
Math 3150 � PDEs WS 4

Name:

1. Consider the partial di�erential equation for w(x; y)

�w = r2w = @xxw + @yyw = 0: (1)

This PDE is called Laplace's equation and shows up in tons of di�erent �elds. A small

sampling:

1. electrostatics: The potential V (voltage) from an electric �eld satis�es the relation

r2V = ��="0, where � is the charge density and "0 is the permitivity of space.

Therefore, if we want to know the voltage in a charge-free region, (1) is the PDE

we study.

2. heat transfer: we know the heat equation describing temperature is @tT = Dr2T ,

so (1) can be thought of as the equilibrium heat distribution for a 2 dimensional

object.

3. structures: In (1) w(x; y) could be the deformation (out of the paper) of some

membrane, where the boundary conditions will determine how the membrane is

attached.

4. �uids: If the velocity �eld of a �uid v can be described by some potential v = r�,
then if the �uid is incompressible (i.e. water, but not air) � satis�es (1).

5. image processing: one intuitive behavior of solutions of (1) is that it smoothes

things out. One application is then to use solutions of this PDE to smooth out

noisy edges in images.

In today's worksheet, we'll solve (1) with the boundary conditions shown below using

separation of variables.

2. Suppose the solution is of the form w(x; y) = p(x)q(y). (It's a little easier to keep the

negative sign on the y ODE.) Plug this in and get some ODEs involving a constant �.

Don't solve them yet.
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Solution: Plugging in the guess w = p(x)q(y), we get

p00q + pq00 = 0;

so rearranging, we �nd
p00(x)

p(x)
= �q

00(y)

q(y)
= �;

where we've concluded that these must equal a constant, because they're distinctly a

function of x and y separately. This leads to the two ODEs

p00 = �p; �q00 = �q:

We'll discuss the boundary conditions in a bit, when we try to characterize what � could

be.

3. First consider the case where � = 0. Are these eigenvalues? Hint: start with x = 0,

then y = 0, and then x = a boundaries.

Solution: In the case that � = 0, our solutions both become p(x) = Ax + B and

q(y) = Cy +D. Now, we must start enforcing boundaries:

� at the left x = 0, we have w(0; y) = 0 = (A0 + B)(Cy +D) so either B = 0 or

C;D = 0, the latter we do not want (since it would make q entirely zero, so we'll

assume b = 0.

� However, we also have at y = 0, w(x; 0) = 0 = (Ax)(C0 +D), so either A = 0

or D = 0. Again, if A = 0 then our whole thing is zero, so we'll take D = 0.

� Finally, at x = a, we have w(a; y) = 0 = (Aa)(Cy), so either a = 0 or c = 0, but

either produces the fully zero solution, so we can rule out the � = 0 case entirely.

4. I'll just tell you that � > 0 does not work here (it might be nice to convince yourself of

this) but it's similar to the previous problem.

Consider � < 0 and �nd the eigenfunctions.

Solution: Call !
p�� for brevity. Then, our ODE solutions become (complex, real

roots respectively)

p(x) = A cos!x + B sin!x; p(y) = Ce!x +De�!x :

We again go case-by-case to look at the boundaries to �nd the solutions

� At x = 0 we have w(0; y) = 0 = A(Ce!y + De�!y), which means either A = 0

or C;D = 0, but we don't want the latter so we'll take A = 0.
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� At y = 0: we have w(x; 0) = B sin(!x)(C +D) = 0. ClearlyB 6= 0, so we'll take

D = �C.

� At x = a, we have w(a; y) = B sin(!a)(Ce!y � Ce�!y). This is a little tough

to see. It's honestly a bit easier to see if you take the sinh(!y); cosh(!y) forms

instead of exponential, but the class seemed to hate this, so we'll roll with expo-

nential. Basically we need to rule out the second term being zero, so

0 = (Ce!y � Ce�!y)

= C(e!y � e�!y)

= C(e2!y � 1):

But clearly, unless ! = 0 (not possible), this is never solvable. Therefore, sin!a =

0, so we can use the zeros of sin(x) to deduce the resulting eigenvalues

sin!a = 0 =) !n =
n�

a
:

Putting this together, the resulting eigenfunctions are

wn(x; y) = pn(x)qn(y) = cn sin(
n�x

a
)
(
en�y=a � e�n�y=a

)
:

Again, a nicer (but de�nitely di�erent) way of writing this is

~wn(x; y) = pn(x)qn(y) = dn sin(
n�x

a
) sinh(

n�y

a
):

5. Whether you like exponentials or hyperbolic trig functions, I think the easiest way to write

the resulting solution is

w(x; y) =

1∑
n=1

cn sin(
n�x

a
) sinh(

n�y

a
):

Find the cn values using the last boundary conditions. The orthogonality of Fourier modes

will help tremendously.

Solution: To do this, we apply the last boundary condition at y = b, so we get

w(x; b) = w0 sin
�x

a
=

1∑
n=1

cn sin
nx�

a
sinh

n�b

a
:

Here, by the orthogonality of sines, the only thing that can contribute is n = 1, so we

have

w0 sin
�x

a
= c1 sin

�x

a
sinh

�b

a
;

and therefore c1 = w0= sin(�b=a) and cn=0 otherwise.
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6. Which of the two graphs is the real plot of the answer? Why?

Solution: The left is the one that satis�es all the boundaries.
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