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Abstract

To achieve human-like common sense about everyday life,
machine learning systems must understand and reason
about the goals, preferences, and actions of others. Hu-
man infants intuitively achieve such common sense by
making inferences about the underlying causes of other
agents’ actions. Directly informed by research on in-
fant cognition, our benchmark BIB challenges machines
to achieve generalizable, common-sense reasoning about
other agents like human infants do. As in studies on infant
cognition, moreover, we use a violation of expectation
paradigm in which machines must predict the plausibility
of an agent’s behavior given a video sequence, making
this benchmark appropriate for direct validation with
human infants in future studies. We show that recently
proposed, deep-learning-based agency reasoning models
fail to show infant-like reasoning, leaving BIB an open
challenge.

1. Introduction

Humans have a rich capacity to infer the underlying
intentions of others by observing their actions. For
example, when we watch the simple animations from
Heider and Simmel (1944)’s seminal study (see video1

and Figure 1), we attribute goals and dispositions
to simple 2D figures moving around a flat world.
Using behavioral experiments presenting both simple
and complex visual displays, developmental cognitive
scientists have found that even young infants also infer
intentionality in the actions of other agents. Infants
expect other agents: to have object-based goals (Gergely
et al., 1995; Luo, 2011; Song et al., 2005; Woodward,
1998, 1999; Woodward and Sommerville, 2000); to have
goals that reflect preferences (Buresh and Woodward,
2007; Kuhlmeier et al., 2003; Repacholi and Gopnik,
1997); to engage in instrumental actions to bring about
goals (Carpenter et al., 2005; Elsner et al., 2007; Gerson
et al., 2015; Hernik and Csibra, 2015; Saxe et al., 2007;
Woodward and Sommerville, 2000); and to act efficiently
towards goals (Colomer et al., 2020; Gergely and Csibra,
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1https://www.youtube.com/watch?v=VTNmLt7QX8E

1997, 2003; Gergely et al., 1995; Liu et al., 2019, 2017).

Machine-learning and AI systems, in contrast, are much
more limited compared even to human infants in their
understanding of other agents. One reason this might be
the case is that machine learning and AI systems typically
treat human behavioral data like any other type of data:
Statistical models are trained to predict outcomes of
interest (e.g., churn, clicks, likes, etc.) rather than to
learn about the goals and preferences that underlie such
outcomes. The resulting, impoverished “machine theory
of mind”2 may thus be a critical difference between
human and machine intelligence more generally (Lake
et al., 2017). Addressing this difference is crucial if
machine learning aims to approximate the flexibility of
human common sense and reasoning.

Figure 1: A still from Heider
and Simmel (1944). In this ani-
mation, the large triangle chases
the small triangle and the circle
who cooperate to avoid it.

Understanding reasoning
about agents has so far
received substantially more
attention from researchers
in cognitive development
than in AI. However, recent
computational work has
aimed to focus on such
reasoning by adopting
several approaches. Inverse
reinforcement learning
(Abbeel and Ng, 2004;
Ng et al., 2000; Ziebart
et al., 2008) and Bayesian
approaches (Baker et al.,
2011, 2017, 2009; Jara-
Ettinger, 2019; Ullman et al., 2009) have modeled
other agents as rational, yet noisy, planners. In these
models, rationality serves as the tool by which to infer
the underlying intentions that best explain an agent’s

2Note that in the cognitive development literature, “theory of
mind” typically refers to the attribution of mental states, such as
phenomenological or epistemic states (e.g., perceptions or beliefs)
to other intentional agents (Premack and Woodruff, 1978). In this
paper, we address on only one potential component of theory of
mind, present from early infancy, which focuses on reasoning about
the intentional states, not the phenomenological or epistemic states,
of others (Spelke, 2016)

1

ar
X

iv
:2

10
2.

11
93

8v
1 

 [
cs

.A
I]

  2
3 

Fe
b 

20
21

https://www.youtube.com/watch?v=VTNmLt7QX8E
https://www.kanishkgandhi.com/bib


observed behavior. Game theoretic models have aimed to
capture an opponent’s thought processes in multi-agent
interactive scenarios (see survey: Albrecht and Stone,
2018), and learning-based, neural network approaches
have focused on learning predictive models of other
agents’ latent mental states, either through structured
architectures that encourage mental-state representations
(Rabinowitz et al., 2018) or through the explicit modeling
of other agents’ mental states using a different agent’s
forward model (Raileanu et al., 2018).

Despite the increasing sophistication of these computa-
tional models, they have not been evaluated or compared
using a comprehensive benchmark that captures early
emerging human competencies about agents. For
example, some existing evaluations have provided fewer
than 100 sample episodes (Baker et al., 2011, 2017,
2009), making it infeasible to evaluate learning-based
approaches that require substantial training. Other
evaluations have used largely the same distribution for
both training and test episodes (Rabinowitz et al., 2018),
making it difficult to measure how abstract or flexible
a model’s performance might be. Moreover, existing
evaluations have not used or been translatable to the
behavioral paradigms that test infant cognition. They
therefore cannot be validated with infants nor can their
results be analyzed in terms of the representations and
processes that support human performance. AGENT
(Shu et al., 2021), a benchmark developed contemporane-
ously to the one presented here, is inspired by studies
with infants and has been validated with behavioral data
from adults. Moreover, it challenges machines to reason
about the underlying intentions of agents as opposed to
their actions. We see AGENT as largely complementary
to our efforts, covering a distinct (yet overlapping) set of
infant abilities. There are other differences, including the
ease of evaluating new models: AGENT involves training
on many different leave-out splits, where most splits have
relatively minor differences between training and test. In
contrast, BIB offers a single canonical split designed to
evaluate the abstractness and flexibility of the underlying
representations of other agents. Ultimately we hope
that new models will be evaluated on both benchmarks,
further probing their breadth and sensitivity to design
choices.

In this paper, we present a comprehensive benchmark,
the Baby Intuitions Benchmark (BIB), which is directly
inspired by infant cognition. BIB adapts experimental
stimuli from research in developmental cognitive science
that has captured the abstract nature of infants’ reasoning
about agents (Baillargeon et al., 2016; Banaji and Gelman,
2013). Moreover, BIB adopts a “violation of expectation”
(VOE) paradigm (similar to Riochet et al. (2018); Smith
et al. (2019)), commonly used in behavioral research

with infants, which both makes its direct validation with
infants possible and also makes its results interpretable
in terms of human performance. Finally, we design the
BIB training and evaluation sets so that they test for
flexible, generalizable common sense reasoning. BIB thus
serves as a key step in bridging machines’ impoverished
understanding of intentionality with humans’ rich one.

2. Baby Intuitions Benchmark (BIB)

BIB presents a battery of agency-reasoning tasks, based
on findings from developmental cognitive science and
adopting its VOE paradigm, to evaluate computational
models. We focus on the following five questions: 1) can
an AI system represent an agent as having a particular
object-based goal? 2) can it bind specific preferences
for goal objects to specific agents? 3) can it understand
that there may be obstacles that restrict an agent’s
actions and that an agent will move to a previously
nonpreferred object when their preferred object becomes
inaccessible? 4) can it represent an agent’s sequence of
actions as instrumental, directed towards a higher-order
goal object? 5) can it learn that an agent acts efficiently
towards a goal object?

We also adopt the VOE paradigm, which involves
presenting visual stimuli in two phases, a familiarization
phase and a test phase. We refer to the two phases
together as an “episode.” The familiarization phase
includes a succession of eight trials that introduce the
main elements of the visual displays used in the test
phase. This introduction also allows the observer to form
expectations about the future behavior of those elements
based on their prior knowledge or learning. The test
phase includes an unexpected and expected outcome,
based on what was observed during familiarization. The
unexpected outcome is typically perceptually similar
to the events in the familiarization while the expected
outcome is typically more perceptually different. So, in
order for the outcome to be unexpected, it must be so
at the conceptual, rather than perceptual, level. When
this paradigm is used with infants, their looking time to
each event is measured, and infants tend to look longer
at unexpected outcomes, i.e., outcomes that “violate
their expectations” (Baillargeon et al., 1985; Oakes, 2010;
Turk-Browne et al., 2008).

2.1. Can an AI system represent an agent as hav-
ing a particular object-based goal?

Developmental Background. Infants attribute
object-based—as opposed to location-based—goals to
agents (Gergely et al., 1995; Luo, 2011; Song et al., 2005;
Woodward, 1998, 1999; Woodward and Sommerville,
2000). As illustrated in Figure 2 (left), Woodward
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(a)  Familiarization (8 trials)

(b)  Test: Expected

(c)  Test: Unexpected

Figure 2: Evaluation of whether machines can represent preferences
of agents. Inspired by the Woodward (1998)’s original study with
infants (left), our version of the task is rendered in both 2D (middle)
and 3D (right). The familiarization trials establish the preference
of the agent.

(1998, 1999)’s seminal study showed that when 5- and
9-month-old infants saw a hand repeatedly reaching to
a ball on the left over a bear on the right, they then
looked longer when the hand reached to the left for
the bear, even though the direction of the reach was
more similar in that event to the events in the previous
trials. These results suggest that the infants expected
that the hand would reach consistently to a particular
goal object as opposed to a particular goal location.
Other studies have shown that infants’ interpretations
are not restricted to reaching events. For example,
infants attribute an object-based goal to a 3D box
during a live puppet show when that box seemingly
exhibits self-propelled motion. (Luo, 2011; Luo and
Baillargeon, 2005; Shimizu and Johnson, 2004). When
shown an agent repeatedly moving to the same object at
approximately the same location, do AIs, like infants, in-
fer that the agent’s goal is the object and not the location?

Familiarization Trials. The familiarization shows an
agent repeatedly moving towards a specific object in a
world with two objects (Figure 2a right). The agent’s
starting position is fixed across trials, and the locations
of the objects are correlated with their identities such
that the preferred object and nonpreferred object appear
in generally the same location across trials (see appendix
Figure 11 and 12).

Test Trials. The test uses two object locations that had
been used during one familiarization trial, but the identity
of the objects at those locations has been switched. In the
expected outcome (Figure 2b right), the agent moves to
the object that had been their goal during the familiariza-
tion, i.e., their preferred object, but the trajectory of their

motion and the location of that object is different from
familiarization. In contrast, in the unexpected outcome
(Figure 2c), the agent moves to the nonpreferred object,
but the trajectory of their motion and the location they
move to is the same as familiarization. The model is
successful if it expects the agent to go to the preferred
object in a different location.

2.2. Can an AI system bind specific preferences
for goal objects to specific agents?

Developmental Background. Infants are capable
of attributing specific preferences to specific agents
(Buresh and Woodward, 2007; Henderson and Wood-
ward, 2012; Kuhlmeier et al., 2003; Repacholi and
Gopnik, 1997). For example, while 9- and 13-month-old
infants looked longer at test when an actor reached
for a toy that they did not prefer during habituation,
infants showed no expectations when the habituation
and test trials featured different actors (Buresh and
Woodward, 2007). When shown an one agent repeat-
edly moving to the same object, do AIs, like infants,
expect that that object is preferred to that specific agent?

Familiarization Trials. The familiarization shows an
agent consistently choosing one object over the other, as
above, but objects appear at widely varying locations in
the grid world.

Test Trials. The test includes two possible scenarios.
One scenario presents an expected outcome, in which the
familiar agent goes to the object it prefers, and another
outcome, in which a new, unfamiliar agent goes to the
object preferred by the familiar agent. While the latter
outcome is not necessarily unexpected, the familiar agent
going to the preferred object should be more expected
given the familiarization (appendix Figure 14). The sec-
ond scenario presents an unexpected outcome, in which
the familiar agent goes to the nonpreferred object, and
another outcome, in which the new agent goes to the
object not preferred by the familiar agent. Here, the
familiar agent going to the nonpreferred object should be
more unexpected (Figure 3). The model is successful if it
has weak or no expectations about the preferences of the
new agent.

2.3. Can an AI system understand that there may
be obstacles that restrict an agent’s actions
and that an agent will move to a previously
nonpreferred object when their preferred ob-
ject becomes inaccessible?

Developmental Background. Infants understand the
principle of solidity (e.g., that solid objects cannot pass
through one another), and they apply this principle to
both inanimate entities (Baillargeon, 1987; Baillargeon
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et al., 1992; Spelke et al., 1992) and also animate enti-
ties, such as human hands (Luo et al., 2009; Saxe et al.,
2006). Infants’ expectations about the objects agents
might approach are also informed by object accessibility.
Scott and Baillargeon (2013) demonstrate, for example,
that 16-month-old infants expected an agent, facing two
identical objects, to reach for the one in the container
without a lid versus the one in the container with a lid.

Familiarization Trials. The familiarization shows an
agent consistently choosing one object over the other, as
above, and objects appear at widely varying locations in
the grid world. (Figure 4).

Test Trials. The test presents two new object locations.
In the expected outcome, the preferred object is now
inaccessible, blocked on all sides by the fixed, black bar-
riers, and the agent moves to the nonpreferred object.
In the unexpected outcome, both of the objects remain
accessible, and the agent moves to the nonpreferred ob-
ject (Figure 4). The model is successful if it expects the
agent to move to the nonpreferred object only when the
preferred object is inaccessible.

2.4. Can an AI system represent an agent’s se-
quence of actions as instrumental, directed
towards a higher-order goal object?

Developmental Background. Infants represent an
agent’s sequence of actions as instrumental to achieving
a higher-order goal (Carpenter et al., 2005; Elsner et al.,
2007; Gerson et al., 2015; Hernik and Csibra, 2015; Saxe
et al., 2007; Sommerville and Woodward, 2005; Wood-
ward and Sommerville, 2000). For example, Sommerville
and Woodward (2005) showed that 12-month-old infants
understand an actor’s pulling a cloth as a means to get-
ting the otherwise out-of-reach object placed on it. When
shown an agent repeatedly taking the same action to
effect a change in the environment that enables them to

(a) Familiarization (8 trials) (b) Test: No Expectation (c) Test: Unexpected

Figure 3: Evaluation of whether machines can bind specific goals to
specific agents. The familiarization trials establish the preference
of the agent.

(a) Familiarization (8 trials) (b) Test: Expected (c) Test: Unexpected

Figure 4: Evaluation of whether machines can understand that
obstacles restrict actions. The familiarization trials establish the
preference of the agent.

move towards an object, do AIs, like infants, expect that
that object is the goal, as opposed to the sequence of
actions?

Familiarization Trials. The familiarization includes
five main elements: an agent; a goal object; a key; a lock;
and a green removable barrier (see Figure 5). The green
barrier initially restricts the agent’s access to the object.
And so, the agent removes the barrier by collecting and
then inserting the key into the lock. The agent then
moves to the object.

Familiarization (8 trials) Test: Expected Test: Unexpected

(a) No barriers
Familiarization (8 trials) Test: Expected Test: Unexpected

(b) Inconsequential barriers
Familiarization (8 trials) Test: Expected Test: Unexpected

(c) Blocking barriers

Figure 5: The three types of trials that test machines’ understanding
of an agent’s actions towards a higher-order goal. The goal is
initially inaccessible (blocked by a green removable barrier). During
familiarization, the agent removes the barrier by retrieving the key
(triangle) and inserting it into the lock.
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(a)  Familiarization (8 trials)

(b)  Test: Expected

(c)  Test: Unxpected

Figure 6: Inspired by Gergely et al. (1995) (left) we ask whether
machines expect that agents move efficiently towards goal objects.
At test, the agent moves along one of the same paths they moved
along during familiarization, but unlike familiarization, there is no
barrier between the agent and the object. So, this inefficient action
is unexpected.

Test Trials. The test includes three possible scenarios.
One scenario presents no green barrier. In the expected
outcome, the agent moves directly to the object while
in the unexpected outcome the agent moves to the key
(Figure 5a). The second scenario presents a green barrier,
but it does not restrict the agent’s access to the object.
In the expected outcome, the agent moves directly to
the object while in the unexpected outcome the agent
moves to the key (Figure 5b). The third scenario presents
an expected outcome, in which the barrier restricts the
agent’s access to the object and the agent moves to the
key. In the unexpected outcome, the barrier does not
block the object and the agent goes to the key (Figure
5c). Including these three scenarios allows us to test for
simple heuristics that models might use to solve these
tasks. If the model uses the heuristic that the key should
be visited first and then the object, it will fail on the
no barrier and inconsequential barrier scenarios. If the
model uses the heuristic that the key should be visited
only when a removable barrier is present, then it will
fail on the inconsequential barrier scenario. Finally, the
heuristic of always going to the object directly will fail
on the blocking barrier scenario. The model is successful
if it expects the agent to go to the key only when the
removable barrier is blocking that object.

2.5. Can an AI system understand that agents
act efficiently towards a goal object?

Developmental Background. Infants expect agents
to move efficiently towards their goals (Baillargeon et al.,
2015; Colomer et al., 2020; Gergely and Csibra, 1997,
2003; Gergely et al., 1995; Liu et al., 2019, 2017). In
a seminal study by Gergely et al. (1995), for example,

12-month-old infants repeatedly saw a small circle
jumping over an obstacle to get to a big circle (see Figure
6 left). At test, the obstacle was removed, and the small
circle either performed the same, now inefficient, action
to get to the big circle or performed the straight, now
efficient action. Infants were surprised when the agent
performed the familiar but inefficient action. These
findings have been replicated by instantiating the agent
and object in different ways (as, e.g., humans, geometric
shapes, or puppets) and by using different kinds of
presentations (e.g., prerecorded or live) (Colomer et al.,
2020; Liu et al., 2017; Phillips and Wellman, 2005;
Sodian et al., 2004; Southgate et al., 2008). When infants
see an irrational agent, i.e., one moving inefficiently to
their goal from the start, however, they do not form
any expectations about that agent’s efficient action at
test (Gergely et al., 1995; Liu and Spelke, 2017). When
shown a rational agent repeatedly taking an efficient
path around a barrier to its goal object, do AIs, like
infants, expect that that agent will continue to take
efficient paths as opposed to similar-looking paths, once
that barrier is removed?

Familiarization Trials. The familiarization includes
two different scenarios. In one scenario, a rational agent
consistently moves along an efficient path to its goal
object around a fixed, black barrier in the gird world
(Figure 6a). In the other scenario, an irrational agent
moves along these same paths, but there is no barrier in
the way. So in this latter scenario, the irrational agent is
acting inefficiently from the start (Figure 7).

Test Trials. The test includes two possible scenarios.
One scenario shows only the rational, efficient agent
during familiarization, and at test, it presents one of
the familiarization trials but with the barrier between
the agent and the goal object removed. In the expected
outcome, the agent moves along a straight, efficient path
to its goal. In the unexpected outcome, the agent either

(a) Familiarization: Irrational (b) Familiarization: Rational (c) Test: Inefficient

Figure 7: Inspired by Gergely et al. (1995), we ask whether machines
expect either rational or irrational agents to move efficiently towards
their goals.
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moves along the exact same, but now inefficient, path
that it had during familiarization (path control), Figure
6) or along a path that is inefficient but takes the same
amount of time as the efficient path (in this latter case,
the goal object is closer to the agent, appendix Figure
13). As in the original studies with infants Gergely et al.
(1995), these path/timing variations focus the solution
on efficiency as opposed to other variables that often
correlate with efficiency.

The second scenario shows either the rational or irrational
agent during familiarization, and at test, it presents that
agent taking an inefficient path towards its goal (Figure
7). This outcome should be unexpected in the case of
the rational agent, but should yield no expectation in
the case of the irrational agent. The model is successful
if it expects only a rational agent to modify its path
based on the presence or absence of barriers and move
efficiently to its goal. Moreover, a model that ignores the
familiarization phase during which the rationality of the
agent is established will fail.

2.6. Generating the Evaluations

Inspired by Heider and Simmel (1944), the primary set
of visual stimuli present “grid-world” animations, shown
from an overhead perspective and populated with simple
shapes that take on different roles (e.g. “agents”, “ob-
jects”, “tools”), and we assume the environment is fully
observable to the agent (i.e., the agent can see over the
walls) and the observer. We chose this type of environ-
ment as particularly suitable for testing AIs (e.g., Baker
et al., 2017; Rabinowitz et al., 2018) because it allows for
procedural generation of a large number of episodes, and
the simple visuals focus the problem on reasoning about
agents.

For each of the five evaluation tasks, we generated 1000
episodes, each with one expected and one unexpected out-
come (2000 videos), by sampling the locations of barriers,
agents, and objects in the 10 × 10 grid. The locations
are controlled to account for the distances and obstacles
between the agent and the objects so that, e.g., preferred
objects are not consistently closer or farther from agents.
We provide two evaluation sets, one with objects and
agents seen during background training and the other
with new shapes for the objects and agents. Finally, as a
means to vary the perceptual difficulty of the benchmark,
we also include 3D versions of the stimuli rendered to
match the 2D versions and presented at a three-quarters
point of view (Figure 2).The 2D stimuli (except for the
instrumental action tasks) are directly translated to 3D
using the AI2THOR (Kolve et al., 2019) framework. For
both 2D and 3D videos, we provide scene configuration
files describing the objects and agents present in the
scene.

(a) Single object (b) Preference (c) Instrumental action

(d) Multi-agent
Figure 8: The four tasks from the background training set. Only
the test trials are shown here.

3. Background Training

We provide a set of background training tasks for the mod-
els to learn about agents and objects in our grid worlds
and the structure of the trials. Although we provide a
training set, we do not intend to limit models to just these
data prior to being tested. Additional out-of-distribution
training data is allowed, just as infants get varied expe-
rience with agents in the real world. Importantly, when
participating in a lab study, infants can make meaningful
inferences about novel stimuli/environments with only a
relatively brief familiarization phase. We include tens of
thousands of background episodes as a generous stand-in
for this type of in-lab familiarization so AI systems are
not surprised merely by the various elements and dy-
namics used in the evaluation. Although learning-centric
approaches will learn something about other agents if
trained on the background set, we do not intend it to be
sufficient for acquiring genuine, abstract agent representa-
tions. We intend that either supplemental pretraining or
additional prior knowledge can be enriched by the back-
ground training to approach the benchmark successfully.

The episodes in the background training are structured
similarly to those in the evaluation, although the
familiarization and test trials are now drawn from the
same distribution within each episode. Similar to IntPhys
(Riochet et al., 2018) and ADEPT (Smith et al., 2019),
we only provide the expected outcomes during training.
There are four training tasks:

Single Object Task. The agent navigates to an object
at some varied location in the scene (Figure 8a). This
task is different from the evaluation task in that it
presents only a single object. With this training, models
can learn how agents start and end trials, how agents
move, and how barriers influence agent motion. We
provide 10,000 episodes of this type.
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No-Navigation Preference Task. Two objects are
located very close to the agent’s starting location, and
the agent approaches one object consistently across trials
(Figure 8b). The task allows the model to learn that
agents have preferences. Critically, the navigation in
these trials is trivial compared to the evaluation trials,
so navigation to goal objects is not trained. We provide
10,000 episodes of this type.

No-Preference, Multiple-Agent Task. One object
is located very close to the agent’s initial starting location
(Figure 8d). At some point during the episode, a new
agent takes the initial agent’s place (for example, the
initial agent could be replaced at the fourth trial and
all subsequent trials would have the new agent). The
task allows the model to learn that multiple agents
can appear across trials, but this task differs from the
evaluations, in which the new agent appears only in the
test trials. We provide 4,000 episodes of this type.

Agent-Blocked Instrumental Action Task. The
agent starts confined to a small region of the grid world,
blocked by a removable green barrier (Figure 8c). The
agent collects a key and inserts it into a lock to make
the barrier disappear. The agent then navigates to the
object. This task allows the model to learn that the
green barrier obstructs navigation and how the key and
lock remove that barrier. These trials differ from the
evaluation in that the removable barriers are around the
agent instead of the object. We provide 4,000 episodes
trials of this type.

To be successful at the evaluations, models must acquire
or enrich their representations of agents for flexible and
systematic generalization. For example, models have to
combine acquired knowledge of navigation (Single Object
Task) and agent preferences (No-Navigation Preference
Task) to be successful at the first evaluation testing the
underlying preferences guiding agents’ goal-directed ac-
tions (section 2.1).

4. Baseline Models

The baseline models are variants of a state-of-the-art,
neural-network approach to reasoning about agents: the
theory of mind net (ToMnet) model in Rabinowitz et al.
(2018). These models are trained passively and through
observation only. We use a self-supervised learning setup
where the objective is to predict the future actions of
the agent. During evaluation, the expectedness of a test
trial, in the context of the previous familiarization trials,
is defined by its error on the most ‘unexpected’ video
frame (frame with the highest error).

Figure 9: Architecture of the video baseline model inspired by
Rabinowitz et al. (2018). An agent-characteristic embedding is
inferred from the familiarization trials using a recurrent net. This
embedding, with the state at test time, is used to predict the next
frame of the video using a U-Net (Ronneberger et al., 2015).

We test two baseline models (see appendix B for
full model specifications), one that operates directly
on the videos and another that operates on the
mask representations of the elements (i.e., individual
elements – agents, objects, etc. — in a scene are
split into different channels). The objective of the
mask model (see appendix Figure 17) is to predict the
trajectory of the agent in the test trial (see appendix B.1).

The video model (see Figure 9) operates on videos sam-
pled at 3 fps and resized to 64× 64. Each frame in each
familiarization trial is encoded using a convolutional neu-
ral network. The frame embeddings in a trial are passed
to a bidirectional LSTM. The last output embdedding of
the LSTM represents the characteristic of the agent in
the trial. These embeddings are averaged across familiar-
ization to obtain a characteristic embedding for an agent.
The characteristic embedding is tiled to a 64× 64 spatial
resolution, concatenated to a frame from the test trial,
and passed through a U-net to predict the next frame in
the trial. A mean squared error loss is used to train the
network.

5. Results

The models were trained on 80% of the background train-
ing episodes (training set), and the rest of the episodes
were used for validation (validation set). A comparison
of the MSE loss on the training and validation sets and a
qualitative evaluation of the video model’s performance
indicates that it learned the training tasks successfully
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BIB Agency Task
Mask Video Video (New Shapes) 3D Video

Rel. Abs. Rel. Abs. Rel. Abs. Rel. Abs.

Preference 69.0 69.0 47.8 47.6 47.4 47.8 49.2 48.3
Multi-Agent 50.0 49.8 50.3 50.3 50.0 51.5 50.0 51.0
Inaccessible Goal 50.7 52.4 66.0 61.4 61.7 60.9 40.0 43.2

Efficiency: Path control 95.6 94.3 99.8 92.0 98.5 92.1 66.3 57.9
Efficiency: Time control 94.8 91.4 99.9 90.1 96.9 90.3 75.4 61.8
Efficiency: Irrational agent 50.0 50.0 50.0 50.0 47.8 49.5 50.0 50.0

Efficient Action Average 72.6 69.9 74.9 70.3 72.7 70.0 62.9 55.0

Instrumental: No barrier 98.2 98.4 99.7 94.0 93.0 88.1 - -
Instrumental: Inconsequential barrier 89.5 83.0 76.7 57.8 66.0 56.0 - -
Instrumental: Blocking barrier 77.3 56.2 58.2 57.5 59.7 58.0 - -

Instrumental Action Average 85.6 71.8 73.0 56.9 69.6 55.8 - -

Table 1: Performance of the baseline models on BIB. Scores for the mask model on 2D videos, the video model on the 2D videos, 2D
videos with new elements, and 3D videos are shown above. Relative accuracy (Rel.) scores quantify pairwise VOE judgements. Absolute
scores (Abs.) quantify VOE judgements on each video independently, requiring the prediction error to be lower on the expected videos.
The absolute score is the Area Under the ROC Curve (AUC), where the true positive rate is plotted against the false positive rate for
different threshold values.

(see appendix Figure 15).

For each evaluation episode, we first calculated the
model’s relative accuracy, i.e., whether the model found
the expected video in each pair more expected than the
unexpected video (chance is 50%). We also calculated
the model’s absolute score, i.e., the model’s prediction of
each video’s plausibility independent of the pairing. This
is measured by the Area Under the ROC Curve (AUC),
which plots true positive rates against the false positive
rate for different threshold values.

The results of our baseline models are presented in
Table 1. The video model performs at chance on the
Preference Task (see Figure 10a for predictions made by
the video model); it tends to predict that an agent will
go to the closer object (this prediction is made in about
70% of trials). The model thus neglects the agent’s
preference, established during familiarization. This is
particularly striking because the model does take into
account the familiarization phase when succeeding in
the No-Navigation Preference Task in the background
training.

The video model also fails on the Multi-Agent Task,
again tending to predict that an agent will go to the
closer object regardless of any established preferences.
Consistent with this failure, the model also fails to map
specific preferences to specific agents.

This model does slightly better than chance on the In-
accessible Goal Task. As seen in Figure 10b, it still
nevertheless, frequently predicts that the agent will go to
the inaccessible goal.

The video model is proficient at finding the shortest
path to the goal in the Efficiency Task (appendix
Figure 19a), leading to high accuracy on both sub-
evaluations that test for efficient action: Path Control
and Time Control (Table 1). However, the model fails

Input Frame Model Prediction Target Frame

(a) Preference Task: The model predicts that the brown agent would
go to the green object instead of the established preference of the grey
object.

Input Frame Model Prediction Target Frame

(b) Inaccessible goal task: The model predicts that the blue agent
would head to the inaccessible cyan object.

Input Frame Model Prediction Target Frame

(c) Instrumental action task C: The model predicts that the blue agent
would directly go to the inaccessible orange object goal instead of per-
forming the instrumental action by first collecting the triangular key.

Figure 10: The most surprising frame (the frame with the highest
prediction error) from the test trial for the video model taken from
the evaluation tasks. Failure cases are shown here.

8



to modulate its predictions based on whether the agent
was rational or irrational during familiarization (Table 1).

Finally, the video model performs above chance on
the Instrumental Action Task, but performance on the
sub-evaluations (Table 1) indicates that it relies on the
simple heuristic of directly going to the goal object
rather than understanding the nature of the instrumental
action (Figure 10c). This leads to higher scores on
sub-evaluations with no barrier and an inconsequential
barrier (Table 1) but lower ones on the sub-evaluation
with a blocking barrier. This poor performance may
be due to the difference between the agent and barrier
conditions in the background training (where the agent
is confined; Figure 8c) and evaluation (where the object
is confined; Figure 5).

The mask model shows similar performance to the video
model across the tasks (see appendix B) for a detailed
analysis).

Moreover, when we replace the elements in the evaluation
set with new ones, the video model scores fall slightly, but
the trends remain the same (Table 1). Finally, the video
model performs similarly on the 3D videos of the tasks,
although performance is generally worse overall with 3D
videos. This is likely because perceiving the trajectories
of agents in 3D is more difficult for a predictive model in
pixel space. The predictive networks trained with MSE
find it challenging to model trajectories in depth.

6. General Discussion

In this paper we introduced the Baby Intuitions
Benchmark (BIB), which tests machines on their ability
to reason about the underlying intentionality of other
agents by observing only agents’ actions. BIB is directly
inspired by the abstract reasoning about agents that
emerges early in human development, as revealed by
behavioral studies with infants. BIB’s adoption of the
VOE paradigm, moreover, means its results can be
interpreted in terms of human performance and makes it
appropriate for direct validation with human infants in
future studies.

While baseline, deep-learning models successfully gener-
alize to BIB’s training tasks, they fail to systematically
generalize to the evaluation tasks even though the
models incorporate theory-of-mind-inspired architectures
(Rabinowitz et al., 2018). In particular, the baseline
models performed at about chance when required to
reason that agents have preferred goal objects, that pref-
erences are tied to specific agents, and that goal objects
can be physically inaccessible. When presented with
instrumental actions, moreover, the models succeeded

only by relying on a simple heuristic of going directly
to the goal object, rather than on a more sophisticated
understanding of an agent’s sequence of actions. Finally,
the models failed to modulate their predictions about
efficient action for irrational versus rational agents.
These results suggest that state-of-the-art AI models do
not have a common-sense understanding of agents the
way human infants do.

BIB is rooted in the findings and methods of devel-
opmental cognitive science, but there are still critical
differences between its stimuli and the stimuli used
with infants, and its particular tasks have not yet been
validated with infants. First, while the simplicity of the
grid-world environment, for example, makes it ideal for
procedural generation to test AIs, such displays may
not be compelling enough to engage infants’ intuitions
about agents, and overhead, object-directed navigation
events may not be the most intuitive context in which
to engage infants’ representations of other agents (in
contrast to, e.g., perspectival reaching events). Can
infants reason about agents’ actions when viewing them
from an overhead perspective? Can infants recognize
simple shapes with simple movements and minimal cues
to animacy (e.g., no eyes/gaze direction, no distinctive
sounds, and no emotional expressions) as agents with
intentionality? Most of the existing infant literature off
of which BIB is based presents infants with richer cues
to animacy and in the form of live-action or animated
displays from a frontal or three-quarters points of view.
Second, some of the variability introduced across the
evaluation videos may make it difficult for infants to
track and stably represent the different elements. For
example, the location of the preferred object varies
greatly during the familiarization phase in the evaluation
that links specific agents to specific preferences. No study
with infants, to our knowledge, has shown that infants
succeed in predicting an agent’s goal-directed actions
under these conditions. Third, some inferences about
agents included in this benchmark are yet to be tested
with infants. For example, no study to our knowledge
has examined whether infants expect agents to move
towards a nonpreferred object, versus not move at all,
when a preferred object is inaccessible. And, no study
has examined whether infants expect a goal object in a
two-alternative forced-choice scenario to generalize across
agents when infants are familiarized to both agents both
moving to the same object when there is only that one
object present. Finally, the “extended familiarization”
needed for training AI models (i.e., the background
training), reveals a striking difference between how BIB
might challenge minds versus machines. While both
infants and AIs may have built-in knowledge and/or
pretraining (e.g., from infants’ everyday experience or
from AIs’ simulated experience), infants may need to
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watch only eight, as opposed to thousands, of videos
of shapes moving around grid worlds to successfully
apply their reasoning about agents to new, test events
presented in that medium.

The origins and development of human, intuitive under-
standing of agents and their intentional actions have been
studied extensively in developmental cognitive science.
The representations and computations underlying such
understanding, however, are not yet understood. BIB
serves as a test for computational models with different
priors and learning-based approaches to achieve the
common-sense reasoning about agents that human
infants have. A computational description of how we
reason about agents could ultimately help us build
machines that better understand us and that we better
understand.

Finally, BIB serves as a key step in bridging machines’ im-
poverished understanding of intentionality with humans’
rich one, since intentionality is one key component to
understanding and reasoning about others in terms of
their underlying mental states, including their beliefs and
desires. A benchmark that focuses on reasoning about
agents’ intentional states, as well as their phenomenolog-
ical and epistemic states, such as false-beliefs (a litmus
test of human theory of mind (e.g. Baron-Cohen et al.
(1985); Leslie (1987)), is thus a natural extension of BIB
and could further advance our understanding of both
human and artificial intelligence.

Acknowledgements

This worked was supported by the DARPA Machine
Common Sense program (HR001119S0005). We thank
Victoria Romero, Koleen McKrink, David Moore, Lisa
Oakes, Clark Dorman, and Amir Tamrakar for their gen-
erous feedback. We are especially grateful to Thomas
Schellenberg, Dean Wetherby, and Brian Pippin for their
development effort in porting the benchmark to 3D.

References

Abbeel, P. and Ng, A. Y. (2004). Apprenticeship learning
via inverse reinforcement learning. In Proceedings of
the 21st International Conference on Machine learning,
page 1.

Albrecht, S. V. and Stone, P. (2018). Autonomous agents
modelling other agents: A comprehensive survey and
open problems. Artificial Intelligence, 258:66–95.

Baillargeon, R. (1987). Object permanence in 31/2-and
41/2-month-old infants. Developmental psychology,
23(5):655.

Baillargeon, R., Needham, A., and DeVos, J. (1992). The
development of young infants’ intuitions about support.
Early development and parenting, 1(2):69–78.

Baillargeon, R., Scott, R. M., and Bian, L. (2016). Psy-
chological reasoning in infancy. Annual review of psy-
chology, 67:159–186.

Baillargeon, R., Scott, R. M., He, Z., Sloane, S., Setoh,
P., Jin, K.-s., Wu, D., and Bian, L. (2015). Psycho-
logical and sociomoral reasoning in infancy. American
Psychological Association.

Baillargeon, R., Spelke, E. S., and Wasserman, S. (1985).
Object permanence in five-month-old infants. Cogni-
tion, 20(3):191–208.

Baker, C., Saxe, R., and Tenenbaum, J. (2011). Bayesian
theory of mind: Modeling joint belief-desire attribution.
In Proceedings of the annual meeting of the cognitive
science society, volume 33.

Baker, C. L., Jara-Ettinger, J., Saxe, R., and Tenenbaum,
J. B. (2017). Rational quantitative attribution of beliefs,
desires and percepts in human mentalizing. Nature
Human Behaviour, 1(4):1–10.

Baker, C. L., Saxe, R., and Tenenbaum, J. B. (2009).
Action understanding as inverse planning. Cognition,
113(3):329–349.

Banaji, M. R. and Gelman, S. A. (2013). Navigating the
social world: What infants, children, and other species
can teach us. Oxford University Press.

Baron-Cohen, S., Leslie, A. M., and Frith, U. (1985). Does
the autistic child have a “theory of mind”? Cognition,
21(1):37–46.

Buresh, J. S. and Woodward, A. L. (2007). Infants
track action goals within and across agents. Cogni-
tion, 104(2):287–314.

Carpenter, M., Call, J., and Tomasello, M. (2005). Twelve-
and 18-month-olds copy actions in terms of goals. De-
velopmental science, 8(1):F13–F20.

Colomer, M., Bas, J., and Sebastian-Galles, N. (2020).
Efficiency as a principle for social preferences in infancy.
Journal of Experimental Child Psychology, 194:104823.

Elsner, B., Hauf, P., and Aschersleben, G. (2007). Imitat-
ing step by step: A detailed analysis of 9-to 15-month-
olds’ reproduction of a three-step action sequence. In-
fant Behavior and Development, 30(2):325–335.

Gergely, G. and Csibra, G. (1997). Teleological reasoning
in infancy: The infant’s naive theory of rational action:
A reply to premack and premack. Cognition, 63(2):227–
233.

Gergely, G. and Csibra, G. (2003). Teleological reasoning
in infancy: The naıve theory of rational action. Trends
in cognitive sciences, 7(7):287–292.
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A. Data Specifications

Each video has a resolution of 200 x 200 at 25 fps
(the videos can be converted to a higher resolution
if required). In addition to the videos, we provide
metadata in the form of json files describing every
frame in the video. This description contains informa-
tion about the layout of the scene and the objects present.

Each video has a json file associated with it. A video has
9 trials which correspond to the 9 items in the json file.
These 9 trials have a variable number of frames. Each
frame is described by the objects contained in it.

These include:

• The ’size’ attribute specifies the resolution of the
frame.

• The ’walls’ attribute has a list of [bottomleft, extent]
attributes describing the barriers. The bottomleft
attribute is 2-dimensional and is defined by an x and
y coordinate. Similarly, the extent for each wall is
2-dimensional and describes the width and height of
the wall.

• The ’objects’ attribute is defined as a list of attributes
[bottomleft, size, image, color]. The bottomleft at-
tribute is 2 dimensional and is defined by an x and
y coordinate. The size is the half of the side of the
square shape that the image of the object would be
resized to. So, if the size is 10, an object image of
size 100x100 would be resized to 20x20. The image
attribute gives the path of the object image. The
color attribute gives the color of the object in RGB
format in the range [0, 255].

• The ’home’, ’agents’, ‘key’ and ‘lock’ attributes have
a similar structure to the objects attribute.

• The ‘fuse’ attribute corresponds to the removable
barrier and has a similar structure to the ‘walls’
attribute.

B. Baseline Details

B.1. Mask Model

Model Description. Each trial is represented in the
form of its initial state and the trajectory taken by
the agent (see Figure 17). The states and trajectories
are approximated to a grid of size 10 × 10. The initial
state is approximated from the frame in the form of a
downsampled representation of size 10× 10× |O|, where
|O| represents the number of possible elements in the
scene. These include target objects (14), agents (5), walls
(1), home (1), key (1), lock (1) and removable barriers
(1) with a total of 24 possible objects in the environment.

The trajectory of the agent for a trial is provided in the
form of a flat 10× 10 grid where the cells visited by the
agent have a value of 1 while the rest are 0.

The objective of the model is to predict the trajectory of
the agent in the test trial conditioned on the initial state
of the trial and the eight familiarization trials, presented
in the form of initial state and agent trajectory pairs. To
encode a trial, the trajectory is concatenated with every
channel of the state representation and passed through
a two convolutional layers (3 × 3, 2 output channels,
with batchnorm (BN) and residual connections). The
outputs of this network are concatenated and passed
through another convolutional neural network (1× 1, 24
output channels, BN → 3× 3, 24, BN → 3× 3, 24, BN
with residual connections), flattened and passed through
a fully connected layer to get an agent characteristic
embedding for the trial (1 × 8). The trial embeddings
from the eight familiarization trials are averaged to get an
agent characteristic embedding (1× 8). This embedding
is spatialised (tiled) to a 10 × 10 grid (10 × 10 × 8)
and concatenated to the initial state representation of
the test trial and passed through a fully convolutional
network (Residual Net [3× 3; 32; BN] ×4 + Sigmoid) to
predict the trajectory of the agent (10× 10× 1).

A binary cross entropy objective with a focal loss is
used to train the agent. Although multiple plausible
trajectories exist for a trial and no one trajectory is the
‘right’ one, we expect that a model can learn reasonable
expectations about agent behavior. We train the model
with an Adam optimizer with a learning rate of 1e-4
(betas=(0.9, 0.999)) for 21 epochs.

Training Tasks. The performance of the mask model
on the background training tasks is shown in appendix
Table 2 and appendix Figure 15. For the mask model,
each grid cell is treated as a separate binary classification
problem (if the agent will visit the cell or not). We
compute the precision and recall for these binary
classification problems. For the preference task, we also
analyse if the model predicts that the agent will visit the
cell of the object goal. The model predicts the cell of
the preferred object 83.2%, the cell of the less preferred
object 6.9%, of both objects 8.4% and no object 2.4% of
the times. We see that the model successfully generalizes
to the training tasks.

Evaluation Results. The performance of the mask
model can be seen in Table 1 and appendix Figure 16.
The mask model quickly learns to find the shortest path
between the agent and the object. It fails on the multi-
agent, inaccessible goal and the efficient action task with
an irrational agent. The model does not have different
expectations for the preferences of the new agent and
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(a) Familiarization Trials

(b) Test: Expected 

(c) Test: Unexpected 

Figure 11: Evaluation task to test if machines can represent preferences of agents. 2D versions of the stimuli are shown here.

(a) Familiarization Trials

(b) Test: Expected 

(c) Test: Unexpected 

Figure 12: Evaluation task to test to test if machines can represent preferences of agents. 3D versions of the stimuli are shown here.
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(a) Familiarization (8 trials) (b) Test: Expected (c) Test: Unexpected

Figure 13: We draw inspiration from Gergely et al. (1995) to design
an equivalent task to test if machines can understand if agents act
efficiently towards their goals. In this task, the time taken by the
agent to reach the goal in the expected and unexpected cases is the
same.

(a) Familiarization (8 trials) (b) Test: Expected (c) Test: No Expectation

Figure 14: Evaluation of binding specific preferences to specific
agents. The familiarization trials establish the preference of the
agent.

Input Frame Model Prediction Target Frame

(a) Background Single Object Task: The model correctly predicts that
the orange agent will go around the barriers to reach the beige object
goal.

Input Frame Model Prediction Target Frame

(b) Background No-Navigation Preference Task: The model correctly
predicts that the blue agent will go to the preferred green object goal.

Input Frame Model Prediction Target Frame

(c) Background No Preference Multi-Agent Task: The model predicts
that the blue agent will go the object goal in the trial.

Input Frame Model Prediction Target Frame

(d) Background Agent-Blocked Instrumental Action Task: The model
correctly predicts the locations visited by the agent to perform the
instrumental action and visit the object goal (with the caveat that the
model does not have the capacity to understand the sequence in which
the cells in the grid are visited).

Figure 15: Agent trajectory predictions on the background training
set in the test trial made by the model working on abstract mask
representations. Test trials are shown here.

makes the same predictions as those for the familiar
agent. For the inaccessible goal task, the model predicts
that the agent will go to both objects in the test trial
(with the trajectory blocked by the obstacle around the
goal)(appendix Figure 16d). The model performs better
than chance on the preference task but frequently predicts
that the agent will go to both objects in the scene (see
appendix Figure 16b). As the mask model tries to predict
the complete trajectory of the agent in a trial (ignoring
the sequence of the actions), it solves a weaker proxy of
the instrumental action task, achieving a score higher
than the video model.

B.2. Video Model

Model Description. In the video model, the frames
of a familiarization trial are encoded using a residual
convolutional network with 4 blocks, each with two
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Input Frame Model Prediction Target Frame

(a) Preference task: The model correctly predicts that the dark grey
agent will go to the preferred cyan object (established in the familiar-
ization)

Input Frame Model Prediction Target Frame

(b) Preference task: The model predicts a trajectory going to the wrong
magenta object but also highlights the blue preferred object. This
shows a case of failure.

Input Frame Model Prediction Target Frame

(c) Efficient action task: A successful case is shown here where the
model predicts that the agent will take the shortest path to the beige
object goal. The target frame here is from the unexpected episode.

Input Frame Model Prediction Target Frame

(d) Inaccessible goal task: A failure case is shown here where the model
predicts that the orange agent will go to the less preferred blue object
and also to the preferred yellow object but the trajectory is blocked by
the walls.

Figure 16: Agent trajectory predictions on the evaluation set in
the test trial made by the model working on mask representations.

BIB Task Precision Recall

Single object 0.88 0.67
Preference 0.92 0.57
Multi-agent 0.97 0.56
Instrumental action 0.89 0.74

Table 2: The performance of the mask model on the background
training tasks.

3 × 3 convolutional operations with 16 feature maps.
This is followed by a 1 × 1 convolutional layer to map
the 16 feature maps to one map. This representation
is flattened and passed sequentially to a bi-directional
LSTM. The output from the last timestep is used as the
agent characteristic representation of size 1× 16 for the
trial (see Figure 9). The characteristic embedding across
the 8 familiarization trials is averaged to get a final agent
characteristic embeddding. This embedding is tiled to
get a vector of size 64 × 64 × 16 and concatenated to
the current frame from the test trial. This vector of
size 64 × 64 × 19 is passed to a U-Net (Ronneberger
et al., 2015) to predict the next frame. We train
the model with an Adam optimizer with a learning
rate of 1e-4 (betas=(0.9, 0.999)). We train the 2D
video model for 11 epochs and the 3D model for 10 epochs.

Background Training. The errors on the validation
set for the model are shown in appendix Table 3. Some
of the predictions made by the model can be seen
in Figure 18. Only the preference task requires the
model to take the familiarization phase into consideration.

Evaluation Tasks. The model fails to reliably un-
derstand the preference of the agent. This could be a
result of differences in the distance at which the objects
are placed in the scene. In the background training,
the objects are placed close (section 3) to the agent,
making the length of the familiarization trials short. The
characteristic encoder LSTM might find it difficult to
extract characteristcs from longer sequences that are
seen in the evaluation tasks.

The model learns the simple heuristic of always going to
the object in the instrumental action task. This could
be caused due to a difference in the distribution of the
background training and evaluation tasks. In the back-
ground training task (Figure 8c), the agent is confined
in a small space within green removable barriers with
the key and the lock. The number of samples where the
model has to predict that the agent goes to the key or the
lock is relatively small compared to that of the barriers
disappearing and the agent moving towards the object
goal. In the evaluation tasks (Figure 5c), the number
of steps to reach the key and the lock are significantly
higher (as the object goal is confined in the removable
barriers). The model thus has trouble generalizing to this
case (Table 1 Instrumental: Blocking barriers task).
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Figure 17: Architecture of our baseline model working on abstract mask representations inspired from Rabinowitz et al. (2018). The
objective of the model is to predict the trajectory of the agent.

BIB Task MSE

Single object 3.3× 10−4

Preference 5.4× 10−4

Multi-agent 2.4× 10−4

Instrumental action 9× 10−4

Table 3: The performance of the video model on the 2D background
training tasks.
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Input Frame Model Prediction Target Frame

(a) A trial from the training set where the model predicts that thebrown
agent will go to the preferred (established in the familiarization) grey
object.

Input Frame Model Prediction Target Frame

(b) A trial from the training set where the model predicts that the
blue agent will go to the preferred magenta object (established in the
familiarization). We see that there is blurred blue prediction close to
the yellow object but the model thinks that it is more likely that the
agent will go to the magenta one.

Input Frame Model Prediction Target Frame

(c) The model correctly predicts that the agent will take the shortest
path to go to the object goal.

Input Frame Model Prediction Target Frame

(d) The model correctly predicts that in the instrumental action task,
when the key is inserted into the lock, the removable barriers will slowly
disappear.

Figure 18: Predictions of the video model on the background
training tasks. (a) and (b) show model predictions for two preference
trials where the model splits its predictions between the two objects
but thinks that going to the preferred object (established during the
familiarization phase) is more likely. (c) shows model predictions for
the single object task where the model predicts that the agent will
take the shortest path to the object. (d) shows the instrumental
action task where the model predicts the disappearance of the
removable barriers. Test trials are shown here.

Input Frame Model Prediction Target Frame

(a) Preference Task: The model correctly predicts that the brown agent
will go to the preferred object that has been established during the
familiarization (gray heart).

Input Frame Model Prediction Target Frame

(b) Efficient action task: The model correctly predicts that the brown
agent will take the shortest path to go towards the object goal. The
target frame from the unexpected trial is shown above.

‘

Figure 19: The most unexpected frame (the frame with the highest
prediction error) from the test trial for the video model taken from
the evaluation tasks. Successful examples shown here.
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