
Learning Compositional Rules via Neural Program Synthesis

Maxwell I. Nye 1 Armando Solar-Lezama 1 Joshua B. Tenenbaum 1 Brenden M. Lake 2 3

Abstract
Many aspects of human reasoning, including lan-
guage, require learning rules from very little data.
Humans can do this, often learning systematic
rules from very few examples, and combining
these rules to form compositional rule-based sys-
tems. Current neural architectures, on the other
hand, often fail to generalize in a compositional
manner, especially when evaluated in ways that
vary systematically from training. In this work,
we present a neuro-symbolic model which learns
entire rule systems from a small set of examples.
Instead of directly predicting outputs from inputs,
we train our model to induce the explicit system
of rules governing a set of previously seen exam-
ples, drawing upon techniques from the neural
program synthesis literature. Our rule-synthesis
approach outperforms neural meta-learning tech-
niques in three domains: an artificial instruction-
learning domain used to evaluate human learning,
the SCAN challenge datasets, and learning rule-
based translations of number words into integers
for a wide range of human languages.

1. Introduction
Humans have a remarkable ability to learn compositional
rules from very little data. For example, a person can learn a
novel verb “to dax” from a few examples, and immediately
understand what it means to “dax twice” or “dax around
the room quietly.” When learning their native language,
children must learn many interrelated concepts simultane-
ously, including the meaning of both verbs and modifiers
(“twice”, “quietly”, etc.), and how they combine to form
complex meanings. Moreover, these compositional skills do
not depend on detailed knowledge of a particular language
(Lake et al., 2019); people can also learn novel artificial lan-
guages and generalize systematically to new compositional
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meanings (see Figure 2).

Fodor and Marcus have argued that systematic composi-
tionality, while critical to human language and thought, is
incompatible with classic neural networks (i.e., eliminative
connectionism) (Fodor & Pylyshyn, 1988; Marcus, 1998;
2003). Recent work shows that these issues still plague
contemporary neural architectures, which struggle to gen-
eralize in systematic ways when directly learning rule-like
mappings between input sequences and output sequences
(Lake & Baroni, 2018; Loula et al., 2018). Basic forms
of compositionality can be acquired by training memory-
augmented neural models with meta-learning (Lake, 2019),
but this approach has yet to address the hardest challenges
of learning genuinely new, systematic rules from examples.
Given these classic and recent findings, Marcus continues to
postulate that hybrid neural-symbolic architectures (imple-
mentational connectionism) are needed to achieve genuine
compositional, human-like generalization (Marcus, 2003;
2018; Marcus & Davis, 2019).

An important goal of AI is to build systems which possess
this sort of systematic rule-learning ability, while retaining
the speed and flexibility of neural inference. In this work,
we present a neural-symbolic framework for learning entire
rule systems from examples. As illustrated in Figure 1B,
our key idea is to frame the problem as explicit rule-learning
through fast neural proposals and rigorous symbolic check-
ing. Instead of training a model to predict the correct output
given a novel input (Figure 1A), we train our model to in-
duce the explicit system of rules governing the behavior of
all previously seen examples (Figure 1B; Grammar propos-
als). Once inferred, this rule system can be used to predict
the behavior of any new example (Figure 1B; Symbolic
application).

This explicit rule-based approach confers several advantages
compared to a pure input-output based approach. Instead of
learning a blackbox input-output mapping, and applying it
to each new query item for which we would like to predict
an output (Figure 1A), we instead search for an explicit
program which we can check against previous examples
(the support set). This allows us to propose and check candi-
date programs, only terminating search when the proposed
solution is consistent with prior data.

This framing also allows immediate and automatic gener-
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Grammar proposals:

G	=
run	->	RUN
look	->	LOOK
x	twice	->	[x][x][x]
x	thrice	->	[x][x]

G	=	
run	->	LOOK
look	->	RUN
x	twice	->	[x][x]
x	thrice	->	[x][x][x]
...	

G	=	
run	->	RUN
look	->	LOOK
x	twice	->	[x][x]
x	thrice	->	[x][x][x]

run	twice

RUN	RUN

look	thrice

LOOK	LOOK	LOOK

support examples

Neural Model

satisfies all
support
examples

Counterexample:
run	twice

RUN	RUN	RUN

Counterexample:
run	twice

LOOK	LOOK

...

run	twice

RUN	RUN

look	thrice

LOOK	LOOK	LOOK

support examples

Neural Memory
Embedding

look	twice

LOOK	LOOK

Neural
Translation

Neural inference on
query set

A. Previous Work (Lake, 2019):

B. This Paper:

Often fails on long &
complex inputs

G.apply(`look	twice`)
		=	LOOK	LOOK

Symbolic application 
on query set

Figure 1. Illustration of our synthesis-based rule learner and comparison to previous work. A) Previous work (Lake, 2019): Support
examples are encoded into an external neural memory. A query output is predicted by conditioning on the query input sequence and
interacting with the external memory via attention. B) Our model: Given a support set of input-output examples, our model produces a
distribution over candidate grammars. We sample from this distribution, and symbolically check consistency of each grammar against
the support set until a grammar is found which satisfies the input-output examples in the support set. This approach allows much more
effective search than selecting the maximum likelihood grammar from the network.

alization: once the correct rule system is learned, it can be
correctly applied in novel scenarios which are a) arbitrarily
complex and b) outside the distribution of previously seen
examples. To build our rule-learning system, we draw on
work in the neural program synthesis literature (Ellis et al.,
2019; Devlin et al., 2017), allowing us to solve complex
rule-learning problems which are difficult for both neural
and traditional symbolic methods.

Our training scheme is inspired by meta-learning. Assuming
a distribution of rule systems, or a “meta-grammar,” we train
our model by sampling grammar-learning problems and
training on these sampled problems. We can interpret this as
a kind of approximate Bayesian grammar induction, where
our goal is to maximize the likelihood of finding a latent
program which explains all of the data (Le et al., 2016).

We demonstrate that, when trained on a general meta-
grammar of rule-systems, our rule-synthesis method can
outperform neural meta-learning techniques.

Concretely, our main contributions are:

• We present a neuro-symbolic program induction model
which can learn novel rule systems from few examples.
Our model employs a symbolic program representation

for compositional generalization and neural program
induction for fast and flexible inference. This allows
us to leverage search in the space of programs, for a
guess-and-check approach.

• We show that our model can learn to interpret artificial
languages from few examples, and further demonstrate
that our model can solve tasks in the SCAN composi-
tional learning domain.

• Finally, we show that our model can outperform base-
lines in learning how to interpret number words in
unseen languages from few examples.

2. Related Work
Meta-Learning: Lake (2019) uses meta-learning to induce
a sequence-to-sequence model for predicting query input-
output transformations, given a small number of support
examples (Figure 1A). They show significant improvements
over standard sequence-to-sequence methods, and demon-
strate that their model captures human biases in approaching
few-shot sequence-to-sequence tasks. Our work uses a simi-
lar training scheme, but we instead learn an explicit program
which can be applied to held out query items (Figure 1B).
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Figure 2. An example of few-shot learning of instructions. In Lake
et al. (2019), participants learned to execute instructions in a novel
language of nonce words by producing sequences of colored cir-
cles. Human performance is shown next to each query instruction,
as the percent correct across participants. When conditioned on
the support set, our model is able to predict the correct output
sequences on the held out query instructions by synthesizing the
grammar in Figure 3.

.
Program Synthesis: Our approach derives from the field
of neural program synthesis, also called neural program
induction.1 We are inspired by work such as Devlin et al.
(2017), and other program synthesis approaches, includ-
ing enumerative approaches (Balog et al., 2016), execution
guided work (Chen et al., 2018; Zohar & Wolf, 2018; El-
lis et al., 2019; Yang & Deng, 2019), and hybrid models
(Murali et al., 2017; Nye et al., 2019) However, a key dif-
ference in our work is the number of input-output examples
provided to the system. Previous neural program synthesis
systems condition on a handful of (less than 10) examples.
We demonstrate that our method is able to synthesize very
long programs while conditioned on up to 100 examples,
and can attend to the relevant examples for decoding each
program sub-component.

3. Our Approach
Overview: Given a small support set of input-output ex-
amples, X = {(xi, yi)}i=1..n, our goal is to produce the
outputs corresponding to a query set of inputs {qi}i=1..m

(see Figure 2). To do this, we build a neural program in-
duction model pθ(·|X ) which accepts the given examples
and synthesizes a symbolic program G, which we can ex-
ecute on query inputs to predict the desired query outputs,
ri = G(qi). Our symbolic program consists of an “interpre-
tation grammar,” which is a sequence of rewrite rules, each

1In this work we use the terms program synthesis and program
induction interchangeably.

of which represents a transformation of token sequences.
The details of the interpretation grammar are discussed be-
low. At test time, we employ our neural program induction
model to drive a simple search process. This search process
proposes candidate programs by sampling from the program
induction model and symbolically checks whether candidate
programs satisfy the support examples by executing them
on the support inputs, i.e., checking that G(xi) = yi for all
i = 1..n. During each training episode, our model is given a
support set X and is trained to infer an underlying program
G which explains the support and held-out query examples.

Model: A schematic of our architecture is shown in Figure
3. Our neural model pθ(G|X ) is a distribution over pro-
grams G given the support set X . Our implementation is
quite simple and consists of two components: an encoder
Enc(·), which encodes each support example (xi, yi) into a
vector hi, and a decoderDec(·), which decodes the program
while attending to the support examples:

pθ(·|X ) = Dec({hi}i=1..n),

where {hi}i=1..n = Enc(X )

Encoder: For each support example (xi, yi), the input se-
quence xi and output sequence yi are each encoded into a
vector by taking the final hidden state of an input BiLSTM
encoder fI(xi) and an output BiLSTM encoder fO(yi), re-
spectively (Figure 3; left). These hidden states are then
combined via a single feedforward layer with weights W to
produce one vector hi per support example:

hi = ReLU(W [fI(xi); fO(yi)])

Decoder: We use an LSTM for our decoder (Figure 3; cen-
ter). The decoder hidden state u0 is initialized with the sum
of all of the support example vectors, u0 =

∑
i hi, and the

decoder produces the program token-by-token while attend-
ing to the support vectors hi via Luong attention (Luong
et al., 2015). The decoder outputs a tokenized program,
which is then parsed into an interpretation grammar object.

Interpretation Grammar: The programs in this work are
instances of an interpretation grammar, which is a form of
term rewriting system (Kratzer & Heim, 1998). The inter-
pretation grammar used in this work consists of an ordered
list of rules. Each rule consists of a left hand side (LHS) and
a right hand side (RHS). The left hand side consists of the
input words, string variables x (regexes that match entire
strings), and primitive variables u (regexes that match single
words). Evaluation proceeds as follows: An input sequence
is checked against the rules in order of the rule priority. If
the rule LHS matches the input sequence, then the sequence
is replaced with the RHS. If the RHS contains bracketed
variables (i.e., [x] or [u]), then the contents of these vari-
ables are evaluated recursively through the same process.
In Figure 3 (right), we observe grammar application on the
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...

Synthesized grammar    :

G	=
dax	->	RED
lug	->	BLUE
zup	->	YELLOW
wif	->	GREEN
u2	fep	->	[u2]	[u2]	[u2]
x2	kiki	x1	->	[x1]	[x2]
u1	blicket	u2	->	[u1]	[u2]	[u1]
u1	x1	->	[u1]	[x1]

dax	fep

RED	RED	RED

LSTM

LSTM
�

lug	fep

BLUE	BLUE	BLUE

LSTM

LSTM
�

su
pp

or
t e

xa
m

pl
es

...

Decoder LSTM

Symbolic application of grammar:

G.apply('zup	blicket	wif	kiki	dax	fep')

=	[dax	fep][zup	blicket	wif]

=	[dax][dax][dax][zup][wif][zup]

=	RED	RED	RED	YELLOW	GREEN	YELLOW
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Figure 3. Illustration of our synthesis-based rule learner neural architecture and grammar application. Support examples are encoded via
BiLSTMs. The decoder LSTM attends over the resulting vectors and decodes a grammar, which can be symbolically applied to held out
query inputs. Middle: an example of a fully synthesized grammar which solves the task in Fig. 2.

input sequence zup blicket wif kiki dax fep.
The first matching rule is the kiki rule,2 so its RHS is ap-
plied, producing [dax fep] [zup blicket wif],
and the two bracketed strings are recursively evaluated us-
ing the fep and blicket rules, respectively.

Search: At test time, we sample candidate programs from
our neural program induction model. If the new candidate
program G satisfies the support set —i.e., if G(xi) = yi
for all i = 1..n —then search terminates and the candidate
program G is returned as the solution. The program G is
then applied to the held-out query set to produce final query
predictions ri = G(qi). During search, we maintain the best
program so far, defined as the program which satisfies the
largest number of support examples. If the search timeout
is exceeded and no program has been found which solves
all of the support examples, then the best program so far is
returned as the solution.

This search procedure confers major advantages compared
to previous approaches. In a pure neural induction model
(Figure 1A), given a query input and corresponding output
prediction, there is no way to check consistency with the
support set. Conversely, casting the problem as a search
for a satisfying program allows us to explicitly check each
candidate program against the support set, to ensure that
it correctly maps support inputs to support outputs. The
benefit of such an approach is shown in Section 4.2, where
we can achieve perfect accuracy on SCAN by increasing our
search budget and searching until a program is found which
satisfies all of the support examples.

Training: We train our model in a similar manner to Lake
(2019). During each training episode, we randomly sam-
ple an interpretation grammar G from a distribution over
interpretation grammars, or “meta-grammar”M. We then
randomly sample a set of input sequences consistent with
the sampled interpretation grammar, and apply the inter-
pretation grammar to each input sequence to produce the
corresponding output sequence. This gives us a support set

2Note that the fep rule is not applied first because u2 is a
primitive variable, so it only matches when fep is preceded by a
single primitive word.

of input-output examples XG. We train the parameters θ of
our network pθ via supervised learning to output the inter-
pretation grammar when conditioned on the support set of
input-output examples, maximizing the following objective
L by gradient descent:

L = E
(G,XG)∼M

[log pθ(G|XP )]

4. Experiments
All models were implemented in PyTorch. All testing and
training was performed on one Nvidia GTX 1080 Ti GPU.
For all models, we used LSTM embedding and hidden sizes
of 200, and trained using the Adam optimizer (Kingma &
Ba, 2014) with a learning rate of 1e-3. Training and testing
runs used a batch size of 128. For all experiments, we report
standard error in the supplement.

4.1. Experiment: MiniSCAN

Our first experimental domain is the paradigm introduced
in Lake et al. (2019), informally dubbed “MiniSCAN.” The
goal of this domain is to learn compositional, language-like
rules from a very limited number of examples. In Lake
et al. (2019), human subjects were allowed to study the 14
example ‘support instructions’ in Figure 2, which demon-
strate how to transform a sequence of nonce words into a
sequence of colored circles. Participants were then tested
on the 10 ‘query instructions’ in Figure 2, to determine how
well they had learned to execute instructions in this novel
language. Our aim is to build a model which learns this
artificial language from few examples, similar to humans.

Training details: To perform these rule-learning tasks, we
trained our model on a series of meta-training episodes.
During each training episode, a grammar was sampled from
the meta-grammar distribution, and our model was trained
to recover this grammar given a support set of example se-
quences. In our experiments, the meta-grammar randomly
sampled grammars with 3-4 primitive rules and 2-4 higher-
order rules. Primitive rules map a word to a color (e.g. dax
-> RED), and higher order rules encode variable transfor-
mations given by a word (e.g. x1 kiki x2 -> [x2]



Learning Compositional Rules via Neural Program Synthesis

10 30 50 70
Number of support examples at test time

0

20

40

60

80

100
%

 o
f t

es
t q

ue
rie

s c
or

re
ct

Varying number of support examples

synthesis
synthesis, no search
meta seq2seq

3 4 5 6
Number of primitives at test time

0

20

40

60

80

100

%
 o

f t
es

t q
ue

rie
s c

or
re

ct

Varying number of primitives

synthesis
synthesis, no search
meta seq2seq

3 4 5 6
Number of higher-order rules at test time

0

20

40

60

80

100

%
 o

f t
es

t q
ue

rie
s c

or
re

ct

Varying number of higher-order rules

synthesis
synthesis, no search
meta seq2seq

Figure 4. MiniSCAN generalization results. We train on random grammars with 3-4 primitives, 2-4 higher order rules, and 10-20 support
examples. At test time, we vary the number of support examples (left), primitive rules (center), and higher-order rules (right). The
synthesis-based approach using search achieves near-perfect accuracy for most test conditions.

[x1]). (In a higher-order rule, the LHS can be one or two
variables and a word, and the RHS can be any sequence of
bracketed forms of those variables.) For each grammar, we
trained with a support set of 10-20 randomly sampled exam-
ples. We trained our models for 12 hours. Meta-grammar
details can be found in Section A.1 of the supplement.

Alternate Models: We compare our model against two
alternate models. The first alternate model is the meta
seq2seq model introduced in Lake (2019). This model
is also trained on episodes of randomly sampled gram-
mars. However, instead of synthesizing a grammar, the
meta seq2seq model conditions on support examples and
attempts to translate query inputs directly to query outputs
in a sequence to sequence manner (Figure 1A). This base-
line allows us to compare with models which use a learned
representation instead of a symbolic program representation.

The second alternate model is a lesioned version of our
synthesis approach, dubbed the no search baseline. This
model does not perform guess-and-check search, and instead
returns the grammar which results from greedily decoding
the most likely token at each step. This baseline allows us
to determine how much of our model’s performance is due
to its ability to perform guess-and-check search.

Test Details: Our synthesis methods were tested by sam-
pling from the network for the best grammar, or until a
candidate grammar was found which was consistent with all
of the support examples. We used a sampling timeout of 30
sec, and the model samples approx. 35 prog/second, result-
ing in a maximum search budget of approx. 1000 candidate
programs. For each of our experiments, we tested on 50
held-out test grammars, each containing 10 query examples.

Results: To evaluate our rule-learning model and baselines,
we test the models on a battery of evaluation schemes. In
general, we observe that the synthesis methods are much
more accurate than than the pure neural meta seq2seq
method, and only the search-based synthesis method is able
to consistently predict the correct query output sequence for
all test conditions. Our main results are shown in Figure 4.
We observed that, when the support set is too small, there

1 2 3 4 5 6
Length of test query output

0

20

40

60

80

100

%
 o

f t
es

t q
ue

rie
s c

or
re

ct

Accuracy as a function of query length

synthesis
synthesis, no search
meta seq2seq

Figure 5. MiniSCAN length generalization results. A key challenge
for compositional learning is generalization across lengths. We
plot accuracy as a function of query output length for the “4 higher-
order rules” test condition in Figure 4 above. The accuracy of our
synthesis approach does not degrade as a function of query output
length, whereas the performance of baselines decreases.

are often not enough examples to disambiguate between
several grammars which all satisfy the support set, but may
not satisfy the query set. Thus, in our first experiment, we
varied the number of support examples during test time and
evaluated the accuracy of each model. We observed that,
when we increased the number of support elements to 50 or
more, the probability of failing any of the query elements
fell to less than 1% for our model. However, we also wanted
to determine how well these models could generalize to
grammars systematically different than those seen during
training. For our second and third experiments, we varied
the number of primitives in the test grammars (Figure 4
center), and the number of higher-order functions in the
test grammars (Figure 4 right). For these experiments, each
support set contained 30 examples.

Both synthesis models are able to correctly translate query
items with high accuracy (89% or above) when tested on
held-out grammars within the training distribution (3-4 prim-
itive rules and 3-4 higher order rules). However, only the
performance of the search-based synthesis model does not
drop below 95% as the number of primitives and higher
order rules increases beyond the training distribution, in-
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dicating that the ability to search for a consistent program
plays a large role in out-of-sample generalization.

Furthermore, in instances where the synthesis based meth-
ods have perfect accuracy because they recover exactly the
generating grammar (or some equivalent grammar), they
would also be able to trivially generalize to query examples
of any size or complexity, as long as these examples fol-
lowed the same generating grammar. On the other hand,
as reported in many previous studies (Graves et al., 2014;
Lake & Baroni, 2018; Lake, 2019), approaches which at-
tempt to neurally translate directly from inputs to outputs
struggle to generate sequences much longer than those seen
during training. This is a clear conceptual advantage of the
synthesis approach; symbolic rules, if accurately inferred,
necessarily allow correct translation in every circumstance.
To investigate this property, we plot the performance of our
models as a function of the query example length for the
4 higher-order rule test condition above (Figure 5). The
performance of the baselines decays as the length of the
query examples increases, whereas the search-based synthe-
sis model experiences no such decrease in performance.

This indicates a key benefit of the program synthesis ap-
proach: When a correct program is found, it trivially gen-
eralizes correctly to arbitrary query inputs, regardless of
how out-of-distribution they may be compared to the sup-
port inputs, as long as those query inputs follow the same
rules as the support inputs. The model’s ability to search
the space of programs also plays a crucial role, as it allows
the system to find a grammar which satisfies the support
examples, even if it is not the most likely grammar under
the neural network distribution.

We also note that our model is able to solve the task in
Figure 2; averaged over 20 runs, our model achieves a score
of 98.75% on the query set, which is higher than the average
score for human participants in Lake et al. (2019). The no
search and meta seq2seq model are not able to solve the
task, achieving scores of 37.5% and 25%, respectively.

4.2. Experiment: SCAN Challenge

Our second experimental domain is the SCAN dataset, in-
troduced in Lake & Baroni (2018) and Loula et al. (2018).
The goal of SCAN is to test the compositional abilities of
neural network systems, to determine how well they can
generalize to held out test data which varies systematically
from the training data. The SCAN dataset consists of simple
English commands paired with corresponding discrete ac-
tions (see Figure 6). The dataset has approximately 21,000
command-to-action examples, which are arranged in several
test-train splits to examine different aspects of composition-
ality. We focus on four splits: The simple split randomly
sorts data into the train and test sets. The length split places
all examples with output length of up to 22 tokens into the

walk
WALK

walk left twice
LTURN WALK LTURN WALK

jump
JUMP

jump around left
LTURN JUMP LTURN JUMP LTURN JUMP LTURN JUMP

walk right
RTURN WALK

walk -> WALK
jump -> JUMP
run -> RUN
look -> LOOK
left -> LTURN
right -> RTURN
turn -> ‘EMTPY_STRING’
u1 opposite u2 -> [u2] [u2] [u1]
u1 around u2 ->
[u2] [u1] [u2] [u1] [u2] [u1] [u2] [u1]

x2 twice -> [x2] [x2]
x1 thrice -> [x1] [x1] [x1]
x2 after x1 -> [x1] [x2]
x1 and x2 -> [x1] [x2]
u1 u2 ->[u2] [u1]

Figure 6. Top: Example SCAN data. Each example consists of a
synthetic natural language command (top) paired with a discrete
action sequence (bottom). Fig. adapted from Andreas (2019).
Bottom: Example of induced grammar which solves SCAN.

train split, and all other examples (24 to 48 tokens long)
into the test split. This split tests whether a model can learn
to generalize from short examples to longer ones. The add
jump split teaches the model how to ‘jump’ in isolation,
along with the compositional uses of other primitives, and
then evaluates it on all compositional uses of jump, such as
‘jump twice’ or ‘jump around to the right and walk twice.’
The add around right split is similar to the ‘add jump’ split,
except the phrase ‘around right’ is held out from the training
set and the goal is to piece together the composite meaning
from the meaning of its components. The ‘add jump’ and
‘add around right’ splits test if a model can learn to compo-
sitionally use words or phrases which had previously only
been seen in isolation.

Training Setup: Previous work on SCAN has used a variety
of techniques, including data augmentation (Andreas, 2019),
meta-learning (Lake, 2019), and syntactic attention (Russin
et al., 2019). Most related to our approach, Lake (2019)
trained a model to solve related problems using a meta-
training procedure. At test time, samples from the SCAN
train split were used as support items, and samples from the
SCAN test split were used as query items. However, in Lake
(2019), the meta-training distribution consisted of different
permutations of assigning the SCAN primitive actions (‘run’,
‘jump’, ‘walk’, ‘look’) to their commands (‘RUN’, ‘JUMP’,
‘WALK’, ‘LOOK’), while maintaining the same SCAN task
structure between meta-train and meta-test. Therefore, in
these experiments, the goal of the learner is to assign prim-
itive actions to commands within a known task structure,
while the higher-order rules, such as ‘twice’, and ‘after’,
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remain constant between meta-train and meta-test.

In contrast, we approach learning the entire SCAN grammar
from few examples, without knowledge about the form of
the particular SCAN grammar itself beforehand. We meta-
train on a general and broad meta-grammar for SCAN-like
rule systems, similar to our approach above in Section 4.1.
Specifically, we train on random grammars with between 4
and 9 primitives and 3 and 7 higher order rules, with ran-
dom assignment of words to meanings. Examples of random
grammars are given in the supplement. Models are trained
on 30-50 support examples, and we train for 48 hours, view-
ing approximately 9 million grammars. Meta-grammar de-
tails can be found in Section A.2 of the supplement.

Testing Setup: We test our fully trained model on each
split of SCAN as if it were a new few-shot test episode
with support examples and a held out query set, as above.
For each SCAN split, we use the training set as test-time
support elements, and input sequences from the SCAN test
set are used as query elements. The SCAN training sets have
thousands of examples, so it is infeasible to attend over the
entire training set at test time. Therefore, at test time, we
randomly sample 100 examples from the SCAN training set
to use as the support set for our network. We can then run
program inference, conditioned on just these 100 examples
from the SCAN training set.

Because of the large number of training examples, we are
also able to slightly modify our test-time search algorithm to
increase performance: We select 100 examples as the initial
support set for our network, and search for a grammar which
perfectly satisfies them. If no satisfying grammar is found
within a set timeout of 20 seconds, we resample another
100 support examples and retry searching for a grammar.
We repeat this process until a satisfying grammar is found.
This methodology, inspired by RANSAC (Fischler & Bolles,
1981), allows us to utilize many examples in the training set
without attending over thousands of examples at once.

Because the SCAN grammar lies within the support of the
meta-grammar distribution, we additionally test two proba-
bilistic inference baselines: MCMC and rejection sampling
directly from the meta-grammar. We implement these base-
lines in the pyprob probabilistic programming language
(Le et al., 2016). For both baselines, we allow a maximum
timeout of 180 seconds. Both MCMC and sampling evalu-
ate more candidate programs than our baseline, achieving
about 60 programs/sec, compared to the synthesis model,
which evaluates about 35 programs/sec.

Results: Table 1 shows the overall performance of our
model compared to baselines. Using search, our synthe-
sis model is able to achieve perfect performance on each
SCAN split. Without search, the synthesis approach cannot
solve SCAN, never achieving performance greater than 15%.

Table 1. Accuracy on SCAN splits.
length simple jump right

Synth (Ours) 100 100 100 100
Synth (no search) 0.0 13.3 3.5 0.0
Meta Seq2Seq 0.04 0.88 0.51 0.03
MCMC 0.02 0.0 0.01 0.01
Sample from prior 0.04 0.03 0.03 0.01
GECA (Andreas, 2019) – – 87 82
Meta Seq2Seq (perm) 16.64 – 99.95 98.71
Syntactic attention 15.2 – 78.4 28.9
Seq2Seq3 13.8 99.8 0.08 –

Table 2. Required search budget for our synthesis model on SCAN.

length simple jump right
Search time (sec) 39.1 33.7 74.6 36.1
Number of prog. seen 1516 1296 2993 1466
Number of ex. used 149.4 144.8 209.2 143.8
Fraction of ex. used 0.88% 0.86% 1.6% 0.94%

Likewise, meta seq2seq, using neither a program representa-
tion nor search, cannot solve SCAN when trained on a very
general meta-grammar, solving less than 1% of the test set.

One advantage of our approach is that we don’t need to
retrain the model for each split. Once meta-training has
occurred, the model can be tested on each of the splits and
is able to induce a satisfying grammar for all four splits.

Compared to previous approaches, we also require many
fewer examples to solve SCAN. Table 2 reports how many
examples and how much time are required, on average, in
order to find a grammar which solves all examples in the
support set. Previous approaches use the entire training set,
whereas we require less than 2% of the training set data. In
the supplement, Table 6 reports the results of running our
algorithm with a fixed time budget and without swapping out
support sets when no perfectly satisfying grammar is found,
averaged over 20 evaluation runs. Under this test condition,
180 seconds is sufficient to achieve perfect performance on
the length and simple splits, and nearly perfect performance
on the add around right split (98.4%). The add jump split is
more difficult; we achieve 43.3% (±10%) accuracy.

4.3. Experiment: Learning Number Words

Our final experimental domain is the real-world problem
of learning to infer the integer meaning of a number word
sequence from few examples. This domain provides a real-
world example of compositional rule learning. Figure 7 pro-
vides an example of this number learning task for Japanese.

Setup: In this domain, each grammar G is an ordered
list of rules which defines a transformation from strings

3Seq2Seq results from Lake & Baroni (2018).
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Table 3. Accuracy on few-shot number-word learning, using a maximum timeout of 45 seconds.
English Spanish Chinese Japanese Italian Greek Korean French Vietnamese

Synth (Ours) 100 88.0 100 100 100 94.5 100 75.5 69.5
Synth (no search) 100 0.0 100 100 100 70.0 100 0.0 69.5
Meta Seq2Seq 68.6 59.1 63.6 46.1 73.7 89.0 45.8 40.0 36.6

 -> 1 x1  y1 -> [x1] * 10000 + [y1]
 -> 2  y1    -> 1000 * 1 + [y1]
 -> 3 x1  y1 -> [x1] * 1000 + [y1]

...  y1    -> 100 * 1 + [y1]
 -> 10 x1  y1 -> [x1] * 100 + [y1]
 -> 100  y1    -> 10 * 1 + [y1]
 -> 1000 x1  y1 -> [x1] * 10 + [y1]

u1 x1    -> [u1] + [x1]

Figure 7. Induced grammar for Japanese numbers. Given the
words for necessary numbers (1-10, 100, 1000, and 10000), as
well as 30 random examples, our system is able to recover an in-
terpretable symbolic grammar which can convert Japanese words
to integers for any number up to 99,999,999.

to integers (i.e, G(four thousand five hundred)
→ 4500, or G(ciento treinta y siete) → 137).
We modified our interpretation grammar to allow for the
simple mathematics (multiplication, addition, division, and
modulo) necessary to compute integer values. The modi-
fied interpretation grammar can be found in the supplement.
Using this modified interpretation grammar, we designed a
training meta-grammar by examining the number systems
for three languages: English, Spanish and Chinese. The
meta-grammar includes features common to these three lan-
guages, including regular and irregular words for powers of
10 and their multiples, exception words, and features such
as zeros or conjunctive words. More details can be found in
Section A.3 in the supplement.

We designed the task to mimic how it might be encountered
when learning a foreign language: When presented with
a core set of “primitive” words, such as the words for 1-
20, 100, 1000,4 and a small number of examples which
show how to compose these primitives (e.g., forty five
→ 45 shows how to compose forty and five), an agent
should be able to induce a system of rules for decoding
the integer meaning of any number word. Therefore, for
each train and test episode, we condition each model on a
support set of primitive number words and several additional
compositional examples. The goal of the model is to learn
the system of rules for composing the given primitive words.

Training: We trained our model on programs sampled from
the constructed meta-grammar. For each training program,
we sampled 60-100 string-integer pairs to use as support
examples, and sampled 10 more pairs as held-out query set.
We train and test on numbers up to 99,999,999. We trained
all models for 12 hours.

4This core set of primitive words varies by language. In English,
multiples of ten are irregular and would thus be included.

Test Setup: To test our trained model on real languages, we
used the PHP international number conversion tool to gather
data for several number systems. On the input side, the
neural model is trained on a large set of input tokens labeled
by ID; at test time, we arbitrarily assign each word in the
test language to a specific token ID. Character-level varia-
tion, such as elision, omission of final letters, and tone shifts
were ignored. For integer outputs, we tokenized integers by
digit. For testing, we conditioned on a core set of primitive
examples, plus 30 additional compositional examples. At
test time, we increased the preference for longer composi-
tional examples compared to the training time distribution,
in order to test generalization.

Results: Our results are reported in Figure 3. We test our
model on three languages used to build the generative model
(English, Spanish and Chinese), and test on six additional
unseen languages, averaging over 5 evaluation runs for each.
For many languages, our model is able to achieve perfect
generalization to the held out query set. The no search
baseline is able perform comparably for several languages,
however for some (Spanish, French) it is not able to gener-
alize at all to the query set because the generated grammar
is invalid and does not parse. The meta seq2seq baseline is
outperformed by the synthesis approaches, especially when
longer examples are demanded at test time.

5. Conclusion
We present a neuro-symbolic program induction model
which can learn rule-based systems from a small set of
diverse examples. We demonstrate the effectiveness of
our model in three domains: a few-shot artificial language-
learning domain previously tested on humans, the SCAN
challenge, and number-word learning in several natural lan-
guages. In all three domains, the use of a program repre-
sentation and explicit search provide strong out-of-sample
generalization. We believe that explicit rule learning is a key
part of human intelligence, and is a necessary ingredient for
building human-level and human-like artificial intelligence.

In future work, we hope to learn the symbolic structure of
the meta-grammar and interpretation grammar from data,
allowing our technique to be applied to a broader range of
domains with less supervision. We also aim to build hybrid
systems that learn a combination of implicit neural rules
and explicit symbolic rules, to capture the dual intuitive
and deliberate characteristics of human thought (Kahneman,
2011).
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A. Supplementary Material
A.1. Experimental details: MiniSCAN

Meta-grammar As discussed in the main text, each gram-
mar contained 3-4 primitive rules and 2-4 higher-order
rules. Primitive rules map a word to a color (e.g. dax
-> RED), and higher order rules encode variable transfor-
mations given by a word (e.g. x1 kiki x2 -> [x2]
[x1]). In a higher-order rule, the left hand side can be one
or two variables and a word, and the right hand side can be
any sequence of bracketed forms of those variables. The last
rule of every grammar is a concatenation rule: u1 x1 ->
[u1] [x1], which dictates how a sequence of tokens can
be concatenated. Figure 8 shows several example training
grammars sampled from the meta-grammar.

Generating input-output examples To generate a set of
support input-output sequences X from a program G, we
uniformly sample a set of input sequences from the CFG
formed by the left hand side of each rule in G. We then
apply the program G to each input sequence xi to find the
corresponding output sequence yi = G(xi). This gives a set
of examples {(xi, yi)}, which we can divide into support
examples and query examples.

A.2. Experimental details: SCAN

Meta-grammar The meta-grammar used to train net-
works for SCAN is based on the meta-grammar used in
the MiniSCAN experiments above. Each grammar has be-
tween 4 and 9 primitives and 3 and 7 higher order rules.
This meta-grammar has two additional differences from the
MiniSCAN meta-grammar, allowing it to produce grammars
which solve SCAN:

1. Primitives can rewrite to empty tokens, e.g., turn ->
‘EMPTY STRING’.

2. The last rule for each grammar can either be the stan-
dard concatenation rule above, or, with 50% probabil-
ity, a different concatenation rule: u1 u2 -> [u2]
[u1], which acts only on two adjacent single primi-
tives. This is to ensure that the SCAN grammar, which
does not support general string concatenation, is within
the support of the training meta-grammar, while main-
taining compatibility with MiniSCAN grammars.

Example training grammars sampled from the meta-
grammar are shown in Figure 9.

At training time, we use the same process as for MiniSCAN
to sample input-output examples for the support and query
set.

Selecting support examples at test time The distribu-
tion of input-output example sequences in each SCAN split
is very different than the training distribution. Therefore,
selecting a random subset of 100 examples uniformly from
the SCAN training set would lead to a support set very dif-
ferent from support sets seen during training. We found that
two methods of selecting support examples from each SCAN
training set allowed us to achieve good performance:

1. To ensure that support sets during testing matched the
distribution of support sets during training, we selected
our test-time support examples to match the empirical
distribution of input sequence lengths seen at training
time. We used rejection sampling to ensure consistent
sequence lengths at train and test time.

2. We found that results were improved when words as-
sociated with longer sequences were seen in more ex-
amples in the test-time support set. Therefore, we up-
weighted the probability of seeing the words ‘opposite’
and ‘around’ in the support set.

The implementation details of support example selection
can be found in generate episode.py

Results Table 4 and Table 5 show the numerical results for
the SCAN experiments reported with standard error. Table 6
shows the fixed example budget results, averaged over 20
evaluation runs.

A.3. Experimental details: Number Words

Meta-grammar We designed a meta-grammar for the
number domain, relying on knowledge of English, Span-
ish, and Chinese. We assume a base 10 number system,
where powers of 10 can have “regular” words (e.g., “one
hundred”, “two hundred”, “three hundred” ) or “irregular”
words (“ten”, “twenty”, “thirty”). Additional features in-
clude exceptions to regularity, conjunctive words (e.g., “y”
in Spanish), and words for zero. The full model can be
found in pyro num distribution.py, and example
training grammars are shown in Figure 10.

Generating input-output examples For each grammar,
example pairs (xi, yi) come in two categories: a core set
of “necessary” primitive words, and a set of compositional
examples.

1. Necessary words: The core set of ”necessary words”
are analogous to the primitives for the MiniSCAN and
SCAN domains. This set comprises examples with only
one token as well as examples for powers of 10. For
both training and testing, we produce an example for
every necessary word in the language. For the synthesis
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G =
mup -> BLACK
kleek -> WHITE
wif -> PINK
u2 dax u1 -> [u1] [u1] [u2]
u1 lug -> [u1]
x1 gazzer -> [x1]
u2 dox x1 -> [x1] [u2]
u1 x1 -> [u1] [x1]

G =
tufa -> PINK
zup -> RED
gazzer -> YELLOW
kleek -> PURPLE
u2 mup x2 -> [u2] [x2]
x2 dax -> [x2]
u2 lug x2 -> [u2] [x2]
u1 dox -> [u1] [u1] [u1]
u1 x1 -> [u1] [x1]

G =
gazzer -> PURPLE
wif -> BLACK
lug -> GREEN
x2 kiki -> [x2] [x2]
x1 dax x2 -> [x2] [x1]
x1 mup x2 -> [x2] [x1] [x2] [x1] [x1]
u1 x1 -> [u1] [x1]

Figure 8. Samples from the training meta-grammar for MiniSCAN.

models, we automatically convert the core primitive
examples into rules.

2. Compositional examples: At test time, to provide ran-
dom compositional examples for each language, we
sample numbers from a distribution over integers and
convert them to words using the NumberFormatter
class (see convertNum.php). To ensure a similar
process during training time, to produce compositional
example pairs (xi, yi) for a training grammar G, we
sample numbers yi from a distribution over integers.
We then construct the inverse grammar G−1, which
transforms integers to words, and use this to find the in-
put sequence examples xi = G−1(yi). At test time, the
compositional example distribution is slightly modified
to encourage longer compositional examples. The sam-
pling distribution can be found in test langs.py.
At training time, we produce between 60 and 100 com-
positional examples for the support set, and 10 for
the held out query set. At test time, we produce 30
compositional examples for the support set and 30-70
examples for the held out query set.

Results Table 7 shows the results in the number word
domain with standard error, averaged over 5 evaluation runs
for each language.

G =
turn -> GREEN
left -> BLUE
right -> WALK
thrice -> RUN
blicket -> RED
u2 and x1 -> [x1] [x1] [x1] [u2] [u2] [u2] [x1]
u1 after x2 -> [u1] [u1] [x2] [x2] [u1] [x2] [x2]
u2 opposite -> [u2] [u2]
u1 lug x2 -> [u1] [x2]
u1 x1 -> [u1] [x1]

G =
and -> JUMP
kiki -> LTURN
blicket -> BLUE
walk -> LOOK
thrice -> RED
run -> GREEN
dax -> RUN
after -> RTURN
x2 twice u1 -> [u1] [x2] [x2] [x2] [x2]
u2 right x1 -> [x1] [u2] [u2]
u1 look x2 -> [u1] [x2] [x2]
u1 jump -> [u1] [u1]
u2 turn u1 -> [u2] [u1]
u1 lug -> [u1] [u1]
x2 left u1 -> [x2] [u1]
u1 x1 -> [u1] [x1]

G =
twice -> WALK
jump -> RTURN
turn -> JUMP
walk ->
blicket -> GREEN
kiki -> RUN
right -> RED
run -> BLUE
x2 left -> [x2] [x2] [x2] [x2] [x2]
x1 dax u1 -> [u1] [x1] [u1]
u1 thrice x2 -> [u1] [x2] [x2] [u1] [u1]
x1 look u2 -> [x1] [x1] [u2] [x1]
x2 around -> [x2]
u1 u2 -> [u2] [u1]

G =
twice -> WALK
jump -> RTURN
turn -> JUMP
walk ->
blicket -> GREEN
kiki -> RUN
right -> RED
run -> BLUE
x2 left -> [x2] [x2] [x2] [x2] [x2]
x1 dax u1 -> [u1] [x1] [u1]
u1 thrice x2 -> [u1] [x2] [x2] [u1] [u1]
x1 look u2 -> [x1] [x1] [u2] [x1]
x2 around -> [x2]
u1 u2 -> [u2] [u1]

Figure 9. Samples from the training meta-grammar for SCAN.
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Table 4. Accuracy on SCAN splits with standard error.
length simple jump right

Synth (Ours) 100 100 100 100
Synth (no search) 0.0 13.3 (3.3) 3.5 (0.7) 0.0
Meta Seq2Seq 0.04 (0.02) 0.88 (0.13) 0.51 (0.06) 0.03 (0.03)
MCMC 0.02 (0.01) 0.0 0.01 (0.01) 0.01 (0.01)
Sample from prior 0.04 (0.02) 0.03 (0.03) 0.03 (0.02) 0.01 (0.01)

Table 5. Required search budget for our synthesis model on SCAN, with standard error.
length simple jump right

Search time (sec) 39.1 (11.9) 33.7 (10.0) 74.6 (48.5) 36.1 (13.4)
Number of prog. seen 1516 (547) 1296 (358.2) 2993 (1990.1) 1466 (541)
Number of ex. used 149.4 (28.9) 144.8 (24.7) 209.2 (91.3) 143.8 (28.6)

Table 6. Accuracy on SCAN splits, using a fixed budget of 100 examples.
Model length simple jump right
Synth (180 s) 100 100 43.3 (10.0) 98.4 (1.6)
Synth (120 s) 100 98.4 (1.6) 53.9 (10.3) 94.2 (2.9)
Synth (60 s) 92.2 (3.8) 97.5 (1.3) 44.3 (9.6) 80.75 (6.8)
Synth (30 s) 85.6 (4.6) 95.6 (2.3) 24.2 (8.6) 60.0 (8.7)

Table 7. Accuracy on few-shot number-word learning, using a maximum timeout of 45 seconds. Results shown with standard error over 5
evaluation runs.

Model English Spanish Chinese Japanese Italian Greek Korean French Vietnamese
Synthesis (Ours) 100 88.0 (3.8) 100 100 100 94.5 (4.9) 100 75.5 (2.4) 69.5 (2.3)
Synthesis (no search) 100 0.0 100 100 100 70.0 (10.2) 100 0.0 69.5 (2.3)
Meta Seq2Seq 68.6 (10.0) 59.1 (4.5) 63.6 (4.0) 46.1 (3.5) 73.7 (3.2) 89.0 (2.5) 45.8 (3.7) 40.0 (5.3) 36.6 (6.2)
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G =
token14 -> 1
token16 -> 2
token50 -> 3
token31 -> 4
token49 -> 5
token28 -> 6
token17 -> 7
token03 -> 8
token06 -> 9
token14 token10 -> 10
token13 -> 100
token14 token36 -> 1000
token01 -> 1000000
token08 y1 -> 1000000* 1 + [y1]
token05 token01 y1 -> 1000000* 9 + [y1]
x1 token01 y1 -> [x1]*1000000 + [y1]
x1 token36 y1 -> [x1]*1000 + [y1]
token32 y1 -> 100* 1 + [y1]
x1 token13 y1 -> [x1]*100 + [y1]
x1 token10 y1 -> [x1]*10 + [y1]
u1 token09 x1 -> [u1] + [x1]
u1 x1 -> [u1] + [x1]

G =
token20 -> 1
token22 -> 2
token37 -> 3
token14 -> 4
token01 -> 5
token13 -> 6
token48 -> 7
token05 -> 8
token16 -> 9
token47 -> 10
token07 -> 20
token08 -> 30
token35 -> 40
token02 -> 50
token40 -> 60
token31 -> 70
token43 -> 80
token29 -> 90
token20 token38 -> 100
token20 token18 -> 1000
token20 token33 -> 10000
token28 token33 y1 -> 10000* 7 + [y1]
x1 token33 y1 -> [x1]*10000 + [y1]
x1 token18 y1 -> [x1]*1000 + [y1]
x1 token38 y1 -> [x1]*100 + [y1]
u1 x1 -> [u1] + [x1]

Figure 10. Samples from the training meta-grammar for number
word learning. Note that the model is trained on a large set of
generic input tokens labeled by ID. At test time, we arbitrarily
assign each word in the test language to a specific token ID.


