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The Frequency Domain

1 Motivation

In data science we call any structured object of interest– an image, an audio sequence, a video. . . –
a signal. Signals are usually modeled as functions of time, space, etc. This paradigm makes
it possible to analyze and manipulate such objects using mathematics, an approach known as
signal processing. In these notes we describe a fundamental tool in signal processing: frequency
representations. We begin by describing a few motivating applications.

1.1 Processing periodic signals

Signals often have periodic structure due to repeating patterns. This is evident in the electrocar-
diogram shown in Figure 1. Electrocardiography is a method to record heart activity by using
electrodes to measure electrical changes on the skin. Figure 1 also shows the standard features used
by doctors to perform diagnostics using ECGs1. Unfortunately, the data contains other periodic
patterns that make it difficult to visualize these features. Decomposing the signal in components
with different frequencies is very useful to remove such perturbations.

1.2 Sampling

Signals are often modeled as continuous functions. However, arbitrary continuous functions cannot
be manipulated in a computer. In order to be able to process signals digitally, we need to represent
them with a finite number of parameters. For smooth signals, which vary slowly in time or space, an
intuitive way to achieve this is by sampling. Sampling consists of measuring the value of the signal
on a discrete grid of points and then using the measurements as a finite-dimensional representation.
A crucial question is to what extent the samples preserve the information in the signal. The
celebrated sampling theorem provides an answer building upon frequency representations.

1.3 Signal denoising

In signal processing, unwanted perturbations occurring during acquisition, storage, transmission
or processing are known as noise. The goal of denoising is to recover a clean signal– represented
by an N -dimensional vector ~x ∈ RN– from a vector of perturbed data ~y ∈ RN . This is a regression
function, where the aim is to obtain a function mapping from multidimensional features (the noisy
signal) to a multidimensional response (the clean signal).

1The image is borrowed from https://commons.wikimedia.org/wiki/File:SinusRhythmLabels.svg
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Figure 1: The left image shows an electrocardiogram (ECG) with a duration of 8 s. The top right
image shows the features that are relevant for medical diagnostics in a typical ECG.

Let us consider a linear model, where the signal is estimated as a linear transformation of the data
parametrized by a matrix A ∈ RN×N ,

~x ≈ A~y. (1)

The linear model has N2 parameters. This is problematic: N2 is huge for many types of signals.
For sequences of audio of a few seconds, N ≈ 105 (as we will see, audio is sampled at rates of
more than 40 kHz). For images, N is the number of pixels, i.e. at least 104. If N = 104, the linear
model has 108 parameters. At the very least, we would need need N examples (of dimension N
each), i.e. 100 million images or sound clips (!), to fit the model. Learning an arbitrary linear
model is therefore completely impractical, even without taking into account the cost in terms of
computational and memory resources. In these notes we will show how to exploit the translation
invariance of images and other signals to learn tractable linear models for denoising.

2 The frequency domain

2.1 The Fourier series

In order to analyze and process signals, it is useful to represent them as linear combinations of
simpler functions. Let us consider the Hilbert space of complex-valued square-integrable functions
defined on an interval [a, b] ⊂ R with the standard inner product,

〈x, y〉 :=

∫ b

a

x (t) y (t) dt. (2)
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To express a function x : [a, b]→ R in terms of an orthonormal basis of functions g1, g2 . . . , each
defined from [a, b] to R all we need to do is compute the coefficients

c[j] := 〈x, gj〉 . (3)

Indeed, by the properties of orthonormal bases,

x =
∑
j

c[j]gj. (4)

In this section, we describe a representation that decomposes a signal into components that oscil-
late at different frequencies. This often uncovers structure that is otherwise difficult to interpret
or manipulate.

The frequency of a periodic signal is the inverse of its period. By far the most popular basis
functions with fixed frequencies are sinusoids. Sinusoids are smooth oscillating functions of the
form

a cos(2πft+ θ), (5)

where a ∈ R is the amplitude, f ∈ R the frequency, t is the time index, and θ ∈ [0, 2π] is the phase.
A sinusoid with frequency f is periodic with period T := 1/f . Expressing a signal in terms of the
cosine (or sine) function as in Eq. (5) is not very convenient. The function depends nonlinearly on
the phase θ, so there are infinite possible basis functions associated to each frequency. An elegant
solution is to instead use complex-valued sinusoids as basis functions.

Definition 2.1 (Complex sinusoid). The complex sinusoid with frequency f ∈ R is given by

exp(i2πft) := cos(2πft) + i sin(2πft). (6)

Figure 2 shows a complex sinusoid, along with its real and imaginary parts. Note that com-
plex sinusoids can have negative frequencies. This just changes their imaginary component to
− sin(2πft), instead of sin(2πft). Any real sinusoid with frequency f can be represented as the
sum of two complex sinusoids with frequencies f and −f respectively:

cos(2πft+ θ) =
exp(i2πft+ iθ) + exp(−i2πft− iθ)

2
(7)

=
exp(iθ)

2
exp(i2πft) +

exp(−iθ)
2

exp(−i2πft). (8)

Crucially, the phase is now encoded in the complex amplitude of the sinusoid. As a result, from a
linear-algebra perspective, the subspace spanned by the two complex sinusoids with frequencies f
and −f contains all possible real sinusoids with frequency f . In particular, if we add two sinusoids
with the same frequency, but different amplitudes and phases, the result is a sinusoid with that
frequency. It therefore makes sense to interpret sinusoids as basis functions, each representing a
particular frequency.

If we are interested in obtaining a representation for functions restricted to an interval, working
with orthogonal basis functions makes life much easier. The following lemma shows that for any
fixed positive T ∈ R, complex sinusoids with frequency equal to k/T– where k is an integer– are
all orthogonal.
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Figure 2: Complex sinusoid (dark red) as a function of time. The real part (green) is a cosine
function. The imaginary part (blue) is a sine function.

Lemma 2.2 (Orthogonality of complex sinusoids). The family of complex sinusoids with integer
frequencies

φk (t) := exp

(
i2πkt

T

)
, k ∈ Z, (9)

is an orthogonal set of functions on any interval of the form [a, a+ T ], where a, T ∈ R and T > 0.

Proof. We have

〈φk, φj〉 =

∫ a+T

a

φk (t)φj (t) dt (10)

=

∫ a+T

a

exp

(
i2π (k − j) t

T

)
dt (11)

=
T

i2π (k − j)

(
exp

(
i2π (k − j) (a+ T )

T

)
− exp

(
i2π (k − j) a

T

))
(12)

= 0 (13)

as long as j 6= k.

In words, this family includes all complex sinusoids with positive and negative frequencies whose
period is an integer fraction of the length of the interval. The Fourier series is a decomposition of
signals as a sum of these basis functions.
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Figure 3: Magnitude (left) and phase (right) of the Fourier coefficients of the ECG data in the
left image of Figure 1.

Definition 2.3 (Fourier series). The Fourier series coefficients of a function x ∈ L2 [a, a+ T ],
a, T ∈ R, T > 0, are given by

x̂[k] := 〈x, φk〉 =

∫ a+T

a

x(t) exp

(
−i2πkt

T

)
dt. (14)

The Fourier series of order kc is defined as

Fkc {x} :=
1

T

kc∑
k=−kc

x̂[k]φk. (15)

The Fourier series of a signal x is defined as limkc→∞Fkc {x}.

The basis functions have norm
√
T . We can interpret the Fourier series of order kc as a projection

of the function onto the span of the complex sinusoids with frequencies up to kc/T . By Lemma 2.2
the sinusoids scaled by 1/

√
T are orthonormal so

Pspan({φ−kc ,φ−kc+1,...,φkc}) x =
kc∑

k=−kc

〈
x,

1√
T
φk

〉
1√
T
φk (16)

= Fkc {x} . (17)

Figure 3 shows the Fourier series coefficients of the electrocardiogram signal in Figure 1. Figure 4
shows the kth-order partial Fourier series of the signal for different values of kc, together with the
corresponding real sinusoidal components obtained by combining x̂kcφkc and x̂−kcφ−kc . As kc in-
creases, the approximation improves. Remarkably, if the function is integrable, the approximation
eventually converges to the function. We omit the proof of this result, which is beyond the scope
of these notes.

Theorem 2.4 (Convergence of Fourier series). For any function x ∈ L2[0, T ), where a, T ∈ R
and T > 0,

lim
k→∞
||x−Fk {x}||L2 = 0. (18)
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By Theorem 2.4 we can represent any square-integrable function defined on an interval by using its
Fourier coefficients, which are often known as the spectrum of the function. It is worth noting that
one can generalize this representation to functions defined on the whole real line by considering
real-valued frequencies, which yields the Fourier transform.

Example 2.5 (Filtering an electrocardiogram). The low-frequency components of the ECG signal
in Figure 1 produce significant baseline wandering, which are slowly-varying fluctuations typically
caused by motion of the recording apparatus or the patient, or by breathing. In addition, the
Fourier series coefficients of the data, shown in Figure 3 reveal a strong component at 50 Hz.
This is caused by interference from the electric grid, which transmits electricity exactly at that
frequency. In order to use the electrocardiogram for diagnostics, we would like to eliminate these
effects, since they are not associated to heart activity. We can be achieve this by removing the
corresponding Fourier components from the Fourier series representation, an approach known as
filtering in the signal processing literature. Removing the low-frequency components gets rid
of baseline wandering. Removing the component at 50 Hz removes the electric-grid interference.
Figure 5 shows that the approach succeeds in highlighting the features related to heart activity. 4

2.2 Sampling bandlimited functions

Modeling signals as functions defined on continuous intervals makes it challenging to store and pro-
cess them in a computer. However, as illustrated by Figure 4, signals are often well approximated
by a finite number of Fourier coefficients. Signals with this property are said to be bandlimited.

Definition 2.6 (Bandlimited signal). A signal is bandlimited with a cut-off frequency kc if it is
equal to its Fourier series representation of order kc, i.e.

x(t) =
kc∑

k=−kc
x̂[k] exp

(
i2πkt

T

)
. (19)

Sampling is a fundamental tool in signal processing, which consists of evaluating a function at a
finite number of fixed locations. The hope is that the samples preserve as much information as
possible. In the case of bandlimited signals, sampling can in fact capture all of the information in
the signal.

Let us consider a uniform sampling pattern with N sampling locations that divide an interval of
length T into N segments of length T/N . For simplicity, we assume that the interval is [0, T )
without loss of generality. We measure a bandimited signal x with cut-off frequency kc at those

locations to obtain the samples: x
(

0
N

)
, x
(
T
N

)
, x
(

2T
N

)
, . . . , x

(
(N−1)T

N

)
. The Fourier series of the

bandlimited signal provides a linear equation relating the samples and the Fourier coefficients of
the signal:

x

(
jT

N

)
=

kc∑
k=−kc

x̂k exp

(
i2πkjT

NT

)
(20)

=
kc∑

k=−kc
x̂k exp

(
i2πkj

N

)
. (21)

6



0 1 2 3 4 5 6 7 8
Time (s)

0.4

0.2

0.0

0.2

0.4
Vo

lta
ge

 (m
V)

0 mHz
125 mHz
375 mHz
2 Hz

0 1 2 3 4 5 6 7 8
Time (s)

1

0

1

2

3

Vo
lta

ge
 (m

V)

Signal
0 mHz
125 mHz
375 mHz
2 Hz

3.40 3.45 3.50 3.55 3.60 3.65 3.70 3.75 3.80
Time (s)

0.04

0.02

0.00

0.02

0.04

Vo
lta

ge
 (m

V)

5 Hz
10 Hz
50 Hz

3.40 3.45 3.50 3.55 3.60 3.65 3.70 3.75 3.80
Time (s)

1.0

0.5

0.0

0.5

1.0

1.5

Vo
lta

ge
 (m

V)

Signal
5 Hz
10 Hz
50 Hz

Figure 4: The top image shows components of the Fourier series of the ECG signal from Figure 1.
The third image shows zoomed components corresponding to higher frequencies. The second and
fourth image show the Fourier series of the signal truncated at different frequencies.
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Figure 5: The ECG data from Example 2.5 (top row) is filtered to first remove low-frequency
components (second and third rows) and then electric-grid interference at 50 Hz (bottom row).
The left column displays the signals in the time domain. The right columns shows the magnitude
of the corresponding Fourier series coefficients.
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Figure 6: Discrete complex sinusoids ~φ2 (left) and ~φ3 (right) for N = 10, displayed in red. The
real and imaginary parts are shown in green and blue respectively.

This yields the following system of linear equations:

x
(

0
N

)
x
(
T
N

)
· · ·

x
(
jT
N

)
· · ·

x
(
T − T

N

)


=



1 1 · · · 1

exp
(
i2π(−kc)

N

)
exp

(
i2π(−kc+1)

N

)
· · · exp

(
i2πkc
N

)
· · · · · · · · · · · ·

exp
(
i2π(−kc)j

N

)
exp

(
i2π(−kc+1)j

N

)
· · · exp

(
i2πkcj
N

)
· · · · · · · · · · · ·

exp
(
i2π(−kc)(N−1)

N

)
exp

(
i2π(−kc+1)(N−1)

N

)
· · · exp

(
i2πkc(N−1)

N

)




x̂[−kc]

x̂[−kc + 1]

· · ·
x̂[kc]



More succinctly, we have

~x[N ] = F̃[N ]x̂[kc], (22)

where ~x[N ] is the vector of samples and x̂[kc] is the vector of Fourier coefficients. If the matrix F̃[N ]

is invertible, we can recover the Fourier coefficients from the samples and completely recover the
bandlimited function. The columns of F̃[N ] are discretized complex sinusoids.

Definition 2.7 (Discrete complex sinusoids). The discrete complex sinusoid ~φk ∈ CN with integer
frequency k is defined as

~φk [j] := exp

(
i2πkj

N

)
, 0 ≤ j, k ≤ N − 1. (23)

Figure 6 shows ~φ2 and ~φ3 for N := 10.

Discrete complex sinusoids form an orthonormal basis of CN if we scale them by 1/
√
N .

Lemma 2.8 (Orthonormal sinusoidal basis). The discrete complex exponentials 1√
N
~φ0, . . . , 1√

N
~φN−1

form an orthonormal basis of CN .
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Proof. Each vector has `2 norm equal to
√
N ,

∣∣∣∣∣∣~φk∣∣∣∣∣∣2
2

=
N−1∑
j=0

∣∣∣~φk [j]
∣∣∣2 (24)

=
N−1∑
j=0

1 (25)

= N, (26)

and 〈
~φk, ~φl

〉
=

N−1∑
j=0

~φk [j] ~φl [j] (27)

=
N−1∑
j=0

exp

(
i2π (k − l) j

N

)
(28)

=
1− exp

(
i2π(k−l)N

N

)
1− exp

(
i2π(k−l)

N

) (29)

= 0, (30)

if k 6= l. Since there are N vectors in the set and they are linearly independent, they form a basis
of CN .

An immediate consequence is that bandlimited signals with cut-off frequency kc can be recovered
from just 2kc + 1 samples.

Theorem 2.9 (Nyquist-Shannon-Kotelnikov sampling theorem). Any bandlimited signal x ∈
L2[0, T ), where T > 0, with cut-off frequency kc can be recovered exactly from N uniformly spaced
samples x (0), x (T/N), . . . , x (T − T/N) as long as

N ≥ 2kc + 1, (31)

where 2kc + 1 is known as the Nyquist rate. The Fourier series coefficients x̂[kc] can be recovered
from the vector of samples ~x[N ] as follows

x̂[kc] =
1

N
F̃ ∗[N ]~x[N ], (32)

where F̃[N ] is defined in Eq. (22).

Proof. Note that for −kc ≤ k ≤ −1 and 0 ≤ j ≤ N − 1,

exp

(
i2πkj

N

)
= exp

(
i2π (N + k) j

N

)
, (33)
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so the columns of matrix F̃[N ] in Eq. (22) equal ~φN−kc , . . . , ~φN−1, ~φ0, . . . , ~φkc . If N ≥ 2kc + 1,

then no column is repeated. In that case, by Lemma 3.8 the matrix F̃[N ] has orthogonal columns

with norm
√
N , which implies

1

N
F̃ ∗[N ]F̃[N ] =

(
1√
N
F̃[N ]

)∗
1√
N
F̃[N ] = I. (34)

The range of frequencies that human beings can hear is from 20 Hz to 20 kHz. The sampling
theorem therefore dictates that audio should be sampled at a rate of at least 40 kHz. Typical
rates used in practice are 44.1 kHz (CD), 48 kHz, 88.2 kHz, or 96 kHz.

In practice, signals are never exactly bandlimited. It is therefore very important to understand
what happens if we sample a signal that is not bandlimited and try to reconstruct it under the
assumption that it is. In general, from N samples, we can only hope to estimate the first 2kc + 1
Fourier coefficients, where kc is such thatN := 2kc+1. The following lemma establishes that, unless
the signal is exactly bandlimited with cut-off frequency kc, the estimated Fourier coefficients are not
equal to the true coefficients because there is additive interference from coefficients corresponding
to higher frequencies. This phenomenon is known as aliasing.

Lemma 2.10 (Aliasing). Let x be a defined on [0, T ), T > 0, and let ~x[N ] be a vector of N samples
of x at 0, T/N , 2T/N , . . .T − T/N . The vector

x̂rec[k] :=
1

N
(F̃ ∗[N ]~x[N ])[k], −ksamp ≤ k ≤ ksamp, (35)

denotes the estimate of the kth Fourier coefficient of x computed under the assumption that the
signal is bandlimited with a cut-off frequency of ksamp, where N = 2ksamp + 1. We have

x̂rec[k] =
∑

{(m−k) modN=0}
x̂[m], (36)

where x̂ denotes the true Fourier coefficients of x.

Proof. We denote the true cut-off frequency of x, which can be arbitrarily large by ktrue (the

argument can be extended to non-bandlimited funcions). By the definition of F̃[N ]

1

N
(F̃ ∗[N ]~x[N ])[k] =

1

N

N−1∑
j=0

exp

(
−i2πkj

N

) ktrue∑
m=−ktrue

x̂[m] exp

(
i2πmj

N

)
(37)

=
1

N

ktrue∑
m=−ktrue

x̂[m]
N−1∑
j=0

exp

(
i2π(m− k)j

N

)
. (38)

By the argument in Eq. (29), the geometric series

N−1∑
j=0

exp

(
i2π(m− k)j

N

)
(39)

equals N if (m− k) modN = 0 and zero otherwise. This completes the proof.
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Figure 7: Illustration of aliasing (top row) and perfect recovery (bottom row) of a real sinusoid
from equispaced samples, as described in Example 2.11. The left column shows the samples,
the original signal and the recovered signal in the time domain. The right column shows the
corresponding Fourier coefficients.
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The reason for aliasing is that samples from a sinusoid with frequency m are identical to the
samples from a sinusoid with frequency k = m mod N , where N is the number of samples. This
is illustrated in the following example and Figure 7. The sampling theorem establishes that if
the only sinusoidal components present in a signal all have frequencies less than the Nyquist rate,
then there is no possible confusion.

Example 2.11 (Sampling a real sinusoid). Let us consider a real sinusoid with frequency equal
to 4 Hz

x(t) := cos(8πt) (40)

= 0.5 exp(−i2π4t) + 0.5 exp(i2π4t) (41)

measured over one second, i.e. T = 1 s. The Fourier coefficients of the original signal are all zero
except for x̂[−4] = 0.5 and x̂[4] = 0.5, so the signal is bandlimited with cut-off frequency kc := 4.
If the number of samples N is larger than 2kc+1 = 9 then by Theorem 3.6 the Fourier coefficients,
and hence the signal, can be reconstructed perfectly, as shown in Figure 7 for N = 10.

To illustrate what happens if N < 2kc + 1 let us assume N = 5. In that case we can only hope to
recover 5 Fourier coefficients: k ∈ {−2,−1, 0, 1, 2}. Applying Lemma 2.10, the Fourier coefficients
corresponding to k ∈ {−2, 0, 2} will be estimated to equal zero because (4 − k) mod 5 6= 0 and
(−4−k) mod 5 6= 0 for k = −2, 0, 2. For k = −1 we have (4−(−1)) modN = 0 so the corresponding
estimated coefficient x̂rec[−1] equals x̂4 = 0.5. Similarly, (−4 − 1) modN = 0 so x̂rec[1] equals
x̂[−4] = 0.5. The samples are consistent with a real sinusoid with cut-off frequency 1 Hz, as
shown in Figure 7. 4

Example 2.12 (Sampling an electrocardiogram). The ECG signal from Example 2.5 is only
approximately bandlimited. Its approximate cut-off frequency is roughly above 50 Hz, where there
is a significant contribution from electric-grid interference. In this example, we have T = 8 s, so 50
Hz corresponds to kc = 50/(1/T ) = 400. By Theorem 3.6 the number of samples should be at least
801 to avoid significant aliasing. Figure 8 shows that for N = 1, 000 the aliasing is indeed almost
imperceptible. In contrast, if N = 625 the aliasing is evident in both the time and the frequency
domain. In particular the frequency component at k = 400 (corresponding to the electric-grid
interference at 50 Hz) shows up at k = ±225, which corresponds to 28.125 Hz. This follows from
Lemma 2.10 because (400− (−225)) mod 625 = 0 and (−400− 225) mod 625 = 0. 4

2.3 The discrete Fourier transform

The discrete Fourier transform is a change of basis that expresses a finite-dimensional vector in
terms of discrete complex sinusoids. It is the discrete counterpart of the Fourier series.

Definition 2.13 (Discrete Fourier transform). The discrete Fourier transform (DFT) of a vector
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Figure 8: Effect of different sampling rates on the recovery of the ECG data from Example 2.5.
The left column shows the samples, the original signal and the recovered signal in the time domain.
The right column shows the corresponding Fourier coefficients. As explained in Example 2.12, if
the sampling rate is not sufficiently high, there is significant aliasing (top row). This can be
mitigated by increasing the rate (bottom row).
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~x ∈ CN is given by

x̂ :=



1 1 1 · · · 1

1 exp
(
− i2π

N

)
exp

(
− i2π2

N

)
· · · exp

(
− i2π(N−1)

N

)
1 exp

(
− i2π2

N

)
exp

(
− i2π4

N

)
· · · exp

(
− i2π2(N−1)

N

)
· · · · · · · · · · · · · · ·
1 exp

(
− i2π(N−1)

N

)
exp

(
− i2π2(N−1)

N

)
· · · exp

(
− i2π(N−1)2

N

)


~x = F[N ]~x. (42)

In terms of the discrete complex sinusoids in Definition 2.7,

x̂ [k] =
〈
~x, ~φk

〉
, 0 ≤ k ≤ N − 1. (43)

The inverse DFT of a vector ŷ ∈ CN equals

~y =
1

N
F ∗[N ]ŷ. (44)

The rows of the DFT matrix F[N ] are exactly the same as the rows of the matrix F̃ ∗[N ] in Eq. (22),

only in a different order (since for any k and any integer l φk = φk+lN). This observation combined
with Theorem 3.6 provides a interesting interpretation of the DFT: if ~x ∈ CN contains equispaced
samples from a bandlimited signal x with cut-off frequency kc– where N ≥ 2kc + 1– then the DFT
of ~x contains the nonzero Fourier series coefficients of x. In addition, by Lemma 3.8 the rows (and
columns) of F[N ] are orthogonal and have norm

√
N , which justifies the definition of the inverse

DFT.

Corollary 2.14. The inverse DFT inverts the DFT.

In general, the time complexity of multiplying an N ×N matrix with an N -dimensional vector is
N2. However one can compute the DFT much faster. The fast-Fourier transform (FFT) algorithm
exploits the structure of the DFT matrix to compute the DFT with complexity O (N logN). It
is difficult to overstate the importance of the FFT. Gilbert Strang has described it as the most
important numerical algorithm of our lifetime. The main insight underlying the FFT is that the
N -order DFT matrix can be expressed in terms of N/2-order DFT submatrices. To simplify the
exposition we assume that N is even, but similar decompositions are possible for odd N .

Lemma 2.15. Let F[N ] denote the N × N DFT matrix, where N is even. Then for k =
0, 1, . . . , N/2− 1, and any vector ~x ∈ CN

F[N ]~x [k] = F[N/2]~xeven [k] + exp

(
−i2πk

N

)
F[N/2]~xodd [k] , (45)

F[N ]~x [k +N/2] = F[N/2]~xeven [k]− exp

(
−i2πk

N

)
F[N/2]~xodd [k] , (46)

where ~xeven and ~xodd contain the even and odd entries of ~x respectively.

Proof. The proof is illustrated in Figure 9.
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~x[0]

~x[1]

~x[2]

~x[3]

~x[4]

~x[5]

~x[6]

~x[7]

x̂[0]

x̂[1]

x̂[2]

x̂[3]

x̂[4]

x̂[5]

x̂[6]

x̂[7]

=

(a) Separation in even/odd columns and top/bottom rows.

=

e−2πi(0)/8

e−2πi(1)/8

e−2πi(2)/8

e−2πi(3)/8

e−2πi(4)/8

e−2πi(5)/8

e−2πi(6)/8

e−2πi(7)/8

(b) Even columns can be scaled to yield odd columns.

=

(c) Top even submatrix and bottom
even submatrix are both an N/2-
order DFT matrix.

~x[0]
~x[2]
~x[4]
~x[6]

+

e−2πi(0)/8

e−2πi(1)/8

e−2πi(2)/8

e−2πi(3)/8

~x[1]
~x[3]
~x[5]
~x[7]

~x[0]
~x[2]
~x[4]
~x[6]

+

e−2πi(4)/8

e−2πi(5)/8

e−2πi(6)/8

e−2πi(7)/8

~x[1]
~x[3]
~x[5]
~x[7]

x̂[0]
x̂[1]
x̂[2]
x̂[3]

=

x̂[4]
x̂[5]
x̂[6]
x̂[7]

=

(d) Application of N -order DFT matrix to an N -dimensional vector expressed in terms of two N/2-order
DFT matrices applied to two N/2-dimensional vectors.

Figure 9: Illustration of the proof of Lemma 2.15 for N := 8.
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The Cooley-Tukey FFT algorithm exploits Lemma 2.15 to compute the DFT recursively.

Algorithm 2.16 (Cooley-Tukey Fast Fourier transform). If N = 1, output F[1]~x := ~x. Otherwise
apply the following steps:

1. Compute F[N/2]~xeven.

2. Compute F[N/2]~xodd.

3. For k = 0, 1, . . . , N/2− 1 set

F[N ]~x [k] := F[N/2]~xeven [k] + exp

(
−i2πk

N

)
F[N/2]~xodd [k] , (47)

F[N ]~x [k +N/2] := F[N/2]~xeven [k]− exp

(
−i2πk

N

)
F[N/2]~xodd [k] . (48)

Lemma 2.17 (Complexity of the FFT). The FFT algorithm has complexity O(N logN).

Proof. For simplicity, we assume that N = 2L for some positive integer L; the argument can be
adapted to the general case. The algorithm recursively decomposes the task of computing the
DFT into a tree with L levels depicted in Figure 10. Let us number the levels starting at 0, which
represents the root. At level l ∈ {1, . . . , L} there are 2l nodes. At each node we need to compute
Eq. (47), which amounts to scaling a vector of length 2L−l and adding it to another vector of the
same length. As a result at each level the complexity is of order 2l2L−l = 2L = N . Since there are
exactly log2N levels, the proof is complete.

Figure 11 shows a numerical comparison of the running time of the FFT and a naive matrix-based
implementation of the DFT. The difference is dramatic, as expected from Lemma 2.17.

3 Frequency representations in multiple dimensions

3.1 Fourier series of multidimensional signals

In this section we discuss the extension of frequency representations to multidimensional spaces.
We consider the Hilbert space of complex-valued square-integrable functions defined on a hyper-
rectangle I := [a1, b1]× . . .× [ap, bp] ⊂ Rp with the standard inner product,

〈x, y〉 :=

∫
I
x
(
~t
)
y
(
~t
)

d~t. (49)

A natural multidimensional generalization of the sinusoid in Eq. (5) is

a cos
(

2π〈~f,~t 〉+ θ
)
. (50)
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DFT2L

DFT2L−1 DFT2L−1

DFT2L−2 DFT2L−2 DFT2L−2 DFT2L−2

DFT2L−3 DFT2L−3 DFT2L−3 DFT2L−3 DFT2L−3 DFT2L−3 DFT2L−3 DFT2L−3

Figure 10: Recursive structure of the FFT algorithm for N := 8.
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Figure 11: Numerical comparison of the running times of a naive matrix-based implementation of
the DFT (assuming the matrix is already built) and the FFT algorithm. Both approaches were
applied to 20 random complex vectors for each value of N .

Here the frequency and the time variables are d-dimensional vectors. The multidimensional sinu-
soid is periodic with period 1/ ||f ||2 in the direction of the unit vector ~v := ~f/ ||f ||2. Indeed,

a cos

(
i2π

〈
~f,~t+

m

||f ||2
~f

||f ||2

〉
+ θ

)
= a cos

(
i2π〈~f,~t〉+ i2πm+ θ

)
(51)

= a cos
(
i2π〈~f,~t 〉+ θ

)
, (52)

for any integer m. Multidimensional sinusoids are planar waves, constant along any hyperplane
orthogonal to ~f . In the direction of ~f they oscillate with a frequency equal to the `2 norm of ~f .
Figure 12 shows some examples. As in one dimension, working with complex sinusoids makes it
easier to define frequency representations, because the phase can be encoded linearly as a complex
multiplicative coefficient.

Definition 3.1 (Multidimensional complex sinusoids). The complex sinusoid with frequency ~f ∈
Rd is given by

exp(i2π〈~f,~t 〉) := cos(2π〈~f,~t 〉) + i sin(2π〈~f,~t 〉), (53)

where ~t ∈ Rd.

Any multidimensional sinusoid with frequency ~f can be expressed as the sum of two complex
sinusoids with frequencies ~f and −~f respectively:

cos
(
i2π〈~f,~t 〉+ θ

)
=

exp(iθ)

2
exp(i2π〈~f,~t 〉) +

exp(−iθ)
2

exp(−i2π〈~f,~t 〉). (54)
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Multidimensional complex sinusoids can be expressed as the product of complex sinusoids aligned
with each axis.

exp(i2π〈~f,~t 〉) := exp

(
i2π

d∑
j=1

~f [j]~t [j]

)
(55)

=
d∏
j=1

exp(i2π ~f [j]~t [j]). (56)

For simplicity, and because we are mostly interested in applications related to images, from now on
we focus on the two-dimensional case. However, most of the results generalize to higher dimensions.
To alleviate notation, we denote each coordinate by t1 := ~t [1] and t2 := ~t [2]. If turns out that
for any fixed positive T ∈ R, complex sinusoids with frequency coordinates equal to k1/T and
k2/T for k1, k2 ∈ Z are all orthogonal. Figure 12 shows real-valued 2D sinusoids corresponding to
different values of k1 and k2.

Lemma 3.2 (Orthogonality of multidimensional complex sinusoids). The family of complex sinu-
soids with integer frequencies

φ2D
k1,k2

(t1, t2) := exp

(
i2πk1t1
T

)
exp

(
i2πk2t2
T

)
, k1, k2 ∈ Z, (57)

is an orthogonal set of functions on any interval of the form [a, a+ T ]×[b, b+ T ], where a, b, T ∈ R
and T > 0.

Proof. The result follows from Lemma 2.2. By Eq. (56)

φ2D
k1,k2

(t1, t2) = φk1 (t1)φk2 (t2) , (58)

so that 〈
φ2D
k1,k2

, φ2D
j1,j2

〉
=

∫ a+T

t1=a

∫ b+T

t2=b

φk1 (t1)φk2 (t2)φj1 (t1)φj2 (t2) dt1 dt2 (59)

= 〈φk1 , φj1〉 〈φk2 , φj2〉 (60)

= 0 (61)

as long as j1 6= k1 or j2 6= k2.

The 2D Fourier series represents 2D functions in terms of complex sinusoids.

Definition 3.3 (Fourier series). The Fourier series coefficients of a function x ∈ L2 [a, a+ T ] for
any a, T ∈ R, T > 0, are given by

x̂[k1, k2] :=
〈
x, φ2D

k1,k2

〉
=

∫ a+T

t1=a

∫ b+T

t2=b

x(t1, t2) exp

(
−i2πk1t1

T

)
exp

(
−i2πk2t2

T

)
dt1 dt2. (62)

The Fourier series of order kc,1, kc,2 is defined as

Fkc,1,kc,2 {x} :=
1

T

kc,1∑
k1=−kc,1

kc,2∑
k2=−kc,2

x̂[k1, k2]φ2D
k1,k2

. (63)
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Figure 12: Spatial (left) and frequency (right) representation of real-valued 2D sinusoids with
different 2D frequencies.
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Figure 13: Sagittal section of a human knee measured by magnetic-resonance imaging. The image
on the left shows the proton density of the section, whereas the image on the right shows the
magnitude of the corresponding Fourier series coefficients.

As in the one-dimensional case, the Fourier series of a square-integrable function in multiple
dimensions converges to the function as the order tends to infinity.

Example 3.4 (Magnetic resonance imaging). Magnetic resonance imaging (MRI) is a medical-
imaging technique that measures the response of the atomic nuclei in biological tissues to high-
frequency radio waves when placed in a strong magnetic field. Remarkably, the radio waves can be
adjusted so that each measurement corresponds to a 2D Fourier coefficient of the proton density
of the hydrogen atoms in a region of interest. In MRI the 2D frequency representation is called
k-space. In order to reconstruct an MRI image, we compute the Fourier series corresponding to
the k-space measurements. Figure 13 shows an example. In this case, T := 25 cm, so that the
basic frequency in the Fourier series equals 0.04 cm−1. Figure 14 shows the Fourier series for
different values of kc,1 and kc,2. These values govern the vertical and horizontal resolution of the
image. 4

3.2 Sampling theorem in 2D

As in one dimension, bandlimited signals are signals that are well represented by a finite number
of Fourier-series coefficient, like the image in Figure 13. To simplify the definition, we consider
Fourier series that have the same order in the vertical and horizontal indices.

Definition 3.5 (Bandlimited signal). A signal defined on the 2D rectangle [a, a+ T ]× [b, b+ T ],
where a, b, T ∈ R and T > 0 is bandlimited with a cut-off frequency kc if it is equal to its Fourier
series representation of order kc, i.e.

x(t1, t2) =
kc∑

k1=−kc

kc∑
k2=−kc

x̂[k1, k2] exp

(
i2πk1t1
T

)
exp

(
i2πk2t2
T

)
. (64)
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Figure 14: On the right, Fourier series of the image in Figure 13 for different values of kc,1 and
kc,2. The magnitude of the corresponding Fourier coefficients is shown on the right.
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Bandlimited functions can be exactly recovered from a finite number of samples. To simplify
notation we consider functions supported on the square [0, T )2 for some real T > 0, without loss
of generality. We will focus on equispaced sampling patterns of the form:

X[N ] :=


x
(

0
N
, 0
N

)
x
(

0
N
, T
N

)
· · · x

(
0
N
, T − T

N

)
x
(
T
N
, 0
N

)
x
(
T
N
, T
N

)
· · · x

(
T
N
, T − T

N

)
· · · · · · · · · · · ·

x
(
T − T

N
, 0
N

)
x
(
T − T

N
, T
N

)
· · · x

(
T − T

N
, T − T

N

)

 . (65)

The sampling theorem, generalized to 2D, provides a condition on N to ensure exact recovery of
the bandlimited signal from such measurements.

Theorem 3.6 (Nyquist-Shannon-Kotelnikov sampling theorem). Any bandlimited signal x ∈
L2[0, T )2, where T > 0, with cut-off frequency kc can be recovered exactly from N2 uniformly
spaced samples as long as

N ≥ 2kc + 1, (66)

where 2kc + 1 is known as the Nyquist rate. Recovery can be carried out by obtaining the matrix
of Fourier series coefficients

X̂[kc] :=


x̂−kc,−kc x̂−kc,−kc+1 · · · x̂−kc,kc

x̂−kc+1,−kc x̂−kc+1,−kc+1 · · · x̂−kc+1,kc

· · · · · · · · · · · ·
x̂kc,−kc x̂kc,−kc+1 · · · x̂kc,kc

 (67)

from the vector of samples X[N ] as follows

X̂[kc] =
1

N2
F̃ ∗[N ]X[N ]

(
F̃ ∗[N ]

)T
, (68)

where F̃[N ] is defined in Eq. (22).

Proof. The result follows from the identity

X[N ] = F̃[N ]X̂[kc]F̃
T
[N ], (69)

which can be verified by computing the matrix product, and from the fact that 1√
N
F̃[N ] is an

orthogonal matrix by Lemma 3.8.

3.3 Discrete Fourier transform in 2D

In this section we extend the definition of discrete Fourier transform to two dimensions. We
represent discrete signals in 2D as matrices belonging to the vector space of CN×N matrices
endowed with the standard inner product

〈A,B〉 := tr (B∗A) , A,B ∈ CN×N . (70)
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This is equivalent to representing the signals as vectors in CN2
with the usual dot product. Discrete

complex sinusoids form a basis of the space.

Definition 3.7 (Discrete complex sinusoids). The discrete complex sinusoid Φk1,k2 ∈ CN×N with
integer frequencies k1 and k2 is defined as

Φk1,k2 [j1, j2] := exp

(
i2πk1j1

N

)
exp

(
i2πk2j2

N

)
, 0 ≤ j1, j2 ≤ N − 1, (71)

or, in terms of 1D discrete sinusoids

Φk1,k2 = ~φk1
~φTk2 . (72)

Lemma 3.8 (Orthonormal sinusoidal basis). The discrete complex exponentials 1
N

Φk1,k2, 0 ≤
k1, k2 ≤ N − 1, form an orthonormal basis of CN×N .

Proof. By Eq. (72), we can reformulate the inner product of two 2D discrete sinusoids in terms of
1D discrete sinusoids

〈Φk1,k2 ,Φl1,l2〉 = tr ((Φl1,l2)
∗Φk1,k2) (73)

= (~φk1)
∗~φl1(~φk2)

∗~φl2 . (74)

Lemma 3.8 then implies that the inner product equals N if k1 = l1 and k2 = l2, and zero
otherwise. Since there are N2 vectors in the set and they are linearly independent, they form a
basis of CN2

.

The 2D discrete Fourier transform is just a change of basis that expresses a 2D vector in terms of
2D discrete complex sinusoids.

Definition 3.9 (2D discrete Fourier transform). The discrete Fourier transform (DFT) of a 2D
array X ∈ CN×N is given by

X̂ [k1, k2] := 〈X,Φk1,k2〉 , 0 ≤ k1, k2 ≤ N − 1, (75)

or equivalently by

X̂ := F[N ]X F[N ], (76)

where F[N ] is the 1D DFT matrix defined in Eq. (42). The inverse DFT of a 2D array Ŷ ∈ CN×N

equals

Y =
1

N2
F ∗[N ]Ŷ F

∗
[N ]. (77)

Recall that by Lemma 3.8 the rows (and columns) of F[N ] are orthogonal and have norm
√
N ,

which justifies the definition of the inverse DFT.

Corollary 3.10. The inverse 2D DFT inverts the 2D DFT.
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As in one dimension, if we interpret the entries of a matrix X as equispaced samples from a
bandlimited signal measured at the Nyquist rate, then the 2D DFT of X is exactly equal to the
2D Fourier series of x (recall that the rows of F[N ] are the same as the rows of F̃[N ], only in
a different order). By Lemma (2.17), the complexity of computing the 2D DFT using the FFT
algorithm is O(N2 logN). In contrast, a naive implementation using matrix-vector multiplications
would have complexity O(N3).

Example 3.11 (Undersampling in the frequency domain). An important goal in MRI is to reduce
the time that the patient stays in the scanner. Scanner time is very expensive, and patients tend
to move during long scans, which decreases the image quality. Scan time is roughly proportional
to the frequency samples measured by the MR scanner. As shown in Figure 14, limiting the
number of k-space samples by reducing the cut-off frequency results in a loss of resolution. An
alternative could be to undersample regularly up to the cut-off frequency, i.e. for example measure
the Fourier coefficients x̂[k1, k2] for k1 = −kc,−kc+2, . . . , kc−2, kc instead of for all integer values
of k1 between −kc and kc.

Unfortunately undersampling in the frequency domain produces aliasing artifacts in the image
domain, just like sampling below the Nyquist rate produces aliasing in the frequency domain
(recall Lemma 2.10). To gain some intuition, let us sketch a simple proof when the undersampling
factor equals 2 in the horizontal axis. Consider an image X ∈ CN×N , where N is even to simplify
matters. By Lemma 2.15, the submatrix of even columns of F[N ] equals

(F[N ])even :=

[
F[N/2]

F[N/2]

]
. (78)

Let us separate the image into its left N/2 columns and its right N/2 columns

X :=
[
Xleft Xright

]
. (79)

If we undersample by a factor of 2 in the k2 axis, the data equal

X̂even = F[N ]X(F[N ])even (80)

= F[N ]

[
Xleft Xright

] [F[N/2]

F[N/2]

]
(81)

= F[N ] (Xleft +Xright)F[N/2]. (82)

The left and right halves are scrambled in the measurements. Let Ŷ ∈ CN×N be a matrix whose
even columns equal X̂even and whose odd columns are zero. Recovering from Ŷ as if we had
measured all Fourier coefficients yields

Y =
1

N2
F ∗[N ]Ŷ F

∗
[N ] (83)

=
1

N2
F ∗[N ]X̂even(F[N ])

∗
even (84)

=
1

N
F ∗[N ]F[N ] (Xleft +Xright)

1

N
F[N/2]

[
F ∗[N/2] F ∗[N/2]

]
(85)

=
1

2

[
Xleft +Xright Xleft +Xright

]
. (86)

The aliased image is equal to the sum of the original image and a circular shift. Figure 15 illustrates
this phenomenon. 4
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Figure 15: Aliasing in the spatial domain (left) caused by different undersampling patterns in the
frequency domain (right) for the MR image in Figure 13.
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4 Translation Invariance

As discussed in Section 1.3, linear models that map signals of dimension N to signals of have N2

parameters. This makes them intractable for signals like images, audio, video, etc. In order to
design more parsimonious models, we consider classes of signals that are translation invariant. If
a signal x belongs to a set of signals that is translation invariant, then any shift of x also belongs
to the set. Audio, images and videos are all translation invariant; a shifted picture of a dog is still
a picture of a dog.

4.1 Translation

In practice, when considering translations of finite-dimensional signals one needs to be careful
about border effects. We focus on circular translations, which assume that signals lie on a circle
in 1D or a torus in 2D.

Definition 4.1 (Circular translation). We denote by ~x ↓s the sth circular translation or shift of a
vector ~x ∈ CN . For all 1 ≤ j ≤ N ,

~x ↓s[j] =

{
~x [j − s] if 1 ≤ j − s ≤ N,

~x [N + j − s] if j − s < 1.
(87)

For an N ×N signal X ∈ CN×N , circular translation by (s1, s2) ∈ is denoted by X ↓(s1,s2). For all
1 ≤ j1, j2 ≤ N ,

X ↓(s1,s2)[j1, j2] =


X[j1 − s1, j2 − s2] if 1 ≤ j1 − s1, j2 − s2 ≤ N,

X[N + j1 − s1, j2 − s2] if j1 − s1 < 1,

X[j1 − s1, N + j2 − s2] if j2 − s2 < 1,

X[N + j1 − s1, N + j2 − s2] if j1 − s1 < 1, j2 − s2 < 1.

(88)

Recall that we use complex exponentials to represent sinusoids when computing frequency repre-
sentations, because the phase can be encoded as a linear coefficient. Shifting a sinusoid amounts
to modifying its phase. As a result, shifting a complex sinusoid is equivalent to multiplying it by
a complex constant.

Lemma 4.2. For any discrete complex sinusoid ~φk ∈ CN with integer frequency k and any integer
shift s

~φ ↓sk = exp

(
−i2πks

N

)
~φk. (89)

Proof. By the definition of a complex sinusoid,

~φ ↓sk [l] = exp

(
i2πk(l − s)

N

)
(90)

= exp

(
−i2πks

N

)
~φk[l]. (91)
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Corollary 4.3. The discrete complex sinusoid Φk1,k2 ∈ CN×N with integer frequencies k1 and k2

Φ
↓(s1,s2)
k1,k2

= exp

(
−i2πk1s1

N

)
exp

(
−i2πk2s2

N

)
Φk1,k2 . (92)

Proof. The result follows immediately from Lemma 4.2 because Φ
↓(s1,s2)
k1,k2

= ~φ ↓s1k1
(~φ ↓s2k2

)T .

One can think of a vector as a sum of discrete sinusoids each scaled by the corresponding DFT
coefficient. If the vector is shifted, then Lemma 4.2 implies that each discrete sinusoid is just
scaled by a complex constant. This yields a simple expression for the Fourier coefficients of shifted
signals.

Theorem 4.4. Let ~x ∈ CN with DFT x̂ and y := x ↓s, 0 ≤ s ≤ N − 1. The DFT coefficients of y
are given by

ŷ [k] := exp

(
−i2πks

N

)
x̂ [k] , 1 ≤ k ≤ N. (93)

Let X ∈ CN×N with DFT X̂ and Y := X ↓(s1,s2), 0 ≤ s1, s2 ≤ N − 1. The DFT coefficients of Y
are given by

Ŷ [k1, k2] := exp

(
−i2πks1

N

)
exp

(
−i2πks2

N

)
X̂ [k1, k2] , 1 ≤ k1, k2 ≤ N. (94)

Proof. We only prove the one-dimensional case, the 2D case follows by the same argument:

ŷ [k] := 〈~x ↓s, ~φk〉 (95)

= 〈~x, ~φ ↓−sk 〉 (96)

=

〈
~x, exp

(
i2πks

N

)
~φk

〉
by Lemma 4.2 (97)

= exp

(
−i2πks

N

)
〈~x, ~φk〉 (98)

= exp

(
−i2πks

N

)
x̂ [k] . (99)

4.2 Linear translation-invariant maps

Let us consider a linear map D : CN → CN that performs denoising on a class of translation-
invariant signals. For a fixed noisy data vector ~y the denoised signal equals D(~y). How should the
output change if we shift the input ~y ↓s? If the statistics of the noise are translation invariant (i.e.
the noise level does not depend on the location), the output should just be a shifted copy of D(~y):
D(~y) ↓s. Linear maps with this property are said to be translation or shift invariant.
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Definition 4.5 (Linear translation-invariant map). A map L from CN to CN is linear if for any
vectors ~x, ~y ∈ CN and any constant α ∈ C

L(~x+ ~y) = L(~x) + L(~y), (100)

L(α~x) = αL(~x), (101)

and translation invariant if for any shift 0 ≤ s ≤ N − 1

L(~x ↓s) = L(~x) ↓s. (102)

A map L from CN×N to CN×N is linear if for any X, Y ∈ CN×N and any constant α ∈ C

L(X + Y ) = L(X) + L(Y ), (103)

L(αX) = αL(X), (104)

and translation invariant if for any 0 ≤ s1, s2 ≤ N − 1

L(X ↓(s1,s2)) = L(X) ↓(s1,s2). (105)

A linear translation-invariant (LTI) map can be parametrized by its action on the first standard-
basis vector. Standard-basis vectors are often called impulses in the signal-processing literature,
so the corresponding output of the map is called an impulse response. Impulse responses are also
often called filters.

Definition 4.6 (Impulse response). Let ~e0 ∈ CN be the first standard-basis vector if we index the

entries from 0 to N − 1 (~e0[0] = 1 and ~e0[j] = 0 for 1 ≤ j ≤ N − 1). The vector ~hL ∈ Cn obtained
by applying a map L : Cn → Cn to ~e0 is called the impulse response of the map,

~hL := L(~e0). (106)

Let E0 ∈ CN×N be the first standard-basis vector in CN×N if we index each dimension from 0 to
N − 1 (E[0, 0] = 1 and E[j1, j2] = 0 for 1 ≤ j1, j2 ≤ N − 1). The vector HL ∈ CN×N obtained by
applying a map L : CN×N → CN×N to E0 is the impulse response of the map,

HL := L(E0). (107)

In order to express LTI systems in terms of their impulse response, we first need to introduce an
operation between two vectors known as convolution. Note that we index the entries of the vectors
from 0 to N − 1, but this is without loss of generality, the definition is equivalent if we consider
any N contiguous integers.

Definition 4.7 (Circular convolution). The circular convolution between two vectors ~x, ~y ∈ CN

is defined as

~x ∗ ~y [j] :=
N−1∑
s=0

~x [s] ~y ↓s [j] , 0 ≤ j ≤ N − 1. (108)

The 2D circular convolution between X ∈ CN×N and Y ∈ CN×N is defined as

X ∗ Y [j1, j2] :=
N−1∑
s1=0

N−1∑
s2=0

X [s1, s2]Y ↓(s1,s2) [j1, j2] , 0 ≤ j1, j2 ≤ N − 1. (109)
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A general linear map from CN to CN can be parametrized by a matrix with N2 entries. In contrast,
the next theorem establishes that an LTI map can be parametrized by its impulse response, which
has dimension N . This is a dramatic reduction in the number of parameters.

Theorem 4.8. The action of a LTI map L : CN → CN on a vector ~x ∈ CN is equal to the circular
convolution of ~x and the impulse response ~hL of L,

L (~x) = ~x ∗ ~hL. (110)

The action of a 2D LTI map L : CN×N → CN×N on X ∈ CN×N is equal to the circular convolution
of X and the impulse response HL of L,

L (X) = X ∗HL. (111)

Proof. We prove the 1D case; the 2D case follows by the same argument. To simplify the argument
we index the entries of the vector from 0 to N − 1. Expressed in terms of the basis vectors
~x =

∑N−1
j=0 ~x [j]~ej. By linearity and translation invariance,

L (~x) = L
(
N−1∑
j=0

~x [j]~ej

)
(112)

= L
(
N−1∑
j=0

~x [j]~e ↓j0

)
(113)

=
N−1∑
j=0

~x [j]L
(
~e ↓j0

)
(114)

=
N−1∑
j=0

~x [j]L (~e0) ↓j (115)

=
N−1∑
j=0

~x [j]~h ↓jL . (116)

The convolution between two vectors can be efficiently computed by multiplying their Fourier
coefficients. This is illustrated in Figures 16 and 17.

Theorem 4.9 (Convolution in time is multiplication in frequency). Let ~y := ~x1 ∗ ~x2 for ~x1, ~x2 ∈
CN . Then the DFT of ~y equals

ŷ [k] = x̂1 [k] x̂2 [k] , 0 ≤ k ≤ N − 1, (117)

x̂1 and x̂2 are the DFTs of ~x1 and ~x2 respectively.

Let Y := X1 ∗X2 for X1, X2 ∈ CN×N . Then the 2D DFT of Y is given by

Ŷ [k1, k2] = X̂1 [k1, k2] X̂2 [k1, k2] . (118)
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Figure 16: Convolution between two one-dimensional signals. The frequency representation of
both signals and their convolution is shown on the right. One of them is a low-pass filter, which
only has nonzero coefficients in a low-frequency band. As a result, these coefficients are also zero
in the convolved signal.
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Proof. We have

ŷ [k] :=
〈
~x1 ∗ ~x2, ~φk

〉
(119)

=

〈
N−1∑
s=0

~x1 [s] ~x ↓s2 ,
~φk

〉
(120)

=

〈
N−1∑
s=0

~x1 [s]
1

N

N−1∑
j=0

exp

(
−i2πjs

N

)
x̂2[j]~φj, ~φk

〉
by Theorem 4.4 (121)

=
N−1∑
j=0

N−1∑
s=0

~x1 [s] exp

(
−i2πjs

N

)
1

N

〈
x̂2[j]~φj, ~φk

〉
(122)

=
N−1∑
j=0

x̂1[j]x̂2[j]
1

N

〈
~φj, ~φk

〉
(123)

= x̂1[k]x̂2[k]. (124)

The 2D result follows from the same argument.

A useful consequence of this theorem is that we can compute convolutions by computing the DFT
of the two vectors via the FFT, multiplying their DFT coefficients, and then taking the inverse
DFT again via the FFT. The complexity for N -dimensional vectors is of order N logN .

The DFT of the impulse response of an LTI map is known as its transfer function. By Theo-
rems 4.8 and 4.9 applying an LTI map to a vector just scales each of its Fourier coefficients by the
corresponding entry of the transfer function.

Corollary 4.10. Let ĥL be the DFT of the impulse response of an LTI map L. Then for any
~x ∈ CN

L(~x) =
N−1∑
k=0

ĥL[k]x̂[k]~φk. (125)

Let ĤL be the 2D DFT of the impulse response of a 2D LTI map L. Then for any X ∈ CN×N

L(X) =
N−1∑
k1=0

N−1∑
k2=0

ĤL[k1, k2]X̂[k1, k2]Φk1,k2 . (126)

4.3 Wiener filtering

LTI maps can be applied to estimate signals from data. This is equivalent to solving a regression
problem where the function is constrained to be linear and translation invariant. The assumption
of translation invariance results in a dramatic reduction of parameters with respect to a general
linear transformation. The optimal LTI map with respect to the `2-norm estimation error is known
as the Wiener filter. The following theorem derives the expression of the transfer function of the
Wiener filter for an arbitrary training dataset of examples.
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Figure 17: Image blurring caused by diffraction in optical systems is often modeled as a convolution
between a high-resolution image and a blurring kernel or point-spread function. The result is a
low-resolution image due to the local averaging resulting from convolving with the kernel, which in
this example is Gaussian. In the frequency domain, the high-frequency components of the image
are suppressed because the corresponding frequency components of the kernel are very small.
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Theorem 4.11 (Wiener filter). Let (~x[1], ~y[1]), . . . , (~x[n], ~y[n]) be a training set of n pairs of clean
and noisy signals of dimension N . The solution to the `2-norm loss optimization problem

min
~w∈CN

n∑
j=1

∣∣∣∣~x[j] − ~w ∗ ~y [j]
∣∣∣∣2

2
(127)

is an LTI map with a transfer function given by

ŵopt[k] =

∑n
j=1 x̂

[j][k]ŷ[j][k]∑n
j=1 |ŷ[j][k]|2

, 1 ≤ k ≤ N. (128)

If the signals are two dimensional: (X [1], Y [1]), . . . , (X [n], Y [n]) then the transfer function of the
optimal filter equals

Ŵopt[k1, k2] =

∑n
j=1 X̂

[j][k1, k2]Ŷ [j][k1, k2]∑n
j=1

∣∣∣Ŷ [j][k1, k2]
∣∣∣2 , 1 ≤ k1, k2 ≤ N. (129)

Proof. The cost function can be rewritten in terms of the Fourier coefficients of the signals in the
training set by Theorem 4.9,

C (w) :=
1

2

n∑
j=1

∣∣∣∣~x[j] − ~w ∗ ~y [j]
∣∣∣∣2

2
(130)

=
1

2

n∑
j=1

∣∣∣∣∣∣∣∣ 1

N
F ∗[N ](x̂

[j] − ŵ ◦ ŷ[j])

∣∣∣∣∣∣∣∣2
2

(131)

=
1

2N

n∑
j=1

∣∣∣∣x̂[j] − ŵ ◦ ŷ[j]
∣∣∣∣2

2
(132)

=
1

2N

n∑
j=1

N∑
k=1

∣∣x̂[j][k]− ŵ[k]ŷ[j][k]
∣∣2 :=

1

N

N∑
k=1

C̃k (ŵ[k]) . (133)

This decouples the cost function into N terms, each of which only depends on one Fourier coeffi-
cient.

C̃k (α) :=
1

2

n∑
j=1

∣∣x̂[j][k]− α ŷ[j][k]
∣∣2 (134)

=
1

2

n∑
j=1

∣∣x̂[j][k]
∣∣2 − 2 Re

{
x̂[j][k]ŷ[j][k]α

}
+
∣∣ŷ[j][k]

∣∣2 |α|2 (135)

=
1

2

n∑
j=1

∣∣x̂[j][k]
∣∣2 − 2 Re

{
x̂[j][k]ŷ[j][k]

}
αR − 2 Im

{
x̂[j][k]ŷ[j][k]

}
αI +

∣∣ŷ[j][k]
∣∣2 (α2

R + α2
I

)
,

where αR and αI denote the real and imaginary part of α respectively. Setting the derivatives
with respect to these parameters to zero, we obtain

arg min C̃k (α) =

∑n
j=1 Re

{
x̂[j][k]ŷ[j][k]

}
∑n

j=1 |ŷ[j][k]|2
+ i

∑n
j=1 Im

{
x̂[j][k]ŷ[j][k]

}
∑n

j=1 |ŷ[j][k]|2
. (136)

The proof for the 2D result is analogous.
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Optimal linear translation-invariant filtering is equivalent to scaling each Fourier coefficient of the
noisy signal by a fixed constant. In the case of additive iid Gaussian noise, the scaling has a very
simple expression.

Example 4.12 (Denoising via Wiener filtering). Let us consider a denoising problem where the
data are modeled probabilistically as n samples from a random vector

~y = ~x + ~z, (137)

where ~z is zero-mean Gaussian noise with variance σ2, which is independent of the signal ~x. The
goal is to estimate the signal from the noisy measurements.

As we will see in a future lecture, a linear transformation A~z of a Gaussian vector with mean ~µ and
covariance matrix Σ is still Gaussian with mean A~µ and covariance matrix AΣA∗. This implies
that the DFT of ~z is a Gaussian vector with covariance matrix F[N ]σ

2IF ∗[N ] = Nσ2I and mean
zero: in other words, the Fourier coefficients of the noise are also iid Gaussian with zero mean
and variance Nσ2. Here we are considering Gaussian random variables, which are complex-valued
random values whose real and imaginary parts have a Gaussian distribution.

The numerator in Eq. (144) can be interpreted as a sample crosscorrelation of the Fourier coeffi-
cients of the data and the signal. By the independence assumption we have

1

n

n∑
j=1

x̂[j][k]ŷ[j][k] ≈ E
(
x̂[k]ŷ[k]

)
(138)

= E
(
|x̂[k]|2

)
+ E

(
x̂[k]ẑ[k]

)
(139)

= E
(
|x̂[k]|2

)
+ E (x̂[k]) E

(
ẑ[k]

)
(140)

= E
(
|x̂[k]|2

)
. (141)

Similarly, the denominator is equal to the sample mean square of the data. Again by the inde-
pendence assumption,

1

n

n∑
j=1

∣∣ŷ[j][k]
∣∣2 ≈ E

(
|ŷ[k]|2

)
(142)

= E
(
|x̂[k]|2

)
+ E

(
|ẑ[k]|2

)
, (143)

where the cross term is zero because ẑ is zero mean.

We conclude that the transfer function of the optimal denoising Wiener filter is given by

ŵopt[k] =
E
(
|x̂[k]|2

)
E
(
|x̂[k]|2

)
+Nσ2

, 1 ≤ k ≤ N. (144)

In 2D, by the same argument

Ŵopt[k1, k2] =

E

(∣∣∣X̂[k1, k2]
∣∣∣2)

E

(∣∣∣X̂[k1, k2]
∣∣∣2)+N2σ2

, 1 ≤ k1, k2 ≤ N. (145)
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Figure 18: The plot at the top shows the mean square magnitude of the Fourier coefficients of a
set of audio signals, in which people say yes and no alternatively in Hebrew. The corresponding
Wiener filters for different noise levels are shown below in the frequency and time domains.
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Figure 19: Result of applying the filters in Figure 18 to two test audio signals with different noise
levels. Click on these links to listen to the audio: clean signal, noisy (σ = 0.1), denoised (σ = 0.1),
noisy (σ = 0.5), denoised (σ = 0.5).
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Figure 20: Zoomed plots of the denoising results shown in Figure 19.

Figures 18 and 21 show the mean square magnitude of the Fourier coefficients of a set of signals,
and the corresponding Wiener filters for different noise levels. When the noise level is low, the
filter is concentrated at the origin, which means that each entry of the estimated signal is almost
equal to the noisy measurement. As the noise rises, the filter suppresses the frequencies at which
the signals in the training set have less energy. For audio and natural images, this usually results
in filtering out high frequencies. In the time domain, this results in a filter that averages over more
neighboring entries to produce the estimate. This is apparent in the denoising examples shown in
Figures 19, 20 and 19. 4

4.4 PCA of translation-invariant signals

In this section, we consider performing PCA on translation-invariant signals. A simple example,
are piecewise-constant one-dimensional signals. Figure 23 shows the results of applying PCA to a
set of such signals generated at random. It turns out that the principal directions are sinusoidal!
To understand why, we need to study the covariance matrices of translation-invariant signals.

Up to now, we have not made mathematically precise what we mean by translation-invariant
signals. A popular definition in signal processing is that such signals are stationary, meaning that
their statistics are translation-invariant.

Definition 4.13. An N-dimensional random vector ~x is wide-sense or weak-sense stationary if
it satisfies two conditions. First, it has a constant mean, i.e. there exists a constant µ such that

E (~x[j]) = µ, 1 ≤ j ≤ N. (146)

Second, it has a translation-invariant covariance; there exists a function κ such that

E (~x[j1]~x[j2]) = κ(|j2 − j1|), 1 ≤ j1, j2 ≤ N. (147)
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Figure 21: The heatmap at the top shows the mean square magnitude of the Fourier coefficients
of a set of natural images. The corresponding Wiener filters for different noise levels are shown
below in the frequency and spatial domains.
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Figure 22: Result of applying the filters in Figure 21 to a test image with different noise levels.
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Figure 23: The top row shows examples of piecewise constant signals. The heatmap below displays
the sample covariance matrix of a set of such signals. The graph to the right of the heatmap shows
the singular values of the sample covariance matrix. Finally, the images at the bottom show the
singular vectors, which represent the principal directions of the data.
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The function κ is known as the autocovariance function of the random vector.

The covariance matrix of a wide-sense stationary random vector is Toeplitz symmetric. For in-
stance, for N = 4 it is of the form.

Σ =


κ (0) κ (1) κ (2) κ (3)
κ (1) κ (0) κ (1) κ (2)
κ (2) κ (1) κ (0) κ (1)
κ (3) κ (2) κ (1) κ (0)

 . (148)

In real signals, the autocovariance function κ often decays at large separations because the entries
become uncorrelated (think for example of pixels in an image, which are far apart). In that case,
the covariance matrix can be well approximated by a circulant matrix.

Definition 4.14 (Circulant matrix). A circulant matrix is a Toeplitz matrix where each row vector
is obtained by applying a unit circular shift to the previous row. For example,

a b c d
d a b c
c d a b
b c d a

 , (149)

is a circulant matrix.

To illustrate the similarity of Toeplitz symmetric and circulant matrices when the rows decay, let
N = 5 and assume that κ (j) is negligeable for j > 1. The covariance matrix

Σ =


κ (0) κ (1) 0 0 0
κ (1) κ (0) κ (1) 0 0

0 κ (1) κ (0) κ (1) 0
0 0 κ (1) κ (0) κ (1)
0 0 0 κ (1) κ (0)

 . (150)

is quite close to the circulant matrix
κ (0) κ (1) 0 0 κ (1)
κ (1) κ (0) κ (1) 0 0

0 κ (1) κ (0) κ (1) 0
0 0 κ (1) κ (0) κ (1)

κ (1) 0 0 κ (1) κ (0)

 . (151)

The following theorem establishes that the eigenvectors of circulant matrices are sinusoidal.

Theorem 4.15. Any circulant matrix C ∈ Cn×n can be written as

C :=
1

N
F ∗[N ]ΛF[N ], (152)

where F[N ] is the DFT matrix and Λ is a diagonal matrix.
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Proof. Let ~c be equal to the first column of the circulant matrix. By the definition of circular
convolution, for any vector ~x ∈ Cn

C~x = ~c ∗ ~x (153)

=
1

N
F ∗[N ] diag(ĉ)F[N ]~x, (154)

where the last step follows from Theorem 4.9 and diag(ĉ) is a diagonal matrix that contains the
DFT coefficients of ~c. This implies C = 1

N
F ∗[N ] diag(ĉ)F[N ].

In words, the eigenvalues of circulant matrices are equal to the DFT coefficients of their rows, and
the eigenvectors equal complex sinusoids of corresponding frequencies. When the circulant matrix
is a covariance matrix, the eigenvalues are nonnegative, as we proved in the lecture notes on the
SVD. As a result the SVD of the matrix equals 1√

N
F ∗[N ] diag(ĉ) 1√

N
F[N ]. In particular, if the Fourier

coefficients of ~c have different magnitudes, the principal directions are sinusoids! This explains
why covariance matrices that are almost circulant, like the one in Figure 23 tend to have sinusoidal
singular vectors. We refer to the seminal review by Gray [1] for a more in-depth discussion.

The same reasoning can be used to analyze covariance matrices obtained from translation-invariant
2D signals, which are vectorized. In that case, the rows of the matrix have additional structure,
they can be reshaped into a 2D array that corresponds to the shape of the signals. Figure 24
shows an example obtained using 20x20 patches extracted from natural images. If the covariance
between pixels decays when the pixels are far from each other, the covariance matrix of such signals
is close to being equivalent to a 2D convolution matrix, which has 2D sinusoids as its eigenvectors.
This suggests that applying PCA to patches of natural images should yields sinusoidal principal
directions. Figure 25 confirms this prediction for the data in Figure 24.

An important consequence is that sinusoids are guaranteed to be close to optimal in terms of
dimensionality reduction for natural images. This is the reason that the JPEG compression
standard uses the discrete cosine transform (DCT) to compress images. The DCT is a variant of
the discrete Fourier transform for real signals, which assumes that the signal is symmetric (but
only one half is observed). In that case the DFT components correspond to discrete cosines (the
coefficients corresponding to the sines are zero due to symmetry). Figure 26 shows the basis
vectors of the 8× 8 2D DCT2.

Figure 27 shows the result of dividing a natural image into 64-pixel patches and projecting it
onto the span of the low-frequency DCT basis functions. Ignoring some of the high-frequency
components is almost imperceptible. This is the main insight behind the JPEG method for lossy
compression of digital images. JPEG divides the image in 8 × 8 patches and then quantizes the
coefficients of each DCT band differently. More bits are used for lower-frequency bands because
errors in these bands are much more apparent to the human eye.
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2The image is borrowed from https://upload.wikimedia.org/wikipedia/commons/2/24/DCT-8x8.png
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Figure 24: The top row shows examples of image patches. The heatmap below displays the sample
covariance matrix of patches sampled from a set of natural images. The graph to the right of the
heatmap shows the singular values of the sample covariance matrix. The bottom row shows rows
of the covariance matrix reshaped to show the values corresponding to each pixel in a patch.
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Figure 25: Singular vectors of the sample covariance matrix in Figure 24 reshaped to show the
values corresponding to each pixel. These are the principal directions of the dataset of image
patches.
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Figure 26: 8× 8 DCT basis vectors.
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Figure 27: Result of projecting each 64-pixel patch from the image of a face onto the lowest 1, 5,
15, 30 and 50 2D DCT basis functions.
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