcert

Let USVT be the SVD of AS , conditioned on E

||~αcert||2 =
∣∣∣∣∣∣US−1VT sign (~xtrue)S

∣∣∣∣∣∣
2

≤ ||sign (~xtrue)S ||2
σs

≤ 2
√

s

m
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What about |~gcert[i ]| < 1 on Sc?

AT
i ~v/ ||~v ||2 is a standard Gaussian

For a standard Gaussian u and any t > 0

P (|u| ≥ t) ≤ 2 exp
(
− t2

2

)

P
(∣∣∣AT

i ~v
∣∣∣ ≥ 1

)
= P

(∣∣AT
i ~v
∣∣

||~v ||2
≥ 1
||~v ||2

)

≤ 2 exp

(
− 1
2 ||~v ||22

)
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What about |~gcert[i ]| < 1 on Sc?
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√
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8s
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P
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i ~αcert

∣∣∣ ≥ 1
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≤ P

(∣∣∣AT
i ~αcert

∣∣∣ ≥ 1 | E
)

+ P (Ec)

≤ 2 exp
(
−m

8s

)
+ exp

(
−C ′m

s

)
By the union bound

P

(⋃
i∈Sc

{∣∣∣AT
i ~αcert

∣∣∣ ≥ 1
})
≤ n

(
2 exp

(
−m

8s

)
+ exp
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−C ′m
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≤ 1− 1

n
if m ≥ Cs log n
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Motivating applications

Convex sets

Lagrangian duality

Proof of strong duality

Compressed sensing

Matrix completion



Matrix completion as an inverse problem

[
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For a fixed sampling pattern, underdetermined system of equations
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3

5

2





Isn’t this completely ill posed?

Assumption: Matrix is low rank, depends on ≈ r (m + n) parameters

As long as data > parameters recovery is possible (in principle)


1 1 1 1 ? 1
1 1 1 1 1 1
1 1 1 1 1 1
? 1 1 1 1 1





Can we complete this matrix by minimizing rank?


1 1 1 1
? ? ? ?
1 1 1 1
1 1 1 1





Measurements

We must see an entry in each row/column at least
1 1 1 1
? ? ? ?
1 1 1 1
1 1 1 1

 =


1
?
1
1

 [1 1 1 1
]

Assumption: Random sampling (usually doesn’t hold in practice!)



Can we complete this matrix from random samples?


0 0 0 0 0 0
0 0 0 23 0 0
0 0 0 0 0 0
0 0 0 0 0 0





Can we complete this matrix from random samples?


1 1 1 1
1 1 1 1
1 1 1 1
2 3 4 5



=


1
1
1
1

 [1 1 1 1
]

+


0
0
0
1

 [1 2 3 4
]



Can we complete this matrix from random samples?


1 1 1 1
1 1 1 1
1 1 1 1
2 3 4 5

 =


1
1
1
1

 [1 1 1 1
]

+


0
0
0
1

 [1 2 3 4
]



Incoherence

A matrix is incoherent if its singular vectors must be spread out

For 1/
√
n ≤ µ ≤ 1

max
1≤i≤r ,1≤j≤m

|Uij | ≤ µ

max
1≤i≤r ,1≤j≤n

|Vij | ≤ µ

for the left U1, . . . ,Ur and right V1, . . . ,Vr singular vectors

Common assumption in theoretical analysis



Nuclear-norm minimization for matrix completion

~y contains the observed entries indexed by set Ω

min
X∈Rn1×n2

||X ||∗ such that XΩ = ~y

Challenge: Prove that this works

Use duality!
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Challenge: Prove that this works

Use duality!



Norm minimization

The Lagrange dual function of

min
~x∈Rn

||~x || subject to A~x = ~b

where A ∈ Rm×n, ~b ∈ Rm, equals

max
~α∈Rm

〈~α, ~b 〉 subject to
∣∣∣∣∣∣AT ~α

∣∣∣∣∣∣
d
≤ 1

||~y ||d := max
||~x ||≤1

〈~y , ~x〉



Dual of nuclear-norm minimization

Adjoint of operator X → XΩ is MΩ

MΩ(~b) contains ~b in entries indexed by Ω and zeros elsewhere

Proof: For any A and ~b

〈AΩ, ~b〉 = 〈A,MΩ(~b)〉
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Dual norm of nuclear norm

For any matrix A ∈ Rm×n,

||A||∗ = max
{||B||≤1 | B∈Rm×n}

〈A,B〉

||A||d := max
||B||∗≤1

〈A,B〉

= ||A|| max
||B||∗≤1

〈
A

||A|| ,B
〉

= ||A||
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Dual norm of nuclear norm

For any matrix A ∈ Rm×n,

||A||∗ = max
{||B||≤1 | B∈Rm×n}

〈A,B〉

||A||d := max
||B||∗≤1

〈A,B〉

= ||A|| max
||B||∗≤1

〈
A

||A|| ,B
〉

= ||A||



Dual of nuclear-norm minimization

Let Ω be a subset of m entries, and ~y ∈ Rm

The dual of

min
X∈Rn1×n2

||X ||∗ such that XΩ = ~y

is

max
~α∈Rm

〈~α, ~y 〉 subject to ||MΩ(~α)|| ≤ 1



How to prove exact recovery

Assume there exists a feasible vector ~α ′ for the dual

max
~α∈Rm

〈~α, ~y 〉 subject to ||MΩ(~α)|| ≤ 1

such that

||Xtrue||∗ = 〈~α ′, ~y 〉

then by weak duality, for any feasible X

||X ||∗ ≥ 〈~α ′, ~y 〉
= ||Xtrue||∗



How to prove exact recovery

Assume there exists a feasible vector ~α ′ for the dual

max
~α∈Rm

〈~α, ~y 〉 subject to ||MΩ(~α)|| ≤ 1

such that

||Xtrue||∗ = 〈~α ′, ~y 〉

then by weak duality, for any feasible X

||X ||∗ ≥ 〈~α ′, ~y 〉
= ||Xtrue||∗



Analogy with `1 norm

I `1 norm → nuclear norm

I `∞ norm → operator norm

I UV T → sign pattern of true sparse signal



How to prove exact recovery

Since

〈~α, ~y〉 = 〈MΩ(~α),MΩ(~y)〉
= 〈MΩ(~α),Xtrue〉

for

||Xtrue||∗ = 〈~α, ~y 〉 = 〈MΩ(~α),Xtrue〉

G := MΩ(~α) must be of the form

G := UV T + W

where

||W || ≤ 1 UTW = 0 W V = 0



How to prove exact recovery

〈G ,Xtrue〉 = 〈UV T + W ,Xtrue〉

= tr
(
XT

trueW + XT
trueUV

T
)

= tr
(
VSUTW + VUTUSV T

)
= tr (S)

= ||Xtrue||∗
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How to prove exact recovery

〈G ,Xtrue〉 = 〈UV T + W ,Xtrue〉
= tr

(
XT

trueW + XT
trueUV

T
)

= tr
(
VSUTW + VUTUSV T

)
= tr (S)

= ||Xtrue||∗



Subdifferential of the nuclear norm

Let X ∈ Rm×n be a rank-r matrix with SVD USV T , where U ∈ Rm×r ,
V ∈ Rn×r and S ∈ Rr×r

A matrix G is a subgradient of the nuclear norm at X if and only if

G := UV T + W

where W satisfies

||W || ≤ 1

UTW = 0
W V = 0



Alternative justification

G := MΩ(~α) is a subgradient of the nuclear norm at Xtrue

For any X such that XΩ = (Xtrue)Ω

||X ||∗ ≥ ||Xtrue||∗ + 〈X − Xtrue,G 〉

= ||Xtrue||∗ + 〈(X − Xtrue)Ω,GΩ〉
= ||Xtrue||∗

If ||W || < 1, under a certain constraint on sampling pattern, existence
of G implies that Xtrue is the unique solution
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Example

Xtrue :=
1√
3

11
1

 [a b b
]

=

a b b
a b b
a b b

 , a ∈ (0, 1), b :=

√
1− a2

2
.



Example

Xtrue :=
1√
3

11
1

 [a b b
]

=

a b b
a b b
a b b

 , a ∈ (0, 1), b :=

√
1− a2

2
.

USV T of Xtrue is given by

U =
1√
3

11
1

 , S = 1, V =

ab
b

 .



Example

? b b
a ? b
a b ?


Question: For what values of a does nuclear-norm minimization work?



Strategy

Build

G := UV T + W

supported on Ω such that

||W || ≤ 1 UTW = 0 W V = 0



Dual certificate

G is supported on Ω so GΩc = ~0 and

WΩc = −(UV T )Ωc

since

UV T =
1√
3

a b b
a b b
a b b


this implies

W =
1√
3

−a w3 w5
w1 −b w6
w2 w4 −b
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Dual certificate

Equations are dependent, fixing w1 := w

W =
1√
3


−a a− wb

a
wb
a

w −b b − w

a2

b − w b − a2

b + w −b

 ,

Nuclear-norm minimization works if ||W || < 1 for any w



In the blue region ||W || < 1
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Results

Nuclear-norm minimization fails if singular vector is too spiky

For example, if a = 0.82 (b = 0.4047) the solution is

X ∗ :=

0.8095 0.82 0.82
0.4047 0.4047 0.4047
0.4047 0.4047 0.4047

 ,
where ||X ∗||∗ = 1.7320 < 1.7321 = ||Xtrue||∗
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