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Abstract 

Artificial intelligence (AI) promises to take the flawed intelligence of humans out of machines. 

Why, then, might we want to put the inchoate intelligence of human infants into machines? 

While infants seem to intuit others’ underlying intentions merely by observing their actions, AI 

systems, in contrast, fall short in such commonsense psychology. Here we put infant and 

machine intelligence into direct dialogue for the first time through their performance on the Baby 

Intuitions Benchmark (BIB), a comprehensive suite of tasks probing commonsense psychology. 

Following a preregistered design and analysis plan, we collected 288 individual responses of 11-

month-old infants to BIB’s six tasks and tested three state-of-the-art learning-driven neural-

network models from two different model classes. Infants’ performance revealed their 

comprehensive understanding of agents as rational and goal-directed, but the models failed to 

capture infants’ knowledge. These striking differences between human and artificial intelligence 

are critical to address to build machine common sense. 

 

Keywords: intuitive psychology; action understanding; infancy; machine common sense; 

artificial intelligence  
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Introduction 

 The early-developing ease with which infants know about objects1,2, people3,4, and 

places5 is impressive, especially compared to the difficulties machines have had in achieving 

these simple human competencies6,7. Such differences between human and artificial intelligence 

(AI) are critical to address if we aim to create commonsense AI, leading to AI that we better 

understand and that better understands us. 

One of the general challenges of building commonsense AI is deciding what knowledge 

to start with. A human infant’s foundational knowledge is limited, abstract, and reflects our 

evolutionary inheritance8,9, yet it can accommodate any context or culture in which that infant 

might develop. If an aim of AI is to build the flexible, commonsense thinker that human adults 

become, then machines might need to start from the same core abilities as infants, whether 

achieved through learning-driven or engineered approaches10. Nevertheless, comprehensively 

characterizing infants’ knowledge is difficult, as behavioral experiments with infants typically 

focus on just one or two abilities in one content area, rely on diverse materials and methods (e.g., 

live actors versus animations), and are presented to different groups of infants11,12. 

Here we present a first step in building commonsense AI by putting infant and machine 

intelligence into direct dialogue for the first time through their performance on the Baby 

Intuitions Benchmark (BIB), a comprehensive suite of tasks probing commonsense 

psychology13. BIB focuses on an observer’s ability to make accurate predictions about agents’ 

underlying intentions merely by observing their actions. These predictions are foundational to 

human social intelligence14,15 but are typically missing in AI, which instead predicts the actions 

directly (e.g., churn, clicks, likes, etc.16). BIB includes short silent animated videos presenting 

simple visuals17, including basic shapes without eyes or limbs, undertaking basic movements in a 



 4 

grid world. This design allows for procedural generation of BIB’s stimuli and emphasizes the 

high-level properties of agents and objects18–21, challenging the limits of an observer’s inferential 

capacity and reflecting the kind of abstract knowledge that infants possess. The videos’ structure 

adopts the “violation-of-expectation” looking-time paradigm often used to test infants22,23 which 

includes a series of familiarization events that serve to set up an expectation, followed by — in 

either order — an expected outcome that is perceptually dissimilar to the familiarization but is 

conceptually consistent and an unexpected outcome that is perceptually similar to the 

familiarization but is conceptually surprising. This task structure has been used in recent 

machine-learning benchmarks focusing on commonsense24–27 and is advantageous because it 

both protects against low-level heuristic-based solutions22 and allows for an algorithm’s 

quantitative measure of surprise to be compared to a well-established psychological measure of 

surprise27. While infants are only presented with videos of the familiarization and test events, 

models may train on BIB’s background training videos13, which include thousands of examples 

of BIB-like agents exhibiting simple behaviors in a grid world (e.g., an agent moving to a single 

object; see Materials and Methods and SI). Importantly, the test videos require models to 

generalize outside of the training distribution, combining multiple behaviors that exist in 

isolation or in a simplified form during training. Because the background training provides only 

expected outcomes, moreover, supervised learning on labeled videos is not possible. 

BIB includes six separate tasks inspired by the rich empirical literature on infants’ 

knowledge about agents (Figure 1, see Materials and Methods and SI). Using BIB’s 

environment13, we procedurally generated the video stimuli to test infants and machines and 

chose the clearest examples of the particular principles of commonsense psychology targeted by 

each task. The Goal-Directed Task captures the idea that agents’ goals are usually object-
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directed. Observers watch an agent repeatedly move to the same one of two objects in 

approximately the same location in a grid world during familiarization. At test, observers should 

be more surprised when the agent moves to a new object after the locations of the two objects 

switch3. The Multi-Agent Task captures the idea that goals might be specific to agents. Observers 

watch an agent move to the same one of two objects during familiarization. At test, a new agent 

appears, and observers should be more surprised when the original agent versus the new agent 

moves to a new object28,29. The Inaccessible-Goal Task captures the idea that agents might form 

new goals when their existing goals are unattainable. Observers watch an agent move to the same 

one of two objects during familiarization. At test, observers should be more surprised when that 

agent moves to a new object when its goal object is accessible versus inaccessible30. The 

Efficient-Agent Task captures the idea that agents act rationally to achieve goals. Observers 

watch an agent move efficiently around obstacles to an object during familiarization. At test, 

observers should be more surprised when that agent moves inefficiently to the object4. The 

Inefficient-Agent Task asks what expectations observers have about agents who move 

inefficiently to objects. Observers watch an agent in the familiarization move along the same 

paths to an object as the agent in the Efficient-Agent Task, but this time there are no obstacles in 

the agent’s way. At test, observers should have no expectations about whether that agent will 

move efficiently or inefficiently to the object4,31. The Instrumental-Action Task captures the idea 

that agents should only take instrumental actions when they are necessary. During 

familiarization, observers watch an agent move first to a key, which it uses to remove a barrier 

around an object, and then to that object. At test, observers should be more surprised when the 

agent continues to move to the key, instead of directly to the object, when the barrier is no longer 

blocking the object32,33. 
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Figure 1. Schematic of BIB’s six tasks. For each task, observers first see eight familiarization 
videos in which an agent acts consistently in terms of its rationality and goal-directedness. The 
exact make-up of the grid world and the movement of the agent varies across trials, as described 
in the main text and SI. One example familiarization trial per task is shown here. Observers then 
see an expected and unexpected test video (with the order of these videos varying for infants). 
Examples of both test trials are shown here. All of the videos are available at: [ACCESSIBLE 
TO REVIEWRS]. 
 

Results 

 Infant Performance on BIB 

Following a preregistered design and analysis plan [ACCESSIBLE TO REVIEWRS], we 

collected 288 individual responses of 11-month-old infants to BIB’s six tasks (Goal-Directed 

Task, N = 48; Multi-Agent Task, N = 49; Inaccessible-Goal Task, N = 47; Efficient-Agent Task, 

N = 47; Inefficient-Agent Task, N = 49; Instrumental-Action Task, N = 48; see Materials and 

Methods). Planned mixed-model linear regressions with raw looking time as the dependent 

variable, outcome (expected versus unexpected) as a fixed effect, and participant as a random-

effects intercept evaluated infants’ performance on each task. Additional planned regressions 

examined infants’ overall performance across all six tasks and directly compared their 

performance on the two tasks focused on agents’ rational actions. Unplanned, post hoc analyses 

explored the effects of the order in which infants saw certain tasks and their looking during a 

task’s familiarization phase. Additional planned and unplanned analyses are reported in the SI 
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along with the results of our pilot test of infants on versions of the Goal-Directed and Efficient-

Agent Tasks. 

Infants’ performance on BIB’s six task is displayed in Figure 2. Infants’ looking time 

varied by task (F(5, 341) = 2.78, p = .018; reflecting the different test-trial lengths of the 

different tasks, SI), and, overall, infants did not look longer to unexpected versus expected 

outcomes (F(1, 341) = 2.27, p = .133). A task by outcome interaction suggested that, overall, 

different tasks elicited different patterns of infants’ looking (F(5, 341) = 2.23, p = .051). Because 

BIB’s tasks are presentationally consistent, focusing on several components of human reasoning 

about agents, and because we presented its tasks to some of the same infants, our findings, 

coupled with the rich existing literature on infants’ action understanding, paint a comprehensive 

picture of infants’ commonsense psychology about agents. 

 

 

Figure 2. Infants’ raw looking times to the two outcomes in each of BIB’s six tasks. Gray lines 
connect the individual looking times (represented by blue and yellow dots) of each infant to each 
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outcome. Red dots connected by red lines indicate the mean looking times to each outcome for 
each task. Beta coefficients are effects sizes in terms of standard deviations, and the statistical 
analyses are reported in the main text (*p < .05, **p < .01). 

 

We first consider infants’ performance on the Goal-Directed, Multi-Agent, and 

Inaccessible Goal Tasks, the three tasks that focus on representations of agents’ goal-directed 

actions. Overall, the results from these three tasks suggest that infants expect agents’ goal-

directed actions to be towards objects, not locations, and infants’ expectations are limited to 

individual agents in environments with consistent constraints. 

First, consistent with prior findings3 and with our pilot sample (SI), infants were 

surprised (looked longer) when an agent moved to a new object in the Goal-Directed Task (F(1, 

47) = 4.09, p = .049). Prior findings are mixed as to whether infants expect goals to be specific to 

or shared between agents28,29,34,35. Accordingly, infants presented with a new agent in the Multi-

Agent Task looked longer when that agent versus the original agent moved to a new object (F(1, 

48) = 3.41, p = .071). Infants may attend equally when either a new or a familiar agent 

approaches a new object for the first time9, and the visual attention elicited by the new agent, 

who appeared for the first and only time in that outcome, may explain infants’ longer looking 

(prior studies had presented the new agent in both test outcomes28). Finally, prior findings 

suggest both that infants recognize when an object is inaccessible to an agent30,36 and that infants 

do not carry over their expectations of an agent’s goal-directed actions to new environments37. 

Accordingly, in the Inaccessible-Goal Task, infants showed no difference in surprise when an 

agent moved to a new object when its goal object was accessible versus inaccessible (F(1, 46) = 

0.02, p = .891). Infants may indeed have recognized that the agent’s goal object was inaccessible 

in the test environment, and they may have thus considered this new constraint indicative of a 
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new environment and not carried-over over any predictions about the agent’s goal-directed 

actions. 

We next consider infants’ performance on the Efficient-Agent and Inefficient-Agent 

Tasks, the two tasks that focus on representations of agents’ rational actions. Overall, the results 

of these two tasks suggest that infants have expectations that rational, goal-directed agents will 

act efficiently to achieve goals. They also suggest that infants may revert to default expectations 

about efficiency for agents who act in varying environments and whose actions are ambiguously 

goal-directed. 

First, consistent with prior findings4 and with our pilot sample (SI), infants were 

surprised when an efficient agent later took an inefficient path to an object in the Efficient-Agent 

Task (F(1, 46)= 7.72, p = .008). Prior findings suggest both that infants have no expectations 

about the subsequent actions of an agent who had previously moved inefficiently4,38 and that 

infants expect such an inefficient agent to later move efficiently if there is a new obstacle in the 

test environment31. Infants’ performance on the Inefficient-Agent Task may reflect both previous 

findings. In particular, infants showed no difference in surprise when an inefficient agent 

continued to move inefficiently to an object at test (F(1, 48) = 2.51, p = .119). But, when 

comparing infants’ performance in the Efficient-Agent and Inefficient-Agent Tasks directly, there 

was no significant task by outcome interaction (F(1, 132) = 0.49, p = .484), suggesting that 

infants’ surprise at the inefficient agent’s later inefficient action was no different from their 

surprise at the efficient agent’s later inefficient action. While the Inefficient-Agent Task 

minimally varied the arrangements of obstacles across familiarization and test environments, and 

we saw no effects of the presence or absence of obstacles on infants’ performance (F(1, 45) = 

0.03, p = .872; SI), some infants may have nevertheless considered the constraints of the test 
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environment new enough compared to the familiarization environments to predict that the agent 

would act efficiently in the test environment31. A post hoc analysis, moreover, suggests the order 

in which infants saw these two tasks may have affected their performance (Figure S1). Infants 

who saw the Efficient-Agent Task first (N = 23) were surprised when the efficient agent later 

acted inefficiently but showed no surprise when the inefficient agent later acted inefficiently 

(Efficient-Agent Task: Mefficient = 7.89 s; Minefficient = 11.51 s; Inefficient-Agent Task: Mefficient = 

7.32 s; Minefficient = 7.74 s). In contrast, infants who saw the Inefficient-Agent Task first (N = 22) 

were surprised when the agents in both tasks later acted inefficiently (Efficient-Agent Task: 

Mefficient = 7.74 s; Minefficient = 9.24 s; Inefficient-Agent Task: Mefficient = 8.32 s; Minefficient = 11.05 s). 

Because of BIB’s minimal cues to agency, it is thus possible that infants who encountered BIB’s 

version of an efficient agent first may have been better able to subsequently differentiate that 

agent’s actions from the inefficient agent’s actions. 

Finally, we consider infants performance on the Instrumental-Action Task. The results 

from this task suggest that infants’ knowledge of a particular object’s causal efficacy as a tool for 

instrumental action39 or an extended familiarization to the task’s more complex displays40 may 

be required for infants to recognize instrumental actions. 

First, prior findings suggesting that infants recognize agents’ instrumental actions (e.g., 

the use of a tool) relied on tools whose causal efficacy was familiar to infants (e.g., pulling a 

cloth to bring a toy within reach33,41 or on novel tools to which infants were first given direct 

experience39. The tool infants saw in the Instrumental-Action Task was both novel and not 

something they were given experience with. Accordingly, infants were not surprised when the 

agent moved to the tool as opposed to its goal object when the tool was no longer needed to 

achieve the goal (F(1, 47) = 0.03, p = .853). A post hoc analysis may provide further insight into 
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infants’ performance. In particular, previous studies on infants’ recognition of instrumental 

actions relied on a looking-time paradigm in which test trials started only after an individual 

infant’s looking time had decreased to half its initial levels. Twenty-one infants achieved this 

decrease in looking time across the fixed number of eight familiarization trials. Consistent with 

prior findings, those infants were surprised when the agent moved to the tool instead of directly 

to its goal object (Mgoal object = 5.25 s; Mtool = 7.14 s). Infants who did not show this looking-time 

decrease (N = 27), in contrast, were instead surprised when the agent moved directly to its goal 

object (Mgoal object = 10.00 s; Mtool = 8.83 s). This relation between looking decrease during 

familiarization and performance at test was present only in the Instrumental-Action Task, not in 

the other tasks (ps > .126, see SI). 

In sum, infants’ performance on BIB reveals that they have strong expectations that 

agents will exhibit rational and efficient goal-directed actions towards objects. These results are 

consistent with findings in the prior literature on infants’ action understanding, but they extend 

this literature to demonstrate that infants’ knowledge is abstract enough to include cases in which 

agents and objects are conveyed through BIB’s highly minimal displays. Addressing mixed 

findings in the prior literature, moreover, infants’ performance on BIB suggests that they may 

similarly attend to both new and familiar agents who demonstrate new goals, like moving to new 

objects, and infants may fail to recognize instrumental actions when such actions are novel or 

causally opaque. Finally, infants do not carry over their expectations about the goals of agents’ 

actions to new environments, and infants may revert to default expectations about the efficiency 

of goal-directed actions for agents who act in new environments or agents whose previous 

actions were ambiguously goal-directed. 

Machine Performance on BIB 
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To examine whether infants’ intelligence about agents might be reflected in state-of-the-

art machine intelligence, we next directly compare infants’ performance on BIB to the 

performance of three learning-driven neural-network models. These models span two classes, 

behavioral cloning and video modeling, and the behavioral cloning model includes both multi-

layer perceptron and recurrent neural network architectural variants. All three models’ 

architectures are designed to form implicit mental state inferences from behavior13,42 (Figure 

S2). Prior to being tested, the models were trained on BIB’s background training videos, as 

described above, in the Materials and Methods, and in the SI. While the performance of such 

learning-driven models has not previously been compared to human performance (let alone to 

infant performance) and models like these are limited in their capacity for flexible generalization 

to out-of-distribution novel test displays compared to the displays used for their training (a 

generalization BIB requires and infants excel at), our comparison nevertheless tests whether the 

standard “machine theory of mind” captured in such models might be missing key principles of 

commonsense psychology about agents that infants possess. 

The models formed predictions about an agent’s actions at test based on its actions during 

familiarization. To obtain a continuous measure of surprise as a correlate of infants’ looking 

time, we calculated the models’ prediction error for each frame of each outcome and considered 

the frame with the maximum error. For example, the behavioral cloning models produced the 

maximum possible surprisal score if they predicted the agent would move upward and to the left 

but the agent actually moved downward and to the right. To confirm that the models’ 

performance on the specific trials presented to infants was representative of their performance 

more generally and not due to any idiosyncrasies of the particular videos shown to infants, we 

also evaluated the models’ accuracy on BIB’s full dataset. Because those results are consistent 
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with the models’ performance on the infant videos and with prior work13, we report them in the 

SI. 

Figure 3 displays the Z-scored means of the models’ surprisal scores over four runs for 

each model to the expected and unexpected outcomes for each task (see the SI for additional 

details about the models’ performance). The Z-scored means of infants’ looking times are also 

displayed for comparison. Overall, the models, unlike the infants, did not attribute to agents goal-

directed actions towards objects or a principle of rationality that leads to default expectations of 

agents’ efficient actions towards goals. Infants’ commonsense intelligence about agents thus 

includes key features missing in standard forms of machine common sense. 

 

 

Figure 3. Z-scored means of the models’ surprisal scores (shown in shades of gray) and the 
infants’ looking times (shown in red) to the expected and unexpected outcomes in each of BIB’s 
six tasks. 
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The simplest way to evaluate any differences between the model and infant performance 

is to consider the direction of the surprise, not its degree: Are models and infants surprised by the 

same outcome or by opposite outcomes? First, the models were more surprised in the Goal-

Directed Task when the agent moved to a new location versus to a new object. This expectation 

is the opposite of infants’. Second, while the video model appeared to succeed in the 

Inaccessible-Goal Task, given its failure on the Goal-Directed and Multi-Agent Tasks, its 

performance is unlikely to reflect an understanding of agents’ goal-directed actions towards 

objects. For example, the model may have learned that the black barriers block objects and that 

agents move to objects. This would lead to a lower surprisal score when an agent moved to the 

one accessible object compared to when it moved to either one of the accessible objects. Third, 

the models were more surprised when an efficient agent later moved inefficiently in the Efficient-

Agent Task. The expectation underlying this surprise is shared by infants, but it only captures one 

component of infants’ expectations of agents’ rational action. In particular, the models were also 

surprised when the inefficient agent later took an efficient path in the Inefficient-Agent Task, 

expecting instead that it would continue to act inefficiently. While the results with infants on this 

task were mixed, in general, infants were more surprised at the opposite outcome, i.e., when the 

inefficient agent later took an inefficient path. Finally, while the models appeared to be more 

surprised when an agent moved to the tool instead of directly to its goal object in the 

Instrumental-Action Task, a closer investigation of the models’ performance shows that this 

apparent success is limited to test trials in which the green barrier was absent versus present and 

inconsequential (see SI). The models thus did not understand agent’s instrumental actions. 
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Discussion 

 Although learning-driven neural-network models have accelerated recent advances in 

AI42,43, three such models tested here on BIB fell short of capturing infants’ commonsense 

psychology about the rational, goal-directed actions of agents. Alternative models based on 

Bayesian inverse planning have been applied successfully to tasks like BIB by making more 

explicit, abstract inferences about mental states26,44,45, but extending the Bayesian approach to 

BIB in particular and videos in general is not straightforward. Approaches based on inverse 

reinforcement learning46,47 could also be promising, but they require online, active sampling 

from the testing environment, while infants do not. It remains an open challenge for learning-

driven systems to acquire sufficiently rich, abstract structure from BIB’s training and match 

infant commonsense intelligence. Nevertheless, setting infant common sense as a benchmark for 

machine common sense will give AI the foundations of human intelligence. 

Future work exploring infants’ knowledge about the world could extend our approach to 

investigate other aspects of infant commonsense psychology, including, for example, infants’ 

expectations of agents’ notions of cost and value15,48 or what actions might signal to infants 

potential social partnerships49–52. Such competencies will become increasingly important for AI 

as well, as AI systems become further embedded in real-world, multi-agent settings that demand 

common sense. Putting machines and infants into direct dialogue will also give us a 

comprehensive account of infants’ knowledge not only about agents, but also about objects1,2 and 

places5, allowing us to more fully describe human common sense. 

BIB called for an interanimating research program between developmental cognitive 

science and artificial intelligence. The present work demonstrates that such a program is both 

possible and generative for both fields. Our work provides a first step in this productive dialogue 
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between the cognitive and computational sciences to test whether human knowledge can be built 

from the foundations our cognitive and developmental theories postulate. 

 

Materials and Methods 

Infant Participants 

Typically developing 11-month-old infants (N = 58, Mage = 11.06 months, Range = 10.50 

months – 11.50 months; 31 girls) born at ≥ 37 weeks gestational age were included. Each infant 

completed at least one of BIB’s tasks, totaling N = 288 individual testing sessions. Following our 

preregistration, data collection stopped when 32 infants (Mage = 11.09 months, Range = 10.50 

months – 11.50 months; 17 girls) completed all six of BIB’s tasks. The sample sizes for each 

task were: Goal-Directed Task, N = 48; Multi-Agent Task, N = 49; Inaccessible-Goal Task, N = 

47; Efficient-Agent Task, N = 47; Inefficient-Agent Task, N = 49; Instrumental-Action Task, N = 

48. 

An additional 37 sessions were excluded because of preregistered exclusion criteria, 

including: looking time < 1.5 s to least one test trial and/or two familiarization trials with or 

without the infant completing the session (16); poor video quality and/or technical failure (18); 

and parental interference (3). An additional two sessions were excluded post hoc for extreme 

values (> 40 s) to one test outcome, which could artificially inflate the calculation of the 

sample’s variance. These extreme values were identified through examination of a histogram of 

the raw looking times across all of the sessions by two researchers masked to the task and 

outcome represented by each value. Exclusions were rather consistent across tasks: Goal-

Directed Task, 5; Multi-Agent Task, 6; Inaccessible-Goal Task, 9; Efficient-Agent Task, 7; 

Inefficient-Agent Task, 5; Instrumental-Goal Task, 7. The total exclusion rate was 11.9%. 



 17 

Participating families received a $5 Amazon gift card after each testing session and received a 

bonus gift card of $30 if they completed all six sessions. Prior to participation in session one, we 

obtained informed consent from the infant’s legal guardian, and we confirmed consent before 

each subsequent session. The use of human participants for this study was approved by the 

Institutional Review Board on the Use of Human Subjects at New York University. 

Materials 

We procedurally generated video stimuli using BIB’s environment13 and chose the 

clearest examples of the particular principles of commonsense psychology targeted by each task. 

For example, while some of the trials in the full dataset of BIB’s Goal-Directed Task had slight 

variations in the distance between the agent and its goal object versus a new object at test, the 

trial we used presented the two objects at exactly the same distance from the agent. All of the 

stimuli videos are available at: [ACCESSIBLE TO REVIEWRS]. Each of BIB’s tasks consisted 

of a familiarization phase and a test phase. The familiarization phase included a succession of 

eight trials that introduced the main elements of the visual displays used in the test phase and 

served to set up any expectations for the test phase. 

Goal-Directed Task: During familiarization, an agent repeatedly moved to one of two 

objects in a grid world. The agent’s starting position was fixed across trials, and the locations of 

the objects were correlated with their identities such that the goal object and non-goal object 

appeared in approximately the same location across trials. The test used two object locations that 

had been used during one familiarization trial, but the identity of the objects at those locations 

was switched. There were two outcomes: the agent moved to the object that had been its goal 

during the familiarization (expected); or, the agent moved to the object that had not been its goal 

during familiarization (unexpected). Each test trial lasted 3 s. The following variables were 
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counterbalanced in different versions of the stimuli: 1) the goal object (2); 2) the side of the goal 

object during familiarization (2); 3) the order of the test trials (2). This yielded eight versions, 

which were assigned equally and randomly across the 32 participants who received all six tasks. 

Multi-Agent Task: During familiarization, an agent consistently moved to one object over 

the other, as above, but objects appeared at widely varying locations in the grid world. The test 

presented the two objects in new locations and either a new agent who approached the original 

agent’s non-goal object (expected/no expectation) or the original agent who approached its non-

goal object (unexpected). Each test trial lasted 5 s. The following variables were counterbalanced 

in different versions of the stimuli: 1) the goal object (2); 2) the agent during familiarization (2); 

3) the order of test trials (2). This yielded eight versions, which were assigned equally and 

randomly across the 32 participants who received all six tasks. 

Inaccessible-Goal Task: During familiarization, an agent consistently moved to one 

object over the other, as above, and objects appeared at widely varying locations in the grid 

world. The test presented the two objects in new locations and two possible outcomes. The 

agent’s goal object was either inaccessible, blocked on all sides by fixed black barriers, and the 

agent moved to its non-goal object (expected/no expectation). Or, both of the objects remained 

accessible, and the agent moved to its non-goal object (unexpected). Each test trial lasted 3 s. 

The following variables were counterbalanced in different versions of the stimuli: 1) the goal 

object (2); 2) the order of test trials (2). This yielded four versions, which were assigned equally 

and randomly across the 32 participants who received all six tasks. 

Efficient-Agent Task: During familiarization, an agent consistently moved along an 

efficient path to its goal object around fixed black obstacles in the gird world. The test included 

two possible scenarios. In one scenario, there was no obstacle between the agent and the goal 
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object. The agent either moved directly to its goal object, following a straight line (expected) or 

moved along one of the same curved paths it moved during familiarization even though that path 

was now inefficient (unexpected). The goal object was farther from the agent’s starting position 

in the expected trial compared to the unexpected trial and so the time it took for the agent to 

move to its goal was matched across trials. In the other scenario, a new obstacle appeared 

between the agent and its goal object, and the agent either moved on the most efficient, curved 

path to it (expected) or moved on a less efficient curved path (unexpected). Again, the goal 

object was farther from the agent’s starting position in the expected trial compared to the 

unexpected trial and so the time it took for the agent to move to its goal was matched across 

trials. Each test trial lasted 5 s. The following variables were counterbalanced in different 

versions of the stimuli: 1) the presence of an obstacle at test (2); 2) the order of test trials (2). 

This yielded four versions, which were assigned equally and randomly across the 32 participants 

who received all six tasks. 

Inefficient-Agent Task: This task used identical stimuli to the Efficient-Agent Task except 

for two changes. First, the shapes and colors (and so the identities) of the agent and object were 

different across tasks. Second, in the Inefficient-Agent Task the obstacles present during 

familiarization were absent, so nothing blocked the agent’s straight-line path to its goal object. 

The agent thus appeared inefficient during familiarization. As in the Efficient-Agent Task, at test, 

the agent either moved on the most efficient path to its goal (expected/no expectation) or on an 

inefficient path (unexpected/no expectation). Each test trial lasted 5 s. The following variables 

were counterbalanced in different versions of the stimuli: 1) the presence of an obstacle at test 

(2); 2) the order of test trials (2). This yielded four versions, which were assigned equally and 

randomly across the 32 participants who received all six tasks. 
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Instrumental-Action Task: The familiarization included five main elements: an agent; a 

goal object; a key; a lock; and a green removable barrier. During familiarization, the green 

barrier initially restricted the agent’s access to the object. The agent removed the barrier by 

collecting and then inserting the key into the lock. The agent then moved to the object. The test 

phase presented two different scenarios. In one scenario there was no green barrier and in the 

other scenario there was an inconsequential green barrier that did not block the object. In both 

scenarios, the agent moved directly to the object (expected) or to the key (unexpected). Each test 

trial lasted 2 s. The following variables were counterbalanced in different versions of the stimuli: 

1) whether there was no green barrier or an inconsequential green barrier at test (2); 2) the order 

of test trials (2). This yielded four versions, which were assigned equally and randomly across 

the 32 participants who received all six tasks. 

Procedure for Testing Infants 

Infants were tested online on Zoom. In the first ten minutes of the first testing session, the 

experimenter explained to parents the instructions for setting up their device and positioning the 

infant in front of the screen. We asked parents to close their eyes and not communicate with the 

infant during the stimuli presentation. The experimenter, masked to what trial was being 

presented and the order of the test trials, coded infants’ looking to the stimuli live and controlled 

the progression of stimuli using PyHab53 and slides.com. Each trial video was preceded by a 5 s 

attention grabber (a swirling blob accompanied by a chiming sound, centered on the screen) to 

focus the infant’s attention to the screen, and each video froze after the agent reached an object. 

The last frame of the video remained on the screen until infants looked away for 2 s 

consecutively or for a maximum of 60 s. Testing sessions were recorded through the Zoom 

recording function, capturing both the infant’s face and the screen presenting the stimuli. 
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As preregistered, a different researcher, masked to the study outcome, what trial was being 

presented, and the order of the test trials, recoded 48 randomly chosen sessions (25%) from the 

32 infants who completed all six tasks. The reliability between the first and second coder was 

very high (ICC = .98). 

Model Specifications and Training 

Inspired by previous work13,42 and adapted to be put into dialogue with the infant data 

collected here, we tested three learning-driven neural-network models from two classes: 

behavioral cloning (BC) and video modeling. BC aimed to predict the future actions of an agent, 

and video modeling aimed to predict the future frames of a video. Each model also varied in 

terms of how it encoded the familiarization trials. The models’ schematized architecture is 

presented in Figure S2. 

We tested two BC models with different ways of encoding the familiarization trials. One 

way of encoding relied on a simple multi-layer perceptron (MLP) to encode pairs of states and 

actions independently, and the other way of encoding relied on a more complex, bi-directional 

recurrent neural network (RNN) to sequentially encode pairs of states and actions. The states 

(frames) were encoded with a convolutional neural network (CNN), which was pretrained using 

Augmented Temporal Contrast (ATC)54. Table S1 provides the CNN specifications and the ATC 

data augmentation details. For both the MLP and RNN encoders, the model obtained a 

characteristic embedding42 of an agent by averaging the embeddings at each time step, randomly 

subsampling as needed to use no more than 30 frames. To predict the future actions of an agent, 

defined in a continuous space based on the video (at 3 frames per section), the models combined 

the characteristic embedding with the current state of the environment (also encoded with the 
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CNN). The BC models were trained to minimize mean squared error. See Table S2 for the 

specifications of the BC models. 

We tested one video model (Figure S2). This model sequentially encoded each 

familiarization trial by passing up to 30 frames through a CNN and combining them with a bi-

directional RNN. The model obtained a characteristic embedding of an agent by averaging the 

RNN embeddings. To predict the future state of the agent, the model combined the characteristic 

embedding with the current state of the environment (specified by the current frame of the video) 

to predict the next frame of the video (at 3 frames per second), using a U-net architecture55. The 

model was trained using a mean squared error in pixel space. 

The models were trained on thousands of examples of BIB-like agents exhibiting simple 

behaviors in a gird world. The training tasks were provided by the BIB dataset13 and used the 

same familiarization/test task design as the test set, except that there were only expected 

outcomes. In one training task, an agent moved to one object in varying locations in the grid 

world. In a second training task, two objects were presented in varying locations in the gird 

world but always very close to the agent; the agent consistently moved to one of the two objects. 

In a third training task, the agent moved to one object in varying locations in the grid world; at 

varying points during the familiarization, that agent was substituted by another agent. Finally, in 

a fourth training task, a green barrier surrounded an agent and a key; the agent retrieved the key 

to let itself out of the blocked area to move to an object. While the training set thus included 

individual components of the test set (e.g., agents’ movement to objects, agents’ consistent 

object goals, barriers, tools, etc.), success on the test set required models to flexibly combine 

representations across the different training tasks. 
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We included four runs of each model type with the runs initialized randomly and trained 

until they converged on the background training. Twenty percent of the background training 

trials were left out as a validation set, and the models were successful at the validation set in 

predicting agents’ actions on all of the background training tasks, with low prediction errors. For 

example, the MSE error for the BC models on the validation set was about 0.03 which is 0.8% of 

the maximum possible prediction error (4.0). The only exception was that the BC RNN model 

performed an order of magnitude less well compared to the BC MLP model on the training task 

in which two objects were presented very close to the agent and the agent consistently moved to 

just one.  
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