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Abstract

Human language users easily interpret expres-
sions that describe unfamiliar situations composed
from familiar parts (“greet the pink brontosaurus
by the ferris wheel”). Modern neural networks,
by contrast, struggle to interpret compositions un-
seen in training. In this paper, we introduce a new
benchmark, gSCAN, for evaluating compositional
generalization in models of situated language un-
derstanding. We take inspiration from standard
models of meaning composition in formal linguis-
tics. Going beyond an earlier related benchmark
that focused on syntactic aspects of generalization,
gSCAN defines a language grounded in the states of
a grid world. This allows us to build novel general-
ization tasks that probe the acquisition of linguis-
tically motivated rules. For example, agents must
understand how adjectives such as ‘small’ are inter-
preted relative to the current world state or how ad-
verbs such as ‘cautiously’ combine with new verbs.
We test a strong multi-modal baseline model and a
state-of-the-art compositional method finding that,
in most cases, they fail dramatically when general-
ization requires systematic compositional rules.

1. Introduction

Human language is a fabulous tool for generalization. If
you know the meaning of ‘small’, you can probably pick
the ‘small wampimuk’ among larger ones, even if this
is the first time you encountered wampimuks. If you
know what ‘walking cautiously’ means, you can guess
what a policeman means by ‘biking cautiously’ through
a busy intersection (see Figure 1 for a related exam-
ple). Modern deep neural networks, while achieving as-
tounding results in many domains (LeCun et al., 2015),
have not mastered comparable language-based general-
ization challenges, a fact conjectured to underlie their
sample inefficiency and inflexibility (Lake et al., 2017;
Lake & Baroni, 2018; Chevalier-Boisvert et al., 2019).
Recent benchmarks have been proposed for language-
based generalization in deep networks (Johnson et al.,

Figure 1: Our gSCAN benchmark evaluates context sensitivity in
situated language understanding. In these two simplified exam-
ples, the same determiner phrase “the red small circle” in the in-
structions will have different target referents and demand different
action sequences depending on the world state and action verb. Be-
ing cautious means looking to the left and right (“L turn R turn
R turn L turn”) before crossing a grid line.

2017a; Hill et al., 2019), but they do not specifically test
for a model’s ability to perform rule-based generalization,
or do so only in limited contexts. Systematic, rule-based
generalization is instead at the core of the recently in-
troduced SCAN dataset (Lake & Baroni, 2018; see also
Hupkes et al., 2019 for related ideas). In a series of stud-
ies, Lake, Baroni and colleagues (Bastings et al., 2018;
Loula et al., 2018; Dess̀ı & Baroni, 2019) tested various
standard deep architectures for their ability to extract
general composition rules supporting zero-shot interpre-
tation of new composite linguistic expressions (can you
tell what ‘dax twice’ means, if you know the meaning of
‘dax’ and ‘run twice’?). In most cases, neural networks
were unable to generalize correctly. Very recent work
has shown that specific architectural or training-regime
adaptations allow deep networks to handle at least some
of the SCAN challenges (Andreas, 2019; Lake, 2019; Nye
& Tenenbaum, 2019; Russin et al., 2019; Gordon et al.,
2020). However, it is unclear to what extent these pro-
posals account for genuine compositional generalization,
and to what extent they are “overfitting” to the limita-
tions of SCAN.
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SCAN simulates a navigation environment through an
interpretation function that associates linguistic com-
mands (‘walk left’) to sequences of primitive actions
(L TURN WALK). SCAN, however, is not grounded, in
that it lacks a “world” with respect to which the agent
has to interpret the commands: instead the agent must
simply associate linguistic strings with fixed sequences of
action symbols, essentially reducing the problem of in-
terpretation to one of mapping syntactic strings (word
sequences) to other syntactic strings (action label se-
quences). In real languages, by contrast, the process by
which utterances are understood is both compositional
and contextual : references to entities and descriptions of
actions must be interpreted with respect to a particular
state of the world. The interaction between composi-
tional structure and contextual interpretation introduces
various new types of generalization an intelligent agent
might have to perform. For example, consider the mean-
ing of size adjectives such as ‘small’ and ‘large’. The
determiner phrases ‘the small bottle’ and ‘the large bot-
tle’ might refer to the same bottle, depending on the
sizes of the bottles that surround the relevant one. We
might wonder whether this and related notions of com-
positional generalization can be addressed using existing
techniques, but SCAN’s context insensitivity makes it
impossible to investigate broader notions of generaliza-
tion.

We introduce grounded SCAN (gSCAN), a new bench-
mark that, like the original SCAN, focuses on rule-based
generalization, but where meaning is grounded in states
of a grid world accessible to the agent. This allows
modeling a much more comprehensive set of linguistic
generalizations. For example, Figure 1 shows how the
target referent ‘the red small circle’, and the action se-
quence required to navigate there, will change based on
the state of the world. We propose a number of new
linguistic generalization challenges based on gSCAN. We
further test a baseline multi-modal model representative
of contemporary deep neural architectures, as well as a
recent method proposed to address compositional gener-
alization in the original SCAN dataset (GECA, Andreas,
2019). Across seven different generalization splits, we
show that the baseline dramatically fails on all but one
split, and that GECA improves performance on an addi-
tional one only. These results demonstrate the challenges
of accounting for common natural language generaliza-
tion phenomena with standard neural models, and affirm
gSCAN as a fruitful benchmark for developing models
with more human-like compositional learning skills.

2. Related Work

Much recent work has recognized the advantages of com-
positional generalization for robustness and sample ef-
ficiency, and responded by building synthetic environ-

ments to evaluate aspects of this skill (Johnson et al.,
2017b; Lake & Baroni, 2018; Loula et al., 2018; Bah-
danau et al., 2018; Hill et al., 2019; Chevalier-Boisvert
et al., 2019). Bahdanau et al. (2018) evaluate models
on binary questions about object relations, generalizing
to unseen object combinations after training on a small
subset. Chevalier-Boisvert et al. (2019) evaluate mod-
els on tasks such as navigating to objects and moving
them in a grid world, studying the influence of curricu-
lum learning on sample efficiency. Hill et al. (2019) evalu-
ate unseen combinations of verbs and objects in complex
skill learning, demonstrating that richer grounded en-
vironments can promote generalization. Lake & Baroni
and Loula et al. (2018) propose the SCAN benchmark for
evaluating systematic generalization, which differs from
related work by specifically testing for linguistic gener-
alization and the acquisition of abstract compositional
rules. SCAN contains a compositional set of instructions
generated by a phrase-structure grammar that can un-
ambiguously be translated into action sequences by ap-
plying an interpretation function. The data is split into
training and test sets that contain systematic differences.
For example, in one split models must interpret phrases
that contain primitives only encountered in isolation at
training time (e.g., inferring that the command ‘jump
twice’ translates to action commands JUMP JUMP when
you know that ‘walk twice’ translates to WALK WALK
and ‘jump’ translates to JUMP). SCAN however lacks
grounding, which substantially limits the variety of lin-
guistic generalizations it can examine.

Gordon et al. (2020) formalize the type of composi-
tionality skills required by the SCAN dataset as equiv-
ariance to a certain group of permutations. Their model
is hard-coded to be equivariant to all permutations of
SCAN’s verb primitives and succeeds on some of the
tasks. However, the method only tackles local permu-
tations in the input command (e.g., swapping ‘walk’ for
‘jump’) that result in local permutations in the action
sequence (swapping WALK for JUMP). More realisti-
cally, in our grounded SCAN environment, the permuta-
tion of a word in the command could result in reference
to a different target object, a different interaction with
the object, or a different manner of moving through the
grid. Permutations in the instruction therefore modify
the correct output action sequence in a non-local man-
ner, in their terminology. The same problem would af-
fect the syntax-semantics separation approach proposed
by Russin et al. (2019).

Another method that has successfully dealt with some
of the SCAN splits is the meta-learning approach by Lake
(2019). This model “learns how to learn” new prim-
itives in meta-training episodes where words are ran-
domly mapped to meanings. The method successfully
solves some of the SCAN challenges but, in its current
implementation, it is unclear how to apply it to grounded
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Figure 2: Examples showing how to ‘walk while spinning’ and how
to ‘push.’ On the left, the agent needs to spin around (‘L turn
L turn L turn L turn’) before it moves by one grid cell. On the
right, it needs to push a square all the way to the wall.

semantics, where it is impossible to exploit random map-
ping between primitives and action symbols.

A model-agnostic method that is readily applicable to
our benchmark and obtains successful results on SCAN is
good-enough compositional data augmentation (GECA,
Andreas, 2019). GECA identifies sentence fragments
which appear in similar environments and uses those to
generate novel training examples. For instance, when
one sees evidence during training that ‘the cat sang’, ‘the
wug sang’ and ‘the cat danced’ are sentences with high
probability, then ‘the wug danced’ is also probable, but
‘the sang danced’ is not. The assumption here is that
‘cat’ and ‘wug’ are interchangeable, and GECA indeed
helps when words are fully interchangeable, but the as-
sumption is not always valid in more realistic, grounded
language understanding.

3. The Grounded SCAN Benchmark

Our goal is to test for a broad set of phenomena in situ-
ated language understanding where humans should easily
generalize, but where we expect computational models
to struggle due to the systematicity of the differences
between train and test examples. In this section we de-
scribe what tools we work with to achieve this goal, and
in Section 5 we describe in detail how each linguistic
phenomenon is tested. All code for generating the bench-
mark, as well as the data used in this paper is publicly
available1.
Instructions. Grounded SCAN (gSCAN) poses a

simple task where an agent must execute instructions
in a two-dimensional grid world with objects. We build
on the formal approach of SCAN (Lake & Baroni, 2018)
while evaluating a much wider range of linguistic gen-
eralizations by grounding the semantics of the input in-
structions. The world model allows us to examine how
often an agent needs to see ‘move cautiously’ before ap-
plying ‘cautiously’ in a novel scenario, whether an agent

1https://github.com/LauraRuis/groundedSCAN

can identify a novel object by reasoning about its re-
lation to other objects in the world, and whether an
agent can infer how to interact with objects by iden-
tifying abstract object properties. Figure 2 shows two
example commands and corresponding action sequences,
which are simplified but representative of the type pro-
vided in gSCAN (actual gSCAN examples use a larger
grid world with more objects). On the left, the agent
must generate a sequence of target actions that leads
to the circle ‘while spinning.’ All adverbial modifiers
such as ‘cautiously’ or ‘while spinning’ require applying
complex, context-sensitive transformations to the target
sequence, going beyond the simple substitutions and con-
catenations representative of SCAN. On the right (Figure
2), the agent must push a small square, where pushing
is defined to mean moving something as far as possible
without hitting the wall (in this case), or another ob-
ject. The agent can also be instructed to ‘pull’ some
object, in which case it would pull the object back as
far as possible. The full phrase-structure grammar for
producing instructions is provided in Appendix A. The
set of actions the agent can use to execute instructions
is A = {walk,push,pull, stay,L turn,R turn}.
World model. Each instruction is paired with a

relevant world state, presented to the agent as a ten-
sor Xs ∈ Rd×d×c for grid size d (d = 6 or 12 de-
pending on split). The object at each grid cell is de-
fined via one-hot encodings along three property types,
namely color C = {red, green, blue, yellow}, shape
S = {circle, square, cylinder}, and size D = {1, 2, 3, 4}.
Specifying the agent location and heading requires five
more channels, and thus the tensorwidth is c = 5 + |C|+
|S|+ |D|.

Each instruction also constrains the generation of the
world state. For instance, each target referent from the
instruction determiner phrase is ensured to be unique
(only one possible target in “walk to the yellow square”).
Moreover, to conform to natural language pragmatics, we
ensure that if a size modifier is used in the instruction,
there is always a relevant distractor object. For example,
when the target referent is “the small square”, we addi-
tionally place a square that is larger than the target (see
Figure 2 right). For a full description of which objects we
place in the world, refer to Appendix B. Further, objects
of size 1 and 2 are light, and objects of size 3 and 4 are
heavy. This division determines how the agent should
interact with the object. If an object is light, it needs
to be pushed once to move it to the next cell (executed
by the action command ‘push’). If an object is heavy, it
needs to be pushed twice to move to the next cell (‘push
push’).

Data splits. Equipped with this framework, we de-
sign splits with systematic differences between training
and test. We distinguish two broad types of tests, com-
positional generalization and length generalization. Our
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suite of evaluations requires training just two models –
one for compositional and one for length generalization
– since the evaluations were designed to work with the
same base training set. We also examine a “random
split” with no systematic differences between training
and test (Section 5A).

‘Compositional generalization’ evaluates combining
known concepts into novel meaning (Section 5B-H). From
a single training set we can evaluate how an agent handles
a range of systematic generalizations, including novel ob-
ject property combinations (‘red square’; Section 5B,C),
novel directions (a target to the south west; 5D), novel
contextual references (‘small yellow circle’; 5E), and
novel adverbs (‘pull cautiously’; 5G,H). For example, we
model an analogue of the ‘wampimuk’ case from the in-
troduction by holding out all examples where a circle of
size 2 is referred to as ‘the small circle’ (Section 5E). We
test whether models can successfully pick out the small
circle among larger ones, even though that particular cir-
cle is referred to during training only as ‘the circle’ (with
no other circles present) or ‘the large circle’ (with only
smaller circles present). The shared training set across
splits has more than 300k demonstrations of instructions
and their action sequences, and each test instruction eval-
uates just one systematic difference. For more details on
the number of examples in the training and test sets of
the experiments, refer to Appendix C.

‘Length generalization’ (Section 5I) evaluates a persis-
tent problem with sequence generation models: they fail
to generalize beyond the maximum length seen during
training (e.g., Graves et al., 2014). Since length general-
ization is entirely unsolved for SCAN, even for methods
that made progress on the other splits (Lake & Baroni,
2017; Bastings et al., 2018; Russin et al., 2019; Gordon
et al., 2020) , we also separately generate a split to eval-
uate generalization to longer action sequences. We do
this by using a larger grid size than in the compositional
generalization splits (d = 12), and hold out all examples
with a target sequence length of m > 15. During train-
ing, a model does see the full grid and all the possible
instructions with enough unique world states for each in-
struction (see Appendix C), but they require generating
less action commands than at test time. At test time the
action sequences can be up to m = 47.

4. Baselines

Models are trained using supervised learning to map in-
structions to target sequences, given a world context. We
train a multi-modal neural network baseline to generate
target action sequences, conditioned on the input com-
mands and world states (see Figure 3 for overview). The
architecture is not novel and uses standard machinery
(e.g., Mei et al. (2016)), but we nonetheless explain the
key components below for completeness (full specification

in Appendix D).
The baseline model consists of a sequence-to-sequence

neural network (seq2seq) (Sutskever et al., 2014) fused
with a visual encoder. The model uses a recurrent ‘com-
mand encoder’ to process the instructions (‘Walk to the
circle’ in Figure 3) and a ‘state encoder’ to process the lo-
cations of the agent and the objects. A recurrent decoder
produces the appropriate action sequence (e.g., ‘walk’)
through joint attention over the steps of the command
sequence and the spatial locations in the grid world. The
input tuple x = (xc,Xs) includes the command sequence
xc = {xc1, . . . , xcn} and the world state Xs ∈ Rd×d×c,
as represented over a d × d grid. The target sequence
y = {y1, . . . , ym} is modeled as

pθ(y | x) =

m∏
j=1

pθ(yj | x, y1, . . . , yj−1).

Command encoder. The network processes the
input instruction through using a bidirectional LSTM
(Hochreiter & Schmidhuber, 1997; Schuster & Paliwal,
1997) denoted as hc = fc(x

c) (Figure 3). It produces a
sequences of embeddings hc = {hc1, . . . , hcn} with a vector
for each word.

State encoder. The network perceives the initial
world state through a convolutional network Hs =
fs(X

s) (Figure 3), using three kernel sizes (Wang & Lake,
2019). It produces a grid-based representation of the
world state Hs ∈ Rd×d×3cout with cout as the number of
feature maps per kernel size.

Decoder. The output decoder fd parameterizes the
distribution over action sequences based on the decoder
messages, p(y|hc,Hs). At each step, the previous output
symbol yj−1 is embedded as edj ∈ Rde , and context vectors
for the command ccj and the world state csj are computed

from the previous decoder state hdj−1 using double atten-
tion (Devlin et al., 2017). The recurrent decoder operates
as

hdj = LSTM([edj ; c
c
j ; c

s
j ],h

d
j−1),

which produces state hdj based on the previous state

hdj−1 and the other variables mentioned above as in-
put. First the command context is computed as ccj =

Attention(hdj−1,h
c), attending over the input steps and

producing a weighted average over hc. Second, while
conditioning ccj , the state context is computed as csj =

Attention([ccj ;h
d
j−1],Hs), attending over grid locations

and producing a weighted average over Hs. The action
emission yj is then

p(yj | x, y1, . . . , yj−1) = softmax(Wo[e
d
j ;h

d
j ; c

c
j ; c

s
j ]).

Training. Training optimizes cross-entropy using
Adam (Kingma & Ba, 2014) with default parameters.
Supervision is provided by ground-truth target sequences
of which there is one for each instruction-world-state pair
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Table 1: Summary of results for each split, showing
exact match accuracy averaged over 3 runs and the
standard deviation between the runs. Both the base-
line and GECA fail on all splits except C and F.

Exact Match (%)

Split Baseline GECA

A: Random 97.69 ± 0.22 87.6 ± 1.19

B: Yellow squares 54.96 ± 39.39 34.92 ± 39.30

C: Red squares 23.51 ± 21.82 78.77 ± 6.63

D: Novel direction 0.00 ± 0.00 0.00 ± 0.00

E: Relativity 35.02 ± 2.35 33.19 ± 3.69

F: Class inference 92.52 ± 6.75 85.99 ± 0.85

G: Adverb k = 1 0.00 ± 0.00 0.00 ± 0.00

Adverb k = 5 0.47 ± 0.14 -

Adverb k = 10 2.04 ± 0.95 -

Adverb k = 50 4.63 ± 2.08 -

H: Adverb to verb 22.70 ± 4.59 11.83 ± 0.31
Figure 3: Baseline neural network. The command encoder reads the
command with a biLSTM (fc; top left), and the state encoder reads the
world state with a CNN (fs; top right). An LSTM decoder produces
the appropriate action sequence (bottom), using joint attention over the
command and the world state.

if we use the convention to always travel horizontally first
and then vertically. The learning rate starts at 1e−3 and
decays by 0.9 every 20, 000 steps. We train for 200, 000
steps with batch size 200. The best model based on the
exact match on a small development set of 2, 000 exam-
ples was used for the experiments. The parameters that
turned out most important for performance were the ker-
nel sizes that process the state, chosen to be 1, 5 and 7
for the experiments with a grid size of 6, and 1, 5, and
13 for the grid of size 12. Both the data and the code for
the model is made available2, and a full specification of
the parameters is given in Appendix E.

Good-enough compositional data augmenta-
tion. We use the procedure proposed by Andreas (2019)
to generate novel training examples for the compositional
generalization training set. GECA is run on gSCAN
with essentially the same parameters as the SCAN ex-
periments in the original paper: the context window
is taken to be full sentences, with a gap size of one
and a maximum of two gaps (Appendix E for details).
GECA receives an input sequence consisting of the natu-
ral language command concatenated with an output se-
quence containing a linearized representation of the tar-
get object’s feature vector. After generating augmented
sequences, we re-apply these to the gSCAN dataset
by modifying training examples with augmentable in-
put sentences. Modification leaves action sequences un-
changed while changing the commands and environment
features. For example, an input instruction “walk to a
red circle” could be modified to “walk to a red square”,
and the world state would be subsequently modified by
replacing the target red circle with a red square.

2https://github.com/LauraRuis/multimodal_seq2seq_gSCAN

5. Experiments

The main contribution of this work is the design of test
sets that require different forms of linguistic generaliza-
tion. In this section we detail both types of test sets:
compositional generalization and length generalization
(recall there are only two training sets, respectively). The
main results averaged over three runs are summarized in
Table 1, where we show the standard deviation between
runs, and each split is detailed below.

A: Random split. The random split verifies that
the models can learn to follow gSCAN commands when
there are no systematic differences between training and
test. The baseline model achieves near perfect exact
match accuracy (97.69% ± 0.22) on the 19,282 test ex-
amples, where exact match means that the entire action
sequence is produced correctly. GECA performs worse
(87.6%±1.19) which is unsurprising since the assumption
underlying the data augmentation procedure in GECA is
that phrases that appear in similar environments can be
permuted. This is not always correct in gSCAN (none of
the verbs and adverbs can be permuted).

B, C: Novel composition of object properties.
Here we examine whether a model can learn to recom-
bine the properties of color and shape to recognize an un-
seen colored object (see Figure 4 for examples). This test
is closely related to CoGenT by Johnson et al. (2017a);
learning disentangled representations for object proper-
ties will be helpful here too. However, by exploiting
the grounded nature of our set-up where objects are
clearly distinguished from the referring expressions de-
noting them, we consider two separate setups, one in-
volving composition of references and another involving

5
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Table 2: Exact match broken down by referred target (‘Ref. Tar-
get’, i.e., the target object denoted in the determiner phrase of
the instruction). The ? column indicates chance performance of
choosing an object uniformly at random and correctly navigating
to it.

Ref. Target ? Baseline GECA

‘small red square’ 8.33 13.09 ± 14.07 78.64 ± 1.10

‘big red square’ 8.33 11.03 ± 10.29 77.88 ± 0.95

‘red square’ 16.67 8.48 ± 0.90 97.95 ± 0.14

‘small square’ 8.33 27.13 ± 41.38 66.26 ± 13.60

‘big square’ 8.33 22.96 ± 32.20 68.09 ± 20.90

‘square’ 50 52.92 ± 36.81 95.09 ± 7.42

composition of attributes. In a first split, we hold out
all data examples where a yellow square (of any size) is
the target object and is referred to with the determiner
phrases ‘the yellow square’, ‘the small yellow square’ or
‘the big yellow square’ (i.e., any phrase containing the
color adjective and the shape). The training set contains
examples with yellow squares as a target, but they are
always referred to without a color: ‘the square’, ‘the big
square’, or ‘the small square’, meaning the model cannot
ground that target to the reference ‘yellow square’ (Fig-
ure 4 left). The second split never sees examples where a
red square is the target in training, meaning the methods,
in addition to never encountering the determiner phrase
‘the red square’, cannot ground a reference to this object
(Figure 4 right). However, the red square does appear as
a non-target background object.

The baseline shows poor performance on the ‘red
squares’-split that requires zero-shot generalization to
the target red square (23.51%±21.82; again exact match
with standard deviation over runs). GECA however sig-
nificantly improves performance on this split (78.77% ±
6.63). This is precisely what GECA is designed for; per-
muting ‘red circle’ and ‘yellow square’ during training
gives familiarity with ‘red square’. Surprisingly, GECA
does not improve over the baseline for the ‘yellow square’-
split (34.92%± 39.30 for GECA and 54.96%± 39.39 for
the baseline). In this split, yellow squares have been seen
during training as a target object, yet never referred to
using their color: the referent in the instruction could
have been ‘(small,big) square’ but never ‘(small,big) yel-
low square’. We hypothesize that models overfit this pat-
tern, and while GECA should help by generating instruc-
tions including ‘yellow’, their number is still too small
compared to the ones of the form ‘(small,big) square’.
In Appendix C we take a closer look at the differences
in the training evidence seen by the baseline model and
GECA.

When breaking down the average exact match per re-
ferred target for the ‘red squares’-split, we in fact can
reason about what happens (Table 2). The baseline
model never sees the referred target ‘red square’ (except
as a background object) and is unable to composition-
ally construct a meaningful representation of this object

(low exact match with low standard deviation). It has
seen plenty evidence for other red objects, like red cir-
cles and cylinders, and other colored squares, blue or
green. This result confirms results in related work that
vanilla neural networks fall short in recombining famil-
iar concepts in novel ways (Kuhnle & Copestake, 2017;
Loula et al., 2018). Higher performance when only the
shape is explicitly denoted (e.g. “walk to the square”,
when the square happens to be red) is expected because
in this case the model can randomly choose one of two
objects as a target (with chance as 50% correct). When
only a shape is denoted, there are at most 2 objects in
the world, as a result of the constraint of a unique tar-
get object combined with randomness we introduced in
deciding which objects to place in the world. If an in-
struction only mentions ‘square’, there are |S| − 1 = 2
possible other objects to place in the world, of which we
randomly select half, resulting in 2 objects placed in the
world (including the target). GECA gets a very high
exact match and low standard deviation when ‘the red
square’ or ‘the square’ is used, but is thrown off when
a size adjective is mentioned. It seems like, again, these
adjectives are too strongly grounded to the targets seen
in training.

D: Novel direction. In the next experiment we ex-
amine generalizing to navigation in a novel direction. We
hold out all examples from the training set where the
target object is located to the south-west of the agent.
The agent can train on walking in any other direction,
and needs to generalize to walking to the west and then
the south, or vice-versa3. Conceptually, at test time the
agent needs to combine the familiar notions of walking to
the south and west. Results are in the row ‘novel direc-
tion’ of Table 1. Both methods obtain 0 exact matches
over all runs (0% correct). A closer analysis of the pre-
dictions (see Figure 8 Appendix F for 2 examples) shows
that the agent usually walks all the way west (or south)
and then fails to turn to the target object. The attention
shows that the agent knows where to go (by attending
to the correct grid cell), just not how to get there. Even
though there is catastrophic failure at the task overall,
the agent learned by the baseline model ends up in the
correct row or column of the target 63.10%± 3.90 of the
times, and the agent learned with GECA 58.85%± 3.45
of the times. This further substantiates that they often
walk all the way west, but then fail to travel the distance
left to the south, or vice-versa. The results on this split
indicate that apparently the methods completely fail to
generate target sequences that have either three occur-
rences of ‘L turn’ (needed to walk to the west and then
south for an agent that starts facing east) or two occur-
rences of ‘R turn’ (needed to walk to the south and then
west) spread over the target sequence.

3For supervision, the agent walks horizontally then vertically,
for evaluation both are fine.

6



Figure 4: Generalizing from calling an object “big square” to
calling it “big yellow square” (left), and from knowing “red”
and “square” to identifying a “red square” (right).

Figure 5: Generalizing from call-
ing an object “big” to calling it
“small.”

Figure 6: Generalizing from
pulling to pushing a heavy
square.

E: Novel contextual references. In natural lan-
guage there are many words that can only be grounded to
relative concepts. Which object one refers to when saying
‘the small circle’ is fully dependent on the other circles
in the world state. We investigate whether a model can
grasp the concept of relativity in language by consider-
ing a scenario where objects of a specific size (size 2)
are never targets correctly picked by the ‘small’ modi-
fier in the training phase (see example in Figure 5). At
test time, the target is a circle of size 2, which is being
correctly referred to as a ‘small circle’ (the determiner
phrase may also contain a color specification). In other
words, we hold out for testing all world states where the
circle of size 2 is the target and the smallest circle in the
world, paired with an instruction containing the word
‘small’. The agent can ground the circle of size 2 to
references like ‘the circle’, ‘the green circle’ or ‘the big
circle’, but needs to generalize to that same circle being
referred to as ‘the small circle’ at test time.

The results on this split by both methods are again
substantially worse than on the random split: 35.2% ±
2.35 for the baseline and 33.19%±3.69 for GECA. When
breaking down the exact match per referred target it
seems like the model is exploiting the fact that when
in addition to the size modifier ‘small’ the color of the
circle is specified, it can randomly choose between 2 cir-
cles of the specified color, as opposed to randomly choos-
ing between any circle in the world. When generating
world states for instructions containing some combina-
tion of a color, size modifier and shape in the determiner
phrase (e.g. “the small red circle”) during data genera-
tion we always generate 2 differently sized objects of each
color-shape pair (except for the referred color-shape pair
we generate 1 other). So when you recognize the color
and shape in the instruction, you have a 50% chance
of picking the right object. Then how to interact with
it if necessary is already familiar. We observe that for
data examples where the instruction specifies the color
of the target in addition to the size the baseline achieves
53%.00± 1.36 and GECA achieves 47.51%± 12.59, sug-
gesting the agents randomly select a circle of the spec-
ified color. Thus the obtained performance indicates a

complete failure of genuinely understanding “small” and
picking a small circle from among larger ones in arbitrary
circumstances.

F: Novel composition of actions and arguments.
Another phenomenon in natural language we want to
model is categorization of words into classes whose en-
tries share the same semantic properties (Pustejovsky,
1991). We study the simple case of nominal class infer-
ence, establishing two categories of nouns, that, depend-
ing on their weight (they can be light or heavy), will lead
to a different interpretation of the verb taking them as
patient arguments. Recall from Section 3 that pushing
or pulling a heavy object over the same distance (i.e.,
grid cells) as a light object requires twice as many target
actions of ‘push’ or ‘pull’.

In this experiment we test a model’s ability to infer
the latent object class, and correctly interact with it, as
illustrated in Figure 6. We hold out all examples where
the verb in the instruction is ‘push’, and the target object
is a square of size 3, meaning it is in the heavy class and
needs to be pushed twice to move by one grid cell. A
model should infer that this square of size 3 is ‘heavy’
from its extensive training experience ‘pulling’ this object
(as it always needs to use two pull actions to move it).
Note that Hill et al. (2019) similarly studies verb-noun
binding.

Both methods obtain almost the exact match they
get on the random split, namely 92.52% ± 6.75 and
85.99% ± 0.85 by the baseline and GECA respectively
(compared to only examples with ‘push’ in the random
split, for which the baseline gets an exact match of
96.64% ± 0.52 and GECA of 86.72% ± 1.23), and seem
to be able to correctly categorize the square of size 3 in
the class heavy and interact with it accordingly. This
is consistent with the findings of Hill et al. (2019) with
regards to generalizing familiar actions to new objects.

G, H: Novel adverbs. In the penultimate exper-
iment we look at a model’s ability to transform target
sequences when an adverb modifies the verb in the in-
put command. The adverbs all require the agent to do
something (i.e,. generate a particular action sequence) at
some predefined interval (see Figure 1 and Figure 2 for
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examples). To do something cautiously means to look
to the left and right before crossing grid lines, to do
something while spinning requires spinning around after
moving a grid cell, to do something hesitantly makes the
agent stay put every time it moves a grid cell (with ac-
tion command ‘stay’), and finally to do something while
zigzagging only applies to moving diagonally on the grid.
Where normally the agent would first travel horizontally
all the way and then vertically, when doing something
while zigzagging the agent will alternate between mov-
ing vertically and horizontally every grid cell.

We design two experiments with adverbs. The first
examines whether an agent can learn the adverb ‘cau-
tiously’ from just one or a few examples and use it in dif-
ferent world states (few-shot learning). For instance, the
agent sees a single example of an instruction with the ad-
verb ‘cautiously’ during training, and needs to generalize
to all other possible instructions with that adverb (while
discarding examples with longer target sequences than
seen during training). The second examines whether
a model can generalize a familiar adverb to a familiar
verb, namely ‘while spinning’ to ‘pull’. In this experi-
ment the agent sees ample evidence of both the tested
adverb and the verb, but has never encountered them
together during training. These experiments are related
to the ‘around right’-split introduced in SCAN by Loula
et al. (2018), but in this case, the grounded meaning of
each adverb in the world state changes its effect on the
target sequence. Therefore we expect methods like the
equivariance permutations of Gordon et al. (2020), but
also GECA, to have no impact on generalization.

For the few-shot learning experiment, the models fail
catastrophically when learning ‘cautiously’ from just one
demonstration (0% correct; exact match again). We
experiment with increasing the number of times ‘cau-
tiously’ appears in the training set (k) for the baseline
model (Table 1), but find it only marginally improves
its abysmal performance. Even with as much as 50 ex-
amples of how to move cautiously, the baseline fails to
generalize (4.6% correct), emphasizing the difficulty neu-
ral networks have in learning abstract concepts from lim-
ited examples. We further find that the models struggle
with longer sequences, and performance quickly drops as
a function of target length (Figure 9 Appendix F).

For combining spinning and pulling, both methods
again fail (22.70% ± 4.59 for the baseline and 11.83% ±
0.31 for GECA). The methods also struggle with longer
sequences and performance drops as a function of target
length (Figure 10 Appendix F). Evidently, even though
for the random split the methods can handle very long
sequences, the networks struggle when the long sequences
concern unfamiliar combinations.

I: Novel action sequence lengths. For this split we
only train the baseline model, as data augmentation will
not help for target sequence generation beyond the length

encountered at training. The baseline model trained on
examples that require generating sequences of lengths
≤ 15 gets an exact match on a held-out test set with
examples also up to length 15 of 94.98% ± 0.12, but for
the test set with target lengths of 16 it obtains an ex-
act match of 19.32% ± 0.02, for target lengths of 17 it
drops to 1.71% ± 0.38 and for target lengths beyond 18
the performance is below 1%. Unsurprisingly, also when
this task is posed by grounded SCAN, the neural network
fails to generalize to longer target sequences.

6. Conclusion

There has been important recent progress on the SCAN
compositional learning benchmark through applications
of meta-learning (Lake, 2019), compositional data aug-
mentation (Andreas, 2019), permutation equivariance
(Gordon et al., 2020), and syntax/semantics separation
(Russin et al., 2019). Our results, on a new gSCAN
(grounded SCAN) benchmark, suggest these new meth-
ods largely exploit artifacts in SCAN that are not cen-
tral to the nature of compositional generalization. The
gSCAN benchmark is based on the linguistic formaliza-
tion of compositionality, and moves closer to formal se-
mantics by grounding them in a world model. We trained
a multi-modal baseline and a state-of-the-art method
from SCAN (GECA), finding that the baseline fails on
all but one split, and the state-of-the-art methods on all
but two. Both methods are able to systematically gen-
eralize in the experiment where the agent needs to infer
the class of an object and use that knowledge to prop-
erly interact with it (similarly to what was found by Hill
et al., 2019). GECA additionally increases performance
significantly on a split where the agent needs to recom-
bine familiar concepts of color and shape into an unseen
target object. However the complete failure on the sub-
sequent splits show that fundamental advances are still
needed regarding neural architectures for compositional
learning.

Progress on gSCAN may come from continuing the
lines of work that have made progress on SCAN. Meta-
learning (Lake, 2019) or equivariance permutation (Gor-
don et al., 2020) could support compositional generaliza-
tion, if the types of generalizations examined here can be
incorporated into a suitable meta-training procedure or
an equivariance definition. For now, at least, future work
will require highly non-trivial extensions to apply these
approaches to gSCAN.

In future work, we can extend gSCAN to support rein-
forcement learning setup in addition to supervised learn-
ing. In addition, the gSCAN environment can be ex-
tended to supply only RGB images of the world rather
than partially-symbolic state representations. These ex-
tension, however, will only make the benchmark more
difficult. We hope the current challenge, as is, will stim-
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ulate many advances in compositional learning and sys-
tematic generalization.
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A. The CFG to Generate Input Com-
mands

ROOT→ VP

VP→ VP RB

VP→ VVi ‘to’ DP

VP→ VVt DP

DP→ ‘a’ NP

NP→ JJ NP

NP→ NN

VVi → {walk}
VVt → {push,pull}
RB→ {while spinning,

while zigzagging,

hesitantly,

cautiously}
NN→ {circle, square,

cylinder}
JJ→ {red, green,blue,

big, small}
Where a subscript of ‘i’ refers to intransitive and of ‘t’
to transitive.

B. World State Generation

We generate the world state for each instruction with
two constraints: (1) there must be a unique target ob-
ject for the referrent, (2) if a size modifier is present in
the instruction, there must be at least one ‘distractor’
object present. In other words, if the target referrent is
‘the small square’, we additionally place a larger square
than the target of any color, and if the target referrent is
‘the small yellow square’, we additionally place a larger
yellow square. For each world generation we select at
random half of the possible objects to place, where we
make sure that if a size is mentioned, we always put a
pair of differently sized objects for each color-shape pair.
There are three different situations for which we generate
a different set of objects, depending on whether a shape,
color and/or size is mentioned.

1. Shape (e.g. ‘the circle’):
Generate 1 randomly colored and randomly sized
object of each shape that is not the target shape,
randomly select half of those. See top-left of Figure
7.

2. Color and shape (e.g. ‘the red circle’):
Generate 1 randomly sized object of each color and
shape pair that is not the target color and shape.
See bottom-left of Figure 7.

3. Size, color, and shape (e.g. ‘the small circle’, ‘the
red small circle’):
Generate 2 randomly sized objects for each color and
shape pair, making sure the size for the objects that
are the same shape (and color if mentioned) as the
target are smaller/larger than the target dependent
on whether the size modifier is big/small. Select at
random half of the pairs. See top- and bottom-right
of Figure 7.

We generate world states for instructions by generating
all combinations of possible target objects based on
the determiner phrase (e.g. ‘the yellow square’ gives 4
possible targets, namely a yellow square of each size),
all possible relative directions between the agent and
the object (e.g. the agent can be to the north-east of
the target) and all possible distances between the agent
and the object (e.g. if the target is to the north-east
of the agent the minimum number of steps is 2 and
the maximum is 2 · d, but if the target is to the north,
the minimum is 1 and the maximum d). We randomly
sample, for each of the combinations, possible positions
of the agent and target and this gives us full dataset.

Figure 7: Four real data examples, for a grid size of 6.

C. Dataset Statistics

Table 3: Number of examples in each dataset. The first two rows
for the train and test set denote data for the compositional splits,
where GECA denotes the augmented set. An example is unique
if it has a different input command, target commands or target
object location. The third column denotes the number of unique
world states the agent sees on average per input command.

Unique Examples
Train Examples Total Per Command
Compositional 367,933 76,033 177
GECA 377,933 64,527 186
Target Length 180,301 80,865 599
Test Examples Unique Per Command
Compositional 19,282 16,381 38
GECA 19,282 16,381 38
Target Length 37,784 31,000 230
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If we dive a bit deeper in the augmentations to the data
GECA makes, it becomes clear why performance deteri-
orates when this data augmentation technique is used in
a dataset like grounded SCAN, and why it is not able to
improve performance on the ‘yellow squares’-split (Sec-
tion 5B). In Table 4 we can see that although GECA
correctly identifies red square target objects as missing
in the training data, and augments data examples to con-
tain target red squares, it is not able to do the same for
the instruction command. Even though red squares are
now seen as target objects, they are still always referred
to without the color (e.g. ‘the small square’). See for
reference the row with blue squares as targets, which oc-
curs in the non-augmented dataset and is therefore less
affected by GECA. Also for yellow squares as target ob-
ject GECA is not able to add the needed reference to
the color. Additionally, when looking at the other row in
Table 4, GECA also caused the references to ‘red circles’
to completely disappear. It seems that it is non-trivial
to augment grounded SCAN with GECA to obtain im-
proved performance on anything other but a narrow part
of the test set.

Table 4: Some dataset statistics for the compositional splits. In
each row the number of examples for a given target object is shown.
The column ‘placed’ means that object was placed in the world as
the target, and the column ‘referred’ means that it was referred to
with the color (e.g. ‘the red square’ or ‘the small yellow square’)

Non-augmented Augmented
Placed Referred Placed Referred

Blue Squares 33,250 16,630 16,481 5,601

Red Squares 0 0 83,887 0

Yellow Squares 16,725 0 10,936 0

Red Circles 33,670 16,816 16,854 0

D. A Forward-Pass Through the Model

A full forward pass through the model can be represented
by the following equations.
Encoder
Command encoder hc = fc(x

c): ∀i ∈ {1, . . . , n}

eci = Ec(x
c
i )

hci = LSTMφ1(eci ,h
c
i−1)

State encoder Hs = fs(X
s):

Hs = ReLU([K1(Xs);K5(Xs);K7(Xs)])

Where Ec ∈ R|Vc|×dc is the embedding lookup table with
Vc the input command vocabulary, dc the input embed-
ding dimension, and Kk the convolutions with kernel size
k. We pad the input images such that they retain their
input width and height, to enable visual attention. That

means the world state features are Hs ∈ Rd×d×3cout , with
cout the number of channels in the convolutions. We then
decode with an LSTM whose initial state is the final state
of the encoder LSTM. The input to the decoder LSTM
is a concatenation of the previous token embedding, a
context vector computed by attention over the hidden
states of the encoder, and a context vector computed by
conditional attention over the world state features as pro-
cessed by the CNN. A forward pass through the decoder
can be represented by the following equations.
Decoder p(y|hc,Hs): ∀j ∈ {1, . . . ,m}

hd0 = Wph
c
n + bp

edj = Ed(yj−1)

hdj = LSTMφ2([edj ; c
c
j ; c

s
j ],h

d
j−1)

oj = Wo[e
d
j ;h

d
j ; c

c
j ; c

s
j ]

ôj = pθ(yj | x, y1, . . . , yj−1) = softmax(oj)

ŷj = argmax
Vt

(ôj)

Textual attention ccj = Attention(hd
j−1,h

c):
∀i ∈ {1, . . . , n}

ecji = vTc tanhWc[h
d
j−1;hci ]

αcji =
exp(ecji)∑n
i=1 exp (ecji)

ccj =

n∑
i=1

αcjih
c
i

Conditional visual attention csj = Attention([ccj ;h
d
j−1],Hs)

∀k ∈ {1, . . . , d2}

esjk = vTs tanhWs[h
d
j−1; ccj ;h

s
k]

αsjk =
exp(esjk)∑d2

k=1 exp (esjk)

csj =

d2∑
k=1

αsjkH
s
k

Where Wc ∈ Rhd×(he+hd),vc ∈ Rhd ,Ws ∈
Rhd×(3cout+hd),vs ∈ Rhd ,Wp ∈ Rhd×he ,Wo ∈
R|Vt|×(de+3hd), with he the hidden size of the en-
coder and hd of the decoder, cout the num-
ber of channels in the encoder CNN, Vt the tar-
get vocabulary, and de the target token embed-
ding dimension. All model parameters are θ =
{Ec, φ1,K1,K5,K7,Wc,vc,Ws,vs,Wp,Ed, φ2,Wo}.

12



E. (Hyper)parameters

Compute power used
Training a model on the data used for the experiments
with a single GPU takes less than 24 hours.

Table 5: Parameters for the models not explicitly mentioned in
Section 4.

Situation Enc. Value Decoder Value

cout 50 de 25

Dropout p on Hs 0.1 LSTM Layers 1

Command Enc. Value hd 100

dc 25 Dropout p on Ed 0.3

LSTM Layers 1 Training Value

he 100 β1 0.9

Dropout p on Ec 0.3 β2 0.999

Additional Parameters for the GECA model
Gap size: 1, maximum gaps: 2.

F. Additional Results

This section contains additional experimental results
that were referred to in the main text in Section 5.

Experiment D

Figure 8: Visualized predictions from the models, where a darker
grid means a higher attention weight for that cell.

Experiment G

Figure 9: The exact match decreases when target length increases
for the adverb split where the agent needs to generalize ‘cautiously’
after seeing 50 demonstrations. Note that for this experiment,
the tested target lengths are not longer than encountered during
training.

Experiment H

Figure 10: The exact match decreases when target length increases
for the adverb split where the agent needs to generalize ‘while spin-
ning’ to the verb ‘pull’. Note that for this experiment, the tested
target lengths are not longer than encountered during training.

13


	1 Introduction
	2 Related Work
	3 The Grounded SCAN Benchmark
	4 Baselines
	5 Experiments
	6 Conclusion
	A The CFG to Generate Input Commands
	B World State Generation
	C Dataset Statistics
	D A Forward-Pass Through the Model
	E (Hyper)parameters
	F Additional Results

