
A very quick primer on risky 
choice and prospect theory



HW3 uses large-scale choice data collected for this paper…
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Predicting and understanding how people make decisions has been a long-standing goal in many
fields, with quantitative models of human decision-making informing research in both the social
sciences and engineering. We show how progress toward this goal can be accelerated by using large
datasets to power machine-learning algorithms that are constrained to produce interpretable
psychological theories. Conducting the largest experiment on risky choice to date and analyzing the
results using gradient-based optimization of differentiable decision theories implemented through
artificial neural networks, we were able to recapitulate historical discoveries, establish that there
is room to improve on existing theories, and discover a new, more accurate model of human
decision-making in a form that preserves the insights from centuries of research.

U
nderstanding howpeoplemake decisions
is a central problem in psychology and
economics (1–3). Having quantitative
models that can predict these decisions
has become increasingly important as

automated systems interact more closely with
people (4, 5). The search for such models goes
back almost 300 years (6) but intensified in
the latter half of the 20th century (7, 8) as em-
pirical findings revealed the limitations of the
idea that peoplemake decisions bymaximizing
expected utility (EU) (9–11). This led to the de-
velopment of new models such as prospect
theory (PT) (8, 12). Recently, this theory-driven
enterprise has been complemented by data-
driven research using machine learning to
predict human decisions (13–19). Although
machine learning has the potential to accel-
erate the discovery of predictive models of hu-
man judgments (20–22), the resulting models
are limited by small datasets and are often
uninterpretable (5). To overcome these chal-
lenges, we introduce a new approach based on
defining classes of machine-learning models
that embody constraints based on psycholog-
ical theory. We present the largest experiment
studying people’s choices to date, allowing us
to use our approach to systematically evalu-
ate existing theories, identify a lower bound
on optimal prediction performance, and pro-
pose a new descriptive theory that reaches
this bound and contains classic theories as
special cases.
We focus on risky choice, one of the most

basic and extensively studied problems in de-
cision theory (8, 23). Risky choice has largely
been examined using “choice problems,” sce-

narios in which decision-makers face a choice
between two gambles, each of which has a set
of outcomes that differ in their payoffs and
probabilities (Fig. 1A). Researchers studying
risky choice seek a theory, which we formal-
ize as a function that maps from a pair of
gambles, A and B, to the probability P(A) that
a decision-maker chooses gamble A over gamble
B, that is consistent with human decisions
for as many choice problems as possible. Dis-
covering the best theory is a formidable chal-
lenge for two reasons. First, the space of choice
problems is large. The value and probability of
each outcome for each gamble define the di-
mensions of this space, meaning that describ-
ing a pair of gambles could potentially require
dozens of dimensions. Second, the space of
possible theories is even larger, with theories
of choice between two options spanning all
possible functions mapping choice problems
in ℝ2d to ℝ, i.e., from a vector of d gamble
outcomes and d associated probabilities to a
choice probability.
Machine-learning methods such as deep

neural networks (24) excel at function approx-
imation (25, 26) and thus provide a tool that
could potentially be used to automate theory
search. However, thesemethods typically require
large amounts of data. Historically, datasets on
risky choice have been small: Influential papers
focused on a few dozen choice problems (27) and
the largest previous dataset featured <300 (28).
Consequently, off-the-shelf methods have per-
formed poorly in predicting human choices (29).
Furthermore, even when data are abundant,
the functions discovered by machine-learning
algorithms are notoriously hard to interpret
(30), making for poor explanatory scientific
models.
To address these challenges, we collected a

large dataset of human decisions for almost
10,000 choice problems presented in a format
that has been used in previous evaluations of
models of decision-making (27–29) (Fig. 1A).

This dataset includes >30 times the number
of problems in the largest previous dataset
(27) (Fig. 1B). We then used this dataset to
evaluate differentiable decision theories that
exploit the flexibility of deep neural networks
but use psychologically meaningful constraints
to pick out a smooth, searchable landscape of
candidate theories with shared assumptions.
Differentiable decision theories allow the intu-
itions of theorists to be combinedwith gradient-
based optimization methods frommachine
learning to broadly search the space of theories
in a way that yields interpretable scientific
explanations.
More formally, we define a hierarchy over

decision theories (Fig. 1C) reflecting the addi-
tion of an increasing number of constraints
on the space of functions. These constraints
express psychologically meaningful theoret-
ical commitments. For example, one class of
theories contains all functions in which the
value that people assign to one gamble can be
influenced by the contents of the other gamble.
If theories in this class are more predictive
than those that belong to the simpler classes
contained within it (e.g., where the value of
gambles are independent), then we know
that these simpler theories should be elimi-
nated. We enforce each constraint by modify-
ing the architecture of artificial neural networks,
resulting in differentiable decision theories. This
theory-driven approach to defining constraints
contrasts with genericmethods for constraining
neural networks, such as restricting their size or
the ranges of their weights (31). After optimizing
a differentiable theory to best fit human be-
havior, it will ideally have picked out the optimal
theory in its class.
The lowest levels of our hierarchy contain

the simplest theories, including classic models
of choice. Objectively, gambles that yield higher
payouts in the long run are those with higher
expected value (EV), with the value V(A) of
gamble A being

P
i xipi, where outcome i of

gamble A has payoff xi and probability pi.
In our hierarchical partitioning, this is the
simplest possible theory because it has no
descendants. Moving up the hierarchy, and
following expected utility (EU) theory (6, 32),
we can ask the question of whether payouts xi
are viewed subjectively by decision-makers:
V(A) =

P
i u(xi)pi. When u(•) is the identity

function u(x) = x, EU reduces to EV and thus
contains it. Theories based on EU have his-
torically relied on explicit proposals for the
form of u(•), which are typically simple, non-
linear parametric functions (33). By contrast,
we search the entire class by learning the op-
timal u(•) with a neural network (we call the
resulting model “neural EU”), and use auto-
matic differentiation to optimize the model
P(A)º exp{h

P
iu(xi)pi}, where h captures the

degree of determinism in people’s responses
(34). This can be viewed as a neural network
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A risky choice problem

architecture in which the output layer is a
softmax function ehzj=Skehzk , there is one
node for each gamble, the hidden units in
the second-to-last layer encode the utilities of
the outcomes, and the final layer of weights
corresponds to their probabilities (Fig. 1D).
Figure 2 shows that the discovered form of
u(•) is similar to those proposed by human
theorists (i.e., decreasing marginal utility and
asymmetry) but outperforms any of those the-
ories and can be learned using only a quarter
of our data. [All theories are evaluated on their
cross-validated generalization performance,
meaning that model complexity is already im-
plicitly accounted for in our analyses; we focus
on mean-squared error (MSE) for consis-
tency with previous evaluations of models of
decision-making (28, 29) but also include analy-
ses of cross-entropy in the supplementary
materials.] The decision preference accuracy
[i.e., the proportion of problems in which the
model prediction for P(A) is >0.5 when the
observed proportions are also >0.5] for this
model was 81.41%.
Next, mirroring subjective EU (7) and PT, we

can ask the question of whether the proba-
bilities (pi) are also viewed subjectively by

decision-makers: v(A) = Siu(xi)p(pi). Again,
p(•) can take on classic forms or be learned
fromdata (“neural PT”). Figure 2B shows that
a form of p(•) that outperforms all proposals
by human theorists can be learned using one-
fifth of our data and exhibits overweighting
of events with medium to low probability.
This overweighting is much smaller than is
typically found in applications of PT, in part
reflecting the difference in the range of choice
problems that we consider relative to classic
studies. We will return to this point later. The
decision preference accuracy for this model
was 82.33%.
Allowing separate p(•) functions for posi-

tive and negative outcomes, respectively, and
applying them cumulatively to an ordered set
of outcomes corresponds to the most popular
modern variant of PT: cumulative PT (CPT)
(12, 35) (Fig. 2B; see the materials and meth-
ods). Notably, “neural CPT” does not contain
neural PT because the former cannot violate
stochastic dominance.With small amounts of
data, corresponding to the largest previous
experiments (28, 29), CPT outperforms PT,
accounting for its popularity. However, this
trend reverses as the amount of data is in-

creased, which illustrates that suitably large
datasets, in addition to aiding machine learn-
ing, provide more robust evaluation.
Next, we can ask whether the possible out-

comes of a gamble affect the perception of
each other and their probabilities and vice
versa. More formally, we learn a neural network
f(•,•) such that P(A) º exp{f(xA,pA)}, where
xA and pA are the vector of payoffs and prob-
abilities associated with gamble A, respec-
tively. This function class computes the value
of a gamble (“value-based”) like PT and others
but does not enforce linearity when combining
payoffs and probabilities. Notably, this class of
models includes those that violate the in-
dependence axiom in decision-making (32).
Figure 3A shows that there exists a value-
based theory that results in a greater improvement
in performance over PT than PT does over EU.
Relaxing the constraint that each gamble

is valued independently results in our most
general class of functions, “context-dependent”
functions g(•)whereP(A) = g(xA,pA, xB,pB). This
class of models includes those that violate both
the independence and transitivity axioms in
decision-making (32). This formulation pro-
vides a way to estimate the performance of the
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Fig. 1. Applying large-scale experimentation and
theory-driven machine learning to risky choice.
(A) Experiment interface in which participants
made choices between pairs of gambles (“choice
problems”) and were paid at the end of the experiment
based on their choice in a single randomly selected
gamble. (B) Each pair of gambles can be described by
a vector of payoffs and probabilities. Reducing the
resulting space to two dimensions (2D) allows us to
visualize coverage by different experiments. Each point
is a different choice problem, and colors show
reconstructions of the problems used in influential
experiments (green), the previous largest dataset
(red), and our 9831 problems, which provide much
broader coverage of the problem space. This 2D
embedding results from applying t-distributed
stochastic neighbor embedding (t-SNE) to the hidden-
layer representation of our best-performing neural
network model. (C) We define a hierarchy of
theoretical assumptions expressed as partitions over
function space that can be searched. More complex
classes of functions contain simpler classes as
special cases, allowing us to systematically search the
space of theories and identify the impact of con-
straints that correspond to psychologically meaningful
theoretical commitments. All model classes are
described in the main text. (D) Differentiable decision
theories use the formal structure of classic theories
to constrain the architecture of the neural network.
For example, our EU model uses a neural network to
define the utility function but combines those
utilities in a classic form, resulting in a fully
differentiable model that can be optimized by
gradient descent.
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Dataset of 13,005 choice problems!



              Problem 1, Feedback = True               
          n = 15, bRate = 0.6267, std: 0.3845          

        Gamble A                      Gamble B
   Payout  Probability          Payout  Probability
0    26.0         0.95       0    21.0         0.95
1    -1.0         0.05       1    23.0         0.05

A couple more problems from the dataset…



              Problem 4, Feedback = True               
          n = 18, bRate = 0.2222, std: 0.3874          

        Gamble A                      Gamble B
   Payout  Probability          Payout  Probability
1     8.0         0.95       0   -31.0        0.750
0    37.0         0.05       1    86.5        0.125
                             2    87.5        0.125



Let’s take a computational view of the mind… How do 
people make these choices? 

Can we explain these choices as computation? If so, 
what is the right algorithm?



A classic economic theory:  
People choose option that maximizes expected value/utility

              Problem 4, Feedback = True               
          n = 18, bRate = 0.2222, std: 0.3874          

        Gamble A                      Gamble B
   Payout  Probability          Payout  Probability
1     8.0         0.95       0   -31.0        0.750
0    37.0         0.05       1    86.5        0.125
                             2    87.5        0.125

x : vector of payouts

p : vector of probabilities EV =
N

∑
i=1

xipi

Expected value

EVA = 8 × .95 + 37 × .05 = 9.45

EVB = − 31 × .75 + 86.5 × .125 + 87.5 × .125 = − 1.5

Thus, people would choose Option A!



However, expected value/utility theory is a pretty poor fit to 
real human decisions… which brings us to prospect theory





Value of a gamble =
N

∑
i=1

u(xi)pi
u : utility function

p : vector of probabilities
x : vector of payouts

Prospect theory

Point 1: People perceive 
gambles in terms of gains 
and losses, not their total 
wealthu(x)

x



u(x)

x

Value =
N

∑
i=1

u(xi)pi
u : utility function

p : vector of probabilities
x : vector of payouts

Prospect theory: Loss aversion

Point 2: People are LOSS 
AVERSE, preferring a sure 
thing to a risky bet with 
the same expected payoff


(Notice that the loss curve 
is steeper than the gain 
curve)

        Gamble A                      Gamble B
   Payout  Probability          Payout  Probability
1    0.0         1.0       0   -5.0        0.5

      1    5.0        0.5
                           

Preferred



u(x)

x

Value =
N

∑
i=1

u(xi)pi
u : utility function

p : vector of probabilities
x : vector of payouts

Prospect theory: Risk aversion for gains

Point 3: Diminishing 
returns… $1B is not 
1000x better than $1M


Leads to risk aversion for 
gambles with potential 
gains

        Gamble A                      Gamble B
   Payout  Probability          Payout  Probability
1    50.0         1.0      0   100.0        0.5

      1    0.0         0.5
                           

Preferred



u(x)

x

Value =
N

∑
i=1

u(xi)pi
u : utility function

p : vector of probabilities
x : vector of payouts

Prospect theory: Risk seeking for losses

Point 4:

People are risk seeking 
for gambles with potential 
losses

        Gamble A                      Gamble B
   Payout  Probability          Payout  Probability
1    -50.0         1.0      0   -100.0        0.5

       1    0.0          0.5
                           

Preferred


