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Abstract

In order to learn the mappings from words to referents, children must integrate co-
occurrence information across individually ambiguous pairs of scenes and utterances,
a challenge known as cross-situational word learning. In machine learning, recent
multimodal neural networks have been shown to learn meaningful visual-linguistic
mappings from cross-situational data, as needed to solve problems such as image
captioning and visual question answering. These networks are potentially appealing
as cognitive models because they can learn from raw visual and linguistic stimuli,
something previous cognitive models have not addressed. In this paper, we examine
whether recent machine learning approaches can help explain various behavioral
phenomena from the psychological literature on cross-situational word learning.
We consider two variants of a multimodal neural network architecture, and look
at seven different phenomena associated with cross-situational word learning, and
word learning more generally. Our results show that these networks can learn
word-referent mappings from a single epoch of training, matching the amount
of training found in cross-situational word learning experiments. Additionally,
these networks capture some, but not all of the phenomena we studied, with all
of the failures related to reasoning via mutual exclusivity. These results provide
insight into the kinds of phenomena that arise naturally from relatively generic
neural network learning algorithms, and which word learning phenomena require
additional inductive biases.

1 Introduction
Children effortlessly acquire the meaning of words from sparse and ambiguous sights and
sounds, estimated at a rate of around ten words per day between when they start speaking
until the end of high school (Bloom, 2002). How do children pull off this seemingly incredible,
yet ordinary feat? One potential explanation that has received considerable attention is
cross-situational learning: the mapping of words to their intended referents can be determined
through a process of tracking the co-occurrences between words and their referents across
many individually ambiguous situations. Considerable evidence for cross-situational word
learning has been found in laboratory studies of both adults (Yu and Smith, 2007; Medina
et al., 2011; Trueswell et al., 2013) and children (Smith and Yu, 2008; Halberda, 2003). In
addition, research on cross-situational word learning (and word learning more broadly), has led
to a wide array of empirical phenomena associated with this kind of learning, examining the
circumstances under which learners find it easier or more difficult to determine the underlying
word-referent mappings in ambiguous contexts.

Within cognitive science, different types of computational models have been proposed to
explain the mechanisms behind cross-situational word learning, and to capture various empirical
phenomena. Computational models based on associative learning track the co-occurrence
statistics between words and referents across situations, typically taking the form of a pairwise
counts or association-strength tables (Kachergis et al., 2012; Fazly et al., 2010; McMurray et al.,
2012). A second class of models instead take a hypothesis testing-based approach, where models
only consider a single word-referent mapping at a time, and staying or switching hypotheses
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depending on if the observed data are consistent with the hypothesis or not (Trueswell et al.,
2013; Stevens et al., 2017). A third class of models use Bayesian approaches to infer lexicons
(the full set of word-referent mappings) with high posterior probability, trading off between
a prior that favors a simple lexicon versus a lexicon that properly captures the observed
data (Frank et al., 2009; Yurovsky and Frank, 2015). These three model classes successfully
account for various behavioral phenomena, but they share a common limitation: they operate
on discrete symbols rather than raw inputs, allowing the learning problem to be reduced
to counting co-occurrences between words and objects. This side-steps a crucial aspect of
cross-situational learning, and word learning more generally: generalizing to novel exemplars
of a familiar word (Samuelson and Horst, 2007).

In this paper, we look to machine learning for potential solutions to this problem. Recent
advances have led to the development of multimodal neural networks that combine language
and vision information and can be trained from raw data such as images and text. These
networks are capable of learning a variety of vision and language tasks ranging from image
captioning (Xu et al., 2015), visual question answering (Antol et al., 2015; Johnson et al., 2017)
and grounded language learning (Hill et al., 2020a).1 One consequence of this success is the
intriguing possibility that multimodal neural networks are effectively performing large-scale
cross-situational learning, and doing so from naturalistic data. Additionally, their ability to
generalize to new images and new exemplars suggest they may address some of the shortcomings
of symbolic, count-based approaches.

Despite the application-driven successes of multimodal neural networks, it is unclear how
these approaches would fare as accounts of psychological processes. Which empirical phenomena
from the cross-situational word learning literature can they explain? Although some papers
have begun to explore these questions, they typically focus on just one or two phenomena. For
example, Chrupała et al. (2015) evaluate their model on measures of word similarity. Other
work explores individual phenomena such as fast mapping (Lazaridou et al., 2014; Hill et al.,
2020b) or mutual exclusivity (Gulordava et al., 2020). Moreover, each study differs in the
architectures and training procedures used in their modeling efforts, suggesting the need for a
more comprehensive account.

Here, we investigate multimodal neural networks and their ability to capture a wide range
of key phenomena in cross-situational learning. We base our modeling efforts on existing,
successful architectures in machine learning and natural language processing, examining the
extent to which they capture empirical phenomena without additional tweaking. Since these
methods were developed for machine learning applications rather than cognitive modeling,
it would be entirely unexpected if these models were to provide a complete account of the
behavioral phenomena we consider (indeed, they do not). Instead, our goal is to better
understand which kinds of word learning phenomena naturally emerge from this powerful
model class, and which ones require additional mechanisms or inductive biases. Overall,
our results show that multimodal neural networks can be trained in an online fashion and
reach similar levels of accuracy as humans do from only a single epoch of training. Their
apparent sample efficiency is quite surprising, considering that neural networks are notoriously
data-hungry (Geman et al., 1992; Lake et al., 2017) and that other associative models require
far more training for successful learning (McMurray et al., 2012). We also find that these
networks successfully capture a diverse set of phenomena from the literature, and yet they fail
to capture a number of phenomena linked to mutual exclusivity.

2 Model
2.1 Experiment
We start by introducing the standard design of a cross-situational learning experiment, laying
out the kind of inputs to be passed into a multimodal neural network to train it, as well as
how it will be evaluated. An example cross-situational word learning experiment is shown
in Figure 1(a). During the training phase as shown in the top-left panel, participants are
presented with multiple referents alongside multiple words (either as text or heard through
speakers), where there is ambiguity between which words map onto which referents on each
trial. However, as seen in the two training trials displayed, the word “Toma” occurs twice

1Other recent work has shown that these neural network approaches can also learn not just from
raw images and text, but also raw images and raw audio (Chrupała et al., 2017; Harwath et al.,
2018), highlighting the flexibility of these networks to form cross-modal representations with different
combinations of modalities.
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Figure 1: The training and evaluation set-up for various cross-situational word learning
experiments. Starting at the top (A), the standard cross-situational word learning experiment
involves presenting participants with a set of words and a set objects per trial during training (with
ambiguous alignment), and evaluating their knowledge of each word-referent mapping at evaluation
time. In the fast mapping set-up (B; Experiment 2), participants are presented with one or a few
trials of a novel word-referent pair in an unambiguous fashion, and are evaluated on their ability to
quickly map this word to its referent. In the mutual exclusivity set-up (C; Experiment 3), participants
are presented with a single ambiguous trial of a novel word-referent pair alongside an existing referent,
and again are evaluated on their ability to infer the referent behind the novel word. Finally, in the
exemplar generalization set-up (D; Experiments 6 and 7), participants are trained exactly like the
standard cross-situational learning experiment, but during evaluation time they are tested on visually
similar but distinct exemplars to the learned word-referent mappings. The correct referent for each
case is highlighted with a green border in each experiment type.

in conjunction with the same referent (a set of colored balls) in both trials, suggesting that
this is what the word “Toma” refers to. Participants then take part in an evaluation phase as
shown in the top-right panel of Figure 1(a), where their knowledge of word-referent mappings
is tested. Each of the words presented during training are tested individually (and perhaps
multiple times) by presenting a single target word, such as the word “Toma”, alongside an
array containing the target referent and a number of foils. Accuracy for the evaluation phase
is calculated by averaging the number of correct selections of the target referent during the
evaluation phase, and is used as a measure of the number of word-referent mappings learned.

This particular experimental paradigm has been the dominant approach to the study of
cross-situational word learning in both children and adults (Yu and Smith, 2007; Smith and
Yu, 2008), as it attempts to isolate the problem of cross-situational learning to its core of
determining the correct mappings of words to a set of referents. In particular, it simplifies
some other aspects of the word learning problem: the various referents are presented as distinct
objects, and the spoken language is simply a list of labels. Therefore, participants do not need
to perform object detection to determine the available referents in a given scene, nor do they
need to extract object names from naturalistic speech.
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Figure 2: The Scene-Caption multimodal neural network. On each trial, the set of images x
and the set of words w are passed into the image and word encoders respectively, producing a set
of image and word embeddings (v,u). Separately, we randomly sample from memory a previous
set of image and word embeddings (v′,u′). A triplet-based contrastive loss function is employed to
bring together the image and word embeddings from the current trial (green arrows), while separating
the image and word embeddings from separate trials (red arrows). Over the course of training, the
network learns to encode images and words to produce multimodal embeddings in a manner that can
disambiguate the underlying word-referent mappings. The Object-Word Network differs by performing
the contrastive loss over individual object-word pairs, rather than across the full scene.

2.2 Architecture

This section outlines the details of the multimodal neural network architectures used in this
paper, describing how they can discover word-referent mappings from ambiguous presentations
of multiple images and words. An overview of our method is shown in Figure 2.

On each trial, the network receives as input a set of images x = [x1, . . . ,xN ] and set of
words w = [w1, . . . ,wM ], where N is the number of images and M is the number of words.
The goal of the network is to encode images using an image encoder fθ and words using a word
encoder fφ, mapping images and words respectively into a shared multimodal embedding space
consisting of d-dimensional vectors.2 Over the course of training, our aim is that images and
words will be encoded into this shared representational space in such a way that disambiguates
word-referent pairs, despite the inherent ambiguity due to multiple words and referents present
in each trial.

The image encoder consists of a VGG-16 convolutional neural network pre-trained on
ImageNet (Simonyan and Zisserman, 2014), with the classifier head removed and replaced with
non-linear projection head consisting of two fully-connected layers (with a ReLU non-linearity
in between) to map images as d-dimensional vectors.3 The convolutional head of the image
encoder is frozen, and only the projection head is learned in our network. The image encoder

2For all our simulations, we set d = 64, except the final simulation where we set d = 128.
3Since the purpose of cross-situational word learning experiments is to focus on learning the

mappings between words and their referents, the use of a pre-trained visual backbone is intended
as a rough proxy for the prior visual experience of participants performing these tasks. However,
Experiment 7 demonstrates how to jointly train a CNN from scratch in this task, showing that using
pre-trained representations are not required with sufficient training data.
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is applied to each image on a given trial as follows:
vi = fθ(xi), (1)

where vi ∈ Rd. Similarly, the word encoder consists of a single word embedding layer, such
that each word is mapped to a d-dimensional vector as follows:

uj = fφ(wj), (2)

where uj ∈ Rd. The set of image embeddings is denoted as v = [v1, . . . ,vN ], and the set
of word embeddings as u = [u1, . . . ,uM ]. Given these two sets of vectors, how does the
network determine which words map onto which referents in a given trial? A popular choice
is the use of a contrastive loss function, which has been employed in a number of recent
multimodal architectures (Harwath et al., 2018; Lazaridou et al., 2016; Gulordava et al., 2020).
Although our multimodal neural networks share many similarities with previous approaches,
our networks have been simplified to match the kinds of training in standard cross-situational
experimental designs and to allow for these networks to be trained in an online fashion. We
first provide a high-level description of how the contrastive loss function works and how it can
learn word-referent mappings, followed by the additional technical details.

In supervised learning, the loss function reflects a network’s ability to correctly predict
the output, but requires unambiguous labels to do so. On the other hand, contrastive loss
functions can work with unlabeled data by telling the network which pairs of points should
be more similar to each other, and which pairs of points should be more dissimilar. In our
case, there is some connection between the images and words that appear together on the
same training trial, and the aim of the network is to embed these entities closer together in
the shared low-dimensional space. On the other hand, the set of words from one trial typically
bears no relationship to the set of images on a separate trial, and therefore the aim of the
network is to embed these entities further apart. Even though the similarity calculation in the
contrastive loss occurs across all words and referents for a given trial, the network is able to
correctly discern the underlying word-referent mappings, as the similarity calculations favor
learning correct mappings will result in higher similarity scores than if incorrect mappings were
learned (that were still consistent with the observed data). To fully specify how the contrastive
loss works, the next few sections cover the remaining technical details: (1) How the network
samples contrastive items to compare against (2) How similarity is computed between words
and referents and (3) How the contrastive loss is computed.

Memory. First, in order to sample the contrastive items to compare against, the network
has a memory M = {(v1,u1), (v2,u2), . . . } that stores the set of observed word and referent
embeddings from previous trials. On a new training trial, the network requires a set of
contrasting words and referents from a previous trial (v′,u′) to compare against the current
embedded words and referents (v,u). This is achieved by sampling a previous trial’s words and
referents randomly from the memory of previous trials, e.g. (v′,u′) ∼M. After each training
trial, the network updates its memory by adding the current set of words and referents to a
new slot in memory.4

Similarity. Second, the similarity score determines how similar a given set of words is to
a given set of referents. For each word ui, we calculate the dot product between the word
embedding to all of the image embeddings. This dot product provides a scalar correspondence
score for any given word and any given image, where a higher score represents a higher
correspondence between a word and an image. We then take the maximum dot product for a
given word for all of the possible referents (capturing the idea that each word maps to a single
referent), and then apply this process across all of the other remaining words. The similarity
score is calculated by taking the mean across these maximal dot products per word5, as shown
in the equation below:

s(v,u) =
1

M

M∑
i=1

max
vj∈v

(vj · ui). (3)

4In general, contrastive approaches sample the contrastive items from the same mini-batch rather
than from an explicit memory, but because our networks are trained in an online fashion with a single
trial at a time, this necessitated the use of an explicit memory mechanism to sample contrasting items.

5Although it is common in cross-situational word learning experiments to match the number of
words and referents per trial, this form of similarity allows some additional flexibility in handling
situations where the number of words differs from the number of referents, like when the set of words
are a sentence in natural language and not every word can be mapped onto a visually grounded
referent.
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Contrastive loss. These two components can be combined to describe the contrastive loss
function, which is a combination of three different similarity computations. First, the similarity
between the current set of matching words and referents in the current trial is computed:
s(v,u). Second, a previous trial’s embeddings are sampled from memory (v′,u′) ∼M. We
then compute two additional mismatching similarity scores, by pairing either the current set of
words with the previously observed set of referents s(v′,u), or the current set of referents with
the previously sampled set of words s(v,u′). Then, we can combine these various similarity
terms in the following equation that formulates our contrastive loss:

L(θ, φ) = max(0, s(v′,u)− s(v,u) + η) +

max(0, s(v,u′)− s(v,u) + η).
(4)

The loss function contains one hyper-parameter η corresponding to a margin, which we
set to be 1 in all of our simulations. This margin hyperparameter means that for a given
matching pair s(v,u) and a mismatching pair s(v′,u), the network will seek to adjust the
embeddings such that the matching similarity is at least η larger than the mismatching
similarity, s(v,u) > s(v′,u) + η. Any further separation does not further decrease the loss.

Initially, as the network has not learned to associate any words with its referents, the
similarities scores for the matching words and referents and the mismatching ones will be
random. Over the course of learning, as the network updates its representations of images
and words on the basis of this contrastive loss function, it begins to correctly output higher
similarity scores for sets of words and referents that match, and lower similarity scores for sets
of words and referents that are not matches. One direct consequence of the network correctly
distinguishing matching sets from mismatching sets is that it can acquire the correct set of
underlying word-referent mappings over the course of training.

Response function. Once the network has been trained across a number of ambiguous
scenes, we can evaluate the trained network in the same fashion as a cross-situational word
learning experiment. We present the network with a single word w∗, and then an array con-
taining the target referent and a number of other randomly selected foil referents (x1, . . . ,xN ).
The network separately embeds the target word u∗ = fw(w∗), and each of the referents
v = [v1, . . . ,vN ] = [fθ(x1), . . . , fθ(xN )]. Then, the network calculates the dot product for the
target word embedding against each of the referent embeddings, and selects the corresponding
referent y with the highest dot product as follows:

y = argmax
i∈v

(u∗ · vi). (5)

2.3 Scene-Caption Network

We consider two slightly different variants of how the network combines the word and referent
embeddings on a given trial into this triplet-based contrastive loss function. The network
described in the above equations represent the Scene-Caption Network, as the network
combines all of the available words (caption) and the available referents (scene) in a given
trial as input to the similarity function. This similarity function is closely related to the
MISA (max-image sum-audio) similarity function from Harwath et al. (2018), although the
max operation in our set-up is performed over the set of possible referents rather than across
different patches within a single image.

2.4 Object-Word Network

We also consider a variant of this architecture, which we call the Object-Word Network,
which computes all pairwise similarities between each word and potential referents instead of
aggregating across a scene as in Equation 2.2.. That is, for each possible word-referent pair
(vi,uj) on the current trial, its dot-product similarity is calculated as follows:

s(vi,uj) = vi · uj . (6)

Likewise, the network then will randomly sample a previously observed word-referent pair
(rather than a scene-caption pair) from memory (v′i,u′j) ∼M, where M now stores previously
observed object-word pairs rather than scene-caption pairs. Finally, the network uses a modified
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version of the previous contrastive loss:

L(θ, φ) =
∑

vi,uj∈(v,u)

max(0, s(v′i,uj)− s(vi,uj) + η) +

max(0, s(vi,u′j)− s(vi,uj) + η),

(7)

summing over this contrastive loss for each possible for each potential object-word pair in
a given trial before a gradient update is performed. Thus, in a scene with two words and
two referents, there are four possible word-referent pairs and the network will calculate the
combined loss, each time sampling a new contrasting word-referent pair from memory to
compare to the current word-referent pair. The evaluation procedure for the Object-Word
Network is the same as the Scene-Caption Network.

2.5 Dataset
The images we used for these simulations were chosen from the NOUN (Novel Object and
Unusual Name) database, consisting of 60 images depicting unusual objects that are commonly
used in word learning experiments (Horst and Hout, 2016). Each image was resized to 224x224
pixels to match the required input size to the image encoder, and the output after passing
an image through this encoder was a 64-dimensional vector. A subset of images from the
NOUN database are depicted in Figure 2 as the inputs to the image encoder. The inputs
to the word encoder are random indices for each unique word, resulting in a 64-dimensional
vector representing each word from the word encoder, the same dimensionality as the visual
embedding.

2.6 Training
For the majority of our simulations, we report results of our networks trained in an online
manner. On each trial, the network was presented with a single set of matching words and
referents, sampling a mismatching set of words and referents from memory, and calculating
the corresponding contrastive loss to update the network’s parameters, as shown in Figure 2.
Additionally, the network was only trained for a single epoch, updating its parameters only a
single time for each trial. This training algorithm mimics the trial-by-trial learning found in
cross-situational learning experiments, in contrast with standard, epoch-based training where
the network cycles over the data many times. Despite the very limited nature of the training
data and parameter updates—compared to previous associative models of cross-situational
word learning (McMurray et al., 2012) and neural networks more generally (Geman et al.,
1992)—we observe that our networks can correctly discover the word-referent mappings.

All of our networks were trained using stochastic gradient descent, with a learning rate of
0.01. The results of each condition within each simulation were averaged across 20 independent
runs, ensuring that the resulting word-referent mappings learned by the network were not a
byproduct from any specific set of images from the database. For each run, the set of images
and the set of words were randomly selected from the full database.

3 Experiments
In this section of the paper, we catalog the range of experiments we conducted with these two
multimodal neural networks. We selected a broad range of empirical phenomena related to
cross-situational learning and word learning. Although we were able to cover many of the
phenomena, this is not meant to be an exhaustive list, and it would be valuable for future
work to examine how well multimodal networks with additional inductive biases or learning
mechanisms could capture other aspects involved in this kind of learning.

The seven simulations we investigated were: (1) Referential ambiguity, (2) Fast mapping, (3)
Mutual exclusivity, (4) Relaxation of mutual exclusivity, (5) Learning from Zipfian distributions,
(6) Exemplar generalization and (7) Learning representations from scratch. For each simulation,
we first describe the key empirical phenomena. We then present simulation results from both
network types, examining whether they can reproduce the critical behavioral findings.

As mentioned, we had no expectation that these multimodal neural networks would capture
all of the phenomena under consideration. Indeed, our aim is to catalog which findings are
captured and which are not, given straightforward machine learning approaches that work at
scale and address practical applications. To foreshadow our results, we find that the networks
capture 4 out of the 7 phenomena. Additionally, the three remaining phenomena the networks
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Figure 3: Referential Ambiguity Simulation Results. Our results show that both neural networks
exhibit decreased accuracy with increasing referential ambiguity in scenes. Additionally, we find that
accuracy across the referential ambiguity conditions is comparable to humans even from a single epoch
of training. The dotted line represents chance accuracy, and error bars depict 95% confidence intervals.

are unable to capture are all linked to mutual exclusivity. We address the implications of our
findings in the respective sections covering these simulations and in the general discussion.

3.1 Experiment 1: Referential Ambiguity
In the first set of simulations, we investigated whether or not our two multimodal neural
networks could capture the referential ambiguity effect. This phenomenon refers to the degree of
uncertainty for which words map onto which referents in a given scene. Increasing the number
of words and referents in a given scene increases the number of potential mappings between
words and referents to consider. Therefore, the increased uncertainty of determining which
words map onto which referents reduces the likelihood of learning any given word-referent
mapping (Yu and Smith, 2007). The training set-up from the top-left panel of Figure 1
illustrates learning with 2 objects and 2 referents per scene for example.

This phenomena was empirically demonstrated in Experiment 1 from Yu and Smith (2007),
where adult participants were presented with 18 different word-referent mappings in a standard
cross-situational word learning experiment, as illustrated in the top-left panel of Figure 1.
Each word-referent mapping was presented 6 times over the course of training, where the
degree of referential ambiguity was controlled by showing participants either 2 words and 2
referents (2×2), 3 words and 3 referents (3×3) or 4 words and 4 referents (4×4) per trial.6
After training, participants’ knowledge of word-referent mappings was evaluated by presenting
them with a target word along with the target referent and three other randomly selected foil
referents, and asking them to select the referent that matched the given word, as depicted in
the top-right panel of Figure 1. The critical finding from this study showed that the average
number of word-referent mappings participants were able to learn decreased with additional
referential ambiguity. As shown in Figure 3 (left), participants learned 16 out of 18 word
on average when trained on two-words two-referents. In contrast, they learned 13 out of 18
when trained on three-words three-referents, and 10 out of 18 when trained on four-words
four-referents.

Simulation. The networks were trained in a manner that matched the experimental designs,
in terms of the number of presentations for each word-referent mapping (6 presentations each)
as well as the number of words and referents per trial (2, 3 or 4 depending on the condition).
During the evaluation phase, the referent selected by each model was determined by the one
whose dot-product similarity was highest for the target word on each trial.

6Because the experiment controlled for the number of presentations of each word-referent pair, the
three conditions each had a different total number of training trials (54, 36 and 27 for the 2×2, 3×3
and 4×4 conditions respectively).
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Results. In Figure 3, we show results from the simulations with the Scene-Caption and
Object-Word Networks alongside the behavioral findings from Yu and Smith (2007). As
mentioned in the introduction, these results show that both multimodal neural networks are
able to learn a comparable number of word-referent mappings as humans from a single epoch
of training, despite receiving the same amount of trial-by-trial experience. We observed that
accuracy in both models in the 2×2 condition was slightly lower than human performance,
but was indeed comparable for the 3×3 and 4×4 conditions.

How do both our networks obtain such high accuracy even with such limited experience?
First, the contrastive loss function aims to adjust the image and word embeddings closer for
words and referents presented together on the same trial, and further apart for words and
referents paired from different trials. Since the embeddings are high dimensional, there are
many feasible ways of adjusting the embeddings to align with the observed data. Furthermore,
because there is a consistent relationship between the true word-referent mappings, only a
handful of gradient updates that align these pairs may be sufficient to disambiguate between
correct and incorrect mappings.

In addition to achieving human-level accuracy, both networks also captured the referential
ambiguity effect, showing an increased difficulty in acquiring word-referent mappings when
additional words and referents at present on each trial. This is also consistent with the above
explanation. In situations where there is less referential ambiguity within trials, the embeddings
will update to quickly disambiguate the true word-referent pairs. However, in situations with
higher referential ambiguity, the embeddings will stay consistent with multiple mappings,
requiring more examples and more gradient updates to resolve the ambiguities present from
the observed data. A closer look at the attention maps as shown in Figure 4 aligns with this
explanation, where low referential ambiguity situations like the 2×2 condition allows the model
to easily resolve almost all of the word-referent mappings in the experiment with a single epoch
of training. However, higher referential ambiguity means that the correspondence scores for
each word are more diffuse to the set of referents, highlighting the increased uncertainty of
determining the correct word-referent mappings. Furthermore, we also see that training the
model for additional epochs allows the model to resolve almost all of the word-referent pairs
regardless of the degree of referential ambiguity.

3.2 Experiment 2: Fast Mapping
The second set of simulations we conducted looked at whether a multimodal neural network
can perform fast mapping (Carey, 1978; Carey and Bartlett, 1978). Fast mapping refers to the
ability observed in children and adults to map a novel word to its referent based on a single
presentation (or a small number of presentations). Previous studies involving children show that
children can flexibly map novel words to novel objects in referent selection tasks (Carey and
Bartlett, 1978; Golinkoff et al., 1992), with the ability emerging around the age of 24 months
(Horst and Samuelson, 2008). However, there remains an active debate whether children can
retain these fast mapped words and include them in their lexicon. In the original studies by
Carey and Bartlett (1978), children were able to retain a novel color word ("chromium") when
tested again many weeks later after the initial training session. More stringent testing in the
studies from Horst and Samuelson (2008) showed that even after a 5 minute interval children
were unable to retain any of the fast mapped words they had previously learned, except under
conditions with ostensive naming events, where the experimenter provided the child with
additional explicit instruction by directly holding the target referent after each naming trial in
a clear and unambiguous fashion, to highlight that the word was linked with the referent.

Simulation. In our simulations, we examine whether multimodal neural networks capture
fast mapping by testing the network’s ability to select the correct referent with minimal
experience. The set-up for our fast-mapping simulations is illustrated in the second row in
Figure 1(b). The first aspect of training involved presenting a single novel word-referent pair
(“Toma”) in an unambiguous manner at some point during training, such that the network only
saw the novel word and the novel referent together without any other items. We varied the
number of times the network saw the novel word-referent mapping (1, 3 or 5 times), as well as
the timing of the presentation of these unambiguous trials (Start, Middle or End of training).
As additional background training to the fast mapping trials, the networks were also trained
on 10 regular word-referent pairs, with individually ambiguous trials consisting of 2 words and
2 referents. Each of these word-referent pairs were shown 6 times each, matching the previous
simulation, where our results showed that 6 presentations was sufficient to reach a high degree
of accuracy for learning word-referent mappings. These regular word-referent mappings served
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Figure 4: Attention map visualizations for the Scene-Caption Network from Experiment
1. Here, we show the resulting attention maps after a single epoch of training, or after twenty
epochs across the three referential ambiguity conditions. Each row indicates the degree for which
each word is associated with each referent based on the dot product (with lighter colors indicating a
higher correspondence, and darker lowers showing a lower correspondence, and attention values scaled
uniformly to lie between 0 and 1). Our results show that after a single epoch, the network learns more
word-referent pairs when there is less referential ambiguity, but with sufficient training almost all pairs
are resolved.
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Figure 5: Fast Mapping Simulation Results. Both the Scene-Caption and Object-Word Networks
displayed evidence for fast mapping, even from a single example, but only if presented at the middle or
at the end of training. A slight benefit was observed for additional novel examples for the Object-Word
Network too. However, in both cases, the presentation of the novel word at the beginning of training
before seeing any other scenes, resulted in a failure to learn, consistent with a catastrophic forgetting
explanation. The dotted line represents chance accuracy, and error bars depict 95% confidence intervals.

as the background knowledge upon which we tested whether our networks could demonstrate
evidence of fast mapping. After the training phase, the network was evaluated (Figure 1(b),
right panel) by presenting the single novel word along with the novel referent and a second
foil referent (randomly selected from the set of 10 other referents observed during training),
performing 20 separate evaluations per run. Accuracy was scored as the average proportion
the network selected the corresponding novel referent instead of the foil referent.

Results. Results for Experiment 2 are shown in Figure 5. Our results show that both
networks demonstrate fast mapping, if the unambiguous novel word-referent pair is presented
at the middle or end of the training. Additionally, we see that even with a single example,
the network correctly selects the novel referent, matching some of the empirical evidence that
a single novel word used in a naturalistic context is sufficient for fast mapping (Carey and
Bartlett, 1978). Higher accuracy scores were observed with providing the Object-Word Network
with additional unambiguous examples of the novel word-referent pair. These results further
strengthen the results from Experiment 1, highlighting that multimodal neural networks can
pick up word-referent mappings with minimal experience. One reason this may be accentuated
in this particular experiment is that the network is provided with unambiguous information
for a single word-referent pair, allowing the contrastive loss to adjust the network in a manner
that makes the novel word-referent pair distinct from what was observed in the background
training where other words and referents were presented together in an ambiguous fashion.

A failure was observed for both of these networks if the fast mapping trials were presented
at the very beginning of training, and neither network was able to perform above chance during
the evaluation phase. One explanation for this failure is a form of catastrophic forgetting
(French, 1999), where the additional word-referent mappings presented after these initial
presentations interfered with the existing knowledge of the fast mapping word-referent pair.
A second potential explanation is that since all of these unambiguous trials are presented
at the beginning of training, the networks cannot apply contrastive learning to learn the
novel word-referent pair because it doesn’t have other examples to properly contrast against.
These issues could be alleviated with some kind of additional experience replay mechanism
(McClelland et al., 1995), allowing the network to sample previously observed trials as matching
examples (rather than the current memory mechanism which only samples mismatches). Fast
mapping was also recently demonstrated in Hill et al. (2020b), but in a more complex simulated
3D environment where the agent was presented with the novel label only when fixating on a
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particular novel object. In contrast to our set-up, the additional complexity of their environment
required a more specialized multimodal architecture with multiple kinds of loss functions,
and required extensive training via reinforcement learning before it could consistently display
evidence of fast mapping.

3.3 Experiment 3: Mutual Exclusivity

For the third experiment, we explored whether multimodal neural networks capture mutual
exclusivity, the assumption that each object has a single word associated with it (Markman
and Wachtel, 1988; Halberda, 2003). The set-up for our mutual exclusivity simulations is
illustrated in the third row in Figure 1(c). In a typical experiment, children are presented with
one familiar object and one novel object and asked to “Show me the Toma” (Evaluation Scene),
where “Toma” is a novel word. If children select the novel object over the familiar object, they
are applying the principle of mutual exclusivity: the familiar object already has a label, and
thus the novel word refers to the novel object. Similar to fast mapping, reasoning by mutual
exclusivity has been widely observed in children, with experiments showing success in this task
as early as 17-month olds, with an increasing preference for mutual exclusivity as children get
older (Halberda, 2003).

Simulation. We conducted another simulation to examine the effect of mutual exclusivity,
illustrated in the third row of Figure 1. Similar to the fast mapping simulations, both the
Scene-Caption and Object-Word Networks were trained with 10 word-referent mappings with
6 presentations for each word-referent pair, with 2 objects and 2 referents per trial. This set of
10 word-referent mappings served as the basis for the familiar objects in this experiment.

At the end of training, the networks were presented with a single ambiguous trial with a
novel word, along with a novel referent and another randomly selected foil referent (from one
of the ten objects the network has become familiar with). This provides the network with
ambiguous information about which one the two referents the novel word should be mapped
to. This set-up contrasts with the fast mapping simulation that unambiguously introduces
a novel word attached to a novel referent, making the mutual exclusivity task more difficult.
For both of the networks, we treat the presentation of the novel word in an ambiguous setting
as a training trial (and allow the network to perform a gradient update), in order to reflect
the typical “Show me the Toma” wording of the evaluation prompt.7 After this single mutual
exclusivity trial, the network was evaluated in two different ways. In the All condition, the
novel word was paired with the novel referent and a randomly selected referent from training.
In the more challenging Foil condition, the foil referent was the familiar referent that appeared
with the network during the mutual exclusivity trial, and therefore success on these trials
would require the network to correctly infer that the novel word mapped to the novel referent
and not the foil referent that co-occurred with it.

Results. The results of the mutual exclusivity simulations are shown in Figure 6. Ex-
amining the results from the All condition, we find that both networks can reliably select
the novel referent compared to a randomly selected referent from the set of other learned
word-referent mappings. In the more challenging evaluation Foil condition, we do not observe
a consistent pattern of success. The Scene-Caption Network demonstrates evidence of mutual
exclusivity on these trials, selecting the novel referent 75% of the time over the foil referent,
while the Object-Word Network shows no preference to either the novel or the foil referent.
However, despite the success observed from the Scene-Caption Network and the failure of
the Object-Word Network shown here, under a wider range of configurations varying the
learning rate and degree of gradient clipping our results showed that mutual exclusivity could
not be consistently demonstrated in either network. The additional results are presented in
Appendix A. This lack of mutual exclusivity has been observed in other deep neural network
architectures looking at more traditional tasks such as classification (Gandhi and Lake, 2020),
and it suggests that standard multimodal architectures do not capture mutual exclusivity
reliably without additional mechanisms.

A recent paper by Gulordava et al. (2020) was able to reproduce the mutual exclusivity
bias using a somewhat different training procedure with a model similar to the Object-Word
Network. The main difference in their set-up was allowing the model to sample the novel
word or novel referent as negative items in the contrastive loss during the background training,

7The prompt, as provided to children, implies that one of the two objects corresponds to the
new word “Toma.” Thus, the network is allowed a gradient update to incorporate this information;
otherwise, it would have no way of knowing whether or not “Toma” refers to any object in this scene.
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Figure 6: Mutual Exclusivity Simulation Results. We examined whether networks could learn a
word-referent mapping from a novel word presented ambiguously with a novel and familiar referent.
Both networks showed a preference for the novel referent when placed against other referents observed
for training in the All condition, but for the tougher Foil condition, only the Scene-Caption Network
showed a slight preference for mutual exclusivity. The dotted line represents chance accuracy, and
error bars depict 95% confidence intervals.

providing the model with implicit evidence that these novel items should not be associated
with any of the background words and referents. In contrast, in our set-up, the gradient
update performed on the final ambiguous trial is the first time our networks obtain the relevant
information about the novel word and referent. However, it is not so clear how to justify
sampling the novel word and referent pairs as negative items, as they are no longer “novel”
when they are presented again at evaluation time. Another approach they explored to induce
mutual exclusivity was to add an additional pragmatic reasoning step into the referent selection
mechanism, by comparing the novel referent to all of the words in the vocabulary. However,
this step may also be influenced by their set-up where the novel items could be sampled
as negatives during the training process. Furthermore, despite the successes of their model
displaying mutual exclusivity during evaluation, the next two simulations highlight the need to
capture such mechanisms during the learning process too.

3.4 Experiment 4: Relaxation of Mutual Exclusivity

The fourth simulation we examined was the relaxation of mutual exclusivity effect observed in
Kachergis et al. (2012), demonstrating that not only do people employ the principle of mutual
exclusivity to learn word-referent mappings, but that they can also relax this principle to
endorse multiple mappings for a given word or referent when provided with sufficient evidence
to do so. A summary of the cross-situational learning task used in this experiment is shown in
Figure 7.

First, during the Early Training phase, participants were trained on a trials drawn from a
set of 6 word-referent pairs (w1−x1, . . . , w6−x6), with 2 words and 2 objects per trial. Second,
during the Late Training phase, participants were trained on trials drawn from an additional
6 word-referent pairs (w7 − x7, . . . , w12 − x12). In this second phase, some word-referent pairs
(e.g., w7 − x7) always co-occurred with another word-referent pair (w1 − x1), suggesting that
w1 and x7 are also paired in a secondary sense (likewise for w7 and x1). During a subsequent
evaluation phase, participants were tested on each word twice. The first test asked participants
to select the target referent for the word (w1), with its early referent as the target (x1 shown,
x7 not shown) and 10 other objects as distractors. The second test presented the same word,
but swapped the target object, so participants saw the same word (w1) but now with the late
referent as the target (x1 not shown, x7 shown) and 10 other distractors. This process was
mirrored for all of the late words. This evaluation design was chosen to examine which of the
four possible mappings between early and late word-referent pairs participants would endorse
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Figure 7: Experimental design for the Relaxation of Mutual Exclusivity simulations. Here,
we simulated a subset of the conditions in the original study from Kachergis et al. (2012). In the early
training phase, participants learned six early word-referent pairs, with 2 objects and 2 referents per
trial, and six presentations of each word-referent pair. During the late training phase, participants
learned six late word-referent pairs, where each trial consisted of an early word-referent pair always
appearing with the same late-referent pair, and this was repeated either 3, 6 or 9 times. In the
evaluation phase, participants were evaluated on the four possible word-referent pairings possible from
the set of matched early and late word-referent pairs.

(w1 − x1, w1 − x7, w7 − x1, w7 − x7). The number of presentations of both the early pairs were
varied between-subjects (0, 3, 6 or 9) and late pairs (3, 6, or 9) were varied within-subjects.

Two critical findings emerged from this work. First, even after only three presentations of
the late word-referent pairs (always in conjunction with the same early word-referent pair),
participants showed high accuracy in selecting this pair (w7 − x7). Kachergis et al. (2012)
argued that this result can be explained as an inference using mutual exclusivity. As this
pair was always shown with w1 − x1, and participants would have learned this particular
word-referent mapping from the first phase of training, participants should be able to infer that
the new word (w7) should map onto the new referent (x7) through mutual exclusivity, rather
than endorsing the two possible mappings between the first and second phases of training
(w1 − x7 or w7 − x1) despite their patterns of co-occurrence. This provides evidence that
people can employ mutual exclusivity not just during evaluation with novel words (as shown in
Experiment 3), but also during the learning process itself as a means of quickly acquiring new
word-referent mappings. The second major finding was that as the number of presentations
increased in the Late Training phase, participants began to display a relaxation of mutual
exclusivity. That is, in addition to endorsing w1 − x1 and w7 − x7 during the evaluation phase,
participants also increased their endorsements of w1 − x7 or w7 − x1, mapping each word to
multiple referents (rather than a single referent as the mutual exclusivity bias would entail),
although the proportion these cross mappings were selected were lower on average than the
true mappings. This pattern of results is displayed in the left panel of Figure 8.

Simulation. We simulated a subset of the conditions from Kachergis et al. (2012) to
examine whether our two multimodal neural networks capture these findings; in particular,
whether they can use mutual exclusivity to aid cross-situational word learning, as well as relax
mutual exclusivity when provided with sufficient evidence during the Late Training phase.
More specifically, since there were no substantive differences between varying the number of
times each early pair was shown in the original experiment, we only considered the condition
where the 6 early word-referent pairs were shown 6 times each (and excluding the 0, 3 or 9
repetition conditions). However, we varied the number of late word-referent pairs to be either
3, 6, or 9 repetitions, and pairing each late pair with an early pair in the same manner as
the original experiment. Finally, the evaluation trials matched the original experiment, where
each word was presented twice alongside 11 possible referents to select from: once with the
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Figure 8: Relaxation of Mutual Exclusivity Simulation Results. The left panel shows the
human results from Kachergis et al. (2012), indicating that participants initially employed mutual
exclusivity to exclude certain word-referent mappings, and then gradually relaxed mutual exclusivity
given a sufficient number of late pairs. However, the two panels on the right show that neither of the
two networks capture the same qualitative phenomena. The Scene-Caption Network shows an effect of
mutual exclusivity for the early word-referent pair w1 − x1, but not for the late pair w7 − x7. On the
other hand, the Object-Word Network learns all four possible mappings strongly, ignoring any kind of
mutual exclusivity. The dotted line represents chance accuracy, and error bars depict 95% confidence
intervals.

early referent, but not the late referent, and then a second time with the late referent, but
not the early referent, and both cases alongside the 10 remaining referents. This allowed us to
determine which of the four possible pairings between early and late word-referent mappings
the networks would endorse.

Results. The simulation results are summarized and compared with human behavior in
Figure 8. Each plot shows the four possible word-referent mappings that are tested, with results
averaged across the six different early-late word-referent pair combinations. We find that both
networks capture some, but not all of the qualitative patterns of learning as humans in this
particular study, with both networks showing distinct preferences for each of the four types of
word-referent mappings that were evaluated. Both networks, but the Scene-Caption Network
in particular broadly accounts for the same level of accuracy as humans in this experiment.

In the Scene-Caption Network, we note of a couple of patterns starting with the case with
3 presentations of the late word-referent pairs. First, the accuracy of w1 − x1 is highest as
this was the least ambiguous word-referent pairing. On the other hand, the corresponding
accuracy for w1 − x7 is lowest indicating that the network was hesitant to form an additional
mapping to a second referent. With 3 presentations of the late word mappings, the network
learns both possible mappings (w7 − x1 and w7 − x7) equally well. The lack of a preference for
either w7 − x7 or w7 − x1 suggests that this network was not employing mutual exclusivity
during training by limiting mappings from one word to one referent, and where the greatest
divergence between human behavior appears. Finally, with additional presentations of the
late word-referent pairs, we find that the network’s preference for each of these four mappings
increases in line with human behavior.

In the Object-Word-Network, a very different pattern was observed for both the results
from human participants and the Scene-Caption Network. Even after 3 presentations of the
late word-referent pairs, the Object-Word Network selected the intended referent for all of the
four word-referent mappings we evaluated, and this increased with additional presentations.
Here the differences between the two networks are more pronounced than in some of the earlier
simulations. We hypothesize that the similarity calculation in the Scene-Caption Network which
aggregates across all of the words and referents, through the use of the max operator, leads to
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different patterns of update where only the word embedding for the maximally active referent
is updated. On the other hand, in the Object-Word Network, each potential word-object pair
in a given scene is considered a matching pair, and since the same early and late word-referent
pairs are matched for multiple trials, the network treats all of these pairs as equally valid.
This causes the network to update the embeddings to be consistent for all possible pairings,
regardless of whether they were observed early or late during training.

Overall, neither of the two networks capture the full set of trends found in the behavioral
results in Kachergis et al. (2012). However, both networks are capable of endorsing multiple
mappings without issue, indicating that their inductive bias towards mutual exclusivity may
be less strict or non-existent relative to humans. Leveraging mutual exclusivity during the
learning process may enable faster learning, but this study also demonstrates how models of
cross-situational word learning also need to accommodate cases when a single word maps to
multiple referents and vice versa, and our results suggest that neither network captures both
of these tendencies.

3.5 Experiment 5: Learning from Zipfian Distributions
The fifth simulation is based on a recent study by Hendrickson and Perfors (2019), comparing
cross-situational learning between word-referent pairs that were distributed either uniformly or
as a Zipfian distribution, showing a benefit for cross-situational word learning in the Zipfian
case to a uniform distribution. In the Uniform case, each of the possible word-referent
mappings is presented the same number of times throughout training, akin to many of the
previous simulations reported earlier in this paper. In the Zipfian case, a few word-referent
pairs are presented many times over the course of training, while the remainder of the word-
referent pairs are only presented a few times. This skewed distribution is intended to be
more representative of real-world language learning, where children may hear some words
many times and others very infrequently. As shown in the left panel of Figure 9, Experiment
Two from Hendrickson and Perfors (2019) showed that participants in the Zipfian condition
learned roughly twice as many words as participants in the Uniform condition, when comparing
words that were matched in frequency of presentation.8 Hendrickson and Perfors (2019)
argued that under a Zipfian distribution, the very frequent word-referent mappings would be
learned first. Then, on subsequent trials containing these easily-learned words and referents,
participants could reason using mutual exclusivity to exclude these known words/referents
when reasoning about unknown words/referents, effectively reducing the degree of referential
ambiguity based on existing knowledge. On the other hand, under a uniform distribution,
participants would be more limited in their ability to reduce the space of potential space of
word-referent mappings. Therefore, learners would have higher referential ambiguity throughout
the course of the experiment, leading to a decrease in word-referent pairs learned relative to
the Zipfian condition, which is what was empirically observed.

Simulation. In their experiment, participants learned 28 word-referent mappings, with
4 words and 4 referents per trial.9 In the Uniform condition, participants were shown each
word-referent mapping 10 times throughout the course of training. In the Zipfian condition,
the most frequent word-referent pair appeared 62 times throughout the course of training, the
next most frequent word-referent pair appeared 33 times, and the 12 least frequent word-referent
pairs occurred 5 or fewer times. To generate trials for the Zipfian condition, we randomly
generated training trials consisting of 4 words and 4 referents that matched the frequency
counts from the Zipfian condition in the original paper for the 28 word-referent pairs. The
evaluation phase consisted of a challenging 28-way classification, testing each target word
against all the potential referents observed during training.

Results. A summary of the simulation results are shown in Figure 9. We find that for the
Scene-Caption Network, the accuracy in the Zipfian condition matches the qualitative and
quantitative aspects found in the human data, which is quite remarkable given the network
was only trained for a single epoch and the evaluation involved identifying the correct referent
among 28 options. As expected, the network is more accurate on higher frequency items.

8For our simulations, we only considered the ZipfianFrequency condition where the frequency of
words mattered, compared to the ZipfianLength condition where the word lengths also varied according
to a Zipfian distribution, as the difference between the two conditions in the original work were quite
minor and this would not have affected either network’s predictions.

9The original experiment had 32 word-referent mappings, but 4 of these were displayed once as
check trials for human participants, which we excluded in our simulations, resulting in 70 total trials
rather than 71.
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Figure 9: Learning from Zipfian Distributions Simulation Results. On the left panel shows
the data collected from Experiment Two of Hendrickson and Perfors (2019), showing that the Zipfian
condition led to participants to learn more words for the subset of words whose frequency matched
the Uniform condition. Although the accuracy for the Zipfian condition in the Scene-Caption Network
is comparable to human-level accuracy, its performance in the Uniform condition is also equivalent,
and thus does not qualitatively match the behavior of human participants. On the other hand,
the Object-Word Network exhibited low overall performance, from the large amount of referential
ambiguity and the absolute number of words to be learned. The dotted line represents chance accuracy,
and error bars depict 95% confidence intervals.

Moreover, the level of accuracy matches what we find in humans at the three levels of frequency.
Despite these successes, this network does not capture the critical finding showing a benefit for
the Zipfian condition compared to the Uniform condition for the words whose frequency of
presentations were matched, but rather the performance in the Uniform condition was equal
(and better than human performance). Rather than relying on mutual exclusivity to learn
word-referent mappings, the performance of the Scene-Caption Network may be explained by
the fact that it observed a sufficient number of presentations to learn these word-referent pairs
in both the Zipfian and Uniform conditions, regardless of the kind of referential ambiguity
from other words and referents present on each trial.

For the Object-Word Network, we see a reversal in performance compared to Experiment 4.
Here, we find that performance of the network in both distribution conditions is low across all
frequency groupings, and surprisingly the most frequent items result in the lowest accuracy
scores. Due to these discrepancies, the network fails to capture any of the qualitative patterns
from the human data in this experiment. Because the network considers all 16 possible pairings
as viable, one possible explanation for this network’s failures is that it learns multiple incorrect
word-referent mappings due to the high-level of referential ambiguity.

3.6 Experiment 6: Exemplar Generalization
In the sixth simulation, we examined whether multimodal neural networks could generalize to
visually similar referents. Although it is quite common in developmental studies to examine
generalization to novel exemplars of a word (Carey and Bartlett, 1978; Samuelson and Horst,
2007; Taxitari et al., 2020), previous models of cross-situational word learning cannot easily
capture this form of generalization as referents as symbolically encoded. One attempt to account
for this can be found in Lewis and Frank (2013), where participants in a cross-situational
learning task were presented with multiple ambiguous pairs of stimuli that varied in the number
of overlapping features alongside an utterance, and their patterns of generalization to novel
stimuli indicated that participants were sensitive to stimulus similarity. Their results were
modeled using a a Bayesian cross-situational word learning model Frank et al. (2009) combined
with a model of Boolean concept learning, although in their model the features were still
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Figure 10: Exemplar Generalization Results. The left bars show performance on the evaluation
trials for the Scene-Caption Network, while the right bars show performance for the Object-Word
Network. Performance is separated into the trials that evaluated the word with familiar examples
of a concept (Train) versus novel examples (Generalization). Both networks easily generalized to
novel examples with an accuracy comparable to the training examples, although a slight performance
advantage was observed in the Scene-Caption Network relative to the Object-Word Network. The
dotted line represents chance accuracy, and error bars depict 95% confidence intervals.

symbolically encoded (but at the level of features rather than referents). In contrast, we find
that multimodal neural networks we consider naturally capture this kind of generalization
via distributed representations. In this section, we examine how multimodal neural networks
generalize to visually similar referents.

Simulation. The set-up for the exemplar generalization simulation is depicted in the
bottom row in Figure 1(d). For this simulation, training is the same as the basic cross-
situational learning procedure (Figure 1(a)). However, during evaluation, the network is asked
to classify novel exemplars of a category (Figure 1(d)) instead of naming exemplars seen during
training. Concretely, we used a different subset of the NOUN database consisting of 30 images
grouped into 10 categories with 3 exemplars each, where the exemplars were similar in shape
but varied by color or texture. The network was trained on 10 word-referent pairs, using only
one out of the three exemplars per category. Two words and two referents were presented on
each trial, with a total of six presentations for each word-referent pair, matching the training
set-up for many of the previous simulations.

During evaluation, the network was tested by pairing each target words with either the set
of referents observed during training (Train Accuracy) presented alongside two other foil
referents observed during training. Second, the networks were also evaluated using the held
out set of the two other referents for each category (Generalization Accuracy), presented
alongside two other novel foil referents from other categories.

Results. A summary of the results are shown in Figure 10. Both the Scene-Caption and
the Object-Word Networks exhibit high accuracy on the evaluation trials, regardless of whether
familiar or novel exemplars of a category were evaluated, with slightly higher accuracy in the
Scene-Caption Network. The networks were able to generalize existing learned word-referent
mappings to novel exemplars not seen during the training process, utilizing the fact that the
image encoder maps novel visual referents in the embedding space close to the embedding of
the original referent, such that the resulting similarity to its corresponding word embedding
remains high relative to referents from other categories. This result highlights a strength
of distributed representations compared to purely symbolic models of cross-situational word
learning, allowing this form of exemplar generalization to emerge automatically as a byproduct
after training without requiring any additional components.
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3.7 Experiment 7: Learning Multimodal Representations without Pre-training
In all of the previous simulations, we relied on a pre-trained convolutional neural network (CNN)
for the image encoder. The visual representations were learned from another dataset and fixed
throughout training, allowing the networks to focus on acquiring the word-referent mappings.
In this final simulation, we train convolutional networks from scratch to explore whether useful
visual representations can be acquired solely through the process of cross-situational learning.
Answering this question in the affirmative would provide evidence that the methods here need
not rely on features from fully-supervised training; instead, it would provide a proof of concept
for how these networks could account for learning in larger-scale, more naturalistic settings
such as those experienced by children during development. We also study, as in Experiment
6, how these networks generalize to novel exemplars of a category. The next two parts of
this section describe the dataset used to train this network, followed by how the network
architecture and training process were adapted for these simulations.

Dataset. A much larger dataset than the NOUN database is needed to train a CNN
from scratch. For these simulations, we used MNIST (LeCun, 1998), a standard machine
learning dataset, consisting of 60,000 training examples and 10,000 test examples of 28x28px
handwritten digits from 0 to 9. Based on these images, we created our own Multi-MNIST
training and evaluation sets. The training sets were generated by randomly sampling a certain
number of digits per scene from the original MNIST training set. The number of digits per
scene was either 2, 3 or 4, similar to the earlier referential ambiguity simulations in Experiment
1. We also generated a matching caption specifying the digit labels (in a permuted order).
We varied the total number of exemplars presented during training—using either 480, 1,920,
4,800, 19,200 or 48,000 digit exemplars—thus, the total number of exemplars presented was
controlled regardless of how many digits were shown per scene.

The evaluation dataset was generated in a manner similar to previous simulations. We
generated 100 distinct evaluation trials for each digit (so 1,000 in total). On each trial, the
network was presented with a target digit word alongside an array of digits from 0-9, each of
which were randomly sampled from the original MNIST test set. Similar to the Experiment 6,
the network is tested on its ability to generalize to novel exemplars—as all the test images
are new to the network—providing a stronger test of the network’s generalization capabilities
when trained from scratch.

Network. The results in this simulation rely on a variant of the Scene-Caption Network
used throughout this work, but with three notable changes.10 First, rather than using a
pre-trained VGG-16 convolutional neural network as our image encoder, a separate convolu-
tional neural network was constructed and randomly initialized. This CNN consisted of two
convolutional layers (with 32 and 64 feature maps) with ReLU non-linearities in between, and
then followed by a single 2x2 max pooling layer. This was followed by a layer of dropout,
and a single fully-connected layer, resulting in an image embedding of size 128. For the word
encoder, the digit labels were embedded using a single embedding layer as before, but mapping
the digit labels to word embeddings of size 128 to match the image embeddings.

As trial-by-trial performance was not of interest in this simulation, the network was
trained instead using mini-batches (of size 256), as is standard practice. Due to this change,
mismatching examples for the contrastive loss were sampled from other scene-caption pairs
within the same batch, as is common in other papers (Harwath et al., 2018), which replaces
the role of the memory mechanism as used in previous simulations. Finally, all of the networks
were trained for 10 epochs using the Adam optimizer with a learning rate of 1e-4.

Results. The results from this experiment are shown in Figure 11. Overall, the network is
successful at solving the cross-situational word learning problem via a randomly initialized
CNN. First, it can acquire visual representations from scratch that generalize well to novel
exemplars in different categories, even in the condition with the fewest number of examples
(480). Second, regardless of the degree of referential ambiguity, evaluation accuracy approaches
perfect performance as the number of training examples increases. This provides strong
evidence that these multimodal neural networks can indeed be trained from scratch entirely
from trials that are individually ambiguous, learning to resolve cross-situational mappings
and generalize to novel exemplars (Lewis and Frank, 2013). Finally, the degree of referential
ambiguity affected evaluation accuracy in the same manner as observed in behavioral findings
(Yu and Smith, 2007) and simulated in Experiment 1. Notably, this referential ambiguity effect

10We did not explore the use of the Object-Word Network for this simulation, as the previous
simulations generally showed better performance with the Scene-Caption Network.
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Figure 11: Learning representations from scratch. Results show the evaluation performance of
a multimodal neural network from scratch. We find that performance increases as the network is
provided with more examples during training, while the same qualitative decreases occurs with greater
referential ambiguity. However, networks trained with the maximum number of scenes achieved close
to perfect performance, showing that these networks can be trained from scratch given enough data.
The dotted line represents chance accuracy, and error bars depict 95% confidence intervals.

attenuates when more examples are provided during training and model accuracy approaches
ceiling.

Other work has also demonstrated the ability of multimodal neural networks to learn visual
representations from scratch with different kinds of training. For example, Harwath et al.
(2018) showed that a similar contrastive learning method between paired images of visual scenes
and speech descriptions could be used to train a convolutional neural network from scratch.
Another paper from Desai and Johnson (2020) showed that performing an image captioning
task (predicting a language description for a given image), was also effective for training a CNN
from scratch, and demonstrated strong performance on a number of downstream tasks after
this pre-training procedure. Our results and these other findings suggest a distinct advantage
for multimodal neural networks over other classes of models for cross-situational word learning.
The scalability of this approach suggests that these models can not only capture the learning
of novel word-referent pairs in the lab by using a pre-trained CNN, but also as a model for
cross-situational word learning during development, starting from a randomly initialized CNN
and jointly learning and aligning visual and language embeddings without any explicit prior
knowledge.

4 General Discussion
In this work, we evaluated two different multimodal neural networks on cross-situational
word learning problems, examining their ability to explain key empirical phenomena from the
psychological literature. Our primary motivation is to understand the kinds of phenomena
that emerge from training relatively generic neural networks on multimodal data. Just as
importantly, we want to understand which kinds of phenomena do not emerge from such an
account, suggesting additional learning mechanisms or inductive biases may be responsible.
Our approach is shared by a number of other recent works using state-of-the-art architectures
from machine learning to provide insights into human cognition, such as using pre-trained
models in categorization (Lake et al., 2015; Peterson et al., 2018) or in language (Arehalli and
Linzen, 2020; Manning et al., 2020).

Our investigation was instructive in understanding the capabilities of multimodal neural
networks; they were able to capture four diverse empirical phenomena, out of the seven
phenomena we studied. Some of these phenomena have previously been shown to be accounted
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for by other symbolic models (Yu and Smith, 2012; Frank et al., 2009; Fazly et al., 2010;
Kachergis et al., 2012). However, the successes we observed in the last two simulations involving
exemplar generalization is something that symbolic models have not been able to easily capture.
Our results show that exemplar generalization occurs naturally as a byproduct of using
convolutional neural networks that embed visually similar images close together in embedding
space. Additionally, since convolutional networks can process any kind of image presented
to it, they open the door to studying cross-situational learning with more sophisticated and
naturalistic stimuli beyond the scope of purely symbolic models without the need for any
additional feature preprocessing.

One final advantage of these networks from the perspective of cross-situational word learning
is their ability to learn from a single epoch of stimuli presented in an online manner, matching
the amount of experience presented to human participants. This was a surprising finding to
us, but it appears to be in line with other recent findings using multimodal architectures that
employ a contrastive learning procedure for word learning; a single epoch of training can be
sufficient to disambiguate ambiguous word-referent mappings (Lazaridou et al., 2016).

On the other hand, neither of the two neural networks could capture the qualitative patterns
of human behavior in three of the seven simulations, in Experiment 3 (mutual exclusivity,
except in limited cases), Experiment 4 (relaxation of mutual exclusivity) and Experiment 5
(learning from Zipfian distributions). Despite the differences between simulations, there was
a correlated failure mode: neither network seemed to utilize mutual exclusivity in a manner
similar to humans. Both networks showed evidence of cross-situational learning in these tasks,
but key behavioral findings were not evident in either of the networks. The failures of the
Object-Word Network appeared to be more pronounced than the Scene-Caption Network,
displaying less human-like responses for all three of these simulations.

In each of these three simulations, it has been argued that the principle of mutual exclusivity
is employed by humans to solve these tasks (Halberda, 2003; Kachergis et al., 2012; Hendrickson
and Perfors, 2019). In Experiment 4, participants leveraged knowledge about prior learning of
the word-referent mapping w1 − x1 to quickly form a new mapping for the late word-referent
pair w7 − x7, even though the raw co-occurrence counts were equally consistent with other
hypotheses. In Experiment 5, participants used knowledge obtained from frequent word-referent
pairs in the Zipfian condition to reduce the referential ambiguity on later trials, again applying
the assumption of mutual exclusivity to do so. This commonality across these three experiments
suggests that solving the singular problem of building an inductive bias for mutual exclusivity
into the learning process for these networks may be sufficient for capturing all three of these
results, rather than requiring distinct architectural changes for each of these three phenomena.

Reasoning by mutual exclusivity remains a challenge for standard deep learning architectures,
despite the promised benefits of incorporating this inductive bias. Earlier computational
accounts of cross-situational word learning proposed multiple mechanisms to handle mutual
exclusivity, via inductive biases for novelty (Kachergis et al., 2012) or by applying Bayesian
inference over a prior that favors simpler lexicons (Frank et al., 2009). However, these earlier
computational accounts rely on the symbolic encodings of referents that implicitly encode
novel referents as distinct entities from familiar referents, a procedure that cannot be easily
translated to how multimodal neural networks embed words and referents into a continuous
multi-dimensional embedding space.

In a recent work, Gandhi and Lake (2020) showed that many architectures actually have
a bias against mutual exclusivity. Given a novel input, networks tend to respond with a
familiar output response, rather than a novel output response. However, there have been
some successes in getting neural networks to demonstrate mutual exclusivity by training
models via memory-augmented meta-learning (Santoro et al., 2016; Lake, 2019). Gulordava
et al. (2020) also proposed the use of more sophisticated referent selection mechanisms that
incorporated pragmatic reasoning, although their approach also requires that the novel word
and novel referent to be sampled as negative contrasting items beforehand. Additionally, while
each of these approaches demonstrates mutual exclusivity at evaluation time, the behavioral
phenomena studied in Experiments 4 and 5 suggest that people also apply mutual exclusivity
to facilitate learning too. Therefore, future work should examine whether this sort of capability
can be deployed during the training process, and whether mutual exclusivity can be achieved
without unrealistic sampling assumptions that allow novel words and referents to serve as
mismatches.

One longstanding debate in cross-situational word learning is whether people learn word-
referent mappings in an associative manner or through hypothesis testing (Yu and Smith, 2012;
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Khoe et al., 2019). The manner in which multimodal neural networks gradually update their
representations of words and referents over time aligns more closely with associative accounts
of cross-situational word learning (Fazly et al., 2010; McMurray et al., 2012; Kachergis et al.,
2012). It is not obvious how hypothesis testing could be incorporated into the approaches
studied here, because the kinds of hypotheses under consideration in existing hypothesis-testing
models require referents to be symbolically encoded (Trueswell et al., 2013; Stevens et al.,
2017). A future challenge for multimodal architectures may be to incorporate methods that
can perform explicit hypothesis testing, as there is evidence that humans engage in forms
of explicit hypothesis testing during cross-situational word learning (Trueswell et al., 2013;
Stevens et al., 2017; Berens et al., 2018).

Previous work has explored multimodal neural networks for word learning, although the
scope of past work has been limited to studying either one or a limited number of phenomena.
One of our contributions here has been to increase the number of simultaneous phenomena
studied and to perform a more comprehensive evaluation of the capabilities of such networks
using the same training set-up throughout the work. Nevertheless, some of the phenomena we
examined overlap with past work, including fast mapping (Lazaridou et al., 2014, 2017; Hill
et al., 2020b) and mutual exclusivity (Gulordava et al., 2020). Additionally, other multimodal
architectures have been used to study word learning phenomena we did not consider such as
the shape bias (Hill et al., 2020a) and learning from child-directed input (Lazaridou et al.,
2016). Finally, although we did not test the use of raw speech for this work, other research has
shown that neural network architectures can be applied to cross-situational learning with raw
speech instead of text using similar contrastive-based methods (Chrupała et al., 2017; Harwath
et al., 2018), suggesting that contrastive learning approaches offer a powerful general purpose
solution to learning cross-modal mappings from raw sensory input.

In this work, we explored which word learning phenomena arise from neural networks
trained on multimodal data, focusing on capturing the kinds of phenomena found in human
experiments with limited training of novel word-referent pairs. However, the conditions in these
controlled experiments are much simpler than the kinds of naturalistic settings where children
are required solve the same types of problems, and the degree of noise and referential ambiguity
presents much more of a challenge for cross-situational learning. Other work has explored this
problem in a variety of ways, from early multimodal approaches (Roy and Pentland, 2002),
to more recent work using large-scale naturalistic headcam data (Tsutsui et al., 2020; Orhan
et al., 2020) and studying the ways in which children or machines play an active role in word
learning (Zettersten and Saffran, 2019; Gelderloos et al., 2020). The fact these networks can be
trained from scratch, as demonstrated in Experiment 7, suggests that these kinds of networks
could be further developed to provide a unifying account of both naturalistic word learning
in the wild and artificial word learning in the lab (Meylan and Bergelson, 2021). Finally,
while we attempted to test a broad range of phenomena, our list was by no means exhaustive.
Future work should aim to examine other aspects of word learning not considered here, such as
grounding other kinds of word classes such as verbs and adjectives (Ebert and Pavlick, 2020;
Nikolaus and Fourtassi, 2021).
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A Mutual Exclusivity
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Figure 12: Mutual Exclusivity Results. We further examined the effect of mutual exclusivity
under different training configurations for both networks, varying the learning rate (rows) or the
degree of gradient clipping employed (columns). Both models were also evaluated in the All and Foil
conditions.

As shown in Figure 12, we ran additional simulations looking at some other factors that
influenced whether a model would display evidence for mutual exclusivity. We varied both the
learning rate the models were trained on, as well as the amount of gradient clipping to apply.
In the All condition, where the model is presented with the novel referent and a randomly
selected familiar referent, both the Scene-Caption and Object-Word Networks show a strong
preference for the novel referent. However, in the more challenging Foil condition where the
familiar referent was the one presented alongside the novel referent, we can observe that there
is a lot of variation in which referent the networks favor, and that results are not as consistent
across the different training configurations. We did not observe this kind of qualitative shift in
any of the other simulation results.
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