A very quick primer on risky
choice and prospect theory




RESEARCH

Corrected 11 June 2021. See full text.
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Using large-scale experiments and machine learning
to discover theories of human decision-making
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Predicting and understanding how people make decisions has been a long-standing goal in many
fields, with quantitative models of human decision-making informing research in both the social
sciences and engineering. We show how progress toward this goal can be accelerated by using large
datasets to power machine-learning algorithms that are constrained to produce interpretable
psychological theories. Conducting the largest experiment on risky choice to date and analyzing the
results using gradient-based optimization of differentiable decision theories implemented through
artificial neural networks, we were able to recapitulate historical discoveries, establish that there
is room to improve on existing theories, and discover a new, more accurate model of human
decision-making in a form that preserves the insights from centuries of research.

nderstanding how people make decisions

is a central problem in psychology and

economics (I-3). Having quantitative

models that can predict these decisions

has become increasingly important as
automated systems interact more closely with
people (4, 5). The search for such models goes
back almost 300 years (6) but intensified in
the latter half of the 20th century (7, 8) as em-
pirical findings revealed the limitations of the
idea that people make decisions by maximizing
expected utility (EU) (9-11). This led to the de-
velopment of new models such as prospect
theory (PT) (8, 12). Recently, this theory-driven
enterprise has been complemented by data-
driven research using machine learning to
predict human decisions (13-19). Although
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narios in which decision-makers face a choice
between two gambles, each of which has a set
of outcomes that differ in their payoffs and
probabilities (Fig. 1A). Researchers studying
risky choice seek a theory, which we formal-
ize as a function that maps from a pair of
gambles, A and B, to the probability P(4) that
a decision-maker chooses gamble A over gamble
B, that is consistent with human decisions
for as many choice problems as possible. Dis-
covering the best theory is a formidable chal-
lenge for two reasons. First, the space of choice
problems is large. The value and probability of
each outcome for each gamble define the di-
mensions of this space, meaning that describ-
ing a pair of gambles could potentially require
dozens of dimensions. Second, the space of
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This dataset includes >30 times the number
of problems in the largest previous dataset
(27) (Fig. 1B). We then used this dataset to
evaluate differentiable decision theories that
exploit the flexibility of deep neural networks
but use psychologically meaningful constraints
to pick out a smooth, searchable landscape of
candidate theories with shared assumptions.
Differentiable decision theories allow the intu-
itions of theorists to be combined with gradient-
based optimization methods from machine
learning to broadly search the space of theories
in a way that yields interpretable scientific
explanations.

More formally, we define a hierarchy over
decision theories (Fig. 1C) reflecting the addi-
tion of an increasing number of constraints
on the space of functions. These constraints
express psychologically meaningful theoret-
ical commitments. For example, one class of
theories contains all functions in which the
value that people assign to one gamble can be
influenced by the contents of the other gamble.
If theories in this class are more predictive
than those that belong to the simpler classes
contained within it (e.g., where the value of
gambles are independent), then we know
that these simpler theories should be elimi-
nated. We enforce each constraint by modify-
ing the architecture of artificial neural networks,
resulting in differentiable decision theories. This
theory-driven approach to defining constraints
contrasts with generic methods for constraining
neural networks, such as restricting their size or
the ranges of their weights (31). After optimizing
a differentiable theory to best fit human be-
havior, it will ideally have picked out the optimal
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HW3 uses large-scale choice data collected for this paper...
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A risky choice problem

Please select option A or B.

Earning a Bonus. At the end of the experiment,
one reward will be selected at random from all
the rewards you earned during the experiment.
A fixed proportion (10%) of this value will be
paid to you as your performance bonus for the
task. If the sampled reward is negative, your
bonus is set to $0.00.

1 with probability 0.

. . 44 with probability O,

16 with certainty 48 with probability O.
50 with probability 0.

N = — O

Al IS

In this trial, you chose B and gained 50
Had you chosen A, you would have gained 16
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Data Loading

Dataset of 13,005 choice problems!

First, let's load the dataset and do some pre-processing. Don't worry too much about what the following code is doing, but
the key dataframe you need afterwards is called df and shown below.

cl3k = pd.read_csv('https://raw.githubusercontent.com/jcpeterson/choicesl13k/main/c13k_se
cl3k_problems = pd.read_json("https://raw.githubusercontent.com/jcpeterson/choicesl3k/ma
df = cl1l3k.join(c13k_problems, how="left")

df
Problem Feedback n Block Ha pHa La Hb pHb Lb LotShapeB LotNumB Amb Corr bRate bRate_std
0 1 True 15 2 26 095 -1 23 0.05 21 0 1 False 0 0.626667 0.384460
1 2 True 15 4 14 060 -18 8 025 -5 0 1 True -1 0.493333 0.413118
2 3 True 17 4 2 050 0 1 1.00 1 0 1 False 0 0.611765 0.432843
3 4 True 18 3 37 005 8 87 025 -31 1 2 False 0 0.222222 0.387383
4 5 False 15 1 26 1.00 26 45 0.75 -36 2 5 False 0 0.586667 0.450185
14563 13002 True 15 3 30 1.00 30 42 080 O 0 1 True 0 0.367619  0.302731
14564 13003 True 15 5 70 050 -42 18 0.80 7 0 1 False 0 0.760000 0.364104
14565 13004 True 15 5 8 040 -17 31 040 -34 1 6 False 0 0.666667 0.367747
14566 13005 True 15 2 89 050 -49 45 0.50 -12 0 1 False 0 0.386667 0.381476
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A couple more problems from the dataset...

Problem 1,
n = 15, bRate

Gamble A
Payout Probability
26.0 0.95

-1.0 0.05

Feedback = True
0.6267, std: 0.3845

Gamble B
Payout Probability
0 21.0 0.95
1 23.0 0.05
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Problem 4,
n = 18, bRate

Gamble A
Payout Probability
8.0 0.95
37.0 0.05

Feedback = True
0.2222, std: 0.3874

Gamble B
Payout Probability
0 -31.0 0.750
1 86.5 0.125

2 87.5 0.125



Let’s take a computational view of the mind... How do
people make these choices?

Can we explain these choices as computation? If so,
what is the right algorithm?



A classic economic theory:
People choose option that maximizes expected value/utility

Expected value

x : vector of payouts

N

p : vector of probabilities EV — X
z , i
i=1

Problem 4, Feedback = True
n = 18, bRate = 0.2222, std: 0.3874

Gamble A Gamble B
Payout Probability Payout Probability
1 8.0 0.95 0 -31.0 0.750
0 37.0 0.05 1 86.5 0.125
2 87.5 0.125

EV,=8X.95+37x%x.05=945
EVg=-31%x.754+86.5%x.125+87.5%x.125=-1.5

Thus, people would choose Option A!



However, expected value/utility theory is a pretty poor fit to
real human decisions... which brings us to prospect theory
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PROSPECT THEORY: AN ANALYSIS OF DECISION UNDER RISK
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This paper presents a critique of expected utility theory as a descriptive model of
decision making under risk, and develops an alternative model, called prospect theory.
Choices among risky prospects exhibit several pervasive effects that are inconsistent with
the basic tenets of utility theory. In particular, people underweight outcomes that are
merely probable in comparison with outcomes that are obtained with certainty. This
tendency, called the certainty effect, contributes to risk aversion in choices involving sure
gains and to risk seeking in choices involving sure losses. In addition, people generally
discard components that are shared by all prospects under consideration. This tendency,
called the isolation effect, leads to inconsistent preferences when the same choice is
presented in different forms. An alternative theory of choice is developed, in which value
is assigned to gains and losses rather than to final assets and in which probabilities are
replaced by decision weights. The value function is normally concave for gains, commonly
convex for losses, and is generally steeper for losses than for gains. Decision weights are
generally lower than the corresponding probabilities, except in the range of low prob-
abilities. Overweighting of low probabilities may contribute to the attractiveness of both
insurance and gambling.

1. INTRODUCTION

EXPECTED UTILITY THEORY has dominated the analysis of decision making under
risk. It has been generally accepted as a normative model of rational choice [24],
and widely applied as a descriptive model of economic behavior, e.g. [15, 4].
Thus, itis assumed that all reasonable people would wish to obey the axioms of the
theory [47, 36], and that most people actually do, most of the time. ‘

The present paper describes several classes of choice problems in which
preferences systematically violate the axioms of expected utility theory. In the
light of these observations we argue that utility theory, as it is commonly
interpreted and applied, is not an adequate descriptive model and we propose an
alternative account of choice under risk.

2. CRITIQUE

Decision making under risk can be viewed as a choice between prospects or
gambles. A prospect (x1, p1;...; X, Pn) is @ contract that yields outcome x; with
probability p;, where pi+p>+...+p,=1. To simplify notation, we omit null
outcomes and use (x, p) to denote the prospect (x, p; 0, 1 —p) that yields x with
probability p and 0 with probability 1—p. The (riskless) prospect that yields x
with certainty is denoted by (x). The present discussion is restricted to prospects
with so-called objective or standard probabilities.

The application of expected utility theory to choices between prospects is based
on the following three tenets.

(i) Expectation: U(x1, P1; ... Xn, Pn) =p1u(x1) + . .. +paut(x,).

! This work was supported in part by erants from the Harry F. Guggenheim Foundation and from



Prospect theory

u : utility function Ly
x : vector of payouts Value of a gamble = Z u(x,)p;

p . vector of probabilities 1
1=

value Point 1: People perceive
30 gambles in terms of gains
u(x) and losses, not their total
wealth

Loss $-.10 -$.05

-20

-30




Prospect theory: Loss aversion

. . N
u : utility function

x : vector of payouts Va|ue — Z u(xl.)pl.

p : vector of probabilities 1
1=

Value [#0 Point 2: People are LOSS
AVERSE, preferring a sure
thing to a risky bet with
the same expected payoff

(Notice that the loss curve
Is steeper than the gain

| curve)

I

|

| 20 Gamble A Gamble B

| Payout Probability Payout Probability
| .30 1 0.0 1.0 0 -5.0 0.5

I

1 5.0 0.5




Prospect theory: Risk aversion for gains

N

u : utility function

x : vector of payouts Va|ue — Z u(xl.)pl.

p . vector of probabilities

Value

i=1
40 Point 3: Diminishing
returns... $1B is not

30 1000x better than $1M

Leads to risk aversion for
gambles with potential
gains

0 Gamble A Gamble B

Payout Probability Payout Probability
30 1 50.0 1.0 0 100.0 0.5
1 0.0 0.5

-40




Loss

Prospect theory: Risk seeking for losses

u : utility function
x : vector of payouts

p . vector of probabilities

Value

N
Value = Z u(x,)p;

i=1

Point 4:

People are risk seeking
for gambles with potential
losses

-20

1

-30

-40

Gamble A Gamble B
Payout Probability Payout Probability
-50.0 1.0 0 -100.0 0.5

1 0.0 0.5



