
Learning Task-General Representations with
Generative Neuro-Symbolic Modeling

Reuben Feinman and Brenden M. Lake
New York University

{reuben.feinman,brenden}@nyu.edu

Abstract

A hallmark of human intelligence is the ability to interact directly with raw data and acquire
rich, general-purpose conceptual representations. In machine learning, symbolic models
can capture the compositional and causal knowledge that enables flexible generalization,
but they struggle to learn from raw inputs, relying on strong abstractions and simplifying
assumptions. Neural network models can learn directly from raw data, but they struggle
to capture compositional and causal structure and typically must retrain to tackle new
tasks. To help bridge this gap, we propose Generative Neuro-Symbolic (GNS) Modeling, a
framework for learning task-general representations by combining the structure of symbolic
models with the expressivity of neural networks. Concepts and conceptual background
knowledge are represented as probabilistic programs with neural network sub-routines,
maintaining explicit causal and compositional structure while capturing nonparametric
relationships and learning directly from raw data. We apply GNS to the Omniglot challenge
of learning simple visual concepts at a human level. We report competitive results on 4
unique tasks including one-shot classification, parsing, generating new exemplars, and
generating new concepts. To our knowledge, this is the strongest neurally-grounded model
to complete a diverse set of Omniglot tasks.

1 Introduction

Human conceptual knowledge supports many capabilities spanning perception, production and rea-
soning [32]. A signature of this knowledge is its productivity and generality: the internal models
and representations that people develop can be applied flexibly to new tasks with little or no training
experience [25]. Another distinctive characteristic of human conceptual knowledge is the way that
it interacts with raw signals: people learn new concepts directly from raw, high-dimensional sensory
data, and they identify instances of known concepts embedded in similarly complex stimuli. A central
challenge is developing machines with human-like conceptual capabilities.

Engineering efforts have embraced two distinct paradigms: symbolic models for capturing structured
knowledge, and neural network models for capturing nonparametric statistical relationships. Symbolic
models are well-suited for representing the causal and compositional processes behind perceptual
observations, providing explanations akin to people’s intuitive theories [33]. Quintessential examples
include accounts of concept learning as program induction [12, 41, 24, 14, 4, 23]. Symbolic programs
provide a language for expressing causal and compositional structure, while probabilistic modeling
offers a means of learning programs and expressing additional conceptual knowledge through priors.
The Bayesian Program Learning (BPL) framework [24], for example, provides a dictionary of simple
sub-part primitives for generating handwritten character concepts, and symbolic relations that specify
how to combine sub-parts into parts (strokes) and parts into whole character concepts. These abstractions
support inductive reasoning and flexible generalization to a range of tasks [24].

1

ar
X

iv
:2

00
6.

14
44

8v
1

 [
cs

.A
I]

 2
5

Ju
n

20
20

HumansBPL model

(centered)

GNS model

Figure 1: Character drawings produced by the BPL model (left), GNS model (middle), and humans (right).

Symbolic models offer many useful features, but they come with important limitations. Foremost,
symbolic probabilistic models make simplifying and rigid parametric assumptions, and when the
assumptions are wrong—as is common in complex, high-dimensional data—they create bias [10]. The
BPL character model, for example, assumes that parts are largely independent a priori, an assumption
that is not reflective of real human-drawn characters. As a consequence, characters generated from the
raw BPL prior lack the complexity of real characters (Fig 1, left), even though the posterior samples
can appear much more structured. Another limitation of symbolic probabilistic models is that the
construction of structured hypothesis spaces requires significant domain knowledge [2]. Humans,
meanwhile, build rich internal models directly from raw data, forming hypotheses about the conceptual
features and the generative syntax of a domain. As one potential resolution, previous work has
demonstrated that the selection of structured hypotheses can itself be attributed to learning in a Bayesian
framework [42, 12, 13, 36, 21, 35]. Although more flexible than a priori structural decisions, models of
this kind still make many assumptions, and they have not yet tackled the types of raw, high-dimensional
stimuli that are distinctive of the neural network approach.

The second paradigm, neural network modeling, prioritizes powerful nonparametric statistical learning
over structured representations. This modeling tradition emphasizes emergence, the idea that conceptual
knowledge arises from interactions of distributed sub-symbolic processes [31, 27]. Neural network
models are adept at learning from raw data and capturing complex patterns, reaching human-level
performance in many recognition and control tasks [27]. However, neural networks can struggle to
learn the compositional and causal structure in how concepts are formed [25]; even when this structure
is salient in the data, they may have no obvious means of incorporating it. These limitations have been
linked to shortcomings in systematic generalization [30, 22] as well as generative and creative abilities
[26]. In a survey of over 10 neural network models applied to the Omniglot character learning challenge,
Lake et al. [26] found that only two neural nets had attempted both classification and generation tasks,
and they were each outperformed by the fully-symbolic, probabilistic BPL. Moreover, generative neural
models tended to produce characters with anomalous characteristics, highlighting their shortcomings in
modeling causal and compositional structure (see Fig. A12 and [26, Fig. 2a]).

In this paper, we introduce Generative Neuro-Symbolic (GNS) Modeling for leveraging the strengths
of both the symbolic and neural network paradigms. In this framework, concepts and conceptual
background knowledge are represented as probabilistic programs with neural network sub-routines
(see Fig. 2). As with traditional probabilistic programs, the control flow of a GNS program is an
explicit representation of the causal generative process that produces new concepts and new exemplars of
concepts. Moreover, explicit re-use of parts through repeated calls to procedures such as GeneratePart
(Fig. 2) ensures a representation that is compositional, providing an appropriate inductive bias for
compositional generalization. Unlike fully-symbolic probabilistic programs, however, the distribution of
parts and correlations between parts in GNS are modeled with neural networks. This architectural choice
allows the model to learn directly from raw data, capturing nonparametric statistics while requiring
only minimal prior knowledge. We demonstrate our modeling framework on the Omniglot challenge
[24] of learning novel character concepts, devising a GNS model that learns real compositional and
causal structure from a background set of human-drawn characters. Following background training,
GNS is evaluated in a series of concept learning tasks, using probabilistic inference to learn causal
motor programs from raw images.

2

Table 1: Attempted Omniglot tasks by model. Attempt does not imply successful completion.

Task BPL
[24]

RCN
[11]

VHE
[19]

SG
[38]

SPIRAL
[7]

Matching
Net [43]

MAML
[6]

Graph
Net [8]

Prototypical
Net [40]

ARC
[39]

One-shot classification x x x x x x x x
Parsing x x
Generate exemplars x x x x
Generate concepts (type) x x x
Generate concepts x x x

We report results for 4 of the 5 Omniglot challenge tasks with a single model: 1) one-shot classification,
2) parsing/segmentation, 3) generating new exemplars, and 4) generating new concepts (without
constraints); the last task of generating new concepts (from type) is left for future work. We provide
additional likelihood evaluations to further assess the quality of the generative model. Notably, our
goal is not to chase state-of-the-art performance on any one task (e.g., classification) across many
datasets, as is typical in machine learning research. Instead we aim to build a model that learns deep,
task-general knowledge within a single domain to support a range of different tasks. This “deep
expertise” is just as important as “broad expertise” in characterizing human-level concept learning
[26], although it gets substantially less attention in today’s machine learning. Our work here is one
proposal for how neurally-grounded approaches can move beyond pattern recognition toward more
flexible model-building abilities [25] for capturing deep expertise.

2 Related Work

The Omniglot dataset and challenge has been widely adopted in machine learning, with models such as
Matching Nets [43], MAML [6], and ARC [39] selecting to pursue one-shot classification in isolation,
and others such as DRAW [17], SPIRAL [7], and VHE [19] emphasizing one or more of the generative
tasks. In their “3-year progress report," Lake et al. [26] reviewed the current progress of machines
applied to Omniglot, finding that although there was considerable progress in one-shot classification,
there had been little emphasis placed on developing task-general models to match the flexibility of
human learners (Table 1). Moreover, models that attempt more creative generation tasks were shown
to produce characters that either closely mimicked the training examples or that exhibited anomalous
variations, making for easy identification from humans. Our goal is distinct in that we aim to learn
a single generative model that can perform a variety of unique tasks, and that generates novel yet
structured new characters. Our proposed framework bears some resemblance to SPIRAL [7]; however,
SPIRAL does not provide a density function, and it has no hierarchical structure, limiting its applications
to image reconstruction and unconditional generation.

Neuro-symbolic modeling has become an active area of research, with applications to learning input-
output programs [37, 16, 3, 34], question answering [44, 29] and image description [4]. GNS modeling
distinguishes from prior work through its focus on hybrid generative modeling, combining both
structured program execution and neural networks directly in the probabilistic generative process.

Aspects of our model were developed in our own prior work [5], which used a neuro-symbolic model
of Omniglot drawing data that performs just one of the tasks studied here (generating new concepts),
for which it outperformed purely neural approaches [15, 18]. In this paper, we develop this approach to
include essential hierarchical structure (type vs. tokens) as well as methods for probabilistic inference,
both essential for concept learning but absent in prior work. With these ingredients together, GNS is
distinctive as a neurally-grounded generative model that performs a wide range of Omniglot concept
learning tasks (also see [38, 19]).

3 Generative Model

Our GNS framework is inspired by the BPL framework [24] for task-general representation learning.
We incorporate critical ingredients of BPL while seeking more expressive distributions and autonomy,
using neural networks where applicable and seeking more generic inductive biases for concept learning.
The architecture and sampling procedure of our full GNS model for character concepts is given in

3

type level

token level

procedure GENERATETYPE
C 0 . Initialize blank image canvas
while true do

[yi, xi] GENERATEPART(C) . Sample part location & parameters
C frender(yi, xi, C) . Render part to image canvas
vi ⇠ p(v | C) . Sample termination indicator
if vi then

break . Terminate sample
 {, y1:, x1:}
return . Return concept type

1

C
Canvas

yi, xi

Part

Image
I

procedure GENERATETYPE
C 0 . Initialize blank image canvas
while true do

[yi, xi] GENERATEPART(C) . Sample part location & parameters
C frender(yi, xi, C) . Render part to image canvas
vi ⇠ p(v | C) . Sample termination indicator
if vi then

break . Terminate sample
 {, y1:, x1:}
return . Return concept type

1

pr
oc

ed
ur

e
G

ENERAT
ET

YPE

C

0

.
In

itia
liz

e
bla

nk
im

ag
e

ca
nv

as

whi
le

tr
ue

do

[y
i
, x

i
]

G
ENERAT

EP
ART(

C
)
.

Sam
ple

pa
rt

loc
at

ion
&

pa
ra

m
et

er
s

C

f re
nd

er
(y

i
, x

i
, C

)

.
Ren

de
r p

ar
t t

o
im

ag
e

ca
nv

as

v i
⇠

p(
v
| C

)

.
Sam

ple
te

rm
ina

tio
n

ind
ica

to
r

if
v i

th
en

br
ea

k

.
Te

rm
ina

te
sa

m
ple

{
, y

1:

, x

1:

}

re
tu

rn

.
Ret

ur
n

co
nc

ep
t t

yp
e

1

procedure GENERATETYPE
C 0 . Initialize blank image canvas
while true do

[yi, xi] GENERATEPART(C) . Sample part location & parameters
C frender(yi, xi, C) . Render part to image canvas
vi ⇠ p(v | C) . Sample termination indicator
if vi then

break . Terminate sample
 {, y1:, x1:}
return . Return concept type

1

location model p(y ∣ C)

CNN MLP

stroke model p(x ∣ y, C)

CNN LSTM

y

C

attention

p(y)

p(Δ1)

p(Δ2 ∣ Δ1)

p(ΔT ∣ Δ1:T−1)
…C

Figure 2: A generative neuro-symbolic (GNS) model of character concepts. The type model GenerateType
(P (ψ)) produces character types one stroke at a time, using an image canvas C as memory. At each step, the
current canvas C is fed to procedure GeneratePart and a stroke sample is produced. The canvas is first processed
by the location model, a CNN-MLP architecture that samples starting location y, and next by the stroke model,
a CNN-LSTM architecture that samples trajectory x while attending to the encoded canvas. Finally, a symbolic
renderer updates the canvas according to x and y, and a termination model decides whether to terminate the type
sample. Unique exemplars are produced from a character type by sampling from the token model conditioned on
ψ, adding motor noise to the drawing parameters and a random affine transformation.

Fig. 2. As with BPL, our generative model uses a type-token hierarchy to capture the variability
of concepts at two distinct levels. Furthermore, the model of each level is a probabilistic program
that captures real compositional and causal structure by sampling characters as sequences of parts
and locations. Unlike BPL, however, the type prior P (ψ) in GNS uses an external image canvas to
convey the current drawing state at each step, applying a symbolic graphics engine to render previous
parts and incorporating a powerful recurrent neural network that encodes and attends to the canvas
when sampling the next part. This additional machinery helps condition future parts on previous and
allows GNS to model more sophisticated causal and correlational structure. Moreover, whereas the
BPL model is provided symbolic relations for strokes such as “attach start" and “attach along," GNS
learns implicit relational structure from the data, identifying salient patterns in the co-occurrences of
parts and locations. Unique exemplars {θ(m), I(m)} are produced from a character type ψ by sampling
from token model P (θ(m) | ψ) and subsequently from image model P (I(m) | θ(m)). The full joint
distribution over type ψ, token θ(m) and image I(m) factors as

P (ψ, θ(m), I(m)) = P (ψ)P (θ(m)|ψ)P (I(m)|θ(m)). (1)

All components of our generative model are learned from the Omniglot background set of drawings.

Type prior. The type prior P (ψ) is captured by a neuro-symbolic generative model of character
drawings that we developed in recent work [5]. The model represents a character as a sequence
of strokes (parts), with each stroke i decomposed into a starting location yi ∈ R2 and a variable-
length trajectory xi ∈ Rdi×2. Rather than use raw pen trajectories as our stroke format, we use a
minimal spline representation of strokes, obtained from raw trajectories by fitting cubic b-splines
with a residual threshold. The starting location yi therefore conveys the first spline control point, and
trajectory xi = {∆i1, ...,∆idi} conveys the offsets between subsequent points of a (di+1)-length spline.
These offsets are transformed into a sequence of relative points xi = {xi1, ..., xidi+1}, with xi1 = 0,
specifying locations relative to yi.

The model samples a type one stroke at a time, using an image canvas C as memory to convey the
sample state. At each step, a starting location for the next stroke is first sampled from the location
model, followed by a trajectory from the stroke model. The stroke is then rendered to the canvas C,
and a termination model decides whether to terminate or continue the sample. Each of the three model
components is expressed by a neural network, using a LSTM as the stroke model to generate trajectories
as in [15]. The details of these neural modules are provided in Appendix A. The type model P (ψ)

4

specifies an auto-regressive density function that can evaluate exact likelihoods of character drawings,
and its hyperparameters (the three neural networks) are learned from the Omniglot background set of 30
alphabets using a maximum likelihood objective. A full character type ψ includes the random variables
ψ = {κ, y1:κ, x1:κ}, where κ ∈ Z+ is the number of strokes. The density function P (ψ) is also fully
differentiable w.r.t. the continuous random variables in ψ.

Token model. A character token θ(m) = {y(m)
1:κ , x

(m)
1:κ , A

(m)} represents a unique instance of a character
concept, where y(m)

1:κ are the token-level locations, x(m)
1:κ the token-level parts, and A(m) ∈ R4 the

parameters of an affine warp transformation. The token distribution factorizes as

P (θ(m)|ψ) = P (A(m))

κ∏
i=1

P (y
(m)
i | yi)P (x

(m)
i | xi). (2)

Here, P (y
(m)
i | yi) represents a simple noise distribution for the location of each stroke, and P (x

(m)
i |

xi) for the stroke trajectory. The first two dimensions of affine warp A(m) control a global re-scaling of
the token drawing, and the second two a global translation of its center of mass. The distributions and
pseudocode of our token model are given in Appendix A.

Image model. The image model P (I(m) | θ(m)) is based on [24] and is composed of two pieces. First,
a differentiable symbolic engine f receives the token θ(m) and produces an image pixel probability
map pimg = f(θ(m), σ, ε) by evaluating each spline and rendering the stroke trajectories. Here, σ ∈ R+

is a parameter controlling the rendering blur around stroke coordinates, and ε ∈ (0, 1) controlling
pixel noise, each sampled uniformly at random. The result then parameterizes an image distribution
P (I(m) | θ(m)) = Bernoulli(pimg), which is differentiable w.r.t. θ(m), σ, and ε.

4 Probabilistic Inference

Given an image I of a novel concept, our GNS model aims to infer the latent causal, compositional
process for generating new exemplars. We follow the high-level strategy of Lake et al. [24] for
constructing a discrete approximation Q(ψ, θ | I) to the desired posterior distribution,

P (ψ, θ | I) ≈ Q(ψ, θ | I) =

K∑
k=1

πkδ(θ − θk)δ(ψ − ψk). (3)

A heuristic search algorithm is used to findK good parses, {ψ, θ}1:K , that explain the underlying image
with high probability. These parses are weighted by their relative posterior probability, πk ∝ π̃k =
P (ψk, θk, I) such that

∑
k πk = 1. To find the K good parses, search uses fast bottom-up methods to

propose many variants of the discrete variables, filtering the most promising options, before optimizing
the continuous variables with gradient descent. Details of the parse selection and optimization procedure
are provided in Appendix B. We use K = 5 following prior work [24].

Inference for one-shot classification. In one-shot classification, models are given a single training
image I(c) from each of c = 1, ..., C classes, and asked to classify test images according to their corre-
sponding training classes. For each test image I(T), we compute an approximation of the Bayesian score
log P (I(T) | I(c)) for every example I(c), using our posterior parses {ψ, θ(c)}1:K and corresponding
weights π1:K from I(c) (Eq. 3). The approximation is formulated as

log P (I(T) | I(c)) ≈ log
∫
P (I(T)|θ(T))P (θ(T) | ψ)Q(ψ, θ(c), | I(c))∂ψ∂θ(c)∂θ(T)

≈ log
K∑
k=1

πk max
θ(T)

P (I(T) | θ(T))P (θ(T) | ψk), (4)

where the maximum over θ(T) is determined by refitting token-level parameters θ(c) to image I(T)

with gradient descent. Following the suggestion of Lake et al. [24], we use a two-way version of the
Bayesian score that considers parses of I(T) refit to I(c) in addition to the forward direction. The

5

log P(I(T) ∣ I(c)) = − 401.3

Correct
match

train

test

log P(I(T) ∣ I(c)) = − 664.8

Incorrect
match

train

test

(a) Classification fits

the pen (Fig. 3A, ii). To construct a new character
type, first themodel samples the number of parts
k and the number of subparts ni, for each part
i = 1, ..., k, from their empirical distributions as

measured from the background set. Second, a
template for a part Si is constructed by sampling
subparts from a set of discrete primitive actions
learned from the background set (Fig. 3A, i),

such that the probability of the next action
depends on the previous. Third, parts are then
grounded as parameterized curves (splines) by
sampling the control points and scale parameters

1334 11 DECEMBER 2015 • VOL 350 ISSUE 6266 sciencemag.org SCIENCE

Fig. 3. A generative model of handwritten characters. (A) New types are generated by choosing primitive actions (color coded) from a library (i),
combining these subparts (ii) to make parts (iii), and combining parts with relations to define simple programs (iv). New tokens are generated by running
these programs (v), which are then rendered as raw data (vi). (B) Pseudocode for generating new types y and new token images I(m) for m = 1, ..., M. The
function f (·, ·) transforms a subpart sequence and start location into a trajectory.

Human parses Machine parsesHuman drawings

-505 -593 -655 -695 -723

-1794-646 -1276

Training item with model’s five best parses

Test items

1 2 3 4 5stroke order:

Fig. 4. Inferringmotor programs from images. Parts are distinguished
by color, with a colored dot indicating the beginning of a stroke and an
arrowhead indicating the end. (A) The top row shows the five best pro-
grams discovered for an image along with their log-probability scores
(Eq. 1). Subpart breaks are shown as black dots. For classification, each
program was refit to three new test images (left in image triplets), and
the best-fitting parse (top right) is shown with its image reconstruction
(bottom right) and classification score (log posterior predictive probability).
The correctly matching test item receives a much higher classification
score and is also more cleanly reconstructed by the best programs induced
from the training item. (B) Nine human drawings of three characters
(left) are shown with their ground truth parses (middle) and best model
parses (right).

RESEARCH | RESEARCH ARTICLES

on June 1, 2020

http://science.sciencem
ag.org/

D
ow

nloaded from

the pen (Fig. 3A, ii). To construct a new character
type, first themodel samples the number of parts
k and the number of subparts ni, for each part
i = 1, ..., k, from their empirical distributions as

measured from the background set. Second, a
template for a part Si is constructed by sampling
subparts from a set of discrete primitive actions
learned from the background set (Fig. 3A, i),

such that the probability of the next action
depends on the previous. Third, parts are then
grounded as parameterized curves (splines) by
sampling the control points and scale parameters

1334 11 DECEMBER 2015 • VOL 350 ISSUE 6266 sciencemag.org SCIENCE

Fig. 3. A generative model of handwritten characters. (A) New types are generated by choosing primitive actions (color coded) from a library (i),
combining these subparts (ii) to make parts (iii), and combining parts with relations to define simple programs (iv). New tokens are generated by running
these programs (v), which are then rendered as raw data (vi). (B) Pseudocode for generating new types y and new token images I(m) for m = 1, ..., M. The
function f (·, ·) transforms a subpart sequence and start location into a trajectory.

Human parses Machine parsesHuman drawings

-505 -593 -655 -695 -723

-1794-646 -1276

Training item with model’s five best parses

Test items

1 2 3 4 5stroke order:

Fig. 4. Inferringmotor programs from images. Parts are distinguished
by color, with a colored dot indicating the beginning of a stroke and an
arrowhead indicating the end. (A) The top row shows the five best pro-
grams discovered for an image along with their log-probability scores
(Eq. 1). Subpart breaks are shown as black dots. For classification, each
program was refit to three new test images (left in image triplets), and
the best-fitting parse (top right) is shown with its image reconstruction
(bottom right) and classification score (log posterior predictive probability).
The correctly matching test item receives a much higher classification
score and is also more cleanly reconstructed by the best programs induced
from the training item. (B) Nine human drawings of three characters
(left) are shown with their ground truth parses (middle) and best model
parses (right).

RESEARCH | RESEARCH ARTICLES

on June 1, 2020

http://science.sciencem
ag.org/

D
ow

nloaded from

the pen (Fig. 3A, ii). To construct a new character
type, first themodel samples the number of parts
k and the number of subparts ni, for each part
i = 1, ..., k, from their empirical distributions as

measured from the background set. Second, a
template for a part Si is constructed by sampling
subparts from a set of discrete primitive actions
learned from the background set (Fig. 3A, i),

such that the probability of the next action
depends on the previous. Third, parts are then
grounded as parameterized curves (splines) by
sampling the control points and scale parameters

1334 11 DECEMBER 2015 • VOL 350 ISSUE 6266 sciencemag.org SCIENCE

Fig. 3. A generative model of handwritten characters. (A) New types are generated by choosing primitive actions (color coded) from a library (i),
combining these subparts (ii) to make parts (iii), and combining parts with relations to define simple programs (iv). New tokens are generated by running
these programs (v), which are then rendered as raw data (vi). (B) Pseudocode for generating new types y and new token images I(m) for m = 1, ..., M. The
function f (·, ·) transforms a subpart sequence and start location into a trajectory.

Human parses Machine parsesHuman drawings

-505 -593 -655 -695 -723

-1794-646 -1276

Training item with model’s five best parses

Test items

1 2 3 4 5stroke order:

Fig. 4. Inferringmotor programs from images. Parts are distinguished
by color, with a colored dot indicating the beginning of a stroke and an
arrowhead indicating the end. (A) The top row shows the five best pro-
grams discovered for an image along with their log-probability scores
(Eq. 1). Subpart breaks are shown as black dots. For classification, each
program was refit to three new test images (left in image triplets), and
the best-fitting parse (top right) is shown with its image reconstruction
(bottom right) and classification score (log posterior predictive probability).
The correctly matching test item receives a much higher classification
score and is also more cleanly reconstructed by the best programs induced
from the training item. (B) Nine human drawings of three characters
(left) are shown with their ground truth parses (middle) and best model
parses (right).

RESEARCH | RESEARCH ARTICLES

on June 1, 2020

http://science.sciencem
ag.org/

D
ow

nloaded from

Human drawings Human parses GNS parses BPL parses

the pen (Fig. 3A, ii). To construct a new character
type, first themodel samples the number of parts
k and the number of subparts ni, for each part
i = 1, ..., k, from their empirical distributions as

measured from the background set. Second, a
template for a part Si is constructed by sampling
subparts from a set of discrete primitive actions
learned from the background set (Fig. 3A, i),

such that the probability of the next action
depends on the previous. Third, parts are then
grounded as parameterized curves (splines) by
sampling the control points and scale parameters

1334 11 DECEMBER 2015 • VOL 350 ISSUE 6266 sciencemag.org SCIENCE

Fig. 3. A generative model of handwritten characters. (A) New types are generated by choosing primitive actions (color coded) from a library (i),
combining these subparts (ii) to make parts (iii), and combining parts with relations to define simple programs (iv). New tokens are generated by running
these programs (v), which are then rendered as raw data (vi). (B) Pseudocode for generating new types y and new token images I(m) for m = 1, ..., M. The
function f (·, ·) transforms a subpart sequence and start location into a trajectory.

Human parses Machine parsesHuman drawings

-505 -593 -655 -695 -723

-1794-646 -1276

Training item with model’s five best parses

Test items

1 2 3 4 5stroke order:

Fig. 4. Inferringmotor programs from images. Parts are distinguished
by color, with a colored dot indicating the beginning of a stroke and an
arrowhead indicating the end. (A) The top row shows the five best pro-
grams discovered for an image along with their log-probability scores
(Eq. 1). Subpart breaks are shown as black dots. For classification, each
program was refit to three new test images (left in image triplets), and
the best-fitting parse (top right) is shown with its image reconstruction
(bottom right) and classification score (log posterior predictive probability).
The correctly matching test item receives a much higher classification
score and is also more cleanly reconstructed by the best programs induced
from the training item. (B) Nine human drawings of three characters
(left) are shown with their ground truth parses (middle) and best model
parses (right).

RESEARCH | RESEARCH ARTICLES

on June 1, 2020

http://science.sciencem
ag.org/

D
ow

nloaded from

(b) Parsing

Figure 3: Classification fits and parsing. (a) Posterior parses from two training images were refit to the same test
image. The first row of each grid shows the training image and its top-3 predicted parses (best emboldened). The
second row shows the test image and its re-fitted training parses. Reconstructed test images are shown in the final
row. The correct training image reports a high forward score, indicating that I(T) is well-explained by the motor
programs for this I(c). (b) 27 character images from 3 classes are shown alongside their ground truth human parses,
predicted parses from the GNS model, and predicted parses from the BPL model.

classification rule is therefore

c∗ = arg max
c

log P (I(T) | I(c))2 = arg max
c

log
[P (I(c) | I(T))

P (I(c))
P (I(T) | I(c))

]
, (5)

where P (I(c)) ≈∑k π̃k is approximated from the unnormalized weights of I(c) parses.

Inference for generating new exemplars. When generating new exemplars, we are given a single
image I(1) of a novel class and asked to generate new instances I(2) (overloading the parenthesis
notation from classification). To perform this task with GNS, we first sample from our approximate
posterior Q(ψ, θ | I(1)) to obtain parse {ψ, θ} (see Eq. 3), and then re-sample token parameters θ from
our token model P (θ(2) | ψ). Due to high-dimensional images, mass in the approximate posterior
often concentrates on the single best parse. To model the diversity seen in different human parses,
we apply a temperature parameter to the log of unnormalized parse weights log(π̃′k) = log(π̃k)/T
before normalization, selecting T = 8 for our experiments. With updated weights π′1:K our sampling
distribution is written as

P (I(2), θ(2) | I(1)) ≈
K∑
k=1

π′kP (I(2) | θ(2))P (θ(2) | ψk). (6)

5 Experiments

GNS was evaluated on four concept learning tasks from the Omniglot challenge [26]: one-shot
classification, parsing, generating new exemplars, and generating new concepts. All evaluations use
novel characters from completely held-out alphabets in the Omniglot evaluation set. As mentioned
earlier, our goal is to provide a single model that captures deep knowledge of a domain and performs
strongly in a wide range of tasks, rather than besting all models on every task. Our experiments include
a mixture of quantitative and qualitative evaluations, and we acknowledge that qualitative results are
inherently subjective; in future work we aim for quantitative evaluations of all four tasks.

6

Human

GNS

Target

(a) Generating new exemplars

GNS samples

(b) Generating new concepts

Figure 4: Generation tasks. (a) GNS produced 9 new exemplars for each of 5 target images, plotted here next to
human productions. (b) A grid of 36 new character concepts sampled unconditionally from GNS.

One-shot classification. GNS was compared with alternative models on the one-shot classification
task from Lake et al. [24]. The task involves a series of 20-way within-alphabet classification episodes,
with each episode proceeding as follows. First, the machine is given one training example from each of
20 novel characters. Next, the machine must classify 20 novel test images, each corresponding to one of
the training classes. With 20 episodes total, the task yields 400 unique classification trials. Importantly,
all character classes in an episode come from the same alphabet as originally proposed [24], requiring
finer discriminations than commonly used between-alphabet tests [26].

Table 2: Test error on within-
alphabet one-shot classification.

Model Error

GNS 5.7%
BPL [24] 3.3%
RCN [11] 7.3%
VHE [19] 18.7%
Proto. Net [40] 13.7%
ARC [39] 1.5%∗

*used 4x training classes

As illustrated in Fig. 3a, GNS classifies a test image by choosing the
training class with the highest Bayesian score (Eq. 5). A summary
of the results is shown in Table 2. GNS was compared with other
machine learning models that have been evaluated on the within-
alphabets classification task [26]. GNS achieved an overall test error
rate of 5.7% across all 20 episodes (N=400). This result is very
close to the original BPL model, which achieved 3.3% error with
significantly more hand-design. The symbolic relations in BPL’s token
model provide rigid constraints that are key to its strong classification
performance [24]. GNS achieves strong classification performance
while emphasizing the nonparametric statistical knowledge needed
for creative generation in subsequent tasks. Beyond BPL, our GNS
model outperformed all other models that received the same background training. The ARC model [39]
achieved an impressive error rate of 1.5%, although it was trained with four-fold class augmentation
and many other augmentations, and it can only perform this one task. In Appendix Fig. A9, we show a
larger set of classification fits from GNS, including examples of misclassified trials.

Parsing. In the Omniglot parsing task, the machine is asked to parse an image of a new character concept
and segment the character into an ordered set of strokes. These predicted parses can be compared with
human ground-truth parses for the same images. The approximate posterior of GNS yields a series of
promising parses for a new character image, and to complete the parsing task, we identify the maximum
a posteriori parse k∗ = maxk πk, reporting the corresponding stroke configuration. Fig. 3b shows a
visualization of the GNS predicted parses for 27 different raw images drawn from 3 unique character
classes, plotted alongside ground-truth human parses (how the images were actually drawn) along with
predicted parses from the BPL model. Compared to BPL, GNS parses possess a few unique desirable
qualities. First, the GNS parses are structurally consistent with ground truth in all 9 examples of the
first character—showing a horizontal first stroke followed by a downward sloping second stroke—but
BPL parses in only 7. In addition, whereas BPL produces a single, ubiquitous segmentation for all 9
examples of the more complex second character, GNS proposes a variety of unique parses across the
class, suggesting that some additional structural subtleties are identified. In Appendix Fig. A10, we
provide a larger set of parses from the GNS model for a diverse range of Omniglot characters.

All concept learning experiments can be reproduced using our pre-trained generative model and source code
located in the following repository: https://github.com/rfeinman/GNS-Modeling.

7

https://github.com/rfeinman/GNS-Modeling

Generating new exemplars. Given just one training image of a novel character concept, GNS produces
new exemplars of the concept by sampling from the approximate conditional P (I(2), θ(2) | I(1)) of Eq.
6. In Fig. 4a we show new exemplars produced by GNS for a handful of target images, plotted next to
human productions (more examples in Appendix Fig. A11). In the majority of cases, samples from the
model demonstrate that it has successfully captured the causal structure and invariance of the target
class. In contrast, deep generative models applied to the same task miss meaningful compositional and
causal structure, producing new examples that are easily discriminated from human productions [38, 19]
(see Appendix Fig. A12). In some cases, such as the third column of Fig. 4a, samples from GNS exhibit
sloppy stroke junctions and connections. Compared to BPL, which uses engineered symbolic relations
to enforce rigid constraints at stroke junctions, the performance of GNS takes a hit in these scenarios.
Nevertheless, new examples from GNS appear strong enough to pass for human in many cases, which
we would like to test in future work with visual Turing tests.

Generating new concepts (unconstrained). In addition to generating new exemplars of a particular
concept, GNS can generate new character concepts altogether, unconditioned on training images.
Whereas the BPL model uses a complicated procedure for unconditional generation that involves a
preliminary inference step and a supplemental nonparametric model, GNS generates new concepts
by sampling directly from the type prior P (ψ). Moreover, the resulting GNS productions posses
more of the correlation structure and character complexity found in human drawings compared to
either the raw BPL prior (Fig 1) or the supplemental nonparametric prior [24]. In Fig. 4b we show a
grid of 36 new character concepts sampled from our generative model at reduced temperature setting
T = 0.5 [5]. The model produces characters in multiple distinct styles, with some having more angular,
line-based structure and others relying on complex curves. In Appendix Fig. A13, we show a larger set
of characters sampled from GNS, plotted in a topologically-organized grid alongside a corresponding
grid of “nearest neighbor" training examples. In many cases, samples from the model have a distinct
style and are visually dissimilar from their nearest Omniglot neighbor.

Table 3: Test log-likelihood bounds.

Model Im. Size LL LL/dim

VHE 28x28 -61.2 -0.0496
SG 52x52 -134.1 -0.0781
GNS 105x105 -383.2 -0.0348

Marginal image likelihoods. As a final evaluation, we
computed likelihoods of held-out character images by
marginalizing over the latent type and token variables of
GNS to estimate P (I) =

∫
P (ψ, θ, I)∂ψ∂θ. We hypoth-

esized that our causal generative model of handwriting
concepts would yield better test likelihoods compared to
deep generative models trained directly on image pixels.
As detailed in Appendix C, under the minimal assumption
that our K posterior parses represent sharply peaked modes of the joint density, we can obtain an
approximate lower bound on the marginal P (I) by using Laplace’s method to estimate the integral
around each mode and summing the resulting integrals. In Table 3, we report average log-likelihood
(LL) bounds obtained from GNS for a random subset of 1000 evaluation images, compared against test
LL bounds from both the SG [38] and the VHE [19] models. Our GNS model performs stronger than
each alternative, reporting the best overall log-likelihood per dimension.

6 Discussion

We introduced Generative Neuro-Symbolic (GNS) Modeling, a framework for learning flexible, task-
general conceptual representations. GNS provides a formula for incorporating causality and compo-
sitionality into a generative model of concepts while allowing for expressive distributions that can
learn from and generate raw data. We demonstrated our framework on the Omniglot concept learning
challenge, showing that a model with these ingredients can learn to successfully perform a variety
of unique inductive tasks. Some of our evaluations were qualitative, and in future work, we seek to
quantify these results using Visual Turing Tests [24].

Whereas many machine learning algorithms emphasize breadth of data domains, isolating just a single
task across datasets, we have focused our efforts in this paper on a single dataset, emphasizing depth
of the representation learned. Human concept learning is distinguished for having both a breadth and
depth of applications [26], and ultimately, we would like to capture both of these unique qualities.
We have designed our GNS framework based on general principles of visual concepts—namely, that
concepts are composed of reusable parts and locations—and in future work, we’d like to test this

8

framework in other domains. As in the human mind, machine learning practitioners have far more
prior knowledge about some domains vs. others. Handwritten characters is a domain with strong priors
[1, 28, 20], implemented directly in the human mind and body. For concepts like these with more
explicit causal knowledge, it is beneficial to include priors about how causal generative factors translate
into observations, as endowed to our character model through its symbolic rendering engine. For other
types of concepts where these processes are less clear, it may be appropriate to use more generic neural
networks that generate concepts and parts directly as raw stimuli, using less symbolic machinery and
prior knowledge. We anticipate that GNS can model concepts in both types of domains, although further
experiments are necessary to confirm this hypothesis.

Our current token model for character concepts is much too simple, and we acknowledge a few important
shortcomings. First, as shown in Appendix Fig. A9, there are a number of scenarios in which the parses
from a training character cannot adequately refit to a new example of the same character without a token
model that allows for changes to discrete variables. By incorporating this allowance in future work,
we hope to capture more knowledge in this domain and further improve performance. Furthermore,
although our vision for GNS is to represent both concepts and background knowledge with neural
networks, the program for individual concepts expressed through our current token model uses simple
parametric distributions. In future work, we hope to incorporate token-level models that use neural
network sub-routines, as in the type-level model presented here.

Acknowledgements

We thank Stéphane Deny for valuable feedback on an earlier draft, and we are grateful to Maxwell Nye,
Josh Tenenbaum, Tuan-Anh Le, and Jay McClelland for helpful discussions regarding this work. This
research was partially funded by NSF Award 1922658 NRT-HDR: FUTURE Foundations, Translation,
and Responsibility for Data Science. Reuben Feinman is supported by a Google PhD Fellowship.

References

[1] M. K. Babcock and J. Freyd. Perception of dynamic information in static handwritten forms.
American Journal of Psychology, 101(1):111–130, 1988.

[2] M. Botvinick, D. Barrett, P. Battaglia, N. de Freitas, D. Kumaran, and et al. Building machines
that learn and think for themselves. Behavioral and Brain Sciences, 40:e255, 2017.

[3] J. Devlin, J. Uesato, S. Bhupatiraju, R. Singh, A.-R. Mohamed, and P. Kohli. Robustfill: Neural
program learning under noisy i/o. In ICML, 2017.

[4] K. Ellis, D. Ritchie, A. Solar-lezama, and J. B. Tenenbaum. Learning to infer graphics programs
from hand-drawn images. In NeurIPS, 2018.

[5] R. Feinman and B. M. Lake. Generating new concepts with hybrid neuro-symbolic models. In
CogSci, 2020.

[6] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. In ICML, 2017.

[7] Y. Ganin, T. Kulkarni, I. Babuschkin, S. M. A. Eslami, and O. Vinyals. Synthesizing programs for
images using reinforced adversarial learning. In ICML, 2018.

[8] V. Garcia and J. Bruna. Few-shot learning with graph neural networks. In ICLR, 2018.
[9] A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin. Bayesian Data

Analysis (3rd ed.). CRC Press, Boca Raton, FL, 2014.
[10] S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the bias/variance dilemma.

Neural Computation, 4(1):1–58, 1992.
[11] D. George, W. Lehrach, K. Kansky, M. Lázaro-Gredilla, C. Laan, B. Marthi, X. Lou, and et al. A

generative vision model that trains with high data efficiency and breaks text-based CAPTCHAs.
Science, 358(6368), 2017.

[12] N. D. Goodman, J. B. Tenenbaum, J. Feldman, and T. L. Griffiths. A rational analysis of rule-based
concept learning. Cognitive Science, 32:108–154, 2008.

9

[13] N. D. Goodman, T. D. Ullman, and J. B. Tenenbaum. Learning a theory of causality. Psychological
Review, 118(1):110–119, 2011.

[14] N. D. Goodman, J. B. Tenenbaum, and T. Gerstenberg. Concepts in a probabilistic language of
thought. In E. Margolis and S. Laurence, editor, The conceptual mind: New directions in the study
of concepts, pages 623–653. MIT Press, Cambridge, MA, 2015.

[15] A. Graves. Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850,
2013.

[16] A. Graves, G. Wayne, and I. Danihelka. Neural turing machines. arXiv preprint arXiv:1410.5401,
2014.

[17] K. Gregor, I. Danihelka, A. Graves, D. J. Rezende, and D. Wierstra. DRAW: A recurrent neural
network for image generation. In ICML, 2015.

[18] D. Ha and D. Eck. A neural representation of sketch drawings. In ICLR, 2018.
[19] L. B. Hewitt, M. I. Nye, A. Gane, T. Jaakkola, and J. B. Tenenbaum. The Variational Homoencoder:

Learning to learn high capacity generative models from few examples. In UAI, 2018.
[20] K. H. James and I. Gauthier. When writing impairs reading: Letter perception’s susceptibility to

motor interference. Journal of Experimental Psychology: General, 138(3):416–31, 2009.
[21] C. Kemp and J. B. Tenenbaum. Structured statistical models of inductive reasoning. Psychological

Review, 116:20–58, 2009.
[22] B. M. Lake and M. Baroni. Generalization without systematicity: On the compositional skills of

sequence-to-sequence recurrent networks. In ICML, 2018.
[23] B. M. Lake and S. T. Piantadosi. People infer recursive visual concepts from just a few examples.

Computational Brain & Behavior, 2019.
[24] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. Human-level concept learning through

probabilistic program induction. Science, 350:1332–1338, 2015.
[25] B. M. Lake, T. D. Ullman, J. B. Tenenbaum, and S. J. Gershman. Building machines that learn

and think like people. Behavioral and Brain Sciences, 40:E253, 2017.
[26] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. The Omniglot challenge: A 3-year progress

report. Behavioral Sciences, 29:97–104, 2019.
[27] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444, 2015.
[28] M. Longcamp, J. L. Anton, M. Roth, and J. L. Velay. Visual presentation of single letters activates

a premotor area involved in writing. Neuroimage, 19(4):1492–1500, 2003.
[29] J. Mao, C. Gan, P. Kohli, J. B. Tenenbaum, and J. Wu. The neuro-symbolic concept learner:

Interpreting scenes, words, and sentences from natural supervision. In ICLR, 2019.
[30] G. F. Marcus. The Algebraic Mind: Integrating Connectionism and Cognitive Science. MIT Press,

Cambridge, MA, 2003.
[31] J. L. McClelland, M. M. Botvinick, D. C. Noelle, D. C. Plaut, T. T. Rogers, M. S. Seidenberg,

and L. B. Smith. Letting structure emerge: Connectionist and dynamical systems approaches to
cognition. Trends in Cognitive Science, 14:348–356, 2010.

[32] G. L. Murphy. The big book of concepts. MIT Press, Cambridge, MA, 2002.
[33] G. L. Murphy and D. L. Medin. The role of theories in conceptual coherence. Psychological

Review, 92(3):289–316, 1985.
[34] M. I. Nye, A. Solar-Lezama, J. B. Tenenbaum, and B. M. Lake. Learning compositional rules via

neural program synthesis. arXiv preprint arXiv:2003.05562, 2020.
[35] A. Perfors, J. B. Tenenbaum, and T. Regier. The learnability of abstract syntactic principles.

Cognition, 118(3):306–338, 2011.
[36] S. T. Piantadosi, J. B. Tenenbaum, and N. D. Goodman. The logical primitives of thought:

Empirical foundations for compositional cognitive models. Psychological Review, 2016.
[37] S. Reed and N. de Freitas. Neural programmer-interpreters. In ICLR, 2016.
[38] D. J. Rezende, S. Mohamed, I. Danihelka, K. Gregor, and D. Wierstra. One-Shot generalization in

deep generative models. In ICML, 2016.

10

[39] P. Shyam, S. Gupta, and A. Dukkipati. Attentive recurrent comparators. In ICML, 2017.
[40] J. Snell, K. Swersky, and R. Zemel. Prototypical networks for few-shot learning. In NeurIPS,

2017.
[41] A. Stuhlmuller, J. B. Tenenbaum, and N. D. Goodman. Learning Structured Generative Concepts.

In CogSci, 2010.
[42] J. B. Tenenbaum, C. Kemp, T. L. Griffiths, and N. D. Goodman. How to grow a mind: Statistics,

structure, and abstraction. Science, 331(6022):1279–1285, 2011.
[43] O. Vinyals, C. Blundell, T. Lillicrap, and D. Wierstra. Matching networks for one shot learning.

In NeurIPS, 2016.
[44] K. Yi, J. Wu, C. Gan, A. Torralba, P. Kohli, and J. B. Tenenbaum. Neural-symbolic VQA:

Disentangling reasoning from vision and language understanding. In NeurIPS, 2018.

11

A Generative Model

ψ θ I

M

Type Token Image

Figure A5: The GNS hierarchical generative model.

The full hierarchical generative model of GNS is depicted in Fig. A5. The joint density for type ψ,
token θ(m), and image I(m) factors as

P (ψ, θ(m), I(m)) = P (ψ)P (θ(m)|ψ)P (I(m)|θ(m)). (7)

The type ψ parameterizes a motor program for generating character tokens θ(m), unique exemplars of
the concept. Both ψ and θ(m) are expressed as causal drawing parameters. An image I(m) is obtained
from token θ(m) by rendering the drawing parameters and sampling binary pixel values.

A.1 Training on causal drawing data

original stroke minimal spline

Figure A6: Spline representation. Raw strokes (left) are converted into minimal splines (right) using least-squares
optimization. Crosses (left) indicate pen locations and red dots (right) indicate spline control points.

To learn the parameters of P (ψ) and P (θ(m) | ψ), we fit our models to the human drawing data from
the Omniglot background set. In this drawing data, a character is represented as a variable-length
sequence of strokes, and each stroke is a variable-length sequence of pen locations {z1, ..., zT }, with
zt ∈ R2 (Fig. A6, left). Before training our model on background drawings, we convert each stroke
into a minimal spline representation using least-squares optimization (Fig. A6, right), borrowing the
B-spline tools from [24]. The number of spline control points depends on the stroke complexity and is
determined by a residual threshold. Furthermore, we removed small strokes using a threshold on the
trajectory length. These processing steps help suppress noise and emphasize signal in the drawings.
Our generative models are trained to produce character drawings, where each drawing is represented as
an ordered set of splines (strokes). The number of strokes, and the number of spline coordinates per
stroke, are allowed to vary in the model.

A.2 Type prior

The type prior P (ψ) represents a character as a sequence of strokes, with each stroke decomposed
into a starting location yi ∈ R2, conveying the first spline control point, and a stroke trajectory
xi = {∆1, ...,∆N}, conveying deltas between spline control points. It generates character types one
stroke at a time, using a symbolic rendering procedure called frender as an intermediate processing step
after forming each stroke. An image canvas C is used as a memory state to convey information about
previous strokes. At each step i, the next stroke’s starting location and trajectory are sampled with
procedure GeneratePart. In this procedure, the current image canvas C is first read by the location

12

model (Fig. 2), a convolutional neural network (CNN) that processes the image and returns a probability
distribution for starting location yi:

yi ∼ p(yi | C).

The starting location yi is then passed along with the image canvas C to the stroke model, a Long
Short-Term Memory (LSTM) architecture with a CNN-based image attention mechanism.The stroke
model samples the next stroke trajectory xi sequentially one offset at a time, selectively attending to
different parts of the image canvas at each sample step and combining this information with the context
of yi:

xi ∼ p(xi | yi, C).

After GeneratePart returns, the stroke parameters yi, xi are rendered to produce an updated canvas
C = frender(yi, xi, C). The new canvas is then fed to the termination model, a CNN architecture that
samples a binary termination indicator vi:

vi ∼ p(vi | C).

Both our location model and stroke model follow a technique from [15], who proposed to use neural
networks with mixture outputs to model handwriting data. Parameters {π1:K , µ1:K , σ1:K , ρ1:K} output
by our network specify a Gaussian mixture model (GMM) with K components (Fig. 2; colored
ellipsoids), where πk ∈ (0, 1) is the mixture weight of the kth component, µk ∈ R2 its means, σk ∈ R2

+

its standard deviations, and ρk ∈ (−1, 1) its correlation. In our location model, a single GMM
describes the distribution p(yi | C). In our stroke model, the LSTM outputs one GMM at each timestep,
describing p(∆t|∆1:t−1, yi, C). The termination model CNN has no mixture outputs; it predicts a
single Bernoulli probability to sample binary variable vi.

A.3 Token model

procedure GENERATETOKEN(ψ)
{κ, y1:κ, x1:κ} ← ψ . Unpack type-level variables
for i = 1 ... κ do

y
(m)
i ∼ P (y(m)

i | yi) . Sample token-level location
x
(m)
i ∼ P (x(m)

i | xi) . Sample token-level part
A(m) ∼ P (A(m)) . Sample affine warp transformation
θ ← {y(m)

1:κ , x
(m)
1:κ , A

(m)}
return θ . Return concept token

1

Figure A7: Token model sampling procedure.

Character types ψ are used to parameterize the procedure GenerateToken(ψ), a probabilistic program
representation of token model P (θ(m) | ψ). The psuedo-code of this sampling procedure is provided in
Fig. A7. The location model P (y

(m)
i | yi) and part model P (x

(m)
i | xi) are each zero-mean Gaussians,

with standard deviations fit to the background drawings following the procedure of Lake et al. [24] (see
SM 2.3.3). The location model adds noise to the start of each stroke, and the part model adds isotropic
noise to the 2d cooridnates of each spline control point in a stroke. In the affine warp A(m) ∈ R4, the
first two dimensions control global re-scaling of spline coordinates, and the second two control a global
translation of the center of mass. The distribution is

P (A(m)) = N ([1, 1, 0, 0],ΣA), (8)
with the parameter ΣA similarly fit from background drawings (see SM 2.3.4 in [24]).

B Approximate Posterior

To obtain parses {ψ, θ}1:K for our approximate posterior (Eq. 3) given an image I , we follow the
high-level strategy of Lake et al. [24], using fast bottom-up search followed by discrete selection and
continuous optimization. The algorithm proceeds by the following steps.

13

Step 1: Propose a range of candidate parses with fast bottom-up methods. The bottom-up algorithm
extracts an undirected skeleton graph from the character image and uses random walks on the graph to
propose a range of candidate parses. There are typically about 10-100 proposal parses, depending on
character complexity (Fig. A8).

input

Figure A8: The initial “base" parses proposed for an image with skeleton extraction and random walks.

Step 2: Select stroke order and stroke directions for each parse using exhaustive search with the type
prior P (ψ). Random search is used for complex parses with large configuration spaces.

Step 3: Score each of the proposal parses using type prior P (ψ) and select the top-K parses. We use
K = 5 following previous work [24].

Step 4: Separate each parse into type and token {ψ, θ} and optimize the continuous type- and token-
level parameters with gradient descent to maximize the full joint density P (ψ, θ, I) of Eq. 1.

Step 5: Compute weights π1:K for each parse by computing π̃k = P (ψk, θk, I) and normalizing
πk = π̃k/

∑K
k=1 π̃k.

C Marginal Image Likelihoods

Let z = ψ ∪ θ be a stand-in for the joint set of type- and token-level random variables in our GNS
generative model. The latent z includes both continuous and discrete variables: the number of strokes κ
and the number of control points per stroke d1:κ are discrete, and all remaining variables are continuous.
Decomposing z into its discrete variables zD ∈ ΩD and continuous variables zC ∈ ΩC , the marginal
density for an image I is written as

P (I) =
∑

zD∈ΩD

∫
P (I, zD, zC)∂zC . (9)

For any subset Ω̃D ⊂ ΩD of the discrete domain, the following inequality holds:

P (I) ≥
∑

zD∈Ω̃D

∫
P (I, zD, zC)∂zC . (10)

Our approximate posterior (Eq. 3) gives us K parses that represent promising modes {zD, zC}1:K of
the joint density P (I, zD, zC) for an image I , and by setting Ω̃D = {zD}1:K to be the set of K unique
discrete configurations from our parses, we can compute the lower bound of Eq. 10 by computing the
integral

∫
P (I, zD, zC)∂zC at each of these zD.

At each zDk ∈ {zD}1:K , the log-density function f(zC) = log P (I, zDk, zC) has a gradient-free
maximum at zCk, the continuous configuration of the corresponding posterior parse. These maxima
were identified by our gradient-based continuous optimizer during parse selection (Appendix B). If

14

we assume that these maxima are sharply peaked, then we can use Laplace’s method to estimate the
integral

∫
P (I, zDk, zC)∂zC at each zDk. Laplace’s method uses Taylor expansion to approximate the

integral of ef(x) for a twice-differentiable function f around a maximum x0 as∫
ef(x)∂x ≈ ef(x0) (2π)

d
2

| −Hf (x0)| 12
, (11)

where x ∈ Rd andHf (x0) is the Hessian matrix of f evaluated at x0. Our log-density function f(zC) is
fully differentiable w.r.t. continuous parameters zC , therefore we can computeH(zC) = ∂2f/∂z2

C with
ease. Our approximate lower bound on P (I) is therefore written as the sum of Laplace approximations
at our K parses:

P (I) ≥
K∑
k=1

∫
P (I, zDk, zC)∂zC ≈

K∑
k=1

P (I, zDk, zCk)
(2π)

d
2

| −H(zCk)| 12
(12)

D Experiments: Supplemental Figures

D.1 One-shot classification

In Fig. A9 we show a collection of GNS fits from 7 different classification trials, including 2 trials that
were misclassified (a misrepresentative proportion).

D.2 Parsing

In Fig. A10 we show a collection of predicted parses from GNS for 100 different target images.

D.3 Generating new exemplars

Fig. A11 shows new exemplars produced by GNS for 12 different target images, and Fig. A12 shows
new exemplars produced by two alternative neural models from prior work on Omniglot.

D.4 Generating new concepts (unconstrained)

In Fig. A13 we show a grid of 100 new character concepts produced by GNS, plotted alongside a
corresponding grid of “nearest neighbor" training examples.

15

I(c)

I(T)

Score: -618.6

I(c)

I(T)

Score: -1624.5

I(c)

I(T)

Score: -269.4

I(c)

I(T)

Score: -281.1

I(c)

I(T)

Score: -269.1

I(c)

I(T)

Score: -381.6

I(c)

I(T)

Score: -820.9

I(c)

I(T)

Score: -505.6

I(c)

I(T)

Score: -403.6

I(c)

I(T)

Score: -814.4

I(c)

I(T)

Score: -742.5

I(c)

I(T)

Score: -545.6

Figure A9: Classification fits. Each row corresponds to one classification trial (one test image). The first column
shows parses from the correct training image re-fit to the test example, and the second column parses from an
incorrect training image. The two-way score for each train-test pair is shown above the grid, and the model’s
selected match is emboldened. The 4th and 6th row here are misclassified trials.

16

(a) Target images (b) GNS parses

Figure A10: Parsing. GNS predicted parses for 100 character images selected at random from the Omniglot
evaluation set. (a) A 10x10 grid of target images. (b) A corresponding grid of GNS predicted parses per target
image.

17

Figure A11: Generating new exemplars with GNS. Twelve target images are highlighted in red boxes. For each
target image, the GNS model sampled 9 new exemplars, shown in a 3x3 grid under the target.

One-shot Generalization in Deep Generative Models

Figure 8. Unconditional samples for 52 × 52 omniglot (task 1).
For a video of the generation process, see https://www.youtube.com/

watch?v=HQEI2xfTgm4

Figure 9. Generating new examplars of a given character for the
weak generalization test (task 2a). The first row shows the test
images and the next 10 are one-shot samples from the model.

3. Representative samples from a novel alphabet.
This task corresponds to figure 7 in Lake et al. (2015), and
conditions the model on anywhere between 1 to 10 samples
of a novel alphabet and asks the model to generate new
characters consistent with this novel alphabet. We show
here the hardest form of this test, using only 1 context im-
age. This test is highly subjective, but the model genera-
tions in figure 11 show that it is able to pick up common
features and use them in the generations.

We have emphasized the usefulness of deep generative
models as scalable, general-purpose tools for probabilistic
reasoning that have the important property of one-shot gen-
eralization. But, these models do have limitations. We have
already pointed to the need for reasonable amounts of data.
Another important consideration is that, while our models
can perform one-shot generalization, they do not perform
one-shot learning. One-shot learning requires that a model
is updated after the presentation of each new input, e.g.,
like the non-parametric models used by Lake et al. (2015)
or Salakhutdinov et al. (2013). Parametric models such as
ours require a gradient update of the parameters, which we
do not do. Instead, our model performs a type of one-shot
inference that during test time can perform inferential tasks
on new data points, such as missing data completion, new
exemplar generation, or analogical sampling, but does not
learn from these points. This distinction between one-shot
learning and inference is important and affects how such
models can be used. We aim to extend our approach to the
online and one-shot learning setting in future.

30-20 40-10 45-5

Figure 10. Generating new examplars of a given character for the
strong generalization test (task 2b,c), with models trained with
different amounts of data. Left: Samples from model trained on
30-20 train-test split; Middle: 40-10 split; Right: 45-5 split (right)

Figure 11. Generating new exemplars from a novel alphabet (task
3). The first row shows the test images, and the next 10 rows are
one-shot samples generated by the model.

6. Conclusion
We have developed a new class of general-purpose mod-
els that have the ability to perform one-shot generalization,
emulating an important characteristic of human cognition.
Sequential generative models are natural extensions of vari-
ational auto-encoders and provide state-of-the-art models
for deep density estimation and image generation. The
models specify a sequential process over groups of latent
variables that allows it to compute the probability of data
points over a number of steps, using the principles of feed-
back and attention. The use of spatial attention mechanisms
substantially improves the ability of the model to general-
ize. The spatial transformer is a highly flexible attention
mechanism for both reading and writing, and is now our
default mechanism for attention in generative models. We
highlighted the one-shot generalization ability of the model
over a range of tasks that showed that the model is able to
generate compelling and diverse samples, having seen new
examples just once. However there are limitations of this
approach, e.g., still needing a reasonable amount of data to
avoid overfitting, which we hope to address in future work.

(a) SG

Figure 4: 5-shot samples generated by each model (more in Supplement). With a PixelCNN architecture, both Neural
Statistician and Resample objectives lead to underutilisation of the latent space, producing unfaithful samples.

For the hierarchical PixelCNN architecture, however,
significant differences arise between training objectives.
In this case, a Neural Statistician learns a strong global
distribution over images but makes only minimal use of
latent variables c. This means that, despite the use of a
higher capacity model, classification accuracy is much
poorer (66%) than that achieved using a deconvolutional
architecture. For the same reason, conditional samples
display an improved sharpness but are no longer identi-
fiable to the cue images on which they were conditioned
(Figure 4). Our careful training suggests that this is not
an optimisation difficulty but is core to the objective, as
discussed in Chen et al. (2016).

By contrast, a VHE is able to gain a large benefit from
the hierarchical PixelCNN architecture, with a 3-fold re-
duction in classification error (5-shot accuracy 98.8%)
and conditional samples which are simultaneously sharp
and identifiable (Figure 4). This improvement is in part
achieved by increased utilisation of the latent space, due
to rescaling of the KL divergence term in the objective.
However, our results show that this common technique
is insufficient when used alone, leading to overfitting to
cue images with an equally severe impairment of classi-
fication performance (accuracy 62.8%). Rather, we find
that KL-rescaling and data resampling must be used to-
gether in order for the benefit of the powerful PixelCNN
architecture to be realised.

Table 2 lists the classification accuracy achieved by
VHEs with both |D| = 1 and |D| = 5, as compared
to existing deep learning approaches. We find that both
networks are not only state-of-the-art amongst deep gen-
erative models, but also competitive against the best dis-
criminative models trained directly for few-shot classi-
fication. Unlike these discriminative models, a VHE
is also able to generate new images of a character in
one shot, producing samples which are both realistic and
faithful to the class of the cue image (Figure 5).

As our goal is to model shared structure across images,
we evaluate generative performance using joint log like-

Figure 5: One-shot same-class samples generated by our
model. Cue images were sampled from previously un-
seen classes.

lihood of the entire Omniglot test set (rather than sepa-
rately across images). From this perspective, a single el-
ement VAE will perform poorly as it treats all datapoints
as independent, optimising a sum over log likelihoods for
each element. By sharing latents across elements of the
same class, a VHE can improve upon this considerably.

For likelihood evaluation, our most appropriate compar-
ison is with Generative Matching Networks (Bartunov &
Vetrov, 2016) as they also model dependencies within a
class. Thus, we trained models under the same train/test
split as them, with no data augmentation. We evaluate the
joint log likelihood of full character classes from the test
set, normalised by the number of elements, using impor-
tance weighting with k=500 samples from q(c; X). As
can be seen in Tables 3 and 4, our hierarchical PixelCNN
architecture is able to achieve state-of-the-art log likeli-
hood results only when trained using the VHE objective.

Figure 4: 5-shot samples generated by each model (more in Supplement). With a PixelCNN architecture, both Neural
Statistician and Resample objectives lead to underutilisation of the latent space, producing unfaithful samples.

For the hierarchical PixelCNN architecture, however,
significant differences arise between training objectives.
In this case, a Neural Statistician learns a strong global
distribution over images but makes only minimal use of
latent variables c. This means that, despite the use of a
higher capacity model, classification accuracy is much
poorer (66%) than that achieved using a deconvolutional
architecture. For the same reason, conditional samples
display an improved sharpness but are no longer identi-
fiable to the cue images on which they were conditioned
(Figure 4). Our careful training suggests that this is not
an optimisation difficulty but is core to the objective, as
discussed in Chen et al. (2016).

By contrast, a VHE is able to gain a large benefit from
the hierarchical PixelCNN architecture, with a 3-fold re-
duction in classification error (5-shot accuracy 98.8%)
and conditional samples which are simultaneously sharp
and identifiable (Figure 4). This improvement is in part
achieved by increased utilisation of the latent space, due
to rescaling of the KL divergence term in the objective.
However, our results show that this common technique
is insufficient when used alone, leading to overfitting to
cue images with an equally severe impairment of classi-
fication performance (accuracy 62.8%). Rather, we find
that KL-rescaling and data resampling must be used to-
gether in order for the benefit of the powerful PixelCNN
architecture to be realised.

Table 2 lists the classification accuracy achieved by
VHEs with both |D| = 1 and |D| = 5, as compared
to existing deep learning approaches. We find that both
networks are not only state-of-the-art amongst deep gen-
erative models, but also competitive against the best dis-
criminative models trained directly for few-shot classi-
fication. Unlike these discriminative models, a VHE
is also able to generate new images of a character in
one shot, producing samples which are both realistic and
faithful to the class of the cue image (Figure 5).

As our goal is to model shared structure across images,
we evaluate generative performance using joint log like-

Figure 5: One-shot same-class samples generated by our
model. Cue images were sampled from previously un-
seen classes.

lihood of the entire Omniglot test set (rather than sepa-
rately across images). From this perspective, a single el-
ement VAE will perform poorly as it treats all datapoints
as independent, optimising a sum over log likelihoods for
each element. By sharing latents across elements of the
same class, a VHE can improve upon this considerably.

For likelihood evaluation, our most appropriate compar-
ison is with Generative Matching Networks (Bartunov &
Vetrov, 2016) as they also model dependencies within a
class. Thus, we trained models under the same train/test
split as them, with no data augmentation. We evaluate the
joint log likelihood of full character classes from the test
set, normalised by the number of elements, using impor-
tance weighting with k=500 samples from q(c; X). As
can be seen in Tables 3 and 4, our hierarchical PixelCNN
architecture is able to achieve state-of-the-art log likeli-
hood results only when trained using the VHE objective.

Figure 4: 5-shot samples generated by each model (more in Supplement). With a PixelCNN architecture, both Neural
Statistician and Resample objectives lead to underutilisation of the latent space, producing unfaithful samples.

For the hierarchical PixelCNN architecture, however,
significant differences arise between training objectives.
In this case, a Neural Statistician learns a strong global
distribution over images but makes only minimal use of
latent variables c. This means that, despite the use of a
higher capacity model, classification accuracy is much
poorer (66%) than that achieved using a deconvolutional
architecture. For the same reason, conditional samples
display an improved sharpness but are no longer identi-
fiable to the cue images on which they were conditioned
(Figure 4). Our careful training suggests that this is not
an optimisation difficulty but is core to the objective, as
discussed in Chen et al. (2016).

By contrast, a VHE is able to gain a large benefit from
the hierarchical PixelCNN architecture, with a 3-fold re-
duction in classification error (5-shot accuracy 98.8%)
and conditional samples which are simultaneously sharp
and identifiable (Figure 4). This improvement is in part
achieved by increased utilisation of the latent space, due
to rescaling of the KL divergence term in the objective.
However, our results show that this common technique
is insufficient when used alone, leading to overfitting to
cue images with an equally severe impairment of classi-
fication performance (accuracy 62.8%). Rather, we find
that KL-rescaling and data resampling must be used to-
gether in order for the benefit of the powerful PixelCNN
architecture to be realised.

Table 2 lists the classification accuracy achieved by
VHEs with both |D| = 1 and |D| = 5, as compared
to existing deep learning approaches. We find that both
networks are not only state-of-the-art amongst deep gen-
erative models, but also competitive against the best dis-
criminative models trained directly for few-shot classi-
fication. Unlike these discriminative models, a VHE
is also able to generate new images of a character in
one shot, producing samples which are both realistic and
faithful to the class of the cue image (Figure 5).

As our goal is to model shared structure across images,
we evaluate generative performance using joint log like-

Figure 5: One-shot same-class samples generated by our
model. Cue images were sampled from previously un-
seen classes.

lihood of the entire Omniglot test set (rather than sepa-
rately across images). From this perspective, a single el-
ement VAE will perform poorly as it treats all datapoints
as independent, optimising a sum over log likelihoods for
each element. By sharing latents across elements of the
same class, a VHE can improve upon this considerably.

For likelihood evaluation, our most appropriate compar-
ison is with Generative Matching Networks (Bartunov &
Vetrov, 2016) as they also model dependencies within a
class. Thus, we trained models under the same train/test
split as them, with no data augmentation. We evaluate the
joint log likelihood of full character classes from the test
set, normalised by the number of elements, using impor-
tance weighting with k=500 samples from q(c; X). As
can be seen in Tables 3 and 4, our hierarchical PixelCNN
architecture is able to achieve state-of-the-art log likeli-
hood results only when trained using the VHE objective.

Figure 4: 5-shot samples generated by each model (more in Supplement). With a PixelCNN architecture, both Neural
Statistician and Resample objectives lead to underutilisation of the latent space, producing unfaithful samples.

For the hierarchical PixelCNN architecture, however,
significant differences arise between training objectives.
In this case, a Neural Statistician learns a strong global
distribution over images but makes only minimal use of
latent variables c. This means that, despite the use of a
higher capacity model, classification accuracy is much
poorer (66%) than that achieved using a deconvolutional
architecture. For the same reason, conditional samples
display an improved sharpness but are no longer identi-
fiable to the cue images on which they were conditioned
(Figure 4). Our careful training suggests that this is not
an optimisation difficulty but is core to the objective, as
discussed in Chen et al. (2016).

By contrast, a VHE is able to gain a large benefit from
the hierarchical PixelCNN architecture, with a 3-fold re-
duction in classification error (5-shot accuracy 98.8%)
and conditional samples which are simultaneously sharp
and identifiable (Figure 4). This improvement is in part
achieved by increased utilisation of the latent space, due
to rescaling of the KL divergence term in the objective.
However, our results show that this common technique
is insufficient when used alone, leading to overfitting to
cue images with an equally severe impairment of classi-
fication performance (accuracy 62.8%). Rather, we find
that KL-rescaling and data resampling must be used to-
gether in order for the benefit of the powerful PixelCNN
architecture to be realised.

Table 2 lists the classification accuracy achieved by
VHEs with both |D| = 1 and |D| = 5, as compared
to existing deep learning approaches. We find that both
networks are not only state-of-the-art amongst deep gen-
erative models, but also competitive against the best dis-
criminative models trained directly for few-shot classi-
fication. Unlike these discriminative models, a VHE
is also able to generate new images of a character in
one shot, producing samples which are both realistic and
faithful to the class of the cue image (Figure 5).

As our goal is to model shared structure across images,
we evaluate generative performance using joint log like-

Figure 5: One-shot same-class samples generated by our
model. Cue images were sampled from previously un-
seen classes.

lihood of the entire Omniglot test set (rather than sepa-
rately across images). From this perspective, a single el-
ement VAE will perform poorly as it treats all datapoints
as independent, optimising a sum over log likelihoods for
each element. By sharing latents across elements of the
same class, a VHE can improve upon this considerably.

For likelihood evaluation, our most appropriate compar-
ison is with Generative Matching Networks (Bartunov &
Vetrov, 2016) as they also model dependencies within a
class. Thus, we trained models under the same train/test
split as them, with no data augmentation. We evaluate the
joint log likelihood of full character classes from the test
set, normalised by the number of elements, using impor-
tance weighting with k=500 samples from q(c; X). As
can be seen in Tables 3 and 4, our hierarchical PixelCNN
architecture is able to achieve state-of-the-art log likeli-
hood results only when trained using the VHE objective.

Figure 4: 5-shot samples generated by each model (more in Supplement). With a PixelCNN architecture, both Neural
Statistician and Resample objectives lead to underutilisation of the latent space, producing unfaithful samples.

For the hierarchical PixelCNN architecture, however,
significant differences arise between training objectives.
In this case, a Neural Statistician learns a strong global
distribution over images but makes only minimal use of
latent variables c. This means that, despite the use of a
higher capacity model, classification accuracy is much
poorer (66%) than that achieved using a deconvolutional
architecture. For the same reason, conditional samples
display an improved sharpness but are no longer identi-
fiable to the cue images on which they were conditioned
(Figure 4). Our careful training suggests that this is not
an optimisation difficulty but is core to the objective, as
discussed in Chen et al. (2016).

By contrast, a VHE is able to gain a large benefit from
the hierarchical PixelCNN architecture, with a 3-fold re-
duction in classification error (5-shot accuracy 98.8%)
and conditional samples which are simultaneously sharp
and identifiable (Figure 4). This improvement is in part
achieved by increased utilisation of the latent space, due
to rescaling of the KL divergence term in the objective.
However, our results show that this common technique
is insufficient when used alone, leading to overfitting to
cue images with an equally severe impairment of classi-
fication performance (accuracy 62.8%). Rather, we find
that KL-rescaling and data resampling must be used to-
gether in order for the benefit of the powerful PixelCNN
architecture to be realised.

Table 2 lists the classification accuracy achieved by
VHEs with both |D| = 1 and |D| = 5, as compared
to existing deep learning approaches. We find that both
networks are not only state-of-the-art amongst deep gen-
erative models, but also competitive against the best dis-
criminative models trained directly for few-shot classi-
fication. Unlike these discriminative models, a VHE
is also able to generate new images of a character in
one shot, producing samples which are both realistic and
faithful to the class of the cue image (Figure 5).

As our goal is to model shared structure across images,
we evaluate generative performance using joint log like-

Figure 5: One-shot same-class samples generated by our
model. Cue images were sampled from previously un-
seen classes.

lihood of the entire Omniglot test set (rather than sepa-
rately across images). From this perspective, a single el-
ement VAE will perform poorly as it treats all datapoints
as independent, optimising a sum over log likelihoods for
each element. By sharing latents across elements of the
same class, a VHE can improve upon this considerably.

For likelihood evaluation, our most appropriate compar-
ison is with Generative Matching Networks (Bartunov &
Vetrov, 2016) as they also model dependencies within a
class. Thus, we trained models under the same train/test
split as them, with no data augmentation. We evaluate the
joint log likelihood of full character classes from the test
set, normalised by the number of elements, using impor-
tance weighting with k=500 samples from q(c; X). As
can be seen in Tables 3 and 4, our hierarchical PixelCNN
architecture is able to achieve state-of-the-art log likeli-
hood results only when trained using the VHE objective.

Figure 4: 5-shot samples generated by each model (more in Supplement). With a PixelCNN architecture, both Neural
Statistician and Resample objectives lead to underutilisation of the latent space, producing unfaithful samples.

For the hierarchical PixelCNN architecture, however,
significant differences arise between training objectives.
In this case, a Neural Statistician learns a strong global
distribution over images but makes only minimal use of
latent variables c. This means that, despite the use of a
higher capacity model, classification accuracy is much
poorer (66%) than that achieved using a deconvolutional
architecture. For the same reason, conditional samples
display an improved sharpness but are no longer identi-
fiable to the cue images on which they were conditioned
(Figure 4). Our careful training suggests that this is not
an optimisation difficulty but is core to the objective, as
discussed in Chen et al. (2016).

By contrast, a VHE is able to gain a large benefit from
the hierarchical PixelCNN architecture, with a 3-fold re-
duction in classification error (5-shot accuracy 98.8%)
and conditional samples which are simultaneously sharp
and identifiable (Figure 4). This improvement is in part
achieved by increased utilisation of the latent space, due
to rescaling of the KL divergence term in the objective.
However, our results show that this common technique
is insufficient when used alone, leading to overfitting to
cue images with an equally severe impairment of classi-
fication performance (accuracy 62.8%). Rather, we find
that KL-rescaling and data resampling must be used to-
gether in order for the benefit of the powerful PixelCNN
architecture to be realised.

Table 2 lists the classification accuracy achieved by
VHEs with both |D| = 1 and |D| = 5, as compared
to existing deep learning approaches. We find that both
networks are not only state-of-the-art amongst deep gen-
erative models, but also competitive against the best dis-
criminative models trained directly for few-shot classi-
fication. Unlike these discriminative models, a VHE
is also able to generate new images of a character in
one shot, producing samples which are both realistic and
faithful to the class of the cue image (Figure 5).

As our goal is to model shared structure across images,
we evaluate generative performance using joint log like-

Figure 5: One-shot same-class samples generated by our
model. Cue images were sampled from previously un-
seen classes.

lihood of the entire Omniglot test set (rather than sepa-
rately across images). From this perspective, a single el-
ement VAE will perform poorly as it treats all datapoints
as independent, optimising a sum over log likelihoods for
each element. By sharing latents across elements of the
same class, a VHE can improve upon this considerably.

For likelihood evaluation, our most appropriate compar-
ison is with Generative Matching Networks (Bartunov &
Vetrov, 2016) as they also model dependencies within a
class. Thus, we trained models under the same train/test
split as them, with no data augmentation. We evaluate the
joint log likelihood of full character classes from the test
set, normalised by the number of elements, using impor-
tance weighting with k=500 samples from q(c; X). As
can be seen in Tables 3 and 4, our hierarchical PixelCNN
architecture is able to achieve state-of-the-art log likeli-
hood results only when trained using the VHE objective.

(b) VHE

Figure A12: New exemplars produced by the Sequential Generative (SG) model [38] and the Variational Homoen-
coder (VHE) [19]. (a) The SG model shows far too much variability, drawing what is clearly the wrong character
in many cases (e.g. right-most column). (b) The VHE character samples are often incomplete, missing important
strokes of the target class.

18

GNS samples Omniglot neighbors

Figure A13: Generating new concepts (unconstrained). 100 new concepts sampled unconditionally from GNS are
shown in a topologically-organized grid alongside a corresponding grid of “nearest neighbor" training examples.
To identify nearest neighbors, we used cosine distance in the last hidden layer of a CNN classifier as a metric of
perceptual similarity. The CNN was trained to classify characters from the Omniglot background set, a 964-way
classification task.

19

	1 Introduction
	2 Related Work
	3 Generative Model
	4 Probabilistic Inference
	5 Experiments
	6 Discussion
	A Generative Model
	A.1 Training on causal drawing data
	A.2 Type prior
	A.3 Token model

	B Approximate Posterior
	C Marginal Image Likelihoods
	D Experiments: Supplemental Figures
	D.1 One-shot classification
	D.2 Parsing
	D.3 Generating new exemplars
	D.4 Generating new concepts (unconstrained)

