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Abstract

Spatial relations, such as above, below, between, and containment, are important
mediators in children’s understanding of the world (Piaget, 1954). The development
of these relational categories in infancy has been extensively studied (Quinn, 2003)
yet little is known about their computational underpinnings. Using developmental
tests, we examine the extent to which deep neural networks, pretrained on a
standard vision benchmark or egocentric video captured from one baby’s perspective,
form categorical representations for visual stimuli depicting relations. Notably, the
networks did not receive any explicit training on relations. We then analyze whether
these networks recover similar patterns to ones identified in the development, such
as reproducing the relative difficulty of categorizing different spatial relations and
different stimulus abstractions. We find that our models tend to recover many
of the patterns observed with the simpler relations of “above versus below” or
“between versus outside”, but struggle to match developmental findings related to
the “containment” relation. We identify factors in the choice of model architecture,
pretraining data, and experimental design that contribute to the extent our models
match developmental patterns, and highlight experimental predictions made by
our models. Our results open the door to modeling infants’ earliest categorization
abilities with modern machine learning tools and demonstrate the utility and
productivity of this approach.
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Introduction
Our understanding of the visual world around us is mediated by spatial relations, as they
help distinguish individual objects and combine them in order to understand visual scenes
(Piaget, 1954; Johnson, 2010). A breadth of experimental work explored how infants form
categories and make categorical judgments (Bomba and Siqueland, 1983; Younger and Cohen,
1985; Eimas and Quinn, 1994) and specifically how infants form category representations for
spatial relations (Quinn, 1994; Quinn et al., 1999; Casasola and Cohen, 2002; Casasola et al.,
2003). Despite the importance of relations, little computational work has examined how infants
could learn to categorize spatial relations, and why some categories are acquired before others
over the course of development.

Our goal in this article is not to build a bespoke model of spatial relation categorization,
for example by fitting models to developmental data, or by training models to categorize
between different relations. Instead, we identify several key findings in the development of
relation learning, translate their experimental paradigms to tasks suited for modern deep neural
networks, and investigate whether absent any explicit relational training, models can categorize
between spatial relations such as “above versus below” or “between versus outside.” Figure 1
summarizes our approach. We find that our models are capable of making such categorizations,
albeit with substantial variation by the relation examined, the data on which models were
trained, and other experimental factors. Given this success, we then evaluate whether the
performance of models tracks with the developmental findings that motivated this work—that
is, to what extent do relations infants acquire later in development also challenge models more.
Our hope is that exploring correspondences between development and model performance
could highlight potential computational mechanisms underlying the developmental findings
while simultaneously offering insight into how modern neural networks can be utilized and
further developed as models of developmental cognition.

Figure 1: Spatial Relation Categorization in Infants and Deep Neural Networks. Left:
after being familiarized with stimuli depicting a particular relation (“familiarization”, infants find novel
stimuli depicting the same relation (“same relation”) less surprising than stimuli depicting a different
relation (“other relation”) as measured by looking times (Quinn, 2003). Right: to evaluate neural
networks using a similar paradigm, we present three stimuli to a model, extract a vector embedding
for each stimulus, and examine whether the “familiarization” stimulus embedding is more similar to
the “same relation” stimulus embedding or to the “other relation” stimulus embedding.

We build on an important tradition of connectionist models at the intersection of cognitive
science and machine learning (Donahoe and Dorsel, 1997; Rogers and Mcclelland, 2014). In
particular, prior computational work used connectionist networks to model aspects of infant
categorization (Mareschal et al., 2000; French et al., 2004) and spatial language (Regier, 1995).
A different approach described by Ullman et al. (2019) proposed a non-neural computer vision
model capable of learning to identify relations from videos in a self-supervised fashion and
demonstrated it recovers various developmental patterns. As outlined above, we pursue a
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Figure 2: Example Stimuli. In each triplet, the central stimulus is the familiarization example, the
left one is the same relation test, and the right one is the other relation test. (A): above/below with
identical target objects. (B): between with identical target objects. (C): above/below with identical
target objects. (D): between different target objects.
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different approach: we identify several phenomena in the development of spatial relations and
study the extent to which powerful, general-purpose computer vision neural networks replicate
these phenomena without being trained to do so. We are motivated by the vast recent progress
in using neural networks for computer vision. Starting with Krizhevsky et al. (2012), deep
neural networks have risen to prominence as highly capable models for most computer vision
tasks. We focus our attention on convolutional neural networks, a class of computer vision
architectures that have proven to be useful models in the cognitive sciences. For instance,
Lindsay (2021) reviews their use as models of the visual system, and Battleday et al. (2021)
study the extension of these models from the visual system toward higher-level cognitive
capacities such as judgments of similarity and categorization. Work on relation learning using
deep neural networks tends to focus on bespoke architectures, such as Relation Networks
(Santoro et al., 2017) or PrediNet (Shanahan et al., 2019), and see Battaglia et al. (2018) for a
review. Other recent work focuses on graph-based networks (Baldassarre et al., 2020) or on
learning to generate images with particular relations (Liu et al., 2021). In comparison, our
contribution is to evaluate the latest generation of neural network architectures, pretrained on
two sources of realistic image data, on their representation of simple spatial relations without
explicit training or architectural modifications.

We examine the extent to which models replicate several findings on the development of
infant relation categorization, focusing on the relations “above versus below” and “between
versus outside” (see Quinn (2003) for a review) and the “containment” relation (see review by
Casasola, 2008). In a series of studies (Quinn, 1994; Quinn et al., 1996, 1999; Quinn, 2002;
Quinn et al., 2003; Quinn, 2004), Quinn and colleagues use similar methodologies to establish
several patterns regarding the development of relational categories. Using stimuli similar to
the one in Figure 2, babies were familiarized with several stimuli of the type appearing in
the middle of each triplet. The infants were then shown the two test stimuli, one depicting
the same relation and one depicting the opposite relation. To establish the existence of a
category representation, the studies measured the amount of time spent looking at the stimulus
depicting the opposite relation, divided by the total looking time at both test stimuli. The
higher this percentage is, the stronger a novelty preference (Fantz, 1964) the infant displays,
and the more evidence it provides for a categorical representation of the familiarized relation.

Quinn (2003) surveys two primary findings. The first finding is that, by 3-4 months of age,
infants can categorize “above versus below” (or “left versus right”, Quinn, 2004), although they
fail to categorize “between” (Figure 2; (A) and (B)). By 6-7 months, infants can also categorize
“between.” In a representative experiment, Quinn (1994) familiarized infants with several
stimuli, all containing a dot either above or below a horizontal bar (Figure 2; Familiarization).
After familiarization, infants were presented with a novel category preference test, finding that
infants look longer at a stimulus with the dot on the other side of the bar (Figure 2; Other
relation) compared to a new location on the same side (Figure 2; Same relation).

The second finding is that infants categorize spatial relations depicting specific objects
before categorizing the same relations composed of varying objects. Quinn et al. (1996; 2003)
replicate the previous experiments except that the target object varies between familiarization
and test (Figure 2; (C) and (D)). In both cases, changing the target object requires the infants
to be older to show the same novelty preference—from 3-4 months to 6-7 months for above
versus below, and from 6-7 months to 9-10 months for between versus outside.

A second line of work by Casasola and Cohen (2002) and Casasola et al. (2003) studies
the emergence of the containment relation. In a representative experiment, Casasola et al.
(2003, Experiment 2) examine infants’ category for the containment relation (one object placed
inside another object). The authors familiarized the infants with a video clip depicting the
containment relation—one object being picked up and placed inside another one (whose final
frame is represented in Figure 3(A/B), “Familiarization”). Casasola et al. (2003) then tested
the infants using three different test probes, all filmed from a different camera angle. The first
probe also depicted a containment relation (Figure 3(A/B), “Same Relation”). The second
probe showed an object being picked up and placed behind another object (Figure 3(A), “Other
Relation” under “Containment vs. Behind”). The third and final test probe presented a support
relation, with the object being picked up and placed on top of another one (Figure 3(B), “Other
Relation”). They find that even when controlling for the degree of object occlusion in their
stimuli, infants reliably find the test probes depicting the containment relation as most similar
to the familiarization probes, as measured by looking times. This is taken as evidence that the
infants constructed a category representation of the containment relation.
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Figure 3: Example stimuli from Casasola et al. (2003). We present the stimuli in a similar
triplet form to the one used in Figure 2. In each triplet, the central stimulus is the familiarization
example, the left one is the same relation test, and the right one is the other relation test. We depict
the final frames of the stimuli videos presented to infants in Casasola et al. (2003), reproduced from
Casasola (2008, Figure 1). (A): comparing a test probe depicting the containment relation to a test
probe depicting the behind relation. Rendered using the wooden basket container and Lego target
object. (B): comparing a test probe depicting the containment relation to a test probe depicting the
support relation.

In Experiments 1-4, we evaluate a collection of pretrained, large-scale computer vision
neural network models on tasks inspired by the various developmental experiments and findings
surveyed. We view the pretraining as a proxy for prior visual experience, and compare the
experience gained from egocentric video capture based on one baby’s experiences (SAYCam,
Sullivan et al., 2020) to experience from a popular computer vision benchmark (ImageNet,
Russakovsky et al., 2015), neither of which explicitly requires relational categorization:

1. In Experiment 1, we find that the models succeed in capturing developmental findings
surveyed by Quinn (2003) using the above/below and between relations. We also compare
the different model architectures and pretraining approaches and find that representations
from the models trained on developmentally-realistic data appear to promote relational
information more than the alternatives we evaluate.

2. In Experiment 2, we flip the relations on their side and evaluate the models on the
relations left/right and sideways between. We find that our initial set of models fails to
replicate the developmental findings of interest, and identify model training choices that
explain the deviation and enable recovering the initial findings.

3. In Experiment 3, we examine the extent to which the networks’ representations of
these relations are sufficiently abstract to handle different types of stimuli. We do so
by generating more complex three-dimensional scenes that more closely resemble real
relation scenarios. We find success in replicating all findings of interest from Experiment
1, demonstrating that the relational representations are abstract enough to generalize to
a substantially different class of visual stimuli.

4. In Experiment 4, we find that our models struggle to recover the relevant empirical
patterns with the containment, behind, and support relations as described by Casasola
et al. (2003). We explore these results to examine the extent to which the models we
evaluate embed information about these more complex relations and discover that the
information is still present and linearly decodable even when the models struggle on the
task using a generic similarity metric.

We find that the pretrained visual representations are sufficient for the categorical perception
of simple relations (above/below and between). Moreover, these representations are sufficiently
abstract for handling either 2D and 3D stimuli. In the case of the more complex relations of
containment, behind, and support, the embeddings contained sufficient information to linearly
decode the relation with very high accuracies, even when representational similarity was not
driven by the spatial relation. We conclude by attempting to identify useful methodological
aspects to support future work and highlight current gaps and open questions.
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Experiment 1: Classifying above/below and between/outside from 2D
stimuli

We begin by studying the extent to which large-scale, pretrained computer vision models
recover the two developmental findings reviewed by Quinn (2003). We use pretrained models
to study whether an infant’s ability to categorize different relations in a lab study could
emerge from high-level visual representations developed independently, without training models
explicitly for relation categorization. As a first step, we evaluate to what extent these spatial
relations are perceived categorically (see Goldstone and Hendrickson (2010)); we do so by
examining the similarity of stimuli encoding the same relation compared to stimuli encoding
different relations. As a second step, assuming there is a categorical response, we examine
whether capacities demonstrated by infants earlier in development are also easier for our models,
which is an assumption we make in order to compare the developmental phenomena to model
performance. For instance, given that Quinn (1994) demonstrated that infants acquire category
representations for “above or below” earlier in development than for “between or outside,” then
we would examine whether the model is more accurate in the above/below condition compared
to the between/outside condition.

We evaluate our models using representational similarity, without any training or explicit
prediction of relations. In each triplet (Figure 2), the central image corresponds to a familiar-
ization stimulus, and the other two images represent test stimuli, one depicting the same spatial
relation and one its opposite (see, e.g., Colunga and Smith, 2005 and Kim et al., 2021 for other
triplet-based similarity response approaches). We pass each image independently through a
model, extracting an embedding (latent representation) of each one, and test whether stimuli
representing the same relation are represented more similarly, as an emergent consequence
of training a model on broad visual experience (in one case, of the sort a single baby would
actually experience). We implement this similarity test using the cosine similarity between the
embeddings of the familiarization stimulus and the two test stimuli. Given two embeddings
vectors e1, e2 ∈ RD in a D-dimensional embedding space, their cosine similarity is defined
as Scos(e1, e2) = e1·e2

||e1||||e2|| , that is, the angle between the vectors. We view this metric as
appropriate as it represents an unstructured similarity comparison between the embeddings,
potentially analogous to the implicit judgment infants make when evaluating how novel a
test stimulus is compared to a previous habituation stimulus. We consider a triplet to be
accurately classified when the model embeds the two congruent images (depicting the same
relation) more similarly than the two incongruent images (depicting different relations), where
the incongruent pair acts as a perceptual lure that matches in another dimension.

Experiment 1a: Initial findings
In our first experiment, we use pretrained models to examine (a) whether the representations
produced by these models capture the spatial relations, and (b) to what extent they recover
the developmental findings of interest. The experiment varies several factors: computer vision
architecture, pretraining dataset, and stimulus rendering details.

Methods
Model Architectures. We evaluate two computer vision architectures, to validate any
findings we discover are not unique to a specific model and examine whether more performant
architectures also fare better on our developmental comparison:

• MobileNetV2: this model aims to offer competitive performance with fairly limited
computational resources, offering an efficient trade-off between compute resources required
and performance attained (Sandler et al., 2018).

• ResNeXt: this model is considered a highly capable computer vision backbone for various
tasks (Xie et al., 2017). We use the ResNeXt-50 variety of this architecture.

We visualize the ResNeXt architecture and where we extract our vector embeddings from in
Figure 4, and see subsection A.1 for additional details.

Pretraining. We test the embeddings created by randomly initialized models and compare
them to models trained on two other datasets. One dataset and training approach reflects
common practice in computer vision, while the other offers a closer comparison to a developing
child:
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Figure 4: ResNeXt model diagram. We pass 224 x 224 images into the model, which begins with
a convolutional block (orange) and a pooling layer (red), and then proceeds to ResNeXt convolutional
blocks (purple) operating on increasingly smaller representations of the input images (see subsection A.1
for further details). We extract our vector embedding, which with this architecture has 2048 entries,
after the global average pooling layer (in green). In a standard classification setting this embedding
would be classified using a fully connected layer (blue), which we remove from the models we evaluate.

• Randomly initialized models: we examine untrained models whose weights have been
randomly initialized to observe whether or not the inductive biases conveyed by the
architecture alone are sufficient to embed objects in the same relation more similarly.

• ImageNet: a landmark computer vision dataset, offering 1.2M images in 1000 object
classes (Russakovsky et al., 2015). ImageNet does not correspond to an infant’s natural
experience but it is commonly used for general computer vision pretraining, offering a
useful comparison. The ImageNet models were pretrained using the standard classification
task as described in the torchvision documentation1.

• SAYCam: this dataset consists of longitudinal headcam videos from a small number of
babies (Sullivan et al., 2020). This offers the opportunity to train vision models on a
subset of the experience a child receives in development, albeit ranging to older ages
than the infants studied in the experiments modeled. We utilize a pretrained network
from Orhan et al. (2020) trained with temporal classification, a self-supervised learning
algorithm inspired by psychologically plausible mechanisms. Temporal classification only
makes use of the temporal ordering of data to supervise the learning process. We use
models trained on a single child’s footage (child S), approximately two hours per week
while the child was between 6-30 months old, a total of 221 hours.

Stimulus Generation. We synthesize custom stimuli to probe the model in this task
(Figure 2). We sample location(s) for the reference object(s) and then place the target objects
relative to them. Similarly to Quinn (1994; 1996; 1999), we place the target object in one
relation relative to the reference object in the familiarization example, and then place it in a
different location in the same relation (first test probe) or in the other relation (second test
probe). The target objects in the test probes are both equidistant from the target object

1https://pytorch.org/vision/stable/models.html
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in the familiarization probe, controlling for any effect of distance on the representational
similarity. We examine triplets where the target object matches between the familiarization
and probe stimuli (“identical targets”; Quinn (1994); Figure 2; (A)) and (B) and triplets where
the probe stimuli use a different target object (“different targets”; Quinn et al. (1996); Figure 2;
(C) and (D)). We explore a few ways to render the reference and target objects, detailed in
subsection A.1. We render these stimuli to 224x224 pixel images.

Methods Summary. We evaluate models from two architectures, either randomly
initialized or pretrained on one of two visual datasets, on two relations (above/below and
between), using stimuli rendered with three different approaches. For each relation and rendering
method, we sample 1024 triplets (identical for all models) and report the average accuracy for
each model and pretraining setting—how often are the embeddings for the congruent pair of
stimuli more similar (using cosine similarity) than the embeddings for the incongruent pair.
For every set of results, we compute a mean accuracy and standard error of the mean (SEM)
over the 1024 triplets, and below we report different aggregations of these mean accuracy
measurements across experimental conditions of interest. We omit drawing error bars as the
averaged SEMs all fall below 2% accuracy.

Results
A summary of the results is shown in Figure 5 and Table 1. Without pretraining, the models
performed near chance, with levels of accuracy ranging from 0.47 to 0.58. This suggests that
inductive biases conferred by the architecture alone are insufficient for representing relations
(see the results marked by an ‘X’ in Figure 5). Therefore, we focus our analysis on the trained
models. We aggregate across the different stimulus generation approaches (subsection A.1) as
qualitative results are consistent between them (Figure B.3). Across both pretraining datasets
(Figure 5, circles for SAYCam and squares for ImageNet) and model architectures (green for
MobileNetV2, orange for ResNeXt), models tended to represent the same relation test probes
more similarly to the habituation stimuli than the different relation probes. This is seen in the
consistent above-chance levels of accuracy, which vary by model and experimental condition,
but range between roughly 60% and almost 100%. Given that we find that our models appear
to represent these stimuli in a manner reflecting relational categories, we can examine to what
extent the models reflect the findings reviewed by Quinn (2003).

Using both architectures and training datasets, we recover both developmental phenomena
of interest. Analogously to infants acquiring the above/below relation earlier in development,
we found consistently higher levels of accuracy for each model and dataset in the above/below
relation compared to the between relation (compare left-side results to right-side results in
Figure 5(A), or examine the ‘By relation’ column in Table 1). We also observed slightly higher
levels of accuracy in the conditions using the same target objects across all three stimuli than
the conditions using different targets in the test stimuli, corresponding to infants acquiring
category representations with identical target objects before acquiring them with varying
targets (compare left-side results to right-side results in Figure 5(B), or examine the ‘By
targets’ column in Table 1). We ran several additional controls to more closely match the
above/below and between/outside conditions (e.g., such that each condition uses two horizontal
bars), and to vary the number of habituation stimuli. The results were remarkably consistent
across these factors (see subsection B.3 for details).
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Figure 5: Our models represent relational categories and recover developmental phenom-
ena. All three figures reflect the same set of experimental results, aggregated by different conditions of
interest: (A): in a comparison between relations—above/below (left) versus between (right)—accuracy
is higher in the above/below relation (B): in a comparison between target types—identical target
objects (left) versus different target objects (right)—accuracy is higher when using identical target
objects. (C): in a comparison between pre-training datasets—self-supervised SAYCam (left) versus
supervised ImageNet (right)—accuracy is higher when using the SAYCam dataset. The color reflects
model architecture, and the marker the training method. The dashed line indicates chance accuracy
(50%).
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To better understand how the embeddings learned by these models solve this task, we
synthesize a set of test stimuli by tiling a target object across a canvas with respect to a fixed
reference object (Figure 6, right). We produce such sets of stimuli with the Quinn-like stimulus
generation approach and embed these with the models we evaluated in experiment 1a. To
visualize, we perform unsupervised dimensionality reduction using PCA (using n = 32 principal
components), and further reduce dimensionality to 2D (X and Y coordinates) using t-SNE
(van der Maaten and Hinton, 2008) with the cosine distance metric. We color each marker
(representing a single stimulus, Figure 6, right) by the vertical position of the target object in
the stimulus (Figure 6, left). Unsurprisingly, we find no structure in the 2-D representations of
the untrained model embeddings. Models trained on ImageNet show a separation between
stimuli whose target object was above the bar (shades of red) and stimuli whose target object
was below the bar (shades of blue). Models trained on SAYCam show a much stronger
separation between these categories. Stimuli rendered with our other two stimulus generation
approaches replicate these results (Figure B.7, Figure B.8).
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Figure 6: Categorical perception of above/below in our model embeddings. We synthesize a
set of controlled stimuli (right) by varying the position of a target object in relation to a fixed reference
object. We embed these stimuli with our models and reduce dimensionality to 2-D (see text for details).
Each stimulus is colored by the vertical position of the target object (see the color bar). We find
that while there is little structure in the untrained model embeddings, both the ImageNet-trained
models and the SAYCam-trained ones produce embeddings preserving the relational structure. Rows:
model architectures (top: MobileNetV2, bottom: ResNeXt). Columns: model training methods (left:
untrained, middle: supervised training on ImageNet, right: self-supervised training on SAYCam).

We repeat this embedding visualization procedure with synthesized stimuli with two
reference objects that match our “between” relation stimuli (Figure 7, right). We once again
observe no structure in the embeddings produced by the untrained models (Figure 7, left). The
models trained on ImageNet show three separate clusters: above both reference objects (red
and orange), between the two reference objects (light green and light orange), and below both
reference objects (blue and green). The SAYCam-trained models show even tighter clustering,
indicating stronger similarities within each group and more pronounced differences between the
groups. Alternative stimuli renderings replicate these results as well (Figure B.9, Figure B.10).

We observe that our SAYCam-trained models, which acquire their perceptual features from
the visual experience of young children, outperformed the ImageNet-trained models, which
acquire their perceptual features from categorizing objects curated using a web search. We
see this effect both quantitatively, in the higher accuracy reached by these models (Figure 5),
and qualitatively, in the tightness of the embedding clusters visualized (Figure 6, Figure 7).
Although these results suggest an exciting intuitive conclusion (“models trained on infants’
visual experience develop stronger relational features”), our results are confounded by the fact
our models were trained using different approaches. The ImageNet model was trained using
supervised learning to label objects according to their category, while our SAYCam models
were trained in a self-supervised fashion using a temporal classification approach that does not
require object labels. We deconfound these results in the next experiment.
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Figure 7: Categorical perception of between/outside in our model embeddings. We
synthesize a set of controlled stimuli (right) by varying the position of a target object in relation to two
fixed reference objects. We embed these stimuli with our ResNeXt models and reduce dimensionality
to 2-D (see text for details). Each stimulus is colored by the vertical position of the target object (see
the color bar). As in Figure 6, we find clustering preserving the relational information in the trained
model embeddings. Rows: model architectures (top: MobileNet, bottom: ResNeXt). Columns: model
training methods (left: untrained, middle: supervised training on ImageNet, right: self-supervised
training on SAYCam).

Experiment 1b: Improved model and dataset controls
In this experiment, we introduce a third model architecture and train two architectures on the
previous datasets using the same training method. Fixing the training algorithm allows us a
controlled comparison of the effect of the naturalistic, infant’s perspective data. We leave all
other aspects of Experiment 1a unchanged.

Methods
Model Architectures. We evaluate one of the models from the previous experiment and
add another prevalent computer vision architecture:

• ResNeXt: identical to the architecture we evaluated in Experiment 1a (Xie et al., 2017).

• ViT-B/14: We add the Vision Transformer model (Dosovitskiy et al., 2021) as an-
other model architecture. This category of models applies the Transformer architecture
(Vaswani et al., 2017) to images by extracting individual image patches, flattening each
patch to a vector, embedding each vector independently using a small linear model,
and passing a sequence of the vector embeddings representing the image into a series of
Transformer blocks. We use the ViT-B/14 variation of the model, which uses the “Base”
model size offered by Dosovitskiy et al. (2021) with a 14 x 14 patch size.

Beyond its overall recent success in a variety of computer vision tasks, we add this architecture
as the Transformer self-attention architecture might offer a stronger inductive bias to relational
representation than the convolutional neural networks we compared in Experiment 1a.

Pretraining. In this experiment, we study models trained using the DINO algorithm
(Caron et al., 2021). DINO is a self-supervised learning algorithm that does not rely on labels,
allowing us to use it with both of our datasets (while ImageNet contains a label for every
image, SAYCam does not). DINO relies on generating multiple views of each input image
through data augmentations, and learning representations that are similar between different
views of the same image, but different for views of different images. We direct the reader to
Caron et al. (2021) for further details.

Results
A summary of the results is presented in Figure 8 and Table 1. We continue to successfully
recover the two developmental phenomena of interest. Accuracy in the above/below relation is
consistently higher than accuracy in the between relation, and accuracy when using the same
target objects is consistently higher than accuracy when using different target objects. We also
replicate the training dataset pattern from Experiment 1a—the models trained on SAYCam
reliably reach higher levels of accuracy than the models trained on ImageNet (matched-pairs
T-test, t = 12.797, P < 1e−16). As this experiment properly controls for the training algorithm
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Figure 8: DINO-trained models continue to recover developmental phenomena of interest.
All three figures reflect the same set of experimental results, aggregated by different conditions of
interest: (A): in comparison between relations—above/below (left) versus between (right)—accuracy is
higher in the above/below condition. (B): in comparison between target types—identical target objects
(left) versus different target objects (right)—accuracy is higher in the identical target objects condition.
(C): in comparison between pre-training datasets—SAYCam (left) versus ImageNet (right)—accuracy is
higher for the models trained with DINO on the SAYCam dataset. Color indicates model architecture
and the marker type indicates the training dataset. The dashed line indicates chance accuracy (50%).

used, we see converging evidence that training on a child’s egocentric visual experience yields a
representation with more pronounced relation-based similarity than training on assorted object
images.

Experiment 1 Discussion
We find that large-scale, pretrained computer vision models successfully replicate a variety of
developmental patterns in infant relation categorization. Across a variety of model architectures,
training approaches, and control conditions, we observe that:

1. Absent any explicit relational training, embeddings extracted from our models consistently
display higher similarity for stimuli representing the same spatial relation, suggesting
that broad visual expertise is sufficient to induce sensitivity to some relational categories.

2. Consistent with Quinn (1994) and Quinn et al. (1999), who found that infants acquire
category representations for above/below earlier in development than between, our pre-
trained models display higher levels of accuracy on the above/below relation than on the
between relation.

3. Consistent with Quinn et al. (1996) and Quinn et al. (2003), who found that infants
acquire category representations for consistent target objects earlier in development than
for varying objects, our pretrained models display higher levels of accuracy when target
objects remain identical (“identical targets”) than when target objects vary (“different
targets”).

We also observe that our models trained on the developmentally-relevant visual experience of
SAYCam outperform models trained on the generic object recognition data in ImageNet. We
find this to be true both when models were trained using different approaches that match each
dataset (Experiment 1a) and when trained using an identical approach that could be applied
to both datasets (Experiment 1b). Although it’s plausible that training models on naturalistic
visual experience could increase their utility as cognitive models, we view our evidence as
preliminary. One potential piece of supporting evidence: in concurrent work, Orhan & Lake
(in prep.) find that models trained with visual data from child S in SAYCam perform at
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around 70% of ImageNet-trained models across a diverse range of downstream evaluations
with real-world stimuli. In our evaluations, the SAYCam-trained models outperform models
trained on the entirety of ImageNet, suggesting that something about the SAYCam training
data facilitates embedding relations in the context of our stimuli and task. With these findings
in hand, we proceed to study another set of relations examined by Quinn and colleagues.

Experiment 2: Classifying left/right and between/outside (sideways)
from 2D stimuli

Quinn (2004) followed up on the “above or below” experiments of Quinn (1994), and demon-
strated two distinct phenomena. The first is that if the “above or below” stimuli are rotated by
90 degrees to become a “left or right” category distinction, 3-4 month-old infants continue to
demonstrate a categorical preference, preferring test stimuli with the target on a novel side of
the bar. Conversely, when the reference object was rotated at an angle of 45◦, 3-4 month-old
infants show no preference to objects placed on a novel side of this diagonal reference object,
unlike both previous examples. Figure 9 shows example stimuli with the reference objects
rotated by 90 degrees, where left/right replaces above/below and the sideways between relation
replaces the previous between one. Other than the angle at which the stimuli are rendered, all
other experimental details remain identical to experiments 1a and 1b.
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Figure 9: Example stimuli rotated 90◦. In each triplet, the central stimulus is the familiarization
example, the left one is the same relation test, and the right one is the other relation test. (A):
left/right with identical target objects. (B): between (sideways) with identical target objects. (C):
left/right with identical target objects. (D): between (sideways) different target objects.

Experiment 2a: Evaluating our models on the flipped relations

Methods
Model Architectures. We use the architectures from Experiments 1a and 1b: MobiletNetV2,
ResNeXt, and ViT-B/14.

Pretraining. We use the pretraining approaches explored in Experiments 1a and 1b:
randomly initialized models, supervised pretraining on ImageNet, self-supervised temporal
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classification on SAYCam, and self-supervised training with DINO on both ImgeNet and
SAYCam.

Stimulus Generation. We generate stimuli identically to Experiments 1a and 1b and
rotate the images by 90 degrees.
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Figure 10: Most models evaluated perform below chance on the sideways-presented
relations. Models evaluated in Experiment 1a show a substantial accuracy drop from the above/below
to the left/right relation (panel A) and from the between to the between (sideways) relation (panel B),
other than untrained models which are unaffected. Models evaluated in Experiment 1b show similar
patterns (panels C and D), other than the ResNeXt models trained with DINO on the SAYCam
dataset (we offer no explanation for this aberration). Colors indicate model architecture, and marker
types indicate the training dataset. The dashed lines indicate chance accuracy (50%).

Results
Figure 10 depicts results on the “left/right” and “between (sideways)” relations with our models
from Experiment 1a (panels (A) and (B)) and with DINO models from Experiment 1b (panels
(C) and (D)). One configuration of models, ResNeXt models trained with DINO on SAYCam,
performs well on the “left/right” relation (an abnormality we currently have no explanation for).
The remaining models perform at chance or below on both relations, a substantial accuracy
drop from the initial relations we examined. This represents a drastic qualitative deviation
from the developmental results we model, where infants showed no meaningful change in the
degree to which they construct a category representation for a relation contingent on whether
it was presented vertically or horizontally. To attempt to isolate the cause of this effect, and
identify potential conditions under which our models recover the developmental findings on
these relations, we train several additional models in the next experiment.

Experiment 2b: Evaluating the effect of flipping data augmentations
Data augmentation refers to a set of techniques to modify the input data to a deep neural
network as it is being trained, in an attempt to enable the network to learn representations
that generalize and transfer better from limited amounts of data (Shorten and Khoshgoftaar,
2019). Horizontal axis flipping (across the vertical axis) is among the most common data
augmentations for naturalistic image data. It is predicated on the natural symmetry across
this axis (the mirror images of most objects are semantically similar or equivalent to their
originals), and is trivial to implement. We hypothesize that it is this data augmentation that
causes the effect we observe. By training models with horizontal flipping, we encourage our
models to represent images with a target object to the left of a reference and images with a
target object to the right of a reference similarly to each other, and perhaps more similarly
than to other images depicting the same relation.

Methods
Model Architecture. We perform this experiment with the ResNeXt architecture used in
Experiments 1a and 1b2.

Pretraining. We train the models for this experiment on the SAYCam dataset (Sullivan
et al., 2020) using temporal classification (Orhan et al., 2020), as in Experiment 1a. We train
three variants on this, manipulating only the types of flips performed in data augmentation:

2As this experiment required training models in unique conditions, and produced clear results, we
opted not to repeat it with other architectures from Experiment 1
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Neither: a model trained without any flipping as part of its data augmentation suite.
Horizontal: a model trained with horizontal flipping as part of its data augmentation suite
(identical to the baseline ResNeXt-SAYCam model in Experiment 1a).
Vertical: a model trained with vertical flipping as part of its data augmentation suite.
All other data augmentations (such as color jittering, random blurring, or random cropping)
were identical between these models. We also note that these augmentations were only active
during model pretraining. They were not active during any of the evaluations we report.

Stimulus Generation. We use the same approach to generating stimuli as is detailed in
Experiment 1a, with the exception of our rotation procedure, which is detailed in subsection A.2
We rotate stimuli at angles of 30◦, 45◦, 60◦, 90◦, 120◦, 150◦, and 180◦ counter-clockwise from
the horizontal. When plotting the results, we group by the effective angle from the horizontal,
e.g. as rotating at an angle of 120◦ is equivalent to 60◦ above the horizontal, we group the
results for 60◦ and 120◦ under 60◦. We render a collection of these rotated stimuli and the
effect that each type of flipping would have on them, with one reference object (Figure B.11)
and with two reference objects (Figure B.12).
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Figure 11: The presence and type of augmentation explains (most of) the change by
stimulus angle. Models trained with neither flipping augmentations (green) show a slight degradation
from 0◦ to 90◦. Models trained with the standard horizontal flipping augmentation (yellow) show a
drastic degradation, matching the results shown in Figure 10. Models trained with a non-standard
vertical flipping augmentation show the opposite trend, improving gradually in accuracy from 0◦ to
90◦. These patterns hold to varying extents in both relations.

Results

A summary of the results for the three flipping model variants, evaluated across the various
stimulus rotation angles, is shown in Figure 11. We found that the model with horizontal
augmentations only (plotted in yellow) recovered the results from previous experiments, with
high levels of accuracy at 0◦ (compare to Figure 5), low ones at 90◦ (compare to Figure 10),
and gradual degradation in the intermediate angles. The other two flipping models provide
comparison cases to demonstrate the causal effect of the standard horizontal flipping. The
model without any augmentations (plotted in green) showed a much more mild yet consistent
degradation in accuracy from 0◦ to 90◦. We take this gradation to be the extent to which
the model learns to favor horizontal symmetry absent any data augmentation, only from the
symmetries that naturally present themselves in the training data. Conversely, the model
trained with vertical flipping (plotted in brown) depicted the opposite effect. Its accuracy was
lowest at 0◦, and as the stimuli are rendered closer to vertical, its accuracy gradually improved,
peaking at 90◦. Qualitatively, we find that the model trained with neither flipping directions
recovers the developmental phenomenon from Quinn (2004), where discriminating above/below
is equally easy as discriminating left/right. However, none of our models recover the other
finding from Quinn (2004), that infants show an inability to discriminate between objects with
respect to a diagonal reference object. Regardless of what sort of flipping was applied, the
three models evaluated in Experiment 2b all reached fairly high levels of accuracy at 45◦.
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Experiment 2 Discussion
We evaluate the existing models from Experiment 1 and specially-trained models with custom
data augmentations on stimuli rotated to various angles, and find that:

1. Unlike Quinn (2004, experiment 1), who found that infants distinguish “left or right” at a
similar age to “above or below,” many of our models have a strong preference for stimuli
depicting vertical relations. We discover this is an artifact of the data augmentation often
used to train these models, and show that models without data augmentation display a
weaker preference.

2. Unlike Quinn (2004, experiment 3), who found that infants fail to distinguish between
objects on opposite sides of a diagonal reference object (presented at an angle of 45
degrees), our models consistently categorize relations presented at this angle. This holds
both relative to one reference object (above/below at 45 degrees) as well as relative to
two reference objects (between/outside at 45 degrees).

Although our results from Experiment 1 broadly suggest that pre-trained computer vision
neural networks can model important aspects of infant relation categorization, our findings
suggest that some care and caution are required in the choice of model and training setup.
Models trained with horizontal flipping, a data augmentation approach designed to mimic
the horizontal reflection invariance many real-world objects display, struggled once the task
evaluated was in direct contrast to the augmentation. Although we did not examine this in
other contexts, it is not out of the question that other augmentations, such as color jittering,
image solarization, or manipulations of image brightness or contrast might be in conflict with
evaluating the development of visual perception.

Item (2) above summarizes a discrepancy from the developmental results with stimuli
presented at an angle of 45◦. The infants evaluated in Experiment 3 of Quinn (2004) were
3-4 month-olds, the youngest age bracket evaluated across the experiments surveyed. While
infants at that age successfully appeared to develop a categorical response in the “above or
below” condition, they failed to do so in the “between” condition, while 6-7 month-old infants
were able to. Our models show comparable levels of accuracy for above/below at an angle of
45◦ and “between” at an angle of 0◦ (compare the accuracies for these angles in Figure 11).
This suggests that to the extent the levels of accuracy displayed by our models track the
developmental difficulty of these relations, we would predict that 6-7 month-old infants should
be able to form category representations for “object on either side of a diagonal bar.” We leave
it to future work to experimentally examine this prediction.

Experiment 3: Classifying above/below and between/outside from
3D-rendered stimuli
In Experiment 1, we found that pretrained computer vision models appear to categorically
represent spatial relations when evaluated with abstract stimuli that resemble developmental
experiments. To study how generalizable our findings are, in this experiment we follow a
similar methodology to Experiment 1 although with a different, more complex approach to
stimulus rendering. Experiment 1 employed simple 2D renderings, either closely matching
the stimuli Quinn showed infants (Figure 2) or in alternative control conditions (Figure B.1,
Figure B.2). In this experiment, we evaluate models on 3D renders of scenes instantiating the
same spatial relations Figure 12. These stimuli are more similar to the images used to train
our models, and therefore allow evaluation of the extent to which model embeddings organize
by categorical representations in more realistic data.

We begin our examination of the more realistic stimuli by reproducing our results from
Experiments 1a and 1b, using the same models in similar conditions:

Methods
Model Architectures. We evaluate the three model architectures evaluated in Experiment
1: MobileNetV2, ResNeXt, and ViT-B/14.

Pretraining. We compare the same pretraining approaches from Experiments 1a and
1b. Experiment 1a: randomly initialized and untrained models, supervised classification
pretraining on ImageNet, and self-supervised temporal classification on SAYCam. Experiment
1b: self-supervised pertaining using the DINO algorithm on both the ImageNet and SAYCam
datasets.
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Figure 12: Experiment 2 Example Stimuli. In each triplet, the central stimulus is the familiar-
ization example, the left one is the same relation test, and the right one is the other relation test. (A):
above/below with identical target objects. (B): between with identical target objects. (C): above/below
with identical target objects. (D): between different target objects.

Stimulus Generation. We render stimuli using Blender (Blender Online Community,
2018) (see Figure 12) following a similar procedure to the one described in Experiment 1a.
We refer the reader to subsection A.3 for complete details. As in Experiment 1, we examine
triplets where the target object matches between the familiarization and test stimuli (“identical
targets”), and ones where the target object varies in the two test stimuli (“different targets”).
We render scenes of both relations (above/below and between/outside) using eight different
target objects: a beach ball, a chess knight, a Lego piece, a toy pineapple, a ping-pong paddle,
a toy robot, a rubber duck, and a stuffed animal (see Figure B.13 for examples). We generate
256 unique scenes, each with all eight target objects, resulting in 2048 total triplets for each of
the two relations.

Methods Summary. We evaluate the same set of models and pretraining approaches
we used in Experiment 1, on the same two relations (above/below and between), We render
stimuli that are richer than those used in Experiment 1 to examine how sensitive the models
are to relational information in more visually complex stimuli. Our stimuli in Experiment 2
use one of eight different target objects. For each relation, we sample 2048 triplets and report
the average accuracy for each model and pretraining approach—how often the embeddings for
the congruent pair of stimuli are more similar (using cosine similarity) than the embeddings
for the incongruent pair.

Results
A summary of our findings using 3D stimuli is shown in Figure 13, which parallels our previous
findings using abstract stimuli (Figure 5). We again find the randomly initialized and untrained
models around chance accuracy (results marked with an ‘X’), and so we omit them from
further discussion. We find that these stimuli tend to make the task harder for our models—
most trained models have lower accuracies in this experiment than in the previous one. For
instance, of the models evaluated in Experiment 1a, the MobileNetV2 models reached 3-10%
lower accuracy levels in this experiment, and the ResNeXt models were 9-12% lower. The
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Figure 13: Models from experiment 1a recover the same patterns with 3D-rendered
stimuli. Both in a comparison between relations (panel (A)) and identical or different targets (panel
(B)), our models continue to recover the same developmental patterns with the more complex stimuli
(compare this to Figure 5). The effect of the choice of the training dataset is not evident with these
stimuli and is inconsistent across models. Color indicates the model architecture and marker type
indicates the training method. The dashed line indicates chance accuracy (50%).
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Figure 14: DINO-trained models continue to recover developmental phenomena of
interest. As in Figure 13, our models continue to recover the phenomena studied in Experiment 1,
both when comparing by relation (panel (A)) and when comparing by identical or different target
objects (panel (B)). Color indicates the model architecture and the marker type indicates the training
dataset. The dashed line indicates chance accuracy (50%).

DINO-trained models show a deviation in this pattern—the DINO ResNeXt models had an
accuracy roughly 20% lower in this experiment, while the ViT-B/14 models had an accuracy
that was 2-5% higher in this experiment compared to the previous one. However, even with the
relative difficulty, we find the same pattern of results seen in the developmental experiments.
The neural networks attain higher accuracy on the above/below task than on the between task,
analogously to infants acquiring category representations for this relation earlier in development.
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Our models consistently reach higher accuracy on the “identical targets” condition compared to
the “different targets” one, reflecting the same pattern in infants. We also continue to observe
a higher accuracy in models trained on the SAYCam dataset, although this effect is abated.

Figure 14 mirrors Figure 8, depicting results from our DINO-trained models. The same
developmental phenomena previously outlined continue to present themselves: above/below
is easier than between, identical targets are easier than different ones, and SAYCam-trained
models (slightly, yet consistently) outperform ImageNet-trained ones (matched-pairs T-test,
t = 4.109, P < 0.005).

Discussion
We reproduce the developmental phenomena explored in Experiment 1 with 3D-rendered
stimuli. The use of richer, 3D-rendered stimuli allows us to conclude that our models’ ability
to represent relational categories, and their ability to mirror findings from the developmental
literature, is not an artifact of using the simplistic stimuli of Experiment 1. Given the discovery
that we can reproduce findings on spatially simple relations such as “above or below” or
“between or outside” with more realistic stimuli, we ask: can we reproduce developmental
patterns with more complex relations as well?

Experiment 4: Classifying containment, behind, and support from
3D-rendered stimuli
Following the success of replicating Experiment 1’s results with 3D rendered stimuli in Ex-
periment 3, in this experiment we use similarly rendered stimuli to examine more spatially
complex relations. Casasola et al. (2003, Experiment 23) studied whether 6 months old infants
can categorize scenes based on whether or not they show a containment relation. Infants
were habituated to a short video depicting a hand placing an object inside a container, that
is, in a containment relation (Figure 15(A/B), “Familiarization”). Infants were then tested
with the familiarization video and with three novel probes. The test probes varied along
two key dimensions: relation (whether or not they also depicted a containment scene) and
occlusion (what fraction of the target object is visible at the end of the video). The first test
probe (Figure 15(A/B), “Same relation”) showed the same event filmed from a higher camera
angle: this produces the same relation but with novel occlusion—the higher camera angle
causes much more of the object to be visible. The second test probe (Figure 15(A), “Other
relation”) uses the same high angle but places the object behind the container. This results in
similar occlusion to the familiarization video but with the object placed in a novel relation
with respect to the container. Finally, the third probe (Figure 15(B), “Other relation”) offered
both a novel relation and occlusion: filmed from the same angle, this test showed an object
being placed on top of an upside-down container, in a support relation. This final test probe
serves as a control condition with mismatches on both relation and occlusion. As expected,
Casasola et al. (2003, Figure 2) found the lowest test-time looking times when showing the
familiarization stimulus a second time. The ‘containment’ test probes (with novel degrees of
occlusion) were found to elicit significantly shorter looking times than the ‘behind’ stimuli,
which depict a novel relation with similar degrees of occlusion to the familiarization stimulus.
On this basis, Casasola et al. (2003) conclude (and see also Casasola (2008) for a review) that
6-month-old infants successfully form a category representation for the containment relation.
In this experiment, we will evaluate whether the models we tested in Experiments 1 and 2 can
replicate these patterns.

A key methodological difference between our experimental setup and the one used by
Casasola et al. (2003) is our use of still images, rather than videos. We motivate this
decision from two perspectives. First, to be able to compare to our previous results in
Experiments 1 and 2, we wished to use the same models, and as these models are trained on
single images4, rather than videos, we opted to adapt the task. Second, models trained for
image classification or self-supervised image-level tasks are more widely available than models
trained for video classification. To the extent we hope this work can serve as methodological
inspiration for studying other developmental phenomena with pretrained models, we wished to
examine whether translating video stimuli to representative still images is sufficient to recover

3We skip the perceptually mismatched stimuli examined in Experiment 1 by Casasola et al. (2003)
and proceed directly to the better-controlled stimuli the authors used in Experiment 2.

4With the exception of the models trained using Temporal Classification with the SAYCam dataset,
which are trained using the temporal ordering of short video clips.
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developmental findings. We generate our stimuli to match the terminal frames of the videos
Casasola et al. (2003) used (Figure 15, top). As in Experiments 1 and 2, we generate stimuli
triplets to compare the similarity between an embedding of a single familiarization and the
embeddings of two test probes. We visualize our two comparison cases in the bottom half of
Figure 15. In both cases, we use a familiarization stimulus showing a containment event from
a low angle, similar to the familiarization event used by Casasola et al. (2003). We also use the
same type of same relation test stimulus, depicting a containment event from a higher angle.
In one condition, “Containment vs. Behind,” we compare to a stimulus depicting the target
object behind the container, rendered from the same higher angle (Figure 15, left). In the
other condition, “Containment vs. Support,” we compare to a stimulus rendering the target
object supported by the container, with the container flipped upside-down, also rendered from
the same higher angle (Figure 15, right).
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Figure 15: Experiment 4 Example Stimuli. In each triplet, the central stimulus is the familiar-
ization example, the left one is the same relation test, and the right one is the other relation test. Top:
the final frames of the stimuli video presented to infants, reproduced from Casasola (2008, Figure 1).
Bottom: our rendering of matching stimuli. Left: comparing a test probe depicting the containment
relation to a test probe depicting the behind relation. Rendered using the wooden basket container
and Lego target object. Right: comparing a test probe depicting the containment relation to a test
probe depicting the support relation. Rendered using the shorter cardboard box container and rubber
duck target object.

Experiment 4a: Evaluating the containment relation
Methods
Model Architectures. We evaluate the same three architectures from Experiments 1 and 2:
MobileNetV2, ResNeXt, and ViT-B/14.

Pretraining. We use the same pretraining approaches from the previous experiments:
randomly initialized models serving as a control, supervised pretraining on ImageNet, self-
supervised pretraining on SAYCam, and models trained using self-supervised DINO on both
the SAYCam and ImageNet datasets.

Stimulus Generation. As in Experiment 3, we use Blender (Blender Online Community,
2018) to render stimuli. Our stimuli use four different containers, and eight different target
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objects, identical to the ones used in Experiment 3. For additional details, see subsection A.4.
We render four images for each stimulus (see Figure 15(C/D) for examples split into triplets).
The first is the familiarization stimulus, with the target object in the containment relation
and a lower camera angle. We then raise the camera to a higher angle and render three test
stimuli. The first is the containment test stimulus, where we render the same scene as in
the familiarization stimulus from the new camera angle, matching the familiarization relation
but differing in occlusion. The second is the behind test stimulus, where we move the target
object behind the container, creating similar occlusion between the container and test object
to the familiarization stimulus, but in a different spatial relation. The third is the support
test stimulus, where we flip the container upside-down, and place the target object on top
of it. This offers a stimulus mismatched in both dimensions (relation and occlusion) to the
familiarization stimulus. We render 128 unique scenes by sampling different camera parameters
(see subsection A.4 for full details), each with all 32 combinations of the four containers and
eight target objects, resulting in a total of 4096 unique sets of stimuli. See Figures B.14
to B.17 for visualizations of scenes with all objects, and Figure B.21 for visualization of camera
parameter variations for a single object combination.

Methods Summary. We evaluate the same collection of models pre-trained on the same
datasets as in Experiments 1 and 2. We compare accuracies in two primary conditions. In the
first, “Containment vs. Behind,” we use a low-angle containment scene as our familiarization
stimulus, and use test probes depicting a containment scene rendered from a higher angle,
and a behind scene rendered from the same higher angle. In the second, “Containment vs.
Support,”, we use the same familiarization stimulus and first test probe and replace the behind
test probe with a support scene rendered from the same higher angle. In both conditions, we
report the average accuracy over the 4096 sets of stimuli—how often the embeddings for the
pair of stimuli depicting a containment relation are more similar (using cosine similarity) than
the embeddings for the familiarization stimulus and the incongruent test probe.
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Figure 16: Models prefer the containment test probe over the support one, but not over
the behind one. We compare the average accuracy over triplets where the foil test probe depicts
the behind relation (“Containment vs. Behind”, left data points) to the average accuracy over triplets
where the foil test probe depicts the support relation (“Containment vs. Support”, right data points).
Our models, including the untrained ones, are fairly consistent with their preferences. The containment
test probe is often judged as more similar to the familiarization stimulus when paired with a support
foil, but not when paired with a behind foil. This holds with both the models discussed in Experiment
1a (panel (A)) and the DINO-trained models introduced in Experiment 1b (panel (B)). The color
indicates the model architecture and the marker type indicates the training method. The dashed line
indicates chance accuracy (50%).

Results
We compare our models’ levels of accuracy between the “Containment vs. Behind” condition
and the “Containment vs. Support” condition in Figure 16. We find that across various
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training datasets and model architectures, all of our models reached higher levels of accuracy
when comparing two containment scenes to a support scene. This by itself did not surprise
us, as this is the easier foil relation, which does not match the degree of occlusion in the
familiarization stimuli (compare the right-hand triplets in Figure 15 to the left-hand ones).
In the better-matched condition of “Containment vs. Behind,” our models peaked around
chance accuracy. That is, most models we evaluated systematically found the behind test
probes (which match in occlusion, but not in relation) more similar to the familiarization
containment stimuli than the containment test probes. This is in direct opposition to the
patterns infants demonstrated in Casasola et al. (2003), who found the containment test stimuli
to be the least surprising ones. In another reversal from Experiment 1b, we found that the
models trained on ImageNet (both using DINO and in a supervised fashion) outperformed
the models trained on SAYCam (compare the circle markers to the squares in Figure 16). A
final unexpected result was a consistent preference present in the randomly initialized model,
reaching substantially lower accuracies in the “Containment vs. Behind” condition than in the
“Containment vs. Support” one. To verify it is not the result of random noise, we replicated our
initial randomly initialized model with nine additional ones. We demonstrate in Figure B.18
that while the degree of this preference varies, all of our randomly initialized models (across
both the MobileNetV2 and ResNeXt architectures) replicated this pattern.

We hypothesized that one potential culprit in the models’ failure in the “Containment vs.
Behind” condition might be the pooling operations that precede our embedding extraction.
In the MobileNetV2 and ResNeXt architectures (but not in the ViT-B/14 one), the final
two-dimensional representation of each input image is pooled in order to create an embedding
vector. The pooling mechanism struck us as potentially related to the failure as it collapses
much of the spatial information, which might leave more remaining information in the degree
of occlusion (which roughly corresponds to how many pixels of the target object are visible)
than in the spatial relation. To examine this hypothesis, we repeat our similarity judgments,
using embeddings extracted before the pooling operation. We find that our models consistently
reached higher accuracy when similarity was compared using embeddings extracted before
pooling (see subsection B.9 for the complete details, Figure B.20 for a summary of the results,
and Table 2 for the complete results). Excluding the untrained models, our models reach a
mean accuracy of 0.798 pre-pooling in the “Containment vs. Behind” condition compared to a
mean accuracy of 0.389 post-pooling. Similarly, in the “Containment vs. Support” condition,
our models reach a mean accuracy of 0.933 pre-pooling compared to a mean accuracy of 0.666
post-pooling. This supports a hypothesis that the relational information is more prominent in
the pre-pooling embeddings, compared to the post-pooling embeddings, at least as measured
by the cosine similarity. It appears sensible that the pooling operation, which collapses across
spatial locations in an attempt to extract a location-invariant representation of the stimulus,
reduces the degree of spatial and relational information preserved. We examine to what extent
the relational information remains present in the final embeddings in the next experiment.

Experiment 4b: Linearly decoding the containment relation

All results presented so far examine relational information through the lens of embedding
similarity between a familiarization example depicting a particular relation and two test probes,
one depicting the same relation and one a foil depicting a different relation. In this experiment
we take a more direct approach using supervised learning, and ask the following question: can
relational information be decoded, using a single linear layer, from the embeddings created by
our models? As we previously discovered that pooling results in lower similarity by relation,
we examine the pooled embeddings, assuming that any information present after pooling would
also be present before the pooling operation.

Methods
Model Architectures and Pretraining. We evaluate the same models, using the same
pretraining approaches, as Experiment 4a.

Stimulus Generation. We use the same dataset of stimuli generated for Experiment 4a.
Linear Decoding Datasets. We evaluate each model and pretraining method across

many systematic partitions of our dataset. In each partition, we split the full set of 4096 sets
of stimuli into a training set and a test set. Each partition is defined by a held-out container,
a held-out target object, and a held-out fraction (12.5%) of the camera configurations. See
Figure 17 for an example and subsection A.4 for the full details.
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Figure 17: Linear Decoding Dataset Visualization. We visualize a partition of the dataset for
a linear decoding experiment, for a single camera configuration (see Figure B.21 for a visualization of
the between-scenes variations induced by the camera configurations). In each partition, all stimuli
using a particular reference object (here the Wooden Basket) and a single target object (here the Toy
Robot) were held out as a test set. We train a linear decoder to classify the relation in a scene from
the embeddings produced by a model over the training set and then evaluate the decoder on the test
set.

Task Setup. We treat the model evaluated as an embedding extractor, and the model
itself is not modified or updated during this task. We train a single linear layer, which takes in
an embedding of an image as input and outputs the logit (unnormalized log-probability) of the
image depicting each relation (containment, support, or behind) as an output. We then update
the weights of this linear layer based on the cross-entropy loss between the layer’s prediction
and the true relation in the image. We continue to update this linear decoder until it stops
improving on the validation set, at which point we also evaluate it on the test set.

Results
We summarize the average accuracy reached by decoders trained on embeddings from different
models in Figure 18. We compute the accuracy only over the test-set examples, that is ones that
have either a held-out container, or a held-out target object, or a held-out camera configuration
(or multiple held-out items). Other than the decoders trained on the randomly-initialized
models, we find almost perfect accuracies across the various training methods, datasets, and
model architectures. To explore the extent to which decoding difficulty varies by held-out
container and object, Table 3 provides a breakdown of decoding results. In the table, we
focus only on examples that depicted the held-out container and held-out target object in
each dataset, and only from the held-out configurations. These are examples in which the
decoders received no training on either the target object, the container, or the exact camera
configuration used in the scene, and as such offer the strongest measure of generalization. While
there is some variability by the particular objects, the lowest held-out accuracy reached is 0.927
on the combination of the wicker basket container and stuffed animal target object. We take
this as evidence that the post-pooling embeddings contain sufficient relational information to
decode the relations with almost perfect accuracy, even if embedding similarity is not primarily
driven by the relation depicted.

Discussion
In this experiment, we examine the extent to which our success in replicating phenomena in
categorizing simpler visual relations (above or below, between or outside) transfers to more
complex relations (containment, behind, support). Unlike in previous experiments, where
models, for the most part, mirrored developmental phenomena, here we fail to recover the
main phenomenon of interest. We use containment stimuli rendered from a low angle as our
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Figure 18: Linear decoders successfully recover relation from trained model embeddings.
Other than the untrained models (panel (A), left), decoders trained on embeddings from our various
models all classify relations at high accuracies. We depict the average test-set accuracy of decoders
trained on the embeddings of our different models, averaging over the various partitions of our dataset
into train and test sets. The color indicates the model architecture and the marker type indicates the
training method. The dashed line indicates chance accuracy (33%, as there are three categories).

familiarization examples, and three types of test probes: containment stimuli rendered from a
higher angle (matching on the relation, but not object occlusion), behind stimuli (matching
on occlusion, but not on the relation), and support stimuli (matching on neither relation nor
occlusion). In Experiment 4a, we discover that our models repeatedly embed the behind test
probes more similarly to the familiarization stimuli than the containment test probes. This
is inconsistent with the findings outlined in Casasola et al. (2003), where infants measured
lower looking times to the containment test over the behind one. When tasking our models to
compare the containment test probe to the easier support one, our models do substantially
better. Therefore, we hypothesize that similarity in the model embeddings is driven first by
lower-level perceptual features, and second by higher-level relational ones5. In Experiment 4b,
we validate that relational information is maintained in the final embeddings, as we successfully
decode with very high levels of accuracy.

The model-to-infant comparison in this experiment is less faithful than in Experiments 1
and 2, as the infants in Casasola et al. (2003) watched short video clips depicting the object
being placed in the specified relation to the container, rather than making judgments based
on still images. We are not aware of any work investigating the extent to which infants make
similar relational judgments of the containment relation from still images. To the extent
Experiments 1 and 2 demonstrated that pretrained neural network models can successfully
recover patterns in infant relation categorization, we would hypothesize that infants would be
less consistent in judging stimuli by relational similarity if only offered still images. We note
that while the models developed by Ullman et al. (2019) successfully categorize still images
of relations, they do so after being trained on video stimuli. Their findings imply that deep
neural network models trained on videos could potentially offer a closer match to the findings
outlined by Casasola et al. (2003), and we leave that for future work to examine.

General Discussion

We investigate the capacity of various large-scale pretrained computer vision neural network
models to replicate findings regarding the development of relation categorization. We first find
that without explicit relational training, the trained models we evaluate learn embeddings that

5Casasola and Cohen (2002) and Casasola et al. (2003, Experiment 1) raised the concern that
perhaps infants also make similarity judgments according to such lower-level features, and assuaged
this concern in Casasola et al. (2003, Experiment 2).
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tend to represent stimuli depicting the same relation more similarly to each other than stimuli
representing different relations. We then successfully recover most patterns of interest relating
to how infants process relations such as “above or below” and “between or outside” (Quinn,
2003). We observe that our models show similar difficulty gradations to the infants: our models
reach higher accuracy levels on the above/below relation than on the between/outside one,
matching infants’ ability to form categorical relations for the former earlier in development
than for the latter. Infants also respond categorically to stimuli depicting identical target
objects earlier in development than to stimuli using different target objects; likewise, the
models we evaluate have higher accuracy levels when using identical target objects than when
using different ones. We encounter these patterns both with 2D stimuli closely resembling the
developmental ones (Experiment 1) and with rendered 3D stimuli that more closely resemble
the data our models were pretrained on (Experiment 3). However, when evaluating the same
pretrained neural networks on the containment relation (Casasola et al., 2003), we find (in
Experiment 4) that the models appear to organize their embedding primarily by object visibility
and secondarily by relation, even when relational information is present. This is evident in
the models’ consistently lower levels of accuracy when probed with a foil that is matched
on occlusion (depicting the behind relation), compared to when probed with a foil that is
mismatched on occlusion (with the support relation).

We find that shortcomings in our models’ abilities to replicate developmental patterns, and
the variation between models, can help highlight methodological nuances meaningful for future
work. In Experiment 2a, we find that many models are consistent with infants’ patterns when
a relation is presented vertically (e.g. “above or below”), but drastically inconsistent with the
same patterns when a relation is presented horizontally (e.g. “left or right”). To explain this
inconsistency, we evaluate (in Experiment 2b) the effect of image flipping, a particular form of
data augmentation often used in pretraining computer vision models, and discover that the
use of image flipping explains the observed deviation. We also find that on the visually simpler
relations of “above or below” and “between”, models trained on the egocentric, developmentally
realistic SAYCam dataset (Sullivan et al., 2020) outperform models trained on ImageNet, using
both simpler stimuli (Experiment 1b) and more complex, rendered stimuli (Experiment 3).
We find no such pattern on the containment relation stimuli evaluated in Experiment 4. In a
supplemental experiment (Appendix C), we identify that for neural networks to recover similar
patterns from symbolic inputs, they should flexibly allow comparing between multiple objects,
as only the architectures that cannot (the MLP and RelationNet) struggled to learn a relation
entirely.

One novel contribution we make is to evaluate models trained on SAYCam (Sullivan et al.,
2020), the best available proxy for a child’s visual experience, using developmental behavioral
paradigms. Prior work has used this dataset to train models (such as some of the pretrained
models from Orhan et al., 2020 we use in this work), or to evaluate such models on cognitive
biases (Tartaglini et al., 2022). Ongoing work by Vong et al. (in prep) uses this dataset to
evaluate grounded language acquisition through cross-situation word learning. We hope that
this line of work can serve as inspiration for future work in computational developmental
psychology and computer vision. From the perspective of developmental psychology, we are
excited about the ability to evaluate suggested computational mechanisms in the context
of rich, large-scale data—beyond, for instance, fitting models to choice data in an attempt
to compare them, we can now train models on proxies of perceptual inputs and examine
emergent phenomena of these models. We can engineer these models to be amenable to
evaluation using closely modified versions of developmental paradigms, facilitating closer
comparison between models and infants. From the perspective of computer vision, these rich
comparisons can also help elucidate whether proposed models of human perception can achieve
the abilities of a developing child. Although there will always be implementation-level (Marr,
1982) differences between artificial approaches and human biology, these advancements allow
us to compare computational- and algorithmic-level approaches to vision, and study whether
given developmentally realistic experience, they offer infant-like results. Our approach also
differs from most work on learning relations with deep neural networks. Prior work (Santoro
et al., 2017; Shanahan et al., 2019) focused on developing and evaluating custom architectures
for relation learning. We show that the embeddings learned by pretrained models with no
explicit relational bias allow judging similarity based on relation, and we leave it to future
work to further study how much relational information is decodable from these embeddings.

When infants discriminate between categories in a laboratory study, it is often unclear
whether these abilities reflect top-down processing of categories acquired outside the lab, or
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bottom-up processing of categories developed during the familiarization phase (Thelen and
Smith, 1994; Murphy, 2002, ch. 9; French et al., 2004, Newcombe et al., 2005). Our findings
are consistent with both possibilities. Our supplemental experiment in Appendix C directly
examines the learnability of relational categories using a supervised learning paradigm on
datasets ranging from as few as 8 examples to a few thousand data points. We view this as
analogous to the first possibility, of learning relation concepts from numerous varied examples,
as infants might acquire these categories over an extended period outside the lab. The pretrained
computer vision models used in Experiments 1-4 do not separate between the top-down and
bottom-up hypotheses. The pretraining process guides the model in acquiring useful perceptual
features to represent its inputs, which may also serve in promoting relational similarity in
the models’ embeddings. These models may also acquire a more abstract latent concept of
the different relations—as we cannot rule this possibility out, we cannot adjudicate between
top-down processing of prior categories and bottom-up processing of categories developed in
familiarization.

Finally, our work allows us to make an experimental prediction and raise a source of
uncertainty. In Experiment 2b, we discovered that the pretrained models we evaluated reach
high levels of accuracy when stimuli are presented at a 45◦ angle, unlike the infants evaluated
by Quinn (2004, Experiment 3). The high levels of accuracy reached by the models make the
prediction that slightly older infants (e.g. 6-7-months-old) than those evaluated by Quinn
(2004) would demonstrate evidence for a category representation for an object on either side of
a diagonal line. We also note a lack of experimental evidence (to the best of our awareness)
for whether or not infants construct category representations for the containment relation
from static stimuli. Both experimental work (Casasola and Cohen, 2002; Casasola et al.,
2003) and computational models Ullman et al. (2019) rely on dynamic video stimuli. Further
experimental work could demonstrate at what stage of development a categorical response to
still image stimuli depicting the containment relation is acquired, which would shed light on
the discrepancy between our findings and existing experimental results.
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A Additional Experimental Details
A.1 Experiment 1 Additional Details
Model Architectures. We provide additional details on the model architectures we evaluate:

• MobileNetV2: We use the MobileNetv2 model as described by Sandler et al. (2018)
and implemented in the the PyTorch torchvision package6. The model consists of a
convolutional block, followed by a series of bottleneck blocks (a particular sequence of
convolution and linear layer defined by Sandler et al. (2018)), followed by a final standard
convolutional layer and an average pooling operator. We extract our embeddings from
the output of this average pooling.

• ResNeXt: We use the ResNeXt-50 (32x4d) model as described by Xie et al. (2017),
and implemented in the PyTorch torchvision package7. The model consists of five
convolutional blocks (Figure 4), with a max pooling operation after the first block, and
global average pooling after the last block. We omit the 1000-d fully-connected layer
used for ImageNet classification and extract the embedding from the input to this layer.

• ViT-B/14: We use the ViT-Base architecture with a 14x14 patch size, termed ViT-
B/14 by the authors who introduced the model (Dosovitskiy et al., 2021). We use an
implementation by one of the authors based on the code in huggingface’s pytorch-image-
models repository8. The model tokenizes an input image by extracting fixed-size patches
(in our case, 14x14 pixels) embedding them using a linear layer, and adding position
embeddings. The sequence of tokens is then processed in a sequence of Transformer
encoder blocks (Vaswani et al., 2017). We extract our embeddings from the output of
the last Transformer block.

Stimulus Generation. We explore the following rendering approaches for our stimuli:

• Quinn-like: Most similar to Quinn et al. (1996), we render the reference object as a
sequence of squares and the target object as one of the symbols used in that paper (a
triangle, ‘s’, ‘E’, +, and →), all colored black (Figure 2).

• Geometric shapes: we render the reference as an elongated ellipse and the target as either
a square, a circle, or a triangle, all colored black (Figure B.1).

• Random colors: again we render the reference as an elongated ellipse and the target as a
circle, sampling perceptually distinct colors for both using the glasbey method (Glasbey
et al., 2007; Kovesi, 2015, Figure B.2; bottom row).
The latter deviates most from the original formulation but allows programmatically
sampling a larger variety of stimuli to verify result robustness.

We also experimented with slightly blurring the stimuli to make them less perceptually perfect;
this did not substantially impact any results.

A.2 Experiment 2 Additional Details
Stimulus Rotation. To rotate stimuli, we follow a render-rotate-crop approach:

• Render: render the stimuli as in Experiment 1a, noting the randomly sampled centroid
position of the stimulus.

• Rotate: we place the rendered stimulus in the center of a much larger canvas, and rotate
the entire canvas by the appropriate angle. This step is necessary as rotating a stimulus
around its centroid could cause some of its pixels to end up outside of its original 224x224
canvas.

• Crop: we crop the stimulus back to 224x224 such that its centroid in the newly cropped
version is identical to its initial centroid before the rotation and crop.

6https://pytorch.org/hub/pytorch_vision_mobilenet_v2/
7https://pytorch.org/hub/pytorch_vision_resnext/
8https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_

transformer.py
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A.3 Experiment 3 Additional Details
Stimulus Generation. We begin generating each stimulus by placing a reference object (a
table in the “above/below” scenes, and a storage rack in the “between” scenes) at the origin of
a scene. To create the familiarization stimuli, we then place a target object in one relation to
this reference object (e.g., below it, in the case of “above/below”). We then create two test
stimuli, one with the target object in the same relation (below), and the other with the target
object in the other relation (above). As in Experiment 1a, the target objects in the test stimuli
are approximately equidistant from the target object in the habituation stimulus. We then
randomly sample camera parameters (location, angle, focus height) to create visual variability
from ranges deemed to create acceptable stimuli and render the scene from the perspective
of the camera. See Figure B.13 for examples of the various objects and variations in scene
rendering.

A.4 Experiment 4 Additional Details
Stimulus Generation. We generate stimuli using one of four containers: a wicker basket, a
wooden basket, a short cardboard box, and a longer cardboard box. Our stimuli also use one
of the same eight target objects used in Experiment 3: a beach ball, a chess knight, a Lego
piece, a toy pineapple, a ping-pong paddle, a toy robot, a rubber duck, and a stuffed animal
(see Figures B.14 to B.17 for examples). We begin generating each stimulus by sampling a
location for the camera and its focus from a distribution of values providing minor variation in
the rendered stimuli. For each sampled set of camera parameters, we render a set of stimuli
for each container and target object.

Linear Decoding Datasets. In each partition of the dataset, we assign to the test set all
images from stimuli that use either the held-out container, or the held-out target object, or
one of the held-out camera configurations, which results in assigning 42.578% of stimuli to the
test set. We repeat this procedure five times (using different random seeds) for each held-out
container and target object, for a total of 160 unique partitions with which we evaluate every
model. We further split each training set into a training set and a validation set, by randomly
assigning all stimuli from 10% of camera configurations in the training set to the validation set.

B Appendix Figures
B.1 Experiment 1 Alternative Stimuli Rendering Visualizations
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Figure B.1: Example stimuli rendered with geometric shapes. Identical to Figure 2, but with
our geometric shape-based generator.
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Figure B.2: Example stimuli rendered with random colors. Identical to Figure 2, but with
our random color-based generator.

B.2 Additional Experiment 1 Results
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Figure B.3: Experiment 1a results by stimulus generation approach. Top: Quinn-like
stimuli (Figure 2). Middle: Geometric shapes stimuli (Figure B.1). Bottom: Random colors stimuli
(Figure B.2). Accuracy on the Quinn-like condition appears consistently highest, however the qualitative
results replicate across all methods: above/below accuracy higher than between, same targets accuracy
higher than different targets.
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B.3 Experiment 1 control conditions
To verify the resilience of our results to experimental manipulations, we performed several
additional experimental controls on the basic approach outlined in Experiment 1.

Above/below variations. To control for the relative visual complexity of the between stim-
uli compared to the above/below stimuli, we introduce two additional variations of above/below
stimuli with additional reference objects (Figure B.4):
Adjacent references: we introduce a second reference object but place it adjacent to the original
reference object. This variation maintains the same relational complexity as our original
above/below stimuli, but the addition of a second reference object leads to more foreground
pixels, akin to our between condition stimuli.
Gapped references: we introduce a second reference object and maintain a gap between refer-
ence objects, like in the between condition stimuli. This results in similar reference objects
placements to the between scenes, but with the target objects placed either above or below
both.
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Figure B.4: Example stimuli rendered with above/below variations. Similar to Figure 2,
but with the basic above/below stimuli and our two variations.

Results are remarkably consistent across the variants (Figure B.5), suggesting the increased
difficulty of the between relation is in representing the relation itself, rather than the increased
visual complexity of the scenes.
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Figure B.5: Experiment 1 above/below variant results.

Using additional habituation stimuli. In their experiments, Quinn et al. present
infants with four habituation stimuli before presenting them with a single test stimulus. We
replicated a similar condition with our models. Instead of sampling a single habituation stimuli,
we sampled four habituation stimuli whose target objects were placed in a small radius around
a habituation centroid location. The target objects in the test stimuli were placed equidistant
to this habituation centroid. To evaluate models, we extracted vector embeddings for each
of the habituation stimuli independently, and averaged them to create an overall habituation
embedding, which we again compared to the test stimuli embedding using the cosine similarity
metric.

In Figure B.6, we change the hatching to reflect the use of one or four habituation stimuli.
The results are again remarkably consistent, with some models showing a slight improvement
with additional habituation examples, and other models showing a slight degradation — but
broadly performance is unaffected by this manipulation.
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Figure B.6: Experiment 1a/b with 4 habituation stimuli. Left two panels: baseline results
from experiment 1a (compare to Figure 5. Right two panels: DINO models results from experiment
1b (compare to Figure 8.

B.4 Experiment 1a additional t-SNE visualizations
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Figure B.7: Replication of Figure 6. Using our geometric shape-based generator instead of our
Quinn-like generator reported in Figure 6.
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Figure B.8: Replication of Figure 6. Using our random color-based generator instead of our
Quinn-like generator reported in Figure 6.
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Figure B.9: Replication of Figure 7. Using our geometric shape-based generator instead of our
Quinn-like generator reported in Figure 7.
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Figure B.10: Replication of Figure 7. Using our random color-based generator instead of our
Quinn-like generator reported in Figure 7.

B.5 Experiment 2b rotated and flipped stimuli visualizations
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Figure B.11: Rotated and flipped stimuli with one reference. A set of stimuli with one
reference object, matching our “above/below” (0◦) and “left/right” (90◦). Columns represent different
rotation angles, noting the equivalency for stimuli rotated more than 90◦ from the horizontal. Rows
represent the different symmetries learned by the various flipping models. The model with horizontal
flipping would be trained to find the stimulus in the second row similar to the stimulus in the first
row. Similarly, the model with vertical flipping would be trained to find the stimulus in the third row
similar to the stimulus in the first row.

Ne
ith

er

0 30 45 60 90 120 60 135 45 150 30

Ho
riz

on
ta

l
Ve

rti
ca

l

Figure B.12: Rotated and flipped stimuli with two references. A set of stimuli with two
reference objects, matching our “between” (0◦) and “sideways between” (90◦). Columns represent
different rotation angles, noting the equivalency for stimuli rotated more than 90◦ from the horizontal.
Rows represent the different symmetries learned by the various flipping models. The model with
horizontal flipping would be trained to find the stimulus in the second row similar to the stimulus in
the first row. Similarly, the model with vertical flipping would be trained to find the stimulus in the
third row similar to the stimulus in the first row.
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B.6 Experiment 3 Target Object Visualizations
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Figure B.13: All Target Objects used in Experiment 3. Left: example renderings in
“above/below” scenes. Right: example renderings in “between” scenes. Each row represents a different
target object, from top to bottom: a beach ball, a chess knight, a Lego piece, a toy pineapple, a
ping-pong paddle, a toy robot, a rubber duck, and a stuffed animal.
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B.7 Experiment 4 Stimuli Visualizations
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Figure B.14: Experiment 3 Example Stimuli With Wicker Basket container. Each row
represents a different target object, from top to bottom: a beach ball, a chess knight, a Lego piece, a
toy pineapple, a ping-pong paddle, a toy robot, a rubber duck, and a stuffed animal.
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Figure B.15: Experiment 3 Example Stimuli With Wooden Basket container. Each row
represents a different target object, from top to bottom: a beach ball, a chess knight, a Lego piece, a
toy pineapple, a ping-pong paddle, a toy robot, a rubber duck, and a stuffed animal.
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Figure B.16: Experiment 3 Example Stimuli With Shorter Box container. Each row
represents a different target object, from top to bottom: a beach ball, a chess knight, a Lego piece, a
toy pineapple, a ping-pong paddle, a toy robot, a rubber duck, and a stuffed animal.
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Figure B.17: Experiment 3 Example Stimuli With Longer Box container. Each row
represents a different target object, from top to bottom: a beach ball, a chess knight, a Lego piece, a
toy pineapple, a ping-pong paddle, a toy robot, a rubber duck, and a stuffed animal.
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B.8 Experiment 4a Untrained Model Replications
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Figure B.18: Experiment 4a Untrained Model Replications. We replicate the results with
randomly initialized and untrained models across ten random seeds, whose average performance is
reported in Figure 16. (A) and (B): MobileNetV2 models. (A) comparing embedding similarity after
the pooling operation. (B) comparing embedding similarity before the pooling operation. (C) and (D):
ResNeXt models. (C) comparing embedding similarity after the pooling operation. (D) comparing
embedding similarity before the pooling operation. Across all random seeds, we find that the randomly
initialized models find the behind test probes more similar to the familiarization examples than the
containment test probes.

B.9 Experiment 4a Pre-Pooling results
We hypothesized that one potential culprit in the models’ failure in the “Containment vs.
Behind” condition might be the pooling operations that precede our embedding extraction.
In the MobileNetV2 and ResNeXt architectures (but not in the ViT-B/14 one), the final
two-dimensional representation of each input image is pooled in order to create an embedding
vector. This last two-dimensional representation is a tensor T of shape C ×H ×W , where
C is the number of channels, H is the height, and W is the width. Both methods apply
average pooling: the entry for the cth channel in the embedding vector v is defined by
vc =

1
H

1
W

∑H
h=1

∑W
w=1 Tc,h,w, the average value of this channel across the input. The pooling

mechanism struck us as potentially related to the failure as it collapses much of the spatial
information, which might leave more remaining information in the degree of occlusion (which
roughly corresponds to how many pixels of the target object are visible) than in the spatial
relation. To examine this hypothesis, we repeat our similarity judgments, using embeddings
extracted before the pooling operation (see Figure B.19). To extract these embeddings, we
flatten the tensor T (with shape C ×H ×W ) to a one-dimensional vector with CHW entries.
We omit the ViT-B/14 model as it does not apply a pooling operation.

We visualize the results of this modification to our process in Figure B.20. Our models,
including the randomly initialized and untrained ones, all reached substantially higher accuracies
when similarity was compared using embeddings extracted before pooling (compare accuracies
in Figure 16 to accuracies in Figure B.20).
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Figure B.19: ResNeXt model diagram marked for pre-pooling embeddings. Identical to
Figure 4, but depicting where in the model we extract pre-pooling embeddings from.
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Figure B.20: Experiment 4a Pre-pooling. Identical to Figure 16, but with embeddings extracted
prior to the pooling operation. (A): using the baseline set of models discussed in Experiment 1a. (B):
using the DINO-trained models introduced in Experiment 1b. We omit the ViT-B/14 model as it
does not use a pooling operation. Color: model architecture. Marker type: training method. The
dashed line indicates chance accuracy (50%).
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B.10 Experiment 4b Additional details and results

Figure B.21: Stimuli variations for one target and reference object. This figure highlights
the variability in our dataset induced by the changes in camera location and angle between stimuli.
We visualize 32 of the 128 scenes for the Toy Robot and Wooden Basket. In the linear decoding
experiments, 16 (1/8th) of the scenes would be assigned to the held-out test-sets across all object
combinations.

Container Beach Ball Chess Knight Lego Piece Toy Pineapple

Wicker Basket 0.929± 0.002 0.939± 0.002 0.938± 0.002 0.938± 0.002
Wooden Basket 0.952± 0.001 0.974± 0.001 0.940± 0.002 0.965± 0.001
Shorter Box 0.981± 0.001 0.990± 0.001 0.966± 0.001 0.991± 0.001
Longer Box 0.978± 0.001 0.990± 0.001 0.966± 0.001 0.988± 0.001

Container Ping-Pong Paddle Toy Robot Rubber Duck Stuffed Animal

Wicker Basket 0.948± 0.002 0.929± 0.002 0.945± 0.002 0.927± 0.002
Wooden Basket 0.954± 0.001 0.951± 0.002 0.964± 0.001 0.953± 0.001
Shorter Box 0.979± 0.001 0.974± 0.001 0.991± 0.001 0.972± 0.001
Longer Box 0.973± 0.001 0.972± 0.001 0.992± 0.001 0.984± 0.001

Table 3: Linear decoding accuracy is high over fully held-out stimuli. We report accuracy
over the hardest examples of each test-set partition. These are the examples that used both the
held-out container and the held-out target object in each configuration (e.g. examples using the Toy
Robot and Wooden Basket in the partition visualized in Figure 17). The accuracies in the table are
using linear decoders from all trained models (omitting the randomly initialized and untrained ones).
All margins reported represent the standard errors of the mean.

C Appendix Experiment: learning simple relations from symbolic
stimuli

In this experiment, we revisit the first finding discussed in Experiments 1 and 3, that infants
acquire the capacity to represent “above or below” (a target object relative to a single reference
object) before they develop the ability to represent “between” (a target relative to two references).
In two studies (Quinn, 1994; Quinn et al., 1996), 3-4 months old infants familiarized with
stimuli depicting a single relation (either above or below) exhibit a looking-time preference to
a stimulus showing the opposite relation, compared to a new stimulus showing the familiarized
relation. Quinn et al. (1999) followed up on those experiments, using examples of a target
object between two reference objects, using both horizontal and vertical reference objects.
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3-4 months old infants did not display a preference towards test stimuli containing an object
outside the references, but infants 6-7 months old did. The ability to reason relative to two
reference objects develops after the ability to reason relative to a single reference, consistent
with the notion that infants first encode with respect to a single landmark, and later encode
in a “local spatial framework” (Huttenlocher and Newcombe, 1984). Experiments 1 and 2
evaluated the extent to which models pretrained on broad visual experience represent such
relations. In this experiment, we train small models on symbolic (rather than image-rendered)
versions of this question, and evaluate how well (in accuracy) and how quickly (in the number
of training steps required to reach an accuracy criterion).

Methods
Our simulations in this experiment evaluate the relative ease of learning two different classes of
relations, both cast as binary classification problems: above/below (learning to classify above
vs. below), and between (learning to classify between versus outside).

Objects. To model relation learning independently from learning to represent objects, we
provide the models with minimal object representations as inputs. Each object is represented
as a vector of length 4, with integer x and y positions, and a one-hot encoding marking the
object as target or reference (Figure C.1 bottom). The objects are implicitly understood to
be occupying a 1x1 unit square. The reference objects, which we take to be 9 units long,
are represented as a collection of 9 adjacent identically-sized objects. We also explored an
alternative representation that treats the reference bar as a single object, where each object
vector has an additional integer dimension specifying its length (as all objects we use have a
height of 1 unit, we omit a height dimension). Results with the alternative representation were
qualitatively similar, even though the task is easier (as the models receive fewer object vectors
as their input), so we focus on describing the results with the first representation (without the
length dimension).

Dataset Generation. Figure C.1 visualizes stimuli from the different relation categories.
To create stimuli, we sample locations for the reference object (series of blue cells) and then
sample the target object’s location uniformly from the ‘target grid’ above and below the
reference object(s). In the above/below condition, we split the eight rows of the target grid
evenly between above and below. In the between condition, we split the locations evenly
between the between and outside relations. We only consider cases where the target object
occupies the same horizontal space as the reference object(s), avoiding having the target object
off to the side. To create training and test sets, we randomly split the reference object locations
(in the large canvas, 90% training, 10% test) and the target object locations (relative to the
reference object, 80% training, 20% test). We then set aside 10% of the training set as a
validation set. This process creates a maximal training set of 3628 examples, a validation set of
404 examples, and a test set of 1800 examples. We also evaluate models trained on randomly
sampled subsets of the training sets, using 8, 32, 128, 512, 1024, or 2048 items.

Architectures. We evaluate five different neural networks, each incorporating a distinct
inductive bias. To the extent possible, the architectures were chosen to gracefully handle
varying numbers of objects present in a scene. Other than the convolutional neural network,
all models begin with an object-wise embedding function, a single layer with ReLU activations.
We denote the input collection of objects as O = {o1, ..., oN}, the embedding function as eω,
and the embedded objects as E = eω(O) : {ei = eω(oi)}. All models have two softmax output
units (the two classes learned), and are trained using the cross-entropy loss to maximize the
probability of the correct class.

‘Bag of objects’ MLP: this architecture is the simplest we could conceive of that would be
invariant to the number of objects present in a stimulus. It treats the embedded vectors as
a single vector by taking their mean and passes it into a standard feedforward network with
ReLU activations. Denoting the MLP as fϕ:

MLP (O) = fϕ

( 1

N

N∑
i=1

eω(oi)
)

Convolutional Neural Network (CNN): this model encodes a translation invariance bias, re-
ceiving the objects as a 2D grid S rather than as an unordered list of vectors. As the objects’
positions are represented by their placement in the grid, we use two channels in the spatial
input, one marking the target object’s location and another marking the locations of all
reference objects. We use a standard convolutional architecture (conv) followed by global
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Figure C.1: Experiment 4 Stimuli . Top: Left two panels: a sample location of the reference
object(s) (in blue), with the entire grid of possible target object locations visualized (in orange).
Middle two panels: example above/below stimuli. Right two panels: example between stimuli. Bottom:
the vector object representations associated with the Below example—as the models receive only these
vectors, the choice colors and shapes here is arbitrary. We do not mark which coordinate is X and
which is Y, so the models are agnostic to this fact (and above/below is identical to left/right), other
than the CNN model, which receives a spatial input. The borders signify each object vector, so the
blue reference object is comprised of nine vectors.

average pooling and an MLP:

CNN(S) = fϕ(average_pool(conv(S)))

Relation Net: Santoro et al. (2017) offer a compact way of modeling relations between pairs
of objects, using two functions: a function gθ that acts on object pairs and a global MLP fϕ
acting on their combined representation:

RN(O) = fϕ

 N∑
i=1

N∑
j=1

gθ (eω(oi), eω(oj))


Transformer: a simplification of the Transformer (see Vaswani et al. (2017) for details), this
network reasons about all objects jointly rather than through object pairs. The self-attention
(‘SelfAttn’ below) operator acts on the entire set of objects simultaneously to capture their
interactions. We pass the input through one or more such Encoders, and the transformed
representations are averaged and passed through a MLP:

Encoder(E) = E + SelfAttn(E) + fϕ (E + SelfAttn(E))

T (O) = fϕ

( 1

N

N∑
i=1

One or more times︷ ︸︸ ︷
Encoder(eω(O)))

)
PrediNet: this model is explicitly designed to learn different relations between objects, making
for a task-optimized comparison architecture. It uses a modified form of self-attention,
combining global information over the entire set of objects with information from each individual
object, and treats the difference between object representations in a latent space as capturing
different relations between them. See Shanahan et al. (2019) for the full details.

Implementation and Training. To test the effect of model size, we created two
configurations of each model, a smaller one (using around 2000 parameters) and a larger one
(using around 8000 parameters). We report results from ten random seeds for each simulation,
varying three factors: relation (above/below or between), model size (smaller or larger models),
and the number of training examples (8, 32, 128, 512, 1024, 2048, or the full size of the dataset
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created for each task, around 4000). We terminated each run when performance on a validation
set plateaued. All models were optimized using Adam Kingma and Ba (2015) with a learning
rate of 1e-3 and a batch size of 256. All models were implemented in PyTorch (Paszke et al.,
2017) using PyTorch Lightning (Falcon, 2019).

C.1 Results
We focus our analysis on two measures of learning difficulty: Sample complexity: how many
examples does it take to learn each concept? Number of epochs: how many passes through the
training set does it take to learn each concept? We evaluate all five models on their ability to
capture the developmental phenomena described above, including which architectures may be
too powerful (learning both conditions trivially) or too weak (failing to learn either condition)
when compared with competencies in infancy.
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Figure C.2: Smaller model test set accuracy by training set size. Left: above/below. Right:
between. Average over ten random seeds, shaded regions mark the SEM. Dashed line indicates chance
(50%).

To evaluate the sample complexity, Figure C.2 depicts the test set accuracy attained by
each architecture as a function of the size of the training set used, using the smaller (2000
parameter) configurations. We plot only the test set accuracies, as the networks generalize
well above a reasonable sample size: the maximal difference between the training and test
accuracy, averaged over the replications of each network, is 12.7% with 128 samples, 2.4% with
512 samples, and < 0.1% with the full training set. At all training set sizes, the networks
perform better in the above/below condition than they do in the between condition, unless they
fail to learn both. This is true from the most successful network (PrediNet) to the simplest
(MLP) one, using both the smaller and larger network configurations. The RelationNet is the
only network that fails to learn a relation, never reaching much above chance accuracy in the
between condition; the MLP also struggles with between, rising above chance only with the full
dataset. Results using the larger model configurations showed the same qualitative patterns.

To explore how long it takes the networks to acquire the concepts, Figure C.3 illustrates
the learning curves using a 1024-item training set. Unsurprisingly, the models that reach a
higher test accuracy (Figure C.2) also tend to require fewer training epochs to reach high
performance. All architectures reach peak accuracy faster in the above/below condition than
in the between condition. At this dataset size, both the RelationNet and the MLP networks
fail to learn in the between condition.

C.2 Discussion
Most of the architectures examined are consistent with the basic developmental phenomenon:
learning to spatially categorize above versus below is easier than between versus outside. This
holds both when we take the sample complexity as a proxy for experience, and when we take
the number of training epochs as the measure of experience. The RelationNet model struggled
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Figure C.3: Smaller model learning curves using 1024 training items. Left: above/below.
Right: between. Average over ten random seeds for each model. Dashed line indicates chance accuracy
(50%).

with learning the between relation, suggesting it may be an inadequate model of infant relation
learning. In our alternative object formulation (see “Objects” in the Methodology subsection),
which adds a length entry and hence reduces the number of input vectors, the RelationNet
succeeded to learn this relation, performing closer to the Transformer. We attribute this failure
to the fact that learning to reason using a pairwise function over the objects is harder to scale to
higher numbers of entities. Models that natively reason over the entire collection struggle less
with the between relation, which requires comparing three objects, the “local spatial framework”
discussed by Huttenlocher and Newcombe (1984). The CNN and the Transformer both recover
patterns qualitatively resembling the developmental findings, as does the PrediNet, even
though it requires substantially less data than the other architectures to reach perfect accuracy.
Conversely, the MLP might be overly generic, as it struggles with the between condition, only
reaching above-chance performance with the full training set. We take these results to imply
that any compelling computational model of infant reasoning should flexibly allow for variation
in the number of objects reasoned over, being neither entirely generic (the MLP) nor restricted
to pairwise interactions (the RelationNet). Beyond these constraints and considerations, the
data does not help us distinguish the other architectures as potential cognitive models. The
finding that learning above/below is easier than between/outside appears to be a fairly general
property of the neural architectures we evaluated.

54


	Additional Experimental Details
	Experiment 1 Additional Details
	Experiment 2 Additional Details
	Experiment 3 Additional Details
	Experiment 4 Additional Details

	Appendix Figures
	Experiment 1 Alternative Stimuli Rendering Visualizations
	Additional Experiment 1 Results
	Experiment 1 control conditions
	Experiment 1a additional t-SNE visualizations
	Experiment 2b rotated and flipped stimuli visualizations
	Experiment 3 Target Object Visualizations
	Experiment 4 Stimuli Visualizations
	Experiment 4a Untrained Model Replications
	Experiment 4a Pre-Pooling results
	Experiment 4b Additional details and results

	Appendix Experiment: learning simple relations from symbolic stimuli
	Results
	Discussion


