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Abstract

Young children develop sophisticated internal models of the world based on their visual experience. Can such
models be learned from a child’s visual experience without strong inductive biases? To investigate this, we train
state-of-the-art neural networks on a realistic proxy of a child’s visual experience without any explicit supervision or
domain-specific inductive biases. Specifically, we train both embedding models and generative models on 200 hours
of headcam video from a single child collected over two years and comprehensively evaluate their performance in
downstream tasks using various reference models as yardsticks. On average, the best embedding models perform
at a respectable 70% of a high-performance ImageNet-trained model, despite substantial differences in training
data. They also learn broad semantic categories and object localization capabilities without explicit supervision,
but they are less object-centric than models trained on all of ImageNet. Generative models trained with the same
data successfully extrapolate simple properties of partially masked objects, like their rough outline, texture, color,
or orientation, but struggle with finer object details. We replicate our experiments with two other children and
find remarkably consistent results. Broadly useful high-level visual representations are thus robustly learnable from
a representative sample of a child’s visual experience without strong inductive biases.

Young children develop powerful internal models of the visual world. Their visual abilities for object categorization
(Bomba and Siqueland, 1983; Murphy, 2004), segmentation (Kellman and Spelke, 1983), and physical prediction
(Spelke et al., 1992) emerge well within the first year. By the time children are 4-5 years old, their object recognition
capabilities are already mature enough that they can outperform highly capable computer vision models in challenging
real-world visual object recognition tasks in head-to-head comparisons (Ayzenberg and Lourenco, 2020; Huber et al.,
2022).

Is it possible to learn such powerful internal models of the world from a child’s experience without strong, domain-
specific inductive biases? Versions of this nature vs. nurture question have been debated for centuries (Locke,
1690; Leibniz, 1704) and they continue to shape our understanding of intelligence. In the last couple of decades,
some developmental psychologists hypothesized various innate inductive biases related to objects, agents, and space
(Kellman and Spelke, 1983; Spelke et al., 1992; Spelke, 1994), as well as biases governing the categorization and
labeling of objects (Markman, 1990; Merriman et al., 1989). Others, on the other hand, argued for the feasibility of
building internal models of the world without such inductive biases, relying instead on the richness of the developing
child’s experience (Elman et al., 1996).

Here, we approach this age-old nature vs. nurture question through a modern lens: we investigate what today’s
highly generic deep neural networks can learn from a representative sample of a child’s egocentric visual experience.
We train state-of-the-art self-supervised learning (SSL) algorithms on a large-scale, longitudinal, developmentally
realistic dataset of headcam videos recorded from the perspective of individual children (Sullivan et al., 2022). The
dataset comprises hundreds of hours of longitudinal, natural videos recorded over 26 months of early development.
Distinctive to our work, we train models on data from each individual child, simulating the child’s learning problem
as closely as possible. By using highly generic architectures and learning algorithms, we seek to understand what
kinds of perceptual capabilities might be learnable from a child’s visual experience without strong inductive biases.

We train both image embedding models that can be used in a variety of downstream visual recognition, segmentation,
or detection tasks, and generative models that can be used to generate images and assign likelihoods to them. We
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Figure 1: Schematic overview of the experiments. (a) Example video frames from longitudinal headcam recordings
from one of the children in SAYCam (Sullivan et al., 2022). (b) Training self-supervised embedding models. For
purposes of illustration, a self-distillation type self-supervised learning algorithm is shown only, where the high-level
goal is to learn representations that are similar across different views of the same image. (c) Evaluating the self-
supervised embedding models. We evaluate the learned representations by training lightweight readouts on top
of frozen features in 9 downstream classification or segmentation tasks. (d) Training self-supervised generative
models. Frames are encoded into a spatially downsampled discrete code with the help of an optimized codebook.
An autoregressive transformer model is trained to predict the next token in the discrete code. (e) Evaluating the
self-supervised generative models. The top half of an evaluation image is given as context to the model. The model
completes the bottom half of the image in the latent space and the model-completed latent code is decoded back
to the image space for evaluation.

quantitatively evaluate the capabilities of the trained models, compare their performance against a battery of reference
models, and provide qualitative insights into the properties of the learned representations.

Models

We train two distinct types of models on a representative sample of a child’s visual experience: embedding models
and generative models. Embedding models aim to learn high-level visual features that are useful for a variety
of downstream visual tasks. Generative models can generate novel images (both conditional on a given context
and unconditionally) and assign likelihoods to images, providing a complementary tool for examining the acquired
knowledge. Here, we briefly describe the algorithms, architectures, and training/evaluation methods for these models
(Figure 1). The Appendix provides additional details.

Embedding models

Self-supervised learning algorithms: SSL algorithms seek to learn useful, high-level representations from a dataset
without using any explicit supervision signals like semantic labels. Instead, they use augmented views of the training
examples to generate self-supervision signals (Figure 1b). We train embedding models with three different visual
SSL algorithms: DINO (Caron et al., 2021), Mugs (Zhou et al., 2022), and masked autoencoders (MAE) (He et al.,
2022).

Model architectures: Since our goal is to address a question of learnability with minimal inductive biases, we choose
highly generic model architectures with minimal inductive biases. In particular, we focus mainly on vision transformer
(ViT) models (Dosovitskiy et al., 2020). We train models in three sizes: ViT-S, ViT-B, ViT-L (with 21M, 85M,
306M parameters, respectively), all with 16×16 patches. With DINO, we further train ViT-B models with 14×14
patches, as well as a convolutional ResNeXt-50 (32x4d) model (Xie et al., 2017) with 25M parameters.
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Both ViTs and the ResNeXt model incorporate two main inductive biases: hierarchical composition and translation
invariance. These are very generic inductive biases quite different from the stronger, more domain-specific inductive
biases about language, objects, agents, categories, or places, sometimes hypothesized by psychologists. The ResNeXt
model incorporates a further spatial inductive bias with its convolutional filters. Our implementation of ViTs, on the
other hand, uses learned position embeddings that are initialized randomly, therefore ViTs effectively start out with
no spatial inductive biases.

Training data: Our main goal is to evaluate what can be learned from a representative sample of the visual experience
of a developing child. To this end, we use the SAYCam dataset (Sullivan et al., 2022): a large-scale, longitudinal
dataset of natural headcam videos recorded from the perspective of three young children (S, A, and Y) between the
ages of 6 to 31 months (Figure 1a). The dataset contains 194 hours of video from S (6-30 months), 141 hours of
video from A (8-31 months), and 137 hours of video from Y (7-24 months) for a total of 472 hours of video. Data
from each child consist of a series of continuous, uninstructed headcam recordings, usually 1-2 hours of recording
per week. These contain both inside and outside recording episodes. Videos are subsampled at 5 frames/second, for
a total of 9 million frames across three children. We train models on data from each child individually as well as on
the combined data (denoted as SAY below). Further details regarding the dataset can be found in Sullivan et al.
(2022).

Reference models: To compare SAYCam-learned representations with representations learned from static pho-
tographic images, we train ViT-B/14 models (with DINO) on ImageNet (Russakovsky et al., 2015) and randomly
sampled subsets of ImageNet (100%, 10%, and 1% of the training set). To compare SAYCam-learned representations
with representations learned from other video datasets, we train ViT-B/14 models (with DINO) on 200-hour long sub-
sets of Kinetics-700 (Smaira et al., 2020) and Ego4D (Grauman et al., 2022) datasets (denoted as Kinetics-200h and
Ego4D-200h below). Kinetics-700 consists of very short YouTube clips of people performing various actions, whereas
Ego4D consists of long, continuous, egocentric headcam recordings from adults. We finally consider a randomly
initialized, untrained reference model with the same architecture as the other reference models (ViT-B/14).

Evaluation: We use seven different classification tasks and two different semantic segmentation tasks for evaluation
(see Figure 1c for the full list). These include a classification task based on a labeled subset of the data from child
S in SAYCam (Labeled S), common object recognition (ImageNet) and image segmentation (COCO) benchmarks
as well as a place classification task (Places365). Using a wide range of evaluation tasks and datasets allows us to
arrive at a more complete and robust picture of the overall quality of the learned visual representations. To evaluate
visual representations learned exclusively through SSL, we use either completely non-parametric evaluation methods
or methods that involve learning only a single layer of learnable parameters on top of frozen features (Figure 1c).

Generative models

Self-supervised learning algorithm: We train generative transformer models on child headcam data, using a
VQGAN-GPT architecture. We first learn a discrete codebook with a VQGAN (Esser et al., 2021), and then encode
each video frame as a spatial grid of integers from the codebook. These codes are then flattened and fed into a GPT
model to learn a prior over the video frames. The GPT model is trained with the standard autoregressive language
modeling objective (Radford et al., 2019), i.e. predicting the next token given all previous tokens in the flattened
code (Figure 1d).

Evaluation: We consider conditional generation tasks where we take evaluation images, give the upper half of
each image as context, and ask the model to complete the bottom half of the image conditional on the upper half
(Figure 1e).
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Results

Embedding models

Quantitative summary: Figure 2 summarizes the evaluation results of the embedding models, singling out the effects
of SSL algorithm (Figure 2a), model architecture (Figure 2b), and pretraining data (Figure 2c) on downstream task
performance. In Figure 2a-c, we normalize the performance on each task by the performance of a ViT-B/14 model
trained with DINO on all of ImageNet, the overall best model. The DINO algorithm performs the best in our
evaluations, with Mugs coming in second and MAE third. Different model architectures perform similarly except
for ViT-S/16, which performs worse than the other models. Given these results, we focus most of our subsequent
analyses on ViT-B/14 models trained with DINO, which is one of our best model×algorithm combinations overall.

Figure 2c compares the performance of SAYCam-trained models against each of the reference models described
above. Figure 2d further splits Figure 2c into different evaluation tasks. On average, SAYCam-trained models
perform at 65-70% of a model trained on the full ImageNet training set and they are generally comparable to a
model trained with 10% of ImageNet (SAY: 70.2± 8.0, S: 69.7± 8.4, A: 66.5± 7.1, Y: 64.5± 7.2, ImageNet-100%:
100.0± 0.0, ImageNet-10%: 69.7± 6.0)1. Thus, although SAYCam-trained models are exposed to a very different
type of data (less diverse, temporally extended, noisy headcam videos) than the ImageNet-trained model, they are
able to recover a significant fraction of the ImageNet-trained model’s performance.

All SAYCam-trained models substantially outperform the untrained reference model with random features (Random:
18.6 ± 5.7). Differences across individual children in SAYCam are relatively small (e.g. only 3% relative difference
between the approximately length-matched A and Y). Finally, the Ego4D-200h model performs comparably to the
models trained on A and Y, and slightly worse than the model trained on the approximately length-matched S (Ego4D-
200h: 65.6±7.1), whereas the Kinetics-200h model performs better than all SAYCam-trained models (Kinetics-200h:
74.5± 6.7), although the difference is surprisingly small given the very different nature of the videos in Kinetics-200h
compared with the videos in SAYCam or Ego4D (videos in Kinetics-200h are much shorter and more diverse in
content).

The following qualitative analyses focus on models trained with the headcam data from child S only. The results for
the other two children are qualitatively similar and they can be found in the Appendix (Figures 7-10 and 15-16).

Learning to localize semantic categories without location supervision: The semantic segmentation results in
Figure 2d (DAVIS-2017 and COCO) show visual representations learned from a child’s headcam data are much better
than random representations at localizing semantic categories in an image, given dense (pixel-level) semantic feedback.
These representations can also support localizing semantic categories without any explicit location feedback, using
only information from a linear classifier trained on a downstream classification task. The last-layer feature maps of
the model can be linearly combined with the classifier weights for a given class, generating a class activation map
or CAM (Zhou et al., 2016). Figure 3a illustrates CAMs for four different categories from the Labeled S evaluation
dataset. Qualitatively, the semantic localization obtained from CAMs is reasonably accurate in many, though not
all, cases. Common failure cases include difficulties with localizing smaller objects and overbroad activation maps
that extend into neighboring objects or surfaces. This may be related to the relatively global, background-sensitive
nature of the representations learned by models trained with the child headcam data, as discussed next.

Learning more global, background-sensitive representations: Visual representations learned from the child head-
cam data tend to be less object-centric and more sensitive to background and low-level surface features (e.g. contours)
compared to ImageNet-learned representations. This is illustrated in Figure 3b, which compares the mean attention
maps (averaged over all attention heads) of ViT-B/14 models trained on ImageNet and on the headcam data from
child S. These observations are quantitatively supported by the performance of the models on CORe50 (Figure 2d),
which evaluates the background-invariance of the models’ object representations. Models trained with small subsets
of ImageNet are also less object-centric (Figure 19), suggesting that learning object-centric, background-invariant
representations may require seeing the foreground objects against a sufficiently large and diverse set of backgrounds.

Learning broad semantic categories without any labeled examples: A rich semantic structure emerges in the

1Numbers represent means ± standard errors.
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a b c
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Figure 2: The effect of (a) algorithm, (b) model architecture, and (c) pretraining data on the performance in
downstream evaluation tasks. All scores in a-c are relative to the ViT-B/14 model trained with DINO on all of
ImageNet, our best model overall. Error bars represent standard errors. In a, means and standard errors are calculated
over n = 108 different model (ViT-S/16, ViT-B/16, ViT-L/16) × data (SAY, S, A, Y) × task (9 evaluation tasks)
combinations, represented by the individual gray dots. In b, the algorithm is fixed to DINO and the means and
standard errors are calculated over n = 32 different task (all evaluation tasks except DAVIS-2017) × data (SAY,
S, A, Y) combinations. In c, the algorithm is fixed to DINO and the model architecture is fixed to ViT-B/14 and
means and standard errors are calculated over n = 9 evaluation tasks. (d) Performance of SAYCam-trained models
compared with the reference models in all 9 evaluation tasks. As in c, here we again fix the algorithm to DINO and
the model architecture to ViT-B/14. SAYCam-trained models are shown in orange; models trained on other video
datasets are shown in magenta; ImageNet trained models are shown in cyan; the untrained reference model is shown
in green. Dashed horizontal lines show chance-level performance for the classification tasks. Note that performance
is not normalized in d. 5
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Figure 3: (a) Class activation maps (CAMs) for four different classes in Labeled S : basket, car, cat, foot. In each
case, the top row shows the original images, the bottom row shows the corresponding class activation maps. The
class activation maps shown here are from a ResNeXt-50 model trained with DINO on data from child S only. More
examples can be found at this link. (b) Original images from COCO and the corresponding attention maps (averaged
over all attention heads) for ViT-B/14 models trained on all of ImageNet training set or on data from child S in
SAYCam, respectively. The attention maps were computed with respect to the cls token.
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Model trained on Child S

Figure 4: t-SNE visualization of the 1000 ImageNet classes for a ViT-B/14 DINO model trained on data from child
S only. Each point corresponds to a different ImageNet class. The class embeddings are computed as the mean
embedding over all validation images belonging to that class. Different colors represent 12 different super-classes
(indicated in larger font) extracted from the WordNet hierarchy. Five classes are labeled individually for each super-
class. The other classes are not labeled individually for legibility. The visualizations for models trained on the other
childrens’ data are qualitatively very similar (Figures 9-10). More t-SNE visualizations can be found at this link.

embedding space of the models trained with the child headcam data. Figure 4 shows a t-SNE visualization (Van der
Maaten and Hinton, 2008) of the mean embeddings of the 1000 ImageNet classes (estimated over the validation
set) obtained from a model trained on child S. Classes belonging to the same broad semantic categories such as
dogs, birds, reptiles, insects, vehicles, musical instruments, food, clothing, etc. tend to be clustered together in
the embedding space. Notably, the model learns this structure automatically without any labeled examples. This
structure is either absent or much weaker in the embedding space of untrained, random models (Figure 14; also see
Figures 9-13 for embeddings from other trained models). Interestingly, the semantic structure that emerges in the
embedding spaces of SAYCam-trained models is representationally most similar to the semantic structure in a model
trained with the egocentric headcam data from adults (Ego4D-200h), followed by the other models that perform
similarly in the downstream evaluation tasks (Figure 15).

Nearest neighbors reveal semantic structure in the embedding space: Figure 5 shows query images from
the ImageNet validation set (leftmost column) and their 10 nearest neighbors in two different embedding spaces.
Retrievals from the embedding space of a model trained with the headcam data from child S are often semantically
related to the query image (Figure 5a). The failure cases usually preserve some semantic relationships (e.g. retrievals
of dogs, primates, or other mammals for the elephant query in the fifth row of Figure 5a) or display visual similarities
with the texture or the overall shape of the object depicted in the query image (e.g. the thatched roof queried in
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the second row of Figure 5a and the hay rolls retrieved in response to it have similar visual textures). The retrievals
from the embedding space of an untrained, random model, on the other hand, seem to be primarily driven by the
overall color similarity between the query and the retrieved item (Figure 5b). A similar color-based similarity structure
emerges in the embedding space of pixels as well (Figure 18).

Generative models

Generative models offer an alternative and intuitive route to studying learnability from a child’s visual experience,
as their outputs can be visualized directly. Here, we use an image completion task to probe the visual knowledge
acquired by generative models trained on the child headcam data. We provide the model with the upper half of an
image and generate the bottom half from the model with sampling. Figure 6a shows different images (columns) from
child Y’s data together with completions generated by a model trained on another child (child S) as well as a model
trained on all of ImageNet. Similarly, Figure 6b shows different images from the Konkle objects dataset and the
corresponding completions. All of these completions are “zero-shot” in that the models have not seen any examples
from these datasets during training. Although the model trained on child S can usually generate completions that
match the color, texture, orientation, and rough outline of the object (or objects) given in the context (e.g. the
compass in Figure 6b; second image from the right), it is not very successful at generating finer details of the objects
(e.g. it is not very good at generating plausible looking legs for the dog in Figure 6b). The model trained on all
of ImageNet, on the other hand, is much better at generating finer object details. We measure the quality of the
completions generated by different models through Fréchet Inception distance (FID) scores evaluated on two datasets
under different conditions (Table 3). The FID scores broadly confirm our qualitative observations. In particular, the
model trained on all of ImageNet consistently outperforms the SAYCam-trained models on images from the Konkle
objects dataset, although the generation quality of SAYCam-trained models on this dataset can be improved with a
small amount of finetuning.

Discussion

In this article, we investigated what state-of-the-art SSL algorithms can learn from a representative sample of a
child’s longitudinal, egocentric visual experience without strong inductive biases. Our analyses reveal both strengths
and weaknesses of the representations learned from a child’s visual experience with current SSL algorithms. On the
one hand, with the equivalent of a few weeks of visual experience only, models trained with data from individual
children already perform at 65-70% of a high-performance ImageNet-trained model in a diverse range of downstream
evaluation tasks (Figure 2). They can also learn to localize semantic categories in an image without any explicit
location supervision (Figure 3a), and they can learn broad semantic categories in an unsupervised way (Figure 4).
Thus, despite significant differences between the visual experience of a developing child and the standard datasets
used for training state-of-the-art computer vision models (Smith and Slone, 2017), models trained with a realistic
proxy of a child’s visual experience still display highly non-trivial visual capabilities. These capabilities are also
surprisingly consistent across models trained on different children in SAYCam (Figure 2c; also see Figure 15), even
with substantial individual differences in the environments and behaviors of these children (Sullivan et al., 2022). On
the other hand, these models seem to be less object-centric than models trained with large-scale, photographic image
datasets like ImageNet (Figure 3b) and in generative tests with out-of-domain stimuli, they seem to struggle with
fine object details, even though they can successfully extrapolate the texture, color, orientation, and rough outlines
of objects (Figure 6).

In our experiments, we used reference models trained on different types of visual data to better situate the capabilities
of the SAYCam-trained models. Some of these reference models display visual capabilities comparable to the models
trained on individual children in SAYCam (Figure 2c): e.g. ImageNet (10%), Ego4D-200h, even Kinetics-200h to
some extent, despite notable qualitative differences between these visual data. This result suggests a considerable
degree of robustness in the emergence of these general visual capabilities. Some earlier works, on the other hand,
emphasized the special properties of child-centric visual data from a representation learning perspective (Smith and
Slone, 2017; Bambach et al., 2018; Zaadnoordijk et al., 2022). Our results are not necessarily inconsistent with
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Original image 10 nearest neighbors

a Model trained on Child S

b Random model
Original image 10 nearest neighbors

Figure 5: Nearest neighbors in the embedding space of a ViT-B/14 DINO model trained on child S (a) and in the
embedding space of a random, untrained model with the same architecture (b). The leftmost column shows six
query images, the next ten images in each row are the 10 nearest neighbors in the embedding space. Both the query
and the nearest neighbors are from the ImageNet validation set. Nearest neighbors are with respect to the Euclidean
metric.
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Original
 image

Model trained on 
ImageNet (100%)

Model trained on
        Child S

a Image probes from Child Y

b Image probes from Konkle objects

Original
 image

Model trained on
        Child S

 Model trained on 
ImageNet (100%)

Figure 6: Conditional samples from two different models (trained on child S in SAYCam or on all of ImageNet)
seeded with (a) images from child Y in SAYCam or with (b) images from the Konkle objects dataset. In each case,
the upper half of the image is given to the model as context, the lower half (separated by a line from the upper half)
is generated by the model. All model completions are zero-shot (the models have not seen any prior examples from
these datasets). More examples can be found at this link.

these studies: because we focused on relatively broad measures of performance in our qualitative and quantitative
evaluations, we cannot rule out more fine-grained differences between the models that might be hidden behind their
comparable overall performance. However, isolating the causes of such potential fine-grained differences would be
difficult in our case, as our reference datasets differ across many dimensions.

What are the implications of our results for the nature vs. nurture question regarding the acquisition of basic visual
capabilities such as real-world object recognition? Motivated by the early emergence of some visual capabilities
in infants, developmental psychologists postulated various innate constraints related to objects, agents, space, and
categories (Kellman and Spelke, 1983; Spelke et al., 1992; Spelke, 1994; Markman, 1990; Merriman et al., 1989),
hypothesized to be critical for subsequent learning. However, a rigorous computational test of these claims requires
considering both a sufficiently realistic proxy of a child’s actual visual experience, and powerful, generic, scalable
learning algorithms and models. Arguably for the first time in history, we now have both ingredients thanks to
advances in the collection of large-scale longitudinal developmental datasets like SAYCam (Sullivan et al., 2022), and
advances in deep learning, giving us powerful generic learning algorithms and architectures. Together with a handful
of other recent studies (Bambach et al., 2018; Orhan et al., 2020; Lee et al., 2021; Zhuang et al., 2021, 2022), this
work is among the first to take advantage of these new opportunities to address fundamental questions in cognitive
science. Our results, for example, suggest that strong inductive biases like a taxonomic generalization bias or an
innate ability to segment objects may be unnecessary, as our generic self-supervised models already do a reasonably
good job of learning to segment objects in images (Figure 3a) or to categorize objects based on their kind (Figure 4)
from limited and noisy visual data available to a child without such inductive biases. However, the models’ ability
to cleanly segment and generate objects is imperfect (Figures 3b and 6), so it remains an open empirical question
if they can attain human-level understanding of objects by simply being trained on developmentally more realistic
amounts of data or if stronger object-centric inductive biases may still be necessary to achieve this (Kellman and
Spelke, 1983; Spelke et al., 1992; Locatello et al., 2020).

There are a number of differences between our experimental setting and the actual learning problem faced by
children. These differences should be kept in mind when considering the implications of our results for developmental
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psychology. First, even the combined data from SAYCam amount to roughly 40 days of visual experience (factoring
in 12 hours of sleep per day). To extend this to developmentally realistic amounts of data would require roughly two
orders of magnitude more data than we currently have. The capabilities of the current models would undoubtedly
improve with additional data at this scale even without any other changes, but it is an open empirical question how
much they would improve. Second, here we only considered visual data, but a child’s actual experience is multimodal,
with auditory, haptic, and sensorimotor components in addition to vision. The capabilities of the current models
would again likely improve with these complementary sources of information. Third, our models are trained with
stochastic gradient descent, which is biologically implausible in the context of deep networks (Lillicrap et al., 2020).
To the extent that biological learning must satisfy demanding constraints that are not relevant for deep learning,
our results may overestimate what can be learned from a child’s visual experience with biologically plausible learning
mechanisms. Compared to deep learning models, this may necessitate more reliance on innate inductive biases in
humans.

Another difference is that children are interactive learners. They learn their own behavioral policies regarding how to
interact with objects or other agents in the environment. This allows them to shape and structure their own sensory
experiences. Our models, on the other hand, are passive learners. The learnability results here thus relate to what
is learnable from a visual stream that is, to some extent, already structured by the child. Interactive models that
can actively shape their own experiences, like children do, might learn more effectively compared to passive learners
(Gureckis and Markant, 2012), in which case our results would underestimate what can be learned from child-like
visual experience without strong inductive biases.

There are also important differences between the raw visual inputs received by our models vs. children. The SAYCam
frames have relatively low spatial resolution (640×480 pixels) compared to the human retina. They contain a
significant amount of motion blur artifacts and the image quality is generally poor in low lighting conditions. Efforts
to collect higher quality headcam data with better cameras are already under way (Long et al., 2022). Modern SSL
algorithms often use heavy data augmentation strategies like color jittering or random resized cropping (the particular
data augmentations used by each of our SSL algorithms are detailed in the Appendix). These augmentations increase
the effective sample size to the benefit of the models. It is unclear whether similar processes in humans could implicitly
expand the input in a biologically plausible way. Foveation represents an interesting example in this respect with its
functional similarity to random resized cropping.

We hope that our work will inspire new collaborations between machine learning and developmental psychology
(Smith and Slone, 2017; Zaadnoordijk et al., 2022; Moore et al., 2022), as the impact of modern deep learning
on developmental psychology has been relatively limited thus far. One key reason for this is the data gap between
machine and human learners: for example, today’s computer vision models are typically trained with visual data that
are very different in content, style, and amount from a child’s visual experience (millions, sometimes billions, of static
photographic pictures scraped from the internet vs. a few years of continuous, egocentric data streams from the
world). Here, we bridged this data gap by training the same models on a realistic proxy of a child’s egocentric visual
experience and demonstrating these models’ powerful visual capabilities. Future algorithmic advances, combined
with richer and larger developmental datasets, can be evaluated through the same approach, further enriching our
understanding of what can be learned from a child’s experience with minimal inductive biases.
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Appendix

Evaluation tasks for the embedding models

Here, we describe the tasks used for evaluating the embedding models:

Labeled S: Labeled S contains a total of ∼58K manually labeled frames from child S in SAYCam (Orhan et al.,
2020). We use the temporally 10× subsampled version of this dataset (0.1 frames/second) containing ∼5.8K images
from 26 different classes. Temporal subsampling reduces the temporal correlations in the dataset and makes the
classification task more challenging. We then randomly split the data in half, use the first half for training and the
second half for evaluation. This is our only within-domain evaluation task for models trained on SAYCam, specifically
for models trained on data from child S.

Konkle objects: This is a public dataset available from this address. The images in this dataset depict common
everyday objects in isolation against a uniform white background (Konkle et al., 2010). We only use a subset of
the categories from the dataset that contain a sufficiently large number of exemplars, i.e. 16 or 17 exemplars. This
subset contains 4040 images from 240 different object categories. We split the data in half, use the first half for
training and the second half for evaluation.

CORe50: This is a public dataset available from this address. The dataset contains 50 different everyday objects
undergoing various continuous transformations (complex combinations of 3D rotations and translations) against a
variety of backgrounds (Lomonaco and Maltoni, 2017). The dataset is originally in video format, but we sample the
videos at 5 frames/second to make an image dataset out of it. Each object is shot against the same set of 11 unique
backgrounds. We use 6 of these backgrounds for training and the remaining 5 backgrounds for evaluation (90K images
in total for training, 75K images for evaluation). This task thus tests whether (i) a model can ignore the background
and primarily respond to the foreground object instead and (ii) generalize over continuous transformations. Note
that a model primarily responding to the background would perform at near chance levels (2% top-1 accuracy) in
this task, since the background does not have any predictive value for the object identity.
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ImageNet: ImageNet (ILSVRC-2012) is a large and diverse dataset of high-quality images from the internet (Rus-
sakovsky et al., 2015) and is a very popular benchmark for real-world visual object recognition. The dataset is publicly
available from this address. We use the standard training-validation split for this dataset, containing ∼1.28M training
images and 50K validation images from 1000 semantic classes.

ImageNet OOD: To evaluate the robustness, or out-of-distribution (OOD) generalization capabilities, of the trained
models, we also consider out-of-distribution versions of the ImageNet benchmark (Geirhos et al., 2020, 2021). The
ImageNet OOD benchmark contains 17 different out-of-distribution versions of ImageNet generated by applying
various transformations to images from the ImageNet validation set. These include transformations such as taking
the silhouettes of the objects in the image, stylizing the image, adding different types of noise to the image, changing
the colors in the image, etc. For evaluation, we use the OOD accuracy metric, which is just the mean top-1 accuracy
over all 17 out-of-distribution datasets (Geirhos et al., 2021). This evaluation dataset is publicly available from this
address.

Ecoset: Ecoset can be thought of as an ecologically more realistic version of ImageNet containing images from 565
basic-level categories only, selected for their concreteness and frequency of usage in language (Mehrer et al., 2021).
The dataset comes with a standard training-validation split containing ∼1.44M training images and 28250 validation
images, which we use for training and evaluation respectively. The dataset is publicly available from this address.

Places365: Because the SAYCam dataset contains examples of various scene categories (living room, dining room,
kitchen, bathroom, playground, beach, street, porch, etc.) in addition to object categories, we are interested in
evaluating the capacity of SAYCam-trained models to recognize places as well as objects. For this purpose, we use
the Places365 dataset (Zhou et al., 2017). Places365 contains ∼1.8M training images and 36500 validation images
from 365 different place categories. The dataset is publicly available from this address.

DAVIS-2017: A good visual representation is ideally a general-purpose representation that can be used profitably
not just in visual recognition tasks, but in a broader range of downstream tasks. For this reason, we also evaluate
the SAYCam-learned representations in two dense prediction tasks. DAVIS-2017 is a video object segmentation task
where the model is given a ground-truth segmentation mask for the initial frame of a short video clip and is expected
to predict the segmentation masks for the following frames in the video (Pont-Tuset et al., 2017). In common
evaluation protocols used for this task, the predicted segmentation masks for the non-initial frames are computed
with a non-parametric message passing type algorithm that uses the representations of the frames and the predicted
segmentation masks for nearby frames. This task essentially evaluates how robust the model’s representations of the
objects in the video clip are to spatio-temporal transformations that take place in the clip: more robust representations
are expected to propagate the initial ground-truth segmentation masks better. The evaluation set consists of 30 video
clips, each containing ∼67 frames and ∼2 objects on average. The data are publicly available from this address.

COCO: We also evaluate our models on the semantic segmentation component of the COCO benchmark (Lin et al.,
2014). COCO is publicly available to download from this address. Recall that in semantic segmentation the goal is
to label each pixel of the image with the semantic category label of the object (or “stuff”) occupying that pixel. We
use a subset of COCO that contains the 21 categories present in the Pascal VOC dataset. This subset has ∼92.5K
training images and 5K validation images in total.

For all evaluation tasks except DAVIS-2017 (including the COCO semantic segmentation task), we use linear readouts
trained on top of frozen features, also known as a linear probe. For DAVIS-2017, as mentioned above, we use a
standard non-parametric label propagation algorithm to predict the segmentation masks (Jabri et al., 2020). We use
standard evaluation metrics for all our evaluation tasks: top-1 accuracy for the classification tasks, mean intersection
over union (IoU) for the COCO semantic segmentation task, and the mean region and contour similarity (J&F) for
DAVIS-2017.

SSL algorithms for the embedding models

Here, we describe each of the three SSL algorithms we used for training our embedding models. These algorithms
represent a range of different modern approaches to self-supervised representation learning from static images or
frames.
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DINO: DINO is a self-distillation type representation learning algorithm (Caron et al., 2021), where a teacher model
and a student model iteratively improve each other. During training, the teacher and the student receive different
copies of the same image, transformed in various ways with a set of data augmentation methods, and the objective
of the algorithm is to push the representations of these copies towards each other, because they share the same
semantic content. The data augmentation methods used in DINO are color jitter, random resized crops, horizontal
flips, gray-scaling, Gaussian blur, and solarization.

Mugs: Mugs is a hybrid SSL algorithm combining ideas from self-distillation and contrastive learning to learn
multi-granular visual representations (Zhou et al., 2022). Mugs uses the same set of data augmentations as DINO.

MAE: Masked autoencoders (MAEs) use reconstruction of masked image patches as the self-supervised learning
objective (He et al., 2022). By learning to predict masked patches from visible patches, the algorithm expects to
learn higher level, semantically useful regularities in visual scenes (e.g. learning that the face, the legs, and the tail of
a dog often appear in a particular configuration). MAEs use a much lighter data augmentation pipeline than other
algorithms, requiring only random resized crops and horizontal flips. As recommended (He et al., 2022), we use a
large masking ratio of 75% during training, i.e. 75% of the image patches are randomly masked out.

We generally use the default hyperparameter choices and training configurations recommended for these algorithms
in the original papers, with minor modifications. We use the same data augmentation pipeline for every model trained
with a given algorithm. Further details can be found in the corresponding training codes that can be accessed from
our main public repository.

Reference datasets for the embedding models

Kinetics-700 consists of short YouTube clips of people performing various actions, representing 700 different action
categories (Smaira et al., 2020). Kinetics-700 is publicly available for download from this address. The video clips
in Kinetics-700 are typically shorter than 10 seconds, hence the dataset overall is expected to be much more diverse
in style and content and temporally much less correlated than SAYCam. Ego4D, on the other hand, has more
similar temporal characteristics to SAYCam: the videos are temporally extended, continuous, egocentric headcam
recordings, with recording sessions lasting tens of minutes on average (Grauman et al., 2022). The main differences
from SAYCam are (i) the videos are taken from the perspective of adult camera wearers, not from the perspective of
young children, and (ii) the recordings are made by many more individuals than the SAYCam recordings: in Ego4D,
each individual contributes ∼4 hours of recording on average, so a 200-hour long subset of the dataset would be
expected to contain recordings from roughly 50 different camera wearers, in contrast to a single child in SAYCam.
Ego4D is publicly available from this address (after signing a license agreement). We use 200-hour long subsets of
these datasets, because 200 hours is roughly equal to the total length of the video data we have available from one
of the children in SAYCam, namely S. To obtain these 200-hour long subsets, we use the first 128 clips from each
class in Kinetics-700 and select a continuous chunk of videos from Ego4D with a random starting point until the
total length of the videos in the selection roughly equals 200 hours.

Training details for the embedding models

We train each model for four days on four A100 GPUs (with 80 GB GPU memory) using data parallelism (the
ViT-B/14 DINO model trained on all of ImageNet was trained for four additional days to make sure it was not
under-trained). We use the Adam optimizer to train all models (Kingma and Ba, 2014). In each experiment, we
use either a batch size of 512 or the largest batch size we could fit on four GPUs (in cases where we could not fit
a total batch size of 512 on the GPUs). Batch sizes and learning rates thus vary across experiments. Inspection of
the training losses confirms that they all saturate, hence under-training is unlikely for any of our pretraining runs (all
training logs are made available in our public repository). Table 1 presents a concise list of all embedding models
trained for this work.
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Class activation maps (CAMs)

In visualizing the class activation maps (CAMs) shown in Figure 3a, we first normalize the linearly combined and
upsampled feature map to have zero mean and unit variance, where the mean and variance are estimated over a
batch of images from the same class, pass the normalized map through a pointwise sigmoid nonlinearity, and then
scale it by 255 so that the values in the final map are between 0 and 255 (or in torch notation: m = 255 *

torch.sigmoid((m-torch.mean(m))/torch.std(m)). We then alpha-blend this activation map with the original
image using a blending coefficient of 0.8 for the map and 0.2 for the image.

Additional details about the generative models

We train customized VQGAN models using the Taming Transformers repository made available by the authors of
VQGAN Esser et al. (2021). For the GPT model, we use a standard 730M-parameter GPT model that is similar to
OpenAI’s gpt2-large model (Radford et al., 2019). Using the same architecture, we also train reference VQGAN-
GPT models on ImageNet, using either 100%, 10%, or 1% of the training set, as described previously.

For the VQGAN component of the generative models for SAYCam, we use a codebook with a vocabulary size of
8192 and a spatial resolution of 32×32 (thus each frame is encoded as a 32×32 grid of integers, where the integers
take values between 1 and 8192). For the encoded SAYCam frames, the spatial resolution of 32 × 32 corresponds
to a sequence length of 1024 tokens. Due to computational constraints, the VQGAN models for ImageNet use a
spatial resolution of 16 × 16 and a codebook with a dictionary size of 16384. To train the VQGAN component
of the generative model, we use the Taming Transformers repository made available by the authors of VQGAN
Esser et al. (2021) (model configuration files are available from our public repository). The GPT component of
the generative models has 36 layers, 20 attention heads, and an embedding dimensionality of 1280 in all cases (the
model configuration is equivalent to OpenAI’s gpt2-large model). We generate the model completions through
exact sampling, with the softmax temperature set to T = 1.0.

Training and evaluation details for the generative models

SAYCam-trained GPT models were trained for four days on 16 A100 GPUs with a batch size of 96 (the model trained
on the combined data from SAYCam was trained for four additional days to make sure it was not under-trained).
The training logs (all made available from our public repository) confirm that under-training is not a serious concern
for any of our models. The ImageNet-trained models were trained on 8 A100 GPUs with a total batch size of 256
(the model trained on 100% of ImageNet was trained for 6 days, whereas the models trained on 10% and 1% of
ImageNet were trained for 2 days only due to the more limited size of the training data in these cases). All models
were trained with the Adam algorithm. Table 2 presents a concise list of all generative models trained for this work.

We measure the overall quality of the completions with the Fréchet Inception distance (FID) between the model
generated samples and the ground-truth images (Heusel et al., 2017). We use two qualitatively very different datasets
for evaluation: Labeled S and Konkle objects (both described in more detail above).

Quantitative evaluation of the generative models

We use three different image completion tasks to quantitatively evaluate the generative models: Labeled S, Konkle
(iid), and Konkle (ood). In Labeled S, we use images from the validation split of the Labeled S dataset described in
the main text for the image completion task. In Konkle (iid), we randomly split the Konkle objects dataset in half,
use the first half for training or finetuning the generative models, and use the other half for the image completion
task. In Konkle (ood), we split the Konkle objects dataset into non-overlapping vehicle and non-vehicle categories,
use the non-vehicle categories for training or finetuning the generative models, and use the vehicle categories (144
images in total) for the image completion task. Since this is an out-of-distribution generalization task, it is expected
to be more challenging than the iid condition. The results are presented in Table 3 below showing the FID scores
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of different models in each image completion task. Finetuning the SAYCam-trained models with a few thousand
images from the Konkle objects dataset improves their generation quality both in iid and ood conditions.

Data availability

With the exception of SAYCam, all data used in this study are publicly available. Instructions for accessing the
public datasets are detailed above. The SAYCam dataset can be accessed by authorized users with an institutional
affiliation from the following Databrary repository: http://doi.org/10.17910/b7.564. The Labeled S evaluation
dataset, which is a subset of SAYCam, is also available from the same repository under the session name Labeled S.

Code availability

All our pretrained models (over 70 different models) as well as a variety of tools to use and analyze them are available
from the following public repository: https://github.com/eminorhan/silicon-menagerie. The code used for
training and evaluating the models is also publicly available from the same repository.

Algorithms Data
Models

ResNeXt-50 ViT-B/14 ViT-L/16 ViT-B/16 ViT-S/16

DINO

SAY ✓ ✓ ✓ ✓ ✓
S ✓ ✓ ✓ ✓ ✓
A ✓ ✓ ✓ ✓ ✓
Y ✓ ✓ ✓ ✓ ✓

Ego4D-200h ✓
Kinetics-200h ✓

ImageNet (100%) ✓
ImageNet (10%) ✓
ImageNet (1%) ✓

Mugs

SAY ✓ ✓ ✓
S ✓ ✓ ✓
A ✓ ✓ ✓
Y ✓ ✓ ✓

MAE

SAY ✓ ✓ ✓
S ✓ ✓ ✓
A ✓ ✓ ✓
Y ✓ ✓ ✓

Table 1: List of all trained embedding models (49 models in total). The trained algorithm×data×model combinations
are indicated by check marks.

18

http://doi.org/10.17910/b7.564
https://github.com/eminorhan/silicon-menagerie


Original
 image 

Trained on 
ImageNet (100%)

Trained on
    Child A

a

basket

car

cat

foot

b

Figure 7: (a) Class activation maps (CAMs) for a ResNeXt-50 model trained with DINO on the headcam data from
child A. (b) Mean attention maps (averaged over all attention heads) for a ViT-B/14 model trained with DINO on
all of ImageNet or on the headcam data from child A, respectively.
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Figure 8: (a) Class activation maps (CAMs) for a ResNeXt-50 model trained with DINO on the headcam data from
child Y. (b) Mean attention maps (averaged over all attention heads) for a ViT-B/14 model trained with DINO on
all of ImageNet or on the headcam data from child Y, respectively.
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Model trained on Child A

Figure 9: t-SNE visualization of the 1000 ImageNet classes for a ViT-B/14 model trained with DINO on the headcam
data from child A.
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Model trained on Child Y

Figure 10: t-SNE visualization of the 1000 ImageNet classes for a ViT-B/14 model trained with DINO on the
headcam data from child Y.

22



Model trained on Ego4D-200h

Figure 11: t-SNE visualization of the 1000 ImageNet classes for a ViT-B/14 model trained with DINO on a 200-hour
subset of Ego4D (Ego4D-200h).
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Model trained on ImageNet (10%)

Figure 12: t-SNE visualization of the 1000 ImageNet classes for a ViT-B/14 model trained with DINO on 10% of
ImageNet.
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Model trained on ImageNet (100%)

Figure 13: t-SNE visualization of the 1000 ImageNet classes for a ViT-B/14 model trained with DINO on all of
ImageNet.
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Random model

Figure 14: t-SNE visualization of the 1000 ImageNet classes for an untrained, randomly initialized ViT-B/14 model.
Compared to the SAYCam-trained models, the embeddings display much weaker semantic structure.
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Figure 15: Representational similarity of ViT-B/14 models trained with DINO on different datasets. Representational
similarity between a pair of models is measured as the symmetrized R2 of the linear regression of the embeddings
of one model with the embeddings of the other model, averaged over the embedding dimensions. We use the
two-dimensional t-SNE embeddings of the 1000 ImageNet class means for this analysis. a shows the full similarity
matrix, b singles out the models trained on SAYCam (SAY, S, A, and Y) and shows their representational similarities
with each model except for the untrained Random model. Black dots and errors bars represent means and standard
errors over the four SAYCam-trained models. The model trained on Ego4D-200h is the most representationally
similar model to the SAYCam-trained models (Ego4D-200h: 93.1±0.2, Kinetics-200h: 90.4±0.6, ImageNet-10%:
90.6±0.5, ImageNet-1%: 91.4±0.2).
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Original image 10 nearest neighbors

a Model trained on Child A

b
Original image 10 nearest neighbors

Model trained on Child Y

Figure 16: Nearest neighbors in the embedding space of ViT-B/14 models trained with DINO on the headcam data
from child A (a) and from child Y (b).
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Original image 10 nearest neighbors

a Model trained on Ego4D-200h

b
Original image 10 nearest neighbors

Model trained on ImageNet (10%)

Figure 17: Nearest neighbors in the embedding space of ViT-B/14 models trained with DINO on the Ego4D-200h
dataset (a) and on 10% of ImageNet (b).
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Original image 10 nearest neighbors

Nearest neighbors in pixel space

Figure 18: Nearest neighbors in the embedding space of pixels. For computational tractability, images are first
downsampled so that the minor edge is 64 pixels long, then a 56×56 central crop is taken to obtain the embedding.
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Original image ImageNet (100%) ImageNet (10%) ImageNet (1%) Ego4D-200h Child S

Figure 19: Attention maps (averaged over all attention heads) for ViT-B/14 models trained on different datasets:
all of ImageNet (100%), subsets of ImageNet (10% and 1%, respectively), Ego4D-200h, and Child S from SAYCam
(from left to right). Models trained on effectively less data display signs of being more sensitive to background cues
and low-level features like contours.
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Pretraining data
Finetuning data

Konkle (iid) Konkle (non-vehicle) None

SAY ✓ ✓ ✓
S ✓ ✓ ✓
A ✓ ✓ ✓
Y ✓ ✓ ✓

ImageNet (100%) ✓ ✓ ✓
ImageNet (10%) ✓ ✓ ✓
ImageNet (1%) ✓ ✓ ✓

None ✓ ✓

Table 2: List of all trained generative models (23 models in total). The trained pretraining×finetuning data combi-
nations are indicated by check marks. ‘None’ means pretraining (or finetuning) was not applied.

Models
Tasks

Labeled S Konkle (iid) Konkle (ood)

SAY 44.5 45.4 163.6
S 45.9 55.1 166.4
A 60.7 63.1 189.3
Y 60.4 63.6 176.8

ImageNet (100%) 62.8 24.0 89.6
ImageNet (10%) 65.7 31.3 115.4
ImageNet (1%) 81.7 43.5 146.0

Konkle iid – 33.1 –
SAY+Konkle iid – 30.0 –
S+Konkle iid – 31.5 –
A+Konkle iid – 35.4 –
Y+Konkle iid – 31.9 –

ImageNet (100%)+Konkle iid – 23.5 –
ImageNet (10%)+Konkle iid – 28.4 –
ImageNet (1%)+Konkle iid – 31.2 –

Konkle non-vehicle – – 137.9
SAY+Konkle non-vehicle – – 136.9
S+Konkle non-vehicle – – 136.1
A+Konkle non-vehicle – – 138.8
Y+Konkle non-vehicle – – 143.0

ImageNet (100%)+Konkle non-vehicle – – 124.1
ImageNet (10%)+Konkle non-vehicle – – 141.3
ImageNet (1%)+Konkle non-vehicle – – 143.1

Table 3: FID scores in conditional generation tasks. Lower scores indicate better results (generated samples are more
similar to ground-truth images). Rows correspond to different models, columns correspond to different tasks. Models
are identified by the data they are trained and finetuned with. Model names in the format ‘x+y’ mean the model
was first trained on x and then finetuned on y.
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