
Mathematical Tools for Data Science Spring 2019

Randomization

1 Motivation

1.1 Randomized dimensionality reduction

As discussed in the notes on the SVD, dimensionality reduction is an important tool in data
analysis. Dimensionality reduction via PCA is optimal in the sense that it preserves as much
variance as possible in the data. However, it is computationally expensive. It also requires having
all the data available beforehand, which is impractical for real-time applications. For such cases
we need a non-adaptive alternative to PCA that chooses the projection before seeing the data.
A possibility is to project the data onto a small number of random directions, by taking inner
products with unit-norm vectors with random orientations. Note that this is not a projection
strictly speaking because the directions are not orthogonal. Perhaps surprisingly, this is often
quite effective, as illustrated in Figure 1.1 The randomized maps do not preserve the variance
as much as PCA, but they do a pretty good job. In these notes we will provide a mathematical
analysis of this phenomenon.

1.2 Compressed sensing

As mentioned in previous notes, magnetic resonance imaging (MRI) is a popular medical-imaging
technique that measures the response of the atomic nuclei of body tissues to high-frequency radio
waves when placed in a strong magnetic field. MRI measurements can be modeled as samples
from the 2D or 3D Fourier series of the object that is being imaged, for example a slice of a human
leg. An important challenge in MRI is to reduce measurement time: long acquisition times are
expensive and bothersome for the patients, especially if they are children or seriously ill.

Gathering less measurements, or equivalently undersampling the Fourier coefficients of the image
of interest, results in shorter data-acquisition times, but poses the challenge of recovering the image
from undersampled data. As we saw in the notes on the frequency domain, regular undersampling
results in severe aliasing in the image domain. As shown in Figure 2, this is a result of adding a
circular shift of the image with itself. The aliasing is extremely difficult to remove, because most
the features from the shifted image are very similar to those of the unshifted image. Interestingly,
random undersampling results in noise-like aliasing, as illustrated in the figure. This kind of
aliasing is very different to the image features, and is therefore easier to remove. The problem of
estimating signals from underdetermined random measurements is known as compressed sensing.

1The data can be found at https://archive.ics.uci.edu/ml/datasets/seeds.
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Figure 1: Dimensionality reduction of a data set of seeds with seven features (area, perimeter, com-
pactness, length of kernel, width of kernel, asymmetry coefficient and length of kernel groove) onto two
dimensions. The seeds belong to three different varieties of wheat: Kama, Rosa and Canadian. The
images compare dimensionality reduction via PCA with a randomized approach, where we project onto
two random directions. Each color represents a variety of wheat.

2



Space Frequency

Fully sampled

0.0 5.0 10.0 15.0 20.0 25.0
t2 (cm)

0.0

5.0

10.0

15.0

20.0

25.0
t 1

 (c
m

)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0
k2 (1/cm)

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

k 1
 (1

/c
m

)

10 6

10 5

10 4

10 3

10 2

x2 regular
undersampling

0.0 5.0 10.0 15.0 20.0 25.0
t2 (cm)

0.0

5.0

10.0

15.0

20.0

25.0

t 1
 (c

m
)

0.5

1.0

1.5

2.0

2.5

3.0

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0
k2 (1/cm)

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

k 1
 (1

/c
m

)

10 5

10 4

10 3

10 2

10 1

x2 random
undersampling

0.0 5.0 10.0 15.0 20.0 25.0
t2 (cm)

0.0

5.0

10.0

15.0

20.0

25.0

t 1
 (c

m
)

0.5

0.0

0.5

1.0

1.5

2.0

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0
k2 (1/cm)

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

k 1
 (1

/c
m

)

10 5

10 4

10 3

10 2

10 1

Figure 2: Sagittal section of a human knee measured by magnetic-resonance imaging. The images on
the left show the image recovered from the Fourier-domain sampling patterns shown on the right. Regular
(center) and random (bottom) undersampling patterns produce very different aliasing artifacts.
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2 Gaussian random variables

Our analysis of randomization techniques relies heavily on Gaussian random variables and vectors.
In this section we describe some basic properties. We represent random quantities with bold font.

2.1 The Gaussian distribution

The Gaussian or normal random variable is arguably the most popular random variable in statisti-
cal modeling and signal processing. The reason is that sums of independent random variables often
converge to Gaussian distributions, a phenomenon characterized by the central limit theorem. As
a result any quantity that results from the additive combination of several unrelated factors will
tend to have a Gaussian distribution. For example, in signal processing and engineering, noise is
often modeled as Gaussian. Figure 3 shows the pdfs of Gaussian random variables with different
means and variances. When a Gaussian has mean zero and unit variance, we call it a standard
Gaussian.

Definition 2.1 (Gaussian). The pdf of a Gaussian or normal random variable with mean µ and
standard deviation σ is given by

fX (x) =
1√
2πσ

e−
(x−µ)2

2σ2 . (1)

An important property of Gaussian random variables is that scaling and shifting Gaussians pre-
serves their distribution.

Lemma 2.2. If x is a Gaussian random variable with mean µ and standard deviation σ, then for
any a, b ∈ R

y := ax + b (2)

is a Gaussian random variable with mean aµ+ b and standard deviation |a|σ.

Proof. We assume a > 0 (the argument for a < 0 is very similar), to obtain

Fy (y) = P (y ≤ y) (3)

= P (ax + b ≤ y) (4)

= P

(
x ≤ y − b

a

)
(5)

=

∫ y−b
a

−∞

1√
2πσ

e−
(x−µ)2

2σ2 dx (6)

=

∫ y

−∞

1√
2πaσ

e−
(w−aµ−b)2

2a2σ2 dw by the change of variables w = ax+ b. (7)

Differentiating with respect to y yields

fy (y) =
1√

2πaσ
e−

(w−aµ−b)2

2a2σ2 (8)
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Figure 3: Gaussian random variable with different means and standard deviations.

so y is indeed a standard Gaussian random variable with mean aµ + b and standard deviation
|a|σ.

2.2 The multidimensional Gaussian distribution

Gaussian random vectors are a multidimensional generalization of Gaussian random variables.
They are parametrized by a vector and a matrix that correspond to their mean and covariance
matrix.

Definition 2.3 (Gaussian random vector). A Gaussian random vector ~x of dimension d is a
random vector with joint pdf

f~x (~x) =
1√

(2π)d |Σ|
exp

(
−1

2
(~x− ~µ)T Σ−1 (~x− ~µ)

)
, (9)

where |Σ| denotes the determinant of Σ. The mean vector ~µ ∈ Rd and the covariance matrix
Σ ∈ Rd×d, which is symmetric and positive definite, parametrize the distribution.

When the covariance matrix of a Gaussian vector is diagonal, its components are all independent.

Lemma 2.4 (Uncorrelation implies mutual independence for Gaussian random variables). If all
the components of a Gaussian random vector ~x are uncorrelated, then they are also mutually
independent.
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Proof. If all the components are uncorrelated then the covariance matrix is diagonal

Σ~x =


σ2
1 0 · · · 0

0 σ2
2 · · · 0

...
...

. . .
...

0 0 · · · σ2
d

 , (10)

where σi is the standard deviation of the ith component. Now, the inverse of this diagonal matrix
is just

Σ−1~x =


1
σ2
1

0 · · · 0

0 1
σ2
2
· · · 0

...
...

. . .
...

0 0 · · · 1
σ2
d

 , (11)

and its determinant is |Σ| =
∏d

i=1 σ
2
i so that

f~x (~x) =
1√

(2π)d |Σ|
exp

(
−1

2
(~x− ~µ)T Σ−1 (~x− ~µ)

)
(12)

=
d∏
i=1

1√
(2π)σi

exp

(
−(~xi − µi)2

2σ2
i

)
(13)

=
d∏
i=1

f~xi (~xi) . (14)

Since the joint pdf factors into the product of the marginals, the components are all mutually
independent.

When the covariance matrix of a Gaussian vector is the identity and its mean is zero, then its
entries are independent identically-distributed (iid) standard Gaussians with mean zero and unit
variance. We refer to such vectors as standard Gaussian vectors.

A fundamental property of Gaussian random vectors is that performing linear transformations on
them always yields vectors with joint distributions that are also Gaussian. This is a multidimen-
sional generalization of Lemma 2.2. We omit the proof, which is similar to that of Lemma 2.2.

Theorem 2.5 (Linear transformations of Gaussian random vectors are Gaussian). Let ~x be a
Gaussian random vector of dimension d with mean ~µ~x and covariance matrix Σ~x. For any matrix
A ∈ Rm×d and ~b ∈ Rm, ~y = A~x +~b is a Gaussian random vector with mean ~µ~x := A~µ~x +~b and
covariance matrix Σ~y := AΣ~xA

T , as long as Σ~y is full rank.

We have already this result in our derivation of the Wiener filter, where we assume that the
DFT coefficients of iid Gaussian noise are also iid Gaussian. Indeed, by Theorem 2.5 the DFT
of an iid Gaussian vector ~z with zero mean and variance σ2 is a Gaussian vector with covariance
matrix F[N ]σ

2IF ∗[N ] = Nσ2I and mean zero. Similarly, any signal representation obtained using
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Figure 4: Joint pdf of a two-dimensional Gaussian vector ~x and marginal pdfs of its two entries.

an orthogonal matrix maps iid Gaussian noise to iid Gaussian noise. We leveraged this fact when
designing thresholding-based denoising techniques.

Theorem 2.5 also implies that subvectors of Gaussian vectors are also Gaussian. Figure 4 show
the joint pdf of a two-dimensional Gaussian vector together with the marginal pdfs of its entries.

Another consequence of Theorem 2.5 is that standard Gaussian vectors are isotropic. The vectors
do not favor any direction in their ambient space. No matter how you rotate them, their distri-
bution stays the same. More precisely, for any orthogonal matrix U , if ~x is a standard Gaussian
vector, then by Theorem 2.5 U~x has the same distribution, since its mean equals U~0 = ~0 and its
covariance matrix equals UIUT = UUT = I. Note that this is a stronger statement than saying
that its variance is the same in every direction, which is true for any vector with uncorrelated
entries.

2.3 Gaussian random vectors in high dimensions

In the previous section we establish that the direction of standard Gaussian vectors is isotropic.
We now consider their magnitude. As we can see in Figure 4, in low dimensions the joint pdf of
Gaussian vectors is mostly concentrated around the origin. This is not the case as the dimension
of the ambient space grows. On the contrary, the norm of the random vector concentrates rapidly
around the square root of its dimension, as we observe in the numerical experiment described in
Figure 5. The squared `2-norm of a standard d-dimensional Gaussian vector ~x is the sum of the
squares of d independent standard Gaussian random variables. This random quantity is known as
a χ2 random variable.
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Figure 5: `2 norms of 100 independent samples from standard Gaussian random vectors in different
dimensions. The norms of the samples concentrate around the square root of the dimension.

Definition 2.6 (χ2 random variable). A χ2 (chi squared) random variable with d degrees of
freedom is defined as

y :=
d∑
i=1

x2
i (15)

where x1, . . . , xd are standard Gaussians.

Figure 6 shows the pdf of χ2 random variables for different values of d. As suggested by the
numerical experiments, the densities concentrate around

√
d as d increases.

The mean of the squared `2-norm of a standard Gaussian vector of dimension d indeed equals
√
d,

since

E
(
||~x||22

)
= E

(
d∑
i=1

~x[i]2

)
(16)

=
d∑
i=1

E
(
~x[i]2

)
(17)

= d. (18)

The standard deviation determines how much the squared `2-norm deviates from this value. The
following lemma shows that it equals

√
2d.

Lemma 2.7 (Variance of the squared `2 norm of a standard Gaussian vector). Let ~x be a standard
Gaussian random vector of dimension d. The variance of ||~x||22 is 2d.
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Figure 6: Pdfs of y/d for different values of d, where y is a χ2 random variable with d degrees of
freedom.

Proof. Recall that Var
(
||~x||22

)
= E

((
||~x||22

)2)− E
(
||~x||22

)2
. The result follows from

E
((
||~x||22

)2)
= E

( d∑
i=1

~x[i]2

)2
 (19)

= E

(
d∑
i=1

d∑
j=1

~x[i]2~x[j]2

)
(20)

=
d∑
i=1

d∑
j=1

E
(
~x[i]2~x[j]2

)
(21)

=
d∑
i=1

E
(
~x[i]4

)
+ 2

d−1∑
i=1

d∑
j=i+1

E
(
~x[i]2

)
E
(
~x[j]2

)
(22)

= 3d+ d(d− 1) since the 4th moment of a standard Gaussian equals 3 (23)

= d(d+ 2). (24)

The result implies that as d grows, the relative deviation of the squared norm of a standard
Gaussian vector from its mean decreases proportionally to

√
2/d. Geometrically, the probability

density concentrates close to the surface of a sphere with radius
√
d. For our analysis of randomized

techniques in the subsequent section, we need to characterize this phenomenon rigorously, through
probabilistic non-asymptotic bounds on the deviation from the mean. The following theorem shows
how to obtain such a bound by applying Markov’s inequality.

Theorem 2.8 (Chebyshev tail bound for the `2 norm of a standard Gaussian vector). Let ~x be a
standard Gaussian random vector of dimension d. For any ε > 0 we have

P
(
d (1− ε) < ||~x||22 < d (1 + ε)

)
≥ 1− 2

dε2
. (25)
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Proof. The bound is a consequence of Markov’s inequality, which quantifies the intuitive idea that
if a random variable is nonnegative and small then the probability that it takes large values must
be small.

Theorem 2.9 (Markov’s inequality, proof in Section 5.1). Let x be a nonnegative random variable.
For any positive constant a > 0,

P (x ≥ a) ≤ E (x)

a
. (26)

Let y := ||~x||22,

P (|y − d| ≥ dε) = P
(
(y − E (y))2 ≥ d2ε2

)
(27)

≤
E
(
(y − E (y))2

)
d2ε2

by Markov’s inequality (28)

=
Var (y)

d2ε2
(29)

=
2

dε2
by Lemma 2.7. (30)

When Markov’s inequality is applied to bound the deviation from the mean like this, it is usually
called Chebyshev’s inequality.

The bound in Theorem 2.8 only relies on the variance. As a result, it is quite weak. The probability
of the square deviating by εd is inverse proportional to the product dε2. Unfortunately, this is not
sufficient for our purposes. The following theorem provides a better bound by implicitly exploiting
the fact that the higher moments of a standard Gaussian are well behaved.

Theorem 2.10 (Chernoff tail bound for the `2 norm of a standard Gaussian vector). Let ~x be a
standard Gaussian random vector of dimension d. For any ε ∈ (0, 1) we have

P
(
d (1− ε) < ||~x||22 < d (1 + ε)

)
≥ 1− 2 exp

(
−dε

2

8

)
. (31)

Proof. Let y := ||~x||22. The result is implied by

P (y > d (1 + ε)) ≤ exp

(
−dε

2

8

)
, (32)

P (y < d (1− ε)) ≤ exp

(
−dε

2

8

)
. (33)

We present the proof of (32). The proof of (33) is essentially the same and is presented in
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Section 5.3. Let t > 0 be an arbitrary positive number, and note that

P (y > a) = P (exp (ty) > exp (at)) (34)

≤ exp (−at) E (exp (ty)) by Markov’s inequality (35)

≤ exp (−at) E

(
exp

(
d∑
i=1

txi
2

))
(36)

≤ exp (−at)
d∏
i=1

E
(
exp

(
txi

2
))

by independence of x1, . . . ,xd (37)

=
exp (−at)
(1− 2t)

d
2

, (38)

where the last step is a consequence of the following lemma.

Lemma 2.11 (Proof in Section 5.2). If x is a standard Gaussian and t < 1/2,

E
(
exp

(
tx2
))

=
1√

1− 2t
. (39)

Note that the lemma implies a bound on the higher-order moments of a standard Gaussian x,
since

E
(
exp

(
tx2
))

= E

(
∞∑
i=0

(tx2)
i

i!

)
(40)

=
∞∑
i=0

E (ti (x2i))

i!
. (41)

Bounds that exploit the behavior of higher-order moments to control tail probabilities through
the expectation of an exponential are often called Chernoff bounds.

We set a := d (1 + ε) and

t :=
1

2
− 1

2 (1 + ε)
, (42)

by minimizing over t ∈ (0, 1/2) in (38). This gives

P (y > d (1 + ε)) ≤ (1 + ε)
d
2 exp

(
−dε

2

)
(43)

= exp

(
−d

2
(ε− log (1 + ε))

)
(44)

≤ exp

(
−dε

2

8

)
, (45)

where the last step follows from the fact that the function g (x) := x− x2

4
−log (1 + x) is nonnegative

between 0 and 1 (the derivative is nonnegative and g (0) = 0).

The dimension must be quite high for these bounds to be meaningful: at least larger than 1/ε2.
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2.4 Projection onto a fixed subspace

Characterizing the projection of a standard Gaussian on a fixed subspace is an important com-
ponent of our analysis of randomized dimensionality reduction. In the lecture notes on SVD, it
already proved useful in analyzing the training error incurred by linear regression. We have es-
tablished that the probability density of standard Gaussian errors is isotropic and has variance d.
Intuitively, if we project the density onto a subspace of dimension k, we would expect to capture
a fraction of the variance equal to k/d, so the projection should have variance equal to k. In this
section we establish that this is indeed the case.

Given our definition of Gaussian vector, the projection of a d-dimensional Gaussian vector ~x onto a
subspace of dimension k < d is not a Gaussian vector. Let U be a matrix with columns containing
an orthonormal basis of a subspace. We have PS (~x) = UUT~x. The covariance matrix of the
projection equals

ΣPS (~x) = UUTΣ~xUU
T (46)

= UUT , (47)

which is not full rank (its rank equals k). However, the coefficients expressing the projection in
terms of the basis vectors of the subspace UT~x, are Gaussian. Their covariance equals

ΣUT ~x = UTΣ~xU (48)

= I, (49)

so the coefficient vector is a standard Gaussian of dimension k. Since

||PS (~x)||22 = (UUT~x)TUUT~x (50)

=
∣∣∣∣UT~x

∣∣∣∣2
2
, (51)

applying Theorem 2.10 we confirm that the `2 norm of the projection concentrates around
√
k.

Corollary 2.12. Let S be a k-dimensional subspace of Rd and ~x a d-dimensional standard Gaus-
sian vector. For any ε ∈ (0, 1)√

k (1− ε) ≤ ||PS ~x||2 ≤
√
k (1 + ε) (52)

with probability at least 1− 2 exp (−kε2/8).

3 Randomized dimensionality reduction

In this section, we analyze the use of randomized linear maps to achieve dimensionality reduction.
The randomized linear map consists of multiplication with a random matrix A of dimensions
d× k, where d is the ambient dimension and k is the reduced dimension. We build the matrix by
sampling each entry independently from a standard Gaussian distribution.

Dimensionality-reduction techniques are useful if they preserve the information that we are inter-
ested in. In many cases, we would like to conserve the distances between different data points.
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This allows us to apply algorithms such as nearest neighbors in the lower-dimensional space. Our
goal in this section is to study how likely it is for a k × d Gaussian random matrix to preserves
the distance between a set of points in Rd.

We begin by showing that applying a Gaussian random matrix to a deterministic vector yields a
Gaussian random vector.

Lemma 3.1. Let A be an k × d matrix with iid standard Gaussian entries. If ~v ∈ Rd is a
deterministic vector with unit `2 norm, then A~v is a k-dimensional iid Gaussian vector.

Proof. By Theorem 2.5, (A~v) [i], 1 ≤ i ≤ k is Gaussian, since it is the inner product between ~v
and the ith row Ai,: (interpreted as a vector in Rd), which is a standard Gaussian vector. The
mean of the entry is zero because the mean of Ai,: is zero and the variance equals

Var
(
AT
i,:~v
)

= ~vTΣAi,:
~v (53)

= ~vT I~v (54)

= ||~v||22 (55)

= 1, (56)

so the entries of A~v are all standard Gaussians. They are also independent because each is just a
function of a specific row, and all the rows in the matrix are mutually independent.

A crucial question is to what extent applying the random map affects the norm of the deterministic
vector. The following lemma shows that the norm of the deterministic vector is well preserved
with high probability if we scale the random matrix by 1/

√
k.

Lemma 3.2. Let A be a k × d matrix with iid standard Gaussian entries. For any ~v ∈ Rd with
unit norm and any ε ∈ (0, 1)

√
1− ε ≤

∣∣∣∣∣∣∣∣ 1√
k

A~v

∣∣∣∣∣∣∣∣
2

≤
√

1 + ε (57)

with probability at least 1− 2 exp (−kε2/8).

Proof. The result follows from Theorem 2.10 and Lemma 3.1.

The result immediately implies that the random map approximately preserves the distance between
two fixed points. If the difference between the vectors equals ~y. By the lemma– setting ~v :=
~y/ ||y||2– the distance between the mapped points satisfies

√
1− ε ||y||2 ≤

∣∣∣∣∣∣∣∣ 1√
k

Ay

∣∣∣∣∣∣∣∣
2

≤
√

1 + ε ||y||2 (58)

with high probability, as long as k is sufficiently large. The bounds do not immediately apply to
a set of points, as opposed to just two, but we can extend them by leveraging the union bound.
This yields the Johnson-Lindenstrauss lemma, which provides a lower bound on the probability
of preserving the distances that scales as the inverse of the number of points. As a result, a map
achieving small distortion can be found in logarithmic time. The result is striking because the
lower bound on k does not depend on the ambient dimension d, and its dependence on the number
of points in the data set is only logarithmic. The proof is based on [3].
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Lemma 3.3 (Johnson-Lindenstrauss lemma). Let A be a k×d matrix with iid standard Gaussian
entries. Let ~x1, . . . , ~xp ∈ Rd be any fixed set of p deterministic vectors. For any pair ~xi, ~xj and
any ε ∈ (0, 1)

(1− ε) ||~xi − ~xj||22 ≤
∣∣∣∣∣∣∣∣ 1√

k
A~xi −

1√
k

A~xj

∣∣∣∣∣∣∣∣2
2

≤ (1 + ε) ||~xi − ~xj||22 , (59)

with probability at least 1
p

as long as

k ≥ 16 log (p)

ε2
. (60)

Proof. To prove the result we control the action of the matrix on the normalized difference of the
vectors

~vij :=
~xi − ~xj
||~xi − ~xj||2

, (61)

which has unit `2-norm unless ~xi = ~xj (in which case the norm of the difference is preserved
exactly). We denote the event that the norm of the action of A on ~vij concentrates around k by

Eij =
{
k (1− ε) < ||A~vij||22 < k (1 + ε)

}
1 ≤ i < p, i < j ≤ p.

Lemma 3.2 implies that each of the Eij hold with high probability as long as condition (60) holds

P
(
Ecij
)
≤ 2

p2
. (62)

However, this is not enough. Our event of interest is the intersection of all the Eij. Unfortunately,
the events are dependent (since the vectors are hit by the same matrix), so we cannot just multiply
their individual probabilities. Instead, we apply the union bound to control the complement of
the intersection.

Theorem 3.4 (Union bound, proof in Section 5.4). Let S1, S2, . . . , Sn be a collection of events in
a probability space. Then

P (∪iSi) ≤
n∑
i=1

P (Si) . (63)

The number of events in the intersection is
(
p
2

)
= p (p− 1) /2, because that is the number of

different pairs of vectors in the set {~x1, . . . , ~xp}. The union bound yields

P

(⋂
i,j

Eij

)
= 1− P

(⋃
i,j

Ecij

)
(64)

≥ 1−
∑
i,j

P
(
Ecij
)

(65)

≥ 1− p (p− 1)

2

2

p2
(66)

≥ 1

p
. (67)

Note that the application of the union bound is the reason we need an exponential bound in
Theorem 2.10.

14



0 20 40 60 80 100 120 140 160 180 200

0

10

20

30

40

5

10

15

25

30

35

Dimension

E
rr

or
s

Average
Maximum
Minimum

Figure 7: Average, maximum and minimum number of errors (over 50 tries) for nearest-neighbor
classification after a randomized dimensionality reduction for different dimensions.

Test image

Projection

Closest
projection

Corresponding
image

Figure 8: Results of nearest-neighbor classification combined with randomized dimensionality reduction
of dimension 50 for four of the people in Example 3.5. The assignments of the first two examples are
correct, but the other two are wrong.
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Example 3.5 (Nearest neighbors after random projection). The nearest-neighbors algorithm per-
forms classification based on distances between feature vectors. If the training set contains n
examples, the method requires computing n distances in an d-dimensional space (where d is the
number of features) to classify each new example. The computational cost is O (nd), so if we need
to classify p points the total cost is O (ndp). If we perform a random projection of each of the
points onto a lower-dimensional space k before classifying them, then the computational cost is:

• kdn operations to project the training data using a k × d iid standard Gaussian matrix.

• kdp operations to project each point in the test set using the same matrix.

• knp to perform nearest-neighbor classification in the lower-dimensional space.

The overall cost is O (kpmax {d, n}), which is a significant reduction from O (ndp). It is also more
efficient than the PCA-based approach described in the lecture notes on the SVD, which includes
an additional O (dnmin {d, n}) step to compute the SVD.

Figure 7 shows the accuracy of the algorithm on the same data as Example 4.3 in Lecture Notes
1. At dimension k = 50 we achieve a similar average precision as in the ambient dimension (5
errors out of 40 test images compared to 4 out of 40). Figure 8 shows some examples of the
projected data represented in the original d-dimensional space along with their nearest neighbors
in the k-dimensional space. 4

4 Compressed sensing

The goal of compressed sensing is to recover signals from a small number of linear measurements.
If the signals are modeled as vectors of dimension d, it is of course impossible to recover an
arbitrary signal from less than d measurements. However, signals are often highly structured.
For example, images are approximately sparse when represented using wavelets, as described in
the lecture notes on signal representations. If we are interested in a class of signals that can be
represented with only s < d parameters, it seems plausible that recovery could be possible from
less than d measurements. In order to perform a mathematical analysis of compressed sensing, we
consider the problem of estimating sparse vectors from underdetermined linear vectors. This is a
highly simplified scenario, but it provides valuable insights about compressed sensing in general.

4.1 The restricted-isometry property

Compressed sensing is impossible to achieve using regularly undersampled frequency measure-
ments. The reason is aliasing, as we discussed in the lecture notes on the frequency domain. The
bottom two rows Figure 9 illustrate this with a simple example where two different sparse vec-
tors produce exactly the same measurements. The figure also shows that this does not occur for
randomized measurements. In fact, the random data seem to preserve the structure of the sparse
vector quite well, which is consistent with the experiment in Figure 2. A map that preserves the
norm of every vector in a given set is called a restricted isometry, because it is almost an isometry

16
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Figure 9: The top row illustrates different linear operators that can be used to obtain compressed
measurements of a sparse vector: a regularly-undersampled DFT matrix, a randomly-undersampled DFT
matrix and a Gaussian matrix (we only show the real-part of the DFT submatrices). The second and
third rows show the result of computing A∗A~x for two different 2-sparse signals, where A is the linear
measurement operator. Due to aliasing, the regularly-undersampled Fourier measurements are the same
for the two sparse signals.
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when restricted to act upon the elements of the set. Here we fix the set to be vectors with a fixed
sparsity level.

Definition 4.1 (Restricted-isometry property). An m × d matrix A, where m < d, satisfies the
restricted-isometry property with constant ε if for any s-sparse d-dimensional vector ~x

(1− ε) ||~x||2 ≤ ||A~x||2 ≤ (1 + ε) ||~x||2 . (68)

If a matrix A satisfies the restricted-isometry property (RIP) for a sparsity level 2s then for any pair
of vectors ~x1 and ~x2 with sparsity level s, the distance between their corresponding measurements
~y1 and ~y2 is lower bounded by the difference between the two vectors

||~y2 − ~y1||2 = ||A (~x1 − ~x2)||2 (69)

≥ (1− ε) ||~x2 − ~x1||2 . (70)

In particular, this means that the problem of recovering sparse signals from such measurements is
well posed in the following sense: if the data are generated from an s-sparse signal, there cannot be
another s-sparse signal that produces similar data. Unfortunately, verifying that a matrix satisfies
the restricted-isometry property is not computationally tractable (essentially, one has to check all
possible sparse submatrices). However, we can show that the RIP holds with high probability for
random matrices. The following theorem establishes this for Gaussian iid matrices. The proof for
random Fourier measurements is more complicated [2, 4].

Theorem 4.2 (Restricted-isometry property for Gaussian matrices). Let A ∈ Rm×d be a random
matrix with iid standard Gaussian entries. 1√

m
A satisfies the restricted-isometry property for a

constant ε with probability 1− C2

d
as long as the number of measurements

m ≥ C1s

ε2
log

(
d

s

)
(71)

for two fixed constants C1, C2 > 0.

If we ignore logarithmic factors, the theorem establishes that for the RIP to hold, we need a
number of random measurements that is proportional to the sparsity, and not to the ambient
dimension!

4.2 Proof of Theorem 4.2

If we fix the nonzero entries of the sparse signal, then the RIP reduces to a statement about the
smallest and largest singular values of a fixed submatrix of the Gaussian measurement matrix.

Lemma 4.3. Let T ⊂ {1, . . . , d} be a set of s indices. Any matrix A ∈ Rm×d, m < d, satisfies

σs(AT ) ≤ ||A~x||2 ≤ σ1(AT ) (72)

for all vectors ~x ∈ Rd with support restricted to T . AT is the m×s submatrix of A that contains the
columns indexed by T ; σ1(AT ) and σs(AT ) are its largest and smallest singular value respectively.
In addition, there exist vectors ~v1 and ~vs such that the upper and lower bound respectively are tight.
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Figure 10: Singular values of m× s matrices with iid standard Gaussian entries for different values of
m and s.

Proof. For any vector ~x ∈ Rd with support restricted to T , A~x = AT~xT , where ~xT ∈ Rs is the
subvector of ~x that contains its nonzero entries. The result follows immediately from Theorem
2.4 in the notes on the SVD. The vectors that make the bounds tight are the first and last right
singular vectors of AT .

Our strategy will be to control the singular values of a fixed submatrix, and then apply the union
bound to extend the bounds to all possible submatrices.

We need to analyze the singular values of tall matrices of dimension m × s with iid standard
Gaussian entries. Numerically, we observe that if we keep s fixed and increase m, all s singular
values converge to

√
m, as shown in Figure 10. This implies that the matrix is approximately equal

to
√
mUV T for two orthogonal matrices U and V . It is therefore an approximately orthogonal

matrix if we scale it by 1/
√
m. Geometrically, if we generate a fixed number of standard Gaussian

vectors at increasing ambient dimensions, the vectors will tend to be almost orthogonal with high
probability as the dimension grows.

The following result establishes a non-asymptotic bound on the singular values using a covering
number argument from [1] that can be applied to other distributions and situations. See also [5]
for some excellent notes on high-dimensional probability techniques in this spirit. We defer the
proof to Section 4.3.

Theorem 4.4 (Singular values of a Gaussian matrix). Let M be a m× s matrix with iid standard
Gaussian entries such that m > s. For any fixed ε > 0, the singular values of M satisfy

√
m (1− ε) ≤ σs ≤ σ1 ≤

√
m (1 + ε) (73)

with probability at least 1− 2
(
12
ε

)s
exp

(
−mε2

32

)
.

Setting M := AT , where AT is a fixed m× s submatrix of A, the result implies that the smallest
and largest singular values σs and σm of AT satisfy

√
m (1− ε) ≤ σs ≤ σ1 ≤

√
m (1 + ε) . (74)
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As a result, for any vector ~x with support T

√
1− ε ||~x||2 ≤

1√
m
||A~x||2 ≤

√
1 + ε ||~x||2 . (75)

This is not enough for our purposes, we need this to hold for all supports of size s, i.e. on all
possible combinations of s columns selected from the d columns in A. A simple bound on the
binomial coefficient yields the following bound on the number of different supports of size s(

d

s

)
≤
(
ed

s

)s
. (76)

By the union bound (Theorem 3.4), we consequently have that the bounds (75) hold for any
s-sparse vector with probability at least

1− 2

(
ed

s

)s(
12

ε

)s
exp

(
−mε

2

32

)
= 1− exp

(
log 2 + s+ s log

(
d

s

)
+ s log

(
12

ε

)
− mε2

2

)
≤ 1− C2

d
(77)

for some constant C2 as long as m satisfies (71).

4.3 Proof of Theorem 4.4

To establish the bounds on the singular values, we need to show that for any vector with unit `2
norm

√
m (1− ε) < ||M~v||2 <

√
m (1 + ε) . (78)

This is reminiscent of the proof of the Johnson-Lindenstrauss lemma. Can we prove this for a
fixed vector and use the union bound to extend the result to all unit-norm vectors? Unfortunately
the answer is no. The set of all unit-`2-norm vectors in Rs, which is usually referred to as the
s-dimensional sphere Ss−1, has infinite cardinality, so the union bound cannot help us. Instead,
we apply a more sophisticated strategy:

• First, we show that the bounds hold for a finite subset of Ss−1, called an ε-net, which covers
the sphere, in the sense that all the points in Ss−1 are close to at least one of the elements
of the set.

• Second, we show that the bounds can be extended to any point that is close enough to one
of the points of the ε-net, which completes the proof.

Bounds on the ε-net

We begin by defining ε-nets. Figure 11 shows an ε-net for the two-dimensional sphere S1.
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ǫ

Figure 11: ε-net for the two-dimensional sphere S1, which is just a circle.

Definition 4.5 (ε-net). An ε-net of a set X ⊆ Rs is a subset Nε ⊆ X such that for every vector
~x ∈ X there exists ~y ∈ Nε for which

||~x− ~y||2 ≤ ε. (79)

The smallest possible number of points in the ε-net of a set is called its covering number.

Definition 4.6 (Covering number). The covering number N (X , ε) of a set X at scale ε is the
minimal cardinality of an ε-net of X , or equivalently the minimal number of balls of radius ε with
centers in X required to cover X .

The following theorem, proved in Section 5.5, provides a bound for the covering number of the
k-dimensional sphere Ss−1.

Theorem 4.7 (Covering number of a sphere). The covering number of the s-dimensional sphere
Ss−1 at scale ε satisfies

N
(
Ss−1, ε

)
≤
(

2 + ε

ε

)s
≤
(

3

ε

)s
. (80)

Let ε1 := ε/4 and ε2 := ε/2. Consider an ε1-net Nε1 of Ss−1. We define the event

E~v,ε2 :=
{
m (1− ε2) ||~v||22 ≤ ||M~v||22 ≤ m (1 + ε2) ||~v||22

}
. (81)

By Lemma 3.2 for any fixed ~v ∈ Rs P
(
Ec~v,ε2

)
≤ 2 exp (−mε2/32), so by the union bound

P
(
∪~v∈Nε1E

c
~v,ε2

)
≤
∑
~v∈Nε1

P
(
Ec~v,ε2

)
(82)

≤ |Nε1 |P
(
Ec~v,ε2

)
(83)

≤ 2

(
12

ε

)s
exp

(
−mε

2

32

)
. (84)

21



Extension of the bounds to the rest of the sphere

Now, to finish the proof we need to show that if ∪~v∈Nε1E
c
~v,ε2

holds then the bound holds for every
element in Ss−1. Our main tools are the triangle inequality and Theorem 2.4 in the notes on the
SVD, which states that

σ1 = max
||~y||2=1

||M~y||2 , (85)

σs = min
||~y||2=1

||M~y||2 . (86)

For any arbitrary vector ~x ∈ Ss−1 on the sphere there exists a vector in the ε/4-covering set
~v ∈ N (X , ε1) such that ||~x− ~v||2 ≤ ε/4. By the triangle inequality this implies

||M~x||2 ≤ ||M~v||2 + ||M (~x− ~v)||2 (87)

≤
√
m
(

1 +
ε

2

)
+ ||M (~x− ~v)||2 assuming ∪~v∈Nε1E

c
~v,ε2

holds (88)

≤
√
m
(

1 +
ε

2

)
+ σ1 ||~x− ~v||2 by (85) (89)

≤
√
m
(

1 +
ε

2

)
+

σ1ε

4
. (90)

By (85) σ1 is the smallest upper bound on ||M~x||2 for all ~x on the sphere, so the bound in
equation (90) cannot be smaller, i.e.

σ1 ≤
√
m
(

1 +
ε

2

)
+

σ1ε

4
, (91)

which implies

σ1 ≤
√
m

(
1 + ε/2

1− ε/4

)
(92)

=
√
m

(
1 + ε− ε (1− ε)

4− ε

)
(93)

≤
√
m (1 + ε) . (94)

The lower bound on σs follows from a similar argument combined with (94). By the triangle
inequality

||M~x||2 ≥ ||M~v||2 − ||M (~x− ~v)||2 (95)

≥
√
m
(

1− ε

2

)
− ||A (~x− ~v)||2 assuming ∪~v∈Nε1E

c
~v,ε2

holds (96)

≥
√
m
(

1− ε

2

)
− σ1 ||~x− ~v||2 by (85) (97)

≥
√
m
(

1− ε

2

)
− ε

4

√
m (1 + ε) by (94) (98)

=
√
m (1− ε) . (99)

By (86) σs is the largest lower bound on ||M~x||2 for all ~x on the sphere, so σs ≥
√
m (1− ε) as

long as ∪~v∈Nε1E
c
~v,ε2

holds.
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5 Proofs

5.1 Proof of Theorem 2.9

Consider the indicator variable 1x≥a. We have

x− a 1x≥a ≥ 0. (100)

In particular its expectation is nonnegative (as it is the sum or integral of a nonnegative quantity
over the positive real line). By linearity of expectation and the fact that 1x≥a is a Bernoulli random
variable with expectation P (x ≥ a) we have

E (x) ≥ aE (1x≥a) = aP (x ≥ a) . (101)

5.2 Proof of Lemma 2.11

E
(
exp

(
tx2
))

=
1√
2π

∫ ∞
−∞

exp

(
−u

2

2

)
exp

(
tu2
)

du (102)

=
1√
2π

∫ ∞
−∞

exp

(
−(1− 2t)u2

2

)
du finite for 1− 2t > 0 (103)

=
1√

2π (1− 2t)

∫ ∞
−∞

exp

(
−v

2

2

)
dv change of variables v =

√
1− 2tu

=
1√

1− 2t
. (104)

5.3 Proof of (33)

A very similar argument to the one that yields (37) gives

P (y < a′) = P (exp (−t′y) > exp (−a′t′)) (105)

≤ exp (a′t′)
d∏
i=1

E
(
exp

(
−t′xi

2
))
. (106)

Setting t′ = t in (39), we have

E
(
exp

(
−t′x2

))
=

1√
1 + 2t′

. (107)

This implies

P (y < a′) ≤ exp (a′t′)

(1 + 2t′)
d
2

. (108)
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Setting

t′ := −1

2
+

1

2 (1− ε)
, (109)

a′ := d (1− ε) (110)

we have

P (y < d (1− ε)) ≤ (1− ε)
d
2 exp

(
dε

2

)
(111)

= exp

(
−d

2
(−ε− log (1− ε))

)
. (112)

The function h (x) := −x − x2

2
− log (1− x) is nonnegative between 0 and 1 (the derivative is

nonnegative and h (0) = 0). We conclude that

P (y < d (1− ε)) ≤ exp

(
−dε

2

2

)
(113)

≤ exp

(
−dε

2

8

)
. (114)

5.4 Proof of Theorem 3.4

Let us define the sets:

S̃i = Si ∩ ∩i−1j=1S
c
j . (115)

It is straightforward to show by induction that ∪nj=1Sj = ∪nj=1S̃j for any n, so ∪iSi = ∪iS̃i. The

sets S̃1, S̃2, . . . are disjoint by construction, so

P (∪iSi) = P
(
∪iS̃i

)
=
∑
i

P
(
S̃i

)
(116)

≤
∑
i

P (Si) because S̃i ⊆ Si. (117)

5.5 Proof of Theorem 4.7

We construct an ε-covering set Nε ⊆ Ss−1 recursively:

• We initialize Nε to the empty set.

• We choose a point ~x ∈ Ss−1 such that ||~x− ~y||2 > ε for any ~y ∈ Nε. We add ~x to Nε until
there are no points in Ss−1 that are ε away from any point in Nε.
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Figure 12: Sketch of the proof of Theorem 4.7 in two dimensions. Bs1+ε/2
(
~0
)

is the big red circle. The

smaller shaded circles correspond to Bsε/2 (~x) for each ~x in the ε-net.

This algorithm necessarily ends in a finite number of steps because the n-dimensional sphere is
compact (otherwise we would have an infinite sequence such that no subsequence converges).

Now, let us consider the balls of radius ε/2 centered at each of the points in Nε. These balls do
not intersect since their centers are at least ε apart and they are all inside the ball of radius 1+ε/2
centered at the origin ~0 because Nε ⊆ Ss−1. This means that

Vol
(
Bk1+ε/2

(
~0
))
≥ Vol

(
∪~x∈NεBkε/2 (~x)

)
(118)

= |Nε|Vol
(
Bkε/2

(
~0
))

(119)

where Bkr (~x) is the ball of radius r centered at ~x. By multivariable calculus

Vol
(
Bkr
(
~0
))

= rk Vol
(
Bk1
(
~0
))

, (120)

so (118) implies

(1 + ε/2)k ≥ |Nε| (ε/2)k . (121)
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