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ABSTRACT

Although deep neural networks can achieve human-level performance on many
object recognition benchmarks, prior work suggests that these same models fail
to learn simple abstract relations, such as determining whether two objects are the
same or different. Much of this prior work focuses on training convolutional neural
networks to classify images of two same or two different abstract shapes, testing
generalization on within-distribution stimuli. In this article, we comprehensively
study whether deep neural networks can acquire and generalize same-different re-
lations both within and out-of-distribution using a variety of architectures, forms
of pretraining, and fine-tuning datasets. We find that certain pretrained transform-
ers can learn a same-different relation that generalizes with near perfect accuracy
to out-of-distribution stimuli. Furthermore, we find that fine-tuning on abstract
shapes that lack texture or color provides the strongest out-of-distribution gener-
alization. Our results suggest that, with the right approach, deep neural networks
can learn generalizable same-different visual relations.

1 INTRODUCTION

Humans and a wide variety of non-human animals
can easily recognize whether two objects are the Y:]
same as each other or whether they are different (see
Figure E]; Martinho III & Kacelnik, 2016; [Christie, t}

2021; (Gentner et al., 2021} [Hespos et al. 2021). Q
The abstract concept of equality is simple—even 3- U
month-old infants (Anderson et al., 2018) and hon-
eybees (Giurfa, |2021) can learn to distinguish be-
tween displays of two same or two different objects.
Some researchers have even argued that it serves Figure 1: Same or different? For humans
amongst a number of other basic logical operations  and a number of animal species, it is trivial to
as a foundation for higher-order cognition and rea-  recognize that the image on the left contains
soning (Gentner & Goldin-Meadow, 2003; |Gentner| two of the same objects, while the image on
& Hoyos, 2017). However, in contrast to humans the right contains two different objects. Sur-
and animals, recent work has argued that deep neural  prisingly, prior research has suggested that
networks struggle to learn this simple relation (El-| deep neural networks struggle to learn to dis-
lis et al., 2015; |Giilgehre & Bengio, 20165 |Stabinger|  criminate between these images.

et al.l 2016; Kim et al., 2018; |Webb et al., 2020;

Puebla & Bowers| 2022). This difficulty is surprising given that deep neural networks achieve
human or superhuman performance on a wide range of seemingly more complex visual tasks, such
as image classification (Krizhevsky et al.l [2012; |He et al., 2016), segmentation (Long et al., [2015)),
and generation (Ramesh et al., [2022).
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Past attempts to evaluate same-different relations in neural networks have generally used the follow-
ing methodology. Models are trained to classify images containing either two of the same or two
different abstract objects, such as those in Figure [} A model is considered successful if it is then
able to generalize the same-different relation to unseen shapes after training. Convolutional neural
networks (CNN5s) trained from scratch fail to learn a generalizable relation, and tend to memorize
training examples (Kim et al.| 2018; 'Webb et al., | 2020). However, deep neural networks have been
shown to successfully generalize the same-different relation in certain contexts. This generalization
is either limited to in-domain test stimuli (Funke et al., |2021; |Puebla & Bowers, 2022) or requires
architectural modifications that build in an inductive bias towards relational tasks at the expense of
other visual tasks (Kim et al. 2018} [Webb et al., [2020; 2023azb} [Kerg et al.| [2022; Geiger et al.,
2023} Altabaa et al.,|2023). Given these limited successes, an open question remains: without archi-
tectural modifications that restrict model expressivity in general, can standard neural networks learn
an abstract same-different relation that generalizes to both in- and out-of-distribution stimuli?

Addressing this question requires going beyond past work in a number of ways. First, most previous
studies test for in-distribution generalization—that is, they use test stimuli that are visually similar
to the training stimuli. We believe that out-of-distribution generalization provides much stronger
evidence that a model has learned a genuine abstract relation without relying on spurious features.
Second, the existing literature uses training stimuli that demonstrate the same-different relation with
either closed curves (as in Figure [T)) or simple geometric shapes. It is unclear whether training on
these types of objects is the most helpful for learning the relation versus more naturalistic objects
that more closely resemble data seen during pretraining. Finally, most prior work focuses on con-
volutional architectures, but Vision Transformers (ViTs) (Dosovitskiy et al.,|2020) adapted from the
language domain (Vaswani et al., 2017) have recently emerged as a competitive alternative to CNNs
on visual tasks. Self-attention, a key feature of ViTs, may provide an advantage when learning ab-
stract visual relations—indeed, the ability to attend to and relate any part of a stimulus to any other
part may be crucial for relational abstraction.

In this article, we address these limitations and comprehensively investigate how neural networks
learn and generalize the same-different relation from image data. Our main findings are as follows:

* Fine-tuning pretrained ResNet and ViT models on the same-different relation enables both
architectures to generalize the relation to unseen objects in the same distribution as the
fine-tuning set. In particular, CLIP pretraining results in nearly 100% in-distribution test
accuracy for ViT models, and close to that for ResNet models. (Section @

* Under certain conditions, CLIP-pretrained ViTs can reliably generalize the same-different
relation to out-of-distribution stimuli with nearly 100% accuracy. This suggests that these
models may acquire a genuinely abstract concept of equality. (Section 3.2))

* Different fine-tuning datasets lead to qualitatively different patterns of generalization—
fine-tuning on more visually abstract objects (which do not contain color or texture) results
in stronger out-of-distribution generalization, whereas fine-tuning on more naturalistic ob-
jects fails to generalize. (Section[3.2)

* ViTs generally prefer to determine equality between objects by comparing their color or
texture, only learning to compare shape when the fine-tuning dataset lacks color and texture
information. However, we find that CLIP pretraining helps to mitigate this preference for
color and texture. (Section @)

2 METHODS

We operationalize the same-different task consistently with prior work e.g. [Fleuret et al| (2011J).
Models are asked to perform a binary classification task on images containing either two of the same
objects or two different objects (see the second and third rows of Figure[2). Models are either trained
from scratch or fine-tuned on a version of this task with a particular type of stimuli (see Section [2.1]
below). After training or fine-tuning, model weights are frozen, and validation and test accuracy
scores are computed on sets of same-versus-different stimuli containing unfamiliar objects. These
can be either be the same type of objects that they were trained or fine-tuned on (in-distribution
generalization) or different types of objects (out-of-distribution generalization). Thus, in order to
attain high validation and test accuracy scores, the model must successfully generalize the learned
same-different relation to novel objects. This type of generalization is more challenging than the
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Figure 2: Example stimuli from all four datasets. Each column represents one of the four same-
versus-different datasets as indicated by the label beneath the stimuli. The top row shows an example
object that is used to form the stimuli that comprise each dataset, while the second and third rows
show an example “same” vs. “different” stimulus, respectively.

standard image classification setting because of the abstract nature of what defines the classes—
models must learn to attend to the relationship between two objects rather than learn to attend to any
particular visual features of those objects in the training data.

2.1 TRAINING AND EVALUATION DATASETS

We construct four same-versus-different datasets using four different types of objects (see Figure 2))
ranging from abstract shapes to naturalistic images that are more familiar to pretrained models. We
use the following objects to create these four datasets:

1. Squiggles (SQU). Randomly generated closed shapes following |Fleuret et al. (2011)
Most studies in the machine learning literature on the same-different relation uses this
dataset (Kim et al.,|2018; [Funke et al., 2021} [Puebla & Bowers,[2022; Messina et al., 2022).

2. Alphanumeric (ALPH). Sampled handwritten characters from the Omniglot dataset (Lake
et al.,[2015).

3. Shapes (SHA). Textured and colored shapes from |[Tartaglini et al| (2022). Objects that
match in shape, texture, and color are considered the same, whereas objects that differ
along all three dimensions are considered different.

4. Naturalistic (NAT). Photographs of real objects on white backgrounds from Brady et al.
(2008)). These stimuli are the most similar to the data that the pretrained models see before
fine-tuning on the same-different task.

Each stimulus is an image that contains two objects that are either the same or different. We select
a total of 1,600 unique objects for each dataset. These objects are split into disjoint sets of 1,200,
300, and 100 to form the training, validation, and test sets respectively. Unless otherwise specified,
the training, validation, and test sets each contain 6,400 stimuli: 3,200 same and 3,200 different.
To construct a given dataset, we first generate all possible pairs of same or different objects—we
consider two objects to be the same if they are the same on a pixel levelEI Next, we randomly select

!"The original method from [Fleuret et al|(2011) produces closed contours with lines that are only one pixel
thick. For our chosen image and object size, these shapes become very difficult to see. We correct this by using
a dilation algorithm to darken and thicken the lines to a width of three pixels.

There is some ambiguity in how to define sameness. For example, one could imagine a same-different task
in which two objects drawn from the same category are considered the same, such as two different images of
the same species of parrot. Furthermore, two objects can be the same in some dimensions but differ in others
(see Section@. Unless otherwise stated, we take “same” to mean “exactly the same”.
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a subset of the possible object pairs to create the stimuli such that each unique object is in at least
one pair. Each object is resized to 64x64 pixels, and then a pair of these objects is placed over a
224x224 pixel white background in randomly selected, non-overlapping positions. We consider two
objects in a specific placement as one unique stimulus—in other words, a given pair of objects may
appear in multiple images but in different positions (but with all placements of the same two objects
being confined to either the training, validation, or test set). All object pairs appear the same number
of times to ensure that each unique object is equally represented.

2.2 MODELS AND TRAINING DETAILS

We evaluate one convolutional architecture, ResNet-50 (He et al., 2016)), and one Transformer ar-
chitecture, ViT-B/16 (Dosovitskiy et al.,|2020). We also evaluate three pretraining procedures: (1)
randomly initialized, in which all model parameters are randomly initialized (Kaiming normal for
ResNet-50 and truncated normal for ViT-B/16) and models are trained from scratch, (2) ImageNet,
in which models are pretrained in a supervised fashion on a large corpus of images (ImageNet- 1k for
ResNet-50 and ImageNet-21k for ViT-B/16; Deng et al.l [2009) with category labels such as “barn
owl” or “airplane,” and (3) CLIP (Radford et al., 2021), in which models learn an image-text con-
trastive objective where the cosine similarity between an image embedding and its matching natural
language caption embedding is maximized. Unlike ImageNet labels, CLIP captions contain addi-
tional linguistic information beyond category information (e.g. “a photo of a barn owl in flight”).
To adapt these models for the same-different task, we add a randomly initialized linear classifier on
top of the visual backbone of the original architecture.

Each model is trained from scratch or fine-tuned for 70 epochs with a batch size of 128, updating all
parameters. We use a binary cross-entropy loss. For each architecture and pretraining combination,
we perform hyperparameter tuning via grid search over the initial learning rate (1e-4, le-5, le-6, le-
7, 1e-8), learning rate scheduler (exponential, ReduceLROnPlateau), and optimizer (SGD, Adam,
AdamW). We select the best performing training configuration from the grid search according to
in-distribution validation accuracy, and then train a model with those hyperparameters five times
with different random seeds. We report the median test results across those five seeds.

3 GENERALIZATION TO UNSEEN OBJECTS

3.1 IN-DISTRIBUTION GENERALIZATION

We first measure the performance of each model on test data containing the same types of objects
used to train or fine-tune the model; e.g. models fine-tuned on pairs of handwritten characters are
then tested on handwritten characters that were not seen during training. We refer to this as the
in-distribution performance of the model. The starred () result in Figure shows the in-distribution
median test accuracy of randomly-initialized ResNet-50 models trained on the Squiggles dataset,
which contains the same type of closed contours used by much of the prior work on the same-
different relation (Fleuret et al., 2011; |Kim et al., 2018} [Funke et al., 20215 |Puebla & Bowers, [2022}
Messina et al.l [2022)). Confirming the primary findings from prior work, these models do not attain
above chance level test accuracy. The same pattern holds for randomly initialized ViT-B/16 models.

However, as the rest of Figure [3| shows, pretrained models exhibit substantially improved in-
distribution accuracy compared to randomly initialized models across all four datasets. In particular,
models pretrained with CLIP demonstrate the largest improvements, attaining nearly 100% test ac-
curacy irrespective of fine-tuning dataset. Even without any fine-tuning, CLIP features appear to be
highly useful for the same-different task—linear probes trained to do the same-different task using
CLIP ViT-B/16 embeddings of stimuli without any fine-tuning achieve between 80% and 100% me-
dian in-distribution test accuracy depending on the dataset (Table Appendix [A.3). Differences
in performance can also be observed between architectures, with ViT-B/16 models consistently out-
performing ResNet-50 after pretrainingE]

3ViTs also demonstrate qualitatively different training dynamics compared to CNNs, appearing to generalize
the same-different relation within the first few epochs of training. Furthermore, ViTs learn more smoothly than
ResNets. See AppendixE]for figures of training and accuracy curves.
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Figure 3: In-distribution test accuracy by architecture and pretraining method. Bars show
median accuracy over 5 runs (individual points also shown), with the bar color denoting pretraining
type and the x-axis denoting the dataset used for fine-tuning. See Section[2.1|for dataset descriptions,
Section[2.2]for model details, and Figure[2]for visual examples. The starred (x) result is a replication
of findings from prior work showing that CNNs trained from scratch on stimuli like the images in
Figure [I] attain chance-level test accuracy. The double-starred («x) result mirrors [Funke et al.
(2021) and|Puebla & Bowers|(2022), who show that ImageNet-pretrained CNNs attain substantially
higher in-distribution test accuracy relative to the same architectures trained from scratch.

Another main finding is that the two visually abstract, shape-based datasets (Squiggles and Alphanu-
meric) appear to pose more of a challenge to models than the Shapes and Naturalistic datasets—
models attain noticeably higher in-distribution accuracy on the latter two across architectures and
pretraining methods (although the effect is small for CLIP-pretrained models). This difference may
be due to the color and texture information that is available in these datasets, which provides addi-
tional dimensions over which objects can be compared. We explore the possibility that some models
find it easier to evaluate equality using color and texture information in addition to or instead of
shape information in Section [4]

3.2 OUT-OF-DISTRIBUTION GENERALIZATION

The previous section showed that pretrained models can generalize to unseen, in-distribution ob-
jects. However, if a model learns a truly abstract notion of same-different, it should generalize the
same-different relation to any two objects regardless of their particular visual features. Thus, model
performance on stimuli that are substantially different from training stimuli is a stronger measure
of abstraction. We therefore measure test accuracy for each model across all four datasets, yield-
ing one in-distribution score and three out-of-distribution (OOD) scores per model. Table [T] shows
median test accuracy over five seeds for CLIP-pretrained models; full generalization tables for all
pretraining styles and architectures can be found in Appendix [A.2]

Overall, CLIP ViT-B/16 models fine-tuned on the Squiggles task exhibit the strongest OOD gener-
alization, achieving >95% median test accuracy on the three out-of-distribution datasets. It is worth
noting that both this model and CLIP ResNet-50 fine-tuned on the Alphanumeric task (the model
with the second best OOD generalization performance) exhibit some degree of sensitivity to the ran-
dom seed used during fine-tuning: most random seeds result in nearly 100% OOD generalization for
ViT or >80% for ResNet across all datasets, while some seeds result in substantially lower perfor-
mance (1/5 seeds for ViT and 2/5 for ResNet). No other model configurations exhibit this bimodal
behavior. See Appendix for details.

As in the previous section, models fine-tuned on objects with visually abstract shape features only
(Squiggles and Alphanumeric) behave differently than those fine-tuned on datasets containing ob-
jects with shape, color, and texture features (Shapes and Naturalistic). The Squiggles and Alphanu-
meric models generally attain high OOD test accuracy. On the other hand, models fine-tuned on
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CLIP ResNet-50 CLIP ViT-B/16

<+ Test — <+ Test —
Train|, SQU ALPH SHA NAT | Avg. Train] SQU ALPH SHA NAT | Avg.
SQU 97.7 82.9 86.9 82.0 83.9 SQU 99.6 97.7 99.1 96.7 97.8
ALPH 82.1 97.4 92.8 91.8 88.9 ALPH 553 99.4 99.6 91.2 82.0
SHA 56.0 78.1 98.1 96.1 76.7 SHA 50.0 55.4 100 100 68.5
NAT 50.1 59.3 934 97.3 67.6 NAT 50.0 68.0 99.8 100 72.6
Avg. 62.7 73.4 91.1 90.0 Avg. 51.8 73.7 99.5 95.9

Table 1: Out-of-distribution (OOD) test accuracy for CLIP models fine-tuned on each dataset.
Rows indicate the dataset that models are fine-tuned on, while columns indicate the test dataset.
Each cell is the median performance over five random seeds. The rightmost column labeled “Avg.”
is the row-wise average of accuracy scores across OOD test sets (i.e. off-diagonal values), which
indicates how well a model fine-tuned on a given dataset is able to generalize to other datasets.
The bottom row labeled “Avg.” is the column-wise average across off-diagonal values, indicating
how difficult it is for models fine-tuned on other datasets to generalize to the given dataset. Note
that the bolded diagonals are the red bars in Figure 5] OOD generalization results for all model
architectures and pretraining styles can be found in Appendix Appendix shows median
AUC-ROC scores.

the Shapes or Naturalistic datasets generalize well to each other but struggle to generalize to the
Squiggles and Alphanumeric tasks. Note that some of this effect can be attributed to miscalibrated
bias, but not the entire effect—see Appendix [A.3]for details.

Another way to understand the generalization pattern in Table [T] is that the more “challenging” a
dataset is to generalize the same-different relation to, the more effective it is as a fine-tuning dataset
for inducing out-of-distribution generalization. For example, CLIP ViT-B/16 models fine-tuned on
datasets other than Squiggles attain a median test accuracy of only 51.8% on the Squiggles task on
average, whereas CLIP ViT-B/16 fine-tuned on Squiggles attains an average OOD test accuracy of
97.8%. On the other hand, the Shapes dataset is easy for models fine-tuned on other datasets to
generalize to (99.5% accuracy on average), but CLIP ViT fine-tuned on that “easier” dataset attains
an average OOD test accuracy of only 68.5%. This pattern of Squiggles being more “difficult” to
generalize to persists across architectures and pretraining methods (Appendix [A.7).

We further study why fine-tuning on different
datasets results in different generalization be-
haviors by computing the average cosine sim-

Dataset | ResNet-50 ViT-B/16

ilarity between objects in a given dataset us- noise 0.992 0.993
ing pretrained CLIP embeddings (Table . SQU 0.929 0.940
This value provides information about the vi- ALPH 0.881 0.889
sual variation in each dataset through the lens SHA 0.855 0.861
of a specific model: a higher number means NAT 0.788 0.805

that stimuli in that dataset are generally embed-
ded more closely together by that model. Be- Table 2: Average pairwise cosine similarity be-
fore fine-tuning, pretrained CLIP models em- tween CLIP embeddings of training stimuli
bed Squiggles stimuli more closely together within each dataset. Because n = 6,400 for
than stimuli from other datasets, potentially ex- each dataset, averages are computed over approx-
plaining the difficulty of that dataset as a test of  imately 20M pairs. We extract CLIP embeddings
OOD generalization. We also note what seems  pefore fine-tuning on the same-different task. For
to be a correlation between “closeness” of stim-  gimilarities afterwards, see Appendix @

uli in a model’s embedding space and ability

of models fine-tuned on that dataset to generalize OOD. Given that random noise is embedded
even more closely together than Squiggles stimuli, we fine-tune models on the same-different task
comparing patches of random noise and measure their OOD generalization in Appendix We
find that models fine-tuned on noise exhibit weaker OOD generalization than models fine-tuned on
Squiggles, indicating that “closeness” of stimuli is not a perfect correlate of OOD generalization and
is only part of the story.



Preprint. Under review.

Conflicting Features Test

<& b
gl | &

Color Grayscale Masked Only Color Same Color/Texture Same
(@ (b) ©

Figure 4: Examples of stimuli used to test inductive biases. Figure (a) shows examples of objects
from the three versions of the Shapes dataset used to produce results in Figure[5] Figures (b) and (c)
are examples of stimuli with conflicting signals used in Section [#.2] where either color is the same
while texture and shape are different, or color and texture are the same while shape is different.

4 EXAMINATION OF INDUCTIVE BIASES

4.1 GRAYSCALE AND GRAYMASKED OBJECTS

What features are most important for learning a genuinely abstract same-different relation, and do
vision models have inductive biases towards these useful features? Previous work has claimed that
CNN models trained on ImageNet are often biased towards texture over shape (Geirhos et al., 2019;
Hermann et al.| |2020), which seems consistent with results from |[Kim et al.| (2018) showing low
performance for CNNs trained from scratch on abstract shapes. Based on the results in the previous
section, shape information appears to be the most important for effective OOD generalization, which
motivates us to investigate whether models have an inductive bias towards it for the visual same-
different task. One way of examining this is by training models on one of three variants of the
Shapes dataset: objects are either kept the same (Figure @, “Colored”), grayscaled to preserve
texture but remove color (Figure P, “Grayscale™), or completely masked over in gray to remove
both texture and color (Figure Eh, “Masked”). If a model is biased towards color, we would expect
performance to drop on the Grayscale and Masked datasets, and if it is biased towards texture, we
would expect performance to suffer on the Masked dataset. Only a model biased towards shape
would generalize effectively to all three settings.

Figure [5] shows the results of this experiment for randomly initialized and CLIP-pretrained mod-
els (ImageNet results in Appendix [B.I)). Figure [5]A shows the test performance of three versions
of randomly initialized ViT-B/16, trained on either Color, Grayscale, or Masked versions of the
Shapes dataset (Figure ) and then tested on novel objects from each of those distributions. From
this subplot, we can see that ViT-B/16 trained from scratch can only achieve high in-distribution
accuracy (shown as hatched bars) for Color Shapes (92.9%); the hatched gray and dark gray bars
representing in-distribution accuracy for Grayscale and Masked Shapes are much lower (78.8% and
53.5% respectively). Although ViTs trained from scratch on the Color Shapes dataset attain high in-
distribution accuracy, performance drops to 66.2% and 62.6% when generalizing out-of-distribution
to Grayscale and Masked Shapes, indicated by the two lower gray bars beside the hatched green
bar. This gap suggests that ViT-B/16 may only learn to compare object color when it is trained from
scratch on the Color Shapes dataset, leading to greater errors when tested on datasets that do not
contain color. Figure 5B shows that CLIP pretraining weakens this inductive bias towards color,
allowing for high in-distribution accuracy and near-perfect out-of-distribution generalization when
trained on any of the three modified Shapes datasets.

When ResNet-50 is trained from scratch, we do not see evidence of an inductive bias towards color
or texture, since bars of all colors in Figure [5IC are at roughly equal heights. However, this bias
reappears after pretraining (albeit to a lesser extent than for randomly-initialized ViT), with a 7.3%
gap between in-distribution and Masked OOD accuracy for CLIP ResNet-50 fine-tuned on Color
Shapes (Figure 5D).
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Figure 5: Test accuracy for ViT-B/16 fine-tuned on one version of the Shapes dataset — Color,
Grayscale, or Masked - and tested on all three datasets. See Figure |4p for example objects from
each of the three datasets. Bars are grouped by fine-tuning dataset as indicated along the x-axis.
Hatched bars indicate in-distribution accuracy. Median accuracy over five seeds is reported with
individual runs plotted as points over each bar. See Appendix for ImageNet and ResNet results.

4.2 DISSOCIATING COLOR, TEXTURE, AND SHAPE

Results from Figure [5] suggest that some models learn to rely on certain features more than others
to differentiate between objects in an image. We run an additional experiment to verify these claims
by creating new stimuli for which color, texture, and shape send conflicting signals: for example,
two objects in an image might be the same color but have different textures and shapes (Figure @).
We then evaluate each model from Figure [5] on every possible combination of conflicting signals
according to experiment details in Appendix to identify which features each model might be
more biased towards. Median results are reported across five random seeds for the same set of
hyperparameters. First, our results confirm that randomly-initialized ViT-B/16 is heavily biased
towards color when trained on the Color Shapes dataset. When trained completely from scratch on
Color Shapes, ViT-B/16 will predict “same” for any stimuli in which the colors of the two objects are
the same, even if color is the only similarity between the two objects (classifying 85.6% of stimuli
like Figure b as “same”). In contrast, CLIP ViT-B/16 fine-tuned on the same Color Shapes data
classifies only 12.3% of stimuli like Figure [dp as “same.” However, our results also show that even
CLIP ViT-B/16, which appears to be unbiased, exhibits different patterns of behavior depending on
the dataset it is fine-tuned on. When tested on stimuli where color and texture are the same and
shape is different (Figure [dk), CLIP ViT-B/16 fine-tuned on Color Shapes classifies 88.8% of these
stimuli as “same.” The same model fine-tuned on Masked Shapes classifies 98.2% of these images
as “different.” All results can be found in Appendix

A similar phenomenon can be observed in pretrained ResNet-50 models. For example, CLIP
ResNet-50 fine-tuned on Masked Shapes exhibits a strong bias towards shape, classifying > 89.8%
of objects with matching shapes as “same” while classifying > 93.3% of objects with mismatch-
ing shapes as “different.” Thus, even though pretraining can mitigate the strength of ViT inductive
biases, all pretrained architectures still exhibit specific, understandable biases that are determined
by the features available in their training data. Moreover, these distinct patterns of generalization
provide a glimpse into how these networks are computing same-versus-different judgments.
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5 RELATED WORK

Prior work on the same-different relation. Learning the same-different relation when the two
objects being compared occupy the same image appears to be the most challenging setting for deep
neural networks. Most closely related to our work is [Puebla & Bowers| (2022). Their setup is very
similar to ours in a few respects: they define the same-different task identically to us, fine-tuning
ImageNet pretrained ResNet-50 models on the task using stimuli from [Fleuret et al.|(2011) (which
are nearly identical to our Squiggles stimuli), and testing OOD generalization on nine evaluation
sets. They find that their models fail to generalize out-of-distribution and draw the conclusion that
current CNNs are unable to learn the relation. Replicating their setup, we find that the difference in
our results is due to the differing architectures and pretraining methods we investigated. Our Ima-
geNet ResNet-50 model fine-tuned on Squiggles also struggles to generalize to the evaluation sets
used in|Puebla & Bowers|(2022), but our CLIP ViT-B/16 model fine-tuned on Squiggles generalizes
perfectly or nearly perfectly to seven out of nine of these sets. See Appendix [A.4]for details. Addi-
tionally, |Funke et al.|(2021) report that ImageNet pretrained ResNet-50 models fine-tuned on stimuli
from [Fleuret et al.|(2011)) can generalize the relation to in-distribution test stimuli in this setting, but
OOD generalization is not tested. The double-starred (+x) bar in Figure [3| replicates their results.
Messina et al.| (2022) show that a recurrent, hybrid CNN+ViT can attain high in-distribution test
accuracy when objects occupy the same image, while (Webb et al.| 2023b)) demonstrate success us-
ing slot attention to segment the objects. Otherwise, successful generalization of the same-different
relation with deep neural networks has been limited to a setting where objects are segmented into
two separate inputs by humans and separately passed into a neural network (Kim et al.| [2018; Webb
et al., [2020; |[Kerg et al.| 2022; |Altabaa et al., 2023 |Geiger et al.| 2023).

Abstract relation learning. More generally, our work relates to a larger body of work concerned
with the abilities of deep neural networks to learn abstract relations. The ability to abstract from
sparse sensory data is theorized to be fundamental to human intelligence (Tenenbaum et al., 2011}
Hol [2019) and is strengthened by the acquisition of language (Gentner & Hoyos||2017). In contrast,
standard deep neural networks often struggle to learn relational reasoning from sensory data alone,
even when the training corpus is very large (Mitchell, 2021} Davidson et al., [2023). This is often
pointed to as a key discrepancy between human and machine visual systems.

6 DISCUSSION AND CONCLUSION

Previous work has argued that deep neural networks struggle to learn the same-different relation
between two objects in the same image (Kim et al.l [2018; [Puebla & Bowers| [2022), but the scope
and nature of these difficulties are not fully understood. In this article, we explored a range of ar-
chitectures, pretraining styles, and fine-tuning datasets in order to thoroughly investigate the ability
of neural networks to learn and generalize the same-different relation. Some of our model config-
urations are able to generalize the relation across all of our out-of-distribution evaluation datasets;
the best model is CLIP-pretrained ViT fine-tuned on the Squiggles same-different task. Across five
random seeds, this model yields a median test accuracy of nearly 100% on every evaluation dataset
we use. The existence of such a model suggests that deep neural networks can learn generalizable
representations of the same-different relation, at least for the tests we examined.

There are a number of possible reasons why CLIP-pretrained Vision Transformers exhibit the
strongest out-of-distribution generalization. CLIP pretraining may be helpful because of the di-
versity of the dataset, which |[Fang et al.| (2022)) argue is key in the robust generalization of CLIP
models in other settings. Another hypothesis is that linguistic supervision from captions containing
phrases like “same,” “different,” or “two of” (which ImageNet models would have no exposure to)
helps models to separate same and different objects in their visual embedding spaces, an idea sup-
ported by the results of our linear probe experiments (Appendix[A.5). ViTs may perform the best on
the same-different task because of their larger receptive field size; CNNs can only compare distant
image patches in deeper layers, whereas ViTs can compare any image patch to any other as early
as the first self-attention layer. Thus, ViTs may be able to integrate complex shape information and
compare individual objects to each other more efficiently than CNNs.

What mechanisms enable certain models to generalize the same-different relation? It is possible
that models learn an internal circuit (e.g. Nanda et al.| (2023)) in which they segment two objects
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and compute their equality in embedding space, implicitly implementing the components of rela-
tional architectures from earlier works that explicitly separate objects. This would amount to true
abstraction and would theoretically enable models to generalize to any distribution of same-different
stimuli. Indeed, CLIP ViT-B/16 also generalizes with near perfect accuracy to multiple evaluation
sets used in other work (see Appendix [A.4). Since our results strongly suggest that neural networks
can learn generalizable same-different relations, the next step for future work is to investigate the
internal workings of successful models. We believe that further progress in understanding abstrac-
tion ought to come from circuit-level investigations into the same-different relation, as well as other
abstract visual relations. Such investigations may reveal additional relational reasoning capabilities
that have long been considered out of reach for standard deep neural networks.
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A ADDITIONAL GENERALIZATION RESULTS

Al

IN-DISTRIBUTION LEARNING CURVES

For each architecture and pretraining method, we plot loss and in-distribution validation accuracy
per epoch of fine-tuning or training on each dataset. Lines show averages for the same set of hyper-
parameters (for that model+dataset) across five seeds.
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Figure 6: Average loss curves for randomly-initialized ResNet-50 and ViT-B/16 trained on each
dataset. Even though loss curves for models trained on SQU go to zero, validation accuracy remains
flat, indicating that models memorize training data. Furthermore, the loss curves for randomly-
initialized ViT-B/16 distinctly mirror the hierarchy of dataset difficulty discussed in Section @

13




Preprint. Under review.

Training Loss for ImageNet ResNet-50

In-Dist. Validation Acc. for ImageNet ResNet-50

. —SQU = ALPH = SHA = NAT . —SQU = ALPH = SHA = NAT
0.8 e __—
0.6 0.6
0.4 0.4
0.2 0.2
0 s _ Epoch | 0 Epoch
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Training Loss for ImageNet ViT-B/16 In-Dist. Validation Acc. for ImageNet ViT-B/16
X = SQU = ALPH = SHA = NAT . = SQU = ALPH = SHA = NAT
0.8 0.8
0.6 0.6
0.4 0.4
0.2 02
0 Epoch 0 Epoch
0 10 20 30 40 50 60 0 10 20 30 40 50 60

Figure 7: Average loss curves for ImageNet-pretrained ResNet-50 and ViT-B/16 fine-tuned on
each dataset. Models converge substantially faster than in Figure [§] ImageNet ViT-B/16 models
fine-tuned on SHA and NAT already attain nearly 100% validation accuracy after only one epoch.
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Figure 8: Average loss curves for CLIP-pretrained ResNet-50 and ViT-B/16 fine-tuned on each
dataset. In-distribution generalization to color-containing datasets SHA and NAT seem much more
difficult for CLIP ResNet-50 than CLIP ViT-B/16 (or any other model configuration). CLIP ViT-
B/16 attains nearly 100% validation accuracy after only one epoch of fine-tuning on all datasets

except SQU.
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A.2 OUT-OF-DISTRIBUTION GENERALIZATION TABLES

We report median test accuracy over five random seeds for each pretraining method, architecture,
and fine-tuning dataset. The tables below include the four main fine-tuning datasets (SQU, ALPH,
SHA, NAT; see Figure[2), the grayscale and masked versions of the SHA dataset (SHA-G and SHA-
M; see Figure E}a), and grayscale and masked versions of the NAT dataset (NAT-G and NAT-M). As
in Table [T} rows indicate the dataset that models are fine-tuned on, while columns indicate the test
dataset. The rightmost column labeled “Avg.” is the row-wise average of accuracy scores across
OOD evaluation sets (i.e. off-diagonal values), which indicates how well a model fine-tuned on a
given dataset is able to generalize to other datasets. The bottom row labeled “Avg.” is the column-
wise average across off-diagonal values, indicating how difficult it is for models fine-tuned on other
datasets to generalize to the given dataset.

CLIP ResNet-50

< Test —

Train| SQU ALPH SHA SHA-G SHA-M NAT NAT-G NAT-M | Avg.
SQU 977 808 829 819 73.6 82.0 86.6 82.6 81.5
ALPH 83.5 974 8389 90.1 92.9 90.7 782 83.8 86.9
SHA 51.3 693 98.1 96.2 90.8 952 763 86.6 80.8
SHA-G 655 80.7 98.1 98.2 95.1 937 958 91.5 88.6
SHA-M 559 68.1 1947 92.1 76.1 79.6 100 86.4 82.4
NAT 534 76.0 952 96.1 96.1 973 87.0 943 85.4
NAT-G 556 813 954 973 98.0 957 89.7 92.7 88.0
NAT-M 598 806 906 914 90.1 94.8 943 95.0 85.9
Avg. 60.7 767 923 922 90.9 90.2 88.3 88.2

Table 3: OOD test accuracy for CLIP ResNet-50 models fine-tuned on each dataset. The model
fine-tuned on NAT-G exhibits the strongest OOD generalization.

CLIP ViT-B/16
< Test —

Train| SQU ALPH SHA SHA-G SHA-M NAT NAT-G NAT-M Avg.
SQU 9.5 977 99.1 989 94.8 955 95.0 98.1 97.0
ALPH 595 994 999 999 98.8 99.7 95.1 97.5 92.9
SHA 50.0 56.0 | 100 98.6 98.2 100 60.6 77.7 77.3
SHA-G 502 63.5 | 100 99.9 99.9 100 85.5 95.6 85.0
SHA-M 556 933 100 100 99.8 100 100 97.8 92.4
NAT 500 684 998 978 99.3 100 63.0 83.7 80.3
NAT-G 502 70.6 99.9 98.9 100 100 71.5 93.9 87.6
NAT-M 60.2 92.7 100 99.9 100 100 94.3 98.5 92.4
Avg. 5377 77.5 99.8 99.1 98.7 99.3 84.8 92.0

Table 4: OOD test accuracy for CLIP ViT-B/16 models fine-tuned on each dataset. It is interest-
ing to note the different patterns of generalization between models fine-tuned on SHA, SHA-G, and
SHA-M. Models fine-tuned on the SHA dataset (which contains color and texture) do not generalize
very well to NAT-G and NAT-M datasets; models fine-tuned on SHA-G (which removes color) gen-
eralize somewhat better to NAT-G and NAT-M; and models fine-tuned on SHA-M (which removes
color and texture) attain 100% or near 100% accuracy on NAT-G and NAT-M. The same pattern
holds for models fine-tuned on NAT, NAT-G, and NAT-M tasks.
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ImageNet ResNet-50

< Test —

Train| SQU ALPH SHA SHA-G SHA-M NAT NAT-G NAT-M Avg.
SQU 848 574 593 526 65.1 629 502 60.8 58.3
ALPH 61.3 837 604 69.0 78.5 70.2 68.0 73.9 68.8
SHA 512 66.7 944 90.1 78.4 84.0 64.1 66.5 71.6
SHA-G 539 726 708 94.6 84.2 742  90.1 78.9 75.0
SHA-M 562 689 737 924 79.4 68.7 993 79.8 77.0
NAT 503 583 804 695 78.6 90.5 624 70.7 67.2
NAT-G 50.8 722 70.0 82.8 89.8 782 69.1 81.1 75.0
NAT-M 50.1 749 669 762 84.0 742 789 88.4 72.2
Avg. 534 673 68.8 76.1 79.8 732 733 73.1

Table 5: OOD test accuracy for ImageNet ResNet-50 models fine-tuned on each dataset. Unlike
CLIP-pretrained models, ImageNet ResNet-50 fine-tuned on SQU actually exhibits the weakest
OOD generalization.

ImageNet ViT-B/16
< Test —

Train, SQU ALPH SHA SHA-G SHA-M NAT NAT-G NAT-M | Avg.
SQU 954 658 57.6 533 59.7 60.5 51.8 66.3 59.3
ALPH 81.7 97.0 505 51.0 59.1 52.1 521 67.0 59.1
SHA 50.0 50.1 100 96.2 99.3 99.4 558 82.5 76.2
SHA-G 500 612 100 99.8 99.8 99.9 739 84.8 81.4
SHA-M 577 880 999 99.8 99.6 97.5 99.9 97.1 914
NAT 500 504 97.3 804 97.8 100 504 71.8 71.2
NAT-G 500 50.2 983 91.7 99.7 99.9 54.0 87.8 82.5
NAT-M 522 723 998 993 99.9 100  91.7 98.4 87.9
Avg. 559 626 862 8l1.7 87.9 87.1 68.0 79.6

Table 6: OOD test accuracy for ImageNet ViT-B/16 models fine-tuned on each dataset. Interest-
ingly, models fine-tuned on SHA exhibit strong generalization to the grayscale and masked versions
of that dataset (but still don’t generalize to SQU or ALPH).

Randomly Initialized ResNet-50

< Test —

Train| SQU ALPH SHA SHA-G SHA-M NAT NAT-G NAT-M Avg.
SQU 49.8 4977 495 482 49.1 483 49.6 50.0 49.2
ALPH 53.1 692 589 59.0 55.2 58.6 50.0 50.4 55.0
SHA 51.2 693 82.6 804 82.3 82.9 538 61.8 68.8
SHA-G 506 672 850 85.5 87.5 84.0 59.8 67.4 71.6
SHA-M 500 570 773 71.0 77.0 750 783 74.3 69.9
NAT 529 695 81.6 804 80.3 80.2 554 68.0 69.7
NAT-G 51.1 642 773 83.6 82.8 82.5 613 72.5 73.4
NAT-M 50.0 594 772 79.1 80.3 792  69.2 74.4 70.6
Avg. 513 623 724 725 73.9 729 595 63.5

Table 7: OOD test accuracy for randomly-initialized ResNet-50 models trained on each dataset.
Models attain surprisingly high in-distribution test accuracy for certain datasets, such as SHA and
SHA-G. Models trained on SQU appear to learn nothing even though their loss curves diminish (see
Figure [6). This indicates that models are memorizing training examples, which is consistent with
results from prior work (e.g. |[Kim et al.|(2018))).
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Randomly Initialized ViT-B/16

< Test —

Train| SQU ALPH SHA SHA-G SHA-M NAT NAT-G NAT-M Avg.
SQU 517 518 51.0 535 52.7 53.8 514 53.9 52.6
ALPH 499 548 517 519 56.8 520 499 51.4 51.9
SHA 50.0 50.1 929 66.2 62.6 73.8 50.7 56.0 58.5
SHA-G 500 505 742 1788 66.5 66.4 55.7 56.4 60.0
SHA-M 500 500 565 59.6 53.5 555 813 63.5 59.5
NAT 50.1 51.7 757 58.7 62.2 76.7 534 62.8 59.2
NAT-G 50.2 518 64.1 699 70.7 67.0 559 65.9 62.8
NAT-M  50.0 505 564 56.8 58.4 582 550 66.2 55.0
Avg. 50.0 509 614 595 61.4 61.0 56.8 58.6

Table 8: OOD test accuracy for randomly-initialized ViT-B/16 models trained on each dataset.
Somehwat surprisingly given their larger receptive field size, randomly initialized ViTs perform
worse overall than randomly initialized ResNets (Table .

A.3 AREA UNDER THE ROC CURVE FOR CLIP MODELS

In addition to reporting median test accuracy across seeds, we report median area under the ROC
curve for CLIP ResNet-50 and CLIP ViT-B/16. Table [0below mirrors Table[I]from the main paper.

CLIP ResNet-50 CLIP ViT-B/16

< Test — < Test —
Train, SQU ALPH SHA NAT | Avg. Train] SQU ALPH SHA NAT Avg.
SQU 0.99 0.95 0.93 0.86 0.91 SQU 1.00 1.00 1.00 1.00 1.00
ALPH 0.96 0.99 0.96 0.97 0.96 ALPH 0.93 1.00 1.00 1.00 0.98
SHA 0.8 0.91 1.0 0.99 0.9 SHA 0.62 0.91 1.00 1.00 0.84
NAT 0.83 0.94 0.99 0.99 0.92  NAT 0.63 0.93 1.00 1.00 0.85
Avg. 0.86 0.93 0.96 0.94 Avg. 0.73 0.95 1.00 1.00

Table 9: Out-of-distribution test AUC for CLIP models fine-tuned on each dataset. Rows in-
dicate the dataset that models are fine-tuned on, while columns indicate the test dataset. Each cell
is the median performance over five random seeds. The rightmost column labeled “Avg.” is the
row-wise average of accuracy scores across OOD evaluation sets (i.e. off-diagonal values), which
indicates how well a model fine-tuned on a given dataset is able to generalize to other datasets. The
bottom row labeled “Avg.” is the column-wise average across off-diagonal values, indicating how
difficult it is for models fine-tuned on other datasets to generalize to the given dataset.

Models fine-tuned on the Shapes and Naturalistic datasets attain rather high AUC across all OOD test
datasets, notably including the Alphanumeric task (which does not contain color or texture). CLIP
ResNet-50 in particular attains > 0.8 AUC across all fine-tuning conditions and test datasets. This is
in contrast to median accuracy results reported in Table [T} which shows more of a dramatic “upper
triangular” pattern. This indicates that some of the models that achieve poor OOD test accuracy
may perform much more strongly with a correctly calibrated bias. Even still, the “upper triangular”
pattern is still evident here—models fine-tuned on Squiggles and Alphanumeric tasks demonstrate
stronger generalization than models fine-tuned on Shapes and Naturalistic tasks. Furthermore, ViT
still outperforms ResNet, achieving perfect AUC across all test datasets when fine-tuned on Squig-
gles.

A.4 TESTING MODELS ON EVALUATION SETS FROM PUEBLA & BOWERS|(2022)

We test two of our models on the evaluation sets from [Puebla & Bowers|(2022): ImageNet ResNet-
50 fine-tuned on SQU, which is roughly equivalent to the models tested in [Puebla & Bowers|(2022),
and CLIP ViT-B/16 fine-tuned on SQU, which is our best model. We use code from [Puebla &
Bowers| (2022) to generate test sets of 6, 400 images evenly split between the classes, which is equal
to the size of our test sets. Figure@] show all 10 evaluation datasets used in this section. Furthermore,
we report median AUC-ROC to better match Puebla & Bowers|(2022), who report mean AUC-ROC.
The rest of our methodology follows Section
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Figure 9: Examples of “same” and ‘“‘different” stimuli from all 10 evaluation sets in Figure
The first dataset (SQU) is the in-distribution test set and is the same as our SQU dataset from the
main body of this paper. The other nine datasets are generated following Puebla & Bowers| (2022).
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ImageNet ResNet-50 CLIP ViT-B/16

Figure 10: Out-of-distribution test AUC-ROC for ImageNet ResNet-50 and CLIP ViT-B/16
fine-tuned on Squiggles. Median AUC-ROC over five seeds is reported with individual runs also
shown. The legend on the right indicates the test dataset. The two red bars in this figure show in-
distribution test AUC-ROC, which is also reported for CLIP ViT-B/16 in TableEl

Our ImageNet ResNet-50 results are comparable to results from [Puebla & Bowers| (2022)) but not
identical. Differences in our specific results may be due to our differing methods for creating our
datasets. For example, the sizes of their objects are variable and may either be smaller or larger
than our chosen size of 64264 pixels (see Figure 0] for examples). Their ImageNet ResNet-50 model
is fine-tuned on [Fleuret et al. (201T) stimuli in which the sizes of the objects also vary, whereas
our model is fine-tuned on objects of a fixed size. We also thicken the lines of our SQU stimuli,
while |Puebla & Bowers| (2022) do not. Furthermore, they use more fine-tuning images than us
(28,000 versus 6,400), and their hyperparameters likely differ as well. Even still, the larger pattern
of results is the same—ImageNet ResNet-50 fine-tuned on the same-different relation using stimuli
from |Fleuret et al.| (2011) (our SQU stimuli) attains relatively high in-distribution test accuracy
but struggles to generalize out-of-distribution. This agrees with the results we obtain using our
evaluation sets (SQU, ALPH, SHA, & NAT); Table|§|shows that ImageNet-ResNet-50 fine-tuned on
SQU struggles to generalize out-of-distribution.

In contrast, CLIP ViT-B/16 fine-tuned on our Squiggles dataset achieves perfect or nearly perfect in-
and out-of-distribution generalization, with the exception of two test datasets (Lines and Arrows).
This performance is rather remarkable given that objects in the evaluation datasets from
(2022) vary greatly in size, whereas our CLIP ViT-B/16 model is fine-tuned on objects of
a fixed size only. This suggests that CLIP ViT-B/16 fine-tuned on SQU may learn a same-different
relation that is invariant to certain qualities (such as object size) without explicit fine-tuning for such
invariance. Figure [TT] shows examples of stimuli from the two more challenging datasets (Lines
and Arrows) for which all five CLIP ViT-B/16 random seeds make errors. For Arrows, this lack
of generalization may be due to symbols overlapping or being much closer to each other than any
stimuli in our fine-tuning data. Failure on this dataset may simply be due to difficulties in segmenting
the objects rather than a lack of a general same-different representation. We also see a very slight
decrease in test AUC-ROC for the Scrambled dataset, which is an interesting case. Errors made
for this dataset were primarily due to our model misclassifying slightly scrambled and unmodified
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Figure 11: “Different’” images misclassified by CLIP ViT-B/16 as ‘“‘same’ from [Puebla & Bow-
ers| (2022)’s Lines and Arrows datasets. These stimuli are randomly sampled from the set of
stimuli misclassified by all five seeds. Nearly 100% of model errors across evaluation datasets and
seeds are mistaking “different” stimuli for “same” stimuli, so we only show mistakes of this kind.
Note that the “different” Lines stimuli (middle row) are actually the same under reflection. Confu-
sion matrices computed on these two datasets for the models tested in this section can be found in

Appendix

polygons as the “same.” This error may offer insight into how exactly CLIP ViT-B/16 fine-tuned on
Squiggles compares objects in an image.

However, the most surprising finding is that CLIP ViT-B/16 classifies all stimuli in the Lines dataset
as “same” (see Appendix D)), and that its ROC-AUC score is below 0.5. This is striking because
all objects in the Lines dataset are actually the same under reflection. This result makes it very
tempting to conclude that CLIP ViT-B/16 actually learns to generalize to reflections without ever
being fine-tuned to do so, although further work is necessary to draw this conclusion with any cer-
tainty. Furthermore, if models see the same image multiple times but flipped horizontally during
pretraining, which is a common data augmentation, then pretrained models may already have reflec-
tion invariance baked in. Pretraining data augmentations have been shown to have such an effect on
other abstract relational learning tasks (Davidson et al., [2023). Finally, the Lines dataset consists
entirely of one unique object that is scaled and flipped to create all stimuli, so if our model makes
an error for this particular object, that error could plausibly occur across the entire dataset.

A.5 PROBING CLIP EMBEDDINGS

In order to determine the degree to which CLIP pretraining alone encodes useful information for
learning the same-different relation, we perform a linear probe on the CLIP ResNet-50 and CLIP
ViT-B/16 models. As in our main experiments, we append a linear binary classifier to the visual
backbone of each model. However, in this experiment, we freeze the pretrained weights in the
backbone of each model and train only the parameters of the classifier on the fixed embeddings
given by the backbone. Results are displayed in Table[I0]

CLIP ResNet-50 Probe CLIP ViT-B/16 Probe
< Test — <+ Test —
Train| SQU ALPH SHA NAT Avg. Train] SQU ALPH SHA NAT Avg.
SQU 62.4 50.0 50.0 50.0 50.0 SQU 81.9 51.1 55.8 52.7 53.2

ALPH 50.0 727 50.1 498 499 ALPH 500 | 944 53.1 58.5 53.9
SHA 50.0 500 @ 85.6 503 50.1 SHA 500 500 [999 904 635
NAT 50.0 499 52.5 85.6 50.8 NAT 500  50.1 70.6 100 56.9

Avg. 50.0 50.0 50.8 50.0 Avg. 50.0 50.4 59.8 67.2

Table 10: Out-of-distribution test accuracy for the best linear probe trained on CLIP embed-
dings of each dataset.

We find that the linear probe can generally exhibit rather high in-distribution generalization. CLIP
embeddings of Naturalistic stimuli produce the highest in-distribution test accuracy, followed closely
by Shapes. CLIP embeddings of Alphanumeric and Squiggles datasets are more difficult to learn
from. This mirrors the ordering observed in Section in which the two same-different tasks
containing color and texture features tend to be easier to learn, while the shape-based tasks tend to
be more difficult. The fact that Alphanumeric and Squiggles probes are unable to generalize OOD,
however, is odd considering the fact that the solutions to both of these datasets should be the same
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(based on shape); this implies there is some other signal that linear probes are picking up on in order
to separate “same” and “different” stimuli in these cases.

In the case of CLIP ResNet-50, the linear probe does not generalize to any OOD stimuli. On the
other hand, CLIP ViT-B/16 probes trained on Shapes or Naturalistic stimuli generalize somewhat
well to each other (90.4% generalization from Shapes to Naturalistic; 70.6% from Naturalistic to
Shapes). Somewhat surprisingly, the CLIP ViT-B/16 probe trained on the Squiggles dataset does
not generalize the relation to other datasets despite the impressive generalization performance of the
fully fine-tuned model.

A.6 CLIP EMBEDDING COSINE SIMILARITY DISTRIBUTIONS

1e6 Cosine Similarities for CLIP ResNet-50 Stimuli Representations
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Figure 12: Distribution of cosine similarities between CLIP ResNet-50 representations of the
Squiggles, Alphanumeric, Shapes, and Naturalistic datasets. These cosine similarities are calcu-
lated before fine-tuning. n = 6, 400 for each dataset, 20.48M pairs calculated per dataset.

1e6 Cosine Similarities for CLIP ViT-B/16 Stimuli Representations
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Figure 13: Distribution of cosine similarities between CLIP ViT-B/16 representations of the
Squiggles, Alphanumeric, Shapes, and Naturalistic datasets. These cosine similarities are calcu-
lated before fine-tuning. n = 6,400 for each dataset, 20.48M pairs calculated per dataset.
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Before Fine-tuning Fine-tuned on SQU
Dataset | ResNet-50 ViT-B/16 ResNet-50 ViT-B/16

noise 0.992 0.993 0.983 0.997
SQU 0.929 0.940 0.992 0.283
ALPH 0.881 0.889 0.984 0.634
SHA 0.855 0.861 0.949 0.548
NAT 0.788 0.805 0.937 0.568

Table 11: Average pairwise cosine similarity between CLIP embeddings of training stimuli
within each dataset. Because n = 6,400 for each dataset, averages are computed over 20.48M
pairs. We extract CLIP embeddings before fine-tuning on the same-different task and after fine-
tuning on the Squiggles task (median across five seeds).

Interestingly, Table [TT] shows that ViT-B/16’s embeddings seem to become more distinct during
fine-tuning whereas ResNet-50’s become closer together. This is likely not due to differences in
generalization performance given that the median difference between ViT-B/16 and ResNet-50 for
within-distribution generalization is only 1.9%, and the median difference in out-of-distribution
generalization is 13.9%. We do not have a clear explanation for this phenomenon, and also concede
that it may be a methodological problem resulting from calculating cosine similarity between CLIP
embeddings after extensive fine-tuning.

A.7 FINE-TUNING ON NOISE

We initially calculated average pairwise cosine similarity for CLIP representations of random Gaus-
sian noise as a baseline for measuring visual diversity within our datasets (Table [2). However, after
observing a pattern in which more closely-embedded datasets induce stronger out-of-distribution
generalization, we decided to see whether models perform even better when they are fine-tuned on
a version of the same-different task where they must label two same-versus-different 64x64 squares
of random Gaussian noise (see Figure. Theoretically, if models fine-tuned on this task are forced
to compare objects on the level of individual pixels, they should be able to generalize to any same-
different dataset in which objects are the same on a pixel level (the definition of sameness we employ
in this work).

Figure 14: Examples of stimuli used when fine-tuning on noise. From left to right: a single
example object; a stimulus labeled as “same;” a stimulus labeled as “different.” All noise stimuli
were sampled from a Gaussian distribution with 4 = 0 and 0 = 1.

We use the same methodology as described in Section 2] That is, we fine-tune CLIP ResNet-50 and
CLIP ViT-B/16 on this task, sweeping over the learning rates (le-4, le-5, le-6, le-7, 1e-8) and two
learning rate schedulers (exponential, ReduceLROnPlateau). We report results for the best models
trained for 70 epochs with a batch size of 128 in Table[12]

As shown in Table[I2] models fine-tuned on noise largely fail to generalize. One likely explanation
for this lack of generalization is that models fine-tuned on noise learn to attend to small regions
in both objects (e.g. two adjacent pixels in the corner of each object) and calculate whether those
small regions are equivalent. This might help explain why CLIP ViT-B/16 fine-tuned on noise
generalizes quite strongly to the SHA and NAT datasets—these two datasets contain textures, so this
potential strategy of computing equality based on highly localized features would work well. On
the other hand, this strategy would likely fail for stimuli in the Squiggles and Alphanumeric tasks,
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< Test —
Model | NOISE SQU ALPH SHA NAT | Avg.
ViT-B/16 95.3 50.3 65.1 97.1 96.9 77.4
ResNet-50 94.9 50 50 61.2 59.3 55.1
Avg. 95.1 50.2 57.6 79.2 78.1

Table 12: Out-of-distribution test accuracy for CLIP models fine-tuned on noise. Rows indicate
model architecture and number of epochs, while columns indicate the test dataset. Each cell is the
median performance over five random seeds. The rightmost column labeled “Avg.” is the row-wise
average of accuracy scores across OOD evaluation sets (i.e. not including the NOISE column),
which indicates how well a model is able to generalize to other datasets. The bottom row labeled
“Avg.” is the column-wise average, indicating how difficult it is for models fine-tuned on noise to
generalize to that given dataset.

which consist of primarily empty space and require the integration of more global shape information.
Although the idea of training on noise for abstract-relations is promising in theory (since there should
not be spurious, non-generalizing visual features), it would require careful design to counteract such
undesirable local “shortcuts” (Geirhos et al., [2020]).

A.8 SENSITIVITY OF OOD GENERALIZATION TO RANDOM SEED

In Table [I] we report median out-of-distribution test accuracy across five random seeds for CLIP
ResNet-50 and CLIP ViT-B/16. Here, we extend this table by reporting out-of-distribution test
accuracy for all five random seeds.

Fine-Tuned on SQU Fine-Tuned on ALPH Fine-Tuned on SHA  Fine-Tuned on NAT
1OO'A) {B) 10) ® - {D) 2
. % %

90 1 1 % . °
80 Ry o
70 1
60 1
50 1
100{® ® 10 o ¢ @ o o B ° o
90 1
80 1
70 1
60 1
50 1

ResNet-50

Test Accuracy (%)

ViT-B/16

Test Dataset
SQU ALPH SHA NAT

Figure 15: Out-of-distribution test accuracy for CLIP models for each fine-tuning dataset
across all five random seeds. The top row shows test accuracy for CLIP ResNet-50, while the
bottom row shows test accuracy for CLIP ViT-B/16. The columns indicate the fine-tuning dataset
(from left to right: SQU, ALPH, SHA, & NAT), while the legend indicates the test dataset. Each
individual plot point is the test accuracy for a given random seed. Stars represent the median test
accuracy, which are equivalent to the values reported in Table E}

All model configurations demonstrate some sensitivity to random seed. However, the two best
generalizing models—CLIP ResNet-50 fine-tuned on ALPH (Figure[I5B) and CLIP ViT-B/16 fine-
tuned on SQU (Figure [I5E)—demonstrate a distinct bimodal distribution across seeds. While some
seeds attain high test accuracy across all three OOD test sets, one (CLIP ViT) or two seeds (CLIP
ResNet) perform substantially worse across all three sets. This creates a visible gap between points
that persists across all three OOD test sets in panels B and E in Figure [I5] Other configurations
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demonstrate such a gap for one or two test sets (e.g. panel A and panel D in Figure[I3)), but no other
configurations demonstrate such a gap for all three OOD sets.

It is interesting to consider the fact that the only randomness in our setup for these models is in
the data batching (since models are initialized with deterministic, pretrained weights). This indi-
cates that the order in which models see particular examples from the training set is important for
abstraction and determines whether or not models discover the generalizing solution.

B INDUCTIVE BIAS EXPERIMENT DETAILS

B.1 GRAYSCALE AND MASK DETAILS

Grayscaled Shapes. Images were taken from the Shapes dataset (Section [2) and converted to
grayscale using the PIL ImageOps.grayscale method.

Masked Shapes. Images were taken from the Shapes dataset. Because the background was al-
ready white, we selected RGB pixels that were < (250, 250, 250) and replaced them with pixels of
the value (100, 100, 100). Extra pixels with any values greater than 250 that are not equal to the
background color (255, 255, 255) were also converted to (100, 100, 100).

Because training datasets are constructed by sampling random objects, the exact objects used be-
tween the original, grayscale, and masked datasets are not the same.

Test Dataset
[ Color Shapes (OOD) [ Grayscale Shapes (OOD) [ Masked Shapes (OOD)
Color Shapes (in-dist) Grayscale Shapes (in-dist) N Masked Shapes (in-dist)

Randomly Initialized Pretrained on ImageNet Pretrained on CLIP

10044 T i I B

904
801 .
70 1

“ il

ViT-B/16

Test Accuracy (%)

ResNet-50

" " 1 ‘
N
60 N | ]

Train Dataset

Figure 16: Test accuracy for models trained or fine-tuned on one version of the Shapes dataset
(Color, Grayscale, Masked) and then tested on all three versions of the dataset. Example stimuli
shown in Figure [dh. Hatched bars indicate in-distribution accuracy. Median results for the same
hyperparameters trained for five different seeds are reported, with individual runs also plotted as
translucent points.

B.2 DISSOCIATING COLOR, TEXTURE, AND SHAPE
Results from Figure [5] suggest that some models learn to rely on certain features more than others

to differentiate between objects in an image. To delve deeper into this result, we create a series of
eight testing datasets based on the Shapes dataset where we vary whether shape, color, and texture
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Acc. Proportion of “Same” Predictions
Predicted | acc. none S T TS C CS CT CTS
(no bias) 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
color 1.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00
texture 1.00  0.00 0.00 1.00 1.00 0.00 0.00 1.00 1.00
shape 1.00 0.00 1.00 © 0.00 1.00 0.00 1.00 © 0.00 1.00
ViT-B/16 (Rand) | acc. none S T TS C CS CT CTS
Color Shapes 091 0.15 0.15 0.17 0.16 [ 0.86 0.87 096 097
ViT-B/16 (CLIP) | acc. none S T TS C CS CT CTS
Color Shapes 1.00 0.00 0.01 0.03 0.09 0.12 0.41 0.89 1.00

Grayscale Shapes  1.00  0.00 0.00 0.01 0.06 0.02 0.26 0.59 1.00
Masked Shapes 1.00 000 0.04 000 024 000 047 0.02 1.00

Table 13: Predicted results of dissociation experiments compared to actual results from ViT-
B/16 models fine-tuned on different versions of the original SHA dataset. The proportion of
“same” predictions for different types of images should change based on the inductive bias a given
model is using. Even CLIP-pretrained ViT-B/16, which seemed from Figure [5]to be unbiased, is
revealed to have a slight bias towards either color+texture or shape depending on its fine-tuning
dataset. Median results over five seeds are reported for each row. Results for Random ViT-B/16
fine-tuned on Grayscale and Masked Shapes are not shown due to low accuracy (making the results
difficult to interpret); full table is Table

are the same or different between two objects in an image (examples in Figure [I7). We label each
set of images with a string of letters representing whether color (C), texture (T), or shape (S) are
the same. For example, images containing two objects that are the same color, different textures,
and the same shape are labeled CS. CTS and “none” represent the tokens being completely the same
or completely different respectively. We then evaluate the same models from Figure [5 on each of
these test sets by measuring the proportion of “same” predictions for each dataset. If this proportion
is high, the model views stimuli in those datasets as “same”; if this proportion is low, it means
that the model views them as “different.” The first few rows of Table [13| show the hypothesized
behavior of theoretical models with certain inductive biases when tested on each of the generated
datasets. If a model is making predictions by comparing object shape (for example), then it should
predict “same” whenever the shape of the two objects in an image are the same (S) and “different”
otherwise. Ideally, a model that has picked up on our definition of “same” as pixel-level similarity
should not be predicting “same” for any case except for CTS.

Comparing the first row of results to predicted behavior, we immediately see that the “same” pre-
dictions made by Random ViT-B/16 on the Color Shapes dataset pattern closely with our predicted
“color-biased model” behavior. This confirms our result from Figure [5| which showed that this
model could not generalize to datasets without color. If the same architecture is pretrained with
CLIP and then fine-tuned on the Color Shapes dataset, its predictions become much more sensitive
to texture and shape. Upon closer inspection, however, these results still reveal a residual bias to-
wards color and texture that was not as apparent in Figure[5] For example, when models are tested on
objects with the same color and texture but different shapes (CT), CLIP ViT-B/16 will classify them
as the same when fine-tuned on Color or Grayscale Shapes, but different when fine-tuned on Masked
Shapes. This indicates that CLIP ViT-B/16 still has an inductive bias towards color and texture after
pretraining, and only resorts to comparing object shape if there are no other features available in its
fine-tuning data. Results in the full table for all models tell a similar story (Table [I4): even models
that generalize well OOD exhibit specific, understandable biases determined by features available
in their training datasets.

One limitation with this approach is that the difference between color and texture is somewhat ill-
defined on a pixel level. This may be an explanation for the fact that no models tested exhibited a
pattern close to our hypothesized “texture” model, despite evidence for “color” and “shape” being
quite clear.
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Figure 17: Examples of training images from every Table[I3and Table[14]testing dataset. Every

test dataset contained 6400 images and 300 unique objects.

Acc. Proportion of “Same” Predictions
Predicted | acc. none S T TS C CS CT CTS
(no bias) 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
color 1.00 0.00 0.00 0.00 0.00
texture 1.00 0.00 0.00 0.00
shape 1.00 0.00 0.00 0.00
ViT-B/16 | acc. none S T TS C CS CT CTS
SHA (Rand) 091 0.15 0.15 0.17 0.16 | 0.86
GRAY-SHA (Rand) 0.77 033 035 045 050 041 048 0.80
MASK-SHA (Rand) 0.61 052 065 055 066 059 068 0.63 0.73
SHA (ImageNet) 1.00 0.00 0.02 001 006 034 081 0.82
GRAY-SHA (ImageNet) 1.00 0.00 0.01 0.00 0.06 005 040 047
MASK-SHA (ImageNet) 1.00 0.00 0.15 0.00 028 0.00 @ 082 0.03
SHA (CLIP) 1.000 0.00 0.01 0.03 0.09 0.12 041
GRAY-SHA (CLIP) 1.00 0.00 0.00 0.01 0.06 0.02 026 0.59
MASK-SHA (CLIP) 1.00 0.00 0.04 0.00 024 0.00 047 0.02
ResNet-50 | acc. none S T TS C CS CT CTS
SHA (Rand) 083 025 029 034 035 043 044 071
GRAY-SHA (Rand) 084 027 029 039 041 038 040 0.81
MASK-SHA (R) 0.79 026 036 037 048 034 047 047 0.85
SHA (ImageNet) 093 0.15 049 0.17 059 0.39 0.43
GRAY-SHA (ImageNet) 0.79 041 0.64 044 0.65 0.59 0.61
MASK-SHA (ImageNet) 0.84 0.17 049 0.17 045 027 | 083 0.28 | 0.85
SHA (CLIP) 098 0.04 0.11 0.05 0.15 020 060 047
GRAY-SHA (CLIP) 098 0.04 042 0.07 054 006 053 0.15
MASK-SHA (CLIP) 098 0.04 1090 005 [095 005 [ 092 0.07

Table 14: Predicted results of dissociation experiments, along with actual results from all mod-
els trained on different versions of the original Shapes dataset. Ideally, the proportion of “same”
predictions for different types of images should change based on the inductive bias a given model
is using. Median results over five seeds are reported for each row. SHA=Color Shapes, GRAY-
SHA=Grayscale Shapes, MASK-SHA=Masked Shapes.
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One insight from Table[T4]not discussed in the main paper is ResNet-50’s tendency to be biased more
towards shape than ViT-B/16. Considering previous work that describes ViT models as more able
to attend to global features than ResNet-50 models Raghu et al.| (2021)), this pattern is surprising, as
shape seems to be a more global feature than texture or color.
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Figure 18: Validation accuracies for a ViT-B/16 ImageNet model fine-tuned on different num-
bers of unique objects and different amounts of Squiggles stimuli. Hyperparameters chosen
correspond with the best-performing Squiggles model from 3] Each cell is averaged over five dif-
ferent seeds. ImageNet ViT-B/16 must be fine-tuned on at least 25,600 images containing at least
1,024 unique tokens to achieve high out-of-distribution accuracy.

D OUT-OF-DISTRIBUTION TEST CONFUSION MATRICES

We consider the pattern of errors produced by two of our models: ImageNet ResNet-50 fine-tuned
on SQU, which is the most similar to models tested in some prior work (Funke et al, 2021} [Pueblal
2022), and CLIP ViT-B/16 fine-tuned on SQU, which is our best model. We compute
confusion matrices for both of these models on our four main test sets (SQU, ALPH, SHA, & NAT)
as well as the Lines and Arrows test sets from [Puebla & Bowers| (2022)), which our CLIP ViT-B/16
model finds challenging (see Appendix [A.4]for visual examples and results). We report matrices for
the random seed that yields the median in-distribution test accuracy (i.e. the run that corresponds to
the bars in Figure [3).

In general, both ImageNet ResNet-50 and CLIP ViT-B/16 models tend to mistake “different” stimuli
for “same” stimuli more frequently than the converse. However, this is not always the case for Ima-
geNet ResNet-50—as the top row of Figure [19] shows, ResNet makes the opposite error (mistaking
“same” for “different””) much more frequently when tested on SHA and NAT datasets. This is never
the case for CLIP ViT-B/16 (bottom row of Figure [T9). Furthermore, the difference in frequency
between the two types of errors is much more stark for CLIP ViT-B/16; the vast majority of errors
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Figure 19: Confusion matrices for ImageNet ResNet-50 (top row) and CLIP ViT-B/16 (bottom
row) fine-tuned on SQU. Each column gives confusion matrices for a given test set as indicated by
the labels above. The rows of the confusion matrices are the true labels (TD means “true different”;
TS means “true same”), while the columns of the matrices are the predicted classes (PD means
“predicted different”; PS means “predicted same”). Each cell in the matrix shows the number of test
images with a given true label and a predicted label as assigned by each model.

made by this model across all test datasets are mistaking “different” stimuli for “same” stimuli.
Hochmann| (2021)) argues that much of the studies on same-different relation learning in children
and animals can actually be accounted for by subjects learning a concept of “same” without learning
a symmetric concept of “different;” in other words, a subject can achieve high performance on many
same-different tasks used in the cognitive science literature by only recognizing when two objects
are the same as each other (without explicitly representing “different”). This seems to align with
the errors made by CLIP ViT-B/16. It is possible that this model learns a stronger or more coherent
concept of sameness and thus decides to output “same” whenever it is less certain.

Another notable result is the CLIP ViT-B/16 confusion matrix for the Lines dataset from [Puebla &
Bowers|(2022)). The model assigns the label “same” to 100% of the “different” stimuli with relatively
high confidence (as indicated by the < 0.5 AUC-ROC score on this dataset in Appendix [A4). This
is in contrast to ImageNet ResNet-50, which appears to assign category labels at random for the
Lines dataset. As extrapolated in Appendix [A.4} the “different” stimuli in this dataset are actually
the same under reflection, suggesting that CLIP ViT-B/16 fine-tuned on SQU may learn a reflection-
invariant same-different relation despite not being fine-tuned for such invariance (although this is
speculative).
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