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Motivating applications



Compressed sensing

Goal: Recovering signals from small number of data

Arbitrary vector of dimension d cannot be recovered from m < d
linear measurements

However, signals of interest are highly structured
For example, images are sparse in wavelet basis
If signal is parametrized by s < m parameters, recovery may be possible

We focus on simplified problem: recovering sparse vectors



Restricted-isometry property

Different sparse vectors should never produce similar data
If two s-sparse vectors Xi, X»> are far, then Axj, AX should be far

The measurement operator should preserve distances (be an isometry)
when restricted to act upon sparse vectors

This is true for random operators with high probability



Simplified problem

Recover sparse signal Xiue € R™ from measurements

—

AXirye = Y

where y € R", A€ R™" and m < n

Minimize nonzero entries subject to equality constraints?



Promoting sparsity

Toy problem: Find t such that

is sparse

Strategy: Minimize

f(t) == [|vil|



Promoting sparsity
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f1-norm minimization with equality constraints

min ||X||; subject to AX =y
X



l>-norm minimization with equality constraints
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Another algorithm for sparse recovery

Imagine we have access to inner products with sparse vector

(0, Xerue)

Strategy: Solve



Another algorithm for sparse recovery

Imagine we have access to inner products with sparse vector

(0, Xerue)

Strategy: Solve

—

maxXx <17, true> SUbjeCt to H'jHoo S 1
ueRrn



Another algorithm for sparse recovery

If we have y = AXirye



Another algorithm for sparse recovery

If we have y = AXirye

<\7, )7> = <‘77 A)_{true>



Another algorithm for sparse recovery

If we have y = AXirye



Another algorithm for sparse recovery

If we have y = AXirye

We can solve

max (V,y) subject to HATV‘ <1
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Another algorithm for sparse recovery

If we have y = AXirye

We can solve

max (V,y) subject to HATV‘ <1

VERM

o0

Equivalent to ¢1-norm minimization!



Matrix completion




Promoting low-rank structure

Finding low-rank matrices consistent with data is often very useful

Toy problem: Find t such that
054t 1 1
M(t):=| 05 05 t|,
05 1—t 05

is low rank

Strategy: Minimize

f(t) = |IM(2)]]



Promoting low-rank structure

— Rank
3.0 1 T Operator norm
H —— Frobenius norm

— Nuclear norm

15



Nuclear-norm minimization for matrix completion

y contains the observed entries indexed by set Q

min || X]||, such that Xq =y
XeRnlxnz



Results for movie dataset
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Convex sets



Constrained optimization problem

min f(x) subject to x € S C R"
XeRn

Any X € S is a feasible point



Convex functions

A function f : R" — R is convex if for any X,y € R" and any 6 € (0,1)

0f (X)+(L—0)f(¥) > f(O0x+(1-0)y)



Convex sets

A convex set S is any set such that for any X,y € S and 6 € (0,1)

08+ (1-0)yeS



Convex vs nonconvex

Nonconvex Convex




Separating hyperplane

There exists a hyperplane separating any nonempty disjoint convex sets
81. 52 C R"

There exists 3 € R”, b € R such that

forall X; € 81 (

Ly
Red!
S~
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for all )_('2 S 82 (5, )_('2> <b



Proof

Simplifying assumption:

Vo — Vill, = min X5 — X;
172= 7l = _gmin__ 1% = Al

Hyperplane orthogonal to y» — y; between y; and yb:

S L L L NtV
h(X) == <y2—y1,x—y12y2> =

Goal: Show h(x) > 0 for all S»



Proof

Assume that h(Z) < 0 for 7 € S»
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Proof

Assume that h(Z) < 0 for 7 € S»

:<}72_ < .y2__)71>
1
2

= (ph— Vi, 0 — )+ = |12 — 73

SO

(Yo—y1,0—y2) <0



Proof

)79 =00+ (1—9))72 GSQ

— — — — — - 112
¥ — 5 = |0(7 — ) + 7> — 7ll5



Proof
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— — — — — — 2
o — %5 = 107 — ¥2) + % — ll5
=175 — 7|5+ 62 |7 — |5 + 20 (7> — 71, T — 3>)



Proof

)79 =00+ (1—9))72 GSQ

Yo — %5 = 1107 — ) + > — 75
= |92 — 7ll3 + 0% |G — pll5 + 20 (7> — y1, T — 3b)
= |72 — nl3 + g(b)



Proof

Vo =00+ (1—0)heS
— — — — — — 2
o — %5 = 107 — ¥2) + % — ll5
=175 — 7|5+ 62 |7 — |5 + 20 (7> — 71, T — 3>)

L o2
= [y — nll5 + g(0)

g(0)=0and g'(0) = (o — V1,0 —y») <O



Proof

)79 =00+ (1—9))72 GSQ

- 2 . - -
o — %5 = 107 — ¥2) + % — ll5
=175 — 7|5+ 62 |7 — |5 + 20 (7> — 71, T — 3>)
= |72 — 7|12 + g(6)
g(0) =0and g’(0) = (¥> — y1, 0 — yb) < 0

For small enough 6 yj is closer to yj than y5



Hyperplanes are convex

Let H = {>?| AR = E}
For any X,y € H and any 6 € (0,1)

A0S+ (1—0)7) =



Hyperplanes are convex

Let H = {>?| AR = E}
For any X,y € H and any 6 € (0,1)

A0+ (1—0)y) = 0AX + (1 — 0) Ay



Hyperplanes are convex

Let H = {>?| AR = E}
For any X,y € H and any 6 € (0,1)

A0+ (1—0)y) = 0AX + (1 — 0) Ay

I
oy

sofx+(1—0)yeH



Sublevel sets

Sy ={x[f(x) <~}



Sublevel sets of convex functions are convex

Let %, j € S,

FO%+ (1—0)7)



Sublevel sets of convex functions are convex

Let %, j € S,

FOX+(1—-0)y)<0f(x)+(1—-0)f(Y)



Sublevel sets of convex functions are convex

Let %, j € S,



Intersection of convex sets

m .
If S1,...,Sm are convex, N, S; is convex



Constrained optimization

Any optimization problem of the form,
min fo(X) subject to f; (X) <0, 1<i<k,
XER"
AX = b,

where A € R™" b € R™, has a convex feasibility set



Lagrangian duality



Optimization problem with equality constraints

AcR™N phcRM

min f(x) subject to AX = b
XERN



Example

min |[X]|; subject to 2x[1] — 3x[2] = 4
XER2



Example
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Example
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Cost function f(x)

4/3 1

Primal variable for feasible X



Lagrangian

@ € R™ is called a Lagrange multiplier



Lagrangian

At any feasible point the Lagrangian is equal to the cost function

L(%,&) = f (%)



Example

L (X, a) = ||x]|; + a(4 — 2X[1] + 3X[2])
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Lagrange dual function

o L(%a
SR (%.4)



Lagrange dual function as a lower bound

Let p* be a minimum of the primal, for any &

*

p



Lagrange dual function as a lower bound

Let p* be a minimum of the primal, for any &



Lagrange dual function as a lower bound

Let p* be a minimum of the primal, for any &



Lagrange dual function as a lower bound

Let p* be a minimum of the primal, for any &



Dual problem

max g («)

aeRM

- o

—g (@) := supgcpn L (X, @) is a pointwise supremum of linear functions



Maximum /supremum of convex functions

Pointwise maximum of m convex functions f1, ..., fy

fonax (X) == 1?iagxm fi (x)

is convex

Pointwise supremum of a family of convex functions indexed by a set 7

faup (X) := sup f; (x)
€T

is convex



Proof

Forany 0 <0 <1andanyx,y €R,

fsup(9Y+(1—9)y):supﬁ(0>?'+(1—9)Y)
i€T



Proof

Forany 0 <0 <1andanyx,y €R,

fsup(g;'i‘(l_g)y) :Supﬁ(9§+(1 _0))7)
i€T

<supffi(X)+ (1 —0)fi(y) by convexity of the f;
i€z



Proof

Forany 0 <0 <1andanyx,y €R,

foup (0X + (1 = 0) y) = sup f; (6x + (1 — 0) )
€T
<supffi(X)+ (1 —0)fi(y) by convexity of the f;
i€z

< Osupf; () + (1 —0)supf: (¥)
ieT JET



Proof

Forany 0 <0 <1andanyx,y €R,

fsup(9Y+(1—9)y):Supﬁ(0§+(1—9)Y)

i€z
<supffi(X)+ (1 —0)fi(y) by convexity of the f;
i€z
< @supfi(X)+ (1—0)supf;(y)
i€z J€T

= Ofup (X) + (1 = 0) foup (V)



Weak duality

Let d* be a maximum of the dual problem

d* < p*



Strong duality

Let d* be a maximum of the dual problem

d*zp*

Not so obvious...



Norm minimization

The Lagrange dual function of

min ||X]|  subject to AX = b
XERN

where A € R™*n b ¢ R™, equals

max (a, 5) subject to HAT&
aeRrRm

<1

VIl , == max (y,X
17llg = max (7. 5)



Proof

L(%,&) = ||Ix]| +aT (5_ Az)



Proof

L(%,&) = ||Ix]| +aT (5_ AR

= ||| — (AT&@, ) +a’b



Proof

= |Ix||+a”
> T
= |Ixl] - (A" q,



Proof

a =[x

0= argHmHax <AT07, >"<'> so that <AT0"Z, LT> = HAT
x[<1
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Proof

a =[x

0= argHmHax <AT07, >"<'> so that <AT0"Z, LT> = HAT
x[<1
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Proof
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Proof

L(ad,&) = a (1 - HAT&

L)

> IfHATd'Hd>1When a— —oo L(ad,d) — oo

> If HAT&Hd < 1 then minimum achieved by a:=0



Proof

L(ad,&) = a (1 - HAT&

L)

> IfHATd'Hd>1When a— —oo L(ad,d) — oo

> If HAT&Hd < 1 then minimum achieved by a:=0

£(d) = {&TE f[[ATal], <1,
—o0o otherwise.



¢1-norm minimization

Let A€ R™" b e R™. The dual of
min ||X||, subject to AX=5h

XEeRn

max (a,y) subject to HATO_ZH <1

aerm 0o



Example

The dual of

min ||X||; subject to 2x[1] — 3x[2] = 4
X€R2



Example

The dual of

min ||X||; subject to 2x[1] — 3x[2] = 4
X€R2

max 4« subject to || < =
GER™ 3



Example

4/3 1

Dual function g(a)
o

13 179 1/9 173
Dual variable (a)



¢1-norm minimization

The solution @* to

max (d,y) subject to HAT&H <1

aeRm oo
satisfies
(ATa*)[i] = sign(x*[i]) for all X*[i] # 0

for any solution X* to the primal problem



f1-norm minimization with equality constraints

O Signal
X Min I1-norm solution
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f1-norm minimization with equality constraints
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Proof
By strong duality

1%*]l, = y T



Proof

By strong duality

1x*l, =y T

A)?*)TO?*



Proof

By strong duality



Proof

By strong duality

||ﬂ* =T

(ATa )% [i]

'Ms



Proof

By strong duality

1%*]), =y Ta*
— ()—<»*)T(AT—»*)

(ATa )% [i]

'Ms

Il
._.

By Hélder's inequality

X"l = Z(AT&*)[i]Y*[i]



Proof

By strong duality

<), =y Ta*
— ()—<»*)T(AT—»*)

By Hélder's inequality

Z (ATa")[iIx*

Equality if and only if
(AT@*)[i] = sign(x*[i]) for all X*[i] # 0



Proof of strong duality



Proof of strong duality

A::{(\?,t)|5—A>?:\7 and f(xX) <t forsomeieR”}



Proof of strong duality

A::{(\?,t)|5—A>?:\7 and f(xX) <t forsomeieR”}

p*:inf{t|(6,t)eA}



Proof of strong duality

A::{(\?,t)|5—A>?:\7 and f(xX) <t forsomeieR”}

p*:inf{t|(6,t)eA}

gl@)=inf{{(a,v)+t]|(V,t) e A}



Geometrically

The hyperplane

is a supporting hyperplane to A



Geometrically

The hyperplane

is a supporting hyperplane to A

Implies weak duality

p* = (a,0) + p* > g(d)



Example

min |[X]|; subject to 2x[1] — 3x[2] = 4
XeR?



Example

min |[X]|; subject to 2x[1] — 3x[2] = 4
XeR?

Fix v := 4 — 2x[1] + 3x[2], then

X[l = IXL]] +

—4 + 2x]1] ‘
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XeR?

Fix v := 4 — 2x[1] + 3x[2], then

X[l = IXL]] +
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Piecewise linear function with two kinks at X[1] = 0 and X[1] = (4 — v)/2



Example

min |[X]|; subject to 2x[1] — 3x[2] = 4
XeR?

Fix v := 4 — 2x[1] + 3x[2], then

X[l = IXL]] +

—4 + 2x]1] ‘

Piecewise linear function with two kinks at X[1] = 0 and X[1] = (4 — v)/2

v—4
2

v—4
3

)

min [|1X]|; = min {
v=4—2x[1]+3%[2]



Example
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Example
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Dual variable (a)

)+t = g(a)

i
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A is convex
Let (\71, t]_), (\72, i‘z) cA

There exists X; and X5 such that

Vi = b— AR, f(x1) <t
V= b— AR, f(o) <t

This implies
OV + (1 — 0)ih = b — A(hxi + (1 — 0)%)
and by convexity of f

(60X + (1 —0)x%) <0f(x1) + (1 — 0)f(x2)
< 0t; + (1 — 9)1‘2,

so (v, t1) + (1 —0)(Va, ) € A



Another convex set

B .= {(G,t) | t<p*}



Another convex set

B .= {(G,t) | t<p*}

A and B are disjoint



Another convex set

B .= {(G,t) | t<p*}

A and B are disjoint

If t € AN B there exists X such that f(x) <t < p*



Example

4/3 4
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Separating hyperplane

There exists a hyperplane separating A and B

There exists w € R™ and z € R such that

wiv+zt>q forall (V,t)e A

wlv+4zt <q forall (V,t)eB

Assume z > 0 (z < 0 is impossible, argument for z = 0 is similar)



Separating hyperplane

Wi+ t>ztq forall (v,t)e A

z7WwTv+t<zlq forall (vV,t)e B



Separating hyperplane

z7'Wwiv+t<zlq forall (V,t)eB

implies

p*<z g



Separating hyperplane

W+ t>z1q forall (vV,t)c A

implies



Separating hyperplane

W+ t>z1q forall (vV,t)c A

implies

L(z7 W, %) = f(X) + 2w (b — AX)

=z Wwiv+t



Separating hyperplane

W+ t>z1q forall (vV,t)c A

implies

L(z7 W, %) = f(X) + 2w (b — AX)

=z Wiyt

>z g



Separating hyperplane

W+ t>z1q forall (vV,t)c A

implies



Separating hyperplane

W+ t>z1q forall (vV,t)c A

implies



Separating hyperplane

W+ t>z1q forall (vV,t)c A

implies



Separating hyperplane

W+ t>z1q forall (vV,t)c A
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Separating hyperplane

W+ t>z1q forall (vV,t)c A

implies



Compressed sensing



Compressed sensing

Goal: Recovering signals from small number of data

Arbitrary vector of dimension d cannot be recovered from m < d
linear measurements

However, signals of interest are highly structured
For example, images are sparse in wavelet basis
If signal is parametrized by s < m parameters, recovery may be possible

We focus on simplified problem: recovering sparse vectors



Exact recovery

Let A € R™*9 have iid standard Gaussian entries
Let Xirue € RY have s nonzero entries
If AXirue = ¥, then X is the unique solution of the problem

min ||X||, subject to AxX=y
XeRd

with probability at least 1 — % as long as

m > Cslogd



Sparsity in a transform domain

If X is sparse in the wavelet domain, Xirue = W Girue

—

min [|c]]; subject to AWC =y
c



Undersampling pattern




Direct reconstruction




Min. ¢1-norm estimate (wavelet coefficients)




How to prove exact recovery

Need to prove that no other x such that AX = y has smaller #; norm
than Xrue

Idea: Use duality



How to prove exact recovery

Assume there exists a feasible vector @’ for the dual

max (@, y) subject to HATO"ZH <1

aerm o
such that

H’_(:crueul = (07/,)7>



How to prove exact recovery

Assume there exists a feasible vector @’ for the dual

max (@, y) subject to HATO"ZH <1

aerm o
such that

H’_(:crueul = (07/,)7>

then by weak duality, for any feasible X

1<y = (@, 7)

= [[Koruell1



Proof strategy

Show that for any sparse vector X;ue, there exists @’ such that

||>arue||1 = <62/7)7>



¢1-norm minimization

The solution V* to

max (&, b) subject to HAT&’H <1

aeRrRm oo
satisfies
(ATv*)[i] = sign(X*[i]) for all X*[i] # 0

for any solution X* to the primal problem



Proof strategy

Show that for any sparse vector Xiue, there exists @’ such that

<1

”AT&/
oo

(ATa"[i] = sign(Xrueli]) for all Xipueli] # 0



Subdifferential of #; norm

g is a subgradient of the ¢1 norm at X € R" if and only if

glil =sign(x[])  ifx[] #0

gl <1 if X[i] =0



Proof strategy

Show that for any sparse vector X;ue, there exists @’ such that
Yy sp

HAT&/

<1

o0

(AT&@")[i] = sign(Xrue[i]) for all Xirue[i] # 0
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Yy sp
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Proof strategy

Show that for any sparse vector X;ue, there exists @’ such that
Yy sp

HAT&/

<1

(AT&@")[i] = sign(Xrue[i]) for all Xirue[i] # 0

Alternative justification: g := ATa’ is a subgradient of the £; norm
at Xirue SO for any X such that AX =y

||)?||1 2 ||)?true||1 + <g7)?_)arue>

= H>_<:trueH1 + <AT&I,X - >?true>

= H;(:crueul + <&/7A(§— )?true))



Proof strategy

Show that for any sparse vector X;ue, there exists @’ such that
Yy sp

<1

HAT&/
oo

(AT&@")[i] = sign(Xrue[i]) for all Xirue[i] # 0

Alternative justification: g := ATa’ is a subgradient of the £; norm
at Xirue so for any X such that AX =y
X1y = [[Xtruell; + (&5 X — Xerue)
= H)_(:trueul + <AT&/7)?_ )?:crue>
= H)_(:Crueul + <62/7A()?_ _:‘.rue)>
= "’arue"l +



Proof strategy

Show that for any sparse vector X;ue, there exists @’ such that
Yy sp

(AT&@")[i] = sign(Xrue[i]) for all Xirue[i] # 0

Alternative justification: g := ATa’ is a subgradient of the £; norm
at Xirue so for any X such that AX =y
||)?||1 2 ||)?true||1 + <g7)?_ :rue>
= H>_<:trueH1 +
= H;(:crueul + <&/7A(§— Xtrue))
(

= "’arue"l +

T =1 = =
Ala 7X_Xtrue>

= ‘|’arue|’1



Dual certificate for £1-norm minimization

For Xrue € RY with support S such that AXue = ¥
Assume the submatrix Ag is full rank
If there exists Acerr € R™ such that Ghert := AT Gcert satisfies

gceft[i] = Sign()?tl’ue[i]) I'F )?true[i] 7£ O
|§Cert[i]| <1 if )?true[i] =0

then Xirue is the unique solution to the £1-norm minimization problem



Proof

For any feasible X € RY, let h:=x— Xerue (SO Ah = 6)
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s

S
1 > gcerthsc

Then

Xerue + 775( H + thc because Xi e is supported on S

I, = |
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Proof
For any feasible X € RY, let h:=x— Xerue (SO Ah = 6)
If Ag is full rank hse # 0 unless h=0

The strict inequality implies

s

S
1 > gcerthsc
Then

[1Xl]; = because Xirue is supported on S

>_<)true +PS (H)Hl + HHSC

1
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Proof

For any feasible X € RY, let h := X — Xrue (so Ah = 6)
If Ag is full rank hse # 0 unless h=0

The strict inequality implies

s

S
1 > gcerthsc

Then

Yerue + Ps (I:)H + H/_'I:gc because Xirye is supported on S

[IX]]

> [ [Xiruel |1 + gcertPS (h ) + gcertPSC (h )
> [[erel 1 + Betrt

= [|Xerue|l; + (A acert) h

= |[Xruel|; + acertAh

= ‘|)arue‘|1



Proof of exact recovery

Goal: Build dual certificate
Interpolate sign pattern using vector in row space of A

Consider correlation vector



x2 random undersampling (Fourier)
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Proof of exact recovery

Idea: Use correlation vectors to interpolate

Bcert := g W;C;

ieS

where weights w;, i € S are set so that for all j € S

sign (Xtrue) U] = 8eert ]
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Proof of exact recovery

Challenge: Analyzing certificate for all sign patterns

sign (%irue)s = (D _ wi€i)s

ies

= Z W;A;A,’
i€S
=AlAsW

Solving for w yields

— T -1 -
W= <ASA5) sign (Xrue) s



Certificate candidate

Bcert = E W;C;

ieS
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Certificate candidate

Bcert = g W;C;
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Certificate candidate

Bcert = g W;C;

ieS
TA -
=A ASchrt

~1
=ATAg (A;-Ag) sign (Xrue) s

Is ALAs invertible?
What about

|8eert[i]] <1 if Xrue[i] =0 7



Singular values of a Gaussian matrix

Let M be a m x s matrix with iid standard Gaussian entries such that
m>s

For any fixed € > 0, the singular values of M satisfy
vVm(l—e€)<os<or<yvm(l+e)

with probability at least 1 — 2 (172)5 exp (—%)



Singular values of Ag

o is the smallest singular value of Ag
Setting € := 0.5, let £ denote the event that

05vVm< os < o1 <1.5¢/m.
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Singular values of Ag

o is the smallest singular value of Ag
Setting € := 0.5, let £ denote the event that

05vVm< os < o1 <1.5¢/m.

For a constant C’

P(E)>1—exp (—C'?)

Conditioned on £ Ag is full rank, so AL Ag is invertible

Zcert interpolates the sign
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What about |geert[/]| < 1 on §°7

Ocert = AsWeert

-1
= As (AZAs)  sign (%ine)s

gcert = ATO_Ecert
Let USV' be the SVD of Ag, conditioned on &

H&certuz = HUS_IVTSIE" (’Zcrue)SH2

< |[sign (ﬁrue)51|2
< —0'5

<2,/>
m
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P(lu] > £) < 2exp (—2>




What about |geert[/]| < 1 on §°7

P (|A7 Eeer

21|E>:P<‘A,T\7 >1 for \|¢H2§2,/;)
m
§2exp(—g)




What about |geert[/]| < 1 on §°7

P (|A7 Eeer

21|E>:P<‘A,-T\7 >1 for \|vy\2§2,/;)
m
§2exp(—g)

P (‘A,-Td’cert‘ > 1) <p (‘A,T&cert > 1|5) +P(E9)

<209(-2) +ov(-c7)




What about |geert[/]| < 1 on §°7
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What about |geert[/]| < 1 on §°7

):P(‘A,TV >1 for \m\zgz,/;)
m

< i

<2000 (- )

P(’A,-Td’cert‘ > ) < P<‘AT" > 1|5) +P(E9)

< 2exp (—8—) + exp ( C'?)

P (|A] Geen| =

By the union bound

P <U {‘Af&cert sl
ieSe

}) < n2on (1) < oo (7))

1
<1l-- if m> Cslogn
n



Matrix completion



Matrix completion as an inverse problem
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Matrix completion as an inverse problem

1 75
73 2

For a fixed sampling pattern, underdetermined system of equations

Y11
1000 0 0] |va| [1]
000100 |¥ |3
00001 0||vam|l |5
00000 1 |vs| |2

_Y23_



Isn't this completely ill posed?

Assumption: Matrix is low rank, depends on = r (m + n) parameters

As long as data > parameters recovery is possible (in principle)

e
==
=
=
Y )
= s



Can we complete this matrix by minimizing rank?

el
=
=
=



Measurements

We must see an entry in each row/column at least

11 1 1]

[ S I e §
[ T S I =}

11
77
11
11

[ T S T = ¢

Assumption: Random sampling (usually doesn't hold in practice!)



Can we complete this matrix from random samples?

000 0 0O
0 00 23 00
000 0 0O
000 0 0O



Can we complete this matrix from random samples?

N = ==
W= = =
N
Ol = = =



Can we complete this matrix from random samples?

111 1]+ 1 2 3 4

N = ==
W= = =
N
Ol = = =
= O O o



Incoherence

A matrix is incoherent if its singular vectors must be spread out

Forl/y/n<pu<1

max _|Ujl < p
1<i<r,1<j<m

max Vil <
1§i§r,l§i§n| il <p

for the left Us,..., U, and right V4,..., V, singular vectors

Common assumption in theoretical analysis



Nuclear-norm minimization for matrix completion

y contains the observed entries indexed by set Q

min [|X]||, such that Xq =y
XGR"IX"Z

Challenge: Prove that this works



Nuclear-norm minimization for matrix completion

y contains the observed entries indexed by set Q

min [|X]||, such that Xq =y
XGR"IX"Z

Challenge: Prove that this works

Use duality!



Norm minimization

The Lagrange dual function of

min ||X]|  subject to AX = b
XERN

where A € R™*n b ¢ R™, equals

max (a, 5) subject to HAT&
aeRrRm

<1

VIl , == max (y,X
17llg = max (7. 5)



Dual of nuclear-norm minimization

Adjoint of operator X — Xq is Mq

-,

Mq(b) contains b in entries indexed by Q and zeros elsewhere



Dual of nuclear-norm minimization

Adjoint of operator X — Xq is Mq

-,

Mq(b) contains b in entries indexed by Q and zeros elsewhere

Proof: For any A and b

— -,

(Aq, b) = (A, Mqa(b))



Dual norm of nuclear norm

For any matrix A € R™*",

[IAIl. A,B)
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1Ally = max (4.)



Dual norm of nuclear norm

For any matrix A € R™*",

IAll, = max A, B)
{lIBlI<1| BERM*n}

All, ;= max (AB

1Ally = max (4.)

A
=||A|| max ( —,B
I H||B|*s1<HAH >



Dual norm of nuclear norm

For any matrix A € R™*",

IAll, = max A, B)
{lIBlI<1| BERM*n}

All, ;= max (AB

1Ally = max (4.)

A
=||A|| max ( —,B
I H||B|*s1<HAH >

= [|All



Dual of nuclear-norm minimization

Let Q be a subset of m entries, and y € R™

The dual of
Xer]Enilnan [|X]], such that Xq =y
is
max (&,y) subject to [|Mq(d)|| <1

aerRm



How to prove exact recovery

Assume there exists a feasible vector @’ for the dual

max (&@,y) subject to [|[Mq(d)|| <1
aeRm

such that

[ Xeruel |, = (@', ¥)



How to prove exact recovery

Assume there exists a feasible vector @’ for the dual

max (&@,y) subject to [|[Mq(d)|| <1
aeRm

such that
[ Xeruel, = (@', )
then by weak duality, for any feasible X

IX]l. > (@’ ¥)
:HXtrueH*



Analogy with ¢1 norm

» /1 norm — nuclear norm
» /s norm — operator norm

» UVT — sign pattern of true sparse signal



How to prove exact recovery

Since

for
[ Xervell. = (@, ¥) = (Ma(@), Xirue)
G := Mgq(&) must be of the form
G:=UvT+W
where

wjj<it UTw=0 WV=0



How to prove exact recovery

<G7Xtrue> = <UVT + WaXtrue>
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How to prove exact recovery

<GaXtrue> = <UVT + WaXtrue>
—tr (Xt,TueW n Xt,TueUVT)

—tr (VSUTW 4 VUTUSVT>
tr (S)



How to prove exact recovery

(G, Xirue) = (UVT + W, Xirue)
—tr (Xt,TueW + Xt,TueuvT)
—tr (VSUTW + VUTUSVT>
=tr(S)
= || Xeruell



Subdifferential of the nuclear norm

Let X € R™*" be a rank-r matrix with SVD USV'T, where U € R™*",
V € R™" and S € R™*r

A matrix G is a subgradient of the nuclear norm at X if and only if
G:=UVT+W
where W satisfies

Wil <1
Urw =0
WYV =0



Alternative justification

G := Mq(@) is a subgradient of the nuclear norm at Xirye

For any X such that Xq = (Xirue)a

X = [ Xeruell. + (X = Xirve, G)
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Alternative justification

G := Mq(@) is a subgradient of the nuclear norm at Xirye

For any X such that Xq = (Xirue)a

X = [[Xeruell + (X = Xerve, G)
= ”XtrueH* + <(X - Xtrue)Qa GQ>
= HXtrueH*



Alternative justification

G := Mq(@) is a subgradient of the nuclear norm at Xirye

For any X such that Xq = (Xirue)a

HXH* > HXtrueH* + (X - Xtruea G>
= ”XtrueH* + <(X - Xtrue)Qa GQ>
= HXtrueH*

If ||[W/|| <1, under a certain constraint on sampling pattern, existence
of G implies that Xiue is the unique solution



Example



Example




Example

[\WR VRN
o VT
~N o o

Question: For what values of a does nuclear-norm minimization work?



Strategy

Build
G:=UVT+W
supported on 2 such that

wil<1 UTw=0

WV =0



Dual certificate

G is supported on Q so Gge = 0 and

Wae = —(UV T )qe



Dual certificate

G is supported on Q so Gge = 0 and

Wae = —(UV T )qe

since

uv’T =

Sl
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Dual certificate

G is supported on Q so Gge = 0 and

Wae = —(UV T )qe

since

this implies

o T T
| E |

ws
We
—b
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1 —a w3 Whs 1 1
W=— wi —b We U=—11
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UTW =0and WV =0 implies
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w3 + ws = —
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Dual certificate

1 —a w3 Whs 1 1
W=— wi —b We U=—11
V3 wr wg —b V3 1

UTW =0and WV =0 implies

wi +wr =2a
w3+ ws =Db

ws + wg = b

N

a
W3—|—W5:z
2

awi + bW(, =



Dual certificate

1 —a w3 Whs 1 1
W=— wi —b We U=—11
V3 wr wg —b V3 1

UTW =0and WV =0 implies

wi +wr =2a

w3+ ws =b
W5+W6:b
82
W3—|—W5:z
awy + bwg = b?

aws + bwy = b?



Dual certificate

Equations are dependent, fixing wy := w

W=— w —b b—w
\/g 32 32
&5—w b-—%+w b

Nuclear-norm minimization works if ||W|| < 1 for any w



In the blue region ||W]| < 1
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Results

Nuclear-norm minimization fails if singular vector is too spiky

For example, if a = 0.82 (b = 0.4047) the solution is

0.8095 0.82 0.82
X*:= |0.4047 0.4047 0.4047|,
0.4047 0.4047 0.4047

where [|X*||, = 1.7320 < 1.7321 = || Xruel |,
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