{ "cells": [ { "cell_type": "code", "execution_count": 8, "metadata": { "tags": [ "hide_input" ] }, "outputs": [], "source": [ "from IPython.core.display import HTML, Markdown, display\n", "\n", "import numpy.random as npr\n", "import numpy as np\n", "import pandas as pd\n", "import pingouin as pg\n", "import seaborn as sns\n", "#from cycler import cycler\n", "import matplotlib.pyplot as plt\n", "import scipy.stats as stats\n", "#import statsmodels.formula.api as smf\n", "import ipywidgets as widgets\n", "# from matplotlib.patches import Polygon\n", "# from matplotlib.gridspec import GridSpec\n", "\n", "from myst_nb import glue # for the Jupyter book chapter" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Comparing one or two means" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "```{note}\n", "This chapter is adapted from Danielle Navarro's excellent [Learning Statistics with R](https://learningstatisticswithr.com) book. The main text has mainly be left intact with a few modifications, also the code adapted to use python and jupyter.\n", "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In many cases in science you will find yourself in a situation where your outcome variable is interval scale or higher, and what you're interested in is whether the average value of the outcome variable is higher in one group or another. For instance, a psychologist might want to know if anxiety levels are higher among parents than non-parents, or if working memory capacity is reduced by listening to music (relative to not listening to music). In a medical context, we might want to know if a new drug increases or decreases blood pressure. An agricultural scientist might want to know whether adding phosphorus to Australian native plants will kill them. In all these situations, our outcome variable is a fairly continuous, interval or ratio scale variable; and our predictor is a binary \"grouping\" variable. In other words, we want to compare the means of the two groups. " ] }, { "cell_type": "markdown", "metadata": { "tags": [ "popout" ] }, "source": [ "Informal experimentation in my garden suggests that yes, it does. Australian natives are adapted to low phosphorus levels relative to everywhere else on Earth, apparently, so if you've bought a house with a bunch of exotics and you want to plant natives, don't follow my example: keep them separate. Nutrients to European plants are poison to Australian ones. There's probably a joke in that, but I can't figure out what it is." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The standard answer to the problem of comparing means is to use a $t$-test, of which there are several varieties depending on exactly what question you want to solve. As a consequence, the majority of this chapter focuses on different types of $t$-test: one sample $t$-tests, independent samples $t$-tests and Welcht test, and paired samples $t$-tests. After that, we'll talk a bit about Cohen's $d$, which is the standard measure of effect size for a $t$-test. The later sections of the chapter focus on the assumptions of the $t$-tests, and possible remedies if they are violated. However, before discussing any of these useful things, we'll start with a discussion of the $z$-test. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## The one-sample $z$-test\n", "\n", "In this section I'll describe one of the most useless tests in all of statistics: the **_$z$-test_**. Seriously -- this test is almost never used in real life. Its only real purpose is that, when teaching statistics, it's a very convenient stepping stone along the way towards the $t$-test, which is probably the most (over)used tool in all statistics." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### The inference problem that the test addresses\n", "\n", "To introduce the idea behind the $z$-test, let's use a simple example. A friend of mine, Dr Zeppo, grades his introductory statistics class on a curve. Let's suppose that the average grade in his class is 67.5, and the standard deviation is 9.5. Of his many hundreds of students, it turns out that 20 of them also take psychology classes. Out of curiosity, I find myself wondering: do the psychology students tend to get the same grades as everyone else (i.e., mean 67.5) or do they tend to score higher or lower? He emails me the `zeppo.csv` file, which I use to pull up the `grades` of those students, " ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "1 50\n", "2 60\n", "3 60\n", "4 64\n", "5 66\n", "6 66\n", "7 67\n", "8 69\n", "9 70\n", "10 74\n", "11 76\n", "12 76\n", "13 77\n", "14 79\n", "15 79\n", "16 79\n", "17 81\n", "18 82\n", "19 82\n", "20 89\n", "Name: grades, dtype: int64" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "zeppo_df=pd.read_csv('http://gureckislab.org/courses/fall19/labincp/data/zeppo.csv',index_col=0)\n", "zeppo_df.columns=[\"grades\"]\n", "zeppo_df.grades" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "and calculate the mean:" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "72.3" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "zeppo_df.grades.mean()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Hm. It *might* be that the psychology students are scoring a bit higher than normal: that sample mean of $\\bar{X} = 72.3$ is a fair bit higher than the hypothesised population mean of $\\mu = 67.5$, but on the other hand, a sample size of $N = 20$ isn't all that big. Maybe it's pure chance. \n", "\n", "To answer the question, it helps to be able to write down what it is that I think I know. Firstly, I know that the sample mean is $\\bar{X} = 72.3$. If I'm willing to assume that the psychology students have the same standard deviation as the rest of the class then I can say that the population standard deviation is $\\sigma = 9.5$. I'll also assume that since Dr Zeppo is grading to a curve, the psychology student grades are normally distributed. \n", "\n", "Next, it helps to be clear about what I want to learn from the data. In this case, my research hypothesis relates to the *population* mean $\\mu$ for the psychology student grades, which is unknown. Specifically, I want to know if $\\mu = 67.5$ or not. Given that this is what I know, can we devise a hypothesis test to solve our problem? The data, along with the hypothesised distribution from which they are thought to arise, are shown in {numref}`fig:zeppo`. Not entirely obvious what the right answer is, is it? For this, we are going to need some statistics." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "tags": [ "hide_cell" ] }, "outputs": [ { "data": { "application/papermill.record/image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAFgCAYAAACFYaNMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl4XHd97/H3rJJGu6zFsuU1sX92Eu9ZSJxAQhYglJ1L2rSFtAWah6XQC5de0vYG8jykC31CyoUAl6WhUAqFUJYEEiAhIYmdxVscx/bPjuPdWq19n+XcP87ICGFbsjVnziyf1/PosTU6M+crzeijM99zfr9fwHEcREQk+4J+FyAiUqwUwCIiPlEAi4j4RAEsIuITBbCIiE8UwCIiPlEAi4j4RAEsIuITBbCIiE8UwCIiPgn7XcBUxpgw0AIcs9Ym/K5HRMQrORfAuOF78NFHH/W7DhGRcxU4l43VghAR8YkCWETEJwpgERGfKIBFRHyiABYR8YkCWETEJwpgERGfKIBFRHyiABYR8YkCWETEJ54ORTbGvAn4FFAOPGKt/YiX+xMRySeeHQEbY5YCXwbeAqwC1htj3uDV/kRE8o2XR8BvA75nrT0GYIy5BRj1cH8iInnFywC+EBg3xjwCzAV+Cvz95A2MMTVAzZT7tXhYk4hIzvAygMPAq4FrgUHgx8B7gPsnbfNR4E4PaxApGvFEikh4dl3FTDyGzJyXAdwG/Mpa2wlgjPkRcDm/G8D3Tvkc3CPgJz2sS6QgRcJB7rjv6Vk9xt0f2JihamQmvAzgB4FvptsMA8AbgB9N3sBa2wv0Tr7NGONhSSIiucOz9xrW2meBfwaeAnYDh4F/82p/IiL5xtPrgK213wC+4eU+RETylbrtIiI+UQCLiPhEASwi4hMFsIiITxTAIiI+UQCLiPhEASwi4hMFsIiITxTAIiI+UQCLiPhEASwi4hMFsIiITxTAIiI+UQCLiPhEASwi4hMFsIiITxTAIiI+UQCLiPhEASwi4hMFsIiITxTAIiI+UQCLiPhEASwi4hMFsIiITxTAIiI+UQCLiPhEASwi4hMFsIiITxTAIiI+UQCLiPhEASwi4hMFsIiITxTAIiI+UQCLiPhEASwi4hMFsIiITxTAIiI+UQCLiPhEASwi4pOwlw9ujHkMaALi6Zv+0lr7rJf7FBHJF54FsDEmAKwAFlprE17tR0QkX3l5BGwAB/i5MaYR+Kq19gu/s4ExNUDNlPu1eFiTiEjO8LIHXAs8CrwVuB643Rhz45RtPgocnPLxpIc1iWRcPJHKiceQ/OPZEbC1djOwOf3pkDHm68DNwC8nbXYvcP+Uu7agEJY8EgkHueO+p2f1GHd/YGOGqpF84mUP+GqgxFr7aPqmAL89GQeAtbYX6J1yP69KEhHJKV72gGuAu4wxVwER4D3A7R7uT0Qkr3jWA7bWPgg8BGwHtgLfSLclREQEj68Dttb+PfD3Xu5DRCRfaSSciIhPFMAiIj5RAIuI+EQBLCLiEwWwiIhPFMAiIj5RAIuI+EQBLCLiEwWwiIhPFMAiIj5RAIuI+EQBLCLiEwWwiIhPFMAiIj5RAIuI+EQBLCLiEwWwiIhPFMAiIj5RAIuI+EQBLCLiEwWwiIhPFMAiIj5RAIuI+EQBLCLiEwWwiIhPFMAiIj5RAIuI+EQBLCLiEwWwiIhPFMAiIj5RAIuI+CTsdwEihSKRSNE/PI7jOKduq4xFiUZCPlYluUwBLDJLjuPQ3T9K28khkinnd74WCAzRVBujvqaMQCDgU4WSqxTAIrPQ2jXEF3+wg+Odg8RKw8yrryAccjt7qVSKtu5h2rqH6R0co6WxkrIS/crJb+nVIHKeOnqG+V//9zfEEynm1ZdTV1U65Sg3yKK5VfQNjnGia4gDx3u5YH6NQlhO0Uk4kfMwFk/yD/c/x3g8xb/81auZU33mFkN1RQnLWmoIh4IcbusnkUxluVrJVQpgkXPkOA73/eAFXj7Wx8duXc+Cpspp7xMOu0fDiWSKI20Dv3OiToqXAljkHD309EEe23KUW28yXHFJ84zvV1YSZn5DBUOjcVpPDnlYoeQLzwPYGPNZY8z9Xu9HJBtePtrL1368i8svmsstN5pzvn9tZSlzqks52TdK39CYBxVKPvE0gI0x1wO3ebkPkWxxHIdv/PQlKmIR/vrW9QSD53dZWfOcckqiIdq6hkipFVHUPAtgY0wd8Bngbq/2IZJNW/d28OKBLv7oRkNFWeS8HycQCNBcV854IkV3/2gGK5R84+X1MF8B/hZYcKYNjDE1QM2Um1s8rEnkvCRTDv/24EvMqy/ndVcunvXjVcQilJdF6OgepraiZPYFSl7y5AjYGPNe4Ki19tFpNv0ocHDKx5Ne1CQyG489f4QjbQO8+40XnRpoMRuBQIDmOeUkUw6dvSMZqFDykVctiFuAm4wxO4C7gDcbYz53mu3uBZZM+bjGo5pEzsvoeIJvP7wXs6iWq1bN/KqH6ZSVhKmuKKGrb4QuhXBR8qQFYa29ceL/xpjbgGuttX99mu16gd7Jtxlz7meWRbz00ydfobt/lE/86aUZn89hbl2M/sExvvPIXv7qlnUZfWzJfboOWOQsxuNJfvybA1y6somLl87J+ONHIyHqqkt5bMtRTvbpKLjYeB7A1tr7rbW3eb0fES889cJx+gbHecurl3q2jznVZaQch4c3H/ZsH5KbdAQscgaO4/DTpw6yoKmCNcsaPNtPSSTEhhVNPPzMIeIJzRNRTBTAImdgj/Tw8tFe3rhxqedz+b7p6qX0Dozx9AvHPd2P5BYFsMgZPPjkQWKlYV576RkvZc+YtcsbmN9QzoNPHfR8X5I7FMAip9HdP8rTO49zw2ULszJ/bzAY4I0bl2KP9LDvSI/n+5PcoAAWOY2HNx8ikXR448YlWdvn9ZctoKwkxINPvZK1fYq/FMAiU8QTKR7efIgNKxqZ11CRtf3GSiNcf+lCntxxgt4BzZRWDBTAIlNs2dNOz8AYN2fx6HfCzRuXkEimeHzb0azvW7JPASwyxRPbjlFdEWWDacz6vhc0VbJsQQ2PbzuW9X1L9imARSYZHInz3O42Xr2uhVAGJt05H9duaOHAsT6OtPX7sn/JHgWwyCSbdp4gnkhx7Xr/ZkW9Zu18gsGAjoKLgAJYZJLHtx5jXn05yxZMnaY6e2orS1m7vIEnth0jldKKGYVMASyS1tkzwq5Xurh2wwLPR75N57r1LXT0jLDnULevdYi3FMAiab/ZfgzHwdf2w4QrLmmmJBpSG6LAKYBF0h7fdowVi2ppri/3uxTKSsJceUkzT+04TjyR9Lsc8YgCWAQ4eKKPQ639XLvB+3kfZuraDS0MjsTZsqfD71LEIwpgEdxrf0PBAFevmed3KaesXdZATUUJT6gNUbAUwFL0HMdh085W1ixroDqHVigOhYJcubqZLXvbGYurDVGIFMBS9A63DdB6cohXZXDBzUy5alUzY+NJtlu1IQqRAliK3uYXWwkE4FUXz/W7lN9zyQX1VJRF2Pxiq9+liAcUwFL0nnmxlRWL6qitKvW7lN8TDgW57KImnt/dRiKp5YoKjQJYilrbySFeOdHHlTnYfphw5apmBobjvHTgpN+lSIYpgKWoPbPLfWufywG8zjQSjYTYvEttiEIzowA2xnz9NLc9kPlyRLJr84utLG6uYu4c/wdfnElpNMyGFY08s6tVc0MUmLMudmWM+RIwH7jGGDN5Xe4IsMLLwkS81jMwyp5D3fzhjcbvUqb1qkua2fxiKy8f62X5wlq/y5EMmW61wa8DlwBrgMlHvAlgs1dFiWTDs7vacJzcbj9MuPyiJkLBAJt2nlAAF5CzBrC1dguwxRjzK2uthuNIQdm8q5W5c2Isbq7yu5RpVcSirLqwnmd2tfKeN17k+2xtkhkzXW/7AmPMt4A64NQzb61d7UlVIh4bHo2zc38nf3D10rwJsytXNfOlB3ZytH2AhXNz/4+GTG+mAfxF4BvANkBnASTvbd/XSSLpcHkODr44k8tWzuVL7GTLnnYFcIGYaQCPW2vv8bQSkSzauqed8tIwKxfX+V3KjDXUlrG4uYrn97Tz9uuW+V2OZMBMrwPeZYxZ5WklIlmSSjls2dPOOtNI2KeFN8/XZRc1sftgN0Mjcb9LkQyY6RHwUmCrMeYwMDJxo3rAko9eOd5Hz8AYl13U5Hcp52zDiia+/+h+tu/r4Oo18/0uR2ZppgH8t55WIZJFz+9pJxCA9Sb/AnjFoloqyiI8v7tdAVwAZhrAL3pahUgWbd3TzrIFNdRU5s7cvzMVCgVZv6KRbXs7SKUcgsH8uIJDTm+mDbAuoHPSv53ATq+KEvFK3+AY+472cOnK/Ln6YarLVjbROzjGy8d6/S5FZmlGR8DW2lNBbYyJAO/AHR0nkle27m3HcdwQy1frVzQRCMDzu9s1Ki7PnfMpYGtt3Fr7XeBGD+oR8dTzu9uprSxh6fxqv0s5b1XlUczCWrbsafO7FJmlGR0BG2MmXywZAC4F9KdX8koimWK77eCq1fPyvnd66UVNfPvne+npH83JieRlZs63B/xN4JNeFSXihb2HuhkaTXBpHrcfJlyW7mFv3dvucyUyG+fcAxbJV1v2tBMKBli7vGH6jXPcknlV1FWVsmVPBzdcvsjvcuQ8zbQFEQQ+DrwBdy7gXwB3W2sT09zvLuCduPNHfF3DmcVP220nK5fUESuN+F3KrAUCAdabRjbvaiWZTBHKsxF94prps/YPwGuBfwXuAa4CPnu2OxhjXpO+z2rcnvGHjTG5P/O1FKSegVFeOdHHetPodykZs940MjQSZ/9RXY6Wr2Y6EOP1wKXW2jiAMeYh4AXgr890B2vtE8aY66y1CWPM/PS+hiZvY4ypAWqm3LVlpsWLzNR22wm466sVijXLGwgEYJvtYEUeTSokvzXTI+DgRPgCWGvHgGlnA7HWxo0xnwZ2A48Cx6ds8lHg4JSPJ2dYk8iMbdvbQU1FCUvn5e/lZ1NVlUdZvqCWbXs7MvaY8UQqpx6n0M30CHiHMeZzwBfSn3+IGY6Es9beaYz5J+CnwPuA/zfpy/cC90+5SwsKYcmgVMph+74O1q9ozPvLz6ZaZxr5r19ZBobHqYxFZ/14kXCQO+57etaPc/cHNs76MYrBTI+AP4h73e8m4BmgHvjw2e5gjFlhjFkLYK0dBn6I2w8+xVrba609NPkD0NJHklGvHO+jf2i8oPq/E9abRlIO7NjX6Xcpch7OGsDGmKgx5pvAa621t1lrm4DngCTQP81jLwW+aowpMcZEgbcAT2WiaJFzsc26b9HXLS+8AF6+sIby0jDbbebaEJI90x0B3wVU4R75Tngf7omzT53tjtbanwE/A7YDW4FN6SHMIlm1zXawdH51Xs5+Np1QKMia5Q1ssx04jlYLyzfT9YD/ALjMWjt5EvYTxph34y5L/3dnu7O19k7gzllXKXKehkfj7D3UzduuvdDvUjyz3jSyaWcrR9oH/C5FztF0R8Djk8N3grW2HxjzpiSRzHlhfxfJlFOQ/d8JE5fWZfJqCMmO6QI4aYypnHpj+rb8H04kBW+77aCsJFTQ18k21sZoaaw41euW/DFdAP8n8DVjTPnEDen/fw14wMvCRDJh+74OVl3QQCRc2EN1169o5KVXTpJKqQ+cT6Z7Vd4L9AFtxphnjDHPAW1AD+4JOpGc1do1RNvJYdab/J98ZzrrljcST6QYGtVqyfnkrCfhrLUp4P3GmLuB9UAKeM5aeyIbxYnMxvZ96cvPCrj/O+GSpXMIh4IMDsczMiBDsmOm01EeAg55WolIhu3Y10ljbRnN9eXTb5znSkvCXLSkjn1HeoDC/34LRWE3xqRoJZMpXtjfydrljQQChTX8+EzWLm9gdDypeRjyiAJYCtL+o70MjyZYVwT93wkTI/0GR8Z9rkRmSgEsBWm77SAQgNUXFk8AL51fTSgYYHBYJ+LyhQJYCtL2fZ1c2FJDVXnxnJAKBgNUxCIMjsQ1LDlPKICl4AyNxLFHegpi7bdzVVEWJZFMMTae9LsUmQEFsBScFw90kUo5RXH52VQVMXeA6sCI2hD5QAEsBWe77aA0GmLFosIdfnwm0XCIkkiIwWGdiMsHCmApONv3dXLJBfUFP/z4TCpiEYZG4xqWnAeK8xUqBavt5BCtXUOsK8L+74SKsiiO407FKblNASwFZWJpnmI8ATehvCxCABhUHzjnKYCloOzY18mc6lIWNP3eLKpFIxQMECsNM6A+cM5TAEvBSKYcXtjfyboiGn58JhWxKKPjSRJJDUvOZQpgKRgHjvUyOBIv6vbDhIoy93I0jYrLbQpgKRgT008qgKGsJOwOS9a8EDlNASwFY7vtZOn8aqorCm/143MVCAQoL4swOKxhyblMASwFYXg0jj3cXdSXn01VGYsST6YYi2tYcq5SAEtB2PXKSRJJ59SUjKI+cD5QAEtB2LGvk2gkxMolxTf8+EyikRDRSFB94BymAJaCsGNfB5csnUM0EvK7lJxSURZlaCRBSn3gnKQAlrzX1TvC0fbBolr9YqYqYhFSjsPIaMLvUuQ0FMCS93acuvxM/d+pKkonpqdUGyIXKYAl7223ndRWlrBobvEOPz6TUChIrDSsE3E5SgEseS2Vctixv5O1yxuKfvjxmVSURRkZS2hYcg5SAEteO3C8l/6hcdYX4eoXMzWxSoZmR8s9CmDJa9us+r/TiZWECQYDWiUjBymAJa9tt51c0FJNTaWGH59JIBCgoizCgIYl5xwFsOSt4dE4ew91q/0wA5Wx9GrJGpacUxTAkrde2N9FskhXPz5Xp1ZL1tUQOUUBLHlru+2grKQ4Vz8+V1otOTcpgCUvOY7DNtvB6gsbinb143Ol1ZJzj165kpdau4Zo7x5W++EcVMbc1ZKHtFpyzlAAS16auPxMJ+Bmrrw0QiCAFuvMIWEvH9wYcyfwrvSnD1lrP+Hl/qR4bLedNM8pp7m+3O9S8kYwGKC8NKJhyTnEsyNgY8wNwE3AOmAtsMEY8zav9ifFI55I8eKBTs1+dh4qYhHG4kniCV2Olgu8PAJuBT5mrR0HMMbsARZO3sAYUwPUTLlfi4c1SQHYc+gkI2NJtR/OQ2VZlDaGGRiOU1eluZP95lkAW2tfmvi/MWYZcAtw1ZTNPgrc6VUNUpi27ukgHAqwcsmcWT9WPJEqqqsoSqIhIqEgA8Pj1FWV+l1O0fO0BwxgjLkYeAj4uLV2/5Qv3wvcP+W2FuBJr+uS/LVlbzuXLK2nqjzKHfc9PavHuvsDGzNUVX4IBAJUlkfpHRjDcRzNIOczr0/CbQQeAD5qrf3u1K9ba3uB3in38bIkyXMd3cMcaRvgxssX+V1K3qqMRejuH2VoNE5FWdTvcoqalyfhFgA/Am49XfiKnI+te9sBuHSl+r/nq7wsSgANS84FXh4BfxwoBe6ZdFT7ZWvtlz3cpxS4LXs6aKqLMb+hwu9S8lYoGCBWFmFgaJzmObqMz09enoT7CPARrx5fis94PMkLL3dyw2UL1bucpcpYlLaTQ4zHk1pJ2kfFc/pX8t6uV04yNp7k0pVNfpeS9ypPzY6mUXF+UgBL3ti6t51oOMglF8z+8rNiVxIJEQkH1Qf2mQJY8sbWPe2surCe0qjnV08WvEAgQGUsyuDIOCmtkuEbBbDkhRNdgxzvHGLDCrUfMuXU7GharNM3CmDJC1v3uLOfbdDlZxlTUabZ0fymAJa8sGVPO/MbyplXr8vPMmVidrSB4XEt1ukTBbDkvOHRODtf7uTyi5v9LqXgVJVHGY9rsU6/KIAl522zHSSSDldcPNfvUgpOVbk7FHlgSG0IPyiAJec9+1IblbEoKxbV+l1KwYmEQ5RGQ/SrD+wLBbDktGQyxZbd7Vx2UROhkF6uXqgqL2F4NEE8kfK7lKKjV7TktN2Huhkciav94KFTbQgdBWedAlhy2rO72giHglr92EOl0fSoOPWBs04BLDnLcRyee6mNNcvqKSvR6DevBAIBqmJRBkbGGR1P+F1OUVEAS8462j5A68khtR+yoLLcHRW3c3+X36UUFQWw5KxnX2oD4HIFsOfKyyIEg4FTP3PJDgWw5KxnX2rjwgU1zKku87uUghcMBKiMRXhud5tGxWWRAlhyUk//KPuO9HD5RTr6zZaqmLtY5/CY+sDZogCWnLR5VyuOA1et1vDjbKmMRQmHAvQP6mqIbFEAS056+oUTtDRWsLCp0u9SikYoFGTt8kb6hsbUhsgSBbDknN6BMXYd6GLjmnla+y3Lrl4zj3gixYjaEFmhAJacs3lXKykHNq6e53cpRWfikr8+DcrICgWw5JxNL5xgXn05i5ur/C6l6FTEolSURegbVBsiGxTAklP6BsfYqfaDr6orSognUoyOa45grymAJac8s6uNVMpR+8FHE5Pz9A2O+VxJ4VMAS07ZtPMEzXPKWTq/2u9SilY4FHTbELoawnMKYMkZA8PjvLC/k6tWN6v94LPqihLG42pDeE0BLDnj2V2tJFMOG9eo/eA3tSGyQwEsOeOJ7cdpqotxYUuN36UUvVNtCF0N4SkFsOSEk30j7NzfybUbWtR+yBE1FSWMJ1KaG8JDCmDJCU9sO07Kges2LPC7FEmrqogSCLgjE8UbCmDJCY9vO8ryhTXMb6jwuxRJCwWDVJWX0Dc4RkptCE8ogMV3h1r7OXiiX0e/Oai2ooRkymFQC3Z6QgEsvnt861FCwQDXrJ3vdykyRUUsQjgUoEdtCE8ogMVXyZTD49uOsX5FI9UVJX6XI1MEAgGqK0oYGB4nmUz5XU7BUQCLr3Yd6OJk36jaDzmspqIEx9EMaV5QAIuvfr31KLHSsBbezGFlJWFKIiF6B0b9LqXgKIDFNyNjCTbtbOWqVfMoiYT8LkfOIBAIUFNZwtBogvG4hiZnkgJYfPOb7ccZGUtw4xUL/S5FplFb6fbnu/t1FJxJCmDxzcPPHGLh3EpWLq7zuxSZRiQcojIWpWdgVEOTM8jzADbGVBljdhljFnu9L8kfLx/r5eWjvbz+VYs19DhP1FWVkkg69OtkXMZ4GsDGmCuAp4DlXu5H8s8jzxwmGglx3aW6+iFfVMYiRMJBtSEyKOzx478P+CDwrdN90RhTA0yd+qrF45rEZ8OjcZ7YdpRr1s6joizidzkyQ4FAgNrKUjp6hhmLJ3XiNAM8PQK21r7XWvvkWTb5KHBwysfZthefxROzvxj/11uPMTKW5PVXLp59QbOUie8nE3KljunUVbkn43qmOQrOxPeTLz+T2fD6CHg69wL3T7mtBYVwzoqEg9xx39OzeozhsTiLm6swC2szVNX5y8T3c/cHNhZMHdOJhENUpU/GNdbFCJ6hf58v34/ffA1ga20v0Dv5NmOMT9VINgyPxjlwvI/b37ZKJ9/yVF1VKf1t4/QPjVOj4eOzosvQJKtO9o1SGg1xrYYe562K9Mm4k30jfpeS9xTAkjXjiSS9g2Pc9KpFlOvkW94KBALU15QxPJpgaDTudzl5LSstCGvt4mzsR3LbyV73xM2br7nA50pktmorS+noHqard4Tyufpjer50BCxZkUym6O4fpboiSlNdzO9yZJZCwYDbCx4aZ0xL1583BbBkRffAKCnHoaFG4Vso5lSXEQC61As+bwpg8VzKcejqHaW8NEJZid9XPkqmRMJBaipL6BkYJaHJ2s+LAlg81zc4RiKZor6mzO9SJMPqa8pwHPfqFjl3CmDxlOM4dPWOUBIJURnTyZpCUxoNUxmLcLJvhGRKs6SdKwWweKpvaJzR8SQNtWUaeFGgGmtjJFOOrgs+Dwpg8YzjOLR3D1MSDWnEVAGLlUaojEXo7B3Rwp3nSAEsnukZGGM8nqSpLqaj3wLXVFdOKuXQ2auj4HOhABZPpByHjp5hykrCVMWifpcjHisrCVNdEeVk3wiJIpjFLFMUwOKJ7v5R4omUjn6LSFNtjJQDHb3DfpeSNxTAknGplENnzzDlpWFNuF5ESqJhaitL6O4fpUutiBlRAEvGdfYOk0g6NNWV6+i3yDTWxsCBbz602+9S8oICWDJqbDxJZ88I1RUlmvGsCEUjIepry3h82zEGR7R453QUwJIxjuNwomuQQDBA85xyv8sRnzTWxGisi3Gic0hL2E9DASwZ0z80zuBInKbaGJGwXlrFKhgM8JdvXcVYPKle8DT0WyIZkUo5tHYNURoNMae61O9yxGeXXzyXyliUjp5h4glNV3kmCmDJiPaeYeLJFPMaKnTiTQCYV1+OA5zoUiviTBTAMmtDI3G6ekeorSyhvFQn3sQVjYRoqo3RPzRO7+CY3+XkJAWwzEoymeJoxwDRSJDm+gq/y5EcU19TRnlpmBOdQ4zF1YqYSgEs581xHI53DhJPpFjQWEkoqNaD/K5AIEBLYyUE4Gj7gFoRUyiA5bz1DozRNzROU12MmFoPcgbRSIj5DRWMjCXo6NEw5ckUwHJeRscTnOgaorw0TINWupBp1FSUUFNZQkfPCIPDGqAxQQEs5yyRSHGotZ9gEBY0VeqqB5mRefXllERCHG4fYHQ84Xc5OUEBLOdkLJ7kUFs/iWSKRXOriIRDfpckeSIUDLK4uYpgAA639mshTxTAcg5SKYd//e52RsYSLGisVN9Xzlk0EmLR3CriyRSH2/pJFfk6cgpgmRHHcbj/od08ueM4c+tiVGuJITlPsdIILY2VDI8mONZR3FdGKIBlWo7j8LUf7+K/H3+Zm69arOXlZdZqKkqYO6ecvqFxjrQPkCrSEFYAy1mlUg73PbCTnzz5Cm++Zim3v321TrpJRjTUlNE8p5z+oXGOFGk7QgEsZxRPpPjX723n4c2HeOdrl/Het1yi8JWMqq8pY159OQPDcQ639ZNMFdeJubDfBUhu6u4f5Z/+/Xl2H+zm1psMf3iTUfiKJ+ZUlxEMBDjWOciBY30snFtJabQ4oqk4vks5J3sOdvOP//4cQ6MJPv7HG3jN+ha/S5ICV1tVSiQS5EjbAAeO9dHSWBzziqgFIackkil+8Nh+PnnfU5REwvzLX71a4StZU1EW5cIFNZREQxxpH+CrP36R0bHCHrChI2ABYN+RHr7w/R0cPNHPVaub+fC71mkvGkguAAALnklEQVRFY8m6aDjE0nnVtJ4c4ie/eYVndrXxwXesYf2KRr9L84QCuMj1DIzyX7/ax8+ePkhNZSl33HYZV66a53dZUsSCwQDzGyr4xJ9eyhe+v4M7v7qZV6+dz5/evJK5BbbWoAK4SPUOjPHAr/fzs02HSCSSvO7Kxbzn5ou0krHkjIuXzuHzH7uW7z+6nwce289TO09w/aULeNcNywsmiBXARcRxHF4+1ssjzxzm8W3HiMeTvGZ9C394o2FeQ3Gc9JD8EgmHuPV1K3j9lYv5wWP7eXjzIR7bcpSNq+dx06sWseqCeoJ5PA+1ArgIdHQP88yuVh59/iivnOgjGglxzdp5vPO1y9zJskVyXF1VKe9/6yrecd2F/PDxl3n0+aP8ZsdxmueUc/3lC7jykua8nJlPAVyARscS2CM9vPhyF8/tbuPgiX4Als6r5va3r+Y161t0gk3y0pzqMt73llW8++aL2LTzBI88c5hv/3wv3/75Xprry7ni4rmsWdbAikW1VMSifpc7LU8D2BhzK/B3QBT4nLX2i17urxgNj8Y53DrAobZ+Dp3oY//RXg4c7yOVcggGYOWSOfz5my7miovnqs0gBaMkEuK6DQu4bsMCunpHeG53G8++1MaDTx3kR08cIBCAhU2VmEV1LGquZElzNQvnVubcJFKeBbAxZj7wGWADMAZsMsb82lq726t9FgrHcRiLJxkYijM4Mk7/0Dg9A2P0DozS3T9GV+8I7d1DtJ0cpn/ot6sLxErDLJ1fzTtfu4yVi+tYsbhOR7pS8Opryrj5qiXcfNUSRscT7D/Sy+6DJ9l9sJvNL7byi2cPn9q2vDRM05xy5s6JUV9TRl1lKbVVpdRWllBZHqUqFqUiFsnaVKteHgHfADxmre0GMMb8AHgncNfEBsaYGqBmyv0WAbS1tZ3Tznbs66D95MgMtz79pB/O1H8nzdDkOOBMfMVxt3HSk4ek3C+SSm+XSjk4jkMy5ZByHFIph2QyRTLlkEw6JJIp4skUyYTDeCLpfsRTjI0nGI2nGB1PnHrsqcKhILVVJTRUx7i4pZSG2jnMqy+npbGSuqqSST2wOL0n2+md4U/kXAz1d83q/seOHctQJZmpRY+R2cfIZC3no7YUNq4sZ+PKchynhf6hcY51DHK8c5DO3hE6e/rZu6+DnoFRxs+wUvO7b76IV6+bf877vv766xcDx6y1MxpBEvBqLk5jzCeBcmvt36U/fy9wubX2/ZO2+RRwpycFiIj4Y4m19tBMNvTyCPh0pyOnTnV0L3D/lNuiwFJgP3D6P0+n1wI8CVwDZO4Q69ypjtytJVfqyKVaVEfma5nxfbwM4OO438CEZuDE5A2stb1w2nfJ+851Z8aYif8em+lfHy+ojt+XK7XkSh2QO7Wojt+XzVq8DOBfAZ8yxjQAQ8A7gPef/S4iIsXDs9nQrLXHgb8Ffg3sAL5jrX3Oq/2JiOQbT68DttZ+B/iOl/sQEclXhTQfcC/waU7fU1Yd/sqVWnKlDsidWlTH78taLZ5dhiYiImdXSEfAIiJ5RQEsIuITBbCIiE/ydjpKY8ydwLvSnz5krf2EMeYG4B6gDPjexDBoj+u4C3eOCwf4urX2Hj/qmFTPZ4EGa+1txpi1wFeBauA3wO0zHaM+yxoeA5qAePqmvwQuwIeZ8YwxbwI+BZQDj1hrP5Lt5yc9DP9Dk25aAnwL+FE260jX8ifAJ9Of/txa+3EfXyf/G/gz3Mm6vmet/Uw2azHGVAGbgD+w1h460+vCy5ry8gg4/YO6CVgHrAU2GGP+CPgG8BZgJXCZMeYNHtfxGuC1wGrgUuDDxpg12a5jUj3XA7dNuunbwIettctxh4a/Lws1BIAVwBpr7Vpr7VrcoZmfAa4G1gDvN8ZclIValgJfxn0uVgHr089FVp8fa+3XJv0s/hjoAP4p23UYY2LA54HX4D4P16R/l/x4ndwA3Apchvt7fIUx5u3ZqsUYcwXwFLA8/XkZZ34+PKspLwMYaAU+Zq0dt9bGgT24P8j91tqD6b9O3wb+h5dFWGufAK5L768R9x1FTbbrADDG1OGG3N3pzxcBZdbaZ9Kb3J+NOgCD+27g58aYF4wxH2LSzHjW2iFgYmY8r70N90jmWPp1cgswjA/PzyRfAu4gPd9JlusI4f7OlwOR9Eccf14n63DfkfRba5PAw8CHs1jL+4AP8tvpES7nNM+H179HeRnA1tqXJn4gxphluL9YKdxgntCKO6mG17XEjTGfBnYDjwLz/KgD+AruyMOe9Od+1VGL+3N4K3A9cDuw0KdaLgRCxphHjDEvAB/Av5/LxFFfmbX2+37UYa0dAP4e2Is7V8shYDzbdaRtA15njKkzxpQCbwYS2arFWvtea+2Tk2460/Ph6fOUlwE8wRhzMfBL4OPAgdNsMnX2NU9Ya+8EGoAFwLJs15HuMR611j466eaZzEaXcdbazdbad1trh6y1XcDXmTQHdDZrwX1HcgPwJ8CrcI9ylvhUC7i98HvS/8/682OMWQ38Oe6c2824sw3elO06ANKv1fuBx3GPfp/CPULPei1pZ3o+PH2e8jaAjTEbcY+0/re19pu4f9HnTtrk92Zf86CGFekGPdbaYeCHwHXZrgP3HcBNxpgduGH3Zty3WNmuA2PM1ele9IQA7pFW1msB2oBfWWs7rbUjuCe9bvSjFmNMFLf3+pP0TVl/vQKvAx611nZYa8dwA/BaH+rAGFMJ/NBau9paey1ua+iwH7Wknen58PR5yssANsYswP1lutVa+930zc+6XzIXGmNCuA3+n3tcylLgq8aYkvQv2FtwWwFZrcNae6O19pL0SZ7/A/zEWvtnwGj6DxXAu72uI60G+KwxpjT9S/Ye3CPQ640xDekTQe/APerx2oO4b3Nr0s/FG3D7z9l+nYB7onZfugcO/rxeXwBuMMaUp0+Wvgl4An9eJ0uAHxljwsaYauC9wNd8qgXO8HxYaw97WVNeBjBuy6EUuMcYsyN95Hdb+uMB3H7sXtxfNs9Ya38G/AzYDmwFNqX/IGS1jrP4Y+Bzxpg9uCdePu/1Dq21DwIP8dufyTestU/jw8x41tpngX/GfXu7G/cI60v48/wsZdJE3dba0WzXYa39BfCfuM/LTtyTcP+IP6+Tnbjf+07gOeDz6ddJ1mtJ13O258OzmjQXhIiIT/L1CFhEJO8pgEVEfKIAFhHxiQJYRMQnCmAREZ8ogKUoGWPqjTG6BEh8pQAWEfFJ3s4HLMUnPX/sXwADuPOyvhV3LoE63PmGH8Sde+KLQAXuRCo7gFustaPp6Q4/gzvs9fkpj/0XuJP1BIGTwIestXuNMVfjzt8Qwp3l7R+stQ94+51KsdARsOQFY8zrcEcqXQZsAConfTlmrb3YWvs3uHNgfNNaeyXubGhLgDcaY5pw53t9h7V2A+6ouInHfg3ukOlrrLXrcEfP/TD95U8D96Tv8+e48z+LZIQCWPLFzcD3rbW91loH9yh3wlOT/v83QKcx5hO4w47n4R4NXw28aK3dnd7uK5Pu80bcsN6UHtb+z0Bdeo7l/wK+aIz5D9zgvyPz35oUKwWw5IsEvzs1YHLS/wcn/f8/gffjHuF+Dnfe2QBu+2Dy/ScvKRMCvjVp1Yr1uCuc9Fhrv4K7msYvcWcT25mePEZk1hTAki8eAt4xKfz+AjdUp3odcJe19nvpr1+BG7BPAhenl4yC31266RfAHxljmtOf34471SnGmE3AOmvt/bjBXoM76bzIrCmAJS9Yax/DXRhxszFmC+4CicOn2fQO4L/T23wZd7rFC621nbhTDP6HMWYbkyZmt9Y+grtG2y+NMTvT27093er4BHCXMWY77mxun7bWHvLo25Qio9nQJC8YYy4FrrLWfj79+f8ErrDW3uJvZSLnT5ehSb7YB/yNMeb9uK2FI7gtAZG8pSNgERGfqAcsIuITBbCIiE8UwCIiPlEAi4j4RAEsIuKT/w+Q5MgmKJTlngAAAABJRU5ErkJggg==\n", "application/papermill.record/text/plain": "
" }, "metadata": { "scrapbook": { "mime_prefix": "application/papermill.record/", "name": "zeppo_fig" } }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAFgCAYAAACFYaNMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl4XHd97/H3rJJGu6zFsuU1sX92Eu9ZSJxAQhYglJ1L2rSFtAWah6XQC5de0vYG8jykC31CyoUAl6WhUAqFUJYEEiAhIYmdxVscx/bPjuPdWq19n+XcP87ICGFbsjVnziyf1/PosTU6M+crzeijM99zfr9fwHEcREQk+4J+FyAiUqwUwCIiPlEAi4j4RAEsIuITBbCIiE8UwCIiPlEAi4j4RAEsIuITBbCIiE8UwCIiPgn7XcBUxpgw0AIcs9Ym/K5HRMQrORfAuOF78NFHH/W7DhGRcxU4l43VghAR8YkCWETEJwpgERGfKIBFRHyiABYR8YkCWETEJwpgERGfKIBFRHyiABYR8YkCWETEJ54ORTbGvAn4FFAOPGKt/YiX+xMRySeeHQEbY5YCXwbeAqwC1htj3uDV/kRE8o2XR8BvA75nrT0GYIy5BRj1cH8iInnFywC+EBg3xjwCzAV+Cvz95A2MMTVAzZT7tXhYk4hIzvAygMPAq4FrgUHgx8B7gPsnbfNR4E4PaxApGvFEikh4dl3FTDyGzJyXAdwG/Mpa2wlgjPkRcDm/G8D3Tvkc3CPgJz2sS6QgRcJB7rjv6Vk9xt0f2JihamQmvAzgB4FvptsMA8AbgB9N3sBa2wv0Tr7NGONhSSIiucOz9xrW2meBfwaeAnYDh4F/82p/IiL5xtPrgK213wC+4eU+RETylbrtIiI+UQCLiPhEASwi4hMFsIiITxTAIiI+UQCLiPhEASwi4hMFsIiITxTAIiI+UQCLiPhEASwi4hMFsIiITxTAIiI+UQCLiPhEASwi4hMFsIiITxTAIiI+UQCLiPhEASwi4hMFsIiITxTAIiI+UQCLiPhEASwi4hMFsIiITxTAIiI+UQCLiPhEASwi4hMFsIiITxTAIiI+UQCLiPhEASwi4hMFsIiITxTAIiI+UQCLiPhEASwi4hMFsIiITxTAIiI+UQCLiPhEASwi4pOwlw9ujHkMaALi6Zv+0lr7rJf7FBHJF54FsDEmAKwAFlprE17tR0QkX3l5BGwAB/i5MaYR+Kq19gu/s4ExNUDNlPu1eFiTiEjO8LIHXAs8CrwVuB643Rhz45RtPgocnPLxpIc1iWRcPJHKiceQ/OPZEbC1djOwOf3pkDHm68DNwC8nbXYvcP+Uu7agEJY8EgkHueO+p2f1GHd/YGOGqpF84mUP+GqgxFr7aPqmAL89GQeAtbYX6J1yP69KEhHJKV72gGuAu4wxVwER4D3A7R7uT0Qkr3jWA7bWPgg8BGwHtgLfSLclREQEj68Dttb+PfD3Xu5DRCRfaSSciIhPFMAiIj5RAIuI+EQBLCLiEwWwiIhPFMAiIj5RAIuI+EQBLCLiEwWwiIhPFMAiIj5RAIuI+EQBLCLiEwWwiIhPFMAiIj5RAIuI+EQBLCLiEwWwiIhPFMAiIj5RAIuI+EQBLCLiEwWwiIhPFMAiIj5RAIuI+EQBLCLiEwWwiIhPFMAiIj5RAIuI+EQBLCLiEwWwiIhPFMAiIj5RAIuI+CTsdwEihSKRSNE/PI7jOKduq4xFiUZCPlYluUwBLDJLjuPQ3T9K28khkinnd74WCAzRVBujvqaMQCDgU4WSqxTAIrPQ2jXEF3+wg+Odg8RKw8yrryAccjt7qVSKtu5h2rqH6R0co6WxkrIS/crJb+nVIHKeOnqG+V//9zfEEynm1ZdTV1U65Sg3yKK5VfQNjnGia4gDx3u5YH6NQlhO0Uk4kfMwFk/yD/c/x3g8xb/81auZU33mFkN1RQnLWmoIh4IcbusnkUxluVrJVQpgkXPkOA73/eAFXj7Wx8duXc+Cpspp7xMOu0fDiWSKI20Dv3OiToqXAljkHD309EEe23KUW28yXHFJ84zvV1YSZn5DBUOjcVpPDnlYoeQLzwPYGPNZY8z9Xu9HJBtePtrL1368i8svmsstN5pzvn9tZSlzqks52TdK39CYBxVKPvE0gI0x1wO3ebkPkWxxHIdv/PQlKmIR/vrW9QSD53dZWfOcckqiIdq6hkipFVHUPAtgY0wd8Bngbq/2IZJNW/d28OKBLv7oRkNFWeS8HycQCNBcV854IkV3/2gGK5R84+X1MF8B/hZYcKYNjDE1QM2Um1s8rEnkvCRTDv/24EvMqy/ndVcunvXjVcQilJdF6OgepraiZPYFSl7y5AjYGPNe4Ki19tFpNv0ocHDKx5Ne1CQyG489f4QjbQO8+40XnRpoMRuBQIDmOeUkUw6dvSMZqFDykVctiFuAm4wxO4C7gDcbYz53mu3uBZZM+bjGo5pEzsvoeIJvP7wXs6iWq1bN/KqH6ZSVhKmuKKGrb4QuhXBR8qQFYa29ceL/xpjbgGuttX99mu16gd7Jtxlz7meWRbz00ydfobt/lE/86aUZn89hbl2M/sExvvPIXv7qlnUZfWzJfboOWOQsxuNJfvybA1y6somLl87J+ONHIyHqqkt5bMtRTvbpKLjYeB7A1tr7rbW3eb0fES889cJx+gbHecurl3q2jznVZaQch4c3H/ZsH5KbdAQscgaO4/DTpw6yoKmCNcsaPNtPSSTEhhVNPPzMIeIJzRNRTBTAImdgj/Tw8tFe3rhxqedz+b7p6qX0Dozx9AvHPd2P5BYFsMgZPPjkQWKlYV576RkvZc+YtcsbmN9QzoNPHfR8X5I7FMAip9HdP8rTO49zw2ULszJ/bzAY4I0bl2KP9LDvSI/n+5PcoAAWOY2HNx8ikXR448YlWdvn9ZctoKwkxINPvZK1fYq/FMAiU8QTKR7efIgNKxqZ11CRtf3GSiNcf+lCntxxgt4BzZRWDBTAIlNs2dNOz8AYN2fx6HfCzRuXkEimeHzb0azvW7JPASwyxRPbjlFdEWWDacz6vhc0VbJsQQ2PbzuW9X1L9imARSYZHInz3O42Xr2uhVAGJt05H9duaOHAsT6OtPX7sn/JHgWwyCSbdp4gnkhx7Xr/ZkW9Zu18gsGAjoKLgAJYZJLHtx5jXn05yxZMnaY6e2orS1m7vIEnth0jldKKGYVMASyS1tkzwq5Xurh2wwLPR75N57r1LXT0jLDnULevdYi3FMAiab/ZfgzHwdf2w4QrLmmmJBpSG6LAKYBF0h7fdowVi2ppri/3uxTKSsJceUkzT+04TjyR9Lsc8YgCWAQ4eKKPQ639XLvB+3kfZuraDS0MjsTZsqfD71LEIwpgEdxrf0PBAFevmed3KaesXdZATUUJT6gNUbAUwFL0HMdh085W1ixroDqHVigOhYJcubqZLXvbGYurDVGIFMBS9A63DdB6cohXZXDBzUy5alUzY+NJtlu1IQqRAliK3uYXWwkE4FUXz/W7lN9zyQX1VJRF2Pxiq9+liAcUwFL0nnmxlRWL6qitKvW7lN8TDgW57KImnt/dRiKp5YoKjQJYilrbySFeOdHHlTnYfphw5apmBobjvHTgpN+lSIYpgKWoPbPLfWufywG8zjQSjYTYvEttiEIzowA2xnz9NLc9kPlyRLJr84utLG6uYu4c/wdfnElpNMyGFY08s6tVc0MUmLMudmWM+RIwH7jGGDN5Xe4IsMLLwkS81jMwyp5D3fzhjcbvUqb1qkua2fxiKy8f62X5wlq/y5EMmW61wa8DlwBrgMlHvAlgs1dFiWTDs7vacJzcbj9MuPyiJkLBAJt2nlAAF5CzBrC1dguwxRjzK2uthuNIQdm8q5W5c2Isbq7yu5RpVcSirLqwnmd2tfKeN17k+2xtkhkzXW/7AmPMt4A64NQzb61d7UlVIh4bHo2zc38nf3D10rwJsytXNfOlB3ZytH2AhXNz/4+GTG+mAfxF4BvANkBnASTvbd/XSSLpcHkODr44k8tWzuVL7GTLnnYFcIGYaQCPW2vv8bQSkSzauqed8tIwKxfX+V3KjDXUlrG4uYrn97Tz9uuW+V2OZMBMrwPeZYxZ5WklIlmSSjls2dPOOtNI2KeFN8/XZRc1sftgN0Mjcb9LkQyY6RHwUmCrMeYwMDJxo3rAko9eOd5Hz8AYl13U5Hcp52zDiia+/+h+tu/r4Oo18/0uR2ZppgH8t55WIZJFz+9pJxCA9Sb/AnjFoloqyiI8v7tdAVwAZhrAL3pahUgWbd3TzrIFNdRU5s7cvzMVCgVZv6KRbXs7SKUcgsH8uIJDTm+mDbAuoHPSv53ATq+KEvFK3+AY+472cOnK/Ln6YarLVjbROzjGy8d6/S5FZmlGR8DW2lNBbYyJAO/AHR0nkle27m3HcdwQy1frVzQRCMDzu9s1Ki7PnfMpYGtt3Fr7XeBGD+oR8dTzu9uprSxh6fxqv0s5b1XlUczCWrbsafO7FJmlGR0BG2MmXywZAC4F9KdX8koimWK77eCq1fPyvnd66UVNfPvne+npH83JieRlZs63B/xN4JNeFSXihb2HuhkaTXBpHrcfJlyW7mFv3dvucyUyG+fcAxbJV1v2tBMKBli7vGH6jXPcknlV1FWVsmVPBzdcvsjvcuQ8zbQFEQQ+DrwBdy7gXwB3W2sT09zvLuCduPNHfF3DmcVP220nK5fUESuN+F3KrAUCAdabRjbvaiWZTBHKsxF94prps/YPwGuBfwXuAa4CPnu2OxhjXpO+z2rcnvGHjTG5P/O1FKSegVFeOdHHetPodykZs940MjQSZ/9RXY6Wr2Y6EOP1wKXW2jiAMeYh4AXgr890B2vtE8aY66y1CWPM/PS+hiZvY4ypAWqm3LVlpsWLzNR22wm466sVijXLGwgEYJvtYEUeTSokvzXTI+DgRPgCWGvHgGlnA7HWxo0xnwZ2A48Cx6ds8lHg4JSPJ2dYk8iMbdvbQU1FCUvn5e/lZ1NVlUdZvqCWbXs7MvaY8UQqpx6n0M30CHiHMeZzwBfSn3+IGY6Es9beaYz5J+CnwPuA/zfpy/cC90+5SwsKYcmgVMph+74O1q9ozPvLz6ZaZxr5r19ZBobHqYxFZ/14kXCQO+57etaPc/cHNs76MYrBTI+AP4h73e8m4BmgHvjw2e5gjFlhjFkLYK0dBn6I2w8+xVrba609NPkD0NJHklGvHO+jf2i8oPq/E9abRlIO7NjX6Xcpch7OGsDGmKgx5pvAa621t1lrm4DngCTQP81jLwW+aowpMcZEgbcAT2WiaJFzsc26b9HXLS+8AF6+sIby0jDbbebaEJI90x0B3wVU4R75Tngf7omzT53tjtbanwE/A7YDW4FN6SHMIlm1zXawdH51Xs5+Np1QKMia5Q1ssx04jlYLyzfT9YD/ALjMWjt5EvYTxph34y5L/3dnu7O19k7gzllXKXKehkfj7D3UzduuvdDvUjyz3jSyaWcrR9oH/C5FztF0R8Djk8N3grW2HxjzpiSRzHlhfxfJlFOQ/d8JE5fWZfJqCMmO6QI4aYypnHpj+rb8H04kBW+77aCsJFTQ18k21sZoaaw41euW/DFdAP8n8DVjTPnEDen/fw14wMvCRDJh+74OVl3QQCRc2EN1169o5KVXTpJKqQ+cT6Z7Vd4L9AFtxphnjDHPAW1AD+4JOpGc1do1RNvJYdab/J98ZzrrljcST6QYGtVqyfnkrCfhrLUp4P3GmLuB9UAKeM5aeyIbxYnMxvZ96cvPCrj/O+GSpXMIh4IMDsczMiBDsmOm01EeAg55WolIhu3Y10ljbRnN9eXTb5znSkvCXLSkjn1HeoDC/34LRWE3xqRoJZMpXtjfydrljQQChTX8+EzWLm9gdDypeRjyiAJYCtL+o70MjyZYVwT93wkTI/0GR8Z9rkRmSgEsBWm77SAQgNUXFk8AL51fTSgYYHBYJ+LyhQJYCtL2fZ1c2FJDVXnxnJAKBgNUxCIMjsQ1LDlPKICl4AyNxLFHegpi7bdzVVEWJZFMMTae9LsUmQEFsBScFw90kUo5RXH52VQVMXeA6sCI2hD5QAEsBWe77aA0GmLFosIdfnwm0XCIkkiIwWGdiMsHCmApONv3dXLJBfUFP/z4TCpiEYZG4xqWnAeK8xUqBavt5BCtXUOsK8L+74SKsiiO407FKblNASwFZWJpnmI8ATehvCxCABhUHzjnKYCloOzY18mc6lIWNP3eLKpFIxQMECsNM6A+cM5TAEvBSKYcXtjfyboiGn58JhWxKKPjSRJJDUvOZQpgKRgHjvUyOBIv6vbDhIoy93I0jYrLbQpgKRgT008qgKGsJOwOS9a8EDlNASwFY7vtZOn8aqorCm/143MVCAQoL4swOKxhyblMASwFYXg0jj3cXdSXn01VGYsST6YYi2tYcq5SAEtB2PXKSRJJ59SUjKI+cD5QAEtB2LGvk2gkxMolxTf8+EyikRDRSFB94BymAJaCsGNfB5csnUM0EvK7lJxSURZlaCRBSn3gnKQAlrzX1TvC0fbBolr9YqYqYhFSjsPIaMLvUuQ0FMCS93acuvxM/d+pKkonpqdUGyIXKYAl7223ndRWlrBobvEOPz6TUChIrDSsE3E5SgEseS2Vctixv5O1yxuKfvjxmVSURRkZS2hYcg5SAEteO3C8l/6hcdYX4eoXMzWxSoZmR8s9CmDJa9us+r/TiZWECQYDWiUjBymAJa9tt51c0FJNTaWGH59JIBCgoizCgIYl5xwFsOSt4dE4ew91q/0wA5Wx9GrJGpacUxTAkrde2N9FskhXPz5Xp1ZL1tUQOUUBLHlru+2grKQ4Vz8+V1otOTcpgCUvOY7DNtvB6gsbinb143Ol1ZJzj165kpdau4Zo7x5W++EcVMbc1ZKHtFpyzlAAS16auPxMJ+Bmrrw0QiCAFuvMIWEvH9wYcyfwrvSnD1lrP+Hl/qR4bLedNM8pp7m+3O9S8kYwGKC8NKJhyTnEsyNgY8wNwE3AOmAtsMEY8zav9ifFI55I8eKBTs1+dh4qYhHG4kniCV2Olgu8PAJuBT5mrR0HMMbsARZO3sAYUwPUTLlfi4c1SQHYc+gkI2NJtR/OQ2VZlDaGGRiOU1eluZP95lkAW2tfmvi/MWYZcAtw1ZTNPgrc6VUNUpi27ukgHAqwcsmcWT9WPJEqqqsoSqIhIqEgA8Pj1FWV+l1O0fO0BwxgjLkYeAj4uLV2/5Qv3wvcP+W2FuBJr+uS/LVlbzuXLK2nqjzKHfc9PavHuvsDGzNUVX4IBAJUlkfpHRjDcRzNIOczr0/CbQQeAD5qrf3u1K9ba3uB3in38bIkyXMd3cMcaRvgxssX+V1K3qqMRejuH2VoNE5FWdTvcoqalyfhFgA/Am49XfiKnI+te9sBuHSl+r/nq7wsSgANS84FXh4BfxwoBe6ZdFT7ZWvtlz3cpxS4LXs6aKqLMb+hwu9S8lYoGCBWFmFgaJzmObqMz09enoT7CPARrx5fis94PMkLL3dyw2UL1bucpcpYlLaTQ4zHk1pJ2kfFc/pX8t6uV04yNp7k0pVNfpeS9ypPzY6mUXF+UgBL3ti6t51oOMglF8z+8rNiVxIJEQkH1Qf2mQJY8sbWPe2surCe0qjnV08WvEAgQGUsyuDIOCmtkuEbBbDkhRNdgxzvHGLDCrUfMuXU7GharNM3CmDJC1v3uLOfbdDlZxlTUabZ0fymAJa8sGVPO/MbyplXr8vPMmVidrSB4XEt1ukTBbDkvOHRODtf7uTyi5v9LqXgVJVHGY9rsU6/KIAl522zHSSSDldcPNfvUgpOVbk7FHlgSG0IPyiAJec9+1IblbEoKxbV+l1KwYmEQ5RGQ/SrD+wLBbDktGQyxZbd7Vx2UROhkF6uXqgqL2F4NEE8kfK7lKKjV7TktN2Huhkciav94KFTbQgdBWedAlhy2rO72giHglr92EOl0fSoOPWBs04BLDnLcRyee6mNNcvqKSvR6DevBAIBqmJRBkbGGR1P+F1OUVEAS8462j5A68khtR+yoLLcHRW3c3+X36UUFQWw5KxnX2oD4HIFsOfKyyIEg4FTP3PJDgWw5KxnX2rjwgU1zKku87uUghcMBKiMRXhud5tGxWWRAlhyUk//KPuO9HD5RTr6zZaqmLtY5/CY+sDZogCWnLR5VyuOA1et1vDjbKmMRQmHAvQP6mqIbFEAS056+oUTtDRWsLCp0u9SikYoFGTt8kb6hsbUhsgSBbDknN6BMXYd6GLjmnla+y3Lrl4zj3gixYjaEFmhAJacs3lXKykHNq6e53cpRWfikr8+DcrICgWw5JxNL5xgXn05i5ur/C6l6FTEolSURegbVBsiGxTAklP6BsfYqfaDr6orSognUoyOa45grymAJac8s6uNVMpR+8FHE5Pz9A2O+VxJ4VMAS07ZtPMEzXPKWTq/2u9SilY4FHTbELoawnMKYMkZA8PjvLC/k6tWN6v94LPqihLG42pDeE0BLDnj2V2tJFMOG9eo/eA3tSGyQwEsOeOJ7cdpqotxYUuN36UUvVNtCF0N4SkFsOSEk30j7NzfybUbWtR+yBE1FSWMJ1KaG8JDCmDJCU9sO07Kges2LPC7FEmrqogSCLgjE8UbCmDJCY9vO8ryhTXMb6jwuxRJCwWDVJWX0Dc4RkptCE8ogMV3h1r7OXiiX0e/Oai2ooRkymFQC3Z6QgEsvnt861FCwQDXrJ3vdykyRUUsQjgUoEdtCE8ogMVXyZTD49uOsX5FI9UVJX6XI1MEAgGqK0oYGB4nmUz5XU7BUQCLr3Yd6OJk36jaDzmspqIEx9EMaV5QAIuvfr31KLHSsBbezGFlJWFKIiF6B0b9LqXgKIDFNyNjCTbtbOWqVfMoiYT8LkfOIBAIUFNZwtBogvG4hiZnkgJYfPOb7ccZGUtw4xUL/S5FplFb6fbnu/t1FJxJCmDxzcPPHGLh3EpWLq7zuxSZRiQcojIWpWdgVEOTM8jzADbGVBljdhljFnu9L8kfLx/r5eWjvbz+VYs19DhP1FWVkkg69OtkXMZ4GsDGmCuAp4DlXu5H8s8jzxwmGglx3aW6+iFfVMYiRMJBtSEyKOzx478P+CDwrdN90RhTA0yd+qrF45rEZ8OjcZ7YdpRr1s6joizidzkyQ4FAgNrKUjp6hhmLJ3XiNAM8PQK21r7XWvvkWTb5KHBwysfZthefxROzvxj/11uPMTKW5PVXLp59QbOUie8nE3KljunUVbkn43qmOQrOxPeTLz+T2fD6CHg69wL3T7mtBYVwzoqEg9xx39OzeozhsTiLm6swC2szVNX5y8T3c/cHNhZMHdOJhENUpU/GNdbFCJ6hf58v34/ffA1ga20v0Dv5NmOMT9VINgyPxjlwvI/b37ZKJ9/yVF1VKf1t4/QPjVOj4eOzosvQJKtO9o1SGg1xrYYe562K9Mm4k30jfpeS9xTAkjXjiSS9g2Pc9KpFlOvkW94KBALU15QxPJpgaDTudzl5LSstCGvt4mzsR3LbyV73xM2br7nA50pktmorS+noHqard4Tyufpjer50BCxZkUym6O4fpboiSlNdzO9yZJZCwYDbCx4aZ0xL1583BbBkRffAKCnHoaFG4Vso5lSXEQC61As+bwpg8VzKcejqHaW8NEJZid9XPkqmRMJBaipL6BkYJaHJ2s+LAlg81zc4RiKZor6mzO9SJMPqa8pwHPfqFjl3CmDxlOM4dPWOUBIJURnTyZpCUxoNUxmLcLJvhGRKs6SdKwWweKpvaJzR8SQNtWUaeFGgGmtjJFOOrgs+Dwpg8YzjOLR3D1MSDWnEVAGLlUaojEXo7B3Rwp3nSAEsnukZGGM8nqSpLqaj3wLXVFdOKuXQ2auj4HOhABZPpByHjp5hykrCVMWifpcjHisrCVNdEeVk3wiJIpjFLFMUwOKJ7v5R4omUjn6LSFNtjJQDHb3DfpeSNxTAknGplENnzzDlpWFNuF5ESqJhaitL6O4fpUutiBlRAEvGdfYOk0g6NNWV6+i3yDTWxsCBbz602+9S8oICWDJqbDxJZ88I1RUlmvGsCEUjIepry3h82zEGR7R453QUwJIxjuNwomuQQDBA85xyv8sRnzTWxGisi3Gic0hL2E9DASwZ0z80zuBInKbaGJGwXlrFKhgM8JdvXcVYPKle8DT0WyIZkUo5tHYNURoNMae61O9yxGeXXzyXyliUjp5h4glNV3kmCmDJiPaeYeLJFPMaKnTiTQCYV1+OA5zoUiviTBTAMmtDI3G6ekeorSyhvFQn3sQVjYRoqo3RPzRO7+CY3+XkJAWwzEoymeJoxwDRSJDm+gq/y5EcU19TRnlpmBOdQ4zF1YqYSgEs581xHI53DhJPpFjQWEkoqNaD/K5AIEBLYyUE4Gj7gFoRUyiA5bz1DozRNzROU12MmFoPcgbRSIj5DRWMjCXo6NEw5ckUwHJeRscTnOgaorw0TINWupBp1FSUUFNZQkfPCIPDGqAxQQEs5yyRSHGotZ9gEBY0VeqqB5mRefXllERCHG4fYHQ84Xc5OUEBLOdkLJ7kUFs/iWSKRXOriIRDfpckeSIUDLK4uYpgAA639mshTxTAcg5SKYd//e52RsYSLGisVN9Xzlk0EmLR3CriyRSH2/pJFfk6cgpgmRHHcbj/od08ueM4c+tiVGuJITlPsdIILY2VDI8mONZR3FdGKIBlWo7j8LUf7+K/H3+Zm69arOXlZdZqKkqYO6ecvqFxjrQPkCrSEFYAy1mlUg73PbCTnzz5Cm++Zim3v321TrpJRjTUlNE8p5z+oXGOFGk7QgEsZxRPpPjX723n4c2HeOdrl/Het1yi8JWMqq8pY159OQPDcQ639ZNMFdeJubDfBUhu6u4f5Z/+/Xl2H+zm1psMf3iTUfiKJ+ZUlxEMBDjWOciBY30snFtJabQ4oqk4vks5J3sOdvOP//4cQ6MJPv7HG3jN+ha/S5ICV1tVSiQS5EjbAAeO9dHSWBzziqgFIackkil+8Nh+PnnfU5REwvzLX71a4StZU1EW5cIFNZREQxxpH+CrP36R0bHCHrChI2ABYN+RHr7w/R0cPNHPVaub+fC71mkvGkguAAALnklEQVRFY8m6aDjE0nnVtJ4c4ie/eYVndrXxwXesYf2KRr9L84QCuMj1DIzyX7/ax8+ePkhNZSl33HYZV66a53dZUsSCwQDzGyr4xJ9eyhe+v4M7v7qZV6+dz5/evJK5BbbWoAK4SPUOjPHAr/fzs02HSCSSvO7Kxbzn5ou0krHkjIuXzuHzH7uW7z+6nwce289TO09w/aULeNcNywsmiBXARcRxHF4+1ssjzxzm8W3HiMeTvGZ9C394o2FeQ3Gc9JD8EgmHuPV1K3j9lYv5wWP7eXjzIR7bcpSNq+dx06sWseqCeoJ5PA+1ArgIdHQP88yuVh59/iivnOgjGglxzdp5vPO1y9zJskVyXF1VKe9/6yrecd2F/PDxl3n0+aP8ZsdxmueUc/3lC7jykua8nJlPAVyARscS2CM9vPhyF8/tbuPgiX4Als6r5va3r+Y161t0gk3y0pzqMt73llW8++aL2LTzBI88c5hv/3wv3/75Xprry7ni4rmsWdbAikW1VMSifpc7LU8D2BhzK/B3QBT4nLX2i17urxgNj8Y53DrAobZ+Dp3oY//RXg4c7yOVcggGYOWSOfz5my7miovnqs0gBaMkEuK6DQu4bsMCunpHeG53G8++1MaDTx3kR08cIBCAhU2VmEV1LGquZElzNQvnVubcJFKeBbAxZj7wGWADMAZsMsb82lq726t9FgrHcRiLJxkYijM4Mk7/0Dg9A2P0DozS3T9GV+8I7d1DtJ0cpn/ot6sLxErDLJ1fzTtfu4yVi+tYsbhOR7pS8Opryrj5qiXcfNUSRscT7D/Sy+6DJ9l9sJvNL7byi2cPn9q2vDRM05xy5s6JUV9TRl1lKbVVpdRWllBZHqUqFqUiFsnaVKteHgHfADxmre0GMMb8AHgncNfEBsaYGqBmyv0WAbS1tZ3Tznbs66D95MgMtz79pB/O1H8nzdDkOOBMfMVxt3HSk4ek3C+SSm+XSjk4jkMy5ZByHFIph2QyRTLlkEw6JJIp4skUyYTDeCLpfsRTjI0nGI2nGB1PnHrsqcKhILVVJTRUx7i4pZSG2jnMqy+npbGSuqqSST2wOL0n2+md4U/kXAz1d83q/seOHctQJZmpRY+R2cfIZC3no7YUNq4sZ+PKchynhf6hcY51DHK8c5DO3hE6e/rZu6+DnoFRxs+wUvO7b76IV6+bf877vv766xcDx6y1MxpBEvBqLk5jzCeBcmvt36U/fy9wubX2/ZO2+RRwpycFiIj4Y4m19tBMNvTyCPh0pyOnTnV0L3D/lNuiwFJgP3D6P0+n1wI8CVwDZO4Q69ypjtytJVfqyKVaVEfma5nxfbwM4OO438CEZuDE5A2stb1w2nfJ+851Z8aYif8em+lfHy+ojt+XK7XkSh2QO7Wojt+XzVq8DOBfAZ8yxjQAQ8A7gPef/S4iIsXDs9nQrLXHgb8Ffg3sAL5jrX3Oq/2JiOQbT68DttZ+B/iOl/sQEclXhTQfcC/waU7fU1Yd/sqVWnKlDsidWlTH78taLZ5dhiYiImdXSEfAIiJ5RQEsIuITBbCIiE/ydjpKY8ydwLvSnz5krf2EMeYG4B6gDPjexDBoj+u4C3eOCwf4urX2Hj/qmFTPZ4EGa+1txpi1wFeBauA3wO0zHaM+yxoeA5qAePqmvwQuwIeZ8YwxbwI+BZQDj1hrP5Lt5yc9DP9Dk25aAnwL+FE260jX8ifAJ9Of/txa+3EfXyf/G/gz3Mm6vmet/Uw2azHGVAGbgD+w1h460+vCy5ry8gg4/YO6CVgHrAU2GGP+CPgG8BZgJXCZMeYNHtfxGuC1wGrgUuDDxpg12a5jUj3XA7dNuunbwIettctxh4a/Lws1BIAVwBpr7Vpr7VrcoZmfAa4G1gDvN8ZclIValgJfxn0uVgHr089FVp8fa+3XJv0s/hjoAP4p23UYY2LA54HX4D4P16R/l/x4ndwA3Apchvt7fIUx5u3ZqsUYcwXwFLA8/XkZZ34+PKspLwMYaAU+Zq0dt9bGgT24P8j91tqD6b9O3wb+h5dFWGufAK5L768R9x1FTbbrADDG1OGG3N3pzxcBZdbaZ9Kb3J+NOgCD+27g58aYF4wxH2LSzHjW2iFgYmY8r70N90jmWPp1cgswjA/PzyRfAu4gPd9JlusI4f7OlwOR9Eccf14n63DfkfRba5PAw8CHs1jL+4AP8tvpES7nNM+H179HeRnA1tqXJn4gxphluL9YKdxgntCKO6mG17XEjTGfBnYDjwLz/KgD+AruyMOe9Od+1VGL+3N4K3A9cDuw0KdaLgRCxphHjDEvAB/Av5/LxFFfmbX2+37UYa0dAP4e2Is7V8shYDzbdaRtA15njKkzxpQCbwYS2arFWvtea+2Tk2460/Ph6fOUlwE8wRhzMfBL4OPAgdNsMnX2NU9Ya+8EGoAFwLJs15HuMR611j466eaZzEaXcdbazdbad1trh6y1XcDXmTQHdDZrwX1HcgPwJ8CrcI9ylvhUC7i98HvS/8/682OMWQ38Oe6c2824sw3elO06ANKv1fuBx3GPfp/CPULPei1pZ3o+PH2e8jaAjTEbcY+0/re19pu4f9HnTtrk92Zf86CGFekGPdbaYeCHwHXZrgP3HcBNxpgduGH3Zty3WNmuA2PM1ele9IQA7pFW1msB2oBfWWs7rbUjuCe9bvSjFmNMFLf3+pP0TVl/vQKvAx611nZYa8dwA/BaH+rAGFMJ/NBau9paey1ua+iwH7Wknen58PR5yssANsYswP1lutVa+930zc+6XzIXGmNCuA3+n3tcylLgq8aYkvQv2FtwWwFZrcNae6O19pL0SZ7/A/zEWvtnwGj6DxXAu72uI60G+KwxpjT9S/Ye3CPQ640xDekTQe/APerx2oO4b3Nr0s/FG3D7z9l+nYB7onZfugcO/rxeXwBuMMaUp0+Wvgl4An9eJ0uAHxljwsaYauC9wNd8qgXO8HxYaw97WVNeBjBuy6EUuMcYsyN95Hdb+uMB3H7sXtxfNs9Ya38G/AzYDmwFNqX/IGS1jrP4Y+Bzxpg9uCdePu/1Dq21DwIP8dufyTestU/jw8x41tpngX/GfXu7G/cI60v48/wsZdJE3dba0WzXYa39BfCfuM/LTtyTcP+IP6+Tnbjf+07gOeDz6ddJ1mtJ13O258OzmjQXhIiIT/L1CFhEJO8pgEVEfKIAFhHxiQJYRMQnCmAREZ8ogKUoGWPqjTG6BEh8pQAWEfFJ3s4HLMUnPX/sXwADuPOyvhV3LoE63PmGH8Sde+KLQAXuRCo7gFustaPp6Q4/gzvs9fkpj/0XuJP1BIGTwIestXuNMVfjzt8Qwp3l7R+stQ94+51KsdARsOQFY8zrcEcqXQZsAConfTlmrb3YWvs3uHNgfNNaeyXubGhLgDcaY5pw53t9h7V2A+6ouInHfg3ukOlrrLXrcEfP/TD95U8D96Tv8+e48z+LZIQCWPLFzcD3rbW91loH9yh3wlOT/v83QKcx5hO4w47n4R4NXw28aK3dnd7uK5Pu80bcsN6UHtb+z0Bdeo7l/wK+aIz5D9zgvyPz35oUKwWw5IsEvzs1YHLS/wcn/f8/gffjHuF+Dnfe2QBu+2Dy/ScvKRMCvjVp1Yr1uCuc9Fhrv4K7msYvcWcT25mePEZk1hTAki8eAt4xKfz+AjdUp3odcJe19nvpr1+BG7BPAhenl4yC31266RfAHxljmtOf34471SnGmE3AOmvt/bjBXoM76bzIrCmAJS9Yax/DXRhxszFmC+4CicOn2fQO4L/T23wZd7rFC621nbhTDP6HMWYbkyZmt9Y+grtG2y+NMTvT27093er4BHCXMWY77mxun7bWHvLo25Qio9nQJC8YYy4FrrLWfj79+f8ErrDW3uJvZSLnT5ehSb7YB/yNMeb9uK2FI7gtAZG8pSNgERGfqAcsIuITBbCIiE8UwCIiPlEAi4j4RAEsIuKT/w+Q5MgmKJTlngAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sns_fig=sns.displot(zeppo_df.grades,bins=np.arange(31,101,5),kde=False)\n", "\n", "x=np.arange(20,101)\n", "y=stats.norm.pdf(x,67.5,9.5)\n", "plt.plot(x,y*100) # just for display purposes scaling the size of the normal distribution\n", "#plt.show()\n", "\n", "glue(\"zeppo_fig\",sns_fig.fig,display=False)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "```{glue:figure} zeppo_fig\n", ":figwidth: 550px\n", ":name: \"fig:zeppo\"\n", "\n", "The theoretical distribution (solid line) from which the psychology student grades (grey bars) are supposed to have been generated.\n", "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Constructing the hypothesis test\n", "\n", "The first step in constructing a hypothesis test is to be clear about what the null and alternative hypotheses are. This isn't too hard to do. Our null hypothesis, $H_0$, is that the true population mean $\\mu$ for psychology student grades is 67.5\\%; and our alternative hypothesis is that the population mean *isn't* 67.5\\%. If we write this in mathematical notation, these hypotheses become,\n", "\n", "$\n", "\\begin{array}{ll}\n", "H_0: & \\mu = 67.5 \\\\\n", "H_1: & \\mu \\neq 67.5\n", "\\end{array}\n", "$\n", "\n", "though to be honest this notation doesn't add much to our understanding of the problem, it's just a compact way of writing down what we're trying to learn from the data. The null hypotheses $H_0$ and the alternative hypothesis $H_1$ for our test are both illustrated in Figure 2. In addition to providing us with these hypotheses, the scenario outlined above provides us with a fair amount of background knowledge that might be useful. Specifically, there are two special pieces of information that we can add:\n", "\n", "1. The psychology grades are normally distributed.\n", "1. The true standard deviation of these scores $\\sigma$ is known to be 9.5.\n", "\n", "For the moment, we'll act as if these are absolutely trustworthy facts. In real life, this kind of absolutely trustworthy background knowledge doesn't exist, and so if we want to rely on these facts we'll just have make the *assumption* that these things are true. However, since these assumptions may or may not be warranted, we might need to check them. For now though, we'll keep things simple." ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "tags": [ "hide_cell" ] }, "outputs": [ { "data": { "application/papermill.record/image/png": "iVBORw0KGgoAAAANSUhEUgAAAlkAAAENCAYAAAA8D3A7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl8XFd9///XaLTvi2XZ1r5Yx/uSxdn3fSFAy1agNNCWpRR+5lvowq8/SkrbUKAQvmwpUAiFAClLArQNJHEWsjiJl3i3jxZLlmwt1m7L2jXz+2NmHFmRrZE9M3eW9/PxcCyNZu79aCJ/9Dnnfu45Lq/Xi4iIiIiEVpLTAYiIiIjEIxVZIiIiImGgIktEREQkDFRkiYiIiISBiiwRERGRMFCRJSIiIhIGKrLkDMaYVmPMJcaY640x++b4+pyPhyGOPGPM0zM+9xpjFoXo2P9ojHlfKI4lIsExxjxkjPmk/+PPGGPeHKHzXmqMedD/8SXGmJ+H6LifNcZ8PRTHmuc8M+MPaf41xvyvMWZVqI4nb5TsdAAiZ1EAbArHga21nwnHcUUkaDcCByJ0rtVAGYC1djvwtgidN1ROxx9q1to7w3FceZ2KrDhljLke+GfgMLAGSAM+aq19xhjzELDPWvsl/3PP+DwI2caYnwIrgHTgz4EdwDHgMmttg/+4TwJfB94KeIGVQDHwBPBxa+2kMeYa4ItAJjAB/L219rfA94EMY8wu4GL/ee8zxlwOFAFftNZ+w3+ePwX+At/MbB/wl9baQ8aYq4EvA27/+e+31v5i5vdrjLnPH9+E/7X3Wms7g3wfRGQGY0wS8BXgciAHcAF/Zq19ccZzPgpcAnzRGDMN/A/wr8B1+P6tvoYvP5wwxrQCrwDrgE/7j/0QcBNQATxirf3rs50XaAP+Ecgzxnwf+AG+nHQV0A7UW2u7/HG9DNwHbDlbPHN8yyuMMc8AS4Fu4F1ADfBToNJa6zHGZAKt+PLwq8CjwDVAPvBv1tpv+c//QeDjwLT/WH8JjM4R/xvyr7X2eWNM6jnex48AH8aX58aAD1lrD/jf37cBh/Dl3OWAB18+/5C11jPH9ywLoMuF8e0yfP+INwL/AXw2RMctA75ird0A/DvwWWvtCL4E8GcAxphawAD/7X/NeuBmYJX/z4eMMUXAz4H/x1q7DvgT4EfGmGrg/cCotXaDtXbaf4zD1tqL8RVF/2aMSTHGXOd/3TX+7/MLwC/9z78P+LL/NR/AN3o+zRhTDmwGLrXWXoKv+LssRO+RSCK6DFgGXGGtXYUvJ/ztzCf4B0fbgU9Zax/1f30KuNhaux7oAD4/4yX7rLUr/c8FyLbWXgNcCXzMny/mPK+1th34DPC8tfb9M2IYwlfsvBfAGLMSX6H0uyDimakGeIe1dgUwwOsFZR9wu/857wK2WGuP+z/PBC4Frgf+0Riz1hhzI/DXwA3+c/4YeAw4Okf8b8i//sfnjNsY4wYeAG631l4KfBu4etb38VYgx3/MS2d8b3KBVGTFtyPW2l3+j3cChSE6brO19hX/x7uAxf6Pvwm8zxiTAnwQ+O6MAukha+2wtXYc+E/gNnyJsSlwLGvtfuBFfMlnLj+ecc40IBe4C6gDXvLPen0BKDTGFAL/BXzDGPMwvtmwT8863jFgN7DTGPMlYJe19rEFvxsiAoC1divw9/gGUV/CN0uSPc/L7gbeDLzm/zf8FnwDsYDnZz3/V/5zHQOOA4Xned7v4BuggW9Q933/zM188cz0pLW2x//xbl7Phd/AN8MP8CHgWzNe8w1rrddaexT4LXArvoLskcCxrLUPAaVA1RznPFv+nTNufw7+Gb4c+XVgCN+ge6YXgNXGmGfxFWsPWGubzvI9ywKoyIpvozM+9uKbQp/9MUDqAo87Oddx/ZcJ9+D7h/4e4Lsznjc14+MkfFPic/38JQEp5zqvtTaw4aYL37T4D/0zXhuAi/Bdihiw1v47sBZ4El9Rt8cYkxc4mD+hXgfci2/k+RVjzFfP9Y2LyNkZY+7Cd/kPfMXQg5yZa+bixjebHfg3vIkz+6aGZz3/DXntfM5rrX0BSDbGbALeDXwvyHhmmjMXAg8DVxtjbsA38/b7Gc8LNhe6mDsXnu2cZ43bWvte4E1AE/A3vD7bj//rLfgGq/fjG7w+ZYyJtd61qKQiKzH14CtE8N+xd00Ij/0NfD1Wr1hrO2Y8/k5jTJoxJh3f6PE3wMu+EMwmfyyrgWuBZ/ElIrcxZr4E/QTwR8aYpf7PP4yvpwJjzEvARv+o8IP4eiAKAi80xqwH9gEHrbX34+vpWH+e37eIwC3Ab/x9Rtvwzaa453jeFK8XEL8D/tIYk+rvrfoOvl/2oTrvzHPN9l3ga8Aea21bqOLxt0/8CF/h9uCsL78PwBhTgW8W63H/Od9pjCn2f+39+AZ+TfPEP9OccRtjFhlj2oE+a+0D+Gb8zshz/p6t7wNPWGv/xn+sNQv5nmVuKrIS09eApcYYi2/E9WwIj/3f+KbpZyeWEXzT/nv9f3/fWtsLvB34mjFmL77Lge/3z4h14rvEedDfuzUna+3v8DV7PmmM2YNvRPoH/tmuv8bX8/Aa8Axwn7W2dcZrd+O7pLjdGLMdX9/WJy7w+xdJZA8C1/n/LW4FmoFq/y/9mX4DfMkY8yfA5/A1hr+G745DF/BXITzvVnwN6o/O8bofABs4c9Y9FPGAr2hZjK89YqZqY8wOfJcKP259nsQ3yHvaGLMf30D0bv9s+7nin2nOuP159p+ALf7zfh5/7+wM/4mvKD3gz4W5gGb1Q8Dl9Xrnf5ZIkIwxV+IbQa0JXNY7j7sXRURiln8G/m/w3WH4kRmPtwJv8y8lIQlASzhIyBhjfoCvaf19M/qmREQSzWF8bRn3OB2IOEszWSIiIiJhoJ4sERERkTBQkSUiIiISBo71ZBljkvGtXHvUWjs13/NFRKKF8peIBMPJxvcyoGXLli0OhiAiETbfumexQvlLJDEtKIfpcqGIiIhIGKjIEhEREQkDFVkiIiIiYaAiS0RERCQMVGSJiIiIhIGKLBEREZEwUJElIiIiEgYqskRERETCQEWWiIiISBioyBIREYlx09PTdHZ2Oh2GzKIiS87bH//xH9Pc3AzAwMAAd999tyPHEBGJNwvNjZ///Od56qmnLvg4ElpO7l0oMe7IkSNUV1cDYK2lvr7+jK//9re/5eGHHz7jsU996lOsW7cu6GOIiCSi+XLjvffeS29vLwBer5fm5mbq6upYunQpN998c9DHkfBSkSXn5dixY5SUlJCU5JsMtdZijDnjObfffju33377eR1jZGSE++67j5SUFDZt2sQ999wTpu9ERCS6BJNfH3roIQB27tzJF7/4RXbv3k1aWlrQx1GOjQwVWXJeDh06dMY/+v3793PnnXee8Zz5ZrLOdYwnnniC2267jRtvvJHNmzcrAYhIwggmvwZmsjo7O8nOzuYP//APAdi8efPpmSzlWOepyJLzcvDgQcbHxwFobW1ly5YtbN68+YznzDeTda5jdHd3n04Obrc7HN+CiEhUCia/Pvjgg3zgAx/gn//5n1m/fv2Cj6McGxkRKbKMMflA/qyHyyJxbgkPay2pqancc889GGOoq6vj0Ucf5aMf/WhIjlFSUkJXVxcrV67E4/GE8TsROTflL4m0YPPr5s2bz1pgzXcc5djIiNRM1mbgHyJ0LokAay2//OUvyc7ODssxbr31Vj73uc/x7LPPcsMNN1xIqCIXSvlLIiqY/Jqens6mTZvO+zjKsZERqSLrAeChWY+VAc9H6PwSQsPDw7hcrgsqsOY7RmZmJvfff/95H18khJS/JGJCkV+DOY5ybGS4vF6vIyc2xlQBLVu2bKGsTDPvIgnC5XQAoaD8JZKwFpTDtBipiIiISBioyBIREREJAxVZIiIiImGgIktEREQkDFRkiYiIiISBiiwJO4/Hy9S0FrsTkdg0OaX8JedH2+pI2ExMTvPkq2384plGTp6a4LLVS7nhkjIuXlHidGgiIvPaf7iPnz5p2dXQw8qqQq7ZUMpNl5aTmZ7idGgSI1RkSVgMnhznU1/7PV19I6Se3EtBbjo7bBLPvXaUD711LXdfXeN0iCIiZ/XNX+zm8ZdayctO5bYrKjnY0s+3H9vLC7uP8U8fvpKU5OjY7+9nP/sZAG9/+9sdjkTmosuFEnLTHi9f/NF2+ofG+Jt7L2WqZyc9h1/i//7tTVy0soTvPLaXbQe6nA5TRGROT75yhMdfauWOK6v4t7+6gffcvZp/+tg1fOQdGzjQ0s9XH3kNpxbynu2RRx7hkUcecToMOQsVWRJyP/ndIfY09fKBt6xh9fLi0+vjJruT+Mg71lOxNJcv/HA7rZ0nnA1URGSWw8eGePCXe1i3fBHvumMlqamvz1hdsX4Zb7u5nud2HuORpxocjFJihYosCal9zb088lQDN11azpUb37jdSFpqMp/440tITXHzncf2OhChiMjcpqY9/Ot/biMnK5UPv309rqQ37qDyputruXzdUh550nK8f8SBKCWWqMiSkPrJE5aC3DTefdeqsz6nIDedu6+rZU9TL3ubeyMYnYjI2T27o52O3lN84M1ryM5Km/M5LpeLd92+ApfLxU+etBGOUGKNiiwJmUOt/exp6uXua2pISTl3U+iNmyooyEnjR48fjJreBhFJXNMeLz9/upHqZbmsqS8+53ML8zK44dIKnt7eTkfvcIQilFikIktC5pGnGsjJTOXaS8rnfW5qips3XV/LgZZ+djX0RCA6EZGze2lPB8d6TvHm6+twud54mXC2u6+rJdnt4idPaDZLzk5FloTE4WNDbD/YzZ1XVZGWGtzKINddUk5RXrqm3EXEUV6vl59taaB0cTYbVwa3jl9+Tho3XVbJczuP0tl7KswRSqxSkSUh8ehzTWSkJXPDZZVBvyYl2c3NV1RxsKWfYz2achcRZ7zW0ENLxwnuubZ2zmb3s7ntymoAtmxrC1doEuNUZMkFGx2fYuveTq7eUEpmxsJWQr5q/TJcLnhaSUpEHPLM9nayM1LYtHbpgl5XmJfO6tpFPL2jHY9HvaXyRiqy5IK9vK+T8Ylprli/sAQFkJ+bztq6Yp7eriQlIpE3Oj7F1n2dXL52Ke7khf9KvPqiUnoGRtl/uC8M0UmsU5ElF+zZHUdZXJBBTXnBeb3+6otK6R0aY2+TlnMQkch65fQgcdl5vf7ilUvISEvmyVc1Gy9vpCJLLsjAyTF2NRznqg3LSFpAL8NMF60sITM9mad0yVBEIuzZnUcpzs+gtuL8BolpqW42rV3KS3s7GB2fCnF0EutUZMkFeX7XMTxeuHzd+Y0Cwbecw2Vrl7J1bycjY5MhjE5E5OwGT47zWkPPBQ0SAa7eWMr4xDRb93aEMDqJByqy5II8u+Mo1ctyWbo454KOc8X6ZYxPTvOa1swSkQh5ftcxPB7vBQ0SAeorCyjKT+fFPSqy5EwqsuS89QyM0tg+eN69DDMtryggKyOFV/Z1hSAyEZH5bd3bScWSHJaVXNgg0eVyscEsZndDLxOT0yGKTuKBiiw5b9sPdQOwvn7xBR/L7U5iXX0x2w91M627DEUkzE6NTnKgpY+LVlx4/gLYuKKE8clp9ugGHplBRZactx0Hu1lckMGS4qyQHG/jisWcPDVBw5GBkBxPRORsdjX0MO3xsm6efQqDtaK6kLRUN6/s6wzJ8SQ+qMiS8zIxOc2uxh42rlgc1D5fwVi7vBh3kotXDihJiUh4bTvYRXZGCjVl+SE5XmqKmzV1i9h2sFub3stpKrLkvOxr7mN8Yjpko0CArIwU6qsKeXV/d8iOKSIym8fjZcfB46yvLybJHbpfgxtXLKZvaIzDx4ZCdkyJbSqy5LxsP9RNaoqbFdVFIT3uxhWLae8+SVefNlwVkfBoPjbI4PA4603oBokAG8xiXC549YBu4BEfFVmyYF6vl+0HullTW0RKijukx97ob0LddkCzWSISHtsPdONywZq60BZZudlp1JTlK3/JacmROIkxJh+YfeG7LBLnltDr6D1FZ98p7riqKuTHLinKYnFhJrsae3jTNTUhP77IQil/xZ/th7pZXl5AdlZqyI+9dvkifvVME8Ojk2RnpIT8+BJbIjWTtRlomfXn+QidW0LsNXscgNXLQzsKDFhZXcj+5j4t5SDRQvkrjgyPTNDYPsi6+kVhOf6qmiK8XtjfrKUcJHJF1gNA9aw/10To3BJie5t7KS7IoLgwMyzHX1lbxKmxSVrUPCrRQfkrjuw73IfXS8j7SQNqy/NJSU5iV6OKLInQ5UJr7SAwOPMxY0wkTi0h5vF42dvUx8UrQ7OA31xW+ZPfnqYe6spDc3u1yPlS/oove5t6SU1xU1OWF5bjpyS7qa8sYG+ztggTNb7LArV1n+TkyETYRoEA+bnpLCvO1khQREJub3MvprKA5OTQ3rQz06raIo50nmRoeDxs55DYoCJLFmRPk290Vl9VENbzrKwp5EBLH1PTnrCeR0QSx4lTE7R0nGBldWFYz7PSPwjdq76shKciSxZkX3MfiwsyWFQQnn6sgFU1RYxPTNPYNjj/k0VEgrD/sK/oMVXhLbKqS/NIT0tmV4MuGSY6FVkSNI/Hy77mXlbXhOeunJlW1PhGgrublKREJDT2Nvf5+7HC2+vpdidhqgo0kyUqsiR4R7pOcHJkkhU14R0FAuRkplKxNFc72otIyOxt6mVFZQHu5PD/6ltVU0RHzyn6hkbDfi6JXiqyJGh7/QVPfZin2gNMVQENRwbUlyUiF2xoeJzWzhOsjMAgEV6/JHngcF9EzifRSUWWBG3f4T5KCjMpys+IyPnqKwsZn5ympUPrZYnIhTnQ4it2wt2PFVCxNJfUFDf7W/ojcj6JTiqyJCher5eDLf2YyvDeVTjT8grfuQ4oSYnIBTrQ0k+yO4mq0vCsjzVbsjuJ2vJ8DrYqfyUyFVkSlK6+EQaHx6mLYJFVmJfOovyM0yNQEZHzdai1n9qyvLCujzXb8ooCWjtPMDo+FbFzSnRRkSVBCYzGIr0C+/LKAg629uP1ah9DETk/E5PTNB0doj6Cg0SA+soCPB4vDUcGInpeiR4qsiQoh1r7yUxPpnRxTkTPu7yigIET4xwf0B06InJ+mo8OMTXtoa4isoPEuop8XC7Yr9n4hKUiS4JysLWf5eUFuJJcET1vYOSpS4Yicr4CM/G15ZGdycpMT6FscY76shKYiiyZ18jYJEe6TrC8MvKbNZeV5JCRlqzmdxE5b4eO9LOkKJPc7LSIn3t5ZQH2yADTHrU8JCIVWTIve2QArzfy/VgASUku/x06mskSkYXzer0cbO2nviKys1gByysLGB2foq3rhCPnF2epyJJ5HWrtx+Ui7FtRnE19ZQFtXSc5NTrpyPlFJHZ1948weDKyd0bPFCjutChpYlKRJfM60NpPxZJc0tNTHDl/XUU+Xi80tusOHRFZmECrgRMz8QCLCjLIy07joO4wTEgqsuScpj1e7JEBx6baAapLfcnxkJKUiCzQodZ+MtIif2d0gMvloqYsj8Y25a9EpCJLzunY8ZOMjk9R69AoECArI4WlxVlYFVkiskAN7QPUledH/M7omWrL8+noPcXwyIRjMYgzVGTJOTX4R1/VZZHZiuJsasvyaWwf1KKkIhK08clpWjtOUFfucP7yD1Ib2gcdjUMiT0WWnFND2yCZ6cmUFGU5GkdNWT5Dw+P0aFFSEQnS4aNDTHu8VJU6NxMPUF2ah8sF9oiWokk0KrLknBraB6gtyyfJwal2eH0kqCQlIsFq8N8sUxOhTaHPJjM9haWLstXykIBUZMlZRctUO0D5khxSkpM4pOZREQlSQ9sAi/LTyctNdzoUasvz1PKQgFRkyVlFy1Q7QLI7icpluad7xERE5tPQ5puJjwY1ZfmcODVBd/+I06FIBKnIkrOKlqn2gNqy/NMbvYqInMvQ8DhdfSNRU2QF4tAlw8SiIkvOqqFtgKK86JhqB19f1uSUhyOd2p5CRM6t0X8nX1WUDBLL/C0Pmo1PLCqy5Kwa2wYdWyV5LhoJikiwGtsGSHL57uyLBsnuJKpK87AqshKKiiyZ09DwOJ19p6Jmqh1821NkZ6acvowpInI2tm2AspIc0tKSnQ7ltJrSPFo6hphWy0PCUJElc4q2qXbwbU9RXZpH01Et6CciZ+f1emloG6QmCm7amam6NI+JSQ9t3SedDkUiREWWzKnp6CAuF1Qty3U6lDNUl+bT3j3M2MSU06GISJQ6PjDKyZEJaqJg+ZmZAjtnNGrl94QRkXlUY0w+MHtIURaJc8v5aWofZFlxNunpKU6Hcobq0jw8Hi8tx06wsrrQ6XAkASh/xZ6mwEz80ugaJJYUZpGRlkxD2wC3XlbpdDgSAUHNZBljFl3geTYDLbP+PH+Bx5QwamwfjJqlG2YKNLE2qi9LgqT8lXga2wdIdrsoW5LjdChnSEpyUaWWh4QS7OXC/caYh40xV5/neR4Aqmf9ueY8jyVh1jc0Sv+Jsai5K2emwrx08nPStNGqLITyV4JpOjpI5ZJckpPdTofyBjWlebR2nmByatrpUCQCgr1cWAW8C/iSMSYL+BbwQ2ttUN171tpB4IzfisaYBYQpkdR8dAiIvn6sgOrSvNOXA0SCUIXyV8Lwer00tQ9yxfplTocyp+rSPKanvbR2nmB5eYHT4UiYBTWTZa0dtdZ+31p7OfAx4JNAhzHmG8aYxWGNUCKusX2QJBeUR1k/Q0B1aR4dvcOMjE06HYrEAOWvxNLZd4pTY1NRORMPM1oe2jRQTARB311ojLndGPML4BHgMeBKoB34dZhiE4c0HR30rS+TGj3ry8xUXZqH1/v6jJvIfJS/EsfrTe/RWWRpvb/EEtRvUWNMG9ALfBN4r7V21P+lvcaYD4YrOIm8wFT7BlPsdChnFRgJNrQPsLbuQnuaJd4pfyWWxvZBUpOTWFaS7XQoc9J6f4kl2KmK91prfz/zAWPMKmvtAWttTRjiEof0Do4xODwetVPtALnZaRTlp2utGQmW8lcCaTo6SNWyPNzu6F0Gsro0j//+/WHGJqZIj9IrBhIa5/y/a4wJLET0NWPM9YDL/3kK8CtgefhCEyc0HfVNYVcti94iC9T8LvNT/ko8Ho+X5qODXHdRudOhnJPW+0sc85X6P8E3zb4W6PN/3Iuvl2FneEMTJzS2D+JOir71ZWarLs2ju3+E4ZEJp0OR6KX8lWCO9QwzOj4dVduBzSVwpSAwqJX4dc6ZLGvtbQDGmO9Zaz8QmZDESU3tg1QsySElJfrWl5kpMNPWfHSI9fXR2z8mzlH+SjyBPqeKKF1+JqAgN53crFS1PCSA+S4XrrDWHgK+boy5aPbXrbUaDcYRr9dL09EhLl1V4nQo8wqMVBuPDqjIkjkpfyWepqODpKa4WbYoy+lQzsnl8q383nxMd0jHu/k67v4NuAv4xRxf8wJqGo0jPf5NVaN9qh0gJzOVRfkZNLYrSclZKX8lmOajQ1QvzSUpipveA6pL8/h1Y4+a3+PcfJcL7/L/XR2ZcMRJgan2yihdhHS2qtJcmo9pul3mpvyVWKY9Xg4fi/6m94CqZb71/lo7TrCiSs3v8Wq+y4X/91xft9Z+PLThiJOajsZG03tAdWke2/d3MzwyQXZmqtPhSJRR/kosHaeb3mNjkFjtj7OxfUBFVhybb46yLyJRSFSIlab3ADW/yzyUvxLI603v0d/uAGp+TxTzXS68L1KBiLNiqek9QM3vci7KX4klVpreAwIrv6v5Pb7Nd7nwBWvt1caYk/gaRc9grY2NeVmZVyw1vQeo+V3ORfkrscRS03tAVWkee9T8Htfm+7/6dv/fa8IdiDgr1preA9T8Lueg/JUgPDHW9B6g5vf4d86S31rb6f/7CLAC+BjwYaDC/5jEiVhreg+oLs2ju08rv8sbKX8ljmMx1vQeEFj5vbFdK7/Hq6DmVY0xnwa+AowAU8B/GGM+Gs7AJLKajw5RXhI7Te8BM5vfReai/BX/mgNN7zE2E1+Qm0Zetprf41mwF4HfDVxmrT0JYIz5MvAC8I1wBSaR42t6H+TilbHT9B6g5ncJgvJXnGs6OuRrei/OdjqUBXG5XFQtU/N7PAu2Q3AUGA58Yq0dAMbCEpFEXM/AKCdOTZyeuo4lan6XICh/xbmmo4Mx1/QeUFWaR3v3ScYmppwORcJgvrsL/8D/oQUeM8Z8F5gG3gdsD3NsEiGx2vQe4LsNWtPtciblr8QQq03vAWp+j2/zXS782KzP/8+MjxeHOBZxSKw2vQdUleaybX+XVn6X2ZS/EkCsNr0HzGx+V5EVf+ZbjPSGSAUizom1ld5n08rvMhflr8TQHGMrvc+m5vf4FlTjuzFmOfCXQDbgAtxAnbX2qjDGJhEQiyu9z6bmdzkX5a/41hhjK73Ppub3+BZsl+CPgVTgSqAVWAXsDVNMEkHHY3Cl99lyMlNZVKDmdzkr5a84Fosrvc+m5vf4FexPZY619iPA74DHgVuAi8MWlUTM6ab3ZbHZzxBQvUzN73JWyl9xatrf9F5dFruDRDiz+V3iS7BFVr//7yZgjbV2EN+UuwTp0KFDvOc97+HOO+9kxYoVGGP46le/GvFjzNYcaHovic2m94Cq0lyt/C5no/wVAtGYwzoCTe+xPkjUyu9xK9jFSBuNMQ8AP8C3WnI2kBa+sOLL+Pg4mzdv5gtf+ALr1q3jgQceYHx8nI9//OOnn/Pb3/6Whx9++IzXfepTn2LdunVBH+N8NMZ403tAIEmp+V3moPx1gaI1hzXFeNN7gJrf41ewRdZHgDusta8ZY74N3AZ8MHxhxZeXXnqJ1atXn042xhief/55XC7X6efcfvvt3H777ed1jJGREe677z5SUlLYtGkT99xzT1Bxeb1emo8OcunqJRfw3UWHwB2GDe1qfpc3UP66QNGaw5qODpIWw03vAYHm9yZtDxZ3giqyrLUjxphnjTF3Ay3A+/1T7hKExsZG6uvrT39+4MABVq9efcZz5hsFnusYTzzxBLfddhs33ngjmzdvDjpBdfePcHJkMqab3gOyM1MpLsg4PbIVCVD+unDRmsOa2gepWhbbTe8B1aV57Gk/tRfvAAAgAElEQVTsYWx8ivS0YOc/JNoFu4TDXfim2g/guwW6zhjzTmvt78MZXLzIz8/n5ZdfBqClpYUnnniCn/70p2c8Z75R4LmO0d3djTEGALc7+Mt+gU2VY3Wl99mqSzUSlDdS/rpw0ZjDfE3vQ1x/SWyu9D5bdamv+f1wxxCrqoucDkdCJNhy+XPAddba/QDGmIuAbwOXBPNiY0w+kD/r4bJgg4x1d911F08//TR33303BQUFfPnLX6agoCBkxygpKaGrq4uVK1fi8XiCPmbXlmd4z7EX4bvbaHXN//zz9a5p2BvG4wdUl+Xz6r4uhobHyctWy42cpvx1gaIxh9lf/ZY/OPy/LBvOpnV7+Hd6yL/+BvKvuzZsxw/0lTa0DajIiiPBFlneQIICsNbuNMYsZH52M/APC4osjmRlZfHggw+G7Ri33norn/vc53j22We54YbgF7nu7h9haWoyrggUQJEws/n9ohXaNUVOU/66QNGYw7r7RwBIS43tm3YC8nPTKchNV/N7nJlvg+jARkrbjDGfBB4EPMC9wNMLOM8DwEOzHisDnl/AMeQsMjMzuf/++xf0Go/Hy3PeZVx196Vcf8/q+V9wAT777neG9fgBgdu4G9oHVGSJ8lcMOZ8cZguWs6U2jQf//laSkuJjpOhreVCRFU/mm8nqBbz4+hgAvjDja17gk8GcxN9kesZPTuD6uzijs+8UI2NTVMfopqpzyUxPYcmiLI0EJUD5K441tQ9SW5oXNwUW+IqsnQe7GRmbJDM9xelwJATm2yA69m/ZkDk1tvkWvYuHOwtnqi7No6G1f/4nStxT/opfk1MeDncMcfuVVU6HElIzWx7W1i1yOBoJhWDvLkzCN+q7A0gBngD+xVqrjZZi1OlNVYuznQ4lpKpL89i6u4OBE2MU5KY7HY5EAeWv+NPWdYLJKU/Mr/Q+W6DIsm0DKrLiRLAjvfuBG4GvAl/Gt9Hql8IVlIRfY9sg1XGyvsxMp7enUF+DvE75K84EWgKqSmff9BnbcrICm90rf8WLYO8uvB24xFo7CWCM+R9gd9iikrCanvZNtd90aXysLzNT5dJcXC7fbdCbVsX+SvYSEspfcabp6CDZmSksKshwOpSQqy7No1mDxLgR7DRGUiBBAVhrx4HJczxfolj78WHGJ6ZPb0UTT9LTkllWnK2RoMyk/BVnGtsGqS3NP2Nbn3hRXZpHd/8IJ05ps/t4EOxM1i5jzFeAr/s//yiwJzwhSbg1tcdn03tATVkeu20PXq83LpOwLJjyVxwZn5zmSNcJ7rmu1ulQwqLGn5eb2ge1FE0cCHYm66NAAfASsBUoBj4WrqAkvBraB8lIS2ZxUWxvqno2tWX5nDg1wfGBUadDkeig/BVHWjqGmPZ4qYqj5Wdmqi7Nw+UC26a7pONBsDNZf2etvTecgUjkNLYNUFsWX+vLzFRT5muGtUf6KSnMdDgaiQLKX3Gkwb/8THWcNb0HZKSnsKw4G3tkwOlQJASCncm6O6xRSMSMT07T0nGC2vL4TFAAZUtySElOwrYpSQmg/BVXGo4MUpiXTn4cL9FSU5ZHY/sgXq/X6VDkAgU7k3XYGPME8AIwHHjQWvvlsEQlYdNyzDfVXlMWn/1YAMnuJCqX5dLYpuZ3AZS/4kpD2wDL43iQCL7Z+Od3HuP4wKhm42NcsEVW4OLwxcA0s7aYkNgRmN2pidOp9oDasnye2dbG9LQHd5ytBSYLpvwVJ06cmqCz7xQ3xOHyMzPV+lseGtTyEPOC/e3zr8Aa4C7gzUAt8NkwxSRh1NA2QFFeOnlxPNUOvpHgxKSHI10nnQ5FnKf8FSca4nQ7sNkCLQ+H1PIQ84Itsr4PfAfI8P/5OfAf4QpKwqehbYC6OJ9qB05fDtUdOoLyV9xoaBsgyfX6zg7xSi0P8SPYy4WZ1tpvz/j8a8aYPw9HQBI+Q8PjdPWNcOOlFU6HEnaLCzPJzkyhoW2QO65wOhpxmPJXnGhoG6CsJIe0tGB/dcUutTzEh2D/zx02xlwZ+MQYswZoCU9IEi6BVdCr47jpPcDlclFTln/68oIkNOWvOOD1emloG6SuLP5n4uH1loe2brU8xLJghwOlwHPGmN3AFLAR6DLG7AGw1q4LU3wSQvaIb6o9HrfTmUtNWR6/eqaH0fEpMhJg5CtnpfwVBzr7TnFyZIKaBGh3gNdbHg4d6ac6QXJ2PAr2N8+nwhqFRERD+wDlCTLVDlBXXoDXC43tA6yrK3Y6HHGO8lccaPD3J8V7P1bA4sJMcjJTOXRkgDuuqHY6HDlPQf22tdY+F+5AJLw8Hi+NbQNcunqJ06FETGDB1QMt/SqyEpjyV3xoaBsgLcVN6eJsp0OJCJfLRV1FPodadfNOLFM3XYI41jPMyZFJ6ioKnA4lYrIyfNtTKEmJxL6Drf3UleeTlEBN4HUV+XT0+C6TSmxKnJ/WBGeP+AqNeN5OZy51FfnYtgFtTyESw8Ympmg5NkR9ZYLlr3LfoFj7GMYuFVkJ4mDrANmZKZQUZTkdSkQtryhgeGSSYz3D8z9ZRKJSU/sg0x4vteWJMxMPvub3pCQXB1r6nA5FzpOKrARxsLWf+ooCkpJcTocSUXUVvpGvLhmKxK6D/n+/iXJnYUBaajIVS3I4pJmsmKUiKwEMj0zQ3n2S5RWJlaAAli7KJjM9+XSSFpHYc6h1gGXFWWRnpjodSsTVlRfQ2DbAtEctD7FIRVYCCIyCEm2qHSApyUVteb5GgiIxyuv1+mfiC50OxRF1FfmMTUzT1nXC6VDkPKjISgCHWvtJSnIlzPoysy2vKKC9+ySnRiedDkVEFqij13d33fIEa3oPWO6/I1x9WbFJRVYCONjaT9XS3IRZhHS2uop8vF60xY5IDDrYkph3RgcsKsggLzuVg63KX7FIRVacm5720NA2QH0CrY81W21ZPi6XRoIisejQkX6yMlJYsigxFiGdzbcoaYFu3olRKrLiXGvnCcYmpk/fZZeIMtJTqFiSy/4WJSmRWOPrx8pPuDujZzJVhXT3j9A3NOp0KLJAKrLi3H7/7E0iNr3PZKoKsUf6mZzyOB2KiATpxKkJ2rpOnu5LSlT1lb7vf1+zZuNjTUSadIwx+cDsqZSySJw70e0/3EdxQQZFBRlOh+IoU1XAE1tbaT42yIrKxLxLSc6P8pdzApf466sS+99s5dJc0lPd7Dvcx3UX6UcvlkSqE3oz8A8ROpf4eb1e9h/uY0P9YqdDcVwgSe9r7lORJQul/OWQ/Yf7SElOoqYsMe+MDnC7k6irKFBfaQyK1OXCB4DqWX+uidC5E9bR48MMDU9gqhJ7qh0gLzuNJYuy2HdYSUoWTPnLIfsO91FfUUBystvpUBxnqgpp6zqpzaJjTERmsqy1g8DgzMeMMZE4dULb7y8olmvmBvAlqe37u/B4vAndRCsLo/zljJGxSQ4fHeStN9Q5HUpUMP7Z+IMt/WxavcThaCRYanyPY/sP95Gfk8biokynQ4kKpqqAU6OTtHWfdDoUEZnHodYBPF71YwXUlOWR7E5ib3Ov06HIAqjIilNer5d9zb2srC7E5dKsDbw+EtynJCUS9fYd7sWd5Eq4TaHPJjXFTU1Z3ukrFBIbVGTFqe7+EXqHxlipUeBpi/IzKMxLV1+WSAzY19xHbVk+aamJuVPFXExVIYePDTE2PuV0KBIkFVlx6nQ/loqs01wuFyuqCtnX3IfXqx3tRaLV+OQ0je0DrKjWTTszmepCpj1eDmj195ihIitO7WvuIzszhaXFibkVxdmsqi1iaHicti71ZYlEK3ukn6lpL/W6aecMprIAt9vFroYep0ORIKnIikNer5ddjT2sqV2ku+hmWVWzCIBdjUpSItFqV0MPSUkuNb3PkpaaTF15AXuUv2KGiqw41NF7it7BUdbUFjkdStRZVJDB4sJMjQRFotjuxh7qK/JJT1M/1myraoo43DGk9bJihIqsOBQoIFbUqMiay+raIvYf7mN6WvsYikSb4dFJmtoHWVO7yOlQotKq2iK8Xt0lHStUZMWh3Y09LC7IoLhQ62PNZVXtIkbHp2g6Ojj/k0UkovY29eLx+mZs5I18d1y6NRsfI1RkxZlpj5c9jT2srVuk9bHOYmWNr89DfVki0Wd3Yw/paW6qtT7WnJKTkzBVhexu1ExWLFCRFWeajw5yamyK1XUaBZ5NblYaFUtylKREotCuhh5WVRfhduvX09msri3iWM8wfUOjToci89BPcZwJTCGbahVZ57KytohDrf2MT047HYqI+PUMjHKsZ5jVumnnnFb6L6Xu1mx81FORFWd2N/ZQtTSXnKw0p0OJamvripmc8qh5VCSKBIoG9WOdW8WSXHKyUtlx6LjTocg8VGTFkdHxKQ609LNGlwrntaK6kNSUJLYd6HY6FBHxe80eJz87jWUlOU6HEtWSklysqy9mpz2u3SuinIqsOLKroYepaQ/r6hc7HUrUS01xs7KmiB2HVGSJRIPpaQ877HE2msW6aScI6+uLGR6ZZFT7GEY1FVlxZPvBbjLTk1leqf2+grG+fjFdfSN09Aw7HYpIwjt0ZIBTo5OsN1ofKxhrlxfjcsGJU1qUNJqpyIoTXq+X7Qe7Wbe8WHflBGl9fTEA2w5qNkvEadsOdJHsdrFKi5AGJSsjheUVBQyPTDodipyDfhvHicPHhug/McYGU+x0KDGjuDCTpcVZbFeRJeK4bQe7WVlVSHp6itOhxIx19cWMjk8xOaXdK6KViqw4sf1gNy4XrFmuImsh1tcvZl9zH2PqaxBxzPH+Edq6TrJhhfpJF2K9v/92WPsYRi0VWXFi28Fu6sryyc3W0g0Lsd4UMzXt0XozIg4KXLJfq0HiglQszSE5OYkTKrKiloqsODA0PE5D2wAbjEaBC2UqC8lIS2brvi6nQxFJWNsPdrOkKJOSRVlOhxJTXC4X2RkpDI9MMqGFlaOSiqw4sO1AF16v7/q8LExychIbVyzm1f2dTE+rr0Ek0kbGJtnd2MNFK0q0dMN5yMlKxePxasPoKKUiKw68sLuDksJMKpblOh1KTLp49RJOjkyyr7nP6VBEEs62A91MTnm4ZHWJ06HEpMyMFJKSXLywu8PpUGQOKrJi3PDIBLsbe7hszRKNAs/TuuXFpKa4eXGPkpRIpL24p4OC3DRqy7W+3/lwuSAnM5VXD3Qxpdn4qKMiK8a9sr+LqWkvl6xa4nQoMSst1c36+mJe3teJx6MtKkQiZXR8ih0Hu7ls9VJcSRoknq+crFROjU6yt0l7sUYbFVkx7sU9HSzKz6CyLM/pUGLaxatLGDg5jj0y4HQoIglj+8FuJnSp8IJlZaSQlurmJc3GRx0VWTHs1Ogkr9keLl+zVJcKL9BGs5hkdxIv7jnmdCgiCePF3R3kZ6exvLLQ6VBimisJ/2x8F9OajY8qKrJiWOAa/CVrNAq8UBnpKaypW8QLuzuUpEQiYGx8iu2Hutm0ZokuFYbApWuWMjg8zr5mXTKMJiqyYtjvXztGUV46VaX5TocSF67aWErf0Bj71NcgEnavHuhifGKaS1arnzQUNq5YTEZaMlu2tTsdisygIitG9Z8YY+ehbq69qIwkjQJDYuOKxWSmJ7Nle5vToYjEvS3b2inOz8BU6VJhKKSmuNm0dikv7e3QNmFRJDkSJzHG5AOzp1vKInHuePXsjnY8XrhywzKnQ4kbqSluNq1Zykt7OvjI+BQZaRH55yFRTvkr9PqGRtnVcJy33lCnS4UhdPXGUp7b3s7WfZ3ccHG50+EIkZvJ2gy0zPrzfITOHXe8Xi9PbWvHVBZQsijb6XDiylUbSxmfmGbr3k6nQ5HoofwVYk9vDwwSS50OJa4sryiguCCDLds0Gx8tIlVkPQBUz/pzTYTOHXca2wdp7z7JtRdpMB1q9ZX+JKVLhvI65a8Q8nq9bNnWzqrqQoqLtFdhKCUlubhqQyl7mnrpGxp1OhwhQpcLrbWDwODMx4wxkTh1XNqyrY3U5CQuWaOG0VBzuVxctbGUXz3TRHf/CCWFmU6HJA5T/got2zbAsZ5h7r52ndOhxKWrNpby2DNNPLWtjXferJ9Tp6nxPcaMjU/x3GvH2LRmCRnpKU6HE5eu8/cyPP5Si8ORiMSfJ14+QmqKm4tXaemZcCgpymJVbRG/3dqqTe+jgIqsGPPMzqOcGp3kxk0VTocSt4ryM7h4VQlPvHKE8clpp8MRiRtDw+M8t/Mo124sJV2DxLC55fJKegfHePVAl9OhJDwVWTHE6/Xym+cPU1OaR22FNlMNp5svr+LkyCTPv6YV4EVC5YlXjjAx5eHmyyudDiWubTCLKcpP5zcvaDbeaSqyYsiuhh7au09y+5VV2kYnzFZWF1K6OJvfvHAYr1crwItcqKlpD//7Ygvrli9iWUmO0+HENbc7iRs3VbK3qZe2rhNOh5PQVGTFkF8/f5i87FQ1vEeAy+XipssqOXxsSJtGi4TA1r2d9A6NcesVmsWKhOsuKSPZncR/azbLUSqyYsSxnmG2H+zmlssqSU52Ox1OQrhqYylZGSn8bEuj06GIxDSv18uvf9/MkqJM1i5f7HQ4CSE3K40r1i/jqW1tDJwYczqchKUiK0b811MNpKa4uUEN7xGTkZbMbVdW8eqBLg4fG3I6HJGYtaexl0NHBrjz6mqt8B5Bb7qulqlpD48+2+R0KAlLRVYMONYzzLM72rn1skpystOcDieh3HJFFRlpyfz0Set0KCIxyev18vDvDlGUl87VWkA5opYsyuKK9cv435daGRoedzqchKQiKwb89AlLcrKbO66pdjqUhJOVkcKtV1axdW8nRzrVQCqyUK819HCwtZ+33FCnVgcH3HN9HRNT0zz6nGaznKAiK8q1d5/k968d5fYrNIvllNuurCI91c2PnzjkdCgiMcXr9fLj3x2iOD+DqzZqn0InLCvOZtOapfzPCy0MntRsVqSpyIpyP3z8ICnJbm6/WrNYTsnOTOWOq2t4aU8n+5p7nQ5HJGa8vK8Le2RAs1gOe+tNy5mc8vDDxw86HUrCUZEVxXba42zd28lbb6glO0uzWE6685oaivLS+fZje5n2aN0skfmMTUzx3V/tpbwkhys1i+WoZcXZ3HxFJU++eoTmo4Pzv0BCRkVWlJqcmubbj+5h6aIsbr1Ks1hOS0t1887bV9DScYKnXj3idDgiUe/nTzdyfGCUe+9ZhdutXzVOe8sNy8nOSOXbj+3VAssRpJ/8KPXYc80c6znF++5epWn2KHHZ2qXUVxbwn/97UHfqiJxDZ+8pfvlME1dvWMbyqiKnwxF8N/G87ZZ6DrT08+zOo06HkzBUZEWh9u6T/PTJBi5dVcLq5cVOhyN+LpeLP7lnNSNjU3zj57s1GhSZw7THy9f+axdut4t33rbC6XBkhusuKaeuPJ9/f3QvvYOjToeTEFRkRZnJqWm+9KMdpKe6ed+bVjsdjsxSviSXP7x5OVv3dvLMjnanwxGJOr98ppG9zb3c+6bV5OWmOx2OzJCU5OJDb1/P1JSHrz7yGh71l4adiqwo85//e5DDHUN88A/WKUFFqTuursFUFfDgL/fS3T/idDgiUaOhbYCHf3uIK9Yu5YoNanaPRiVFWfzRnSvZ1dDDf7942Olw4p6KrCjy8r5OHnuumVsvr2TdCu3vFa2Sklx88A/X43LBP33vFUbHp5wOScRxQ8PjfPFH28nPSePeN6/B5dL2OdHqhkvL2WAW871f72dvk5alCScVWVGioW2AL/5oB3Xl+bxDfQxRr7gwk4++ayNt3Sf50sM7tKyDJLSJyWn++fuv0jc0xsf/aCMZGSlOhyTn4HK5+PA71lNSlMW//OBVOnqHnQ4pbqnIigLd/SN87nuvkJ+dxifeezGpqbqbMBasXV7Me+5cyav7u/jer/epEV4Sksfj5Ss/2cnB1n7+8p0bqC4vcDokCUJmegqf+OOLwQv/+N1XtBp8mKjIclhH7zCf/uYLTE55+NSfXKKtc2LMzZdXcuuVVfz6+cN891cqtCSxTE97+MpPd/LC7g7ee8cKNq5a4nRIsgAlRVl8/D0X0zM4wqe/+QL9J8acDinuqMhyUGvnCf726y8wNjHN//unmygpznY6JFkgl8vFe+5cyW3+Qutbv9jD9LTH6bBEwm5icpr7f7CNZ3cc5V23GW7RoskxaUV1IZ/8k0s5PjjK333zBY4P6GaeUFKR5ZCX9nTwN19/HpfLxf/355dTtjTP6ZDkPLlcLt5950ruuraGx7e28tnvvKzFSiWuHR8Y4dPfepFX9nfx/ntWc+e1tWp0j2Erqov41L2XMnBinE985Tl2N/Y4HVLcUJEVYROT03znV3u5/wfbWFaczWc+eIVmsOKAy+VbePHP/mAt+1v6+MRXntNm0hKXXj3QxeYvP0tb10k+8Z6LuOGySqdDkhCoryzksx+5kpysVD7z7y/xyFOWKc3KX7BkpwNIJNsPdvPvj+6hq2+EO66q4h23rsCdrDo3nlx7cTnlS3L5xk928nfffJFbNlXw/jetJicz1enQRC5Iz8Ao3/31Xl7a00nV0lw+9kcbKS7KcjosCaGlxdn8w4ev5HuP7eVHjx/ihV0dfPRt61lRVeh0aDFLRVaYeb1e9h3u47+eamBXQw+lxVl8+k83saJmkdOhSZhUl+bxzx+/lseebuTxF1t4cU8Hb7q6hjdfV6tiS2JO39Aojz3XzONbW/F64V231nPrVdXaUzVOpacl8xfv3Mhla5fxw//ez6e+9jyXrV7Cu24x1JXnOx1ezFGRFSYnRyZ4ftcxnnq1jcb2QfKz03jvnSu46bIqzV4lgLRUN++8fQVXbSzl0S2NPPJUA48918zVG5Zxy6ZKVlYVkpSkHhaJTtMeL7sbe3h6Wzsv7unA4/Vy9fplvPWm5RQVZDodnkTAxatKWFVbxO9ebOF3L7bwif1drKou5JZNlVy1fhkZaSofgqF3KUQmpzy0dg6xt6mPHYe6OdDSx9S0l4olOXzgzau5amMZKSka+SWaspIcPvbui2jvOsGTW1t5cXcHW7a1U5ibzqWrSthQX8zKqkKK8jKcDlUSmNfr5fjAKAdb+thpj7PTHmdoeILsjBRu2lTObVdWs6hQxVWiyUhL5i03LufWK6t45tU2fr/jKF995DW++YvdrKtbxCUrS1hdU0TFklzcGjTOSUXWAkxOeRgaHqf/xBjHB0Y43j9Ce/cwbd0naOk4weSUr0mwvCSHO66q5rI1Sylflqu7boTyJbl84K3rePedq9hxoItdh47z+9eO8buXjwCwKD+DqqW5VJTksHRRFiWFmSzKz6AgJ42sjBT9DMkF83i8DI9OMnByjJ6BUXoGRjjaM0x710laOk+cXowyJzOF9fXFXLKqhHVmsS4LCpnpKdx1bS13XlNDw5EBdhzo4rVDx9lx6DgAGWluqpbmUbEkh7LF2ZQUZlKcn0lBbhr52Wm43Yl79SYiRZYxJh+YfTG3EqCrq2ve158am2Trnk6mp2cu9Oh9w0en/56xIKTXC168vr89/r+9Xjz4ko7H42Vq2nP678kpL5NT04xPTTM+4fszMjbJyNjUnHvU5WamsqQ4i8vqs6lcmkvlslxycwIbOw/T2aHtCiYmJgDoOHbM4UiiQ/ViF9WLS7jnqmI6jg/T2jFEW9dJ2traeXXXyBvW2XK7XWSlpZCRnkJGmpv01GRSU5NISXaTmuwm2e0iOTkJt8uF252Ey+XbXzHJBUkuF7h8H7tcLmbWaoHCLfDQmWXcOYq6M44Bl6wooTAvuM3Mb7rppirgqLU2ZjZ8vND85fV62X7wOP1Dsxd69M7478yM9noOC+QvvODx+h7weL14vK/nL4/Hy5THw/S0L4dNTHqYmJpmYtLD+IQvb42MTXJqbArPrO2fUpKTWLIoi+ribCrXLqJ8aS6li7N9/2PxcLx7/u9PnBXp/JqTAtevz+P6dbn0nxij9dgQRzpP0NXby9MtRxgZnXzDazLSU8jOSCY9LZn01GTSUpJITXaTmuLPX+4k3O4k3EkuX+5KcpHE6znLleT/m9dz2Oz8debHweUvgLLF2ayuKQr6+19oDnNFYoVqY8xngX8I+4lEJBZUW2tbnQ4iWMpfIjJL0DksUpcLHwAemvVYKlADNALTEYrjQpQBzwPXAEcdjsVJeh989D74nM/7EGvvVzzkL9DPLOg9CND74HO+70PQz41IkWWtHQQG5/hSQyTOHwrGmMCHR2NpFB5qeh989D74JML7EA/5CxLj/9V89B746H3wicT7kLjdaCIiIiJhpCJLREREJAxUZImIiIiEgYqs4A0C9zF3b0Yi0fvgo/fBR+9D7ND/K70HAXoffML+PkRkCQcRERGRRKOZLBEREZEwUJElIiIiEgYqskRERETCQEWWiIiISBioyBIREREJAxVZIiIiImEQqQ2iJU4ZYx4C9llrvxTm8+QCjwP5wGestb+Y8bX/ApKstW+b8dgngTcDN1prJ8MZm4jEJuUvCTcVWRIrNgAl1tq6Ob72p8B2Y8xma+0DxphbgY8Bm5SgRCQKKH8lKBVZcpox5sfAzsCozhjzYeAG4I+ArwCXAzmAC/gza+2Ls17vBYqttb2zPzfGvAn4eyAVGAE+aa3dOkcMbwH+AXADJ4D/AwwB3wNKjTG7gCustaOB11hrTxpj3g783hjTDnwNeIu1tjtEb42IRDnlL4lG6smSmb4D/MmMz9/vf+wyYBm+5LAK+AHwt8Ee1BizHPgX4E5r7Ubgg8AvjTFZs563AngQ+ENr7TrgM8CvgE7gz4Bma+2GmQkqwFq7B/hr4OfA/dbaV4ONT0TigvKXRB0VWTLTs0C6MeYSY8wqoBjY4h+x/T3wIWPMl4C3AdkLOO4twFJgi38k9zDgAWZPnd/oP99hAGvt08Bx4OIgz3MTvoR2tzFGP9siieVZlL8kyuh/pJxmrfUC/wG8D98o8D+stWrEBWAAAAFbSURBVF5jzF3A//if9it8ozXXWQ7jAjDGpM54zI0v+WwI/ME3db9v1mvn+nlMAlLmi90Y89eAAdYB5fhGkSKSIJS/JBqpyJLZHgLuAd4OfN//2C3Ab6y13wK2AW/Bl3hm6wEu8X/8BzMefxq41T+djjHmTmAPkD7r9YHn1fifdyO+hPPKuQI2xtwM/A2+afpef+x/ZYy5bb5vVkTiykMof0kUUZElZ7DWdgE7gT3W2g7/ww8C1xlj9gBbgWageo4p7Y8D3zDG7AQ24pv6xlq7H18fw0+NMbuBzwH3WGtPzTr3AeAv8PU77AM+D7zJWjt0tniNMVXAT4APWGubZ5zvL4AfGWPKz++dEJFYo/wl0cbl9XqdjkFEREQk7mgmS0RERCQMVGSJiIiIhIGKLBEREZEwUJElIiIiEgYqskRERETCQEWWiIiISBioyBIREREJAxVZIiIiImHw/wPHlJEmblu+1QAAAABJRU5ErkJggg==\n", "application/papermill.record/text/plain": "
" }, "metadata": { "scrapbook": { "mime_prefix": "application/papermill.record/", "name": "ztest_hypo_fig" } }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlkAAAENCAYAAAA8D3A7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl8XFd9///XaLTvi2XZ1r5Yx/uSxdn3fSFAy1agNNCWpRR+5lvowq8/SkrbUKAQvmwpUAiFAClLArQNJHEWsjiJl3i3jxZLlmwt1m7L2jXz+2NmHFmRrZE9M3eW9/PxcCyNZu79aCJ/9Dnnfu45Lq/Xi4iIiIiEVpLTAYiIiIjEIxVZIiIiImGgIktEREQkDFRkiYiIiISBiiwRERGRMFCRJSIiIhIGKrLkDMaYVmPMJcaY640x++b4+pyPhyGOPGPM0zM+9xpjFoXo2P9ojHlfKI4lIsExxjxkjPmk/+PPGGPeHKHzXmqMedD/8SXGmJ+H6LifNcZ8PRTHmuc8M+MPaf41xvyvMWZVqI4nb5TsdAAiZ1EAbArHga21nwnHcUUkaDcCByJ0rtVAGYC1djvwtgidN1ROxx9q1to7w3FceZ2KrDhljLke+GfgMLAGSAM+aq19xhjzELDPWvsl/3PP+DwI2caYnwIrgHTgz4EdwDHgMmttg/+4TwJfB94KeIGVQDHwBPBxa+2kMeYa4ItAJjAB/L219rfA94EMY8wu4GL/ee8zxlwOFAFftNZ+w3+ePwX+At/MbB/wl9baQ8aYq4EvA27/+e+31v5i5vdrjLnPH9+E/7X3Wms7g3wfRGQGY0wS8BXgciAHcAF/Zq19ccZzPgpcAnzRGDMN/A/wr8B1+P6tvoYvP5wwxrQCrwDrgE/7j/0QcBNQATxirf3rs50XaAP+Ecgzxnwf+AG+nHQV0A7UW2u7/HG9DNwHbDlbPHN8yyuMMc8AS4Fu4F1ADfBToNJa6zHGZAKt+PLwq8CjwDVAPvBv1tpv+c//QeDjwLT/WH8JjM4R/xvyr7X2eWNM6jnex48AH8aX58aAD1lrD/jf37cBh/Dl3OWAB18+/5C11jPH9ywLoMuF8e0yfP+INwL/AXw2RMctA75ird0A/DvwWWvtCL4E8GcAxphawAD/7X/NeuBmYJX/z4eMMUXAz4H/x1q7DvgT4EfGmGrg/cCotXaDtXbaf4zD1tqL8RVF/2aMSTHGXOd/3TX+7/MLwC/9z78P+LL/NR/AN3o+zRhTDmwGLrXWXoKv+LssRO+RSCK6DFgGXGGtXYUvJ/ztzCf4B0fbgU9Zax/1f30KuNhaux7oAD4/4yX7rLUr/c8FyLbWXgNcCXzMny/mPK+1th34DPC8tfb9M2IYwlfsvBfAGLMSX6H0uyDimakGeIe1dgUwwOsFZR9wu/857wK2WGuP+z/PBC4Frgf+0Riz1hhzI/DXwA3+c/4YeAw4Okf8b8i//sfnjNsY4wYeAG631l4KfBu4etb38VYgx3/MS2d8b3KBVGTFtyPW2l3+j3cChSE6brO19hX/x7uAxf6Pvwm8zxiTAnwQ+O6MAukha+2wtXYc+E/gNnyJsSlwLGvtfuBFfMlnLj+ecc40IBe4C6gDXvLPen0BKDTGFAL/BXzDGPMwvtmwT8863jFgN7DTGPMlYJe19rEFvxsiAoC1divw9/gGUV/CN0uSPc/L7gbeDLzm/zf8FnwDsYDnZz3/V/5zHQOOA4Xned7v4BuggW9Q933/zM188cz0pLW2x//xbl7Phd/AN8MP8CHgWzNe8w1rrddaexT4LXArvoLskcCxrLUPAaVA1RznPFv+nTNufw7+Gb4c+XVgCN+ge6YXgNXGmGfxFWsPWGubzvI9ywKoyIpvozM+9uKbQp/9MUDqAo87Oddx/ZcJ9+D7h/4e4Lsznjc14+MkfFPic/38JQEp5zqvtTaw4aYL37T4D/0zXhuAi/Bdihiw1v47sBZ4El9Rt8cYkxc4mD+hXgfci2/k+RVjzFfP9Y2LyNkZY+7Cd/kPfMXQg5yZa+bixjebHfg3vIkz+6aGZz3/DXntfM5rrX0BSDbGbALeDXwvyHhmmjMXAg8DVxtjbsA38/b7Gc8LNhe6mDsXnu2cZ43bWvte4E1AE/A3vD7bj//rLfgGq/fjG7w+ZYyJtd61qKQiKzH14CtE8N+xd00Ij/0NfD1Wr1hrO2Y8/k5jTJoxJh3f6PE3wMu+EMwmfyyrgWuBZ/ElIrcxZr4E/QTwR8aYpf7PP4yvpwJjzEvARv+o8IP4eiAKAi80xqwH9gEHrbX34+vpWH+e37eIwC3Ab/x9Rtvwzaa453jeFK8XEL8D/tIYk+rvrfoOvl/2oTrvzHPN9l3ga8Aea21bqOLxt0/8CF/h9uCsL78PwBhTgW8W63H/Od9pjCn2f+39+AZ+TfPEP9OccRtjFhlj2oE+a+0D+Gb8zshz/p6t7wNPWGv/xn+sNQv5nmVuKrIS09eApcYYi2/E9WwIj/3f+KbpZyeWEXzT/nv9f3/fWtsLvB34mjFmL77Lge/3z4h14rvEedDfuzUna+3v8DV7PmmM2YNvRPoH/tmuv8bX8/Aa8Axwn7W2dcZrd+O7pLjdGLMdX9/WJy7w+xdJZA8C1/n/LW4FmoFq/y/9mX4DfMkY8yfA5/A1hr+G745DF/BXITzvVnwN6o/O8bofABs4c9Y9FPGAr2hZjK89YqZqY8wOfJcKP259nsQ3yHvaGLMf30D0bv9s+7nin2nOuP159p+ALf7zfh5/7+wM/4mvKD3gz4W5gGb1Q8Dl9Xrnf5ZIkIwxV+IbQa0JXNY7j7sXRURiln8G/m/w3WH4kRmPtwJv8y8lIQlASzhIyBhjfoCvaf19M/qmREQSzWF8bRn3OB2IOEszWSIiIiJhoJ4sERERkTBQkSUiIiISBo71ZBljkvGtXHvUWjs13/NFRKKF8peIBMPJxvcyoGXLli0OhiAiETbfumexQvlLJDEtKIfpcqGIiIhIGKjIEhEREQkDFVkiIiIiYaAiS0RERCQMVGSJiIiIhIGKLBEREZEwUJElIiIiEgYqskRERETCQEWWiIiISBioyBIREYlx09PTdHZ2Oh2GzKIiS87bH//xH9Pc3AzAwMAAd999tyPHEBGJNwvNjZ///Od56qmnLvg4ElpO7l0oMe7IkSNUV1cDYK2lvr7+jK//9re/5eGHHz7jsU996lOsW7cu6GOIiCSi+XLjvffeS29vLwBer5fm5mbq6upYunQpN998c9DHkfBSkSXn5dixY5SUlJCU5JsMtdZijDnjObfffju33377eR1jZGSE++67j5SUFDZt2sQ999wTpu9ERCS6BJNfH3roIQB27tzJF7/4RXbv3k1aWlrQx1GOjQwVWXJeDh06dMY/+v3793PnnXee8Zz5ZrLOdYwnnniC2267jRtvvJHNmzcrAYhIwggmvwZmsjo7O8nOzuYP//APAdi8efPpmSzlWOepyJLzcvDgQcbHxwFobW1ly5YtbN68+YznzDeTda5jdHd3n04Obrc7HN+CiEhUCia/Pvjgg3zgAx/gn//5n1m/fv2Cj6McGxkRKbKMMflA/qyHyyJxbgkPay2pqancc889GGOoq6vj0Ucf5aMf/WhIjlFSUkJXVxcrV67E4/GE8TsROTflL4m0YPPr5s2bz1pgzXcc5djIiNRM1mbgHyJ0LokAay2//OUvyc7ODssxbr31Vj73uc/x7LPPcsMNN1xIqCIXSvlLIiqY/Jqens6mTZvO+zjKsZERqSLrAeChWY+VAc9H6PwSQsPDw7hcrgsqsOY7RmZmJvfff/95H18khJS/JGJCkV+DOY5ybGS4vF6vIyc2xlQBLVu2bKGsTDPvIgnC5XQAoaD8JZKwFpTDtBipiIiISBioyBIREREJAxVZIiIiImGgIktEREQkDFRkiYiIiISBiiwJO4/Hy9S0FrsTkdg0OaX8JedH2+pI2ExMTvPkq2384plGTp6a4LLVS7nhkjIuXlHidGgiIvPaf7iPnz5p2dXQw8qqQq7ZUMpNl5aTmZ7idGgSI1RkSVgMnhznU1/7PV19I6Se3EtBbjo7bBLPvXaUD711LXdfXeN0iCIiZ/XNX+zm8ZdayctO5bYrKjnY0s+3H9vLC7uP8U8fvpKU5OjY7+9nP/sZAG9/+9sdjkTmosuFEnLTHi9f/NF2+ofG+Jt7L2WqZyc9h1/i//7tTVy0soTvPLaXbQe6nA5TRGROT75yhMdfauWOK6v4t7+6gffcvZp/+tg1fOQdGzjQ0s9XH3kNpxbynu2RRx7hkUcecToMOQsVWRJyP/ndIfY09fKBt6xh9fLi0+vjJruT+Mg71lOxNJcv/HA7rZ0nnA1URGSWw8eGePCXe1i3fBHvumMlqamvz1hdsX4Zb7u5nud2HuORpxocjFJihYosCal9zb088lQDN11azpUb37jdSFpqMp/440tITXHzncf2OhChiMjcpqY9/Ot/biMnK5UPv309rqQ37qDyputruXzdUh550nK8f8SBKCWWqMiSkPrJE5aC3DTefdeqsz6nIDedu6+rZU9TL3ubeyMYnYjI2T27o52O3lN84M1ryM5Km/M5LpeLd92+ApfLxU+etBGOUGKNiiwJmUOt/exp6uXua2pISTl3U+iNmyooyEnjR48fjJreBhFJXNMeLz9/upHqZbmsqS8+53ML8zK44dIKnt7eTkfvcIQilFikIktC5pGnGsjJTOXaS8rnfW5qips3XV/LgZZ+djX0RCA6EZGze2lPB8d6TvHm6+twud54mXC2u6+rJdnt4idPaDZLzk5FloTE4WNDbD/YzZ1XVZGWGtzKINddUk5RXrqm3EXEUV6vl59taaB0cTYbVwa3jl9+Tho3XVbJczuP0tl7KswRSqxSkSUh8ehzTWSkJXPDZZVBvyYl2c3NV1RxsKWfYz2achcRZ7zW0ENLxwnuubZ2zmb3s7ntymoAtmxrC1doEuNUZMkFGx2fYuveTq7eUEpmxsJWQr5q/TJcLnhaSUpEHPLM9nayM1LYtHbpgl5XmJfO6tpFPL2jHY9HvaXyRiqy5IK9vK+T8Ylprli/sAQFkJ+bztq6Yp7eriQlIpE3Oj7F1n2dXL52Ke7khf9KvPqiUnoGRtl/uC8M0UmsU5ElF+zZHUdZXJBBTXnBeb3+6otK6R0aY2+TlnMQkch65fQgcdl5vf7ilUvISEvmyVc1Gy9vpCJLLsjAyTF2NRznqg3LSFpAL8NMF60sITM9mad0yVBEIuzZnUcpzs+gtuL8BolpqW42rV3KS3s7GB2fCnF0EutUZMkFeX7XMTxeuHzd+Y0Cwbecw2Vrl7J1bycjY5MhjE5E5OwGT47zWkPPBQ0SAa7eWMr4xDRb93aEMDqJByqy5II8u+Mo1ctyWbo454KOc8X6ZYxPTvOa1swSkQh5ftcxPB7vBQ0SAeorCyjKT+fFPSqy5EwqsuS89QyM0tg+eN69DDMtryggKyOFV/Z1hSAyEZH5bd3bScWSHJaVXNgg0eVyscEsZndDLxOT0yGKTuKBiiw5b9sPdQOwvn7xBR/L7U5iXX0x2w91M627DEUkzE6NTnKgpY+LVlx4/gLYuKKE8clp9ugGHplBRZactx0Hu1lckMGS4qyQHG/jisWcPDVBw5GBkBxPRORsdjX0MO3xsm6efQqDtaK6kLRUN6/s6wzJ8SQ+qMiS8zIxOc2uxh42rlgc1D5fwVi7vBh3kotXDihJiUh4bTvYRXZGCjVl+SE5XmqKmzV1i9h2sFub3stpKrLkvOxr7mN8Yjpko0CArIwU6qsKeXV/d8iOKSIym8fjZcfB46yvLybJHbpfgxtXLKZvaIzDx4ZCdkyJbSqy5LxsP9RNaoqbFdVFIT3uxhWLae8+SVefNlwVkfBoPjbI4PA4603oBokAG8xiXC549YBu4BEfFVmyYF6vl+0HullTW0RKijukx97ob0LddkCzWSISHtsPdONywZq60BZZudlp1JTlK3/JacmROIkxJh+YfeG7LBLnltDr6D1FZ98p7riqKuTHLinKYnFhJrsae3jTNTUhP77IQil/xZ/th7pZXl5AdlZqyI+9dvkifvVME8Ojk2RnpIT8+BJbIjWTtRlomfXn+QidW0LsNXscgNXLQzsKDFhZXcj+5j4t5SDRQvkrjgyPTNDYPsi6+kVhOf6qmiK8XtjfrKUcJHJF1gNA9aw/10To3BJie5t7KS7IoLgwMyzHX1lbxKmxSVrUPCrRQfkrjuw73IfXS8j7SQNqy/NJSU5iV6OKLInQ5UJr7SAwOPMxY0wkTi0h5vF42dvUx8UrQ7OA31xW+ZPfnqYe6spDc3u1yPlS/oove5t6SU1xU1OWF5bjpyS7qa8sYG+ztggTNb7LArV1n+TkyETYRoEA+bnpLCvO1khQREJub3MvprKA5OTQ3rQz06raIo50nmRoeDxs55DYoCJLFmRPk290Vl9VENbzrKwp5EBLH1PTnrCeR0QSx4lTE7R0nGBldWFYz7PSPwjdq76shKciSxZkX3MfiwsyWFQQnn6sgFU1RYxPTNPYNjj/k0VEgrD/sK/oMVXhLbKqS/NIT0tmV4MuGSY6FVkSNI/Hy77mXlbXhOeunJlW1PhGgrublKREJDT2Nvf5+7HC2+vpdidhqgo0kyUqsiR4R7pOcHJkkhU14R0FAuRkplKxNFc72otIyOxt6mVFZQHu5PD/6ltVU0RHzyn6hkbDfi6JXiqyJGh7/QVPfZin2gNMVQENRwbUlyUiF2xoeJzWzhOsjMAgEV6/JHngcF9EzifRSUWWBG3f4T5KCjMpys+IyPnqKwsZn5ympUPrZYnIhTnQ4it2wt2PFVCxNJfUFDf7W/ojcj6JTiqyJCher5eDLf2YyvDeVTjT8grfuQ4oSYnIBTrQ0k+yO4mq0vCsjzVbsjuJ2vJ8DrYqfyUyFVkSlK6+EQaHx6mLYJFVmJfOovyM0yNQEZHzdai1n9qyvLCujzXb8ooCWjtPMDo+FbFzSnRRkSVBCYzGIr0C+/LKAg629uP1ah9DETk/E5PTNB0doj6Cg0SA+soCPB4vDUcGInpeiR4qsiQoh1r7yUxPpnRxTkTPu7yigIET4xwf0B06InJ+mo8OMTXtoa4isoPEuop8XC7Yr9n4hKUiS4JysLWf5eUFuJJcET1vYOSpS4Yicr4CM/G15ZGdycpMT6FscY76shKYiiyZ18jYJEe6TrC8MvKbNZeV5JCRlqzmdxE5b4eO9LOkKJPc7LSIn3t5ZQH2yADTHrU8JCIVWTIve2QArzfy/VgASUku/x06mskSkYXzer0cbO2nviKys1gByysLGB2foq3rhCPnF2epyJJ5HWrtx+Ui7FtRnE19ZQFtXSc5NTrpyPlFJHZ1948weDKyd0bPFCjutChpYlKRJfM60NpPxZJc0tNTHDl/XUU+Xi80tusOHRFZmECrgRMz8QCLCjLIy07joO4wTEgqsuScpj1e7JEBx6baAapLfcnxkJKUiCzQodZ+MtIif2d0gMvloqYsj8Y25a9EpCJLzunY8ZOMjk9R69AoECArI4WlxVlYFVkiskAN7QPUledH/M7omWrL8+noPcXwyIRjMYgzVGTJOTX4R1/VZZHZiuJsasvyaWwf1KKkIhK08clpWjtOUFfucP7yD1Ib2gcdjUMiT0WWnFND2yCZ6cmUFGU5GkdNWT5Dw+P0aFFSEQnS4aNDTHu8VJU6NxMPUF2ah8sF9oiWokk0KrLknBraB6gtyyfJwal2eH0kqCQlIsFq8N8sUxOhTaHPJjM9haWLstXykIBUZMlZRctUO0D5khxSkpM4pOZREQlSQ9sAi/LTyctNdzoUasvz1PKQgFRkyVlFy1Q7QLI7icpluad7xERE5tPQ5puJjwY1ZfmcODVBd/+I06FIBKnIkrOKlqn2gNqy/NMbvYqInMvQ8DhdfSNRU2QF4tAlw8SiIkvOqqFtgKK86JhqB19f1uSUhyOd2p5CRM6t0X8nX1WUDBLL/C0Pmo1PLCqy5Kwa2wYdWyV5LhoJikiwGtsGSHL57uyLBsnuJKpK87AqshKKiiyZ09DwOJ19p6Jmqh1821NkZ6acvowpInI2tm2AspIc0tKSnQ7ltJrSPFo6hphWy0PCUJElc4q2qXbwbU9RXZpH01Et6CciZ+f1emloG6QmCm7amam6NI+JSQ9t3SedDkUiREWWzKnp6CAuF1Qty3U6lDNUl+bT3j3M2MSU06GISJQ6PjDKyZEJaqJg+ZmZAjtnNGrl94QRkXlUY0w+MHtIURaJc8v5aWofZFlxNunpKU6Hcobq0jw8Hi8tx06wsrrQ6XAkASh/xZ6mwEz80ugaJJYUZpGRlkxD2wC3XlbpdDgSAUHNZBljFl3geTYDLbP+PH+Bx5QwamwfjJqlG2YKNLE2qi9LgqT8lXga2wdIdrsoW5LjdChnSEpyUaWWh4QS7OXC/caYh40xV5/neR4Aqmf9ueY8jyVh1jc0Sv+Jsai5K2emwrx08nPStNGqLITyV4JpOjpI5ZJckpPdTofyBjWlebR2nmByatrpUCQCgr1cWAW8C/iSMSYL+BbwQ2ttUN171tpB4IzfisaYBYQpkdR8dAiIvn6sgOrSvNOXA0SCUIXyV8Lwer00tQ9yxfplTocyp+rSPKanvbR2nmB5eYHT4UiYBTWTZa0dtdZ+31p7OfAx4JNAhzHmG8aYxWGNUCKusX2QJBeUR1k/Q0B1aR4dvcOMjE06HYrEAOWvxNLZd4pTY1NRORMPM1oe2jRQTARB311ojLndGPML4BHgMeBKoB34dZhiE4c0HR30rS+TGj3ry8xUXZqH1/v6jJvIfJS/EsfrTe/RWWRpvb/EEtRvUWNMG9ALfBN4r7V21P+lvcaYD4YrOIm8wFT7BlPsdChnFRgJNrQPsLbuQnuaJd4pfyWWxvZBUpOTWFaS7XQoc9J6f4kl2KmK91prfz/zAWPMKmvtAWttTRjiEof0Do4xODwetVPtALnZaRTlp2utGQmW8lcCaTo6SNWyPNzu6F0Gsro0j//+/WHGJqZIj9IrBhIa5/y/a4wJLET0NWPM9YDL/3kK8CtgefhCEyc0HfVNYVcti94iC9T8LvNT/ko8Ho+X5qODXHdRudOhnJPW+0sc85X6P8E3zb4W6PN/3Iuvl2FneEMTJzS2D+JOir71ZWarLs2ju3+E4ZEJp0OR6KX8lWCO9QwzOj4dVduBzSVwpSAwqJX4dc6ZLGvtbQDGmO9Zaz8QmZDESU3tg1QsySElJfrWl5kpMNPWfHSI9fXR2z8mzlH+SjyBPqeKKF1+JqAgN53crFS1PCSA+S4XrrDWHgK+boy5aPbXrbUaDcYRr9dL09EhLl1V4nQo8wqMVBuPDqjIkjkpfyWepqODpKa4WbYoy+lQzsnl8q383nxMd0jHu/k67v4NuAv4xRxf8wJqGo0jPf5NVaN9qh0gJzOVRfkZNLYrSclZKX8lmOajQ1QvzSUpipveA6pL8/h1Y4+a3+PcfJcL7/L/XR2ZcMRJgan2yihdhHS2qtJcmo9pul3mpvyVWKY9Xg4fi/6m94CqZb71/lo7TrCiSs3v8Wq+y4X/91xft9Z+PLThiJOajsZG03tAdWke2/d3MzwyQXZmqtPhSJRR/kosHaeb3mNjkFjtj7OxfUBFVhybb46yLyJRSFSIlab3ADW/yzyUvxLI603v0d/uAGp+TxTzXS68L1KBiLNiqek9QM3vci7KX4klVpreAwIrv6v5Pb7Nd7nwBWvt1caYk/gaRc9grY2NeVmZVyw1vQeo+V3ORfkrscRS03tAVWkee9T8Htfm+7/6dv/fa8IdiDgr1preA9T8Lueg/JUgPDHW9B6g5vf4d86S31rb6f/7CLAC+BjwYaDC/5jEiVhreg+oLs2ju08rv8sbKX8ljmMx1vQeEFj5vbFdK7/Hq6DmVY0xnwa+AowAU8B/GGM+Gs7AJLKajw5RXhI7Te8BM5vfReai/BX/mgNN7zE2E1+Qm0Zetprf41mwF4HfDVxmrT0JYIz5MvAC8I1wBSaR42t6H+TilbHT9B6g5ncJgvJXnGs6OuRrei/OdjqUBXG5XFQtU/N7PAu2Q3AUGA58Yq0dAMbCEpFEXM/AKCdOTZyeuo4lan6XICh/xbmmo4Mx1/QeUFWaR3v3ScYmppwORcJgvrsL/8D/oQUeM8Z8F5gG3gdsD3NsEiGx2vQe4LsNWtPtciblr8QQq03vAWp+j2/zXS782KzP/8+MjxeHOBZxSKw2vQdUleaybX+XVn6X2ZS/EkCsNr0HzGx+V5EVf+ZbjPSGSAUizom1ld5n08rvMhflr8TQHGMrvc+m5vf4FlTjuzFmOfCXQDbgAtxAnbX2qjDGJhEQiyu9z6bmdzkX5a/41hhjK73Ppub3+BZsl+CPgVTgSqAVWAXsDVNMEkHHY3Cl99lyMlNZVKDmdzkr5a84Fosrvc+m5vf4FexPZY619iPA74DHgVuAi8MWlUTM6ab3ZbHZzxBQvUzN73JWyl9xatrf9F5dFruDRDiz+V3iS7BFVr//7yZgjbV2EN+UuwTp0KFDvOc97+HOO+9kxYoVGGP46le/GvFjzNYcaHovic2m94Cq0lyt/C5no/wVAtGYwzoCTe+xPkjUyu9xK9jFSBuNMQ8AP8C3WnI2kBa+sOLL+Pg4mzdv5gtf+ALr1q3jgQceYHx8nI9//OOnn/Pb3/6Whx9++IzXfepTn2LdunVBH+N8NMZ403tAIEmp+V3moPx1gaI1hzXFeNN7gJrf41ewRdZHgDusta8ZY74N3AZ8MHxhxZeXXnqJ1atXn042xhief/55XC7X6efcfvvt3H777ed1jJGREe677z5SUlLYtGkT99xzT1Bxeb1emo8OcunqJRfw3UWHwB2GDe1qfpc3UP66QNGaw5qODpIWw03vAYHm9yZtDxZ3giqyrLUjxphnjTF3Ay3A+/1T7hKExsZG6uvrT39+4MABVq9efcZz5hsFnusYTzzxBLfddhs33ngjmzdvDjpBdfePcHJkMqab3gOyM1MpLsg4PbIVCVD+unDRmsOa2gepWhbbTe8B1aV57Gk/tRfvAAAgAElEQVTsYWx8ivS0YOc/JNoFu4TDXfim2g/guwW6zhjzTmvt78MZXLzIz8/n5ZdfBqClpYUnnniCn/70p2c8Z75R4LmO0d3djTEGALc7+Mt+gU2VY3Wl99mqSzUSlDdS/rpw0ZjDfE3vQ1x/SWyu9D5bdamv+f1wxxCrqoucDkdCJNhy+XPAddba/QDGmIuAbwOXBPNiY0w+kD/r4bJgg4x1d911F08//TR33303BQUFfPnLX6agoCBkxygpKaGrq4uVK1fi8XiCPmbXlmd4z7EX4bvbaHXN//zz9a5p2BvG4wdUl+Xz6r4uhobHyctWy42cpvx1gaIxh9lf/ZY/OPy/LBvOpnV7+Hd6yL/+BvKvuzZsxw/0lTa0DajIiiPBFlneQIICsNbuNMYsZH52M/APC4osjmRlZfHggw+G7Ri33norn/vc53j22We54YbgF7nu7h9haWoyrggUQJEws/n9ohXaNUVOU/66QNGYw7r7RwBIS43tm3YC8nPTKchNV/N7nJlvg+jARkrbjDGfBB4EPMC9wNMLOM8DwEOzHisDnl/AMeQsMjMzuf/++xf0Go/Hy3PeZVx196Vcf8/q+V9wAT777neG9fgBgdu4G9oHVGSJ8lcMOZ8cZguWs6U2jQf//laSkuJjpOhreVCRFU/mm8nqBbz4+hgAvjDja17gk8GcxN9kesZPTuD6uzijs+8UI2NTVMfopqpzyUxPYcmiLI0EJUD5K441tQ9SW5oXNwUW+IqsnQe7GRmbJDM9xelwJATm2yA69m/ZkDk1tvkWvYuHOwtnqi7No6G1f/4nStxT/opfk1MeDncMcfuVVU6HElIzWx7W1i1yOBoJhWDvLkzCN+q7A0gBngD+xVqrjZZi1OlNVYuznQ4lpKpL89i6u4OBE2MU5KY7HY5EAeWv+NPWdYLJKU/Mr/Q+W6DIsm0DKrLiRLAjvfuBG4GvAl/Gt9Hql8IVlIRfY9sg1XGyvsxMp7enUF+DvE75K84EWgKqSmff9BnbcrICm90rf8WLYO8uvB24xFo7CWCM+R9gd9iikrCanvZNtd90aXysLzNT5dJcXC7fbdCbVsX+SvYSEspfcabp6CDZmSksKshwOpSQqy7No1mDxLgR7DRGUiBBAVhrx4HJczxfolj78WHGJ6ZPb0UTT9LTkllWnK2RoMyk/BVnGtsGqS3NP2Nbn3hRXZpHd/8IJ05ps/t4EOxM1i5jzFeAr/s//yiwJzwhSbg1tcdn03tATVkeu20PXq83LpOwLJjyVxwZn5zmSNcJ7rmu1ulQwqLGn5eb2ge1FE0cCHYm66NAAfASsBUoBj4WrqAkvBraB8lIS2ZxUWxvqno2tWX5nDg1wfGBUadDkeig/BVHWjqGmPZ4qYqj5Wdmqi7Nw+UC26a7pONBsDNZf2etvTecgUjkNLYNUFsWX+vLzFRT5muGtUf6KSnMdDgaiQLKX3Gkwb/8THWcNb0HZKSnsKw4G3tkwOlQJASCncm6O6xRSMSMT07T0nGC2vL4TFAAZUtySElOwrYpSQmg/BVXGo4MUpiXTn4cL9FSU5ZHY/sgXq/X6VDkAgU7k3XYGPME8AIwHHjQWvvlsEQlYdNyzDfVXlMWn/1YAMnuJCqX5dLYpuZ3AZS/4kpD2wDL43iQCL7Z+Od3HuP4wKhm42NcsEVW4OLwxcA0s7aYkNgRmN2pidOp9oDasnye2dbG9LQHd5ytBSYLpvwVJ06cmqCz7xQ3xOHyMzPV+lseGtTyEPOC/e3zr8Aa4C7gzUAt8NkwxSRh1NA2QFFeOnlxPNUOvpHgxKSHI10nnQ5FnKf8FSca4nQ7sNkCLQ+H1PIQ84Itsr4PfAfI8P/5OfAf4QpKwqehbYC6OJ9qB05fDtUdOoLyV9xoaBsgyfX6zg7xSi0P8SPYy4WZ1tpvz/j8a8aYPw9HQBI+Q8PjdPWNcOOlFU6HEnaLCzPJzkyhoW2QO65wOhpxmPJXnGhoG6CsJIe0tGB/dcUutTzEh2D/zx02xlwZ+MQYswZoCU9IEi6BVdCr47jpPcDlclFTln/68oIkNOWvOOD1emloG6SuLP5n4uH1loe2brU8xLJghwOlwHPGmN3AFLAR6DLG7AGw1q4LU3wSQvaIb6o9HrfTmUtNWR6/eqaH0fEpMhJg5CtnpfwVBzr7TnFyZIKaBGh3gNdbHg4d6ac6QXJ2PAr2N8+nwhqFRERD+wDlCTLVDlBXXoDXC43tA6yrK3Y6HHGO8lccaPD3J8V7P1bA4sJMcjJTOXRkgDuuqHY6HDlPQf22tdY+F+5AJLw8Hi+NbQNcunqJ06FETGDB1QMt/SqyEpjyV3xoaBsgLcVN6eJsp0OJCJfLRV1FPodadfNOLFM3XYI41jPMyZFJ6ioKnA4lYrIyfNtTKEmJxL6Drf3UleeTlEBN4HUV+XT0+C6TSmxKnJ/WBGeP+AqNeN5OZy51FfnYtgFtTyESw8Ympmg5NkR9ZYLlr3LfoFj7GMYuFVkJ4mDrANmZKZQUZTkdSkQtryhgeGSSYz3D8z9ZRKJSU/sg0x4vteWJMxMPvub3pCQXB1r6nA5FzpOKrARxsLWf+ooCkpJcTocSUXUVvpGvLhmKxK6D/n+/iXJnYUBaajIVS3I4pJmsmKUiKwEMj0zQ3n2S5RWJlaAAli7KJjM9+XSSFpHYc6h1gGXFWWRnpjodSsTVlRfQ2DbAtEctD7FIRVYCCIyCEm2qHSApyUVteb5GgiIxyuv1+mfiC50OxRF1FfmMTUzT1nXC6VDkPKjISgCHWvtJSnIlzPoysy2vKKC9+ySnRiedDkVEFqij13d33fIEa3oPWO6/I1x9WbFJRVYCONjaT9XS3IRZhHS2uop8vF60xY5IDDrYkph3RgcsKsggLzuVg63KX7FIRVacm5720NA2QH0CrY81W21ZPi6XRoIisejQkX6yMlJYsigxFiGdzbcoaYFu3olRKrLiXGvnCcYmpk/fZZeIMtJTqFiSy/4WJSmRWOPrx8pPuDujZzJVhXT3j9A3NOp0KLJAKrLi3H7/7E0iNr3PZKoKsUf6mZzyOB2KiATpxKkJ2rpOnu5LSlT1lb7vf1+zZuNjTUSadIwx+cDsqZSySJw70e0/3EdxQQZFBRlOh+IoU1XAE1tbaT42yIrKxLxLSc6P8pdzApf466sS+99s5dJc0lPd7Dvcx3UX6UcvlkSqE3oz8A8ROpf4eb1e9h/uY0P9YqdDcVwgSe9r7lORJQul/OWQ/Yf7SElOoqYsMe+MDnC7k6irKFBfaQyK1OXCB4DqWX+uidC5E9bR48MMDU9gqhJ7qh0gLzuNJYuy2HdYSUoWTPnLIfsO91FfUUBystvpUBxnqgpp6zqpzaJjTERmsqy1g8DgzMeMMZE4dULb7y8olmvmBvAlqe37u/B4vAndRCsLo/zljJGxSQ4fHeStN9Q5HUpUMP7Z+IMt/WxavcThaCRYanyPY/sP95Gfk8biokynQ4kKpqqAU6OTtHWfdDoUEZnHodYBPF71YwXUlOWR7E5ib3Ov06HIAqjIilNer5d9zb2srC7E5dKsDbw+EtynJCUS9fYd7sWd5Eq4TaHPJjXFTU1Z3ukrFBIbVGTFqe7+EXqHxlipUeBpi/IzKMxLV1+WSAzY19xHbVk+aamJuVPFXExVIYePDTE2PuV0KBIkFVlx6nQ/loqs01wuFyuqCtnX3IfXqx3tRaLV+OQ0je0DrKjWTTszmepCpj1eDmj195ihIitO7WvuIzszhaXFibkVxdmsqi1iaHicti71ZYlEK3ukn6lpL/W6aecMprIAt9vFroYep0ORIKnIikNer5ddjT2sqV2ku+hmWVWzCIBdjUpSItFqV0MPSUkuNb3PkpaaTF15AXuUv2KGiqw41NF7it7BUdbUFjkdStRZVJDB4sJMjQRFotjuxh7qK/JJT1M/1myraoo43DGk9bJihIqsOBQoIFbUqMiay+raIvYf7mN6WvsYikSb4dFJmtoHWVO7yOlQotKq2iK8Xt0lHStUZMWh3Y09LC7IoLhQ62PNZVXtIkbHp2g6Ojj/k0UkovY29eLx+mZs5I18d1y6NRsfI1RkxZlpj5c9jT2srVuk9bHOYmWNr89DfVki0Wd3Yw/paW6qtT7WnJKTkzBVhexu1ExWLFCRFWeajw5yamyK1XUaBZ5NblYaFUtylKREotCuhh5WVRfhduvX09msri3iWM8wfUOjToci89BPcZwJTCGbahVZ57KytohDrf2MT047HYqI+PUMjHKsZ5jVumnnnFb6L6Xu1mx81FORFWd2N/ZQtTSXnKw0p0OJamvripmc8qh5VCSKBIoG9WOdW8WSXHKyUtlx6LjTocg8VGTFkdHxKQ609LNGlwrntaK6kNSUJLYd6HY6FBHxe80eJz87jWUlOU6HEtWSklysqy9mpz2u3SuinIqsOLKroYepaQ/r6hc7HUrUS01xs7KmiB2HVGSJRIPpaQ877HE2msW6aScI6+uLGR6ZZFT7GEY1FVlxZPvBbjLTk1leqf2+grG+fjFdfSN09Aw7HYpIwjt0ZIBTo5OsN1ofKxhrlxfjcsGJU1qUNJqpyIoTXq+X7Qe7Wbe8WHflBGl9fTEA2w5qNkvEadsOdJHsdrFKi5AGJSsjheUVBQyPTDodipyDfhvHicPHhug/McYGU+x0KDGjuDCTpcVZbFeRJeK4bQe7WVlVSHp6itOhxIx19cWMjk8xOaXdK6KViqw4sf1gNy4XrFmuImsh1tcvZl9zH2PqaxBxzPH+Edq6TrJhhfpJF2K9v/92WPsYRi0VWXFi28Fu6sryyc3W0g0Lsd4UMzXt0XozIg4KXLJfq0HiglQszSE5OYkTKrKiloqsODA0PE5D2wAbjEaBC2UqC8lIS2brvi6nQxFJWNsPdrOkKJOSRVlOhxJTXC4X2RkpDI9MMqGFlaOSiqw4sO1AF16v7/q8LExychIbVyzm1f2dTE+rr0Ek0kbGJtnd2MNFK0q0dMN5yMlKxePxasPoKKUiKw68sLuDksJMKpblOh1KTLp49RJOjkyyr7nP6VBEEs62A91MTnm4ZHWJ06HEpMyMFJKSXLywu8PpUGQOKrJi3PDIBLsbe7hszRKNAs/TuuXFpKa4eXGPkpRIpL24p4OC3DRqy7W+3/lwuSAnM5VXD3Qxpdn4qKMiK8a9sr+LqWkvl6xa4nQoMSst1c36+mJe3teJx6MtKkQiZXR8ih0Hu7ls9VJcSRoknq+crFROjU6yt0l7sUYbFVkx7sU9HSzKz6CyLM/pUGLaxatLGDg5jj0y4HQoIglj+8FuJnSp8IJlZaSQlurmJc3GRx0VWTHs1Ogkr9keLl+zVJcKL9BGs5hkdxIv7jnmdCgiCePF3R3kZ6exvLLQ6VBimisJ/2x8F9OajY8qKrJiWOAa/CVrNAq8UBnpKaypW8QLuzuUpEQiYGx8iu2Hutm0ZokuFYbApWuWMjg8zr5mXTKMJiqyYtjvXztGUV46VaX5TocSF67aWErf0Bj71NcgEnavHuhifGKaS1arnzQUNq5YTEZaMlu2tTsdisygIitG9Z8YY+ehbq69qIwkjQJDYuOKxWSmJ7Nle5vToYjEvS3b2inOz8BU6VJhKKSmuNm0dikv7e3QNmFRJDkSJzHG5AOzp1vKInHuePXsjnY8XrhywzKnQ4kbqSluNq1Zykt7OvjI+BQZaRH55yFRTvkr9PqGRtnVcJy33lCnS4UhdPXGUp7b3s7WfZ3ccHG50+EIkZvJ2gy0zPrzfITOHXe8Xi9PbWvHVBZQsijb6XDiylUbSxmfmGbr3k6nQ5HoofwVYk9vDwwSS50OJa4sryiguCCDLds0Gx8tIlVkPQBUz/pzTYTOHXca2wdp7z7JtRdpMB1q9ZX+JKVLhvI65a8Q8nq9bNnWzqrqQoqLtFdhKCUlubhqQyl7mnrpGxp1OhwhQpcLrbWDwODMx4wxkTh1XNqyrY3U5CQuWaOG0VBzuVxctbGUXz3TRHf/CCWFmU6HJA5T/got2zbAsZ5h7r52ndOhxKWrNpby2DNNPLWtjXferJ9Tp6nxPcaMjU/x3GvH2LRmCRnpKU6HE5eu8/cyPP5Si8ORiMSfJ14+QmqKm4tXaemZcCgpymJVbRG/3dqqTe+jgIqsGPPMzqOcGp3kxk0VTocSt4ryM7h4VQlPvHKE8clpp8MRiRtDw+M8t/Mo124sJV2DxLC55fJKegfHePVAl9OhJDwVWTHE6/Xym+cPU1OaR22FNlMNp5svr+LkyCTPv6YV4EVC5YlXjjAx5eHmyyudDiWubTCLKcpP5zcvaDbeaSqyYsiuhh7au09y+5VV2kYnzFZWF1K6OJvfvHAYr1crwItcqKlpD//7Ygvrli9iWUmO0+HENbc7iRs3VbK3qZe2rhNOh5PQVGTFkF8/f5i87FQ1vEeAy+XipssqOXxsSJtGi4TA1r2d9A6NcesVmsWKhOsuKSPZncR/azbLUSqyYsSxnmG2H+zmlssqSU52Ox1OQrhqYylZGSn8bEuj06GIxDSv18uvf9/MkqJM1i5f7HQ4CSE3K40r1i/jqW1tDJwYczqchKUiK0b811MNpKa4uUEN7xGTkZbMbVdW8eqBLg4fG3I6HJGYtaexl0NHBrjz6mqt8B5Bb7qulqlpD48+2+R0KAlLRVYMONYzzLM72rn1skpystOcDieh3HJFFRlpyfz0Set0KCIxyev18vDvDlGUl87VWkA5opYsyuKK9cv435daGRoedzqchKQiKwb89AlLcrKbO66pdjqUhJOVkcKtV1axdW8nRzrVQCqyUK819HCwtZ+33FCnVgcH3HN9HRNT0zz6nGaznKAiK8q1d5/k968d5fYrNIvllNuurCI91c2PnzjkdCgiMcXr9fLj3x2iOD+DqzZqn0InLCvOZtOapfzPCy0MntRsVqSpyIpyP3z8ICnJbm6/WrNYTsnOTOWOq2t4aU8n+5p7nQ5HJGa8vK8Le2RAs1gOe+tNy5mc8vDDxw86HUrCUZEVxXba42zd28lbb6glO0uzWE6685oaivLS+fZje5n2aN0skfmMTUzx3V/tpbwkhys1i+WoZcXZ3HxFJU++eoTmo4Pzv0BCRkVWlJqcmubbj+5h6aIsbr1Ks1hOS0t1887bV9DScYKnXj3idDgiUe/nTzdyfGCUe+9ZhdutXzVOe8sNy8nOSOXbj+3VAssRpJ/8KPXYc80c6znF++5epWn2KHHZ2qXUVxbwn/97UHfqiJxDZ+8pfvlME1dvWMbyqiKnwxF8N/G87ZZ6DrT08+zOo06HkzBUZEWh9u6T/PTJBi5dVcLq5cVOhyN+LpeLP7lnNSNjU3zj57s1GhSZw7THy9f+axdut4t33rbC6XBkhusuKaeuPJ9/f3QvvYOjToeTEFRkRZnJqWm+9KMdpKe6ed+bVjsdjsxSviSXP7x5OVv3dvLMjnanwxGJOr98ppG9zb3c+6bV5OWmOx2OzJCU5OJDb1/P1JSHrz7yGh71l4adiqwo85//e5DDHUN88A/WKUFFqTuursFUFfDgL/fS3T/idDgiUaOhbYCHf3uIK9Yu5YoNanaPRiVFWfzRnSvZ1dDDf7942Olw4p6KrCjy8r5OHnuumVsvr2TdCu3vFa2Sklx88A/X43LBP33vFUbHp5wOScRxQ8PjfPFH28nPSePeN6/B5dL2OdHqhkvL2WAW871f72dvk5alCScVWVGioW2AL/5oB3Xl+bxDfQxRr7gwk4++ayNt3Sf50sM7tKyDJLSJyWn++fuv0jc0xsf/aCMZGSlOhyTn4HK5+PA71lNSlMW//OBVOnqHnQ4pbqnIigLd/SN87nuvkJ+dxifeezGpqbqbMBasXV7Me+5cyav7u/jer/epEV4Sksfj5Ss/2cnB1n7+8p0bqC4vcDokCUJmegqf+OOLwQv/+N1XtBp8mKjIclhH7zCf/uYLTE55+NSfXKKtc2LMzZdXcuuVVfz6+cN891cqtCSxTE97+MpPd/LC7g7ee8cKNq5a4nRIsgAlRVl8/D0X0zM4wqe/+QL9J8acDinuqMhyUGvnCf726y8wNjHN//unmygpznY6JFkgl8vFe+5cyW3+Qutbv9jD9LTH6bBEwm5icpr7f7CNZ3cc5V23GW7RoskxaUV1IZ/8k0s5PjjK333zBY4P6GaeUFKR5ZCX9nTwN19/HpfLxf/355dTtjTP6ZDkPLlcLt5950ruuraGx7e28tnvvKzFSiWuHR8Y4dPfepFX9nfx/ntWc+e1tWp0j2Erqov41L2XMnBinE985Tl2N/Y4HVLcUJEVYROT03znV3u5/wfbWFaczWc+eIVmsOKAy+VbePHP/mAt+1v6+MRXntNm0hKXXj3QxeYvP0tb10k+8Z6LuOGySqdDkhCoryzksx+5kpysVD7z7y/xyFOWKc3KX7BkpwNIJNsPdvPvj+6hq2+EO66q4h23rsCdrDo3nlx7cTnlS3L5xk928nfffJFbNlXw/jetJicz1enQRC5Iz8Ao3/31Xl7a00nV0lw+9kcbKS7KcjosCaGlxdn8w4ev5HuP7eVHjx/ihV0dfPRt61lRVeh0aDFLRVaYeb1e9h3u47+eamBXQw+lxVl8+k83saJmkdOhSZhUl+bxzx+/lseebuTxF1t4cU8Hb7q6hjdfV6tiS2JO39Aojz3XzONbW/F64V231nPrVdXaUzVOpacl8xfv3Mhla5fxw//ez6e+9jyXrV7Cu24x1JXnOx1ezFGRFSYnRyZ4ftcxnnq1jcb2QfKz03jvnSu46bIqzV4lgLRUN++8fQVXbSzl0S2NPPJUA48918zVG5Zxy6ZKVlYVkpSkHhaJTtMeL7sbe3h6Wzsv7unA4/Vy9fplvPWm5RQVZDodnkTAxatKWFVbxO9ebOF3L7bwif1drKou5JZNlVy1fhkZaSofgqF3KUQmpzy0dg6xt6mPHYe6OdDSx9S0l4olOXzgzau5amMZKSka+SWaspIcPvbui2jvOsGTW1t5cXcHW7a1U5ibzqWrSthQX8zKqkKK8jKcDlUSmNfr5fjAKAdb+thpj7PTHmdoeILsjBRu2lTObVdWs6hQxVWiyUhL5i03LufWK6t45tU2fr/jKF995DW++YvdrKtbxCUrS1hdU0TFklzcGjTOSUXWAkxOeRgaHqf/xBjHB0Y43j9Ce/cwbd0naOk4weSUr0mwvCSHO66q5rI1Sylflqu7boTyJbl84K3rePedq9hxoItdh47z+9eO8buXjwCwKD+DqqW5VJTksHRRFiWFmSzKz6AgJ42sjBT9DMkF83i8DI9OMnByjJ6BUXoGRjjaM0x710laOk+cXowyJzOF9fXFXLKqhHVmsS4LCpnpKdx1bS13XlNDw5EBdhzo4rVDx9lx6DgAGWluqpbmUbEkh7LF2ZQUZlKcn0lBbhr52Wm43Yl79SYiRZYxJh+YfTG3EqCrq2ve158am2Trnk6mp2cu9Oh9w0en/56xIKTXC168vr89/r+9Xjz4ko7H42Vq2nP678kpL5NT04xPTTM+4fszMjbJyNjUnHvU5WamsqQ4i8vqs6lcmkvlslxycwIbOw/T2aHtCiYmJgDoOHbM4UiiQ/ViF9WLS7jnqmI6jg/T2jFEW9dJ2traeXXXyBvW2XK7XWSlpZCRnkJGmpv01GRSU5NISXaTmuwm2e0iOTkJt8uF252Ey+XbXzHJBUkuF7h8H7tcLmbWaoHCLfDQmWXcOYq6M44Bl6wooTAvuM3Mb7rppirgqLU2ZjZ8vND85fV62X7wOP1Dsxd69M7478yM9noOC+QvvODx+h7weL14vK/nL4/Hy5THw/S0L4dNTHqYmJpmYtLD+IQvb42MTXJqbArPrO2fUpKTWLIoi+ribCrXLqJ8aS6li7N9/2PxcLx7/u9PnBXp/JqTAtevz+P6dbn0nxij9dgQRzpP0NXby9MtRxgZnXzDazLSU8jOSCY9LZn01GTSUpJITXaTmuLPX+4k3O4k3EkuX+5KcpHE6znLleT/m9dz2Oz8debHweUvgLLF2ayuKQr6+19oDnNFYoVqY8xngX8I+4lEJBZUW2tbnQ4iWMpfIjJL0DksUpcLHwAemvVYKlADNALTEYrjQpQBzwPXAEcdjsVJeh989D74nM/7EGvvVzzkL9DPLOg9CND74HO+70PQz41IkWWtHQQG5/hSQyTOHwrGmMCHR2NpFB5qeh989D74JML7EA/5CxLj/9V89B746H3wicT7kLjdaCIiIiJhpCJLREREJAxUZImIiIiEgYqs4A0C9zF3b0Yi0fvgo/fBR+9D7ND/K70HAXoffML+PkRkCQcRERGRRKOZLBEREZEwUJElIiIiEgYqskRERETCQEWWiIiISBioyBIREREJAxVZIiIiImEQqQ2iJU4ZYx4C9llrvxTm8+QCjwP5wGestb+Y8bX/ApKstW+b8dgngTcDN1prJ8MZm4jEJuUvCTcVWRIrNgAl1tq6Ob72p8B2Y8xma+0DxphbgY8Bm5SgRCQKKH8lKBVZcpox5sfAzsCozhjzYeAG4I+ArwCXAzmAC/gza+2Ls17vBYqttb2zPzfGvAn4eyAVGAE+aa3dOkcMbwH+AXADJ4D/AwwB3wNKjTG7gCustaOB11hrTxpj3g783hjTDnwNeIu1tjtEb42IRDnlL4lG6smSmb4D/MmMz9/vf+wyYBm+5LAK+AHwt8Ee1BizHPgX4E5r7Ubgg8AvjTFZs563AngQ+ENr7TrgM8CvgE7gz4Bma+2GmQkqwFq7B/hr4OfA/dbaV4ONT0TigvKXRB0VWTLTs0C6MeYSY8wqoBjY4h+x/T3wIWPMl4C3AdkLOO4twFJgi38k9zDgAWZPnd/oP99hAGvt08Bx4OIgz3MTvoR2tzFGP9siieVZlL8kyuh/pJxmrfUC/wG8D98o8D+stWrEBWAAAAFbSURBVF5jzF3A//if9it8ozXXWQ7jAjDGpM54zI0v+WwI/ME3db9v1mvn+nlMAlLmi90Y89eAAdYB5fhGkSKSIJS/JBqpyJLZHgLuAd4OfN//2C3Ab6y13wK2AW/Bl3hm6wEu8X/8BzMefxq41T+djjHmTmAPkD7r9YHn1fifdyO+hPPKuQI2xtwM/A2+afpef+x/ZYy5bb5vVkTiykMof0kUUZElZ7DWdgE7gT3W2g7/ww8C1xlj9gBbgWageo4p7Y8D3zDG7AQ24pv6xlq7H18fw0+NMbuBzwH3WGtPzTr3AeAv8PU77AM+D7zJWjt0tniNMVXAT4APWGubZ5zvL4AfGWPKz++dEJFYo/wl0cbl9XqdjkFEREQk7mgmS0RERCQMVGSJiIiIhIGKLBEREZEwUJElIiIiEgYqskRERETCQEWWiIiISBioyBIREREJAxVZIiIiImHw/wPHlJEmblu+1QAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots(1,2,figsize=(10,4))\n", "\n", "\n", "x = np.linspace(-5,30,100)\n", "x2 = np.linspace(-5,30,100)\n", "y=stats.norm.pdf(x, 12,3.5)\n", "y2=stats.norm.pdf(x2,15,3.5)\n", "\n", "ax[0].plot(x,y)\n", "ax[0].set_ylabel(\"probability\")\n", "ax[0].set_xlabel(\"value of X\")\n", "ax[0].set_title(\"null hypothesis\")\n", "ax[0].set_ylim(0,0.13)\n", "ax[0].fill_between(x,y, where=y>0.0,interpolate=True,facecolor='lightblue',alpha=0.2)\n", "ax[0].plot([12,12],[0,0.113],color='k')\n", "ax[0].plot([8,12],[0.06,0.06],color='r')\n", "ax[0].set_xticklabels([])\n", "ax[0].set_yticklabels([])\n", "ax[0].annotate(\"$\\sigma$ = $\\sigma_0$\", xy=(2,0.06),xytext=(2,0.06))\n", "ax[0].annotate(\"$\\mu$ = $\\mu_0$\", xy=(10,0.12),xytext=(10,0.12))\n", "\n", "\n", "\n", "\n", "\n", "ax[1].plot(x,y)\n", "ax[1].set_ylabel(\"probability\")\n", "ax[1].set_xlabel(\"value of X\")\n", "ax[1].set_title(\"alternative hypothesis\")\n", "ax[1].set_ylim(0,0.13)\n", "ax[1].fill_between(x,y, where=y>0.0,interpolate=True,facecolor='lightblue',alpha=0.2)\n", "ax[1].plot([8,12],[0.06,0.06],color='r')\n", "ax[1].plot([18,18],[0,0.113],color='k')\n", "ax[1].annotate(\"$\\sigma$ = $\\sigma_0$\", xy=(2,0.06),xytext=(2,0.06))\n", "ax[1].annotate(\"$\\mu \\\\neq \\mu_0$\", xy=(16,0.12),xytext=(16,0.12))\n", "ax[1].set_xticklabels([])\n", "ax[1].set_yticklabels([])\n", "\n", "sns.despine(top=True, right=True)\n", "\n", "#plt.show()\n", "glue(\"ztest_hypo_fig\",fig,display=False)" ] }, { "cell_type": "markdown", "metadata": { "tags": [ "full_width" ] }, "source": [ "```{glue:figure} ztest_hypo_fig\n", ":figwidth: 650px\n", ":name: \"fig:ztest_hypo\"\n", "\n", "Graphical illustration of the null and alternative hypotheses assumed by the one sample $z$-test (the two sided version, that is). The null and alternative hypotheses both assume that the population distribution is normal, and additionally assumes that the population standard deviation is known (fixed at some value $\\\\sigma_0$). The null hypothesis (left) is that the population mean $\\mu$ is equal to some specified value $\\mu_0$. The alternative hypothesis is that the population mean differs from this value, $\\mu \\neq \\mu_0$.\n", "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The next step is to figure out what we would be a good choice for a diagnostic test statistic; something that would help us discriminate between $H_0$ and $H_1$. Given that the hypotheses all refer to the population mean $\\mu$, you'd feel pretty confident that the sample mean $\\bar{X}$ would be a pretty useful place to start. What we could do, is look at the difference between the sample mean $\\bar{X}$ and the value that the null hypothesis predicts for the population mean. In our example, that would mean we calculate $\\bar{X} - 67.5$. More generally, if we let $\\mu_0$ refer to the value that the null hypothesis claims is our population mean, then we'd want to calculate\n", "$\n", "\\bar{X} - \\mu_0\n", "$\n", "If this quantity equals or is very close to 0, things are looking good for the null hypothesis. If this quantity is a long way away from 0, then it's looking less likely that the null hypothesis is worth retaining. But how far away from zero should it be for us to reject $H_0$? \n", "\n", "To figure that out, we need to be a bit more sneaky, and we'll need to rely on those two pieces of background knowledge that I wrote down previously, namely that the raw data are normally distributed, and we know the value of the population standard deviation $\\sigma$. If the null hypothesis is actually true, and the true mean is $\\mu_0$, then these facts together mean that we know the complete population distribution of the data: a normal distribution with mean $\\mu_0$ and standard deviation $\\sigma$. A statistician might write this as:\n", "\n", "$\n", "X \\sim \\mbox{Normal}(\\mu_0,\\sigma^2)\n", "$\n", "\n", "Okay, if that's true, then what can we say about the distribution of $\\bar{X}$? Well, as we discussed earlier, the sampling distribution of the mean $\\bar{X}$ is also normal, and has mean $\\mu$. But the standard deviation of this sampling distribution $\\mbox{SE}({\\bar{X}})$, which is called the *standard error of the mean*, is\n", "$\n", "\\mbox{SE}({\\bar{X}}) = \\frac{\\sigma}{\\sqrt{N}}\n", "$\n", "In other words, if the null hypothesis is true then the sampling distribution of the mean can be written as follows:\n", "$\n", "\\bar{X} \\sim \\mbox{Normal}(\\mu_0,\\mbox{SE}({\\bar{X}}))\n", "$\n", "Now comes the trick. What we can do is convert the sample mean $\\bar{X}$ into a standard score. This is conventionally written as $z$, but for now I'm going to refer to it as $z_{\\bar{X}}$. (The reason for using this expanded notation is to help you remember that we're calculating standardised version of a sample mean, *not* a standardised version of a single observation, which is what a $z$-score usually refers to). When we do so, the $z$-score for our sample mean is \n", "$\n", "z_{\\bar{X}} = \\frac{\\bar{X} - \\mu_0}{\\mbox{SE}({\\bar{X}})}\n", "$\n", "or, equivalently\n", "$\n", "z_{\\bar{X}} = \\frac{\\bar{X} - \\mu_0}{\\sigma / \\sqrt{N}}\n", "$\n", "This $z$-score is our test statistic. The nice thing about using this as our test statistic is that like all $z$-scores, it has a standard normal distribution:\n", "$\n", "z_{\\bar{X}} \\sim \\mbox{Normal}(0,1)\n", "$\n", "In other words, regardless of what scale the original data are on, the $z$-statistic iteself always has the same interpretation: it's equal to the number of standard errors that separate the observed sample mean $\\bar{X}$ from the population mean $\\mu_0$ predicted by the null hypothesis. Better yet, regardless of what the population parameters for the raw scores actually are, the 5\\% critical regions for $z$-test are always the same, as illustrated in {numref}`fig:ztest_twoside_fig` and {numref}`fig:ztest_twoside_fig`. And what this meant, way back in the days where people did all their statistics by hand, is that someone could publish a table like this:" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "tags": [ "hide_input" ] }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
desired alpha leveltwo-sided testone-sided test
00.1001.6448541.281552
10.0501.9599641.644854
20.0102.5758292.326348
30.0013.2905273.090232
\n", "
" ], "text/plain": [ " desired alpha level two-sided test one-sided test\n", "0 0.100 1.644854 1.281552\n", "1 0.050 1.959964 1.644854\n", "2 0.010 2.575829 2.326348\n", "3 0.001 3.290527 3.090232" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pd.DataFrame({\"desired alpha level\": [.1, 0.05, 0.01, 0.001], \"two-sided test\": [1.644854,1.959964,2.575829,3.290527],\"one-sided test\":[1.281552,1.644854,2.326348,3.090232]})" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "which in turn meant that researchers could calculate their $z$-statistic by hand, and then look up the critical value in a text book. That was an incredibly handy thing to be able to do back then, but it's kind of unnecessary these days, since it's trivially easy to do it with software like R." ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "tags": [ "hide_cell" ] }, "outputs": [ { "data": { "application/papermill.record/image/png": "iVBORw0KGgoAAAANSUhEUgAAAm8AAAGECAYAAABgXcdUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xd01Ned///nqKKCJDoIBJIol2LTe7NNsSnBjm1cScBxvGQ3ifN1yqasU+xNnOJkf7YTO97EldhxC44bphuDKQJE75cmCRCiShSBUJ3fHxqysixbEmh0ZzSvxzmfI33qvOYcGL3nfj73Xo/X60VEREREgkOY6wAiIiIiUncq3kRERESCiIo3ERERkSCi4k1EREQkiKh4ExEREQkiKt5EREREgkiE6wAiIsaYPwJjfau9gSygyLc+wlpbVOOJV/ZaU4GfArFUfgbuBL5nrT1ijLkZmGCt/U4N5+0Avm2tXV6P1/oBcI219r5q2+cC3Xyr/YAdQDlQYK294QreUwvgH9baCfU9V0SCj4o3EXGuarFkjMkGZlhrNzT06xhjkoE5wCBrbY5v28PAW8BIa+37wPsN/brVWWunV8nkBW6w1p66iku2AgZfdTARCQoq3kQkoBljngAuWGt/aoxpDxylsnVsmTFmBnCLtfZOY8zPgHuAMmAvla1kx6pdrjUQBcRX2fYksMX3WvcB0621XzLG9AZepLKFbg8QVyXTSOB3vm0VwCPW2nnGmEjgj8BE4ARwHDh7Be95NPBb32uXA7+w1s73FZ9/A1r6Dn3fWvsI8BLQ3BizxVrbv76vJyLBRc+8iUigeweY5Pt9EpUF0eXbg7cAc40xXwMmA0OstX2pvA35cvULWWu3Ac8Bm40xu4wxzwHTgEU1vO7fged813sK6AL/ukX5EvBVa+1A4GbgWWNMZ+CbQA8qb/1OBDrX980aY1oBLwD3+q5/K/BXY0wn4BvAHt/2sUBvY0xz4GvAeRVuIqFBxZuIBLpVQCdjTFsqi7dfARONMVHAdcB8Kgu3l6y1F3znPAWM9x3zKdba7wMdgJ9R+Vzd74EVxpjwy8f4Cqi+VLZyYa1dTWVBCDDCd/67xpgtvtf3+o6fALxmrS3xZfn7FbzfUb7rv++7/jwqW/euARYAdxtjPgT+DfhPa+35K3gNEQlium0qIgHNWlthjPkAmAoMB2YCPwHuADKstYXGmOpfRMOo/HzzVN3o65DQylr7EvA28LYx5r+Aw8CAKodenvS56vllvp/hwG5r7bAq100GTgKzP+ec+ggHtltrR1W5fkfghLW21BiTRmWROA7INMZMA05fweuISJBSy5uIBIN3gB9SWdSUAMuA3wBzffsXAV8zxlx+Lu07wCfW2uJq1zkP/Mb3PNtlacAl4MDlDdbafGAj8ACAMWYgcK1v91qguzFmrG9ff2AfkAwsBGYaY5oZY5oBd13Be11D5e3QUVVeey/Qzhjze+DH1tp3fO/RAt2pLBIjjDGez7mmiDQhKt5EJBh8BHQElvjWFwHtgA986y8AS4H1xpjdwEBgRvWLWGs/Br4NzDHG7PMd+xSVnR4Kqh1+D5W3KLdTeYt1t+8aJ4Hbgd8bY7YCr1D5/FsO8BdgA5W3WFdQOeRJvVhrjwPTgSd813+ZyuffjgBPAEN9w5ZsoLJ4ewvIBbYDu4wxifV9TREJLh6v11v7USIiIiISENTyJiIiIhJEVLyJiIiIBBEVbyIiIiJBRMWbiIiISBBR8SYiIiISRJriIL3qPisiIiLBot7jM6rlTURERCSIqHgTERERCSIq3kRERESCiIo3ERERkSCi4k1EREQkiKh4ExEREQkiKt5EREREgoiKNxEREZEgouJNREREJIj4dYYFY8y9wE+BKOAJa+0zn3PcVOBpa22abz0J+DuQDpwE7rTWHvNnVhEREZFg4LeWN2NMR+AxYDTQD5htjOldw3HtgD/w6ekhfgWstNb2Ap4DnvJXThEREZFg4s/bphOAZdbafGvtBWAuML2G454HHq22bSqVLW8ArwOTjTGRfksqIiIiEiT8eds0Gcirsp4HDK16gDHmO8AmYO3nnWutLTPGnAPaAEernJsEJFV/0czMTBISEhoiv4iIiEjA8Wfx5qlhW8XlX4wx1wC3A+OBTvU51+ch4BfVD5ozZw4PPvhg/ZKKiPh4vV5yTxaycc8JNtkTFF4s+cwx7VvGMahXOwaatiQ1j3aQUkRCmT+Lt1xgTJX1DlRpOQPu8G3bQGWHhmRjzEpr7Rjfue2BI8aYCCABOF3t+k8CL1d/0VmzZmU11BsQkdDg9XrZuu8k63YcY8Oe4xw7fRGAlHbxtGkR++ljK7xsO3CKT7bk4vFAt05JDO7VjtH9kuncXq3+IuJ/Hq/X65cL+zosrKLyVukFYA0w21q7voZjU4Hl1tpU3/ozQK619tfGmBnAvdbaqXV8af+8IRFpkrKOnuW5d3ew/cApoiLD6de9NYN7tWNQz3a0axlb4zkVFV4OHj3Lxt3H2bD7OPZQAR5g4rAufGVSL7XGiUh91HS38YtP8FfxBv8aKuS/qGxZe95a+7gxZj7wc2vthirHpfLp4q0lla1qXYEzwAxrbXYdX1bFm4jU6sz5Yl5duJvF63KIj4lixk2GicO6EBUZfkXX+sdHe/lwdRbRUeHcPdHwpdHpREZoKE0RqVVgFW+ONLk3JCINp7zCy/ufHOCNJZbiknKmjk7jnomG+Nioq7724ePnefGDnWzYfZwOreOY/eVrGdyrXQOkFpEmTMUbKt5E5HMUFZfxh1c3sn7XMQb3asf90/qQ0q55g7/Oxj3HeeH9HRw+XsiMST25a0IPPJ56fz6LSGhQ8YaKNxGpwcmCIn754lpyjp1n9pevZeqoNL++XmlZOX96awsfbzzC9YM68Z07+xMZUf9bsiLS5Kl4Q8WbiFSz73ABv3pxHUXF5fxo5mAG9WycW5ler5e3lu7l1YV76JXakoe/NpTEeHVmEJFPUfGGijcRqWLNtqP8z2ubSIqP4udfH06XDo0/nMfKLbk8+fomWiY24+dfH+6XW7UiErRUvKHiTUR8Pso8xJNvbMZ0acHDXxtKi+bNnGWxOfn86sX1lJZX8NtvjSbVQREpIgFJxRsq3kQE2LD7OL98cR19u7bmp18fRvQVDAHS0I6dvsCPnl4FwO+/M4a2LWoeR05EQkq9izcNQiQiTY7Nyee3f8skLTmBn9w3JCAKN4D2reJ4dPYIikvK+MVfMzh34bNTb4mI1EbFm4g0KbknC3n0+XW0aB7NLx4YTmyzSNeRPiW1QwIP3z+M4/kX+eULa7lUUuY6kogEGRVvItJk5J+7xM//mkFYGDw6e4TTZ9y+yLVdW/P9GYOwhwr4/SsbKS+vcB1JRIKIijcRaRIuXirlkecyOFdYzC8eGE5y63jXkb7QqL7JfOPWvqzfdYxn5m6lCT5/LCJ+EuE6gIjI1fJ6vTz5xmYOHTvPzx8YTveUFq4j1cnUUWnkn7vEW0v30rVTkt8HDhaRpkEtbyIS9BZkZJOxPY9ZU3sz0LR1HadeZtzUk8G92vHC+zs4mHvWdRwRCQIq3kQkqGUdPcvz7+1gUM+23DK2q+s49RYW5uGhuwfQPDaSx1/ZQFGxOjCIyBdT8SYiQetScRmPv7KB5rGRfPeegYSFBefk74nx0Xx/xiCOnirkL+9scx1HRAKcijcRCVp/eWc7uScL+f6MQUE/Z2jfbm24a4Lho8zDfLzxsOs4IhLAVLyJSFBavvEwSzMPceeEHvTt1sZ1nAZx98Qe9ElvxZ/nbiX3ZKHrOCISoFS8iUjQOXqykD+/vZXeaS25Z6JxHafBhIeH8f17BxEZEcbjr2ygtKzcdSQRCUAq3kQkqFRUVA4LEh4Wxg9mDCY8vGl9jLVpEcP/u2sAB3PP8ubSva7jiEgAalqfeiLS5C1al8Pu7Hy+fvM1tGkR4zqOXwy7pgPXD+rE28v2cejYOddxRCTAqHgTkaCRf+4Sc+btpG+31owfkuI6jl89cPM1xERH8PQ/tlJRodkXROT/qHgTkaDx3LvbKSmr4FvT++HxBOewIHWVGB/N/dOuYXd2PovW5biOIyIBRMWbiASFzF3HWLX1KHdN6EFym8Cet7ShjB+SQt9urZkzbyf55y65jiMiAULFm4gEvKLiMp795zZS2jXnthu6u47TaDweD9+c3o+Ssgr++u5213FEJECoeBORgPfaoj2cLCji23f0IzIitD62OraJ564JPVi99Sjrdx1zHUdEAkBofQqKSNDZf/gM739ygEkjUumd1sp1HCduu6E7Ke2a87//3Ka5T0VExZuIBC6v18v//nMbifHRzJra23UcZyIjwvj2Hf04WVDEWxr7TSTkqXgTkYC1cksu9lABM6f0Jj4m0nUcp3qnteL6QZ1475MDnMi/6DqOiDik4k1EAlJJaTlzPtxFenIi4wY37THd6mrm5N54gL/N3+06iog4FOHPixtj7gV+CkQBT1hrn6m2/1bgUSAcyARmW2tLjDEzgd8Bx32HfmitfdifWUUksHyw8iAnCor4zl0DCAtr2mO61VWbFjHccl1X/vHRPm4em06Pzi1cRxIRB/zW8maM6Qg8BowG+gGzjTG9q+yPA54GJlpr+wDNgPt8u4cA37PW9vctKtxEQsjZwmLe+mgvg3u1o1/3Nq7jBJTp47qTFB/NC+/vwOvVzAsiocift00nAMustfnW2gvAXGD65Z2+banW2uO+Qq4tUODbPQSYaYzZaox51Rijr5ciIeSNxZZLJeXcP62P6ygBJ7ZZJPdO6smurHzW7shzHUdEHPDnbdNkoOonSx4wtOoB1tpSY8xk4FUgF1hc5djfAuuBX1PZQjej6rnGmCQgqfqLZmZmkpCQ0EBvQUQa25ET51mQkc1Nw7uQ0q656zgB6cahnflg5UFemreLwb3ah9zYdyKhzp//42t6SKWi+gZr7QJrbStgHvCsb9ut1tp11lov8DgwpYZrPQRkVV/mzJnTQPFFxIWX5+0iKjKce2/s6TpKwAoPD+P+aX3IO3WBBWuyXMcRkUbmz+ItF2hfZb0DcPTyijGmpTHmxir7/w70NcYkGmO+W2W7Byit4fpPAmnVl1mzZjVQfBFpbNv3n2LdzmPcMb47Sc2jXccJaIN6tqV/9za8scRSeLHEdRwRaUT+LN6WAuONMW2MMbHA7cDCKvs9wKvGmM6+9TuBVUAh8ENjzDDf9m8D71S/uLX2jLU2u/qiW6Yiwcnr9fLivJ20aRHDzWO7uo4T8DweD/ff3IfColL+8dE+13FEpBH5rXiz1uYCDwMfA1uA16y1640x840xg621p4HZwDxjzFagB/Aja205lYXcs8aY3cAg4If+yikigWH9zmPsP3yGe280REeGu44TFNKSE7l+YCfmrc6i4Pwl13FEpJF4mmBX8yb3hkSauooKLw89sZxLJeU8+8NxhIfrAfy6OnqykP94fBnTRqfzwC3XuI4jIvVX74Es9QkpIs6t3ZFH1tFz3D3RqHCrp+Q28dwwqBML1mSRf06tbyKhQJ+SIuJURYWX1xbtoWObeK4b0NF1nKB090RDWYWXucv07JtIKFDxJiJOrdl+lJxj57nnRrW6Xan2reKYMKQzCzOyOXWmyHUcEfEzfVKKiDPlFV5eW2RJadec0f3V6nY17pzQg4oKL//4aK/rKCLiZyreRMSZVVtyOXz8PPfeZAjX5PNXpV3LWCYO68LidYc4UXDRdRwR8SMVbyLiRHl5Ba8v3kNqhwRGXpvsOk6TcMf47gAa902kiVPxJiJOrNicS+7JC9xzoyFMrW4Nom2LWG4a3oUl63I4nq/WN5GmSsWbiDS68vIK3lhiSU9OZPg1HVzHaVLuGN+dsDAPby3Vs28iTZWKNxFpdGu25ZF36gJ3TeyhVrcG1ioxholDO7NswyFOn1XPU5GmSMWbiDQqr7dyPLKObeLV6uYnt17fjQovvLvigOsoIuIHKt5EpFFtsic4ePQs08d1U6ubn7RvFcfY/h1ZmJHN+YslruOISANT8SYijWrusn20TmzGdQNTXEdp0m4f151LJeV8uDrLdRQRaWAq3kSk0ezJzmfHgdN8+fpuREbo48efUjskMKR3O97/5CCXistcxxGRBqRPTxFpNHOX7aN5bCQ3DeviOkpIuGNcD85fLGHx+hzXUUSkAal4E5FGkXPsHOt2HmPa6HSaRUe4jhMSeqW1pE96K95ZfoCy8grXcUSkgah4E5FG8fayfTSLCmfq6HTXUULK9HHdOXWmiBWbjriOIiINRMWbiPjdifyLrNicy03DU0mIi3IdJ6QM6tmW1A4JvP3xPioqvK7jiEgDUPEmIn73zor9hHngy9d1dR0l5Hg8HqaP687h44Ws33XMdRwRaQAq3kTEr84WFrN43SFuGJRC66QY13FC0uh+ybRvFcvcZZqwXqQpUPEmIn61MCObktJytbo5FB4expfHdsXmFLAnO991HBG5SireRMRvSssqB4kd2LMtndsnuI4T0sYN6UxcTCTvfqIps0SCnYo3EfGbTzbnUnC+mC+PVaubazHREUwa3oWMbUc5nn/RdRwRuQoq3kTEL7xeL++uOECX9s3p36ON6zgCfGl0Oh6Phw9WHnQdRUSugoo3EfGLbftPkZ13jlvGdsXj0QT0gaB1Ugyj+3Vk8bocLl4qdR1HRK6QijcR8Yt3VxwgKT6a6wZ2ch1FqrjlunSKistYvO6Q6ygicoVUvIlIgzty4jwbdh9nyshUoiLDXceRKrqntKBPeis+WHmAck2ZJRKUVLyJSIN7/5ODREaEMXlkmusoUoNbxnblREERGTvyXEcRkSug4k1EGtS5CyV8tOEw1w/sRFLzaNdxpAZD+7SnfatY3luhYUNEglGEPy9ujLkX+CkQBTxhrX2m2v5bgUeBcCATmG2tLTHGdAZeBdoCFphhrS30Z1YRaRiXB+W9RYPyBqzwMA83j+nKX9/dzp7sfHqmtnQdSUTqwW8tb8aYjsBjwGigHzDbGNO7yv444GlgorW2D9AMuM+3+8/An621PYENwM/8lVNEGk5pWQUfrj7IgB5t6KJBeQPahKGdiWsWoUF7RYKQP2+bTgCWWWvzrbUXgLnA9Ms7fdtSrbXHfYVcW6DAGBMJjPUdD/AycIcfc4pIA1m9NZf8c8VqdQsCMdER3Dg8lYzteZwsKHIdR0TqwZ+3TZOBqk/D5gFDqx5grS01xkym8hZpLrAYaA2cs9aWVTnvM2MNGGOSgKTq2zMzM0lI0Dd+ERfmrcqiY5s4BvRo6zqK1MHUUWm8t2I/CzKymDmld+0niEhA8GfLW02jcn6mX7q1doG1thUwD3i2rucBDwFZ1Zc5c+ZccWARuXJ7DxVgDxUwdVQ6YWEalDcYtGsZy5De7Vm0NoeS0nLXcUSkjvxZvOUC7ausdwCOXl4xxrQ0xtxYZf/fgb7ASSDBGBNe03lVPAmkVV9mzZrVYG9AROruw9VZxESHM35IiusoUg/TRqdz7kIJK7fkuo4iInXkz9umS4FHjDFtgAvA7cDsKvs9wKvGmMHW2kPAncAq363UlcBdwGvATGBB9Ytba88AZ/yYX0Tq6Mz5Yj7ZnMtNw7sQ2yzSdRyph77dW5PSLp55qw4ybnCKpjITCQJ+a3mz1uYCDwMfA1uA16y1640x830F22kqi7l5xpitQA/gR77Tv0ll79RdwBgqhxsRkQC1aF02ZeUVTB2lQXmDjcfjYeqodPYfOYvNKXAdR0TqwOP1el1naGhN7g2JBLKy8goeeGwJKe2a88tvjHQdR65AUXEZ9/33Iob0as8PvjLIdRyRUFPv5m7NsCAiV2XtjjxOn73EtNHprqPIFYqJjmDCkM6s3pZLwblLruOISC1UvInIVZm3Kot2LWMZ1Kud6yhyFaaOSqOs3MvCjGzXUUSkFireROSKZR09y86Dp5k6Ko1wDQ8S1JLbxDOoZ1sWZGRTWlbT6EwiEihUvInIFZu3KouoyHAmDu3sOoo0gC+NTqfgfDEZ22sanUlEAoWKNxG5IucvlrB80xFuGNSJ+Ngo13GkAQw0benQOo55q7JcRxGRL6DiTUSuyNL1hygpLdfwIE1IWJiHqaPS2J2dz4EjGkZTJFCpeBORequo8LJgTTZ90luRlpzoOo40oPFDOhMVGc6CjGzXUUTkc6h4E5F627L3JHmnLzB5RKrrKNLA4mMiuW5AR5ZvOsKFolLXcUSkBireRKTe5q/JIik+mpF9O7iOIn4wZVQaxSXlLNtw2HUUEamBijcRqZcTBRfJ3HWMicM6ExkR7jqO+EG3TkmYzi2YvyaLJjgLj0jQU/EmIvWyaG0OXmDS8FTXUcSPJo9M5ciJQrYfOOU6iohUo+JNROqstKyCxetyGNKrPW1bxrqOI340un9HmsdGMn91tusoIlKNijcRqbO12/M4c76YKaNSXUcRP4uODGfC0C6+uWuLXMcRkSpUvIlInc3PyKJ9q1gG9GjrOoo0gkkjulBe4WXxukOuo4hIFSreRKROco6dY8eB00wekUqY5jENCcmt4xlo2rIwI5uycs13KhIoVLyJSJ0sWJNNZEQY44doHtNQMmVkKvnnLrF+5zHXUUTER8WbiNSqqLiMZRsOM7pfMonx0a7jSCMa3Ls9rZNiWLAm23UUEfFR8SYitVq+6QhFxWVMGal5TENNeJiHSSO6sGXfSY6cOO86joig4k1EauH1elmwJov05ERMlxau44gDNw7tQniYh0Vrc1xHERFUvIlILfYeKiDr6DkmjeiCx6OOCqGoRUIzhl/bgY8yD1FSWu46jkjIU/EmIl9oYUYOMdHhXDewk+so4tDk4amcv1jK6m1HXUcRCXkq3kTkcxVeLOGTLblcNzCF2GaRruOIQ9d2a01y6zh1XBAJACreRORzLdt4mJLSciYN7+I6ijgWFuZh0ohUdmfnk513znUckZCm4k1EauT1elmYkY3p3IKunZJcx5EAMG5wCpERYSzMyHYdRSSkqXgTkRrtPHiaw8cLmTRCrW5SKTE+mlH9kvl442EuFZe5jiMSslS8iUiNFmbkENcsgtH9O7qOIgFk8ohULl4q45Mtua6jiIQsFW8i8hlnC4tZve0o44Z0pllUhOs4EkB6pbakS/vmLMjIdh1FJGSpeBORz/go8xBl5RXqqCCf4fFUdlzYf/gM+w4XuI4jEpJUvInIp1RUeFmYkUOf9FZ0bp/gOo4EoBsGpRAdFc7CDM24IOKCX++HGGPuBX4KRAFPWGufqbb/FuBRwANkAV+z1hYYY2YCvwOO+w790Fr7sD+zikilrftOknf6AvdO6uk6igSouJhIxvbvyIrNR7h/Wh/iYjQGoEhj8lvLmzGmI/AYMBroB8w2xvSusj8BeBaYaq3tB2wDHvHtHgJ8z1rb37eocBNpJAsysmkeG8Wovh1cR5EANnlkKsUl5SzfeNh1FJGQ48/bphOAZdbafGvtBWAuML3K/kjgm9bay12WtgGdfb8PAWYaY7YaY141xmg2bJFGkH/uEut2HmPC0M5ERoS7jiMBrHtKC7p2SmTh2hy8Xq/rOCIhxZ+3TZOBvCrrecDQyyvW2tPAuwDGmBjgx8Cfqhz7W2A98GvgaWBG1YsbY5KAz4wcmpmZSUKCntMRuRJL1udQUeFVRwWpk0nDU3lm7lZsTgE9U1u6jiMSMvzZ8uapYVtF9Q3GmERgPrDVWjsHwFp7q7V2nbXWCzwOTKnhWg9R+Zzcp5Y5c+Y0UHyR0FJe4WXx2hz6dmtNcpt413EkCIwd0JGY6HANGyLSyPxZvOUC7ausdwCOVj3AGNMBWAlsBR7wbUs0xny3ymEeoLSG6z8JpFVfZs2a1VD5RULKZnuCEwVFTB6Z6jqKBInYZpFcNzCFVVtyKbxY4jqOSMjw523TpcAjxpg2wAXgdmD25Z3GmHBgHvCWtfZXVc4rBH5ojFljrV0HfBt4p/rFrbVngDN+zC8SUhZmZJMUH82wPuqoIHU3aXgXFmZks2zjYW4e09V1HJGQ4LfizVqba4x5GPiYyqFCnrfWrjfGzAd+DqQAA4BwY8zljgwbrLUPGGPuBJ71PQu3F5jpr5wiAqfOFJG56xi33dCdyAgN/yh117VTEt1TkliYkcO00el4PDU9MSMiDcnTBHsJNbk3JOJvry/aw2uLLc/91wTat4pzHUeCzJJ1OfzxrS389luj6ZPeynUckWBT7288+ootEuLKyytYvC6HAT3aqHCTKzKmf0dim0WwMCPbdRSRkKDiTSTEbdxzglNnLzFpRKrrKBKkmkVHcMOgFFZvO8q5C+q4IOJvKt5EQtyCjGxaJkQztE/7Wo8V+TyTRqRSWlbBsg2HXEcRafJUvImEsBP5F9m45zgTh3YhIlwfB3LlUjsk0LNLCxZmaMYFEX/Tp7VICFu8LgeAG4dpRgW5epNGpJJ7spAdB067jiLSpKl4EwlRZeUVLFmfw6Ce7WjbMtZ1HGkCRvfvSFxMpDouiPhZnYo3Y0xrfwcRkca1fucx8s8VM1kdFaSBREeGM35wCmu2H+XM+WLXcUSarLq2vO00xvzdGDPar2lEpNEszMimdWIzBvVs6zqKNCGTRqRSVu7lo0x1XBDxl7oWb6lUTnf1B2PMdmPMN40xzf0XS0T8Ke/UBTbvPcmNw1MJV0cFaUAp7ZrTJ70VC9dmU1Ghjgsi/lCnT21rbZG19iVr7XDgQeAHwFFjzDPGGH1tFwkyi9ZmExbm4cZhnV1HkSZo0ohUjp2+yNZ9J11HEWmS6vyV2xgzyRjzNvAm8C4wEjgMvO+nbCLiB6VlFSzNPMTQ3u1olRjjOo40QaP6diAhLooFGdmuo4g0SXWamN4Ycwg4BfwZ+Iq1tsi3a7sxZra/wolIw1u7PY+zhSWaUUH8JjIinPFDOvPeJwc4fbZIXxJEGlhdW96+Yq0daK19/nLhZozpDWCtTfdbOhFpcAsysmnbMpYBPfTEg/jPpOFdqKjwsnS9Oi6INLQvbHkzxrT0/fonY8z1/N/M95HAe0B3/0UTkYZ2+Ph5th84xcwpvQgL89R+gsgVSm4TT7/urVm0Lofp43sQrn9vIg2mtpa316m8XXpfBlJUAAAgAElEQVQtcNr3+ykqn3Xb5N9oItLQFq3NITzMw4Sh6qgg/jd5RBonC4rYtOe46ygiTcoXtrxZa28CMMa8aK29v3EiiYg/FJeW81HmIYZf24EWzZu5jiMhYNg17UlqHs2CjGyG9G7vOo5Ik1HbbdOe1to9wNPGmIHV91tr1fomEiRWbz1KYVGpZlSQRhMRHsbEoZ15e9k+ThRcpG0LTcMm0hBqu236P76fb9ewzPVjLhFpYAszskluHUffbprtThrPTcNT8QKL1+W4jiLSZNR223Sq72da48QREX/IOnqW3dn53D+tDx6PHhyXxtOuZSwDTVuWrMvh7omGCM3oIXLVartt+scv2m+t/U7DxhERf1iQkU1kRBjjh6ijgjS+KSPT+OWL61i38xij+ia7jiMS9GobpPd0o6QQEb+5eKmU5RsPM6Z/RxLiolzHkRA0qFc72rSIYcGaLBVvIg2gttumjzZWEBHxjxWbjlBUXM7kkamuo0iICg/zcNPwLry6YA+5Jwvp2CbedSSRoPaFDx8YY1b5fp43xpyrvjRORBG5Ul6vl/lrsklPTsR0buE6joSwG4d2ITzMw4I12a6jiAS92p4cvcP38xoqB+qtvohIANuTXUB23jkmj0xVRwVxqkVCM0Zc24GPMg9RXFruOo5IUPvC4s1am+f7mQP0BB4E/h3o7NsmIgFsfkYWMdERXDewk+soIkwemUphUSkrN+e6jiIS1OrUZ9sY81/AE8BFoAx4wRjzLX8GE5Grc7awmNVbj3LDoE7ERNfWN0nE/67t2ppObeNZmJHtOopIUKvrgDv3AsOstT+31v4MGAZ803+xRORqfZR5mNKyCqaM1DCNEhg8Hg+TR6RiDxVw4MgZ13FEglZdi7cioPDyirW2ALjkl0QictUqKrwszMimd1pLunRIcB1H5F/GDelMVGQ4CzKyXUcRCVq1DdJ7m+9XC7xrjHkeKAdmAhtqu7gx5l7gp0AU8IS19plq+28BHgU8QBbwNWttgTGmM/Aq0Nb32jOstYWISJ1s2XeSvNMXuHdST9dRRD4lPiaS6wZ0ZPmmI3ztS32Ii4l0HUkk6NTW8vagb+kIJADfA/4TaAd0/6ITjTEdgceA0UA/YLYxpneV/QnAs8BUa20/YBvwiG/3n4E/W2t7Ulkk/qxe70okxC1Yk0VCXBSj+nZwHUXkMyaPTKW4pJyPNx52HUUkKNU2SO8NV3HtCcAya20+gDFmLjAd+G/f/kjgm9bay92OtgEzjDGRwFjgy77tLwMrgB9dRRaRkHGyoIj1O49x6/XdiIwIdx1H5DO6p7SgW0oS89dkMXVUmoaxEamnOnVBM8Z0B74NxFN5izMc6GatHfUFpyUDeVXW84Chl1estaeBd33XjwF+DPwJaA2cs9aWVTnvM+McGGOSgKTq2zMzM0lI0DM+EroWrs3GC0wakeo6isjnmjoyjafe3Mz2A6fo262N6zgiQaWuHRZeo/K5tZFANtAb2F7LOTV9laqovsEYkwjMB7Zaa+fU9TzgISqfk/vUMmfOnFpiiTRdpWXlLF6bw5Be7WnfKs51HJHPNWZAR5rHRvLh6izXUUSCTl2Lt+bW2v8AFgELgInAoFrOyQXaV1nvAByteoAxpgOwEtgKPODbfBJIMMaEf955Pk8CadWXWbNm1fEtiTQ9q7flcaawmKmjNDyIBLboyHAmDu3C2h3HOHWmyHUckaBS15E7830/9wPXWGszqxRXn2cp8Igxpg1wAbgdmH15p+/8ecBb1tpfXd5urS01xqwE7qKyxW8mlQXjp1hrzwAaKEikivmrs+jQOo7+PXQbSgLf5JGpvLNiPwvXZvOVSb1cxxEJGnVtedtnjHkSWA08aIx5EIj+ohN8HREeBj4GtgCvWWvXG2PmG2MGAzcDA4DpxpgtvuV53+nfpLJ36i5gDJXDjYjIFzhw5Ay7s/OZMjKNsDA9AC6Br32rOAb1bMeitTmUltX0dIyI1MTj9XprPcgYEwtMtta+bYz5d+Am4A/W2tX+DngFan9DIk3QH9/czIrNucz5+Y3Ex0a5jiNSJxv3HOeR59bygxmDNAevhKp6f9uuU8ubtfYisNwY8yX+bzDdQCzcREJS4cUSVmzO5fqBnVS4SVAZ0KMtHVrHqeOCSD3UdWL6qVTOdPBDKm9h7jbGjPVnMBGpu6WZhygpLVdHBQk6YWEepoxMZXd2PllHz7qOIxIU6vrM2y+B66y1Y621Y4CpwP/nv1giUlcVFV7mr86mV2pL0jsmuo4jUm8TfPOdqvVNpG7qWrx5rbU7L69YazfV41wR8aPNe0+Qd/qCWt0kaMXHRnH9wE4s33SEwqJS13FEAl5tE9O39P2aaYz5AfC/VA6Yex+wzL/RRKQuPlydRVLzaEb2TXYdReSKTR2VxuJ1OXyUeYhbxnZ1HUckoNU2ztspKntvXu4J8XiVfV7gB/4IJSJ1c+z0BTbsPs6d43sQGaHGcAle6R0T6ZXakg9XZzFtdLqGuxH5ArVNTK+/BiIBbN6qLMI8HiaPTHUdReSqTRudzuOvbmDjnuMM6d2+9hNEQlRdJ6YPo7KVbTIQCSwGfl1l8ngRaWRFxWUsWZ/DqL7JtEqMcR1H5KqN6NuBVonN+GDlQRVvIl+gri1rvwHGAU9R2ct0JPAHf4USkdotyzzExUtlTBub7jqKSIOICA9jysg0Nu89yeHj513HEQlYdS3eJgHTrLXvWmv/Cdzi2yYiDlRUePlgVRbdU5IwnVu4jiPSYG4a3oXIiDA+WHXQdRSRgFXX4i3MWvuv/tvW2mJA/blFHNm89wS5Jwu5eUw6Ho8e7JamIzE+musHdmLZhsMUXixxHUckINXpmTdgizHmCeBp3/q3gG3+iSQitflg5UFaNI9mVL+OrqOINLhpY9JZsv4QS9Yf4tbru7mOIxJw6try9i2gBbAGyADaAA/6K5SIfL4jJ86zcc8JJo9M0/Ag0iSlJSdyTddWzFudRXmF13UckYBT15a3n1hr7/NnEBGpmw9XZRERHsakEV1cRxHxm2mj0/nNnEzW7zzGiGs7uI4jElDq+rX9S35NISJ1cqGolI82HGLsgI60aN7MdRwRvxnWpz1tW8TwwUp1XBCprq4tbweNMYuBVUDh5Y3WWk1OL9KIlmYeoqi4nGmjNTyING3h4WFMHZXGS/N2kXX0LGnJia4jiQSMura85QO5wCBgNHCNbxGRRlJe4WXeqoP0Sm1Jt5Qk13FE/O7GYV2IjgpX65tINXUt3n5HZbE2lcox3roCj/gpk4jUIHPXMY6dvsi0MWp1k9AQHxvFDYNSWL7pCGcLi13HEQkYdS3eXgKeA2J8y1zgBX+FEpHPenfFAdq2iGGkHt6WEHLzmHRKyyqYvzrLdRSRgFHX4i3WWvtXa22ptbbEWvsnoJ0/g4nI/9l7qICdB08zbUxXwsM1PIiEjpR2zRnSux0frsmiuLTcdRyRgFDXvwIHjTEjL68YY64B9DVIpJG8t+IAsc0iuHFYZ9dRRBrdrdd142xhCcs3HnYdRSQg1LW3aUdghTFmK1AGDACOGWO2AVhr+/opn0jIO1FwkVXbjnLzmHRim0W6jiPS6K7p2or0jom8u+IAE4d2ISxMU8JJaKtr8faffk0hIp/rck87dVSQUOXxeLj1uq78z2ub2GRPMLiXntqR0Fan4s1au8LfQUTksy4UlbJobQ6j+yXTtkWs6zgizozu35E5H+7ineX7VbxJyNOTzyIBbMn6HIqKy/jydV1dRxFxKiI8jGlj0tm2/xQHc8+6jiPilIo3kQBVXl7B+ysP0ie9Fd1TWriOI+LcjcNTiYkO550V+11HEXFKxZtIgFq97SgnC4q4Va1uIgDEx0QycWgXVm7O5dSZItdxRJxR8SYSgLxeL++sOEDHNnEM6d3edRyRgDFtTDpeb+VUcSKhqq69Ta+IMeZe4KdAFPCEtfaZzzluDvCxtfZl3/pMKqfkOu475ENr7cP+zCoSSHYePM3+w2f45u19NSyCSBXtW8Uxom8yCzOyuXNCDw2fIyHJb8WbMaYj8BiVk9kXA2uMMR9ba3dVOSYZ+AswHvi4yulDgO9Za1/3Vz6RQDZ32T4S46O4YXCK6ygiAee267uxeutRFmbkcNsN3VzHEWl0/rxtOgFYZq3Nt9ZeoHI+1OnVjpkBvAe8VW37EGCmMWarMeZVY4ye1paQkXX0LBv3nGDamHSaRfm1cVwkKPXo3IK+3Vrz3if7KS3TlFkSevxZvCUDeVXW84BOVQ+w1v7eWvt8DefmAY8A/YHDwNPVDzDGJBljUqsv586da7A3IOLC3GX7iIkOZ+rINNdRRALW9HHdyT9XzLINR1xHEWl0/izeanpQp6IuJ1prb7XWrrPWeoHHgSk1HPYQlfOrfmqZM2fOFcYVce/Y6Qus2pLLpBFpxMdGuY4jErD692hD106J/PPjfZRXeF3HEWlU/izecoGq3eQ6AEdrO8kYk2iM+W6VTR6gtIZDnwTSqi+zZs264sAirv1z+X7CwsK4ZaymwhL5Ih6PhzvG9eDoqQus3Z5X+wkiTYg/H6hZCjxijGkDXABuB2bX4bxC4IfGmDXW2nXAt4F3qh9krT0DnGnAvCJOFZy/xNL1hxg/JIVWiTGu44gEvOHXdiC5dRxzl+1lZN8OeDzqmS2hwW8tb9baXOBhKnuRbgFes9auN8bMN8YM/oLzyoE7gWeNMbup7K36Q3/lFAkUH6w8SFl5Bbddr95zInURHubhthu6s//IWbbuO+k6jkij8Xi9Te5ZgSb3hqTpu1BUyv2/WswA05YfzxziOo5I0CgtK+eBx5bQqW1zHvuPUa7jiFyJejcZa4YFkQCwICObi5fKmH5Dd9dRRIJKZEQ4t4ztxrb9p9h7qMB1HJFGoeJNxLGS0nLe++QA/Xu0oVtKkus4IkFn0oguxMVEMnfZPtdRRBqFijcRx5ZmHuLM+WLuGK9WN5ErEdsski+NSmPtjjwOHz/vOo6I36l4E3GotKyCucv2Ybq04NqurV3HEQla08akEx0ZzptL9rqOIuJ3Kt5EHPoo8xAnC4q450ajYQ5ErkJifDRTRqaxcssRjpxQ65s0bSreRBwpLavgHx/tpUfnJAaatq7jiAS9W6/vRmRkOG8uVeubNG0q3kQcWbbhMCcKirjnxp5qdRNpAEnNo5k8IpVPNh0h92Sh6zgifqPiTcSBsvIK3vpoL91SkhjUU61uIg3lthu6ERERzltqfZMmTMWbiAMfbzjMifyLetZNpIG1aN6MySNSWb7pCEdPqfVNmiYVbyKN7F+tbp0SGdKrnes4Ik3O7Td0IyLMo9Y3abJUvIk0shWbjnDs9EXunqhWNxF/aJHQjEkjUvl44xGOnb7gOo5Ig1PxJtKIyssreHPpXtI7JjK0T3vXcUSarNtu6Ea4Wt+kiVLxJtKIVmzOJe/UBbW6ifhZq8QYbhrehWUbDqv1TZocFW8ijaS0rILXF+8hPTmRYWp1E/G76eO6Exbm4fXF1nUUkQal4k2kkSxZn8Ox0xf56pRehIWp1U3E31olxjB1VBrLNx7m0LFzruOINBgVbyKN4FJJGW8usfROa6lx3UQa0fRx3YmOiuDVhXtcRxFpMCreRBrBh6uyyD9XzMwpvfWsm0gjSoyP5tbru5GxPY+9hwpcxxFpECreRPyssKiUucv2MahnW/qkt3IdRyTk3DI2nYS4KF6Zv9t1FJEGoeJNxM/eWb6fwqJSvjq5l+soIiEptlkkd4zvwZZ9J9m676TrOCJXTcWbiB8VnL/E+58cYEz/jnTtlOQ6jkjImjIyldZJMfxt/i68Xq/rOCJXRcWbiB/946N9lJRV8JVJPV1HEQlpUZHh3HOjYe+hM6zbecx1HJGrouJNxE9O5F9kwZpsJg7tTHKbeNdxRELe+MEpdGwTxysLdlNeodY3CV4q3kT85O+L9uDxwN0TjesoIgKEh4cxY1IvDh07z/KNh13HEbliKt5E/GD/kTN8vPEw00an0zopxnUcEfEZ1TeZ7ilJvLJgN5eKy1zHEbkiKt5EGpjX6+WF93fQPDaKOyf0cB1HRKoIC/Pw9Zuv4fTZS7yz4oDrOCJXRMWbSANbu+MYOw6cZsaknsTFRLqOIyLV9Elvxai+ybz98T5Ony1yHUek3lS8iTSg0rIKXpq3k5R2zblpWBfXcUTkc9z3pd6Ul3t5ZYEG7pXgo+JNpAF9uDqLvFMX+PrNfQgP138vkUDVvlUcN49JZ9mGw+w/csZ1HJF68etfF2PMvcaYXcaY/caYb33BcXOMMfdVWe9sjPnEGLPHGPOeMUbjLEjAO3ehhDeWWAb2bMugnu1cxxGRWtwxoQfNY6N48f2dGrhXgorfijdjTEfgMWA00A+YbYzpXe2YZGPMB8Ad1U7/M/Bna21PYAPwM3/lFGkory/eQ9GlUu6f1sd1FBGpg/iYSO69qSfbD5xi7Q4N3CvBw58tbxOAZdbafGvtBWAuML3aMTOA94C3Lm8wxkQCY33HA7zMZ4s7kYBy+Ph55q/J5qbhqXRpn+A6jojU0aThXUhpF89L83ZSWlbhOo5InUT48drJQF6V9TxgaNUDrLW/BzDGjK6yuTVwzlpbVuW8TtUvboxJAj4zWWRmZiYJCfrjKY3rxQ920iwqnHtv0jRYIsEkPDyM+6ddw6PPr+XD1Qf58nXdXEcSqZU/W948NWyry9eaup73EJBVfZkzZ06dA4o0hHU78tiw+zh3TzQkNY92HUdE6mlQz7YM6tmW1xbt0dAhEhT8WbzlAu2rrHcAjtbhvJNAgjEmvJbzngTSqi+zZs264sAi9XWppIy/vrudzu2bM21Muus4InIFPB4P37i1L2XlXl54f6frOCK18udt06XAI8aYNsAF4HZgdm0nWWtLjTErgbuA14CZwIIajjsDqH+3OPXW0r2cKCjit98aTYSGBhEJWh1ax3HHuO68tthy07Au9OvRxnUkkc/lt7821tpc4GHgY2AL8Jq1dr0xZr4xZnAtp3+Tyt6pu4AxwE/9lVPkSh0+fp53lu9n3OAU+qS3ch1HRK7S7eO606FVHM/+cxulZeWu44h8Lk8THNumyb0hCTxer5ef/WUN+w+f4dkfj6dF82auI4lIA9iw+ziPPr+Wr07upbmJpbHU9Kz/F9J9HpErsHJLLlv3neKrU3qrcBNpQgb3aseIazvw5tK9HM+/6DqOSI1UvInU08VLpbzw/g66dUpk0ohU13FEpIH92y3X4vHAc+9udx1FpEYq3kTq6e+L9lBwvpj/uL0f4WH1bu0WkQDXpkUM90w0rNt5jPU7NfOCBB4VbyL1YHPymbfyIDcNT6VH5xau44iIn9w8tisp7Zrz7NtbuXip1HUckU9R8SZSR6Vl5Tz15hZaJjTjvqm9az9BRIJWZEQY37mrP/nnLvHiBxr7TQKLijeROnpjyV4OHz/Pt+7oT1xMpOs4IuJnPbu05OaxXVm0Noete0+6jiPyLyreROpg/5EzzF22j3GDUxjcq53rOCLSSL4yuRfJreP44z+2UFRcVvsJIo1AxZtILUrLKnjqjc0kxkXxwC3XuI4jIo0oOjKc79w1gJMFF/nbh7tcxxEBVLyJ1Grusn1k553jm9P70Tw2ynUcEWlkfdJbMXVUGvNWZ7HjwCnXcURUvIl8key8c7y11DJ2QEeGX9PBdRwRcWTWlN60axnLH9/awqUS3T4Vt1S8iXyOsvIKnnpzM3Exkcz+8rWu44iIQ82iI3jwzv7knbrAqwv2uI4jIU7Fm8jneG3RHvYfPsN/3N6PxPho13FExLF+3dsweWQq731ygM32hOs4EsJUvInUYPv+U8xdto+JQzszqm+y6zgiEiDun9aHlHbxPPH6Js4WFruOIyFKxZtINecvlvA/r20kuXWcbpeKyKc0i4rgP78ymPMXS3nqzc14vV7XkSQEqXgTqcLr9fKnt7ZwtrCYH3xlMM2iI1xHEpEAk5acyNem9SZz13Hmr85yHUdCkIo3kSoWrc0hY3seM6f0plunJNdxRCRATRudzqCebXnhg53k5J1zHUdCjIo3EZ/Dx8/z3Hs7GNCjDbeM7eo6jogEMI/Hw0N3DyQuJpLfv7qB4tJy15EkhKh4EwFKSsv5/asbiIkO57v3DCQszOM6kogEuKTm0Xz37oHkHDvPS5q8XhqRijcJeV6vl//95zayjp7j/901gBYJzVxHEpEgMbBnW758XVc+XJ3F8k1HXMeREKHiTULewrU5LFl/iLsm9mBI7/au44hIkJk1tTd90lvxp7e2cDD3rOs4EgJUvElI25Odz1/f2cagnm2558aeruOISBCKCA/jRzMH0zw2kl+/vJ7zF0tcR5ImTsWbhKyCc5f4zZxMWifF8IMZgwjXc24icoVaNG/GT2YN4fTZS/zh1Y2UV2j8N/EfFW8SksrKK/jdKxu4cKmU/7pvKPGxUa4jiUiQM11a8o1br2WTPcHfF+52HUeaMBVvEpJeeH8HOw+e5sE7+pOWnOg6jog0EZNGpHLjsC7846N9ZGw/6jqONFEq3iTkLFqbw7xVWdwytivXDezkOo6INDHfuPVauqck8cTrm9SBQfxCxZuElI17jvPnt7cy0LTlvi/1dh1HRJqgqMhwHv7aUOKaRfLo82s5WVDkOpI0MSreJGQcOHKG3/0tk9T2Cfxo5mAiwvXPX0T8o1ViDL/4txFcKinj0eczuFBU6jqSNCH66yUh4UTBRf77hbXExUTx8weGEdss0nUkEWniUjsk8JNZQzhyopDfzFlPaVmF60jSRHi8Xv91ZzbG3Av8FIgCnrDWPlNtf3/gOSAR+AT4d2ttmTFmJvA74Ljv0A+ttQ/X8WXVP1s+pbColB89vZLTZ4r43bfH0KVDgutIIhJCPso8xJNvbGbc4BQeunsAHo+GJZJPqfc/CL+1vBljOgKPAaOBfsBsY0z1h4xeBR601vagMvy/+bYPAb5nre3vW+pauIl8SmlZBb95eT1HTxbyk/uGqnATkUY3fkhn7r2pJ8s2HOa1RdZ1HGkC/HnbdAKwzFqbb629AMwFpl/eaYzpAsRYa9f6Nr0M3OH7fQgw0xiz1RjzqjGmhR9zShNVXl7Bb+asZ9v+U3znrgH0697GdSQRCVF3T+zB+CGdeWOJ5Z8f73MdR4JchB+vnQzkVVnPA4bWsr9Tld9/C6wHfg08DcyoenFjTBKQVP1FMzMzSUhQ60qoK6/w8rtXNpC56zhTR6dxw6AU15FEJIR5PB7+/bZrOXb6Ai/N20VERBg3j+nqOpYEKX+2vNV0D7eiLvuttbdaa9dZa73A48CUGo59CMiqvsyZM+eqQkvwK6/w8j9/30jG9jxuGJLCuMEq3ETEvYjwMGZM6cU13Vrz3Ls7WLAmy3UkCVL+LN5ygfZV1jsAR2vbb4xJNMZ8t8p2D1BTH+sngbTqy6xZsxogugSrigovT72xiZVbcrl+cAq3T+xBWJg6VYtIYIgID+O7Xx1Er/RWPPv2Npasz3EdSYKQP2+bLgUeMca0AS4AtwOzL++01uYYYy4ZY0ZZa1cDM4EFQCHwQ2PMGmvtOuDbwDvVL26tPQOc8WN+CTJer5en/7GFjzceYczAjtwzpRfhYR5KL5W7jiYi8i+REeF8f+ZgHn9pPX96awsR4WF6tEPqxW9NEtbaXOBh4GNgC/CatXa9MWa+MWaw77AZwBPGmN1AHPBHa205cCfwrG/7IOCH/sopTUN5hZc/vbWFJesPMaJfMjOm9iYm2p/fTURErlxUZDj/ed8QunZK4snXN7E085DrSBJE/DrOmyNN7g3JFystK+fxVzawdscxRvRLZtbNff41CG9JaTnnzxXTraMmnxcRt8rKK9iXe5b2beP/ta2ouIw/vLyefYfO8LVpfbjt+m4OE4ojgTPOm0hjuHiplJ/9JYO1O44xYXhn7rvlGs2eICJBIyY6gh/dP4x+pg0vfbCTlz7YSRNsVJEGpuJNgtbZwmJ+/Mwqdmed5pYbunHHjT11q1REgk5UZDjf/cpgRg3oyD+X7+epNzZTXqECTj6f/tJJUDqRf4GH/3cNp85c4q6benL90M4q3OT/b+/eo+Mq73OPf0caSaO7JUuWbfmCje0fGOMLmGBuSbCBlHAJiaFOQuskDQ60hNU2YbXJCpymXT09nJymtGkSspLQBkoohZxAFylwAiaAKcHYgAHb+IfxDd8lWdb9NqOZ88ceGVmRrZHRSDPi+aylZe293/3OK3n06tG7371fkayVkxPiKysXUlacz5Mv7qKlo4dvrD6P/LzcsW6aZCCNvEnW2byjgT//xxdoau1m9TXzFdxEZFwIhUJ87sozWfUJY8PWw/zFP6+jsaVrrJslGUjhTbLKEy/t4o4fvUReOIc1Kxdy/sKpCm4iMq4sP38mq64w9h5u5U+/+xzbdjeOdZMkwyi8SVaI9cb5/sObuOf/vsnp0ydwyw2LWTC3WsFNRMaVzu4Y9Y0dLF82kztvvoCcnBDf/OGL/Hq9HuYr79OjQiTjNbd187f/up5tu4+y/CMz+NjS6UyuKk4puOlRISKSKQZ7VEh/fcGturLoWP/W2t7DP/38Vd7Zc5SrLprFmk8tIDdX4y7jzLAfFaLwJhntje31fPfnr9La0cONV81n7oyK4zq2oSi8iUimOFl4Gyy49T/vgV9t4dlX9mIzKviL1UuZVFE0Ws2W9FN4Q+FtXIj1xrn/ia089twOqioK+fLKhZRE8oYV3EDhTUQyx4nC28mCW3/rXt3H/Y9vIScnxK3XL+Jj50xLd5NldCi8ofCW9fbXt/Kd+zey80ALFy6eyqrfO4PWtp5hBzdQeBORzHGiFRZSCW59DjW08cOHNrH7YAsfO2cat16/SHN/s5/CGwpvWSuRSPDr9e/xk8feIicnxJeuW8AimzSsjm0ghTcRyRQDw9twg1v/en7xtPPkukUYjFoAABNKSURBVF1UVxRy+x8s5czTKtPVbEk/hTcU3rLS/vpWvvcfm9i6q5E50ydw62eXUFSY94GCGyi8iUjm6B/eTjW49ff2ziPc8/Ammlu7uWLZTP7omrO0PGB2UnhD4S2rRGNxHl7r/GLtdsK5Oay8fB6XLzuN7mjvB+7YQOFNRDJHX3grL4+MSP8G0NkV5d+f2sbzG/ZSXlrAzZ8+m4sX1Y5Qi2WUKLyh8JY1tuxo4HuPbOJAfTtLzpzEF69dQEVZZET+Iu2j8CYimSLWG2frnkYSodCI9G/9bd9zlHsffYsD9W2cY9V89YYlVFcUjlj9klYKbyi8ZbwD9W38y6+2sH7zISpKC1h97VmcO38ycOpzQE5E4U1EMkWsN84GP8zM2glpucmgraOHX659h+c37gPg6otnseoyo7hQl1IznMIbCm8Zq7mtmwee2sbT6/eQkxPiExeexrUfn0Mk2YmNdHADhTcRyRx9I2/Tp458f9S//2zr6OGhJ7exYcshSgrzWHXZPK66eDZ5YT3cN0MpvKHwlnE6uqI89vwOHn3uXbqjvVy0uJbfv8KYUBY5ViYdwQ0U3kQkcwy1wsKpOlH/uXNvEz9/8m227zlKdUUhq688k0uWTCM3Z9hZQdJL4Q2Ft4zR3NbNo8+9yxMv7aazO8bZc6v4/JVnUltTely5dAU3CMJbc1Mn86ZXjGi9IiLDlY7wNlT/mUgk2LStjoee2sbBhnZqKou4fvlcVpw3QyNxmUPhDYW3MdfQ1Mkja9/hmQ3v0RONs3BeNdddOoc5M343QKUzuAG0tHfT0tzF2bOrRrxuEZHhGOnwNpz+Mx5PsP6tgzz+3Lvsq2ujorSA6z52Op+8cNaxqSsyZhTeUHgbE4lEgs07jvD4izt5ZcshEokE5y2YwqcuPZ1pNWWDnpPu4NbZHeNAXRtlkbBG3kRkzI1keDvV/jORSPDmO/U89pt32bG3ieJImEuXTueai2cztXpkL+dKyhTeUHgbVW2dUZ5Zv4cnf7ubAw3tFBaEuWDxVK66ZDbVJ1k4eTSCW31jBxPKCoh29WrOm4iMuZEKbyPVf/quRp54cSdvvFNPPJ7grNmVXH3RbJadPYVwri6pjiKFNxTe0i7WG+fVbXU8u/E9Nr59mJ5onJlTylh+/gwuXFRLQX7uSc8freBWXVlEbk5INyyISEYYifCWjv6zqaWLta+8x/Mb99LU2k15cT4XLZrKivNmMHf6BEIh3eCQZgpvKLylRTyeYMvOI6zd+B4vv3WQ9q4YRZEw586v4bJlM5lVOyGlekYzuBUWhHW3qYhkjA8a3tLdf7Z3Rln32j42eR2+q5HeeIKayiIuWVzL8qXTmT7gZjMZMQpvKLyNmI6uKK9uO8zLmw/xutfR2hElP5zDQpvExUtqWTi3mvAw7lYa7eAGelSIiGSODxLeRrv/bO+Msv7NA7z0xgG27zlKApg8sYjzzqxh2YIpzJ89UZdWR47CGwpvp6w3nmDXgWZe9zpeffsw2/YcpTeeoDAS5qzTqzh3fg1L59dQkD/8jmMsghsovIlI5jjV8DZW/Wefoy1dvPzmAV7fVsf2vt8LBWEWza3i3DNqWDyvmprKIl1ePXUKbyi8pSwai7PnYAubttfz1rsNvL27kc7uGACTKotYZNUsnT+ZeTMryP0Af2GNZcej8CYimeJUwttYB7fByr/5Th2vbT3MW+820NYRBaCyLMJZsyeyaG41Z58+kSlVxQpzqVN4Q+FtUPF4gkNH2vE9R9m6u5Hte4+y52Arsd44ABPLI5wxq5Kz5lQxf3YVleWRIWpMzVh3PApvIpIphhvexrr/HEoikWB/XRub321g644Gtr93lPbOYACgKBLm9Npy5s2o4MxZE5k7fQIVpQUKdINTeONDHt4SiQRHmrvYV9fKzgMt7DrQzHsHW9hX30ZPNAhqeeEcpk8uZeaUMqoqijh3fk1anu+TCR2PwpuIZIrhhLdM6D+HKx5PcKC+Dd/diO9uZMfeJhqaOumLGSWFeUyvKWHmlHJmTy1jVm05tdUllBblj8jrZzGFNz4E4a072kv90Q7qGjs4dKSdQ0c62N/QzsGGNg43dhwLaQDFhXnUTiphWk0pM6aUMmd6BbWTSuiJxbOuYziV+hXeRCRTpBreMqX/HIn6c0Kwa38zu/YnBxIOt3Gwvo2e2PG/pyZPLGJqVQlTqoqZPLGIyZXF1FQWMbE88oGm7WSJzApvZvZ54A4gH7jb3X8w4Phi4CdAOfACcIu7x8xsBvAAMAlw4EZ3b0vxZbMyvCUSCdo7ozS399Dc1s3R1m6OtnRxpLmTIy3dNDZ30dTaRWNLF63JOQZ9ckIwcUIhkyqLqJlYzJTqYmqrS5g2uYzykvzfGaYeTx3DUPUrvIlIpkglvGVS/5mu+uPxBPVHO9hf18b+ujYONbRxqKGdusYOmtt6jiubEwoxobSAitICKsoiVJZFqCqPUFleSEVpARNKCygrzmdCSUE2L/OVOeHNzGqBF4FzgW7gJeBz7r61X5nNwE3u/rKZ3QtsdPd7zOxXwAPu/pCZ3QmUuPtfpvjSoxbeEokEsd443dE4PdFeunt66eqJ0dXdS2dPlM7uXjq7YnR0RWnvitLR93lnjLbOHto6o7T3fXTFiMcHb3pJUR7lJQWUJ9/AVROKqK4spLqiiOrKIipKC1L+yyQTfnBHs36FNxHJFEOFt0zrP8ei/p5oL0eaOo9dXapv7KShuZPm1m6aWrtobuuhu6d30HPzwjkUR/IoLsyjuDBMSWE+JUV5FEXyKI6EKYqEk5/nEYmEKczPpbAgTCQ/TEF+bvCRl0t+Xu5oPwZl2OEtnTH1MuBZd28EMLNfANcDf5PcngkUuvvLyfI/A/7azH4KfBS4rt/+54HjwpuZTQB+58mwGzZsoKxs8LU0R8o3vr+O7fuaiEbjw0qKOTkhIvm5RAqCN1BRJMyU6hKKCvMoKcyjMBImBEyrKaWqopDSonzKSwtSehOlEsL7/2BF8nNTOmc4sr1+EZF0SyQG76+zvf8cqfrzwjlMripmclXxCevPCYVoau2ipb2H1rbgalVLew8t7T3vD4h0RjnU2E7HgRhdPTG6u3uH9/s6FCIvnMO1H53N6k/OP6WvJZ3SGd6mAgf7bR8EPjLE8WlAFdDi7rEB+wf6M+CvBu687777uO222z5As4d29txqKicUkhfOIS83h3A4J/g8nEN+XjK55+eSHw6SfCQ/l4L8MOHc0AnvtInF4nT1xIjkh489+Dba00vDkY4RaXP/+pubu2gekVqzo/6SSN4It0ZEZPhCoRDhHDhUd/wsoEzuPzOx/j6lkTxKI3lMHRD0BpNIJOiJxunuidHV00tPNPjojvbS2d1Le1cUEhCPx4nGkh+9ceZMS231oNGWzvA2WEqJp3B8qPP6/CPBqNxxvvCFL+xKpXEfxI2fOCPdLyEiIuNMbk6IedMrxroZMg6kM7ztBy7ptz0FODDg+ORBjtcDZWaW6+69g5wHgLs3AU0j3WgRERGRTJbOGXnPACvMrNrMioCVwFN9B919D9BlZhcld60GnnT3KLAOWNV/fxrbKSIiIpI10hbe3H0/8C3gN8Am4EF3f8XMnjCzpcliNwJ3m9nbQDHwveT+PwG+YmZbCUbv7khXO0VERESyiR7SKyIiIjJ2hv2okHH/2GIRERGR8UThTURERCSLKLyJiIiIZBGFNxEREZEsovAmIiIikkUU3kRERESyiMKbiIiISBZReBMRERHJIulc23TUmVl47dq1Y90MERERkZSsWLHiNGCfu8dSPWdchTdg2ooVK8a6DSIiIiKp2gXMAnanesJ4C2/7CL4BIicyDVhHsGbuvjFui2QPvW/kVOh9I6ka1vtjXIW35JDj7rFuh2QuM+v7dJ+77x7DpkgW0ftGToXeN5IuumFBREREJIsovImIiIhkEYU3ERERkSyi8CYfNk3AXyf/FUmV3jdyKvS+kbQIJRKJsW6DiIiIiKRII28iIiIiWUThTURERCSLjKvnvIkMZGZ/A8Td/duDHKsBfkrwYOdW4Gvu/tvksTXAHwMlwE/d/Tuj1mgZdWb2eeAOIB+4291/MOD4YuAnQDnwAnCLu8fMbAbwADAJcOBGd28b1cbLmDKzMuAl4OqBz3IzsyuB/53cfAu42d3bkufcA8xPHvuyu782Sk2WcUAjbzIumVm5md0L3H6SYt8FXnP3BcCNwANmVmhmFwNfBy4FzgHWmNn8k9QjWczMaoH/CVwMLAK+Msj/9wPAbe4+DwgBa5L7fwj80N3PADYCd45OqyUTmNn5wIvAvEGOTQDuAz7r7guBN4C/Sx7+B2Cvuy8BvkkQ5ERSpvAm49WngO0EAe1ElgAPA7j7TuAIcAGwiuAXcnNyFOVyYG96mytj6DLgWXdvdPd24BfA9X0HzWwmUOjuLyd3/Qy4wczygI8myx/bP1qNloywBrgVODDIsbnAHnffmtz+FXCdmYWAlcBdAO7+FPBHo9BWGUcU3mRccvf73f0uoPckxV4DPgtgZguAs4DJwByg2syeN7NNwDXu3pruNsuYmQoc7Ld9kGBNyqGOVwEtyWX5BjtPxjl3v8nd153g8HZgupktSm7/PkH/MgnoBr5qZq+b2bNoCpMMk94wktXM7Abg7gG7t7n7ZSmc/jXgn83sLeBl4DdAD8HPxUXAVUAe8LyZbXb334xcyyWDhAbZF0/h+FDnyYeYuzeZ2Wrgx2aWQzBnsq9/qQGOuvsSM7sceBSYPXatlWyj8CZZzd0fAR45xdOLgTV9o2pm9iawAzhEMBeuLbn/KeA8gnAn489+4JJ+21M4/jLYfoIRk4HH64EyM8t1995BzpMPMTPLJViQ/vzk9jkE/UsDEAMeBHD3p82sxMwmuXvdmDVYsooum8qH2W3ALQBmdgXBnYZvAI8DnzazfDMrBFYAr45ZKyXdngFWmFm1mRURzEd6qu+gu+8BuszsouSu1cCT7h4F1hHMkTy2f/SaLRkuAfzazGqT89y+DvyHu3cDT/P+lI1lQAdBqBNJicKbfKiY2S3Jx4cA/C/giuRl028Dn3H3uLs/TPDL+3WCMPeou68dkwZL2rn7fuBbBCOrm4AH3f0VM3vCzJYmi90I3G1mbxOM2H4vuf9PCO5O3UowenfH6LZeMk3f+8bd48DNBH2JA83A/0kW+zJwpZltJrjTdFWyvEhKtDyWiIiISBbRyJuIiIhIFlF4ExEREckiCm8iIiIiWUThTURERCSLKLyJiIiIZBGFNxHJaGb2MzO7fRRep8zM/tvMtpjZyhGstzy5BNKwypnZpuTi5iNSXkTGD62wICISWAzUuPucEa63AvjIcMu5++IRLi8i44TCm4iMGjN7kGDpsb9Pbt8CXAp8jmCN2mVAKcG6oTe5+38POD8BVLt7w8BtM7uG4CG5+QRPrL/d3X87SBuuA/4KyAVaCNa4bQb+Bag1s03ABe7emSyfy/ErbFQSLC4+0d3b+9U7GbifYMF6gP9y9zuBfwUKk/WeC3yB4OGt+cm67nL3ewYpFwOqCfrpVOqN9ftefDP5OjGCBdK/6O7NJ/hvEZEso8umIjKafkIQKvp8KbnvfGAqQWiaD9wHfCPVSs1sLvB3wCfdfQnwFeCXZlY8oNwZwI+Ale6+EPgfwH8CB4GbgB3uvrgvuAG4e29y32JgOdBKEIbaOd4aYKe7n0Ow2sJcMytPfo2dyfMLk+X62rkK+E6/70Vn8rV6h1Nv//Jmdi3wxeT3cgGwC/hqqt9LEcl8GnkTkdH0HBBJLjvVQTCytNbdE2Z2B3CzmZ0OfJwgJKXqcoKF4deaWd++ODCHYImzPsuTr7cTwN2fNbM6gpGrky43k1zn9nHg39z9oUGKPAU8YWYzCNZL/Ya7N5tZRV8Bd28zs6uBq5KBczFQMsTXNmS9A1wGPOLuR5Ov+bUh6heRLKORNxEZNe6eAO4lWMT9S8C9yeB2FfBfyWL/STA6FjpBNSEAM8vvty+XIJQt7jdKtgzYPODcwfq8HCDvZO1OXjr9d2Czu991gq9tAzAL+DFwGvCKmV04oJ5pBOunzgReJIW1UFOpd4AY/YKomU0ws9OGeh0RyR4KbyIy2n4GXAvcQDBvC4KRs8eTc782ANcRBLKB6oG+xeI/02//s8AVycuimNkngTeByIDz+8rNTpZbDkwH1g/R5h8QBLxbT1TAzO4C7nT3x4A/BbYA8wjCVK6ZhZJtrwf+1t3/H3B18tzcAeWGW29/zwCfMbOy5Pa3Ceb1icg4oYXpRWTUmdkvgbC7X5vcPgN4kGAqRy/wArASmEFwI8Fmd/97M/sswdy2JuBp4A+BhclJ+jcA3yIYmYsBf+bu6wZ57b5yYYJLt19393Vm9nHg+8l5Yv3LXwC8RBAG47w/IniTu2/sV24ywVy9WqCb4HLtHyfb8gIwEVgB3AOcAbQDrwCfJpjL9m6/chcBDbx/w8JQ9R4rn/xe3M77cwu3AGvcfTiXoUUkgym8iYiIiGQRXTYVERERySIKbyIiIiJZROFNREREJIsovImIiIhkEYU3ERERkSyi8CYiIiKSRRTeRERERLKIwpuIiIhIFvn/ED9oWZR4OxsAAAAASUVORK5CYII=\n", "application/papermill.record/text/plain": "
" }, "metadata": { "scrapbook": { "mime_prefix": "application/papermill.record/", "name": "ztest_twoside_fig" } }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm8AAAGECAYAAABgXcdUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xd01Ned///nqKKCJDoIBJIol2LTe7NNsSnBjm1cScBxvGQ3ifN1yqasU+xNnOJkf7YTO97EldhxC44bphuDKQJE75cmCRCiShSBUJ3fHxqysixbEmh0ZzSvxzmfI33qvOYcGL3nfj73Xo/X60VEREREgkOY6wAiIiIiUncq3kRERESCiIo3ERERkSCi4k1EREQkiKh4ExEREQkiKt5EREREgkiE6wAiIsaYPwJjfau9gSygyLc+wlpbVOOJV/ZaU4GfArFUfgbuBL5nrT1ijLkZmGCt/U4N5+0Avm2tXV6P1/oBcI219r5q2+cC3Xyr/YAdQDlQYK294QreUwvgH9baCfU9V0SCj4o3EXGuarFkjMkGZlhrNzT06xhjkoE5wCBrbY5v28PAW8BIa+37wPsN/brVWWunV8nkBW6w1p66iku2AgZfdTARCQoq3kQkoBljngAuWGt/aoxpDxylsnVsmTFmBnCLtfZOY8zPgHuAMmAvla1kx6pdrjUQBcRX2fYksMX3WvcB0621XzLG9AZepLKFbg8QVyXTSOB3vm0VwCPW2nnGmEjgj8BE4ARwHDh7Be95NPBb32uXA7+w1s73FZ9/A1r6Dn3fWvsI8BLQ3BizxVrbv76vJyLBRc+8iUigeweY5Pt9EpUF0eXbg7cAc40xXwMmA0OstX2pvA35cvULWWu3Ac8Bm40xu4wxzwHTgEU1vO7fged813sK6AL/ukX5EvBVa+1A4GbgWWNMZ+CbQA8qb/1OBDrX980aY1oBLwD3+q5/K/BXY0wn4BvAHt/2sUBvY0xz4GvAeRVuIqFBxZuIBLpVQCdjTFsqi7dfARONMVHAdcB8Kgu3l6y1F3znPAWM9x3zKdba7wMdgJ9R+Vzd74EVxpjwy8f4Cqi+VLZyYa1dTWVBCDDCd/67xpgtvtf3+o6fALxmrS3xZfn7FbzfUb7rv++7/jwqW/euARYAdxtjPgT+DfhPa+35K3gNEQlium0qIgHNWlthjPkAmAoMB2YCPwHuADKstYXGmOpfRMOo/HzzVN3o65DQylr7EvA28LYx5r+Aw8CAKodenvS56vllvp/hwG5r7bAq100GTgKzP+ec+ggHtltrR1W5fkfghLW21BiTRmWROA7INMZMA05fweuISJBSy5uIBIN3gB9SWdSUAMuA3wBzffsXAV8zxlx+Lu07wCfW2uJq1zkP/Mb3PNtlacAl4MDlDdbafGAj8ACAMWYgcK1v91qguzFmrG9ff2AfkAwsBGYaY5oZY5oBd13Be11D5e3QUVVeey/Qzhjze+DH1tp3fO/RAt2pLBIjjDGez7mmiDQhKt5EJBh8BHQElvjWFwHtgA986y8AS4H1xpjdwEBgRvWLWGs/Br4NzDHG7PMd+xSVnR4Kqh1+D5W3KLdTeYt1t+8aJ4Hbgd8bY7YCr1D5/FsO8BdgA5W3WFdQOeRJvVhrjwPTgSd813+ZyuffjgBPAEN9w5ZsoLJ4ewvIBbYDu4wxifV9TREJLh6v11v7USIiIiISENTyJiIiIhJEVLyJiIiIBBEVbyIiIiJBRMWbiIiISBBR8SYiIiISRJriIL3qPisiIiLBot7jM6rlTURERCSIqHgTERERCSIq3kRERESCiIo3ERERkSCi4k1EREQkiKh4ExEREQkiKt5EREREgoiKNxEREZEgouJNREREJIj4dYYFY8y9wE+BKOAJa+0zn3PcVOBpa22abz0J+DuQDpwE7rTWHvNnVhEREZFg4LeWN2NMR+AxYDTQD5htjOldw3HtgD/w6ekhfgWstNb2Ap4DnvJXThEREZFg4s/bphOAZdbafGvtBWAuML2G454HHq22bSqVLW8ArwOTjTGRfksqIiIiEiT8eds0Gcirsp4HDK16gDHmO8AmYO3nnWutLTPGnAPaAEernJsEJFV/0czMTBISEhoiv4iIiEjA8Wfx5qlhW8XlX4wx1wC3A+OBTvU51+ch4BfVD5ozZw4PPvhg/ZKKiPh4vV5yTxaycc8JNtkTFF4s+cwx7VvGMahXOwaatiQ1j3aQUkRCmT+Lt1xgTJX1DlRpOQPu8G3bQGWHhmRjzEpr7Rjfue2BI8aYCCABOF3t+k8CL1d/0VmzZmU11BsQkdDg9XrZuu8k63YcY8Oe4xw7fRGAlHbxtGkR++ljK7xsO3CKT7bk4vFAt05JDO7VjtH9kuncXq3+IuJ/Hq/X65cL+zosrKLyVukFYA0w21q7voZjU4Hl1tpU3/ozQK619tfGmBnAvdbaqXV8af+8IRFpkrKOnuW5d3ew/cApoiLD6de9NYN7tWNQz3a0axlb4zkVFV4OHj3Lxt3H2bD7OPZQAR5g4rAufGVSL7XGiUh91HS38YtP8FfxBv8aKuS/qGxZe95a+7gxZj7wc2vthirHpfLp4q0lla1qXYEzwAxrbXYdX1bFm4jU6sz5Yl5duJvF63KIj4lixk2GicO6EBUZfkXX+sdHe/lwdRbRUeHcPdHwpdHpREZoKE0RqVVgFW+ONLk3JCINp7zCy/ufHOCNJZbiknKmjk7jnomG+Nioq7724ePnefGDnWzYfZwOreOY/eVrGdyrXQOkFpEmTMUbKt5E5HMUFZfxh1c3sn7XMQb3asf90/qQ0q55g7/Oxj3HeeH9HRw+XsiMST25a0IPPJ56fz6LSGhQ8YaKNxGpwcmCIn754lpyjp1n9pevZeqoNL++XmlZOX96awsfbzzC9YM68Z07+xMZUf9bsiLS5Kl4Q8WbiFSz73ABv3pxHUXF5fxo5mAG9WycW5ler5e3lu7l1YV76JXakoe/NpTEeHVmEJFPUfGGijcRqWLNtqP8z2ubSIqP4udfH06XDo0/nMfKLbk8+fomWiY24+dfH+6XW7UiErRUvKHiTUR8Pso8xJNvbMZ0acHDXxtKi+bNnGWxOfn86sX1lJZX8NtvjSbVQREpIgFJxRsq3kQE2LD7OL98cR19u7bmp18fRvQVDAHS0I6dvsCPnl4FwO+/M4a2LWoeR05EQkq9izcNQiQiTY7Nyee3f8skLTmBn9w3JCAKN4D2reJ4dPYIikvK+MVfMzh34bNTb4mI1EbFm4g0KbknC3n0+XW0aB7NLx4YTmyzSNeRPiW1QwIP3z+M4/kX+eULa7lUUuY6kogEGRVvItJk5J+7xM//mkFYGDw6e4TTZ9y+yLVdW/P9GYOwhwr4/SsbKS+vcB1JRIKIijcRaRIuXirlkecyOFdYzC8eGE5y63jXkb7QqL7JfOPWvqzfdYxn5m6lCT5/LCJ+EuE6gIjI1fJ6vTz5xmYOHTvPzx8YTveUFq4j1cnUUWnkn7vEW0v30rVTkt8HDhaRpkEtbyIS9BZkZJOxPY9ZU3sz0LR1HadeZtzUk8G92vHC+zs4mHvWdRwRCQIq3kQkqGUdPcvz7+1gUM+23DK2q+s49RYW5uGhuwfQPDaSx1/ZQFGxOjCIyBdT8SYiQetScRmPv7KB5rGRfPeegYSFBefk74nx0Xx/xiCOnirkL+9scx1HRAKcijcRCVp/eWc7uScL+f6MQUE/Z2jfbm24a4Lho8zDfLzxsOs4IhLAVLyJSFBavvEwSzMPceeEHvTt1sZ1nAZx98Qe9ElvxZ/nbiX3ZKHrOCISoFS8iUjQOXqykD+/vZXeaS25Z6JxHafBhIeH8f17BxEZEcbjr2ygtKzcdSQRCUAq3kQkqFRUVA4LEh4Wxg9mDCY8vGl9jLVpEcP/u2sAB3PP8ubSva7jiEgAalqfeiLS5C1al8Pu7Hy+fvM1tGkR4zqOXwy7pgPXD+rE28v2cejYOddxRCTAqHgTkaCRf+4Sc+btpG+31owfkuI6jl89cPM1xERH8PQ/tlJRodkXROT/qHgTkaDx3LvbKSmr4FvT++HxBOewIHWVGB/N/dOuYXd2PovW5biOIyIBRMWbiASFzF3HWLX1KHdN6EFym8Cet7ShjB+SQt9urZkzbyf55y65jiMiAULFm4gEvKLiMp795zZS2jXnthu6u47TaDweD9+c3o+Ssgr++u5213FEJECoeBORgPfaoj2cLCji23f0IzIitD62OraJ564JPVi99Sjrdx1zHUdEAkBofQqKSNDZf/gM739ygEkjUumd1sp1HCduu6E7Ke2a87//3Ka5T0VExZuIBC6v18v//nMbifHRzJra23UcZyIjwvj2Hf04WVDEWxr7TSTkqXgTkYC1cksu9lABM6f0Jj4m0nUcp3qnteL6QZ1475MDnMi/6DqOiDik4k1EAlJJaTlzPtxFenIi4wY37THd6mrm5N54gL/N3+06iog4FOHPixtj7gV+CkQBT1hrn6m2/1bgUSAcyARmW2tLjDEzgd8Bx32HfmitfdifWUUksHyw8iAnCor4zl0DCAtr2mO61VWbFjHccl1X/vHRPm4em06Pzi1cRxIRB/zW8maM6Qg8BowG+gGzjTG9q+yPA54GJlpr+wDNgPt8u4cA37PW9vctKtxEQsjZwmLe+mgvg3u1o1/3Nq7jBJTp47qTFB/NC+/vwOvVzAsiocift00nAMustfnW2gvAXGD65Z2+banW2uO+Qq4tUODbPQSYaYzZaox51Rijr5ciIeSNxZZLJeXcP62P6ygBJ7ZZJPdO6smurHzW7shzHUdEHPDnbdNkoOonSx4wtOoB1tpSY8xk4FUgF1hc5djfAuuBX1PZQjej6rnGmCQgqfqLZmZmkpCQ0EBvQUQa25ET51mQkc1Nw7uQ0q656zgB6cahnflg5UFemreLwb3ah9zYdyKhzp//42t6SKWi+gZr7QJrbStgHvCsb9ut1tp11lov8DgwpYZrPQRkVV/mzJnTQPFFxIWX5+0iKjKce2/s6TpKwAoPD+P+aX3IO3WBBWuyXMcRkUbmz+ItF2hfZb0DcPTyijGmpTHmxir7/w70NcYkGmO+W2W7Byit4fpPAmnVl1mzZjVQfBFpbNv3n2LdzmPcMb47Sc2jXccJaIN6tqV/9za8scRSeLHEdRwRaUT+LN6WAuONMW2MMbHA7cDCKvs9wKvGmM6+9TuBVUAh8ENjzDDf9m8D71S/uLX2jLU2u/qiW6Yiwcnr9fLivJ20aRHDzWO7uo4T8DweD/ff3IfColL+8dE+13FEpBH5rXiz1uYCDwMfA1uA16y1640x840xg621p4HZwDxjzFagB/Aja205lYXcs8aY3cAg4If+yikigWH9zmPsP3yGe280REeGu44TFNKSE7l+YCfmrc6i4Pwl13FEpJF4mmBX8yb3hkSauooKLw89sZxLJeU8+8NxhIfrAfy6OnqykP94fBnTRqfzwC3XuI4jIvVX74Es9QkpIs6t3ZFH1tFz3D3RqHCrp+Q28dwwqBML1mSRf06tbyKhQJ+SIuJURYWX1xbtoWObeK4b0NF1nKB090RDWYWXucv07JtIKFDxJiJOrdl+lJxj57nnRrW6Xan2reKYMKQzCzOyOXWmyHUcEfEzfVKKiDPlFV5eW2RJadec0f3V6nY17pzQg4oKL//4aK/rKCLiZyreRMSZVVtyOXz8PPfeZAjX5PNXpV3LWCYO68LidYc4UXDRdRwR8SMVbyLiRHl5Ba8v3kNqhwRGXpvsOk6TcMf47gAa902kiVPxJiJOrNicS+7JC9xzoyFMrW4Nom2LWG4a3oUl63I4nq/WN5GmSsWbiDS68vIK3lhiSU9OZPg1HVzHaVLuGN+dsDAPby3Vs28iTZWKNxFpdGu25ZF36gJ3TeyhVrcG1ioxholDO7NswyFOn1XPU5GmSMWbiDQqr7dyPLKObeLV6uYnt17fjQovvLvigOsoIuIHKt5EpFFtsic4ePQs08d1U6ubn7RvFcfY/h1ZmJHN+YslruOISANT8SYijWrusn20TmzGdQNTXEdp0m4f151LJeV8uDrLdRQRaWAq3kSk0ezJzmfHgdN8+fpuREbo48efUjskMKR3O97/5CCXistcxxGRBqRPTxFpNHOX7aN5bCQ3DeviOkpIuGNcD85fLGHx+hzXUUSkAal4E5FGkXPsHOt2HmPa6HSaRUe4jhMSeqW1pE96K95ZfoCy8grXcUSkgah4E5FG8fayfTSLCmfq6HTXUULK9HHdOXWmiBWbjriOIiINRMWbiPjdifyLrNicy03DU0mIi3IdJ6QM6tmW1A4JvP3xPioqvK7jiEgDUPEmIn73zor9hHngy9d1dR0l5Hg8HqaP687h44Ws33XMdRwRaQAq3kTEr84WFrN43SFuGJRC66QY13FC0uh+ybRvFcvcZZqwXqQpUPEmIn61MCObktJytbo5FB4expfHdsXmFLAnO991HBG5SireRMRvSssqB4kd2LMtndsnuI4T0sYN6UxcTCTvfqIps0SCnYo3EfGbTzbnUnC+mC+PVaubazHREUwa3oWMbUc5nn/RdRwRuQoq3kTEL7xeL++uOECX9s3p36ON6zgCfGl0Oh6Phw9WHnQdRUSugoo3EfGLbftPkZ13jlvGdsXj0QT0gaB1Ugyj+3Vk8bocLl4qdR1HRK6QijcR8Yt3VxwgKT6a6wZ2ch1FqrjlunSKistYvO6Q6ygicoVUvIlIgzty4jwbdh9nyshUoiLDXceRKrqntKBPeis+WHmAck2ZJRKUVLyJSIN7/5ODREaEMXlkmusoUoNbxnblREERGTvyXEcRkSug4k1EGtS5CyV8tOEw1w/sRFLzaNdxpAZD+7SnfatY3luhYUNEglGEPy9ujLkX+CkQBTxhrX2m2v5bgUeBcCATmG2tLTHGdAZeBdoCFphhrS30Z1YRaRiXB+W9RYPyBqzwMA83j+nKX9/dzp7sfHqmtnQdSUTqwW8tb8aYjsBjwGigHzDbGNO7yv444GlgorW2D9AMuM+3+8/An621PYENwM/8lVNEGk5pWQUfrj7IgB5t6KJBeQPahKGdiWsWoUF7RYKQP2+bTgCWWWvzrbUXgLnA9Ms7fdtSrbXHfYVcW6DAGBMJjPUdD/AycIcfc4pIA1m9NZf8c8VqdQsCMdER3Dg8lYzteZwsKHIdR0TqwZ+3TZOBqk/D5gFDqx5grS01xkym8hZpLrAYaA2cs9aWVTnvM2MNGGOSgKTq2zMzM0lI0Dd+ERfmrcqiY5s4BvRo6zqK1MHUUWm8t2I/CzKymDmld+0niEhA8GfLW02jcn6mX7q1doG1thUwD3i2rucBDwFZ1Zc5c+ZccWARuXJ7DxVgDxUwdVQ6YWEalDcYtGsZy5De7Vm0NoeS0nLXcUSkjvxZvOUC7ausdwCOXl4xxrQ0xtxYZf/fgb7ASSDBGBNe03lVPAmkVV9mzZrVYG9AROruw9VZxESHM35IiusoUg/TRqdz7kIJK7fkuo4iInXkz9umS4FHjDFtgAvA7cDsKvs9wKvGmMHW2kPAncAq363UlcBdwGvATGBB9Ytba88AZ/yYX0Tq6Mz5Yj7ZnMtNw7sQ2yzSdRyph77dW5PSLp55qw4ybnCKpjITCQJ+a3mz1uYCDwMfA1uA16y1640x830F22kqi7l5xpitQA/gR77Tv0ll79RdwBgqhxsRkQC1aF02ZeUVTB2lQXmDjcfjYeqodPYfOYvNKXAdR0TqwOP1el1naGhN7g2JBLKy8goeeGwJKe2a88tvjHQdR65AUXEZ9/33Iob0as8PvjLIdRyRUFPv5m7NsCAiV2XtjjxOn73EtNHprqPIFYqJjmDCkM6s3pZLwblLruOISC1UvInIVZm3Kot2LWMZ1Kud6yhyFaaOSqOs3MvCjGzXUUSkFireROSKZR09y86Dp5k6Ko1wDQ8S1JLbxDOoZ1sWZGRTWlbT6EwiEihUvInIFZu3KouoyHAmDu3sOoo0gC+NTqfgfDEZ22sanUlEAoWKNxG5IucvlrB80xFuGNSJ+Ngo13GkAQw0benQOo55q7JcRxGRL6DiTUSuyNL1hygpLdfwIE1IWJiHqaPS2J2dz4EjGkZTJFCpeBORequo8LJgTTZ90luRlpzoOo40oPFDOhMVGc6CjGzXUUTkc6h4E5F627L3JHmnLzB5RKrrKNLA4mMiuW5AR5ZvOsKFolLXcUSkBireRKTe5q/JIik+mpF9O7iOIn4wZVQaxSXlLNtw2HUUEamBijcRqZcTBRfJ3HWMicM6ExkR7jqO+EG3TkmYzi2YvyaLJjgLj0jQU/EmIvWyaG0OXmDS8FTXUcSPJo9M5ciJQrYfOOU6iohUo+JNROqstKyCxetyGNKrPW1bxrqOI340un9HmsdGMn91tusoIlKNijcRqbO12/M4c76YKaNSXUcRP4uODGfC0C6+uWuLXMcRkSpUvIlInc3PyKJ9q1gG9GjrOoo0gkkjulBe4WXxukOuo4hIFSreRKROco6dY8eB00wekUqY5jENCcmt4xlo2rIwI5uycs13KhIoVLyJSJ0sWJNNZEQY44doHtNQMmVkKvnnLrF+5zHXUUTER8WbiNSqqLiMZRsOM7pfMonx0a7jSCMa3Ls9rZNiWLAm23UUEfFR8SYitVq+6QhFxWVMGal5TENNeJiHSSO6sGXfSY6cOO86joig4k1EauH1elmwJov05ERMlxau44gDNw7tQniYh0Vrc1xHERFUvIlILfYeKiDr6DkmjeiCx6OOCqGoRUIzhl/bgY8yD1FSWu46jkjIU/EmIl9oYUYOMdHhXDewk+so4tDk4amcv1jK6m1HXUcRCXkq3kTkcxVeLOGTLblcNzCF2GaRruOIQ9d2a01y6zh1XBAJACreRORzLdt4mJLSciYN7+I6ijgWFuZh0ohUdmfnk513znUckZCm4k1EauT1elmYkY3p3IKunZJcx5EAMG5wCpERYSzMyHYdRSSkqXgTkRrtPHiaw8cLmTRCrW5SKTE+mlH9kvl442EuFZe5jiMSslS8iUiNFmbkENcsgtH9O7qOIgFk8ohULl4q45Mtua6jiIQsFW8i8hlnC4tZve0o44Z0pllUhOs4EkB6pbakS/vmLMjIdh1FJGSpeBORz/go8xBl5RXqqCCf4fFUdlzYf/gM+w4XuI4jEpJUvInIp1RUeFmYkUOf9FZ0bp/gOo4EoBsGpRAdFc7CDM24IOKCX++HGGPuBX4KRAFPWGufqbb/FuBRwANkAV+z1hYYY2YCvwOO+w790Fr7sD+zikilrftOknf6AvdO6uk6igSouJhIxvbvyIrNR7h/Wh/iYjQGoEhj8lvLmzGmI/AYMBroB8w2xvSusj8BeBaYaq3tB2wDHvHtHgJ8z1rb37eocBNpJAsysmkeG8Wovh1cR5EANnlkKsUl5SzfeNh1FJGQ48/bphOAZdbafGvtBWAuML3K/kjgm9bay12WtgGdfb8PAWYaY7YaY141xmg2bJFGkH/uEut2HmPC0M5ERoS7jiMBrHtKC7p2SmTh2hy8Xq/rOCIhxZ+3TZOBvCrrecDQyyvW2tPAuwDGmBjgx8Cfqhz7W2A98GvgaWBG1YsbY5KAz4wcmpmZSUKCntMRuRJL1udQUeFVRwWpk0nDU3lm7lZsTgE9U1u6jiMSMvzZ8uapYVtF9Q3GmERgPrDVWjsHwFp7q7V2nbXWCzwOTKnhWg9R+Zzcp5Y5c+Y0UHyR0FJe4WXx2hz6dmtNcpt413EkCIwd0JGY6HANGyLSyPxZvOUC7ausdwCOVj3AGNMBWAlsBR7wbUs0xny3ymEeoLSG6z8JpFVfZs2a1VD5RULKZnuCEwVFTB6Z6jqKBInYZpFcNzCFVVtyKbxY4jqOSMjw523TpcAjxpg2wAXgdmD25Z3GmHBgHvCWtfZXVc4rBH5ojFljrV0HfBt4p/rFrbVngDN+zC8SUhZmZJMUH82wPuqoIHU3aXgXFmZks2zjYW4e09V1HJGQ4LfizVqba4x5GPiYyqFCnrfWrjfGzAd+DqQAA4BwY8zljgwbrLUPGGPuBJ71PQu3F5jpr5wiAqfOFJG56xi33dCdyAgN/yh117VTEt1TkliYkcO00el4PDU9MSMiDcnTBHsJNbk3JOJvry/aw2uLLc/91wTat4pzHUeCzJJ1OfzxrS389luj6ZPeynUckWBT7288+ootEuLKyytYvC6HAT3aqHCTKzKmf0dim0WwMCPbdRSRkKDiTSTEbdxzglNnLzFpRKrrKBKkmkVHcMOgFFZvO8q5C+q4IOJvKt5EQtyCjGxaJkQztE/7Wo8V+TyTRqRSWlbBsg2HXEcRafJUvImEsBP5F9m45zgTh3YhIlwfB3LlUjsk0LNLCxZmaMYFEX/Tp7VICFu8LgeAG4dpRgW5epNGpJJ7spAdB067jiLSpKl4EwlRZeUVLFmfw6Ce7WjbMtZ1HGkCRvfvSFxMpDouiPhZnYo3Y0xrfwcRkca1fucx8s8VM1kdFaSBREeGM35wCmu2H+XM+WLXcUSarLq2vO00xvzdGDPar2lEpNEszMimdWIzBvVs6zqKNCGTRqRSVu7lo0x1XBDxl7oWb6lUTnf1B2PMdmPMN40xzf0XS0T8Ke/UBTbvPcmNw1MJV0cFaUAp7ZrTJ70VC9dmU1Ghjgsi/lCnT21rbZG19iVr7XDgQeAHwFFjzDPGGH1tFwkyi9ZmExbm4cZhnV1HkSZo0ohUjp2+yNZ9J11HEWmS6vyV2xgzyRjzNvAm8C4wEjgMvO+nbCLiB6VlFSzNPMTQ3u1olRjjOo40QaP6diAhLooFGdmuo4g0SXWamN4Ycwg4BfwZ+Iq1tsi3a7sxZra/wolIw1u7PY+zhSWaUUH8JjIinPFDOvPeJwc4fbZIXxJEGlhdW96+Yq0daK19/nLhZozpDWCtTfdbOhFpcAsysmnbMpYBPfTEg/jPpOFdqKjwsnS9Oi6INLQvbHkzxrT0/fonY8z1/N/M95HAe0B3/0UTkYZ2+Ph5th84xcwpvQgL89R+gsgVSm4TT7/urVm0Lofp43sQrn9vIg2mtpa316m8XXpfBlJUAAAgAElEQVQtcNr3+ykqn3Xb5N9oItLQFq3NITzMw4Sh6qgg/jd5RBonC4rYtOe46ygiTcoXtrxZa28CMMa8aK29v3EiiYg/FJeW81HmIYZf24EWzZu5jiMhYNg17UlqHs2CjGyG9G7vOo5Ik1HbbdOe1to9wNPGmIHV91tr1fomEiRWbz1KYVGpZlSQRhMRHsbEoZ15e9k+ThRcpG0LTcMm0hBqu236P76fb9ewzPVjLhFpYAszskluHUffbprtThrPTcNT8QKL1+W4jiLSZNR223Sq72da48QREX/IOnqW3dn53D+tDx6PHhyXxtOuZSwDTVuWrMvh7omGCM3oIXLVartt+scv2m+t/U7DxhERf1iQkU1kRBjjh6ijgjS+KSPT+OWL61i38xij+ia7jiMS9GobpPd0o6QQEb+5eKmU5RsPM6Z/RxLiolzHkRA0qFc72rSIYcGaLBVvIg2gttumjzZWEBHxjxWbjlBUXM7kkamuo0iICg/zcNPwLry6YA+5Jwvp2CbedSSRoPaFDx8YY1b5fp43xpyrvjRORBG5Ul6vl/lrsklPTsR0buE6joSwG4d2ITzMw4I12a6jiAS92p4cvcP38xoqB+qtvohIANuTXUB23jkmj0xVRwVxqkVCM0Zc24GPMg9RXFruOo5IUPvC4s1am+f7mQP0BB4E/h3o7NsmIgFsfkYWMdERXDewk+soIkwemUphUSkrN+e6jiIS1OrUZ9sY81/AE8BFoAx4wRjzLX8GE5Grc7awmNVbj3LDoE7ERNfWN0nE/67t2ppObeNZmJHtOopIUKvrgDv3AsOstT+31v4MGAZ803+xRORqfZR5mNKyCqaM1DCNEhg8Hg+TR6RiDxVw4MgZ13FEglZdi7cioPDyirW2ALjkl0QictUqKrwszMimd1pLunRIcB1H5F/GDelMVGQ4CzKyXUcRCVq1DdJ7m+9XC7xrjHkeKAdmAhtqu7gx5l7gp0AU8IS19plq+28BHgU8QBbwNWttgTGmM/Aq0Nb32jOstYWISJ1s2XeSvNMXuHdST9dRRD4lPiaS6wZ0ZPmmI3ztS32Ii4l0HUkk6NTW8vagb+kIJADfA/4TaAd0/6ITjTEdgceA0UA/YLYxpneV/QnAs8BUa20/YBvwiG/3n4E/W2t7Ulkk/qxe70okxC1Yk0VCXBSj+nZwHUXkMyaPTKW4pJyPNx52HUUkKNU2SO8NV3HtCcAya20+gDFmLjAd+G/f/kjgm9bay92OtgEzjDGRwFjgy77tLwMrgB9dRRaRkHGyoIj1O49x6/XdiIwIdx1H5DO6p7SgW0oS89dkMXVUmoaxEamnOnVBM8Z0B74NxFN5izMc6GatHfUFpyUDeVXW84Chl1estaeBd33XjwF+DPwJaA2cs9aWVTnvM+McGGOSgKTq2zMzM0lI0DM+EroWrs3GC0wakeo6isjnmjoyjafe3Mz2A6fo262N6zgiQaWuHRZeo/K5tZFANtAb2F7LOTV9laqovsEYkwjMB7Zaa+fU9TzgISqfk/vUMmfOnFpiiTRdpWXlLF6bw5Be7WnfKs51HJHPNWZAR5rHRvLh6izXUUSCTl2Lt+bW2v8AFgELgInAoFrOyQXaV1nvAByteoAxpgOwEtgKPODbfBJIMMaEf955Pk8CadWXWbNm1fEtiTQ9q7flcaawmKmjNDyIBLboyHAmDu3C2h3HOHWmyHUckaBS15E7830/9wPXWGszqxRXn2cp8Igxpg1wAbgdmH15p+/8ecBb1tpfXd5urS01xqwE7qKyxW8mlQXjp1hrzwAaKEikivmrs+jQOo7+PXQbSgLf5JGpvLNiPwvXZvOVSb1cxxEJGnVtedtnjHkSWA08aIx5EIj+ohN8HREeBj4GtgCvWWvXG2PmG2MGAzcDA4DpxpgtvuV53+nfpLJ36i5gDJXDjYjIFzhw5Ay7s/OZMjKNsDA9AC6Br32rOAb1bMeitTmUltX0dIyI1MTj9XprPcgYEwtMtta+bYz5d+Am4A/W2tX+DngFan9DIk3QH9/czIrNucz5+Y3Ex0a5jiNSJxv3HOeR59bygxmDNAevhKp6f9uuU8ubtfYisNwY8yX+bzDdQCzcREJS4cUSVmzO5fqBnVS4SVAZ0KMtHVrHqeOCSD3UdWL6qVTOdPBDKm9h7jbGjPVnMBGpu6WZhygpLVdHBQk6YWEepoxMZXd2PllHz7qOIxIU6vrM2y+B66y1Y621Y4CpwP/nv1giUlcVFV7mr86mV2pL0jsmuo4jUm8TfPOdqvVNpG7qWrx5rbU7L69YazfV41wR8aPNe0+Qd/qCWt0kaMXHRnH9wE4s33SEwqJS13FEAl5tE9O39P2aaYz5AfC/VA6Yex+wzL/RRKQuPlydRVLzaEb2TXYdReSKTR2VxuJ1OXyUeYhbxnZ1HUckoNU2ztspKntvXu4J8XiVfV7gB/4IJSJ1c+z0BTbsPs6d43sQGaHGcAle6R0T6ZXakg9XZzFtdLqGuxH5ArVNTK+/BiIBbN6qLMI8HiaPTHUdReSqTRudzuOvbmDjnuMM6d2+9hNEQlRdJ6YPo7KVbTIQCSwGfl1l8ngRaWRFxWUsWZ/DqL7JtEqMcR1H5KqN6NuBVonN+GDlQRVvIl+gri1rvwHGAU9R2ct0JPAHf4USkdotyzzExUtlTBub7jqKSIOICA9jysg0Nu89yeHj513HEQlYdS3eJgHTrLXvWmv/Cdzi2yYiDlRUePlgVRbdU5IwnVu4jiPSYG4a3oXIiDA+WHXQdRSRgFXX4i3MWvuv/tvW2mJA/blFHNm89wS5Jwu5eUw6Ho8e7JamIzE+musHdmLZhsMUXixxHUckINXpmTdgizHmCeBp3/q3gG3+iSQitflg5UFaNI9mVL+OrqOINLhpY9JZsv4QS9Yf4tbru7mOIxJw6try9i2gBbAGyADaAA/6K5SIfL4jJ86zcc8JJo9M0/Ag0iSlJSdyTddWzFudRXmF13UckYBT15a3n1hr7/NnEBGpmw9XZRERHsakEV1cRxHxm2mj0/nNnEzW7zzGiGs7uI4jElDq+rX9S35NISJ1cqGolI82HGLsgI60aN7MdRwRvxnWpz1tW8TwwUp1XBCprq4tbweNMYuBVUDh5Y3WWk1OL9KIlmYeoqi4nGmjNTyING3h4WFMHZXGS/N2kXX0LGnJia4jiQSMura85QO5wCBgNHCNbxGRRlJe4WXeqoP0Sm1Jt5Qk13FE/O7GYV2IjgpX65tINXUt3n5HZbE2lcox3roCj/gpk4jUIHPXMY6dvsi0MWp1k9AQHxvFDYNSWL7pCGcLi13HEQkYdS3eXgKeA2J8y1zgBX+FEpHPenfFAdq2iGGkHt6WEHLzmHRKyyqYvzrLdRSRgFHX4i3WWvtXa22ptbbEWvsnoJ0/g4nI/9l7qICdB08zbUxXwsM1PIiEjpR2zRnSux0frsmiuLTcdRyRgFDXvwIHjTEjL68YY64B9DVIpJG8t+IAsc0iuHFYZ9dRRBrdrdd142xhCcs3HnYdRSQg1LW3aUdghTFmK1AGDACOGWO2AVhr+/opn0jIO1FwkVXbjnLzmHRim0W6jiPS6K7p2or0jom8u+IAE4d2ISxMU8JJaKtr8faffk0hIp/rck87dVSQUOXxeLj1uq78z2ub2GRPMLiXntqR0Fan4s1au8LfQUTksy4UlbJobQ6j+yXTtkWs6zgizozu35E5H+7ineX7VbxJyNOTzyIBbMn6HIqKy/jydV1dRxFxKiI8jGlj0tm2/xQHc8+6jiPilIo3kQBVXl7B+ysP0ie9Fd1TWriOI+LcjcNTiYkO550V+11HEXFKxZtIgFq97SgnC4q4Va1uIgDEx0QycWgXVm7O5dSZItdxRJxR8SYSgLxeL++sOEDHNnEM6d3edRyRgDFtTDpeb+VUcSKhqq69Ta+IMeZe4KdAFPCEtfaZzzluDvCxtfZl3/pMKqfkOu475ENr7cP+zCoSSHYePM3+w2f45u19NSyCSBXtW8Uxom8yCzOyuXNCDw2fIyHJb8WbMaYj8BiVk9kXA2uMMR9ba3dVOSYZ+AswHvi4yulDgO9Za1/3Vz6RQDZ32T4S46O4YXCK6ygiAee267uxeutRFmbkcNsN3VzHEWl0/rxtOgFYZq3Nt9ZeoHI+1OnVjpkBvAe8VW37EGCmMWarMeZVY4ye1paQkXX0LBv3nGDamHSaRfm1cVwkKPXo3IK+3Vrz3if7KS3TlFkSevxZvCUDeVXW84BOVQ+w1v7eWvt8DefmAY8A/YHDwNPVDzDGJBljUqsv586da7A3IOLC3GX7iIkOZ+rINNdRRALW9HHdyT9XzLINR1xHEWl0/izeanpQp6IuJ1prb7XWrrPWeoHHgSk1HPYQlfOrfmqZM2fOFcYVce/Y6Qus2pLLpBFpxMdGuY4jErD692hD106J/PPjfZRXeF3HEWlU/izecoGq3eQ6AEdrO8kYk2iM+W6VTR6gtIZDnwTSqi+zZs264sAirv1z+X7CwsK4ZaymwhL5Ih6PhzvG9eDoqQus3Z5X+wkiTYg/H6hZCjxijGkDXABuB2bX4bxC4IfGmDXW2nXAt4F3qh9krT0DnGnAvCJOFZy/xNL1hxg/JIVWiTGu44gEvOHXdiC5dRxzl+1lZN8OeDzqmS2hwW8tb9baXOBhKnuRbgFes9auN8bMN8YM/oLzyoE7gWeNMbup7K36Q3/lFAkUH6w8SFl5Bbddr95zInURHubhthu6s//IWbbuO+k6jkij8Xi9Te5ZgSb3hqTpu1BUyv2/WswA05YfzxziOo5I0CgtK+eBx5bQqW1zHvuPUa7jiFyJejcZa4YFkQCwICObi5fKmH5Dd9dRRIJKZEQ4t4ztxrb9p9h7qMB1HJFGoeJNxLGS0nLe++QA/Xu0oVtKkus4IkFn0oguxMVEMnfZPtdRRBqFijcRx5ZmHuLM+WLuGK9WN5ErEdsski+NSmPtjjwOHz/vOo6I36l4E3GotKyCucv2Ybq04NqurV3HEQla08akEx0ZzptL9rqOIuJ3Kt5EHPoo8xAnC4q450ajYQ5ErkJifDRTRqaxcssRjpxQ65s0bSreRBwpLavgHx/tpUfnJAaatq7jiAS9W6/vRmRkOG8uVeubNG0q3kQcWbbhMCcKirjnxp5qdRNpAEnNo5k8IpVPNh0h92Sh6zgifqPiTcSBsvIK3vpoL91SkhjUU61uIg3lthu6ERERzltqfZMmTMWbiAMfbzjMifyLetZNpIG1aN6MySNSWb7pCEdPqfVNmiYVbyKN7F+tbp0SGdKrnes4Ik3O7Td0IyLMo9Y3abJUvIk0shWbjnDs9EXunqhWNxF/aJHQjEkjUvl44xGOnb7gOo5Ig1PxJtKIyssreHPpXtI7JjK0T3vXcUSarNtu6Ea4Wt+kiVLxJtKIVmzOJe/UBbW6ifhZq8QYbhrehWUbDqv1TZocFW8ijaS0rILXF+8hPTmRYWp1E/G76eO6Exbm4fXF1nUUkQal4k2kkSxZn8Ox0xf56pRehIWp1U3E31olxjB1VBrLNx7m0LFzruOINBgVbyKN4FJJGW8usfROa6lx3UQa0fRx3YmOiuDVhXtcRxFpMCreRBrBh6uyyD9XzMwpvfWsm0gjSoyP5tbru5GxPY+9hwpcxxFpECreRPyssKiUucv2MahnW/qkt3IdRyTk3DI2nYS4KF6Zv9t1FJEGoeJNxM/eWb6fwqJSvjq5l+soIiEptlkkd4zvwZZ9J9m676TrOCJXTcWbiB8VnL/E+58cYEz/jnTtlOQ6jkjImjIyldZJMfxt/i68Xq/rOCJXRcWbiB/946N9lJRV8JVJPV1HEQlpUZHh3HOjYe+hM6zbecx1HJGrouJNxE9O5F9kwZpsJg7tTHKbeNdxRELe+MEpdGwTxysLdlNeodY3CV4q3kT85O+L9uDxwN0TjesoIgKEh4cxY1IvDh07z/KNh13HEbliKt5E/GD/kTN8vPEw00an0zopxnUcEfEZ1TeZ7ilJvLJgN5eKy1zHEbkiKt5EGpjX6+WF93fQPDaKOyf0cB1HRKoIC/Pw9Zuv4fTZS7yz4oDrOCJXRMWbSANbu+MYOw6cZsaknsTFRLqOIyLV9Elvxai+ybz98T5Ony1yHUek3lS8iTSg0rIKXpq3k5R2zblpWBfXcUTkc9z3pd6Ul3t5ZYEG7pXgo+JNpAF9uDqLvFMX+PrNfQgP138vkUDVvlUcN49JZ9mGw+w/csZ1HJF68etfF2PMvcaYXcaY/caYb33BcXOMMfdVWe9sjPnEGLPHGPOeMUbjLEjAO3ehhDeWWAb2bMugnu1cxxGRWtwxoQfNY6N48f2dGrhXgorfijdjTEfgMWA00A+YbYzpXe2YZGPMB8Ad1U7/M/Bna21PYAPwM3/lFGkory/eQ9GlUu6f1sd1FBGpg/iYSO69qSfbD5xi7Q4N3CvBw58tbxOAZdbafGvtBWAuML3aMTOA94C3Lm8wxkQCY33HA7zMZ4s7kYBy+Ph55q/J5qbhqXRpn+A6jojU0aThXUhpF89L83ZSWlbhOo5InUT48drJQF6V9TxgaNUDrLW/BzDGjK6yuTVwzlpbVuW8TtUvboxJAj4zWWRmZiYJCfrjKY3rxQ920iwqnHtv0jRYIsEkPDyM+6ddw6PPr+XD1Qf58nXdXEcSqZU/W948NWyry9eaup73EJBVfZkzZ06dA4o0hHU78tiw+zh3TzQkNY92HUdE6mlQz7YM6tmW1xbt0dAhEhT8WbzlAu2rrHcAjtbhvJNAgjEmvJbzngTSqi+zZs264sAi9XWppIy/vrudzu2bM21Muus4InIFPB4P37i1L2XlXl54f6frOCK18udt06XAI8aYNsAF4HZgdm0nWWtLjTErgbuA14CZwIIajjsDqH+3OPXW0r2cKCjit98aTYSGBhEJWh1ax3HHuO68tthy07Au9OvRxnUkkc/lt7821tpc4GHgY2AL8Jq1dr0xZr4xZnAtp3+Tyt6pu4AxwE/9lVPkSh0+fp53lu9n3OAU+qS3ch1HRK7S7eO606FVHM/+cxulZeWu44h8Lk8THNumyb0hCTxer5ef/WUN+w+f4dkfj6dF82auI4lIA9iw+ziPPr+Wr07upbmJpbHU9Kz/F9J9HpErsHJLLlv3neKrU3qrcBNpQgb3aseIazvw5tK9HM+/6DqOSI1UvInU08VLpbzw/g66dUpk0ohU13FEpIH92y3X4vHAc+9udx1FpEYq3kTq6e+L9lBwvpj/uL0f4WH1bu0WkQDXpkUM90w0rNt5jPU7NfOCBB4VbyL1YHPymbfyIDcNT6VH5xau44iIn9w8tisp7Zrz7NtbuXip1HUckU9R8SZSR6Vl5Tz15hZaJjTjvqm9az9BRIJWZEQY37mrP/nnLvHiBxr7TQKLijeROnpjyV4OHz/Pt+7oT1xMpOs4IuJnPbu05OaxXVm0Noete0+6jiPyLyreROpg/5EzzF22j3GDUxjcq53rOCLSSL4yuRfJreP44z+2UFRcVvsJIo1AxZtILUrLKnjqjc0kxkXxwC3XuI4jIo0oOjKc79w1gJMFF/nbh7tcxxEBVLyJ1Grusn1k553jm9P70Tw2ynUcEWlkfdJbMXVUGvNWZ7HjwCnXcURUvIl8key8c7y11DJ2QEeGX9PBdRwRcWTWlN60axnLH9/awqUS3T4Vt1S8iXyOsvIKnnpzM3Exkcz+8rWu44iIQ82iI3jwzv7knbrAqwv2uI4jIU7Fm8jneG3RHvYfPsN/3N6PxPho13FExLF+3dsweWQq731ygM32hOs4EsJUvInUYPv+U8xdto+JQzszqm+y6zgiEiDun9aHlHbxPPH6Js4WFruOIyFKxZtINecvlvA/r20kuXWcbpeKyKc0i4rgP78ymPMXS3nqzc14vV7XkSQEqXgTqcLr9fKnt7ZwtrCYH3xlMM2iI1xHEpEAk5acyNem9SZz13Hmr85yHUdCkIo3kSoWrc0hY3seM6f0plunJNdxRCRATRudzqCebXnhg53k5J1zHUdCjIo3EZ/Dx8/z3Hs7GNCjDbeM7eo6jogEMI/Hw0N3DyQuJpLfv7qB4tJy15EkhKh4EwFKSsv5/asbiIkO57v3DCQszOM6kogEuKTm0Xz37oHkHDvPS5q8XhqRijcJeV6vl//95zayjp7j/901gBYJzVxHEpEgMbBnW758XVc+XJ3F8k1HXMeREKHiTULewrU5LFl/iLsm9mBI7/au44hIkJk1tTd90lvxp7e2cDD3rOs4EgJUvElI25Odz1/f2cagnm2558aeruOISBCKCA/jRzMH0zw2kl+/vJ7zF0tcR5ImTsWbhKyCc5f4zZxMWifF8IMZgwjXc24icoVaNG/GT2YN4fTZS/zh1Y2UV2j8N/EfFW8SksrKK/jdKxu4cKmU/7pvKPGxUa4jiUiQM11a8o1br2WTPcHfF+52HUeaMBVvEpJeeH8HOw+e5sE7+pOWnOg6jog0EZNGpHLjsC7846N9ZGw/6jqONFEq3iTkLFqbw7xVWdwytivXDezkOo6INDHfuPVauqck8cTrm9SBQfxCxZuElI17jvPnt7cy0LTlvi/1dh1HRJqgqMhwHv7aUOKaRfLo82s5WVDkOpI0MSreJGQcOHKG3/0tk9T2Cfxo5mAiwvXPX0T8o1ViDL/4txFcKinj0eczuFBU6jqSNCH66yUh4UTBRf77hbXExUTx8weGEdss0nUkEWniUjsk8JNZQzhyopDfzFlPaVmF60jSRHi8Xv91ZzbG3Av8FIgCnrDWPlNtf3/gOSAR+AT4d2ttmTFmJvA74Ljv0A+ttQ/X8WXVP1s+pbColB89vZLTZ4r43bfH0KVDgutIIhJCPso8xJNvbGbc4BQeunsAHo+GJZJPqfc/CL+1vBljOgKPAaOBfsBsY0z1h4xeBR601vagMvy/+bYPAb5nre3vW+pauIl8SmlZBb95eT1HTxbyk/uGqnATkUY3fkhn7r2pJ8s2HOa1RdZ1HGkC/HnbdAKwzFqbb629AMwFpl/eaYzpAsRYa9f6Nr0M3OH7fQgw0xiz1RjzqjGmhR9zShNVXl7Bb+asZ9v+U3znrgH0697GdSQRCVF3T+zB+CGdeWOJ5Z8f73MdR4JchB+vnQzkVVnPA4bWsr9Tld9/C6wHfg08DcyoenFjTBKQVP1FMzMzSUhQ60qoK6/w8rtXNpC56zhTR6dxw6AU15FEJIR5PB7+/bZrOXb6Ai/N20VERBg3j+nqOpYEKX+2vNV0D7eiLvuttbdaa9dZa73A48CUGo59CMiqvsyZM+eqQkvwK6/w8j9/30jG9jxuGJLCuMEq3ETEvYjwMGZM6cU13Vrz3Ls7WLAmy3UkCVL+LN5ygfZV1jsAR2vbb4xJNMZ8t8p2D1BTH+sngbTqy6xZsxogugSrigovT72xiZVbcrl+cAq3T+xBWJg6VYtIYIgID+O7Xx1Er/RWPPv2Npasz3EdSYKQP2+bLgUeMca0AS4AtwOzL++01uYYYy4ZY0ZZa1cDM4EFQCHwQ2PMGmvtOuDbwDvVL26tPQOc8WN+CTJer5en/7GFjzceYczAjtwzpRfhYR5KL5W7jiYi8i+REeF8f+ZgHn9pPX96awsR4WF6tEPqxW9NEtbaXOBh4GNgC/CatXa9MWa+MWaw77AZwBPGmN1AHPBHa205cCfwrG/7IOCH/sopTUN5hZc/vbWFJesPMaJfMjOm9iYm2p/fTURErlxUZDj/ed8QunZK4snXN7E085DrSBJE/DrOmyNN7g3JFystK+fxVzawdscxRvRLZtbNff41CG9JaTnnzxXTraMmnxcRt8rKK9iXe5b2beP/ta2ouIw/vLyefYfO8LVpfbjt+m4OE4ojgTPOm0hjuHiplJ/9JYO1O44xYXhn7rvlGs2eICJBIyY6gh/dP4x+pg0vfbCTlz7YSRNsVJEGpuJNgtbZwmJ+/Mwqdmed5pYbunHHjT11q1REgk5UZDjf/cpgRg3oyD+X7+epNzZTXqECTj6f/tJJUDqRf4GH/3cNp85c4q6benL90M4q3OT/b+/eo+Mq73OPf0caSaO7JUuWbfmCje0fGOMLmGBuSbCBlHAJiaFOQuskDQ60hNU2YbXJCpymXT09nJymtGkSspLQBkoohZxAFylwAiaAKcHYgAHb+IfxDd8lWdb9NqOZ88ceGVmRrZHRSDPi+aylZe293/3OK3n06tG7371fkayVkxPiKysXUlacz5Mv7qKlo4dvrD6P/LzcsW6aZCCNvEnW2byjgT//xxdoau1m9TXzFdxEZFwIhUJ87sozWfUJY8PWw/zFP6+jsaVrrJslGUjhTbLKEy/t4o4fvUReOIc1Kxdy/sKpCm4iMq4sP38mq64w9h5u5U+/+xzbdjeOdZMkwyi8SVaI9cb5/sObuOf/vsnp0ydwyw2LWTC3WsFNRMaVzu4Y9Y0dLF82kztvvoCcnBDf/OGL/Hq9HuYr79OjQiTjNbd187f/up5tu4+y/CMz+NjS6UyuKk4puOlRISKSKQZ7VEh/fcGturLoWP/W2t7DP/38Vd7Zc5SrLprFmk8tIDdX4y7jzLAfFaLwJhntje31fPfnr9La0cONV81n7oyK4zq2oSi8iUimOFl4Gyy49T/vgV9t4dlX9mIzKviL1UuZVFE0Ws2W9FN4Q+FtXIj1xrn/ia089twOqioK+fLKhZRE8oYV3EDhTUQyx4nC28mCW3/rXt3H/Y9vIScnxK3XL+Jj50xLd5NldCi8ofCW9fbXt/Kd+zey80ALFy6eyqrfO4PWtp5hBzdQeBORzHGiFRZSCW59DjW08cOHNrH7YAsfO2cat16/SHN/s5/CGwpvWSuRSPDr9e/xk8feIicnxJeuW8AimzSsjm0ghTcRyRQDw9twg1v/en7xtPPkukUYjFoAABNKSURBVF1UVxRy+x8s5czTKtPVbEk/hTcU3rLS/vpWvvcfm9i6q5E50ydw62eXUFSY94GCGyi8iUjm6B/eTjW49ff2ziPc8/Ammlu7uWLZTP7omrO0PGB2UnhD4S2rRGNxHl7r/GLtdsK5Oay8fB6XLzuN7mjvB+7YQOFNRDJHX3grL4+MSP8G0NkV5d+f2sbzG/ZSXlrAzZ8+m4sX1Y5Qi2WUKLyh8JY1tuxo4HuPbOJAfTtLzpzEF69dQEVZZET+Iu2j8CYimSLWG2frnkYSodCI9G/9bd9zlHsffYsD9W2cY9V89YYlVFcUjlj9klYKbyi8ZbwD9W38y6+2sH7zISpKC1h97VmcO38ycOpzQE5E4U1EMkWsN84GP8zM2glpucmgraOHX659h+c37gPg6otnseoyo7hQl1IznMIbCm8Zq7mtmwee2sbT6/eQkxPiExeexrUfn0Mk2YmNdHADhTcRyRx9I2/Tp458f9S//2zr6OGhJ7exYcshSgrzWHXZPK66eDZ5YT3cN0MpvKHwlnE6uqI89vwOHn3uXbqjvVy0uJbfv8KYUBY5ViYdwQ0U3kQkcwy1wsKpOlH/uXNvEz9/8m227zlKdUUhq688k0uWTCM3Z9hZQdJL4Q2Ft4zR3NbNo8+9yxMv7aazO8bZc6v4/JVnUltTely5dAU3CMJbc1Mn86ZXjGi9IiLDlY7wNlT/mUgk2LStjoee2sbBhnZqKou4fvlcVpw3QyNxmUPhDYW3MdfQ1Mkja9/hmQ3v0RONs3BeNdddOoc5M343QKUzuAG0tHfT0tzF2bOrRrxuEZHhGOnwNpz+Mx5PsP6tgzz+3Lvsq2ujorSA6z52Op+8cNaxqSsyZhTeUHgbE4lEgs07jvD4izt5ZcshEokE5y2YwqcuPZ1pNWWDnpPu4NbZHeNAXRtlkbBG3kRkzI1keDvV/jORSPDmO/U89pt32bG3ieJImEuXTueai2cztXpkL+dKyhTeUHgbVW2dUZ5Zv4cnf7ubAw3tFBaEuWDxVK66ZDbVJ1k4eTSCW31jBxPKCoh29WrOm4iMuZEKbyPVf/quRp54cSdvvFNPPJ7grNmVXH3RbJadPYVwri6pjiKFNxTe0i7WG+fVbXU8u/E9Nr59mJ5onJlTylh+/gwuXFRLQX7uSc8freBWXVlEbk5INyyISEYYifCWjv6zqaWLta+8x/Mb99LU2k15cT4XLZrKivNmMHf6BEIh3eCQZgpvKLylRTyeYMvOI6zd+B4vv3WQ9q4YRZEw586v4bJlM5lVOyGlekYzuBUWhHW3qYhkjA8a3tLdf7Z3Rln32j42eR2+q5HeeIKayiIuWVzL8qXTmT7gZjMZMQpvKLyNmI6uKK9uO8zLmw/xutfR2hElP5zDQpvExUtqWTi3mvAw7lYa7eAGelSIiGSODxLeRrv/bO+Msv7NA7z0xgG27zlKApg8sYjzzqxh2YIpzJ89UZdWR47CGwpvp6w3nmDXgWZe9zpeffsw2/YcpTeeoDAS5qzTqzh3fg1L59dQkD/8jmMsghsovIlI5jjV8DZW/Wefoy1dvPzmAV7fVsf2vt8LBWEWza3i3DNqWDyvmprKIl1ePXUKbyi8pSwai7PnYAubttfz1rsNvL27kc7uGACTKotYZNUsnT+ZeTMryP0Af2GNZcej8CYimeJUwttYB7fByr/5Th2vbT3MW+820NYRBaCyLMJZsyeyaG41Z58+kSlVxQpzqVN4Q+FtUPF4gkNH2vE9R9m6u5Hte4+y52Arsd44ABPLI5wxq5Kz5lQxf3YVleWRIWpMzVh3PApvIpIphhvexrr/HEoikWB/XRub321g644Gtr93lPbOYACgKBLm9Npy5s2o4MxZE5k7fQIVpQUKdINTeONDHt4SiQRHmrvYV9fKzgMt7DrQzHsHW9hX30ZPNAhqeeEcpk8uZeaUMqoqijh3fk1anu+TCR2PwpuIZIrhhLdM6D+HKx5PcKC+Dd/diO9uZMfeJhqaOumLGSWFeUyvKWHmlHJmTy1jVm05tdUllBblj8jrZzGFNz4E4a072kv90Q7qGjs4dKSdQ0c62N/QzsGGNg43dhwLaQDFhXnUTiphWk0pM6aUMmd6BbWTSuiJxbOuYziV+hXeRCRTpBreMqX/HIn6c0Kwa38zu/YnBxIOt3Gwvo2e2PG/pyZPLGJqVQlTqoqZPLGIyZXF1FQWMbE88oGm7WSJzApvZvZ54A4gH7jb3X8w4Phi4CdAOfACcIu7x8xsBvAAMAlw4EZ3b0vxZbMyvCUSCdo7ozS399Dc1s3R1m6OtnRxpLmTIy3dNDZ30dTaRWNLF63JOQZ9ckIwcUIhkyqLqJlYzJTqYmqrS5g2uYzykvzfGaYeTx3DUPUrvIlIpkglvGVS/5mu+uPxBPVHO9hf18b+ujYONbRxqKGdusYOmtt6jiubEwoxobSAitICKsoiVJZFqCqPUFleSEVpARNKCygrzmdCSUE2L/OVOeHNzGqBF4FzgW7gJeBz7r61X5nNwE3u/rKZ3QtsdPd7zOxXwAPu/pCZ3QmUuPtfpvjSoxbeEokEsd443dE4PdFeunt66eqJ0dXdS2dPlM7uXjq7YnR0RWnvitLR93lnjLbOHto6o7T3fXTFiMcHb3pJUR7lJQWUJ9/AVROKqK4spLqiiOrKIipKC1L+yyQTfnBHs36FNxHJFEOFt0zrP8ei/p5oL0eaOo9dXapv7KShuZPm1m6aWrtobuuhu6d30HPzwjkUR/IoLsyjuDBMSWE+JUV5FEXyKI6EKYqEk5/nEYmEKczPpbAgTCQ/TEF+bvCRl0t+Xu5oPwZl2OEtnTH1MuBZd28EMLNfANcDf5PcngkUuvvLyfI/A/7azH4KfBS4rt/+54HjwpuZTQB+58mwGzZsoKxs8LU0R8o3vr+O7fuaiEbjw0qKOTkhIvm5RAqCN1BRJMyU6hKKCvMoKcyjMBImBEyrKaWqopDSonzKSwtSehOlEsL7/2BF8nNTOmc4sr1+EZF0SyQG76+zvf8cqfrzwjlMripmclXxCevPCYVoau2ipb2H1rbgalVLew8t7T3vD4h0RjnU2E7HgRhdPTG6u3uH9/s6FCIvnMO1H53N6k/OP6WvJZ3SGd6mAgf7bR8EPjLE8WlAFdDi7rEB+wf6M+CvBu687777uO222z5As4d29txqKicUkhfOIS83h3A4J/g8nEN+XjK55+eSHw6SfCQ/l4L8MOHc0AnvtInF4nT1xIjkh489+Dba00vDkY4RaXP/+pubu2gekVqzo/6SSN4It0ZEZPhCoRDhHDhUd/wsoEzuPzOx/j6lkTxKI3lMHRD0BpNIJOiJxunuidHV00tPNPjojvbS2d1Le1cUEhCPx4nGkh+9ceZMS231oNGWzvA2WEqJp3B8qPP6/CPBqNxxvvCFL+xKpXEfxI2fOCPdLyEiIuNMbk6IedMrxroZMg6kM7ztBy7ptz0FODDg+ORBjtcDZWaW6+69g5wHgLs3AU0j3WgRERGRTJbOGXnPACvMrNrMioCVwFN9B919D9BlZhcld60GnnT3KLAOWNV/fxrbKSIiIpI10hbe3H0/8C3gN8Am4EF3f8XMnjCzpcliNwJ3m9nbQDHwveT+PwG+YmZbCUbv7khXO0VERESyiR7SKyIiIjJ2hv2okHH/2GIRERGR8UThTURERCSLKLyJiIiIZBGFNxEREZEsovAmIiIikkUU3kRERESyiMKbiIiISBZReBMRERHJIulc23TUmVl47dq1Y90MERERkZSsWLHiNGCfu8dSPWdchTdg2ooVK8a6DSIiIiKp2gXMAnanesJ4C2/7CL4BIicyDVhHsGbuvjFui2QPvW/kVOh9I6ka1vtjXIW35JDj7rFuh2QuM+v7dJ+77x7DpkgW0ftGToXeN5IuumFBREREJIsovImIiIhkEYU3ERERkSyi8CYfNk3AXyf/FUmV3jdyKvS+kbQIJRKJsW6DiIiIiKRII28iIiIiWUThTURERCSLjKvnvIkMZGZ/A8Td/duDHKsBfkrwYOdW4Gvu/tvksTXAHwMlwE/d/Tuj1mgZdWb2eeAOIB+4291/MOD4YuAnQDnwAnCLu8fMbAbwADAJcOBGd28b1cbLmDKzMuAl4OqBz3IzsyuB/53cfAu42d3bkufcA8xPHvuyu782Sk2WcUAjbzIumVm5md0L3H6SYt8FXnP3BcCNwANmVmhmFwNfBy4FzgHWmNn8k9QjWczMaoH/CVwMLAK+Msj/9wPAbe4+DwgBa5L7fwj80N3PADYCd45OqyUTmNn5wIvAvEGOTQDuAz7r7guBN4C/Sx7+B2Cvuy8BvkkQ5ERSpvAm49WngO0EAe1ElgAPA7j7TuAIcAGwiuAXcnNyFOVyYG96mytj6DLgWXdvdPd24BfA9X0HzWwmUOjuLyd3/Qy4wczygI8myx/bP1qNloywBrgVODDIsbnAHnffmtz+FXCdmYWAlcBdAO7+FPBHo9BWGUcU3mRccvf73f0uoPckxV4DPgtgZguAs4DJwByg2syeN7NNwDXu3pruNsuYmQoc7Ld9kGBNyqGOVwEtyWX5BjtPxjl3v8nd153g8HZgupktSm7/PkH/MgnoBr5qZq+b2bNoCpMMk94wktXM7Abg7gG7t7n7ZSmc/jXgn83sLeBl4DdAD8HPxUXAVUAe8LyZbXb334xcyyWDhAbZF0/h+FDnyYeYuzeZ2Wrgx2aWQzBnsq9/qQGOuvsSM7sceBSYPXatlWyj8CZZzd0fAR45xdOLgTV9o2pm9iawAzhEMBeuLbn/KeA8gnAn489+4JJ+21M4/jLYfoIRk4HH64EyM8t1995BzpMPMTPLJViQ/vzk9jkE/UsDEAMeBHD3p82sxMwmuXvdmDVYsooum8qH2W3ALQBmdgXBnYZvAI8DnzazfDMrBFYAr45ZKyXdngFWmFm1mRURzEd6qu+gu+8BuszsouSu1cCT7h4F1hHMkTy2f/SaLRkuAfzazGqT89y+DvyHu3cDT/P+lI1lQAdBqBNJicKbfKiY2S3Jx4cA/C/giuRl028Dn3H3uLs/TPDL+3WCMPeou68dkwZL2rn7fuBbBCOrm4AH3f0VM3vCzJYmi90I3G1mbxOM2H4vuf9PCO5O3UowenfH6LZeMk3f+8bd48DNBH2JA83A/0kW+zJwpZltJrjTdFWyvEhKtDyWiIiISBbRyJuIiIhIFlF4ExEREckiCm8iIiIiWUThTURERCSLKLyJiIiIZBGFNxHJaGb2MzO7fRRep8zM/tvMtpjZyhGstzy5BNKwypnZpuTi5iNSXkTGD62wICISWAzUuPucEa63AvjIcMu5++IRLi8i44TCm4iMGjN7kGDpsb9Pbt8CXAp8jmCN2mVAKcG6oTe5+38POD8BVLt7w8BtM7uG4CG5+QRPrL/d3X87SBuuA/4KyAVaCNa4bQb+Bag1s03ABe7emSyfy/ErbFQSLC4+0d3b+9U7GbifYMF6gP9y9zuBfwUKk/WeC3yB4OGt+cm67nL3ewYpFwOqCfrpVOqN9ftefDP5OjGCBdK/6O7NJ/hvEZEso8umIjKafkIQKvp8KbnvfGAqQWiaD9wHfCPVSs1sLvB3wCfdfQnwFeCXZlY8oNwZwI+Ale6+EPgfwH8CB4GbgB3uvrgvuAG4e29y32JgOdBKEIbaOd4aYKe7n0Ow2sJcMytPfo2dyfMLk+X62rkK+E6/70Vn8rV6h1Nv//Jmdi3wxeT3cgGwC/hqqt9LEcl8GnkTkdH0HBBJLjvVQTCytNbdE2Z2B3CzmZ0OfJwgJKXqcoKF4deaWd++ODCHYImzPsuTr7cTwN2fNbM6gpGrky43k1zn9nHg39z9oUGKPAU8YWYzCNZL/Ya7N5tZRV8Bd28zs6uBq5KBczFQMsTXNmS9A1wGPOLuR5Ov+bUh6heRLKORNxEZNe6eAO4lWMT9S8C9yeB2FfBfyWL/STA6FjpBNSEAM8vvty+XIJQt7jdKtgzYPODcwfq8HCDvZO1OXjr9d2Czu991gq9tAzAL+DFwGvCKmV04oJ5pBOunzgReJIW1UFOpd4AY/YKomU0ws9OGeh0RyR4KbyIy2n4GXAvcQDBvC4KRs8eTc782ANcRBLKB6oG+xeI/02//s8AVycuimNkngTeByIDz+8rNTpZbDkwH1g/R5h8QBLxbT1TAzO4C7nT3x4A/BbYA8wjCVK6ZhZJtrwf+1t3/H3B18tzcAeWGW29/zwCfMbOy5Pa3Ceb1icg4oYXpRWTUmdkvgbC7X5vcPgN4kGAqRy/wArASmEFwI8Fmd/97M/sswdy2JuBp4A+BhclJ+jcA3yIYmYsBf+bu6wZ57b5yYYJLt19393Vm9nHg+8l5Yv3LXwC8RBAG47w/IniTu2/sV24ywVy9WqCb4HLtHyfb8gIwEVgB3AOcAbQDrwCfJpjL9m6/chcBDbx/w8JQ9R4rn/xe3M77cwu3AGvcfTiXoUUkgym8iYiIiGQRXTYVERERySIKbyIiIiJZROFNREREJIsovImIiIhkEYU3ERERkSyi8CYiIiKSRRTeRERERLKIwpuIiIhIFvn/ED9oWZR4OxsAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots(1,1,figsize=(10,6))\n", "x=np.linspace(-3.5,3.5,100)\n", "y=stats.norm.pdf(x,0,1.0)\n", "\n", "ax.plot(x,y)\n", "ax.set_ylabel(\"probability\")\n", "ax.set_xlabel(\"value of z statistic\")\n", "ax.set_title(\"Two Sided Test\")\n", "#ax.set_ylim(0,0.5)\n", "#ax.set_xlim(-3,3)\n", "ax.fill_between(x,y,where=x<-1.96,interpolate=True,facecolor='lightblue',alpha=0.2,hatch='/',edgecolor='b')\n", "ax.fill_between(x,y,where=x>1.96,interpolate=True,facecolor='lightblue',alpha=0.2,hatch='/',edgecolor='b')\n", "ax.set_xticks([-1.96, 0, 1.96])\n", "#ax.set_yticklabels([])\n", "\n", "\n", "sns.despine(top=True, right=True, left=True)\n", "\n", "#plt.show()\n", "glue(\"ztest_twoside_fig\",fig,display=False)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "```{glue:figure} ztest_twoside_fig\n", ":figwidth: 650px\n", ":name: \"fig:ztest_twoside_hypo\"\n", "\n", "Rejection regions for the two-sided $z$-test\n", "```" ] }, { "cell_type": "code", "execution_count": 34, "metadata": { "tags": [ "hide_cell" ] }, "outputs": [ { "data": { "application/papermill.record/image/png": "iVBORw0KGgoAAAANSUhEUgAAAm8AAAGECAYAAABgXcdUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xd4VNeB/vHvqCIhJNFBIJBEORSb3psNBkwx7iU2iXEc/9hNHGeTbDbJrrNZO4lTnGInseNsXGISxy04bphmwGCKANGL4dBUQIgqUQRCbeb3h4aNLMtIgEZnRvN+nmceNLfNKz9YvDr33nM9Pp8PEREREQkNEa4DiIiIiEj9qbyJiIiIhBCVNxEREZEQovImIiIiEkJU3kRERERCiMqbiIiISAiJch1AROQiY8y/Al8FogEfsAl41Fqb14Cf0Qv4NZDqX1Tk/4xVxpgUYK61dlQt+z0DnLDWPnYZnzXEf7y0Gsu/D3zB/7Y7cBw47X9/h7V2f/2/o/875kvAb621Wy93XxEJLSpvIhIUjDG/AvoDN1lrDxpjIoAvApnGmOHW2kMN9FFvAT+w1r7t/9xxwAfGmHRr7WHgM8WtoVlrfw783P/5y4FnrLVzr/Kwk4HfXeUxRCQEqLyJiHPGmM7AvwKp1toiAGutF/iLMWYw8J/Aw8aYHOBl4AagC/CGtfa7/mPMAH4AxADnge9YazNr+biOQPOLb6y1Hxtj7gYqjTFpwA5rbYIxJhF4gapCWQBUAKv8n9UJeMafIRp43Vr7U/+6rwLfomokbfsV/vdI9R+/s//4f7PW/sIYEw08C4wEyoB9wJeBHwLtgDeMMTOttRuu5HNFJDTomjcRCQbDgV0Xi1sNS4Ax1d4nWGvHUjVC9ogxJt0Y0wP4KTDNWjsQmA38wxjT/LOH42Hg98aYw8aYN40xXweyrLWna2z3OFAC9ALuAky1dX8FXrLWDgaGARONMXcbYwYAjwHjrLVDqSpYV+JvwB/9xx8OTDPG3O7/7zDKWnutf10ecK219vvAMeAeFTeRpk/lTUSCRfTnLI+l6vq3i94FsNbmU1VYWgGTqBpRW2qM2UJV+fFSdT3Zp1hrX/Nvez+wG3gQ+MQ/6lbdROAv1lqftfY4cPE0a3PgOuDH/s9aS9UI3ACqRgQXW2uP+I/xp/p+8xf5R/xGAz/zHz8T6OQ//lYg0hizzhjzI+BNa+26y/0MEQltOm0qIsFgLdDDGNOhWvG5aDywptr7kmpf+wAPEAkstdbec3GF/9Tj4eoH8t+s8IB/pGqJ//VDY8yHwJ1A9evOLh77ogr/n5H+5aOstef9x20DXKBqxK+2fS5HpP/P4dbaUv/x2wLnrbXnjDHXUlXuJgB/N8b8xlqra91EwohG3kTEOf8o2u+A1/zXkwFgjPkycAfwizoOsQyY7C9nGGOmAduAZjW2OwrMNsbcWe0zWgHtqbqztbqFwFeMMRHGmJbALf6sZ6gqm9/2758MrPav/9Cfo7P/GA/U+c3X4D91vJGq6+bwf3YmcJMx5lZgEbDaWvs/VI0w9vPvWsHnj16KSBOi8iYiQcFa+5/AK8C7xpgdxpi9VJ26HGmtza1j351UjXq9bozZCvwYuNlae67GdkVUjVh9xRiTY4zZSdXo2y+ttctqHPYxoJyqU6vv8+mbD+4DRhhjtgPrgNestX+z1m4HvkvV6dsNfLY81tcXgHHGmG1UFcU51to3gHnAXmCH//hDgR/593kHmGuMmXCFnykiIcLj8/nq3kpEREREgoJG3kRERERCiMqbiIiISAhReRMREREJISpvIiIiIiFE5U1EREQkhDTFSXp1+6yIiIiECk/dm3yaRt5EREREQojKm4iIiEgIUXkTERERCSEqbyIiIiIhROVNREREJISovImIiIiEEJU3ERERkRCi8iYiIiISQlTeREREREJIQJ+wYIy5D/gBEAM8Za199nO2mw48Y61N979PBv4GZADHgbuttUcCmVVEREQkFARs5M0Y0wl4AhgD9AdmG2P61LJde+BXfPrxED8BVlprewPPA78NVE4RERGRUBLI06YTgWXW2kJr7TlgLnBnLdu9ADxeY9l0qkbeAF4DphpjogOWVERERCREBPK0aQpQUO19ATCs+gbGmG8Am4C1n7evtbbCGHMGaAscrrZvMpBc80OzsrJITExsiPwiIiIiQSeQ5c1TyzLvxS+MMdcAdwA3AJ0vZ1+/bwL/U3OjOXPm8Mgjj1xeUhERP5/PR/7xYjbuPsYme4zi82Wf2aZDq+YM7t2eQaYdyS1iHaQUkXAWyPKWD4yt9r4j1UbOgLv8yzZQdUNDijFmpbV2rH/fDsAhY0wUkAicrHH8p4GXa37orFmzshvqGxCR8ODz+di69zjrdhxhw+6jHDl5HoDU9gm0bRn/6W29PrbtP8HHW/LxeKB752SG9G7PmP4pdOmgUX8RCTyPz+cLyIH9NyysoupU6TlgDTDbWru+lm3TgOXW2jT/+2eBfGvtT40xM4H7rLXT6/nRgfmGRKRJyj58muff2cH2/SeIiY6kf482DOndnsG92tO+VXyt+3i9Pg4cPs3GXUfZsOsoNq8IDzBpeFe+OKW3RuNE5HLUdrbx0jsEqrzB/00V8l9Ujay9YK190hgzH/ihtXZDte3S+HR5a0XVqFo34BQw01qbU8+PVXkTkTqdOlvKKwt3sXhdLglxMcy80TBpeFdioiOv6Fh/X7qHD1ZnExsTyRcmGW4ak0F0lKbSFJE6BVd5c6TJfUMi0nAqvT7e+3g/r39oKS2rZPqYdO6dZEiIj7nqYx88epaX3t/Jhl1H6dimObNvvZYhvds3QGoRacJU3lB5E5HPUVJawa9e2cj6T44wpHd7HpzRl9T2LRr8czbuPsqL7+3g4NFiZk7pxT0Te+LxXPbPZxEJDypvqLyJSC2OF5Xw45fWknvkLLNvvZbpo9MD+nnlFZX8/s0tfLTxENcP7sw37h5AdNTln5IVkSZP5Q2VNxGpYe/BIn7y0jpKSiv53v1DGNyrcU5l+nw+3lyyh1cW7qZ3Wise/fIwkhJ0M4OIfIrKGypvIlLNmm2H+fWrm0hOiOGHXxlB146NP53Hyi35PP3aJlolNeOHXxkRkFO1IhKyVN5QeRMRv6VZeTz9+mZM15Y8+uVhtGzRzFkWm1vIT15aT3mll58/PIY0ByVSRIKSyhsqbyICbNh1lB+/tI5+3drwg68MJ/YKpgBpaEdOnuN7z6wC4JffGEu7lrXPIyciYeWyy5smIRKRJsfmFvLzv2SRnpLIfz4wNCiKG0CH1s15fPZISssq+J8/ZXLm3GcfvSUiUheVNxFpUvKPF/P4C+to2SKW/3loBPHNol1H+pS0jok8+uBwjhae58cvruVCWYXrSCISYlTeRKTJKDxzgR/+KZOICHh89kin17hdyrXd2vDvMwdj84r45V83UlnpdR1JREKIypuINAnnL5Tz2POZnCku5X8eGkFKmwTXkS5pdL8U/uW2fqz/5AjPzt1KE7z+WEQCJMp1ABGRq+Xz+Xj69c3kHTnLDx8aQY/Ulq4j1cv00ekUnrnAm0v20K1zcsAnDhaRpkEjbyIS8hZk5pC5vYBZ0/swyLRzHeeyzLyxF0N6t+fF93ZwIP+06zgiEgJU3kQkpGUfPs0L7+5gcK923DKum+s4ly0iwsM3vzCQFvHRPPnXDZSU6gYGEbk0lTcRCVkXSit48q8baBEfzbfuHURERGg+/D0pIZZ/nzmYwyeK+d+3t7mOIyJBTuVNRELW/769nfzjxfz7zMEh/8zQft3bcs9Ew9Ksg3y08aDrOCISxFTeRCQkLd94kCVZedw9sSf9urd1HadBfGFST/pmtOYPc7eSf7zYdRwRCVIqbyIScg4fL+YPb22lT3or7p1kXMdpMJGREfz7fYOJjorgyb9uoLyi0nUkEQlCKm8iElK83qppQSIjIvjOzCFERjatH2NtW8bxb/cM5ED+ad5Yssd1HBEJQk3rp56INHmL1uWyK6eQr9x8DW1bxrmOExDDr+nI9YM789ayveQdOeM6jogEGZU3EQkZhWcuMGfeTvp1b8MNQ1Ndxwmoh26+hrjYKJ75+1a8Xj19QUT+SeVNRELG8+9sp6zCy8N39sfjCc1pQeorKSGWB2dcw66cQhaty3UdR0SCiMqbiISErE+OsGrrYe6Z2JOUtsH93NKGcsPQVPp1b8OceTspPHPBdRwRCRIqbyIS9EpKK3juH9tIbd+C28f3cB2n0Xg8Hr52Z3/KKrz86Z3truOISJBQeRORoPfqot0cLyrh63f1JzoqvH5sdWqbwD0Te7J662HWf3LEdRwRCQLh9VNQRELOvoOneO/j/UwZmUaf9Nau4zhx+/gepLZvwR//sU3PPhURlTcRCV4+n48//mMbSQmxzJrex3UcZ6KjIvj6Xf05XlTCm5r7TSTsqbyJSNBauSUfm1fE/dP6kBAX7TqOU33SW3P94M68+/F+jhWedx1HRBxSeRORoFRWXsmcDz4hIyWJCUOa9pxu9XX/1D54gL/M3+U6iog4FBXIgxtj7gN+AMQAT1lrn62x/jbgcSASyAJmW2vLjDH3A78Ajvo3/cBa+2ggs4pIcHl/5QGOFZXwjXsGEhHRtOd0q6+2LeO45bpu/H3pXm4el0HPLi1dRxIRBwI28maM6QQ8AYwB+gOzjTF9qq1vDjwDTLLW9gWaAQ/4Vw8Fvm2tHeB/qbiJhJHTxaW8uXQPQ3q3p3+Ptq7jBJU7J/QgOSGWF9/bgc+nJy+IhKNAnjadCCyz1hZaa88Bc4E7L670L0uz1h71F7l2QJF/9VDgfmPMVmPMK8YY/XopEkZeX2y5UFbJgzP6uo4SdOKbRXPflF58kl3I2h0FruOIiAOBPG2aAlT/yVIADKu+gbW23BgzFXgFyAcWV9v258B64KdUjdDNrL6vMSYZSK75oVlZWSQmJjbQtyAije3QsbMsyMzhxhFdSW3fwnWcoDR5WBfeX3mAP8/7hCG9O4Td3Hci4S6Q/8fXdpGKt+YCa+0Ca21rYB7wnH/ZbdbaddZaH/AkMK2WY30TyK75mjNnTgPFFxEXXp73CTHRkdw3uZfrKEErMjKCB2f0peDEORasyXYdR0QaWSDLWz7Qodr7jsDhi2+MMa2MMZOrrf8b0M8Yk2SM+Va15R6gvJbjPw2k13zNmjWrgeKLSGPbvu8E63Ye4a4bepDcItZ1nKA2uFc7BvRoy+sfWorPl7mOIyKNKJDlbQlwgzGmrTEmHrgDWFhtvQd4xRjTxf/+bmAVUAx81xgz3L/868DbNQ9urT1lrc2p+dIpU5HQ5PP5eGneTtq2jOPmcd1cxwl6Ho+HB2/uS3FJOX9futd1HBFpRAErb9bafOBR4CNgC/CqtXa9MWa+MWaItfYkMBuYZ4zZCvQEvmetraSqyD1njNkFDAa+G6icIhIc1u88wr6Dp7hvsiE2OtJ1nJCQnpLE9YM6M291NkVnL7iOIyKNxNMEbzVvct+QSFPn9fr45lPLuVBWyXPfnUBkpC7Ar6/Dx4v56pPLmDEmg4duucZ1HBG5fJc9kaV+QoqIc2t3FJB9+AxfmGRU3C5TStsExg/uzII12RSe0eibSDjQT0kRccrr9fHqot10apvAdQM7uY4Tkr4wyVDh9TF3ma59EwkHKm8i4tSa7YfJPXKWeydr1O1KdWjdnIlDu7AwM4cTp0pcxxGRANNPShFxptLr49VFltT2LRgzQKNuV+PuiT3xen38feke11FEJMBU3kTEmVVb8jl49Cz33WiI1MPnr0r7VvFMGt6VxevyOFZ03nUcEQkglTcRcaKy0stri3eT1jGRUdemuI7TJNx1Qw8Azfsm0sSpvImIEys255N//Bz3TjZEaNStQbRrGc+NI7ry4bpcjhZq9E2kqVJ5E5FGV1np5fUPLRkpSYy4pqPrOE3KXTf0ICLCw5tLdO2bSFOl8iYijW7NtgIKTpzjnkk9NerWwFonxTFpWBeWbcjj5GndeSrSFKm8iUij8vmq5iPr1DZBo24Bctv13fH64J0V+11HEZEAUHkTkUa1yR7jwOHT3Dmhu0bdAqRD6+aMG9CJhZk5nD1f5jqOiDQwlTcRaVRzl+2lTVIzrhuU6jpKk3bHhB5cKKvkg9XZrqOISANTeRORRrM7p5Ad+09y6/XdiY7Sj59ASuuYyNA+7Xnv4wNcKK1wHUdEGpB+eopIo5m7bC8t4qO5cXhX11HCwl0TenL2fBmL1+e6jiIiDUjlTUQaRe6RM6zbeYQZYzJoFhvlOk5Y6J3eir4ZrXl7+X4qKr2u44hIA1F5E5FG8dayvTSLiWT6mAzXUcLKnRN6cOJUCSs2HXIdRUQaiMqbiATcscLzrNicz40j0khsHuM6TlgZ3KsdaR0TeeujvXi9PtdxRKQBqLyJSMC9vWIfER649bpurqOEHY/Hw50TenDwaDHrPzniOo6INACVNxEJqNPFpSxel8f4wam0SY5zHScsjemfQofW8cxdpgfWizQFKm8iElALM3MoK6/UqJtDkZER3DquGza3iN05ha7jiMhVUnkTkYApr6iaJHZQr3Z06ZDoOk5YmzC0C83jonnnYz0ySyTUqbyJSMB8vDmforOl3DpOo26uxcVGMWVEVzK3HeZo4XnXcUTkKqi8iUhA+Hw+3lmxn64dWjCgZ1vXcQS4aUwGHo+H91cecB1FRK6CypuIBMS2fSfIKTjDLeO64fHoAfTBoE1yHGP6d2LxulzOXyh3HUdErpDKm4gExDsr9pOcEMt1gzq7jiLV3HJdBiWlFSxel+c6iohcIZU3EWlwh46dZcOuo0wblUZMdKTrOFJNj9SW9M1ozfsr91OpR2aJhCSVNxFpcO99fIDoqAimjkp3HUVqccu4bhwrKiFzR4HrKCJyBVTeRKRBnTlXxtINB7l+UGeSW8S6jiO1GNa3Ax1ax/PuCk0bIhKKogJ5cGPMfcAPgBjgKWvtszXW3wY8DkQCWcBsa22ZMaYL8ArQDrDATGttcSCzikjDuDgp7y2alDdoRUZ4uHlsN/70znZ25xTSK62V60gichkCNvJmjOkEPAGMAfoDs40xfaqtbw48A0yy1vYFmgEP+Ff/AfiDtbYXsAH470DlFJGGU17h5YPVBxjYsy1dNSlvUJs4rAvNm0Vp0l6REBTI06YTgWXW2kJr7TlgLnDnxZX+ZWnW2qP+ItcOKDLGRAPj/NsDvAzcFcCcItJAVm/Np/BMqUbdQkBcbBSTR6SRub2A40UlruOIyGUI5GnTFKD61bAFwLDqG1hry40xU6k6RZoPLAbaAGestRXV9vvMXAPGmGQguebyrKwsEhP1G7+IC/NWZdOpbXMG9mznOorUw/TR6by7Yh8LMrO5f1qfuncQkaAQyJG32mbl/Mx96dbaBdba1sA84Ln67gd8E8iu+ZozZ84VBxaRK7cnrwibV8T00RlERGhS3lDQvlU8Q/t0YNHaXMrKK13HEZF6CmR5ywc6VHvfETh88Y0xppUxZnK19X8D+gHHgURjTGRt+1XzNJBe8zVr1qwG+wZEpP4+WJ1NXGwkNwxNdR1FLsOMMRmcOVfGyi35rqOISD0F8rTpEuAxY0xb4BxwBzC72noP8IoxZoi1Ng+4G1jlP5W6ErgHeBW4H1hQ8+DW2lPAqQDmF5F6OnW2lI8353PjiK7EN4t2HUcuQ78ebUhtn8C8VQeYMCRVjzITCQEBG3mz1uYDjwIfAVuAV621640x8/2F7SRVZW6eMWYr0BP4nn/3r1F1d+onwFiqphsRkSC1aF0OFZVepo/WpLyhxuPxMH10BvsOncbmFrmOIyL14PH5fK4zNLQm9w2JBLOKSi8PPfEhqe1b8ON/GeU6jlyBktIKHvjRIob27sB3vjjYdRyRcHPZw916woKIXJW1Owo4efoCM8ZkuI4iVyguNoqJQ7uwels+RWcuuI4jInVQeRORqzJvVTbtW8UzuHd711HkKkwfnU5FpY+FmTmuo4hIHVTeROSKZR8+zc4DJ5k+Op1ITQ8S0lLaJjC4VzsWZOZQXlHb7EwiEixU3kTkis1blU1MdCSThnVxHUUawE1jMig6W0rm9tpmZxKRYKHyJiJX5Oz5MpZvOsT4wZ1JiI9xHUcawCDTjo5tmjNvVbbrKCJyCSpvInJFlqzPo6y8UtODNCERER6mj05nV04h+w9pGk2RYKXyJiKXzev1sWBNDn0zWpOekuQ6jjSgG4Z2ISY6kgWZOa6jiMjnUHkTkcu2Zc9xCk6eY+rINNdRpIElxEVz3cBOLN90iHMl5a7jiEgtVN5E5LLNX5NNckIso/p1dB1FAmDa6HRKyypZtuGg6ygiUguVNxG5LMeKzpP1yREmDe9CdFSk6zgSAN07J2O6tGT+mmya4FN4REKeypuIXJZFa3PxAVNGpLmOIgE0dVQah44Vs33/CddRRKQGlTcRqbfyCi+L1+UytHcH2rWKdx1HAmjMgE60iI9m/uoc11FEpAaVNxGpt7XbCzh1tpRpo9NcR5EAi42OZOKwrv5n15a4jiMi1ai8iUi9zc/MpkPreAb2bOc6ijSCKSO7Uun1sXhdnusoIlKNypuI1EvukTPs2H+SqSPTiNBzTMNCSpsEBpl2LMzMoaJSzzsVCRYqbyJSLwvW5BAdFcENQ/Uc03AybVQahWcusH7nEddRRMRP5U1E6lRSWsGyDQcZ0z+FpIRY13GkEQ3p04E2yXEsWJPjOoqI+Km8iUidlm86RElpBdNG6Tmm4SYywsOUkV3Zsvc4h46ddR1HRFB5E5E6+Hw+FqzJJiMlCdO1pes44sDkYV2JjPCwaG2u6ygigsqbiNRhT14R2YfPMGVkVzwe3agQjlomNmPEtR1ZmpVHWXml6zgiYU/lTUQuaWFmLnGxkVw3qLPrKOLQ1BFpnD1fzupth11HEQl7Km8i8rmKz5fx8ZZ8rhuUSnyzaNdxxKFru7chpU1z3bggEgRU3kTkcy3beJCy8kqmjOjqOoo4FhHhYcrINHblFJJTcMZ1HJGwpvImIrXy+XwszMzBdGlJt87JruNIEJgwJJXoqAgWZua4jiIS1lTeRKRWOw+c5ODRYqaM1KibVElKiGV0/xQ+2niQC6UVruOIhC2VNxGp1cLMXJo3i2LMgE6uo0gQmToyjfMXKvh4S77rKCJhS+VNRD7jdHEpq7cdZsLQLjSLiXIdR4JI77RWdO3QggWZOa6jiIQtlTcR+YylWXlUVHp1o4J8hsdTdePCvoOn2HuwyHUckbCk8iYin+L1+liYmUvfjNZ06ZDoOo4EofGDU4mNiWRhpp64IOJCQM+HGGPuA34AxABPWWufrbH+FuBxwANkA1+21hYZY+4HfgEc9W/6gbX20UBmFZEqW/cep+DkOe6b0st1FAlSzeOiGTegEys2H+LBGX1pHqc5AEUaU8BG3owxnYAngDFAf2C2MaZPtfWJwHPAdGttf2Ab8Jh/9VDg29baAf6XiptII1mQmUOL+BhG9+voOooEsamj0igtq2T5xoOuo4iEnUCeNp0ILLPWFlprzwFzgTurrY8GvmatvXjL0jagi//rocD9xpitxphXjDF6GrZIIyg8c4F1O48wcVgXoqMiXceRINYjtSXdOiexcG0uPp/PdRyRsBLI06YpQEG19wXAsItvrLUngXcAjDFxwPeB31fb9ufAeuCnwDPAzOoHN8YkA5+ZOTQrK4vERF2nI3IlPlyfi9fr040KUi9TRqTx7Nyt2NwieqW1ch1HJGwEcuTNU8syb80FxpgkYD6w1Vo7B8Bae5u1dp211gc8CUyr5VjfpOo6uU+95syZ00DxRcJLpdfH4rW59OvehpS2Ca7jSAgYN7ATcbGRmjZEpJEFsrzlAx2qve8IHK6+gTGmI7AS2Ao85F+WZIz5VrXNPEB5Lcd/Gkiv+Zo1a1ZD5RcJK5vtMY4VlTB1VJrrKBIi4ptFc92gVFZtyaf4fJnrOCJhI5CnTZcAjxlj2gLngDuA2RdXGmMigXnAm9ban1Tbrxj4rjFmjbV2HfB14O2aB7fWngJOBTC/SFhZmJlDckIsw/vqRgWpvykjurIwM4dlGw9y89huruOIhIWAlTdrbb4x5lHgI6qmCnnBWrveGDMf+CGQCgwEIo0xF29k2GCtfcgYczfwnP9auD3A/YHKKSJw4lQJWZ8c4fbxPYiO0vSPUn/dOifTIzWZhZm5zBiTgcdT2xUzItKQPE3wLqEm9w2JBNpri3bz6mLL8/81kQ6tm7uOIyHmw3W5/O7NLfz84TH0zWjtOo5IqLns33j0K7ZImKus9LJ4XS4De7ZVcZMrMnZAJ+KbRbEwM8d1FJGwoPImEuY27j7GidMXmDIyzXUUCVHNYqMYPziV1dsOc+acblwQCTSVN5EwtyAzh1aJsQzr26HObUU+z5SRaZRXeFm2Ic91FJEmT+VNJIwdKzzPxt1HmTSsK1GR+nEgVy6tYyK9urZkYaaeuCASaPppLRLGFq/LBWDycD1RQa7elJFp5B8vZsf+k66jiDRpKm8iYaqi0suH63MZ3Ks97VrFu44jTcCYAZ1oHhetGxdEAqxe5c0Y0ybQQUSkca3feYTCM6VM1Y0K0kBioyO5YUgqa7Yf5tTZUtdxRJqs+o687TTG/M0YMyagaUSk0SzMzKFNUjMG92rnOoo0IVNGplFR6WNplm5cEAmU+pa3NKoed/UrY8x2Y8zXjDEtAhdLRAKp4MQ5Nu85zuQRaUTqRgVpQKntW9A3ozUL1+bg9erGBZFAqNdPbWttibX2z9baEcAjwHeAw8aYZ40x+rVdJMQsWptDRISHycO7uI4iTdCUkWkcOXmerXuPu44i0iTV+1duY8wUY8xbwBvAO8Ao4CDwXoCyiUgAlFd4WZKVx7A+7WmdFOc6jjRBo/t1JLF5DAsyc1xHEWmS6vVgemNMHnAC+APwRWttiX/VdmPM7ECFE5GGt3Z7AaeLy/REBQmY6KhIbhjahXc/3s/J0yX6JUGkgdV35O2L1tpB1toXLhY3Y0wfAGttRsDSiUiDW5CZQ7tW8QzsqSseJHCmjOiK1+tjyXrduCDS0C458maMaeX/8vfGmOv555Pvo4F3gR6BiyaCW1WFAAAgAElEQVQiDe3g0bNs33+C+6f1JiLCU/cOIlcopW0C/Xu0YdG6XO68oSeR+vsm0mDqGnl7jarTpdcCJ/1fn6DqWrdNgY0mIg1t0dpcIiM8TBymGxUk8KaOTOd4UQmbdh91HUWkSbnkyJu19kYAY8xL1toHGyeSiARCaXklS7PyGHFtR1q2aOY6joSB4dd0ILlFLAsycxjap4PrOCJNRl2nTXtZa3cDzxhjBtVcb63V6JtIiFi99TDFJeV6ooI0mqjICCYN68Jby/ZyrOg87VrqMWwiDaGu06a/9v/5Vi2vuQHMJSINbGFmDiltmtOvu552J43nxhFp+IDF63JdRxFpMuo6bTrd/2d648QRkUDIPnyaXTmFPDijLx6PLhyXxtO+VTyDTDs+XJfLFyYZovRED5GrVtdp099dar219hsNG0dEAmFBZg7RURHcMFQ3KkjjmzYqnR+/tI51O48wul+K6zgiIa+uSXpPNkoKEQmY8xfKWb7xIGMHdCKxeYzrOBKGBvduT9uWcSxYk63yJtIA6jpt+nhjBRGRwFix6RAlpZVMHZXmOoqEqcgIDzeO6MorC3aTf7yYTm0TXEcSCWmXvPjAGLPK/+dZY8yZmq/GiSgiV8rn8zF/TQ4ZKUmYLi1dx5EwNnlYVyIjPCxYk+M6ikjIq+vK0bv8f15D1US9NV8iEsR25xSRU3CGqaPSdKOCONUysRkjr+3I0qw8SssrXccRCWmXLG/W2gL/n7lAL+AR4F+BLv5lIhLE5mdmExcbxXWDOruOIsLUUWkUl5SzcnO+6ygiIa1e92wbY/4LeAo4D1QALxpjHg5kMBG5OqeLS1m99TDjB3cmLraue5NEAu/abm3o3C6BhZk5rqOIhLT6TrhzHzDcWvtDa+1/A8OBrwUulohcraVZBymv8DJtlKZplODg8XiYOjINm1fE/kOnXMcRCVn1LW8lQPHFN9baIuBCQBKJyFXzen0szMyhT3orunZMdB1H5P9MGNqFmOhIFmTmuI4iErLqmqT3dv+XFnjHGPMCUAncD2yo6+DGmPuAHwAxwFPW2mdrrL8FeBzwANnAl621RcaYLsArQDv/Z8+01hYjIvWyZe9xCk6e474pvVxHEfmUhLhorhvYieWbDvHlm/rSPC7adSSRkFPXyNsj/lcnIBH4NvAfQHugx6V2NMZ0Ap4AxgD9gdnGmD7V1icCzwHTrbX9gW3AY/7VfwD+YK3tRVVJ/O/L+q5EwtyCNdkkNo9hdL+OrqOIfMbUUWmUllXy0caDrqOIhKS6JukdfxXHnggss9YWAhhj5gJ3Aj/yr48GvmatvXjb0TZgpjEmGhgH3Opf/jKwAvjeVWQRCRvHi0pYv/MIt13fneioSNdxRD6jR2pLuqcmM39NNtNHp2saG5HLVK9b0IwxPYCvAwlUneKMBLpba0dfYrcUoKDa+wJg2MU31tqTwDv+48cB3wd+D7QBzlhrK6rt95l5DowxyUByzeVZWVkkJuoaHwlfC9fm4AOmjExzHUXkc00flc5v39jM9v0n6Ne9res4IiGlvjcsvErVdWujgBygD7C9jn1q+1XKW3OBMSYJmA9stdbOqe9+wDepuk7uU685c+bUEUuk6SqvqGTx2lyG9u5Ah9bNXccR+VxjB3aiRXw0H6zOdh1FJOTUt7y1sNZ+FVgELAAmAYPr2Ccf6FDtfUfgcPUNjDEdgZXAVuAh/+LjQKIxJvLz9vN7Gkiv+Zo1a1Y9vyWRpmf1tgJOFZcyfbSmB5HgFhsdyaRhXVm74wgnTpW4jiMSUuo7c2eh/899wDXW2qxq5erzLAEeM8a0Bc4BdwCzL6707z8PeNNa+5OLy6215caYlcA9VI343U9VYfwUa+0pQBMFiVQzf3U2Hds0Z0BPnYaS4Dd1VBpvr9jHwrU5fHFKb9dxREJGfUfe9hpjngZWA48YYx4BYi+1g/9GhEeBj4AtwKvW2vXGmPnGmCHAzcBA4E5jzBb/6wX/7l+j6u7UT4CxVE03IiKXsP/QKXblFDJtVDoREboAXIJfh9bNGdyrPYvW5lJeUdvVMSJSG4/P56tzI2NMPDDVWvuWMeZfgRuBX1lrVwc64BWo+xsSaYJ+98ZmVmzOZ84PJ5MQH+M6jki9bNx9lMeeX8t3Zg7WM3glXF32b9v1Gnmz1p4HlhtjbuKfk+kGY3ETCUvF58tYsTmf6wd1VnGTkDKwZzs6tmmuGxdELkN9H0w/naonHXyXqlOYu4wx4wIZTETqb0lWHmXllbpRQUJORISHaaPS2JVTSPbh067jiISE+l7z9mPgOmvtOGvtWGA68JvAxRKR+vJ6fcxfnUPvtFZkdEpyHUfksk30P+9Uo28i9VPf8uaz1u68+MZau+ky9hWRANq85xgFJ89p1E1CVkJ8DNcP6szyTYcoLil3HUck6NX1YPpW/i+zjDHfAf5I1YS5DwDLAhtNROrjg9XZJLeIZVS/FNdRRK7Y9NHpLF6Xy9KsPG4Z1811HJGgVtc8byeounvz4p0QT1Zb5wO+E4hQIlI/R06eY8Ouo9x9Q0+iozQYLqEro1MSvdNa8cHqbGaMydB0NyKXUNeD6fWvgUgQm7cqmwiPh6mj0lxHEblqM8Zk8OQrG9i4+yhD+3SoeweRMFXfB9NHUDXKNhWIBhYDP6328HgRaWQlpRV8uD6X0f1SaJ0U5zqOyFUb2a8jrZOa8f7KAypvIpdQ35G1nwETgN9SdZfpKOBXgQolInVblpXH+QsVzBiX4TqKSIOIioxg2qh0Nu85zsGjZ13HEQla9S1vU4AZ1tp3rLX/AG7xLxMRB7xeH++vyqZHajKmS0vXcUQazI0juhIdFcH7qw64jiIStOpb3iKstf93/7a1thTQ/dwijmzec4z848XcPDYDj0cXdkvTkZQQy/WDOrNsw0GKz5e5jiMSlOp1zRuwxRjzFPCM//3DwLbARBKRury/8gAtW8Qyun8n11FEGtyMsRl8uD6PD9fncdv13V3HEQk69R15exhoCawBMoG2wCOBCiUin+/QsbNs3H2MqaPSNT2INEnpKUlc060181ZnU+n1uY4jEnTqO/L2n9baBwIZRETq54NV2URFRjBlZFfXUUQCZsaYDH42J4v1O48w8tqOruOIBJX6/tp+U0BTiEi9nCspZ+mGPMYN7ETLFs1cxxEJmOF9O9CuZRzvr9SNCyI11Xfk7YAxZjGwCii+uNBaq4fTizSiJVl5lJRWMmOMpgeRpi0yMoLpo9P587xPyD58mvSUJNeRRIJGfUfeCoF8YDAwBrjG/xKRRlLp9TFv1QF6p7Wie2qy6zgiATd5eFdiYyI1+iZSQ33L2y+oKmvTqZrjrRvwWIAyiUgtsj45wpGT55kxVqNuEh4S4mMYPziV5ZsOcbq41HUckaBR3/L2Z+B5IM7/mgu8GKhQIvJZ76zYT7uWcYzSxdsSRm4em0F5hZf5q7NdRxEJGvUtb/HW2j9Za8uttWXW2t8D7QMZTET+aU9eETsPnGTG2G5ERmp6EAkfqe1bMLRPez5Yk01peaXrOCJBob7/Chwwxoy6+MYYcw2gX4NEGsm7K/YT3yyKycO7uI4i0uhuu647p4vLWL7xoOsoIkGhvnebdgJWGGO2AhXAQOCIMWYbgLW2X4DyiYS9Y0XnWbXtMDePzSC+WbTrOCKN7ppurcnolMQ7K/YzaVhXIiL0SDgJb/Utb/8R0BQi8rku3mmnGxUkXHk8Hm67rhu/fnUTm+wxhvTWVTsS3upV3qy1KwIdREQ+61xJOYvW5jKmfwrtWsa7jiPizJgBnZjzwSe8vXyfypuEPV35LBLEPlyfS0lpBbde1811FBGnoiIjmDE2g237TnAg/7TrOCJOqbyJBKnKSi/vrTxA34zW9Eht6TqOiHOTR6QRFxvJ2yv2uY4i4pTKm0iQWr3tMMeLSrhNo24iACTERTNpWFdWbs7nxKkS13FEnFF5EwlCPp+Pt1fsp1Pb5gzt08F1HJGgMWNsBj5f1aPiRMJVfe82vSLGmPuAHwAxwFPW2mc/Z7s5wEfW2pf97++n6pFcR/2bfGCtfTSQWUWCyc4DJ9l38BRfu6OfpkUQqaZD6+aM7JfCwswc7p7YU9PnSFgKWHkzxnQCnqDqYfalwBpjzEfW2k+qbZMC/C9wA/BRtd2HAt+21r4WqHwiwWzusr0kJcQwfkiq6ygiQef267uzeuthFmbmcvv47q7jiDS6QJ42nQgss9YWWmvPUfU81DtrbDMTeBd4s8byocD9xpitxphXjDG6WlvCRvbh02zcfYwZYzNoFhPQwXGRkNSzS0v6dW/Dux/vo7xCj8yS8BPI8pYCFFR7XwB0rr6BtfaX1toXatm3AHgMGAAcBJ6puYExJtkYk1bzdebMmQb7BkRcmLtsL3GxkUwfle46ikjQunNCDwrPlLJswyHXUUQaXSDLW20X6njrs6O19jZr7TprrQ94EphWy2bfpOr5qp96zZkz5wrjirh35OQ5Vm3JZ8rIdBLiY1zHEQlaA3q2pVvnJP7x0V4qvT7XcUQaVSDLWz5Q/Ta5jsDhunYyxiQZY75VbZEHKK9l06eB9JqvWbNmXXFgEdf+sXwfERER3DJOj8ISuRSPx8NdE3py+MQ51m4vqHsHkSYkkBfULAEeM8a0Bc4BdwCz67FfMfBdY8waa+064OvA2zU3staeAk41YF4Rp4rOXmDJ+jxuGJpK66Q413FEgt6IazuS0qY5c5ftYVS/jng8ujNbwkPARt6stfnAo1TdRboFeNVau94YM98YM+QS+1UCdwPPGWN2UXW36ncDlVMkWLy/8gAVlV5uv153z4nUR2SEh9vH92DfodNs3XvcdRyRRuPx+ZrctQJN7huSpu9cSTkP/mQxA007vn//UNdxREJGeUUlDz3xIZ3bteCJr452HUfkSlz2kLGesCASBBZk5nD+QgV3ju/hOopISImOiuSWcd3Ztu8Ee/KKXMcRaRQqbyKOlZVX8u7H+xnQsy3dU5NdxxEJOVNGdqV5XDRzl+11HUWkUai8iTi2JCuPU2dLuesGjbqJXIn4ZtHcNDqdtTsKOHj0rOs4IgGn8ibiUHmFl7nL9mK6tuTabm1cxxEJWTPGZhAbHckbH+5xHUUk4FTeRBxampXH8aIS7p1sNM2ByFVISohl2qh0Vm45xKFjGn2Tpk3lTcSR8govf1+6h55dkhlk2rmOIxLybru+O9HRkbyxRKNv0rSpvIk4smzDQY4VlXDv5F4adRNpAMktYpk6Mo2PNx0i/3ix6zgiAaPyJuJARaWXN5fuoXtqMoN7adRNpKHcPr47UVGRvKnRN2nCVN5EHPhow0GOFZ7XtW4iDaxli2ZMHZnG8k2HOHxCo2/SNKm8iTSy/xt165zE0N7tXccRaXLuGN+dqAiPRt+kyVJ5E2lkKzYd4sjJ83xhkkbdRAKhZWIzpoxM46ONhzhy8pzrOCINTuVNpBFVVnp5Y8keMjolMaxvB9dxRJqs28d3J1Kjb9JEqbyJNKIVm/MpOHFOo24iAdY6KY4bR3Rl2YaDGn2TJkflTaSRlFd4eW3xbjJSkhiuUTeRgLtzQg8iIjy8tti6jiLSoFTeRBrJh+tzOXLyPF+a1puICI26iQRa66Q4po9OZ/nGg+QdOeM6jkiDUXkTaQQXyip440NLn/RWmtdNpBHdOaEHsTFRvLJwt+soIg1G5U2kEXywKpvCM6XcP62PrnUTaURJCbHcdn13MrcXsCevyHUckQah8iYSYMUl5cxdtpfBvdrRN6O16zgiYeeWcRkkNo/hr/N3uY4i0iBU3kQC7O3l+yguKedLU3u7jiISluKbRXPXDT3Zsvc4W/cedx1H5KqpvIkEUNHZC7z38X7GDuhEt87JruOIhK1po9JokxzHX+Z/gs/ncx1H5KqovIkE0N+X7qWswssXp/RyHUUkrMVER3LvZMOevFOs23nEdRyRq6LyJhIgxwrPs2BNDpOGdSGlbYLrOCJh74YhqXRq25y/LthFpVejbxK6VN5EAuRvi3bj8cAXJhnXUUQEiIyMYOaU3uQdOcvyjQddxxG5YipvIgGw79ApPtp4kBljMmiTHOc6joj4je6XQo/UZP66YBcXSitcxxG5IipvIg3M5/Px4ns7aBEfw90Te7qOIyLVRER4+MrN13Dy9AXeXrHfdRyRK6LyJtLA1u44wo79J5k5pRfN46JdxxGRGvpmtGZ0vxTe+mgvJ0+XuI4jctlU3kQaUHmFlz/P20lq+xbcOLyr6zgi8jkeuKkPlZU+/rpAE/dK6FF5E2lAH6zOpuDEOb5yc18iI/W/l0iw6tC6OTePzWDZhoPsO3TKdRyRyxLQf12MMfcZYz4xxuwzxjx8ie3mGGMeqPa+izHmY2PMbmPMu8YYzbMgQe/MuTJe/9AyqFc7Bvdq7zqOiNThrok9aREfw0vv7dTEvRJSAlbejDGdgCeAMUB/YLYxpk+NbVKMMe8Dd9XY/Q/AH6y1vYANwH8HKqdIQ3lt8W5KLpTz4Iy+rqOISD0kxEVz34292L7/BGt3aOJeCR2BHHmbCCyz1hZaa88Bc4E7a2wzE3gXePPiAmNMNDDOvz3Ay3y23IkElYNHzzJ/TQ43jkija4dE13FEpJ6mjOhKavsE/jxvJ+UVXtdxROolKoDHTgEKqr0vAIZV38Ba+0sAY8yYaovbAGestRXV9utc8+DGmGTgMw+LzMrKIjFR/3hK43rp/Z00i4nkvhv1GCyRUBIZGcGDM67h8RfW8t7H+7ljQg/XkUTqFMiRN08ty+rza0199/smkF3zNWfOnHoHFGkI63YUsGHXUb4wyZDcItZ1HBG5TIN7taNPRmteW2w1dYiEhECWt3ygQ7X3HYHD9djvOJBojImsY7+ngfSar1mzZl1xYJHLdaGsgj+9s50uHVowY2yG6zgicgU8Hg9339CDSq+XP/5ju+s4InUK5GnTJcBjxpi2wDngDmB2XTtZa8uNMSuBe4BXgfuBBbVsdwrQ/d3i1JtL9nCsqISfPzyGKE0NIhKy2raMY+KINBauzmaTPcYg0851JJHPFbB/bay1+cCjwEfAFuBVa+16Y8x8Y8yQOnb/GlV3p34CjAV+EKicIlfq4NGzvL18HxOGpNI3o7XrOCJylaaPS6dNchzPvbWV8opK13FEPpenCc5t0+S+IQk+Pp+P//7fNew7eIrnvn8DLVs0cx1JRK5C3tEzRMZGYbMLeeqVjdw72egGJGkstV3rf0k6zyNyBVZuyWfr3hN8aVofFTeRJmRg7/YMMG2Zu2wvRwvPu44jUiuVN5HLdP5COS++t4PunZOYMjLNdRwRaWD3TOkNwB/mbnGcRKR2Km8il+lvi3ZTdLaUr97Rn8iIyx7tFpEgVlJaQWWll2ljM9hkj5O5vT6TJIg0LpU3kctgcwuZt/IAN45Io2eXlq7jiEgDulBawfHC87RtFc8t13enQ+t4nntrG+cvlLuOJvIpKm8i9VReUclv39hCq8RmPDC9T907iEjI8Pp8nCgqoW2reOJio4iKiuChO/pxqriUP72tud8kuKi8idTT6x/u4eDRszx81wCax0W7jiMiDaiiwkublnHExf5z+tOeXVsxcXhXlm44yCZ7zGE6kU9TeROph32HTjF32V4mDEllSO/2ruOISAOLioqgWexn562/Z0ov2raM43dvbKaktKKWPUUan8qbSB3KK7z89vXNJDWP4aFbrnEdR0QCIMJT+81HMdGRPHR7PwpPX+DF93Y0ciqR2qm8idRh7rK95BSc4Wt39qdFfIzrOCLSyHpntOb6oaksWpvLtn0nXMcRUXkTuZScgjO8ucQybmAnRlzT0XUcEXHkvmm9aZXUjN++vokLZTp9Km6pvIl8jopKL799YzPN46KZfeu1ruOIiEOxMVE8dHs/jhWV8PK8na7jSJhTeRP5HK8u2s2+g6f46h39SUqIdR1HRBy7pnsbxg3uzAerc9i4+6jrOBLGVN5EarF93wnmLtvLpGFdGN0vxXUcEQkSX7qpL+1bx/ObVzdxurjUdRwJUypvIjWcPV/Gr1/dSEqb5jpdKiKfEhsTycP3DOTchXJ+/beN+Hw+15EkDKm8iVTj8/n4/ZtbOF1cyne+OKTWeZ9EJLyldUrirkmGzXuO897KA67jSBhSeROpZtHaXDK3F3D/tD5075zsOo6IBKmpY9Lpld6Kl+ftJOfwaddxJMyovIn4HTx6luff3cHAnm25ZVw313FEJIhdKKvk1vHdaRYbxc//soHS8krXkSSMqLyJAGXllfzylQ3ExUbyrXsHERFR+2zrIiIlpRUcLzxPeudkZt/Rj/zjxTyvh9dLI1J5k7Dn8/n44z+2kX34DP92z0BaJjZzHUlEgtTF4ta2VTxxsVEM6NWeSSO6smhdLkuz8lzHkzCh8iZhb+HaXD5cn8c9k3oytE8H13FEJEjVLG4X3TutN91Tk3l27lb2HTzlMKGEC5U3CWu7cwr509vbGNyrHfdO7uU6jogEqc8rbgBRkRH82xcHE98siideXs/Z82WOUkq4UHmTsFV05gI/m5NFm+Q4vjNzMJG6zk1EanGp4nZRUkIs37hvMEVnL/Czl9dT6dX8bxI4Km8Slioqvfzirxs4d6Gc/3pgGAnxMa4jiUgQqk9xu6hH15bMnNab7ftPMucDPf9UAkflTcLSi+/tYOeBkzxy1wDSU5JcxxGRIHQ5xe2iiSPSGD2wE28v38+qrfkBTijhSuVNws6itbnMW5XNLeO6cd2gzq7jiEgQupLidtGXb7mGLh1b8PRrm3UDgwSEypuElY27j/KHt7YyyLTjgZv6uI4jIkHoaoobQEx0JN/+0lDiYqN4/IW1HC8qCUBKCWcqbxI29h86xS/+kkVah0S+d/8QoiL1119EPu1qi9tFrZKa8e+zhnKhrIL//t81nCspb8CUEu70r5eEhWNF5/nRi2tpHhfDDx8aTnyzaNeRRCTIXGig4nZR15REvn7vQApOnuNHL66lvMLbAClFwOPzBe52ZmPMfcAPgBjgKWvtszXWDwCeB5KAj4F/tdZWGGPuB34BHPVv+oG19tF6fqzuz5ZPKS4p53vPrOTkqRJ+8fWxdO2Y6DqSiASZnCOnOXrqAqkdExukuFW3fEMeL729g7EDOvEfXxyMx6NpieRTLvsvRMBG3owxnYAngDFAf2C2MabmRUavAI9Ya3tSFf7/+ZcPBb5trR3gf9W3uIl8SnmFl5+9vJ7Dx4v5zweGqbiJSK0qKry0aRnX4MUNYPi1KVw3pDMrt+Tzl/m7Gvz4En4Cedp0IrDMWltorT0HzAXuvLjSGNMViLPWrvUvehm4y//1UOB+Y8xWY8wrxpiWAcwpTVRlpZdf/W0D2/ad4Bv3DKR/j7auI4lIkIqKiqBZAIrbxWvo7p3am1EDUpi7bC//+Ghvg3+OhJeG/5v6TylAQbX3BcCwOtZ3rvb1z4H1wE+BZ4CZ1Q9ujEkGkmt+aFZWFomJGl0Jd5VeH795dRNrthXw0C3XMH5wqutIIhLEIgJwKrPmzQ8P3d6PcyXl/HneJ0RFRXDz2G4N/pkSHgI58lbb/wne+qy31t5mrV1nrfUBTwLTatn2m0B2zdecOXOuKrSEvkqvj9++vomPt+TzwPQ+3DJOPyBFpHHVdtdqVGQE/3bfYK7p3obn39nBgjXZjlNKqApkecsHOlR73xE4XNd6Y0ySMeZb1ZZ7gNrusX4aSK/5mjVrVgNEl1Dl9fp49u9b+GjjIWZO6cUdE3q4jiQiYeaSD7GPiuBbXxpM74zWPPfWNj5cn+sopYSygN1t6r9hYRVVp0rPAWuA2dba9dW22QH8i7V2tTHmeWAP8BvgEHCrtXadMeaHQCdr7b/U86N1t2mY8vl8PPePbSxYk8M9E3vyxam9XUcSkRCRd/QMkbFRVz2NUH3niSsrr+TJP69nb14R37p3kC7tCG/Bc7eptTYfeBT4CNgCvGqtXW+MmW+MGeLfbCbwlDFmF9Ac+J21thK4G3jOv3ww8N1A5ZSmodLr47m3qorbHeO7M3NKL9eRRCTMXM4EvzHRkfzHA0Pp1jmZp1/bxJKsvEZKKU1BQOd5c6TJfUNyaeUVlfzm1U2s2nqYO8Z3Z9b0PppHSUQuy9WOvF3pkxlKSiv41cvr2Zt3ii/P6Mvt13e/os+XkHbZ/2CpvElIO3+hnJ+9nMWWvcf58k19uH28rnETkct3NeXtah+pVVZeye//f3t3Hh1XeZ9x/KtlpNG+WbYk2/Lu19gYL9jGxOwmScMWwFASSHBoMSEhPs1JaEoLJKWnTWlPErdpgCRAC4QtLSVJWQwn2MTYOA62wTt+vcmyLVlIsrXNaJvRTP+YK2esyEgyI81c6fmcoyPde9/73p9mZPnRfe+97wvvs93WceNlU/nKNfoDdIRReEPhbcRo8nXw0BObOFjVxMqb53LlovJ4lyQiLnW24S1Wc6GGQmEef3kH735QxdIF41l5yzxSkhXgRogBv9GD+Zw3kUFT29DKd3/2e+oaWvm75Qu54NzSeJckIiNMrIIbQHJyEnctO4/crDRWb6igubWT+25fSJonJUbVynCiM2/iOnsqTvDPT28mEOjiwb9czKzJRfEuSURcbqBn3mIZ3Hp67Z2D/PJNy5SxeXz3zsUU5npj2r8kHA2bovA2rL25qZKfvryd4oJMHrhjEeUlmk1DRD65gYS3wQxu3f2v3VTJr9buJ9Pr4f47FjFjYmHMjyMJQ+ENhbdhKdgV4onf7OK1dyuYN72Y73x5AdmZafEuS0SGif6Gt6EIbt39157ws+oXW2n2d/C1ZXP4zAUTYn48SQgKbyi8DTtNvg7+5Zkt7DxYzw2XTWX5VeeQkjKYk4OIyEjTn/A2lMGtu/8Wfyf//txW9lU2cPWSSaz4/Ln6/Tf8KLyh8Das7DxYz4+e20qTv5OVfz5XTyEXkUHRV3iLR4ZWe+gAABHjSURBVHDrFuwK8eyru1n73lFMeQHfuX0BowsyY16DxI3CGwpvw0KwK8Tzb+7lpbX7KS3K4q+/tICp4/PjXZaIDFMfF97iGdyird96jGde2U1ychL33DSHS+ePi3ktEhcKbyi8uV51vY8fPreVfUca+fSiclZcP3tQfmGKiHQ7U3hLlODWrabex6MvbuPw8WYunT+Oe26ao9+P7qfwhsKba4XDYdZsPsrPf72D5ORkVt48lyVzyuJdloiMAL2Ft0QLbt2CXSFe+q1l9foKigsyuPdLCzhHd6O6mcIbCm+uVF3v49GXtrN9fz2zJhfx7VvPp7ggI95licgI0TO8JWpwi/bhoRM89t/baGrp4DOLJ/AX184667lZJa4U3lB4c5VAMMTLv9vPL3+7D09qMsuvnsmfLZ5IsqaFEZEhFB3e3BDcTvXVHuCFN/aybvNR8nLS+eoNs7loztgYVSpDROENhTfX2FNxgkde2s6RmhaWzCljxefPpShPZ9tEZOh1h7ekpCTXBLdo+ysbePJXO6mu8zHfFPONm+dp9MI9FN5QeEt4x+v9PPP6HjZsr6a4IIO7bzyPRTNL4l2WiIxgRz5qJgD4WgOuC27dfK2dvLxmH+u2HAPgmosmccuVhqwMDaUmOIU3FN4SVpOvg1++tY/VGytISUnmhkuncuPlU3WnlIjE3eGaJj5qbGd8aa4rg1t0/77WTl5cvZfNu2vIzvBwy5XTufqiyXhS9XDfBKXwhsJbwmltD/Dqhgr+9+39tHcE+fQFE7j1szM02bKIJIwDxxpI8qRQOAiXbsTrGrpDRxt5bvWH7K9soLggg9s/dw4XzxtHiq4pTjQKbyi8JYwmXwevbDjEqxsq8LcFuGBWCcuvnsn4MTnxLk1E5DSHa5rweD0xv1sz3jc/hMNhtu2t5cU39nK83s+YwkxuumIaSxeW60xc4lB4Q+Et7uob2/jVugO8uamSjs4uFp9bws1LpzO9vCDepYmI9Kq/E9MPRLyDW7RQKMwfdh7nld8d4Fitj4KcdK6/dApXfWoSXl26Em8Kbyi8xUU4HGb3oROs3niYjTurCYXhsvnjWHb5VMpLcuNdnojIx4p1eEuk4BYtHA6zY18dv377AAePNpLlTeXyBeO59qLJlBVnx7xO6ReFNxTehpSvLcDbW46y+veHOfpRC1kZHpYuHM91F09hTKEmThYRd4hleEvU4NaTrTjJ6xsOsX1fHaFQmFmTC7lmyWQWzy4lNUVDqkNI4Q2Ft0EX7Arxga1l3ftVbNp9nI7OLqaX5/O5Cydy0dyxeNN0Cl5E3CVW4c0twS1aY3M7a947wrotR2ls6SAvK40lc8pYurCcaePzSUrSDQ6DTOENhbdBEQqF2VNxgnUfVPHu9ipaWgPkZHpYMmcsn108ganj8uNdoojIWYtFeHNjcIvmbwuw/v1jbLO12IqTdIXCjCnM5OK5Y7liwXjdbDZ4FN5QeIuZ1vYAH+yrY/OeGrZ+WEujr4P0tBQWzyrlkvljmTd9tO5WEpFh4ZOGN7cHt579+9sC/GFHNRu3V7O/soEwUFKUycJzxrD43FJmTi7S0GrsKLyh8HbWukJhKqqb2Hmgnvf31rLrUD3BrjDZGR7OnzGGRbPGsGhmie5MEpFh55OEt+EW3HpqaG5n045qPthby/7KBrpCYTLSU5kzbRTnzxjD3OnFjCnM1PDq2VN4Q+Gt3wLBEJXHm9l16AS7Dtaz69AJ/G0BAMaNzmbhzBIWzRzDORMLSdFfWCIyjJ1teIt3sBrq/ts6guzYV8v7ez5i54F6fK2R/zMKc73MmlzEnGnFzJ5SROmoLIW5/lN4Q+GtV6FQmJoTfvYfbWTfkQb2HWngYFUTgWAIgNJRWcyeMorZU0cxe0qRJogXkRHlbMJbogWroe4/HA5TVetj14F69hysZ/+RBvxtQQAyvalMGZvH9PICzplUxLTx+RTkpCvQ9U7hjREe3sLhMCea2qmq81FZ08zh6mYqa5qprGmho7MLgDRPClPHRf5RTS8v4JyJhYzKV1gTkZFroOEt0YNVPPoPhcJU1/mwh09iD5/k4NFG6hvb6I4Z2Rkexo/JZkJpHpPLcpk0No+xxdnkZKbF5PgupvDGCAhvHYEu6hpaqW1oo66hlY9OtlJd76e6zkd1vf9USAPIzUpjYmkuE8tymViSy9Tx+ZSPydEwqIhIlIGENzcGq3j1n5wEFVVNVFQ1ceR4M8c+8nG8zkenM+oDkJXhoaQok7JR2ZSOyqKkKJOSwizGFGZSlOcdCf9fJVZ4M8bcCjwApAGrrLWP9Ng+F3gcyAPeAe621gaNMeXAs8BowAK3WWt9/TysK8NbOBzG3xagyd9Jk6+DJl/k88nmdk42t3OiqZ2GlnZONLbT6Os4bd/k5CRKCjMpK86mrDiLscXZlI3KYkJJLvk6TS0i0qf+hrfhFKzi1X8oFKauoZWqWh9VtT5q6n3U1PupPdlKk6/ztLbJSUnk56RTkJNOQa6Xwlwvo/K8FOZlUJCTTn5OOrlZaeRnp7v5ZrrECW/GmLHABuB8oAPYCHzRWrsnqs0u4E5r7SZjzJPAFmvtY8aYV4FnrbUvGmMeBLKttX/Tz0MPWXgLh8MEu0J0BEJ0Brro6OyivTNIe4fz2VlubQ/S2h6grSPytb89gK81gK+1k5bWAP62AC2tnXSFei89PzudwlwvhXmRH9zRBRkUF2QyuiCD0YWZFOWOiL9MREQGTX/CWyIEn+Hef2egixONkVGl2pOt1J1so76pjaaWDhpb2mnydZ42uhTNk5pMltdDVoaHrIxUsjPSyM70kOn1kOVNJdOb6nztwetNJSMthYz0VLxpqaSnpUQ+PCmkeVKG+jEoAw5vgxlTrwTWWmtPAhhjXgJuAv7BWZ4AZFhrNzntnwIeMsY8AVwCXB+1fh1wWngzxuQDf/Jk2M2bN5ObO7hzaT740418WHmSzkAXA8m+KclJp354cjI9ZGekUZSfQXaGh5zMNPKy08jNSic/O53c7DTystIpyE3Xs3RERIZAOBz5o7w30cHEm5ZyxnZnS/1HeFKTKRmVRcmorDP2n5yURGNLO83+TlqcUapmfyfN/k78bYFTHzUn/bRWB2nvDNLR0TWgMzvJSUl4UpO57pLJ3H7VzLP6XgbTYIa3MuB41PJxYFEf28cBo4Bma22wx/qevgl8r+fKp59+mpUrV36Csvv2qTllTCzLPZXQIx/JeNNSSE9LJcNJ8V4n1Wd6PWR6U/GkJmsIU0QkAXlSU2hobqe5+U+3BYMh2juDeNNSaWpqpynGx1b/A+u/W47XQ47XQ1mPoNebcDhMZyBEhzMq1hmIfHQEumjr6MLfHoAwhEIhAkHnoyuUsLMHDWZ46y2lhPqxva/9uv0bkbNyp1m+fHlFf4r7JD534cTBPoSIiAyh0qIsSov6DgEiiWAww1sVcHHUcilQ3WN7SS/b64BcY0yKtbarl/0AsNY2Ao2xLlpEREQkkQ3mxVRvAUuNMcXGmExgGfBG90ZrbSXQboxZ4qy6HVhtrQ0A64FbotcPYp0iIiIirjFo4c1aWwXcD7wNbAOet9a+Z4x53RizwGl2G7DKGPMhkAX82Fn/deAuY8weImfvHhisOkVERETcRA/pFREREYmfAd/JqGdQiIiIiLiIwpuIiIiIiyi8iYiIiLiIwpuIiIiIiyi8iYiIiLiIwpuIiIiIiyi8iYiIiLiIwpuIiIiIiwzm3KZDzhiTumbNmniXISIiItIvS5cunQgcs9YG+7vPsApvwLilS5fGuwYRERGR/qoAJgGH+7vDcAtvx4i8ACIisTQOWE9kruVjca5FYkvvrSSCAf3sDce5TUVEYsoYMxHnr2Nr7eH4ViOxpPdW3Eg3LIiIiIi4iMKbiIiIiIsovImIiIi4iMKbiEjfGoGHnM8yvOi9FdfRDQsiIiIiLqIzbyIiIiIuovAmIiIi4iLD7SG9IiIDZoy5FXgASANWWWsf6bF9LvA4kAe8A9xtrQ0aY8qBZ4HRgAVus9b6hrR46ZMxJhfYCFzT81luxhgD/AwoAGqAL1hrG6K2zwM2WWvTh65ikY+nM28iMqIZY8YC/wRcBMwB7jLGzOzR7FlgpbV2OpAErHDWPwo8aq2dAWwBHhyaqqW/jDEXABuA6b1sSwL+D3jYWjsH+AC4L2p7JvATIqFeJGEovInISHclsNZae9Ja6wdeAm7q3miMmQBkWGs3OaueAm42xniAS5z2p9YPVdHSbyuAe4DqXrbNB/zW2jec5e8D0WddfwisGtzyRAZO4U1ERroy4HjU8nEi8132tX0U0GytDZ5hP0kA1to7rbXrz7B5KlBjjHnaGLMDeAzwARhjrgMyrbUvnWFfkbhReBORkS6pl3Whfmzvaz9JfKnAZcB/WGvPAw4BPzLGlBC5BnJlHGsTOSOFNxEZ6aqAkqjlUk4fYjvT9jog1xiTcob9JPHVAPuttVuc5ReARcA1QBHwjjFmG4AxZpsxJic+ZYqcTuFNREa6t4Clxphi5wL1ZUD3NVBYayuBdmPMEmfV7cBqa20AWA/cEr1+6MqWGNgIFBtj5jjL1wJbrbVPWGunWGvnWmvnAjhft8StUpEoCm8iMqJZa6uA+4G3gW3A89ba94wxrxtjFjjNbgNWGWM+BLKAHzvrv07k7tQ9wMVEhtokwXW/t9baNuAG4HFjzG7gCuDb8a1OpG+aHktERETERXTmTURERMRFFN5EREREXEThTURERMRFFN5EREREXEThTURERMRFFN5EJKEZY54yxtw7BMfJNca8a4zZbYxZFsN+84wxawfaznkobH6s2ovI8JEa7wJERBLEXGCMtXZqjPstIPLU/gG16344bAzbi8gwofAmIkPGGPM88L619gfO8t3A5cAXgVXAYiCHyLyhd1pr3+2xfxgottbW91w2xlxL5CG5aUArcK+19ve91HA98D0gBWgGvgU0Af8JjHWmQ7rQeYArzvRXW6O6KARGA0XWWn9UvyXAM0QmrAd4zVr7IPBfQIbT7/nAcuCrTp2FwMPW2sd6aRcEion8nu5Pv8Go1+JvneMEgf3AV6y1TWd4W0TEZTRsKiJD6XEioaLbHc66C4AyIqFpJvA0cF9/OzXGTAO+D1xlrZ0H3AW8bIzJ6tFuBvBTYJkzEfl3gd8Ax4E7gYPONEht3ftYa7uipkm6AmghEob8nG4FcMhaO5/IbAvTjDF5zvfY5uyf4bTrrvMW4F+jXos251hdA+k3ur0x5jrgK85reS5QAXyjv6+liCQ+nXkTkaH0O8DrTDvVSuTM0hprbdgY8wDwVWPMFOAyIiGpvz5NZGL4NcaY7nUhYCqwPardFc7xDgFYa9caY2qJnLn62OlmjDEZwCvAL6y1L/bS5A3gdWNMOZH5Uu+z1jYZYwq6G1hrfcaYa4CrncA5F8ju43vrs98ergT+x1rb4BzzW330LyIuozNvIjJkrLVh4Ekik7jfATzpBLergdecZr8hcnYs6QzdJAEYY9Ki1qUQCWVzo86SLQZ29di3t995yYDn4+p2hk5fAHZZax8+w/e2GZgE/ByYCLxnjPlUj37GEZk/dQKwgX7MhdqffnsIEhVEjTH5xpiJfR1HRNxD4U1EhtpTwHXAzUSu24LImbNXnGu/NgPXEwlkPdUB3ZPF3xi1fi3wGWdYFGPMVcAOwNtj/+52k512VwDjgT/0UfMjRALePWdqYIx5GHjQWvtr4K+A3cB0ImEqxRiT5NReB/yjtfZN4Bpn35Qe7Qbab7S3gBuNMbnO8t8Tua5PRIYJTUwvIkPOGPMykGqtvc5ZngE8T+RSji7gHWAZUE7kRoJd1tofGGO+QOTatkbgt8CXgfOci/RvBu4ncmYuCHzTWru+l2N3t0slMnT7bWvtemPMZcBPnOvEottfCGwkEgZD/PGM4J3W2i1R7UqIXKs3FuggMlz7NaeWd4AiYCnwGDAD8APvATcQuZbtQFS7JUA9f7xhoa9+T7V3Xot7+eO1hbuBFdbagQxDi0gCU3gTERERcRENm4qIiIi4iMKbiIiIiIsovImIiIi4iMKbiIiIiIsovImIiIi4iMKbiIiIiIsovImIiIi4iMKbiIiIiIv8P5c3lCY78b7YAAAAAElFTkSuQmCC\n", "application/papermill.record/text/plain": "
" }, "metadata": { "scrapbook": { "mime_prefix": "application/papermill.record/", "name": "ztest_oneside_fig" } }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm8AAAGECAYAAABgXcdUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xd4VNeB/vHvqCIhJNFBIJBEORSb3psNBkwx7iU2iXEc/9hNHGeTbDbJrrNZO4lTnGInseNsXGISxy04bphmwGCKANGL4dBUQIgqUQRCbeb3h4aNLMtIgEZnRvN+nmceNLfNKz9YvDr33nM9Pp8PEREREQkNEa4DiIiIiEj9qbyJiIiIhBCVNxEREZEQovImIiIiEkJU3kRERERCiMqbiIiISAiJch1AROQiY8y/Al8FogEfsAl41Fqb14Cf0Qv4NZDqX1Tk/4xVxpgUYK61dlQt+z0DnLDWPnYZnzXEf7y0Gsu/D3zB/7Y7cBw47X9/h7V2f/2/o/875kvAb621Wy93XxEJLSpvIhIUjDG/AvoDN1lrDxpjIoAvApnGmOHW2kMN9FFvAT+w1r7t/9xxwAfGmHRr7WHgM8WtoVlrfw783P/5y4FnrLVzr/Kwk4HfXeUxRCQEqLyJiHPGmM7AvwKp1toiAGutF/iLMWYw8J/Aw8aYHOBl4AagC/CGtfa7/mPMAH4AxADnge9YazNr+biOQPOLb6y1Hxtj7gYqjTFpwA5rbYIxJhF4gapCWQBUAKv8n9UJeMafIRp43Vr7U/+6rwLfomokbfsV/vdI9R+/s//4f7PW/sIYEw08C4wEyoB9wJeBHwLtgDeMMTOttRuu5HNFJDTomjcRCQbDgV0Xi1sNS4Ax1d4nWGvHUjVC9ogxJt0Y0wP4KTDNWjsQmA38wxjT/LOH42Hg98aYw8aYN40xXweyrLWna2z3OFAC9ALuAky1dX8FXrLWDgaGARONMXcbYwYAjwHjrLVDqSpYV+JvwB/9xx8OTDPG3O7/7zDKWnutf10ecK219vvAMeAeFTeRpk/lTUSCRfTnLI+l6vq3i94FsNbmU1VYWgGTqBpRW2qM2UJV+fFSdT3Zp1hrX/Nvez+wG3gQ+MQ/6lbdROAv1lqftfY4cPE0a3PgOuDH/s9aS9UI3ACqRgQXW2uP+I/xp/p+8xf5R/xGAz/zHz8T6OQ//lYg0hizzhjzI+BNa+26y/0MEQltOm0qIsFgLdDDGNOhWvG5aDywptr7kmpf+wAPEAkstdbec3GF/9Tj4eoH8t+s8IB/pGqJ//VDY8yHwJ1A9evOLh77ogr/n5H+5aOstef9x20DXKBqxK+2fS5HpP/P4dbaUv/x2wLnrbXnjDHXUlXuJgB/N8b8xlqra91EwohG3kTEOf8o2u+A1/zXkwFgjPkycAfwizoOsQyY7C9nGGOmAduAZjW2OwrMNsbcWe0zWgHtqbqztbqFwFeMMRHGmJbALf6sZ6gqm9/2758MrPav/9Cfo7P/GA/U+c3X4D91vJGq6+bwf3YmcJMx5lZgEbDaWvs/VI0w9vPvWsHnj16KSBOi8iYiQcFa+5/AK8C7xpgdxpi9VJ26HGmtza1j351UjXq9bozZCvwYuNlae67GdkVUjVh9xRiTY4zZSdXo2y+ttctqHPYxoJyqU6vv8+mbD+4DRhhjtgPrgNestX+z1m4HvkvV6dsNfLY81tcXgHHGmG1UFcU51to3gHnAXmCH//hDgR/593kHmGuMmXCFnykiIcLj8/nq3kpEREREgoJG3kRERERCiMqbiIiISAhReRMREREJISpvIiIiIiFE5U1EREQkhDTFSXp1+6yIiIiECk/dm3yaRt5EREREQojKm4iIiEgIUXkTERERCSEqbyIiIiIhROVNREREJISovImIiIiEEJU3ERERkRCi8iYiIiISQlTeREREREJIQJ+wYIy5D/gBEAM8Za199nO2mw48Y61N979PBv4GZADHgbuttUcCmVVEREQkFARs5M0Y0wl4AhgD9AdmG2P61LJde+BXfPrxED8BVlprewPPA78NVE4RERGRUBLI06YTgWXW2kJr7TlgLnBnLdu9ADxeY9l0qkbeAF4DphpjogOWVERERCREBPK0aQpQUO19ATCs+gbGmG8Am4C1n7evtbbCGHMGaAscrrZvMpBc80OzsrJITExsiPwiIiIiQSeQ5c1TyzLvxS+MMdcAdwA3AJ0vZ1+/bwL/U3OjOXPm8Mgjj1xeUhERP5/PR/7xYjbuPsYme4zi82Wf2aZDq+YM7t2eQaYdyS1iHaQUkXAWyPKWD4yt9r4j1UbOgLv8yzZQdUNDijFmpbV2rH/fDsAhY0wUkAicrHH8p4GXa37orFmzshvqGxCR8ODz+di69zjrdhxhw+6jHDl5HoDU9gm0bRn/6W29PrbtP8HHW/LxeKB752SG9G7PmP4pdOmgUX8RCTyPz+cLyIH9NyysoupU6TlgDTDbWru+lm3TgOXW2jT/+2eBfGvtT40xM4H7rLXT6/nRgfmGRKRJyj58muff2cH2/SeIiY6kf482DOndnsG92tO+VXyt+3i9Pg4cPs3GXUfZsOsoNq8IDzBpeFe+OKW3RuNE5HLUdrbx0jsEqrzB/00V8l9Ujay9YK190hgzH/ihtXZDte3S+HR5a0XVqFo34BQw01qbU8+PVXkTkTqdOlvKKwt3sXhdLglxMcy80TBpeFdioiOv6Fh/X7qHD1ZnExsTyRcmGW4ak0F0lKbSFJE6BVd5c6TJfUMi0nAqvT7e+3g/r39oKS2rZPqYdO6dZEiIj7nqYx88epaX3t/Jhl1H6dimObNvvZYhvds3QGoRacJU3lB5E5HPUVJawa9e2cj6T44wpHd7HpzRl9T2LRr8czbuPsqL7+3g4NFiZk7pxT0Te+LxXPbPZxEJDypvqLyJSC2OF5Xw45fWknvkLLNvvZbpo9MD+nnlFZX8/s0tfLTxENcP7sw37h5AdNTln5IVkSZP5Q2VNxGpYe/BIn7y0jpKSiv53v1DGNyrcU5l+nw+3lyyh1cW7qZ3Wise/fIwkhJ0M4OIfIrKGypvIlLNmm2H+fWrm0hOiOGHXxlB146NP53Hyi35PP3aJlolNeOHXxkRkFO1IhKyVN5QeRMRv6VZeTz9+mZM15Y8+uVhtGzRzFkWm1vIT15aT3mll58/PIY0ByVSRIKSyhsqbyICbNh1lB+/tI5+3drwg68MJ/YKpgBpaEdOnuN7z6wC4JffGEu7lrXPIyciYeWyy5smIRKRJsfmFvLzv2SRnpLIfz4wNCiKG0CH1s15fPZISssq+J8/ZXLm3GcfvSUiUheVNxFpUvKPF/P4C+to2SKW/3loBPHNol1H+pS0jok8+uBwjhae58cvruVCWYXrSCISYlTeRKTJKDxzgR/+KZOICHh89kin17hdyrXd2vDvMwdj84r45V83UlnpdR1JREKIypuINAnnL5Tz2POZnCku5X8eGkFKmwTXkS5pdL8U/uW2fqz/5AjPzt1KE7z+WEQCJMp1ABGRq+Xz+Xj69c3kHTnLDx8aQY/Ulq4j1cv00ekUnrnAm0v20K1zcsAnDhaRpkEjbyIS8hZk5pC5vYBZ0/swyLRzHeeyzLyxF0N6t+fF93ZwIP+06zgiEgJU3kQkpGUfPs0L7+5gcK923DKum+s4ly0iwsM3vzCQFvHRPPnXDZSU6gYGEbk0lTcRCVkXSit48q8baBEfzbfuHURERGg+/D0pIZZ/nzmYwyeK+d+3t7mOIyJBTuVNRELW/769nfzjxfz7zMEh/8zQft3bcs9Ew9Ksg3y08aDrOCISxFTeRCQkLd94kCVZedw9sSf9urd1HadBfGFST/pmtOYPc7eSf7zYdRwRCVIqbyIScg4fL+YPb22lT3or7p1kXMdpMJGREfz7fYOJjorgyb9uoLyi0nUkEQlCKm8iElK83qppQSIjIvjOzCFERjatH2NtW8bxb/cM5ED+ad5Yssd1HBEJQk3rp56INHmL1uWyK6eQr9x8DW1bxrmOExDDr+nI9YM789ayveQdOeM6jogEGZU3EQkZhWcuMGfeTvp1b8MNQ1Ndxwmoh26+hrjYKJ75+1a8Xj19QUT+SeVNRELG8+9sp6zCy8N39sfjCc1pQeorKSGWB2dcw66cQhaty3UdR0SCiMqbiISErE+OsGrrYe6Z2JOUtsH93NKGcsPQVPp1b8OceTspPHPBdRwRCRIqbyIS9EpKK3juH9tIbd+C28f3cB2n0Xg8Hr52Z3/KKrz86Z3truOISJBQeRORoPfqot0cLyrh63f1JzoqvH5sdWqbwD0Te7J662HWf3LEdRwRCQLh9VNQRELOvoOneO/j/UwZmUaf9Nau4zhx+/gepLZvwR//sU3PPhURlTcRCV4+n48//mMbSQmxzJrex3UcZ6KjIvj6Xf05XlTCm5r7TSTsqbyJSNBauSUfm1fE/dP6kBAX7TqOU33SW3P94M68+/F+jhWedx1HRBxSeRORoFRWXsmcDz4hIyWJCUOa9pxu9XX/1D54gL/M3+U6iog4FBXIgxtj7gN+AMQAT1lrn62x/jbgcSASyAJmW2vLjDH3A78Ajvo3/cBa+2ggs4pIcHl/5QGOFZXwjXsGEhHRtOd0q6+2LeO45bpu/H3pXm4el0HPLi1dRxIRBwI28maM6QQ8AYwB+gOzjTF9qq1vDjwDTLLW9gWaAQ/4Vw8Fvm2tHeB/qbiJhJHTxaW8uXQPQ3q3p3+Ptq7jBJU7J/QgOSGWF9/bgc+nJy+IhKNAnjadCCyz1hZaa88Bc4E7L670L0uz1h71F7l2QJF/9VDgfmPMVmPMK8YY/XopEkZeX2y5UFbJgzP6uo4SdOKbRXPflF58kl3I2h0FruOIiAOBPG2aAlT/yVIADKu+gbW23BgzFXgFyAcWV9v258B64KdUjdDNrL6vMSYZSK75oVlZWSQmJjbQtyAije3QsbMsyMzhxhFdSW3fwnWcoDR5WBfeX3mAP8/7hCG9O4Td3Hci4S6Q/8fXdpGKt+YCa+0Ca21rYB7wnH/ZbdbaddZaH/AkMK2WY30TyK75mjNnTgPFFxEXXp73CTHRkdw3uZfrKEErMjKCB2f0peDEORasyXYdR0QaWSDLWz7Qodr7jsDhi2+MMa2MMZOrrf8b0M8Yk2SM+Va15R6gvJbjPw2k13zNmjWrgeKLSGPbvu8E63Ye4a4bepDcItZ1nKA2uFc7BvRoy+sfWorPl7mOIyKNKJDlbQlwgzGmrTEmHrgDWFhtvQd4xRjTxf/+bmAVUAx81xgz3L/868DbNQ9urT1lrc2p+dIpU5HQ5PP5eGneTtq2jOPmcd1cxwl6Ho+HB2/uS3FJOX9futd1HBFpRAErb9bafOBR4CNgC/CqtXa9MWa+MWaItfYkMBuYZ4zZCvQEvmetraSqyD1njNkFDAa+G6icIhIc1u88wr6Dp7hvsiE2OtJ1nJCQnpLE9YM6M291NkVnL7iOIyKNxNMEbzVvct+QSFPn9fr45lPLuVBWyXPfnUBkpC7Ar6/Dx4v56pPLmDEmg4duucZ1HBG5fJc9kaV+QoqIc2t3FJB9+AxfmGRU3C5TStsExg/uzII12RSe0eibSDjQT0kRccrr9fHqot10apvAdQM7uY4Tkr4wyVDh9TF3ma59EwkHKm8i4tSa7YfJPXKWeydr1O1KdWjdnIlDu7AwM4cTp0pcxxGRANNPShFxptLr49VFltT2LRgzQKNuV+PuiT3xen38feke11FEJMBU3kTEmVVb8jl49Cz33WiI1MPnr0r7VvFMGt6VxevyOFZ03nUcEQkglTcRcaKy0stri3eT1jGRUdemuI7TJNx1Qw8Azfsm0sSpvImIEys255N//Bz3TjZEaNStQbRrGc+NI7ry4bpcjhZq9E2kqVJ5E5FGV1np5fUPLRkpSYy4pqPrOE3KXTf0ICLCw5tLdO2bSFOl8iYijW7NtgIKTpzjnkk9NerWwFonxTFpWBeWbcjj5GndeSrSFKm8iUij8vmq5iPr1DZBo24Bctv13fH64J0V+11HEZEAUHkTkUa1yR7jwOHT3Dmhu0bdAqRD6+aMG9CJhZk5nD1f5jqOiDQwlTcRaVRzl+2lTVIzrhuU6jpKk3bHhB5cKKvkg9XZrqOISANTeRORRrM7p5Ad+09y6/XdiY7Sj59ASuuYyNA+7Xnv4wNcKK1wHUdEGpB+eopIo5m7bC8t4qO5cXhX11HCwl0TenL2fBmL1+e6jiIiDUjlTUQaRe6RM6zbeYQZYzJoFhvlOk5Y6J3eir4ZrXl7+X4qKr2u44hIA1F5E5FG8dayvTSLiWT6mAzXUcLKnRN6cOJUCSs2HXIdRUQaiMqbiATcscLzrNicz40j0khsHuM6TlgZ3KsdaR0TeeujvXi9PtdxRKQBqLyJSMC9vWIfER649bpurqOEHY/Hw50TenDwaDHrPzniOo6INACVNxEJqNPFpSxel8f4wam0SY5zHScsjemfQofW8cxdpgfWizQFKm8iElALM3MoK6/UqJtDkZER3DquGza3iN05ha7jiMhVUnkTkYApr6iaJHZQr3Z06ZDoOk5YmzC0C83jonnnYz0ySyTUqbyJSMB8vDmforOl3DpOo26uxcVGMWVEVzK3HeZo4XnXcUTkKqi8iUhA+Hw+3lmxn64dWjCgZ1vXcQS4aUwGHo+H91cecB1FRK6CypuIBMS2fSfIKTjDLeO64fHoAfTBoE1yHGP6d2LxulzOXyh3HUdErpDKm4gExDsr9pOcEMt1gzq7jiLV3HJdBiWlFSxel+c6iohcIZU3EWlwh46dZcOuo0wblUZMdKTrOFJNj9SW9M1ozfsr91OpR2aJhCSVNxFpcO99fIDoqAimjkp3HUVqccu4bhwrKiFzR4HrKCJyBVTeRKRBnTlXxtINB7l+UGeSW8S6jiO1GNa3Ax1ax/PuCk0bIhKKogJ5cGPMfcAPgBjgKWvtszXW3wY8DkQCWcBsa22ZMaYL8ArQDrDATGttcSCzikjDuDgp7y2alDdoRUZ4uHlsN/70znZ25xTSK62V60gichkCNvJmjOkEPAGMAfoDs40xfaqtbw48A0yy1vYFmgEP+Ff/AfiDtbYXsAH470DlFJGGU17h5YPVBxjYsy1dNSlvUJs4rAvNm0Vp0l6REBTI06YTgWXW2kJr7TlgLnDnxZX+ZWnW2qP+ItcOKDLGRAPj/NsDvAzcFcCcItJAVm/Np/BMqUbdQkBcbBSTR6SRub2A40UlruOIyGUI5GnTFKD61bAFwLDqG1hry40xU6k6RZoPLAbaAGestRXV9vvMXAPGmGQguebyrKwsEhP1G7+IC/NWZdOpbXMG9mznOorUw/TR6by7Yh8LMrO5f1qfuncQkaAQyJG32mbl/Mx96dbaBdba1sA84Ln67gd8E8iu+ZozZ84VBxaRK7cnrwibV8T00RlERGhS3lDQvlU8Q/t0YNHaXMrKK13HEZF6CmR5ywc6VHvfETh88Y0xppUxZnK19X8D+gHHgURjTGRt+1XzNJBe8zVr1qwG+wZEpP4+WJ1NXGwkNwxNdR1FLsOMMRmcOVfGyi35rqOISD0F8rTpEuAxY0xb4BxwBzC72noP8IoxZoi1Ng+4G1jlP5W6ErgHeBW4H1hQ8+DW2lPAqQDmF5F6OnW2lI8353PjiK7EN4t2HUcuQ78ebUhtn8C8VQeYMCRVjzITCQEBG3mz1uYDjwIfAVuAV621640x8/2F7SRVZW6eMWYr0BP4nn/3r1F1d+onwFiqphsRkSC1aF0OFZVepo/WpLyhxuPxMH10BvsOncbmFrmOIyL14PH5fK4zNLQm9w2JBLOKSi8PPfEhqe1b8ON/GeU6jlyBktIKHvjRIob27sB3vjjYdRyRcHPZw916woKIXJW1Owo4efoCM8ZkuI4iVyguNoqJQ7uwels+RWcuuI4jInVQeRORqzJvVTbtW8UzuHd711HkKkwfnU5FpY+FmTmuo4hIHVTeROSKZR8+zc4DJ5k+Op1ITQ8S0lLaJjC4VzsWZOZQXlHb7EwiEixU3kTkis1blU1MdCSThnVxHUUawE1jMig6W0rm9tpmZxKRYKHyJiJX5Oz5MpZvOsT4wZ1JiI9xHUcawCDTjo5tmjNvVbbrKCJyCSpvInJFlqzPo6y8UtODNCERER6mj05nV04h+w9pGk2RYKXyJiKXzev1sWBNDn0zWpOekuQ6jjSgG4Z2ISY6kgWZOa6jiMjnUHkTkcu2Zc9xCk6eY+rINNdRpIElxEVz3cBOLN90iHMl5a7jiEgtVN5E5LLNX5NNckIso/p1dB1FAmDa6HRKyypZtuGg6ygiUguVNxG5LMeKzpP1yREmDe9CdFSk6zgSAN07J2O6tGT+mmya4FN4REKeypuIXJZFa3PxAVNGpLmOIgE0dVQah44Vs33/CddRRKQGlTcRqbfyCi+L1+UytHcH2rWKdx1HAmjMgE60iI9m/uoc11FEpAaVNxGpt7XbCzh1tpRpo9NcR5EAi42OZOKwrv5n15a4jiMi1ai8iUi9zc/MpkPreAb2bOc6ijSCKSO7Uun1sXhdnusoIlKNypuI1EvukTPs2H+SqSPTiNBzTMNCSpsEBpl2LMzMoaJSzzsVCRYqbyJSLwvW5BAdFcENQ/Uc03AybVQahWcusH7nEddRRMRP5U1E6lRSWsGyDQcZ0z+FpIRY13GkEQ3p04E2yXEsWJPjOoqI+Km8iUidlm86RElpBdNG6Tmm4SYywsOUkV3Zsvc4h46ddR1HRFB5E5E6+Hw+FqzJJiMlCdO1pes44sDkYV2JjPCwaG2u6ygigsqbiNRhT14R2YfPMGVkVzwe3agQjlomNmPEtR1ZmpVHWXml6zgiYU/lTUQuaWFmLnGxkVw3qLPrKOLQ1BFpnD1fzupth11HEQl7Km8i8rmKz5fx8ZZ8rhuUSnyzaNdxxKFru7chpU1z3bggEgRU3kTkcy3beJCy8kqmjOjqOoo4FhHhYcrINHblFJJTcMZ1HJGwpvImIrXy+XwszMzBdGlJt87JruNIEJgwJJXoqAgWZua4jiIS1lTeRKRWOw+c5ODRYqaM1KibVElKiGV0/xQ+2niQC6UVruOIhC2VNxGp1cLMXJo3i2LMgE6uo0gQmToyjfMXKvh4S77rKCJhS+VNRD7jdHEpq7cdZsLQLjSLiXIdR4JI77RWdO3QggWZOa6jiIQtlTcR+YylWXlUVHp1o4J8hsdTdePCvoOn2HuwyHUckbCk8iYin+L1+liYmUvfjNZ06ZDoOo4EofGDU4mNiWRhpp64IOJCQM+HGGPuA34AxABPWWufrbH+FuBxwANkA1+21hYZY+4HfgEc9W/6gbX20UBmFZEqW/cep+DkOe6b0st1FAlSzeOiGTegEys2H+LBGX1pHqc5AEUaU8BG3owxnYAngDFAf2C2MaZPtfWJwHPAdGttf2Ab8Jh/9VDg29baAf6XiptII1mQmUOL+BhG9+voOooEsamj0igtq2T5xoOuo4iEnUCeNp0ILLPWFlprzwFzgTurrY8GvmatvXjL0jagi//rocD9xpitxphXjDF6GrZIIyg8c4F1O48wcVgXoqMiXceRINYjtSXdOiexcG0uPp/PdRyRsBLI06YpQEG19wXAsItvrLUngXcAjDFxwPeB31fb9ufAeuCnwDPAzOoHN8YkA5+ZOTQrK4vERF2nI3IlPlyfi9fr040KUi9TRqTx7Nyt2NwieqW1ch1HJGwEcuTNU8syb80FxpgkYD6w1Vo7B8Bae5u1dp211gc8CUyr5VjfpOo6uU+95syZ00DxRcJLpdfH4rW59OvehpS2Ca7jSAgYN7ATcbGRmjZEpJEFsrzlAx2qve8IHK6+gTGmI7AS2Ao85F+WZIz5VrXNPEB5Lcd/Gkiv+Zo1a1ZD5RcJK5vtMY4VlTB1VJrrKBIi4ptFc92gVFZtyaf4fJnrOCJhI5CnTZcAjxlj2gLngDuA2RdXGmMigXnAm9ban1Tbrxj4rjFmjbV2HfB14O2aB7fWngJOBTC/SFhZmJlDckIsw/vqRgWpvykjurIwM4dlGw9y89huruOIhIWAlTdrbb4x5lHgI6qmCnnBWrveGDMf+CGQCgwEIo0xF29k2GCtfcgYczfwnP9auD3A/YHKKSJw4lQJWZ8c4fbxPYiO0vSPUn/dOifTIzWZhZm5zBiTgcdT2xUzItKQPE3wLqEm9w2JBNpri3bz6mLL8/81kQ6tm7uOIyHmw3W5/O7NLfz84TH0zWjtOo5IqLns33j0K7ZImKus9LJ4XS4De7ZVcZMrMnZAJ+KbRbEwM8d1FJGwoPImEuY27j7GidMXmDIyzXUUCVHNYqMYPziV1dsOc+acblwQCTSVN5EwtyAzh1aJsQzr26HObUU+z5SRaZRXeFm2Ic91FJEmT+VNJIwdKzzPxt1HmTSsK1GR+nEgVy6tYyK9urZkYaaeuCASaPppLRLGFq/LBWDycD1RQa7elJFp5B8vZsf+k66jiDRpKm8iYaqi0suH63MZ3Ks97VrFu44jTcCYAZ1oHhetGxdEAqxe5c0Y0ybQQUSkca3feYTCM6VM1Y0K0kBioyO5YUgqa7Yf5tTZUtdxRJqs+o687TTG/M0YMyagaUSk0SzMzKFNUjMG92rnOoo0IVNGplFR6WNplm5cEAmU+pa3NKoed/UrY8x2Y8zXjDEtAhdLRAKp4MQ5Nu85zuQRaUTqRgVpQKntW9A3ozUL1+bg9erGBZFAqNdPbWttibX2z9baEcAjwHeAw8aYZ40x+rVdJMQsWptDRISHycO7uI4iTdCUkWkcOXmerXuPu44i0iTV+1duY8wUY8xbwBvAO8Ao4CDwXoCyiUgAlFd4WZKVx7A+7WmdFOc6jjRBo/t1JLF5DAsyc1xHEWmS6vVgemNMHnAC+APwRWttiX/VdmPM7ECFE5GGt3Z7AaeLy/REBQmY6KhIbhjahXc/3s/J0yX6JUGkgdV35O2L1tpB1toXLhY3Y0wfAGttRsDSiUiDW5CZQ7tW8QzsqSseJHCmjOiK1+tjyXrduCDS0C458maMaeX/8vfGmOv555Pvo4F3gR6BiyaCW1WFAAAgAElEQVQiDe3g0bNs33+C+6f1JiLCU/cOIlcopW0C/Xu0YdG6XO68oSeR+vsm0mDqGnl7jarTpdcCJ/1fn6DqWrdNgY0mIg1t0dpcIiM8TBymGxUk8KaOTOd4UQmbdh91HUWkSbnkyJu19kYAY8xL1toHGyeSiARCaXklS7PyGHFtR1q2aOY6joSB4dd0ILlFLAsycxjap4PrOCJNRl2nTXtZa3cDzxhjBtVcb63V6JtIiFi99TDFJeV6ooI0mqjICCYN68Jby/ZyrOg87VrqMWwiDaGu06a/9v/5Vi2vuQHMJSINbGFmDiltmtOvu552J43nxhFp+IDF63JdRxFpMuo6bTrd/2d648QRkUDIPnyaXTmFPDijLx6PLhyXxtO+VTyDTDs+XJfLFyYZovRED5GrVtdp099dar219hsNG0dEAmFBZg7RURHcMFQ3KkjjmzYqnR+/tI51O48wul+K6zgiIa+uSXpPNkoKEQmY8xfKWb7xIGMHdCKxeYzrOBKGBvduT9uWcSxYk63yJtIA6jpt+nhjBRGRwFix6RAlpZVMHZXmOoqEqcgIDzeO6MorC3aTf7yYTm0TXEcSCWmXvPjAGLPK/+dZY8yZmq/GiSgiV8rn8zF/TQ4ZKUmYLi1dx5EwNnlYVyIjPCxYk+M6ikjIq+vK0bv8f15D1US9NV8iEsR25xSRU3CGqaPSdKOCONUysRkjr+3I0qw8SssrXccRCWmXLG/W2gL/n7lAL+AR4F+BLv5lIhLE5mdmExcbxXWDOruOIsLUUWkUl5SzcnO+6ygiIa1e92wbY/4LeAo4D1QALxpjHg5kMBG5OqeLS1m99TDjB3cmLraue5NEAu/abm3o3C6BhZk5rqOIhLT6TrhzHzDcWvtDa+1/A8OBrwUulohcraVZBymv8DJtlKZplODg8XiYOjINm1fE/kOnXMcRCVn1LW8lQPHFN9baIuBCQBKJyFXzen0szMyhT3orunZMdB1H5P9MGNqFmOhIFmTmuI4iErLqmqT3dv+XFnjHGPMCUAncD2yo6+DGmPuAHwAxwFPW2mdrrL8FeBzwANnAl621RcaYLsArQDv/Z8+01hYjIvWyZe9xCk6e474pvVxHEfmUhLhorhvYieWbDvHlm/rSPC7adSSRkFPXyNsj/lcnIBH4NvAfQHugx6V2NMZ0Ap4AxgD9gdnGmD7V1icCzwHTrbX9gW3AY/7VfwD+YK3tRVVJ/O/L+q5EwtyCNdkkNo9hdL+OrqOIfMbUUWmUllXy0caDrqOIhKS6JukdfxXHnggss9YWAhhj5gJ3Aj/yr48GvmatvXjb0TZgpjEmGhgH3Opf/jKwAvjeVWQRCRvHi0pYv/MIt13fneioSNdxRD6jR2pLuqcmM39NNtNHp2saG5HLVK9b0IwxPYCvAwlUneKMBLpba0dfYrcUoKDa+wJg2MU31tqTwDv+48cB3wd+D7QBzlhrK6rt95l5DowxyUByzeVZWVkkJuoaHwlfC9fm4AOmjExzHUXkc00flc5v39jM9v0n6Ne9res4IiGlvjcsvErVdWujgBygD7C9jn1q+1XKW3OBMSYJmA9stdbOqe9+wDepuk7uU685c+bUEUuk6SqvqGTx2lyG9u5Ah9bNXccR+VxjB3aiRXw0H6zOdh1FJOTUt7y1sNZ+FVgELAAmAYPr2Ccf6FDtfUfgcPUNjDEdgZXAVuAh/+LjQKIxJvLz9vN7Gkiv+Zo1a1Y9vyWRpmf1tgJOFZcyfbSmB5HgFhsdyaRhXVm74wgnTpW4jiMSUuo7c2eh/899wDXW2qxq5erzLAEeM8a0Bc4BdwCzL6707z8PeNNa+5OLy6215caYlcA9VI343U9VYfwUa+0pQBMFiVQzf3U2Hds0Z0BPnYaS4Dd1VBpvr9jHwrU5fHFKb9dxREJGfUfe9hpjngZWA48YYx4BYi+1g/9GhEeBj4AtwKvW2vXGmPnGmCHAzcBA4E5jzBb/6wX/7l+j6u7UT4CxVE03IiKXsP/QKXblFDJtVDoREboAXIJfh9bNGdyrPYvW5lJeUdvVMSJSG4/P56tzI2NMPDDVWvuWMeZfgRuBX1lrVwc64BWo+xsSaYJ+98ZmVmzOZ84PJ5MQH+M6jki9bNx9lMeeX8t3Zg7WM3glXF32b9v1Gnmz1p4HlhtjbuKfk+kGY3ETCUvF58tYsTmf6wd1VnGTkDKwZzs6tmmuGxdELkN9H0w/naonHXyXqlOYu4wx4wIZTETqb0lWHmXllbpRQUJORISHaaPS2JVTSPbh067jiISE+l7z9mPgOmvtOGvtWGA68JvAxRKR+vJ6fcxfnUPvtFZkdEpyHUfksk30P+9Uo28i9VPf8uaz1u68+MZau+ky9hWRANq85xgFJ89p1E1CVkJ8DNcP6szyTYcoLil3HUck6NX1YPpW/i+zjDHfAf5I1YS5DwDLAhtNROrjg9XZJLeIZVS/FNdRRK7Y9NHpLF6Xy9KsPG4Z1811HJGgVtc8byeounvz4p0QT1Zb5wO+E4hQIlI/R06eY8Ouo9x9Q0+iozQYLqEro1MSvdNa8cHqbGaMydB0NyKXUNeD6fWvgUgQm7cqmwiPh6mj0lxHEblqM8Zk8OQrG9i4+yhD+3SoeweRMFXfB9NHUDXKNhWIBhYDP6328HgRaWQlpRV8uD6X0f1SaJ0U5zqOyFUb2a8jrZOa8f7KAypvIpdQ35G1nwETgN9SdZfpKOBXgQolInVblpXH+QsVzBiX4TqKSIOIioxg2qh0Nu85zsGjZ13HEQla9S1vU4AZ1tp3rLX/AG7xLxMRB7xeH++vyqZHajKmS0vXcUQazI0juhIdFcH7qw64jiIStOpb3iKstf93/7a1thTQ/dwijmzec4z848XcPDYDj0cXdkvTkZQQy/WDOrNsw0GKz5e5jiMSlOp1zRuwxRjzFPCM//3DwLbARBKRury/8gAtW8Qyun8n11FEGtyMsRl8uD6PD9fncdv13V3HEQk69R15exhoCawBMoG2wCOBCiUin+/QsbNs3H2MqaPSNT2INEnpKUlc060181ZnU+n1uY4jEnTqO/L2n9baBwIZRETq54NV2URFRjBlZFfXUUQCZsaYDH42J4v1O48w8tqOruOIBJX6/tp+U0BTiEi9nCspZ+mGPMYN7ETLFs1cxxEJmOF9O9CuZRzvr9SNCyI11Xfk7YAxZjGwCii+uNBaq4fTizSiJVl5lJRWMmOMpgeRpi0yMoLpo9P587xPyD58mvSUJNeRRIJGfUfeCoF8YDAwBrjG/xKRRlLp9TFv1QF6p7Wie2qy6zgiATd5eFdiYyI1+iZSQ33L2y+oKmvTqZrjrRvwWIAyiUgtsj45wpGT55kxVqNuEh4S4mMYPziV5ZsOcbq41HUckaBR3/L2Z+B5IM7/mgu8GKhQIvJZ76zYT7uWcYzSxdsSRm4em0F5hZf5q7NdRxEJGvUtb/HW2j9Za8uttWXW2t8D7QMZTET+aU9eETsPnGTG2G5ERmp6EAkfqe1bMLRPez5Yk01peaXrOCJBob7/Chwwxoy6+MYYcw2gX4NEGsm7K/YT3yyKycO7uI4i0uhuu647p4vLWL7xoOsoIkGhvnebdgJWGGO2AhXAQOCIMWYbgLW2X4DyiYS9Y0XnWbXtMDePzSC+WbTrOCKN7ppurcnolMQ7K/YzaVhXIiL0SDgJb/Utb/8R0BQi8rku3mmnGxUkXHk8Hm67rhu/fnUTm+wxhvTWVTsS3upV3qy1KwIdREQ+61xJOYvW5jKmfwrtWsa7jiPizJgBnZjzwSe8vXyfypuEPV35LBLEPlyfS0lpBbde1811FBGnoiIjmDE2g237TnAg/7TrOCJOqbyJBKnKSi/vrTxA34zW9Eht6TqOiHOTR6QRFxvJ2yv2uY4i4pTKm0iQWr3tMMeLSrhNo24iACTERTNpWFdWbs7nxKkS13FEnFF5EwlCPp+Pt1fsp1Pb5gzt08F1HJGgMWNsBj5f1aPiRMJVfe82vSLGmPuAHwAxwFPW2mc/Z7s5wEfW2pf97++n6pFcR/2bfGCtfTSQWUWCyc4DJ9l38BRfu6OfpkUQqaZD6+aM7JfCwswc7p7YU9PnSFgKWHkzxnQCnqDqYfalwBpjzEfW2k+qbZMC/C9wA/BRtd2HAt+21r4WqHwiwWzusr0kJcQwfkiq6ygiQef267uzeuthFmbmcvv47q7jiDS6QJ42nQgss9YWWmvPUfU81DtrbDMTeBd4s8byocD9xpitxphXjDG6WlvCRvbh02zcfYwZYzNoFhPQwXGRkNSzS0v6dW/Dux/vo7xCj8yS8BPI8pYCFFR7XwB0rr6BtfaX1toXatm3AHgMGAAcBJ6puYExJtkYk1bzdebMmQb7BkRcmLtsL3GxkUwfle46ikjQunNCDwrPlLJswyHXUUQaXSDLW20X6njrs6O19jZr7TprrQ94EphWy2bfpOr5qp96zZkz5wrjirh35OQ5Vm3JZ8rIdBLiY1zHEQlaA3q2pVvnJP7x0V4qvT7XcUQaVSDLWz5Q/Ta5jsDhunYyxiQZY75VbZEHKK9l06eB9JqvWbNmXXFgEdf+sXwfERER3DJOj8ISuRSPx8NdE3py+MQ51m4vqHsHkSYkkBfULAEeM8a0Bc4BdwCz67FfMfBdY8waa+064OvA2zU3staeAk41YF4Rp4rOXmDJ+jxuGJpK66Q413FEgt6IazuS0qY5c5ftYVS/jng8ujNbwkPARt6stfnAo1TdRboFeNVau94YM98YM+QS+1UCdwPPGWN2UXW36ncDlVMkWLy/8gAVlV5uv153z4nUR2SEh9vH92DfodNs3XvcdRyRRuPx+ZrctQJN7huSpu9cSTkP/mQxA007vn//UNdxREJGeUUlDz3xIZ3bteCJr452HUfkSlz2kLGesCASBBZk5nD+QgV3ju/hOopISImOiuSWcd3Ztu8Ee/KKXMcRaRQqbyKOlZVX8u7H+xnQsy3dU5NdxxEJOVNGdqV5XDRzl+11HUWkUai8iTi2JCuPU2dLuesGjbqJXIn4ZtHcNDqdtTsKOHj0rOs4IgGn8ibiUHmFl7nL9mK6tuTabm1cxxEJWTPGZhAbHckbH+5xHUUk4FTeRBxampXH8aIS7p1sNM2ByFVISohl2qh0Vm45xKFjGn2Tpk3lTcSR8govf1+6h55dkhlk2rmOIxLybru+O9HRkbyxRKNv0rSpvIk4smzDQY4VlXDv5F4adRNpAMktYpk6Mo2PNx0i/3ix6zgiAaPyJuJARaWXN5fuoXtqMoN7adRNpKHcPr47UVGRvKnRN2nCVN5EHPhow0GOFZ7XtW4iDaxli2ZMHZnG8k2HOHxCo2/SNKm8iTSy/xt165zE0N7tXccRaXLuGN+dqAiPRt+kyVJ5E2lkKzYd4sjJ83xhkkbdRAKhZWIzpoxM46ONhzhy8pzrOCINTuVNpBFVVnp5Y8keMjolMaxvB9dxRJqs28d3J1Kjb9JEqbyJNKIVm/MpOHFOo24iAdY6KY4bR3Rl2YaDGn2TJkflTaSRlFd4eW3xbjJSkhiuUTeRgLtzQg8iIjy8tti6jiLSoFTeRBrJh+tzOXLyPF+a1puICI26iQRa66Q4po9OZ/nGg+QdOeM6jkiDUXkTaQQXyip440NLn/RWmtdNpBHdOaEHsTFRvLJwt+soIg1G5U2kEXywKpvCM6XcP62PrnUTaURJCbHcdn13MrcXsCevyHUckQah8iYSYMUl5cxdtpfBvdrRN6O16zgiYeeWcRkkNo/hr/N3uY4i0iBU3kQC7O3l+yguKedLU3u7jiISluKbRXPXDT3Zsvc4W/cedx1H5KqpvIkEUNHZC7z38X7GDuhEt87JruOIhK1po9JokxzHX+Z/gs/ncx1H5KqovIkE0N+X7qWswssXp/RyHUUkrMVER3LvZMOevFOs23nEdRyRq6LyJhIgxwrPs2BNDpOGdSGlbYLrOCJh74YhqXRq25y/LthFpVejbxK6VN5EAuRvi3bj8cAXJhnXUUQEiIyMYOaU3uQdOcvyjQddxxG5YipvIgGw79ApPtp4kBljMmiTHOc6joj4je6XQo/UZP66YBcXSitcxxG5IipvIg3M5/Px4ns7aBEfw90Te7qOIyLVRER4+MrN13Dy9AXeXrHfdRyRK6LyJtLA1u44wo79J5k5pRfN46JdxxGRGvpmtGZ0vxTe+mgvJ0+XuI4jctlU3kQaUHmFlz/P20lq+xbcOLyr6zgi8jkeuKkPlZU+/rpAE/dK6FF5E2lAH6zOpuDEOb5yc18iI/W/l0iw6tC6OTePzWDZhoPsO3TKdRyRyxLQf12MMfcZYz4xxuwzxjx8ie3mGGMeqPa+izHmY2PMbmPMu8YYzbMgQe/MuTJe/9AyqFc7Bvdq7zqOiNThrok9aREfw0vv7dTEvRJSAlbejDGdgCeAMUB/YLYxpk+NbVKMMe8Dd9XY/Q/AH6y1vYANwH8HKqdIQ3lt8W5KLpTz4Iy+rqOISD0kxEVz34292L7/BGt3aOJeCR2BHHmbCCyz1hZaa88Bc4E7a2wzE3gXePPiAmNMNDDOvz3Ay3y23IkElYNHzzJ/TQ43jkija4dE13FEpJ6mjOhKavsE/jxvJ+UVXtdxROolKoDHTgEKqr0vAIZV38Ba+0sAY8yYaovbAGestRXV9utc8+DGmGTgMw+LzMrKIjFR/3hK43rp/Z00i4nkvhv1GCyRUBIZGcGDM67h8RfW8t7H+7ljQg/XkUTqFMiRN08ty+rza0199/smkF3zNWfOnHoHFGkI63YUsGHXUb4wyZDcItZ1HBG5TIN7taNPRmteW2w1dYiEhECWt3ygQ7X3HYHD9djvOJBojImsY7+ngfSar1mzZl1xYJHLdaGsgj+9s50uHVowY2yG6zgicgU8Hg9339CDSq+XP/5ju+s4InUK5GnTJcBjxpi2wDngDmB2XTtZa8uNMSuBe4BXgfuBBbVsdwrQ/d3i1JtL9nCsqISfPzyGKE0NIhKy2raMY+KINBauzmaTPcYg0851JJHPFbB/bay1+cCjwEfAFuBVa+16Y8x8Y8yQOnb/GlV3p34CjAV+EKicIlfq4NGzvL18HxOGpNI3o7XrOCJylaaPS6dNchzPvbWV8opK13FEPpenCc5t0+S+IQk+Pp+P//7fNew7eIrnvn8DLVs0cx1JRK5C3tEzRMZGYbMLeeqVjdw72egGJGkstV3rf0k6zyNyBVZuyWfr3hN8aVofFTeRJmRg7/YMMG2Zu2wvRwvPu44jUiuVN5HLdP5COS++t4PunZOYMjLNdRwRaWD3TOkNwB/mbnGcRKR2Km8il+lvi3ZTdLaUr97Rn8iIyx7tFpEgVlJaQWWll2ljM9hkj5O5vT6TJIg0LpU3kctgcwuZt/IAN45Io2eXlq7jiEgDulBawfHC87RtFc8t13enQ+t4nntrG+cvlLuOJvIpKm8i9VReUclv39hCq8RmPDC9T907iEjI8Pp8nCgqoW2reOJio4iKiuChO/pxqriUP72tud8kuKi8idTT6x/u4eDRszx81wCax0W7jiMiDaiiwkublnHExf5z+tOeXVsxcXhXlm44yCZ7zGE6kU9TeROph32HTjF32V4mDEllSO/2ruOISAOLioqgWexn562/Z0ov2raM43dvbKaktKKWPUUan8qbSB3KK7z89vXNJDWP4aFbrnEdR0QCIMJT+81HMdGRPHR7PwpPX+DF93Y0ciqR2qm8idRh7rK95BSc4Wt39qdFfIzrOCLSyHpntOb6oaksWpvLtn0nXMcRUXkTuZScgjO8ucQybmAnRlzT0XUcEXHkvmm9aZXUjN++vokLZTp9Km6pvIl8jopKL799YzPN46KZfeu1ruOIiEOxMVE8dHs/jhWV8PK8na7jSJhTeRP5HK8u2s2+g6f46h39SUqIdR1HRBy7pnsbxg3uzAerc9i4+6jrOBLGVN5EarF93wnmLtvLpGFdGN0vxXUcEQkSX7qpL+1bx/ObVzdxurjUdRwJUypvIjWcPV/Gr1/dSEqb5jpdKiKfEhsTycP3DOTchXJ+/beN+Hw+15EkDKm8iVTj8/n4/ZtbOF1cyne+OKTWeZ9EJLyldUrirkmGzXuO897KA67jSBhSeROpZtHaXDK3F3D/tD5075zsOo6IBKmpY9Lpld6Kl+ftJOfwaddxJMyovIn4HTx6luff3cHAnm25ZVw313FEJIhdKKvk1vHdaRYbxc//soHS8krXkSSMqLyJAGXllfzylQ3ExUbyrXsHERFR+2zrIiIlpRUcLzxPeudkZt/Rj/zjxTyvh9dLI1J5k7Dn8/n44z+2kX34DP92z0BaJjZzHUlEgtTF4ta2VTxxsVEM6NWeSSO6smhdLkuz8lzHkzCh8iZhb+HaXD5cn8c9k3oytE8H13FEJEjVLG4X3TutN91Tk3l27lb2HTzlMKGEC5U3CWu7cwr509vbGNyrHfdO7uU6jogEqc8rbgBRkRH82xcHE98siideXs/Z82WOUkq4UHmTsFV05gI/m5NFm+Q4vjNzMJG6zk1EanGp4nZRUkIs37hvMEVnL/Czl9dT6dX8bxI4Km8Slioqvfzirxs4d6Gc/3pgGAnxMa4jiUgQqk9xu6hH15bMnNab7ftPMucDPf9UAkflTcLSi+/tYOeBkzxy1wDSU5JcxxGRIHQ5xe2iiSPSGD2wE28v38+qrfkBTijhSuVNws6itbnMW5XNLeO6cd2gzq7jiEgQupLidtGXb7mGLh1b8PRrm3UDgwSEypuElY27j/KHt7YyyLTjgZv6uI4jIkHoaoobQEx0JN/+0lDiYqN4/IW1HC8qCUBKCWcqbxI29h86xS/+kkVah0S+d/8QoiL1119EPu1qi9tFrZKa8e+zhnKhrIL//t81nCspb8CUEu70r5eEhWNF5/nRi2tpHhfDDx8aTnyzaNeRRCTIXGig4nZR15REvn7vQApOnuNHL66lvMLbAClFwOPzBe52ZmPMfcAPgBjgKWvtszXWDwCeB5KAj4F/tdZWGGPuB34BHPVv+oG19tF6fqzuz5ZPKS4p53vPrOTkqRJ+8fWxdO2Y6DqSiASZnCOnOXrqAqkdExukuFW3fEMeL729g7EDOvEfXxyMx6NpieRTLvsvRMBG3owxnYAngDFAf2C2MabmRUavAI9Ya3tSFf7/+ZcPBb5trR3gf9W3uIl8SnmFl5+9vJ7Dx4v5zweGqbiJSK0qKry0aRnX4MUNYPi1KVw3pDMrt+Tzl/m7Gvz4En4Cedp0IrDMWltorT0HzAXuvLjSGNMViLPWrvUvehm4y//1UOB+Y8xWY8wrxpiWAcwpTVRlpZdf/W0D2/ad4Bv3DKR/j7auI4lIkIqKiqBZAIrbxWvo7p3am1EDUpi7bC//+Ghvg3+OhJeG/5v6TylAQbX3BcCwOtZ3rvb1z4H1wE+BZ4CZ1Q9ujEkGkmt+aFZWFomJGl0Jd5VeH795dRNrthXw0C3XMH5wqutIIhLEIgJwKrPmzQ8P3d6PcyXl/HneJ0RFRXDz2G4N/pkSHgI58lbb/wne+qy31t5mrV1nrfUBTwLTatn2m0B2zdecOXOuKrSEvkqvj9++vomPt+TzwPQ+3DJOPyBFpHHVdtdqVGQE/3bfYK7p3obn39nBgjXZjlNKqApkecsHOlR73xE4XNd6Y0ySMeZb1ZZ7gNrusX4aSK/5mjVrVgNEl1Dl9fp49u9b+GjjIWZO6cUdE3q4jiQiYeaSD7GPiuBbXxpM74zWPPfWNj5cn+sopYSygN1t6r9hYRVVp0rPAWuA2dba9dW22QH8i7V2tTHmeWAP8BvgEHCrtXadMeaHQCdr7b/U86N1t2mY8vl8PPePbSxYk8M9E3vyxam9XUcSkRCRd/QMkbFRVz2NUH3niSsrr+TJP69nb14R37p3kC7tCG/Bc7eptTYfeBT4CNgCvGqtXW+MmW+MGeLfbCbwlDFmF9Ac+J21thK4G3jOv3ww8N1A5ZSmodLr47m3qorbHeO7M3NKL9eRRCTMXM4EvzHRkfzHA0Pp1jmZp1/bxJKsvEZKKU1BQOd5c6TJfUNyaeUVlfzm1U2s2nqYO8Z3Z9b0PppHSUQuy9WOvF3pkxlKSiv41cvr2Zt3ii/P6Mvt13e/os+XkHbZ/2CpvElIO3+hnJ+9nMWWvcf58k19uH28rnETkct3NeXtah+pVVZeye//f3t3Hh1XeZ9x/KtlpNG+WbYk2/Lu19gYL9jGxOwmScMWwFASSHBoMSEhPs1JaEoLJKWnTWlPErdpgCRAC4QtLSVJWQwn2MTYOA62wTt+vcmyLVlIsrXNaJvRTP+YK2esyEgyI81c6fmcoyPde9/73p9mZPnRfe+97wvvs93WceNlU/nKNfoDdIRReEPhbcRo8nXw0BObOFjVxMqb53LlovJ4lyQiLnW24S1Wc6GGQmEef3kH735QxdIF41l5yzxSkhXgRogBv9GD+Zw3kUFT29DKd3/2e+oaWvm75Qu54NzSeJckIiNMrIIbQHJyEnctO4/crDRWb6igubWT+25fSJonJUbVynCiM2/iOnsqTvDPT28mEOjiwb9czKzJRfEuSURcbqBn3mIZ3Hp67Z2D/PJNy5SxeXz3zsUU5npj2r8kHA2bovA2rL25qZKfvryd4oJMHrhjEeUlmk1DRD65gYS3wQxu3f2v3VTJr9buJ9Pr4f47FjFjYmHMjyMJQ+ENhbdhKdgV4onf7OK1dyuYN72Y73x5AdmZafEuS0SGif6Gt6EIbt39157ws+oXW2n2d/C1ZXP4zAUTYn48SQgKbyi8DTtNvg7+5Zkt7DxYzw2XTWX5VeeQkjKYk4OIyEjTn/A2lMGtu/8Wfyf//txW9lU2cPWSSaz4/Ln6/Tf8KLyh8Das7DxYz4+e20qTv5OVfz5XTyEXkUHRV3iLR4ZWe+gAABHjSURBVHDrFuwK8eyru1n73lFMeQHfuX0BowsyY16DxI3CGwpvw0KwK8Tzb+7lpbX7KS3K4q+/tICp4/PjXZaIDFMfF97iGdyird96jGde2U1ychL33DSHS+ePi3ktEhcKbyi8uV51vY8fPreVfUca+fSiclZcP3tQfmGKiHQ7U3hLlODWrabex6MvbuPw8WYunT+Oe26ao9+P7qfwhsKba4XDYdZsPsrPf72D5ORkVt48lyVzyuJdloiMAL2Ft0QLbt2CXSFe+q1l9foKigsyuPdLCzhHd6O6mcIbCm+uVF3v49GXtrN9fz2zJhfx7VvPp7ggI95licgI0TO8JWpwi/bhoRM89t/baGrp4DOLJ/AX184667lZJa4U3lB4c5VAMMTLv9vPL3+7D09qMsuvnsmfLZ5IsqaFEZEhFB3e3BDcTvXVHuCFN/aybvNR8nLS+eoNs7loztgYVSpDROENhTfX2FNxgkde2s6RmhaWzCljxefPpShPZ9tEZOh1h7ekpCTXBLdo+ysbePJXO6mu8zHfFPONm+dp9MI9FN5QeEt4x+v9PPP6HjZsr6a4IIO7bzyPRTNL4l2WiIxgRz5qJgD4WgOuC27dfK2dvLxmH+u2HAPgmosmccuVhqwMDaUmOIU3FN4SVpOvg1++tY/VGytISUnmhkuncuPlU3WnlIjE3eGaJj5qbGd8aa4rg1t0/77WTl5cvZfNu2vIzvBwy5XTufqiyXhS9XDfBKXwhsJbwmltD/Dqhgr+9+39tHcE+fQFE7j1szM02bKIJIwDxxpI8qRQOAiXbsTrGrpDRxt5bvWH7K9soLggg9s/dw4XzxtHiq4pTjQKbyi8JYwmXwevbDjEqxsq8LcFuGBWCcuvnsn4MTnxLk1E5DSHa5rweD0xv1sz3jc/hMNhtu2t5cU39nK83s+YwkxuumIaSxeW60xc4lB4Q+Et7uob2/jVugO8uamSjs4uFp9bws1LpzO9vCDepYmI9Kq/E9MPRLyDW7RQKMwfdh7nld8d4Fitj4KcdK6/dApXfWoSXl26Em8Kbyi8xUU4HGb3oROs3niYjTurCYXhsvnjWHb5VMpLcuNdnojIx4p1eEuk4BYtHA6zY18dv377AAePNpLlTeXyBeO59qLJlBVnx7xO6ReFNxTehpSvLcDbW46y+veHOfpRC1kZHpYuHM91F09hTKEmThYRd4hleEvU4NaTrTjJ6xsOsX1fHaFQmFmTC7lmyWQWzy4lNUVDqkNI4Q2Ft0EX7Arxga1l3ftVbNp9nI7OLqaX5/O5Cydy0dyxeNN0Cl5E3CVW4c0twS1aY3M7a947wrotR2ls6SAvK40lc8pYurCcaePzSUrSDQ6DTOENhbdBEQqF2VNxgnUfVPHu9ipaWgPkZHpYMmcsn108ganj8uNdoojIWYtFeHNjcIvmbwuw/v1jbLO12IqTdIXCjCnM5OK5Y7liwXjdbDZ4FN5QeIuZ1vYAH+yrY/OeGrZ+WEujr4P0tBQWzyrlkvljmTd9tO5WEpFh4ZOGN7cHt579+9sC/GFHNRu3V7O/soEwUFKUycJzxrD43FJmTi7S0GrsKLyh8HbWukJhKqqb2Hmgnvf31rLrUD3BrjDZGR7OnzGGRbPGsGhmie5MEpFh55OEt+EW3HpqaG5n045qPthby/7KBrpCYTLSU5kzbRTnzxjD3OnFjCnM1PDq2VN4Q+Gt3wLBEJXHm9l16AS7Dtaz69AJ/G0BAMaNzmbhzBIWzRzDORMLSdFfWCIyjJ1teIt3sBrq/ts6guzYV8v7ez5i54F6fK2R/zMKc73MmlzEnGnFzJ5SROmoLIW5/lN4Q+GtV6FQmJoTfvYfbWTfkQb2HWngYFUTgWAIgNJRWcyeMorZU0cxe0qRJogXkRHlbMJbogWroe4/HA5TVetj14F69hysZ/+RBvxtQQAyvalMGZvH9PICzplUxLTx+RTkpCvQ9U7hjREe3sLhMCea2qmq81FZ08zh6mYqa5qprGmho7MLgDRPClPHRf5RTS8v4JyJhYzKV1gTkZFroOEt0YNVPPoPhcJU1/mwh09iD5/k4NFG6hvb6I4Z2Rkexo/JZkJpHpPLcpk0No+xxdnkZKbF5PgupvDGCAhvHYEu6hpaqW1oo66hlY9OtlJd76e6zkd1vf9USAPIzUpjYmkuE8tymViSy9Tx+ZSPydEwqIhIlIGENzcGq3j1n5wEFVVNVFQ1ceR4M8c+8nG8zkenM+oDkJXhoaQok7JR2ZSOyqKkKJOSwizGFGZSlOcdCf9fJVZ4M8bcCjwApAGrrLWP9Ng+F3gcyAPeAe621gaNMeXAs8BowAK3WWt9/TysK8NbOBzG3xagyd9Jk6+DJl/k88nmdk42t3OiqZ2GlnZONLbT6Os4bd/k5CRKCjMpK86mrDiLscXZlI3KYkJJLvk6TS0i0qf+hrfhFKzi1X8oFKauoZWqWh9VtT5q6n3U1PupPdlKk6/ztLbJSUnk56RTkJNOQa6Xwlwvo/K8FOZlUJCTTn5OOrlZaeRnp7v5ZrrECW/GmLHABuB8oAPYCHzRWrsnqs0u4E5r7SZjzJPAFmvtY8aYV4FnrbUvGmMeBLKttX/Tz0MPWXgLh8MEu0J0BEJ0Brro6OyivTNIe4fz2VlubQ/S2h6grSPytb89gK81gK+1k5bWAP62AC2tnXSFei89PzudwlwvhXmRH9zRBRkUF2QyuiCD0YWZFOWOiL9MREQGTX/CWyIEn+Hef2egixONkVGl2pOt1J1so76pjaaWDhpb2mnydZ42uhTNk5pMltdDVoaHrIxUsjPSyM70kOn1kOVNJdOb6nztwetNJSMthYz0VLxpqaSnpUQ+PCmkeVKG+jEoAw5vgxlTrwTWWmtPAhhjXgJuAv7BWZ4AZFhrNzntnwIeMsY8AVwCXB+1fh1wWngzxuQDf/Jk2M2bN5ObO7hzaT740418WHmSzkAXA8m+KclJp354cjI9ZGekUZSfQXaGh5zMNPKy08jNSic/O53c7DTystIpyE3Xs3RERIZAOBz5o7w30cHEm5ZyxnZnS/1HeFKTKRmVRcmorDP2n5yURGNLO83+TlqcUapmfyfN/k78bYFTHzUn/bRWB2nvDNLR0TWgMzvJSUl4UpO57pLJ3H7VzLP6XgbTYIa3MuB41PJxYFEf28cBo4Bma22wx/qevgl8r+fKp59+mpUrV36Csvv2qTllTCzLPZXQIx/JeNNSSE9LJcNJ8V4n1Wd6PWR6U/GkJmsIU0QkAXlSU2hobqe5+U+3BYMh2juDeNNSaWpqpynGx1b/A+u/W47XQ47XQ1mPoNebcDhMZyBEhzMq1hmIfHQEumjr6MLfHoAwhEIhAkHnoyuUsLMHDWZ46y2lhPqxva/9uv0bkbNyp1m+fHlFf4r7JD534cTBPoSIiAyh0qIsSov6DgEiiWAww1sVcHHUcilQ3WN7SS/b64BcY0yKtbarl/0AsNY2Ao2xLlpEREQkkQ3mxVRvAUuNMcXGmExgGfBG90ZrbSXQboxZ4qy6HVhtrQ0A64FbotcPYp0iIiIirjFo4c1aWwXcD7wNbAOet9a+Z4x53RizwGl2G7DKGPMhkAX82Fn/deAuY8weImfvHhisOkVERETcRA/pFREREYmfAd/JqGdQiIiIiLiIwpuIiIiIiyi8iYiIiLiIwpuIiIiIiyi8iYiIiLiIwpuIiIiIiyi8iYiIiLiIwpuIiIiIiwzm3KZDzhiTumbNmniXISIiItIvS5cunQgcs9YG+7vPsApvwLilS5fGuwYRERGR/qoAJgGH+7vDcAtvx4i8ACIisTQOWE9kruVjca5FYkvvrSSCAf3sDce5TUVEYsoYMxHnr2Nr7eH4ViOxpPdW3Eg3LIiIiIi4iMKbiIiIiIsovImIiIi4iMKbiEjfGoGHnM8yvOi9FdfRDQsiIiIiLqIzbyIiIiIuovAmIiIi4iLD7SG9IiIDZoy5FXgASANWWWsf6bF9LvA4kAe8A9xtrQ0aY8qBZ4HRgAVus9b6hrR46ZMxJhfYCFzT81luxhgD/AwoAGqAL1hrG6K2zwM2WWvTh65ikY+nM28iMqIZY8YC/wRcBMwB7jLGzOzR7FlgpbV2OpAErHDWPwo8aq2dAWwBHhyaqqW/jDEXABuA6b1sSwL+D3jYWjsH+AC4L2p7JvATIqFeJGEovInISHclsNZae9Ja6wdeAm7q3miMmQBkWGs3OaueAm42xniAS5z2p9YPVdHSbyuAe4DqXrbNB/zW2jec5e8D0WddfwisGtzyRAZO4U1ERroy4HjU8nEi8132tX0U0GytDZ5hP0kA1to7rbXrz7B5KlBjjHnaGLMDeAzwARhjrgMyrbUvnWFfkbhReBORkS6pl3Whfmzvaz9JfKnAZcB/WGvPAw4BPzLGlBC5BnJlHGsTOSOFNxEZ6aqAkqjlUk4fYjvT9jog1xiTcob9JPHVAPuttVuc5ReARcA1QBHwjjFmG4AxZpsxJic+ZYqcTuFNREa6t4Clxphi5wL1ZUD3NVBYayuBdmPMEmfV7cBqa20AWA/cEr1+6MqWGNgIFBtj5jjL1wJbrbVPWGunWGvnWmvnAjhft8StUpEoCm8iMqJZa6uA+4G3gW3A89ba94wxrxtjFjjNbgNWGWM+BLKAHzvrv07k7tQ9wMVEhtokwXW/t9baNuAG4HFjzG7gCuDb8a1OpG+aHktERETERXTmTURERMRFFN5EREREXEThTURERMRFFN5EREREXEThTURERMRFFN5EJKEZY54yxtw7BMfJNca8a4zZbYxZFsN+84wxawfaznkobH6s2ovI8JEa7wJERBLEXGCMtXZqjPstIPLU/gG16344bAzbi8gwofAmIkPGGPM88L619gfO8t3A5cAXgVXAYiCHyLyhd1pr3+2xfxgottbW91w2xlxL5CG5aUArcK+19ve91HA98D0gBWgGvgU0Af8JjHWmQ7rQeYArzvRXW6O6KARGA0XWWn9UvyXAM0QmrAd4zVr7IPBfQIbT7/nAcuCrTp2FwMPW2sd6aRcEion8nu5Pv8Go1+JvneMEgf3AV6y1TWd4W0TEZTRsKiJD6XEioaLbHc66C4AyIqFpJvA0cF9/OzXGTAO+D1xlrZ0H3AW8bIzJ6tFuBvBTYJkzEfl3gd8Ax4E7gYPONEht3ftYa7uipkm6AmghEob8nG4FcMhaO5/IbAvTjDF5zvfY5uyf4bTrrvMW4F+jXos251hdA+k3ur0x5jrgK85reS5QAXyjv6+liCQ+nXkTkaH0O8DrTDvVSuTM0hprbdgY8wDwVWPMFOAyIiGpvz5NZGL4NcaY7nUhYCqwPardFc7xDgFYa9caY2qJnLn62OlmjDEZwCvAL6y1L/bS5A3gdWNMOZH5Uu+z1jYZYwq6G1hrfcaYa4CrncA5F8ju43vrs98ergT+x1rb4BzzW330LyIuozNvIjJkrLVh4Ekik7jfATzpBLergdecZr8hcnYs6QzdJAEYY9Ki1qUQCWVzo86SLQZ29di3t995yYDn4+p2hk5fAHZZax8+w/e2GZgE/ByYCLxnjPlUj37GEZk/dQKwgX7MhdqffnsIEhVEjTH5xpiJfR1HRNxD4U1EhtpTwHXAzUSu24LImbNXnGu/NgPXEwlkPdUB3ZPF3xi1fi3wGWdYFGPMVcAOwNtj/+52k512VwDjgT/0UfMjRALePWdqYIx5GHjQWvtr4K+A3cB0ImEqxRiT5NReB/yjtfZN4Bpn35Qe7Qbab7S3gBuNMbnO8t8Tua5PRIYJTUwvIkPOGPMykGqtvc5ZngE8T+RSji7gHWAZUE7kRoJd1tofGGO+QOTatkbgt8CXgfOci/RvBu4ncmYuCHzTWru+l2N3t0slMnT7bWvtemPMZcBPnOvEottfCGwkEgZD/PGM4J3W2i1R7UqIXKs3FuggMlz7NaeWd4AiYCnwGDAD8APvATcQuZbtQFS7JUA9f7xhoa9+T7V3Xot7+eO1hbuBFdbagQxDi0gCU3gTERERcRENm4qIiIi4iMKbiIiIiIsovImIiIi4iMKbiIiIiIsovImIiIi4iMKbiIiIiIsovImIiIi4iMKbiIiIiIv8P5c3lCY78b7YAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots(1,1,figsize=(10,6))\n", "\n", "\n", "x=np.linspace(-3.5,3.5,100)\n", "y=stats.norm.pdf(x,0,1.0)\n", "\n", "ax.plot(x,y)\n", "ax.set_ylabel(\"probability\")\n", "ax.set_xlabel(\"value of z statistic\")\n", "ax.set_title(\"One Sided Test\")\n", "ax.fill_between(x,y,where=x>1.64,interpolate=True,facecolor='lightblue',alpha=0.2,hatch='/',edgecolor='b')\n", "ax.set_xticks([0, 1.64])\n", "#ax.set_yticklabels([])\n", "\n", "\n", "sns.despine(top=True, right=True, left=True)\n", "\n", "#plt.show()\n", "glue(\"ztest_oneside_fig\",fig,display=False)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "```{glue:figure} ztest_oneside_fig\n", ":figwidth: 650px\n", ":name: \"fig:ztest_oneside_hypo\"\n", "\n", "Rejection regions for the one-sided $z$-test\n", "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### A worked example using Python\n", "\n", "Now, as I mentioned earlier, the $z$-test is almost never used in practice. There is a function called [ztest](https://www.statsmodels.org/stable/generated/statsmodels.stats.weightstats.ztest.html) in statsmodels. However, the test is so incredibly simple that it's really easy to do one manually. Let's go back to the data from Dr Zeppo's class. Having loaded the `grades` data, the first thing I need to do is calculate the sample mean:" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "72.3\n" ] } ], "source": [ "zeppo_df=pd.read_csv('http://gureckislab.org/courses/fall19/labincp/data/zeppo.csv',index_col=0)\n", "zeppo_df.columns=[\"grades\"]\n", "sample_mean = zeppo_df.grades.mean()\n", "print(sample_mean)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Then, I create variables corresponding to known population standard deviation ($\\sigma = 9.5$), and the value of the population mean that the null hypothesis specifies ($\\mu_0 = 67.5$):" ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [], "source": [ "mu_null = 67.5\n", "sd_true = 9.5 " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's also create a variable for the sample size. We could count up the number of observations ourselves, and type `N <- 20` at the command prompt, but counting is tedious and repetitive. Let's get R to do the tedious repetitive bit by using the `length()` function, which tells us how many elements there are in a vector:" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "20\n" ] } ], "source": [ "N = len( zeppo_df.grades )\n", "print( N )" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Next, let's calculate the (true) standard error of the mean:" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "2.1242645786248002\n" ] } ], "source": [ "sem_true = sd_true / np.sqrt(N)\n", "print(sem_true)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "And finally, we calculate our $z$-score:" ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "2.259605535157681\n" ] } ], "source": [ "z_score = (sample_mean - mu_null) / sem_true\n", "print( z_score )" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "At this point, we would traditionally look up the value 2.26 in our table of critical values. Our original hypothesis was two-sided (we didn't really have any theory about whether psych students would be better or worse at statistics than other students) so our hypothesis test is two-sided (or two-tailed) also. Looking at the little table that I showed earlier, we can see that 2.26 is bigger than the critical value of 1.96 that would be required to be significant at $\\alpha = .05$, but smaller than the value of 2.58 that would be required to be significant at a level of $\\alpha = .01$. Therefore, we can conclude that we have a significant effect, which we might write up by saying something like this:\n", "\n", "> With a mean grade of 73.2 in the sample of psychology students, and assuming a true population standard deviation of 9.5, we can conclude that the psychology students have significantly different statistics scores to the class average ($z = 2.26$, $N=20$, $p<.05$).\n", " \n", "However, what if want an exact $p$-value? Well, back in the day, the tables of critical values were huge, and so you could look up your actual $z$-value, and find the smallest value of $\\alpha$ for which your data would be significant (which, as discussed earlier, is the very definition of a $p$-value). However, looking things up in books is tedious, and typing things into computers is awesome. So let's do it using python instead. Now, notice that the $\\alpha$ level of a $z$-test (or any other test, for that matter) defines the total area \"under the curve\" for the critical region, right? That is, if we set $\\alpha = .05$ for a two-sided test, then the critical region is set up such that the area under the curve for the critical region is $.05$. And, for the $z$-test, the critical value of 1.96 is chosen that way because the area in the lower tail (i.e., below $-1.96$) is exactly $.025$ and the area under the upper tail (i.e., above $1.96$) is exactly $.025$. So, since our observed $z$-statistic is $2.26$, why not calculate the area under the curve below $-2.26$ or above $2.26$? In R we can calculate this using the `stats.norm.cdf()` function (stands for cumulative density function). For the upper tail:" ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.011922871882469877\n" ] } ], "source": [ "upper_area = 1.0-stats.norm.cdf(z_score)\n", "print(upper_area)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Notice that I subtract this cdf from 1.0. This allows me to compute area under the curve from 2.26 *and upwards*. To get the area in the lower tail I just compute the CDF up to the negative of the zscore (the value it would take on the other side of the distribution. There is no need to subtract from 1.0 this time because the CDF calculates from the left up to the z-score you give it." ] }, { "cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.011922871882469896\n" ] } ], "source": [ "lower_area = stats.norm.cdf(-z_score)\n", "print(lower_area)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Thus we get our $p$-value:" ] }, { "cell_type": "code", "execution_count": 42, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.023845743764939774\n" ] } ], "source": [ "p_value = lower_area + upper_area\n", "print( p_value )" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Assumptions of the $z$-test\n", "\n", "As I've said before, all statistical tests make assumptions. Some tests make reasonable assumptions, while other tests do not. The test I've just described -- the one sample $z$-test -- makes three basic assumptions. These are:\n", "\n", "- *Normality*. As usually described, the $z$-test assumes that the true population distribution is normal.[^normality] is often pretty reasonable, and not only that, it's an assumption that we can check if we feel worried about it (see below). \n", "- *Independence*. The second assumption of the test is that the observations in your data set are not correlated with each other, or related to each other in some funny way. This isn't as easy to check statistically: it relies a bit on good experimental design. An obvious (and stupid) example of something that violates this assumption is a data set where you \"copy\" the same observation over and over again in your data file: so you end up with a massive \"sample size\", consisting of only one genuine observation. More realistically, you have to ask yourself if it's really plausible to imagine that each observation is a completely random sample from the population that you're interested in. In practice, this assumption is never met; but we try our best to design studies that minimize the problems of correlated data. \n", "- *Known standard deviation*. The third assumption of the $z$-test is that the true standard deviation of the population is known to the researcher. This is just stupid. In no real world data analysis problem do you know the standard deviation $\\sigma$ of some population, but are completely ignorant about the mean $\\mu$. In other words, this assumption is *always* wrong. \n", "\n", "In view of the stupidity of assuming that $\\sigma$ is known, let's see if we can live without it. This takes us out of the dreary domain of the $z$-test, and into the magical kingdom of the $t$-test, with unicorns and fairies and leprechauns, and um...\n", "\n", "[^normality]: Actually this is too strong. Strictly speaking the $z$ test only requires that the sampling distribution of the mean be normally distributed; if the population is normal then it necessarily follows that the sampling distribution of the mean is also normal. However, as we saw when talking about the central limit theorem, it's quite possible (even commonplace) for the sampling distribution to be normal even if the population distribution itself is non-normal. However, in light of the sheer ridiculousness of the assumption that the true standard deviation is known, there really isn't much point in going into details on this front!" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## The one-sample $t$-test\n", "\n", "After some thought, I decided that it might not be safe to assume that the psychology student grades necessarily have the same standard deviation as the other students in Dr Zeppo's class. After all, if I'm entertaining the hypothesis that they don't have the same mean, then why should I believe that they absolutely have the same standard deviation? In view of this, I should really stop assuming that I know the true value of $\\sigma$. This violates the assumptions of my $z$-test, so in one sense I'm back to square one. However, it's not like I'm completely bereft of options. After all, I've still got my raw data, and those raw data give me an *estimate* of the population standard deviation:" ] }, { "cell_type": "code", "execution_count": 52, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "9.520614752375915" ] }, "execution_count": 52, "metadata": {}, "output_type": "execute_result" } ], "source": [ "zeppo_df['grades'].std(ddof=1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In other words, while I can't say that I know that $\\sigma = 9.5$, I *can* say that $\\hat\\sigma = 9.52$. \n", "\n", "Okay, cool. The obvious thing that you might think to do is run a $z$-test, but using the estimated standard deviation of 9.52 instead of relying on my assumption that the true standard deviation is 9.5. So, we could just type this new number into python and out would come the answer. And you probably wouldn't be surprised to hear that this would still give us a significant result. This approach is close, but it's not *quite* correct. Because we are now relying on an *estimate* of the population standard deviation, we need to make some adjustment for the fact that we have some uncertainty about what the true population standard deviation actually is. Maybe our data are just a fluke ... maybe the true population standard deviation is 11, for instance. But if that were actually true, and we ran the $z$-test assuming $\\sigma=11$, then the result would end up being *non-significant*. That's a problem, and it's one we're going to have to address." ] }, { "cell_type": "code", "execution_count": 94, "metadata": { "tags": [ "hide_cell" ] }, "outputs": [ { "data": { "application/papermill.record/image/png": "iVBORw0KGgoAAAANSUhEUgAAAlkAAAENCAYAAAA8D3A7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl8XFd9///XaLTvi2XZ1r5Yx/uSxdn3fSFAC2UtW8tWCg3fQtsvvxZIKYUChfCFQAoUQiFAWiAB2gaSOAtZTOJ999FiyZKtxdptWbtmfn/MjCMrsjWyZ+bO8n4+Ho6l0cy9H03kjz7n3M89x+X1ehERERGR0EpyOgARERGReKQiS0RERCQMVGSJiIiIhIGKLBEREZEwUJElIiIiEgYqskRERETCQEWWnMEY02qMucQYc70xZt8cX5/z8TDEkWeMeXrG515jzKIQHfsfjTHvCsWxRCQ4xpiHjDGf8H/8aWPM6yN03kuNMQ/6P77EGPPzEB33s8aYb4biWPOcZ2b8Ic2/xpj/NcasCtXx5LWSnQ5A5CwKgE3hOLC19tPhOK6IBO1G4ECEzrUaKAOw1m4D3hSh84bK6fhDzVp7ZziOK69SkRWnjDHXA58HDgNrgDTgI9baZ4wxDwH7rLVf8T/3jM+DkG2M+RmwAkgH3g9sB44Bl1lrG/zHfRL4JvBGwAusBIqBJ4CPWWsnjTHXAF8GMoEJ4O+ttb8FfgBkGGN2ARf7z3ufMeZyoAj4srX2Af95/gz4C3wzs33AX1prDxljrga+Crj95/+CtfYXM79fY8x9/vgm/K99j7W2M8j3QURmMMYkAV8DLgdyABfw59baF2c85yPAJcCXjTHTwP8A/wJch+/f6k58+eGEMaYVeBlYB3zKf+yHgJuACuARa+3fnO28QBvwj0CeMeYHwA/x5aSrgHag3lrb5Y/rD8B9wOazxTPHt7zCGPMMsBToBt4K1AA/AyqttR5jTCbQii8PvwI8ClwD5AP/aq39tv/8HwA+Bkz7j/WXwOgc8b8m/1prnzfGpJ7jffww8CF8eW4M+KC19oD//X0TcAhfzl0OePDl8w9aaz1zfM+yALpcGN8uw/ePeCPw78BnQ3TcMuBr1toNwL8Bn7XWjuBLAH8OYIypBQzw3/7XrAduBlb5/3zQGFME/Bz4K2vtOuDdwI+NMdXAe4FRa+0Ga+20/xiHrbUX4yuK/tUYk2KMuc7/umv83+eXgF/6n38f8FX/a96Hb/R8mjGmHLgXuNRaewm+4u+yEL1HIonoMmAZcIW1dhW+nPB3M5/gHxxtAz5prX3U//Up4GJr7XqgA/jijJfss9au9D8XINtaew1wJfBRf76Y87zW2nbg08Dz1tr3zohhCF+x804AY8xKfIXS74KIZ6Ya4E+stSuAAV4tKPuA2/3PeSuw2Vp73P95JnApcD3wj8aYtcaYG4G/AW7wn/MnwGPA0Tnif03+9T8+Z9zGGDdwP3C7tfZS4DvA1bO+jzcCOf5jXjrje5MLpCIrvh2x1u7yf7wDKAzRcZuttS/7P94FLPZ//C3gXcaYFOADwPdmFEgPWWuHrbXjwH8At+FLjE2BY1lr9wMv4ks+c/nJjHOmAbnAXUAd8JJ/1utLQKExphD4T+ABY8zD+GbDPjXreMeA3cAOY8xXgF3W2scW/G6ICADW2i3A3+MbRH0F3yxJ9jwvuxt4PbDT/2/4DfgGYgHPz3r+r/znOgYcBwrP87zfxTdAA9+g7gf+mZv54pnpSWttj//j3byaCx/AN8MP8EHg2zNe84C11mutPQr8FrgVX0H2SOBY1tqHgFKgao5zni3/zhm3Pwf/F74c+U1gCN+ge6YXgNXGmGfxFWv3W2ubzvI9ywKoyIpvozM+9uKbQp/9MUDqAo87Oddx/ZcJ9+D7h/4O4Hsznjc14+MkfFPic/38JQEp5zqvtTaw4aYL37T4j/wzXhuAi/Bdihiw1v4bsBZ4El9Rt8cYkxc4mD+hXge8B9/I82vGmK+f6xsXkbMzxtyF7/If+IqhBzkz18zFjW82O/BveBNn9k0Nz3r+a/La+ZzXWvsCkGyM2QS8Hfh+kPHMNGcuBB4GrjbG3IBv5u33M54XbC50MXcuPNs5zxq3tfadwOuAJuBveXW2H//XW/ANVr+Ab/D6lDEm1nrXopKKrMTUg68QwX/H3jUhPPYD+HqsXrbWdsx4/C3GmDRjTDq+0eNvgD/4QjCb/LGsBq4FnsWXiNzGmPkS9BPA24wxS/2ffwhfTwXGmJeAjf5R4Qfw9UAUBF5ojFkP7AMOWmu/gK+nY/15ft8iArcAv/H3GW3FN5vinuN5U7xaQPwO+EtjTKq/t+q7+H7Zh+q8M8812/eAbwB7rLVtoYrH3z7xY3yF24OzvvwuAGNMBb5ZrMf953yLMabY/7X34hv4Nc0T/0xzxm2MWWSMaQf6rLX345vxOyPP+Xu2fgA8Ya39W/+x1izke5a5qchKTN8AlhpjLL4R17MhPPZ/45umn51YRvBN++/1//0Da20v8GbgG8aYvfguB77XPyPWie8S50F/79acrLW/w9fs+aQxZg++Eekf+We7/gZfz8NO4BngPmtt64zX7sZ3SXGbMWYbvr6tj1/g9y+SyB4ErvP/W9wCNAPV/l/6M/0G+Iox5t3A5/A1hu/Ed8ehC/jrEJ53C74G9UfneN0PgQ2cOeseinjAV7QsxtceMVO1MWY7vkuFH7M+T+Ib5D1tjNmPbyB6t3+2/VzxzzRn3P48+0/AZv95v4i/d3aG/8BXlB7w58JcQLP6IeDyer3zP0skSMaYK/GNoNYELuudx92LIiIxyz8D/7f47jD88IzHW4E3+ZeSkASgJRwkZIwxP8TXtP6uGX1TIiKJ5jC+tox7nA5EnKWZLBEREZEwUE+WiIiISBioyBIREREJA8d6sowxyfhWrj1qrZ2a7/kiItFC+UtEguFk43sZ0LJ582YHQxCRCJtv3bNYofwlkpgWlMN0uVBEREQkDFRkiYiIiISBiiwRERGRMFCRJSIiIhIGKrJEREREwkBFloiIiEgYqMgSERERCQMVWSIiIiJhoCJLREREJAxUZImIiMS46elpOjs7nQ5DZlGRJeftT//0T2lubgZgYGCAu+++25FjiIjEm4Xmxi9+8Ys89dRTF3wcCS0n9y6UGHfkyBGqq6sBsNZSX19/xtd/+9vf8vDDD5/x2Cc/+UnWrVsX9DFERBLRfLnxPe95D729vQB4vV6am5upq6tj6dKl3HzzzUEfR8JLRZacl2PHjlFSUkJSkm8y1FqLMeaM59x+++3cfvvt53WMkZER7rvvPlJSUti0aRP33HNPmL4TEZHoEkx+feihhwDYsWMHX/7yl9m9ezdpaWlBH0c5NjJUZMl5OXTo0Bn/6Pfv38+dd955xnPmm8k61zGeeOIJbrvtNm688UbuvfdeJQARSRjB5NfATFZnZyfZ2dn88R//MQD33nvv6Zks5VjnqciS83Lw4EHGx8cBaG1tZfPmzdx7771nPGe+maxzHaO7u/t0cnC73eH4FkREolIw+fXBBx/kfe97H5///OdZv379go+jHBsZESmyjDH5QP6sh8sicW4JD2stqamp3HPPPRhjqKur49FHH+UjH/lISI5RUlJCV1cXK1euxOPxhPE7ETk35S+JtGDz67333nvWAmu+4yjHRkakZrLuBT4ToXNJBFhr+eUvf0l2dnZYjnHrrbfyuc99jmeffZYbbrjhQkIVuVDKXxJRweTX9PR0Nm3adN7HUY6NjEgVWfcDD816rAx4PkLnlxAaHh7G5XJdUIE13zEyMzP5whe+cN7HFwkh5S+JmFDk12COoxwbGS6v1+vIiY0xVUDL5s2bKSvTzLtIgnA5HUAoKH+JJKwF5TAtRioiIiISBiqyRERERMJARZaIiIhIGKjIEhEREQkDFVkiIiIiYaAiS8LO4/EyNa3F7kQkNk1OKX/J+dG2OhI2E5PTPPlKG794ppGTpya4bPVSbrikjItXlDgdmojIvPYf7uNnT1p2NfSwsqqQazaUctOl5WSmpzgdmsQIFVkSFoMnx/nkN35PV98IqSf3UpCbznabxHM7j/LBN67l7qtrnA5RROSsvvWL3Tz+Uit52ancdkUlB1v6+c5je3lh9zH+6UNXkpIcHfv9/dd//RcAb37zmx2OROaiy4USctMeL1/+8Tb6h8b42/dcylTPDnoOv8T/+7ubuGhlCd99bC9bD3Q5HaaIyJyefPkIj7/Uyh1XVvGvf30D77h7Nf/00Wv48J9s4EBLP19/ZCdOLeQ92yOPPMIjjzzidBhyFiqyJOR++rtD7Gnq5X1vWMPq5cWn18dNdifx4T9ZT8XSXL70o220dp5wNlARkVkOHxviwV/uYd3yRbz1jpWkpr46Y3XF+mW86eZ6nttxjEeeanAwSokVKrIkpPY19/LIUw3cdGk5V2587XYjaanJfPxPLyE1xc13H9vrQIQiInObmvbwL/+xlZysVD705vW4kl67g8rrrq/l8nVLeeRJy/H+EQeilFiiIktC6qdPWApy03j7XavO+pyC3HTuvq6WPU297G3ujWB0IiJn9+z2djp6T/G+168hOyttzue4XC7eevsKXC4XP33SRjhCiTUqsiRkDrX2s6epl7uvqSEl5dxNoTduqqAgJ40fP34wanobRCRxTXu8/PzpRqqX5bKmvviczy3My+CGSyt4els7Hb3DEYpQYpGKLAmZR55qICczlWsvKZ/3uakpbl53fS0HWvrZ1dATgehERM7upT0dHOs5xeuvr8Pleu1lwtnuvq6WZLeLnz6h2Sw5OxVZEhKHjw2x7WA3d15VRVpqcCuDXHdJOUV56ZpyFxFHeb1e/mtzA6WLs9m4Mrh1/PJz0rjpskqe23GUzt5TYY5QYpWKLAmJR59rIiMtmRsuqwz6NSnJbm6+ooqDLf0c69GUu4g4Y2dDDy0dJ7jn2to5m93P5rYrqwHYvLUtXKFJjFORJRdsdHyKLXs7uXpDKZkZC1sJ+ar1y3C54GklKRFxyDPb2snOSGHT2qULel1hXjqraxfx9PZ2PB71lsprqciSC/aHfZ2MT0xzxfqFJSiA/Nx01tYV8/Q2JSkRibzR8Sm27Ovk8rVLcScv/Ffi1ReV0jMwyv7DfWGITmKdiiy5YM9uP8riggxqygvO6/VXX1RK79AYe5u0nIOIRNbLpweJy87r9RevXEJGWjJPvqLZeHktFVlyQQZOjrGr4ThXbVhG0gJ6GWa6aGUJmenJPKVLhiISYc/uOEpxfga1Fec3SExLdbNp7VJe2tvB6PhUiKOTWKciSy7I87uO4fHC5evObxQIvuUcLlu7lC17OxkZmwxhdCIiZzd4cpydDT0XNEgEuHpjKeMT02zZ2xHC6CQeqMiSC/Ls9qNUL8tl6eKcCzrOFeuXMT45zU6tmSUiEfL8rmN4PN4LGiQC1FcWUJSfzot7VGTJmVRkyXnrGRilsX3wvHsZZlpeUUBWRgov7+sKQWQiIvPbsreTiiU5LCu5sEGiy+Vig1nM7oZeJianQxSdxAMVWXLeth3qBmB9/eILPpbbncS6+mK2HepmWncZikiYnRqd5EBLHxetuPD8BbBxRQnjk9Ps0Q08MoOKLDlv2w92s7gggyXFWSE53sYVizl5aoKGIwMhOZ6IyNnsauhh2uNl3Tz7FAZrRXUhaaluXt7XGZLjSXxQkSXnZWJyml2NPWxcsTiofb6CsXZ5Me4kFy8fUJISkfDaerCL7IwUasryQ3K81BQ3a+oWsfVgtza9l9NUZMl52dfcx/jEdMhGgQBZGSnUVxXyyv7ukB1TRGQ2j8fL9oPHWV9fTJI7dL8GN65YTN/QGIePDYXsmBLbVGTJedl2qJvUFDcrqotCetyNKxbT3n2Srj5tuCoi4dF8bJDB4XHWm9ANEgE2mMW4XPDKAd3AIz4qsmTBvF4v2w50s6a2iJQUd0iPvdHfhLr1gGazRCQ8th3oxuWCNXWhLbJys9OoKctX/pLTkiNxEmNMPjD7wndZJM4todfRe4rOvlPccVVVyI9dUpTF4sJMdjX28LprakJ+fJGFUv6KP9sOdbO8vIDsrNSQH3vt8kX86pkmhkcnyc5ICfnxJbZEaibrXqBl1p/nI3RuCbGd9jgAq5eHdhQYsLK6kP3NfVrKQaKF8lccGR6ZoLF9kHX1i8Jy/FU1RXi9sL9ZSzlI5Iqs+4HqWX+uidC5JcT2NvdSXJBBcWFmWI6/sraIU2OTtKh5VKKD8lcc2Xe4D6+XkPeTBtSW55OSnMSuRhVZEqHLhdbaQWBw5mPGmEicWkLM4/Gyt6mPi1eGZgG/uazyJ789TT3UlYfm9mqR86X8FV/2NvWSmuKmpiwvLMdPSXZTX1nA3mZtESZqfJcFaus+ycmRibCNAgHyc9NZVpytkaCIhNze5l5MZQHJyaG9aWemVbVFHOk8ydDweNjOIbFBRZYsyJ4m3+isvqogrOdZWVPIgZY+pqY9YT2PiCSOE6cmaOk4wcrqwrCeZ6V/ELpXfVkJT0WWLMi+5j4WF2SwqCA8/VgBq2qKGJ+YprFtcP4ni4gEYf9hX9FjqsJbZFWX5pGelsyuBl0yTHQqsiRoHo+Xfc29rK4Jz105M62o8Y0EdzcpSYlIaOxt7vP3Y4W319PtTsJUFWgmS1RkSfCOdJ3g5MgkK2rCOwoEyMlMpWJprna0F5GQ2dvUy4rKAtzJ4f/Vt6qmiI6eU/QNjYb9XBK9VGRJ0Pb6C576ME+1B5iqAhqODKgvS0Qu2NDwOK2dJ1gZgUEivHpJ8sDhvoicT6KTiiwJ2r7DfZQUZlKUnxGR89VXFjI+OU1Lh9bLEpELc6DFV+yEux8roGJpLqkpbva39EfkfBKdVGRJULxeLwdb+jGV4b2rcKblFb5zHVCSEpELdKCln2R3ElWl4Vkfa7ZkdxK15fkcbFX+SmQqsiQoXX0jDA6PUxfBIqswL51F+RmnR6AiIufrUGs/tWV5YV0fa7blFQW0dp5gdHwqYueU6KIiS4ISGI1FegX25ZUFHGztx+vVPoYicn4mJqdpOjpEfQQHiQD1lQV4PF4ajgxE9LwSPVRkSVAOtfaTmZ5M6eKciJ53eUUBAyfGOT6gO3RE5Pw0Hx1iatpDXUVkB4l1Ffm4XLBfs/EJS0WWBOVgaz/LywtwJbkiet7AyFOXDEXkfAVm4mvLIzuTlZmeQtniHPVlJTAVWTKvkbFJjnSdYHll5DdrLivJISMtWc3vInLeDh3pZ0lRJrnZaRE/9/LKAuyRAaY9anlIRCqyZF72yABeb+T7sQCSklz+O3Q0kyUiC+f1ejnY2k99RWRnsQKWVxYwOj5FW9cJR84vzlKRJfM61NqPy0XYt6I4m/rKAtq6TnJqdNKR84tI7OruH2HwZGTvjJ4pUNxpUdLEpCJL5nWgtZ+KJbmkp6c4cv66iny8Xmhs1x06IrIwgVYDJ2biARYVZJCXncZB3WGYkFRkyTlNe7zYIwOOTbUDVJf6kuMhJSkRWaBDrf1kpEX+zugAl8tFTVkejW3KX4lIRZac07HjJxkdn6LWoVEgQFZGCkuLs7AqskRkgRraB6grz4/4ndEz1Zbn09F7iuGRCcdiEGeoyJJzavCPvqrLIrMVxdnUluXT2D6oRUlFJGjjk9O0dpygrtzh/OUfpDa0Dzoah0Seiiw5p4a2QTLTkykpynI0jpqyfIaGx+nRoqQiEqTDR4eY9nipKnVuJh6gujQPlwvsES1Fk2hUZMk5NbQPUFuWT5KDU+3w6khQSUpEgtXgv1mmJkKbQp9NZnoKSxdlq+UhAanIkrOKlql2gPIlOaQkJ3FIzaMiEqSGtgEW5aeTl5vudCjUluep5SEBqciSs4qWqXaAZHcSlctyT/eIiYjMp6HNNxMfDWrK8jlxaoLu/hGnQ5EIUpElZxUtU+0BtWX5pzd6FRE5l6Hhcbr6RqKmyArEoUuGiUVFlpxVQ9sARXnRMdUOvr6sySkPRzq1PYWInFuj/06+qigZJJb5Wx40G59YVGTJWTW2DTq2SvJcNBIUkWA1tg2Q5PLd2RcNkt1JVJXmYVVkJRQVWTKnoeFxOvtORc1UO/i2p8jOTDl9GVNE5Gxs2wBlJTmkpSU7HcppNaV5tHQMMa2Wh4ShIkvmFG1T7eDbnqK6NI+mo1rQT0TOzuv10tA2SE0U3LQzU3VpHhOTHtq6TzodikSIiiyZU9PRQVwuqFqW63QoZ6guzae9e5ixiSmnQxGRKHV8YJSTIxPURMHyMzMFds5o1MrvCSMi86jGmHxg9pCiLBLnlvPT1D7IsuJs0tNTnA7lDNWleXg8XlqOnWBldaHT4UgCUP6KPU2Bmfil0TVILCnMIiMtmYa2AW69rNLpcCQCgprJMsYsusDz3Au0zPrz/AUeU8KosX0wapZumCnQxNqoviwJkvJX4mlsHyDZ7aJsSY7ToZwhKclFlVoeEkqwlwv3G2MeNsZcfZ7nuR+onvXnmvM8loRZ39Ao/SfGouaunJkK89LJz0nTRquyEMpfCabp6CCVS3JJTnY7Hcpr1JTm0dp5gsmpaadDkQgI9nJhFfBW4CvGmCzg28CPrLVBde9ZaweBM34rGmMWEKZEUvPRISD6+rECqkvzTl8OEAlCFcpfCcPr9dLUPsgV65c5HcqcqkvzmJ720tp5guXlBU6HI2EW1EyWtXbUWvsDa+3lwEeBTwAdxpgHjDGLwxqhRFxj+yBJLiiPsn6GgOrSPDp6hxkZm3Q6FIkByl+JpbPvFKfGpqJyJh5mtDy0aaCYCIK+u9AYc7sx5hfAI8BjwJVAO/DrMMUmDmk6OuhbXyY1etaXmam6NA+v99UZN5H5KH8ljleb3qOzyNJ6f4klqN+ixpg2oBf4FvBOa+2o/0t7jTEfCFdwEnmBqfYNptjpUM4qMBJsaB9gbd2F9jRLvFP+SiyN7YOkJiexrCTb6VDmpPX+EkuwUxXvtNb+fuYDxphV1toD1tqaMMQlDukdHGNweDxqp9oBcrPTKMpP11ozEizlrwTSdHSQqmV5uN3RuwxkdWke//37w4xNTJEepVcMJDTO+X/XGBNYiOgbxpjrAZf/8xTgV8Dy8IUmTmg66pvCrloWvUUWqPld5qf8lXg8Hi/NRwe57qJyp0M5J633lzjmK/V/im+afS3Q5/+4F18vw47whiZOaGwfxJ0UfevLzFZdmkd3/wjDIxNOhyLRS/krwRzrGWZ0fDqqtgObS+BKQWBQK/HrnDNZ1trbAIwx37fWvi8yIYmTmtoHqViSQ0pK9K0vM1Ngpq356BDr66O3f0yco/yVeAJ9ThVRuvxMQEFuOrlZqWp5SADzXS5cYa09BHzTGHPR7K9bazUajCNer5emo0NcuqrE6VDmFRipNh4dUJElc1L+SjxNRwdJTXGzbFGW06Gck8vlW/m9+ZjukI5383Xc/StwF/CLOb7mBdQ0Gkd6/JuqRvtUO0BOZiqL8jNobFeSkrNS/kowzUeHqF6aS1IUN70HVJfm8evGHjW/x7n5Lhfe5f+7OjLhiJMCU+2VUboI6WxVpbk0H9N0u8xN+SuxTHu8HD4W/U3vAVXLfOv9tXacYEWVmt/j1XyXC//fub5urf1YaMMRJzUdjY2m94Dq0jy27e9meGSC7MxUp8ORKKP8lVg6Tje9x8YgsdofZ2P7gIqsODbfHGVfRKKQqBArTe8Ban6XeSh/JZBXm96jv90B1PyeKOa7XHhfpAIRZ8VS03uAmt/lXJS/EkusNL0HBFZ+V/N7fJvvcuEL1tqrjTEn8TWKnsFaGxvzsjKvWGp6D1Dzu5yL8ldiiaWm94Cq0jz2qPk9rs33f/XN/r/XhDsQcVasNb0HqPldzkH5K0F4YqzpPUDN7/HvnCW/tbbT//cRYAXwUeBDQIX/MYkTsdb0HlBdmkd3n1Z+l9dS/kocx2Ks6T0gsPJ7Y7tWfo9XQc2rGmM+BXwNGAGmgH83xnwknIFJZDUfHaK8JHaa3gNmNr+LzEX5K/41B5reY2wmviA3jbxsNb/Hs2AvAr8duMxaexLAGPNV4AXggXAFJpHja3of5OKVsdP0HqDmdwmC8lecazo65Gt6L852OpQFcblcVC1T83s8C7ZDcBQYDnxirR0AxsISkURcz8AoJ05NnJ66jiVqfpcgKH/FuaajgzHX9B5QVZpHe/dJxiamnA5FwmC+uwv/yP+hBR4zxnwPmAbeBWwLc2wSIbHa9B7guw1a0+1yJuWvxBCrTe8Ban6Pb/NdLvzorM//z4yPF4c4FnFIrDa9B1SV5rJ1f5dWfpfZlL8SQKw2vQfMbH5XkRV/5luM9IZIBSLOibWV3mfTyu8yF+WvxNAcYyu9z6bm9/gWVOO7MWY58JdANuAC3ECdtfaqMMYmERCLK73PpuZ3ORflr/jWGGMrvc+m5vf4FmyX4E+AVOBKoBVYBewNU0wSQcdjcKX32XIyU1lUoOZ3OSvlrzgWiyu9z6bm9/gV7E9ljrX2w8DvgMeBW4CLwxaVvMb4+Dh/9Vd/xdve9jbe9KY38dxzz53z8WCdbnpfFpv9DAHVy9T8Lmel/BUFwpHDpv1N79VlsTtIhDOb3yW+BFtk9fv/bgLWWGsH8U25S5AOHTrEO97xDu68805WrFiBMYavf/3rQb/+kUceYdGiRfz0pz/lgQce4B/+4R/O+XiwmgNN7yWx2fQeUFWaq5Xf5WyUv0IgGnNYR6DpPdYHiVr5PW4FuxhpozHmfuCH+FZLzgbSwhdWfBkfH+fee+/lS1/6EuvWreP+++9nfHycj33sY6ef89vf/paHH374jNd98pOfZN26dQC8/vWvx+32/V5wu91kZWWd8/FgNcZ403tAIEmp+V3moPx1gaI1hzXFeNN7gJrf41ewRdaHgTustTuNMd8BbgM+EL6w4stLL73E6tWrTycbYwzPP/88Lpfr9HNuv/12br/99rMeIy/Pl0R6enr44Ac/yH333XfOx4Ph9XppPjrIpauXLPh7ijaBOwwb2tX8Lq+h/HWBojWHNR0dJC2Gm94DAs3vTdoeLO4EVWRZa0eMMc8aY+4GWoD3+qfcJQiNjY3U19ef/vzAgQOsXr36jOfMNwoQ9GNyAAAgAElEQVQMePDBB3n/+9/Ppk2bgnr8XLr7Rzg5MhnTTe8B2ZmpFBdknB7ZigQof124aM1hTe2DVC2L7ab3gOrSPPY09jA2PkV6WrDzHxLtgl3C4S58U+0H8N0CXWeMeYu19vfhDC5e5Ofn84c//AGAlpYWnnjiCX72s5+d8Zz5RoEB69at48orrwz68XMJbKocqyu9z1ZdqpGgvJby14WLxhzma3of4vpLYnOl99mqS33N74c7hlhVXeR0OBIiwZbLnwOus9buBzDGXAR8B7gkmBcbY/KB/FkPlwUbZKy76667ePrpp7n77rspKCjgq1/9KgUFBed1rJ07d7J69erTU+zzPX4uXZuf4R3HXoTvbaXVNf/zz9dbp2FvGI8fUF2Wzyv7uhgaHicvWy03cpry1wWKxhxmf/Vb/ujw/7JsOJvWbeHf6SH/+hvIv+7asB0/0Ffa0DagIiuOBFtkeQMJCsBau8MYs5D52XuBzywosjiSlZXFgw8+GJJjffazn13Q4+fS3T/C0tRkXBEogCJhZvP7RSu0a4qcpvx1gaIxh3X3jwCQlhrbN+0E5OemU5Cbrub3ODPfBtGBjZS2GmM+ATwIeID3AE8v4Dz3Aw/NeqwMeH4Bx5AQ8ni8POddxlV3X8r196ye/wUX4LNvf0tYjx8QuI27oX1ARZYof8U5W7CczbVpPPj3t5KUFB8jRV/Lg4qseDLfTFYv4MXXxwDwpRlf8wKfCOYk/ibTM35yjDFBhijh0Nl3ipGxKapjdFPVuWSmp7BkUZZGghKg/BXHmtoHqS3Ni5sCC3xF1o6D3YyMTZKZnuJ0OBIC820QHfu3bMicGtt8i97Fw52FM1WX5tHQ2j//EyXuKX/Fr8kpD4c7hrj9yiqnQwmpmS0Pa+sWORyNhEKwdxcm4Rv13QGkAE8A/2yt1UZLMer0pqrF2U6HElLVpXls2d3BwIkxCnLTnQ5HooDyV/xp6zrB5JQn5ld6ny1QZNm2ARVZcSLYkd4XgBuBrwNfxbfR6lfCFZSEX2PbINVxsr7MTKe3p1Bfg7xK+SvOBFoCqkpn3/QZ23KyApvdK3/Fi2DvLrwduMRaOwlgjPkfYHfYopKwmp72TbXfdGl8rC8zU+XSXFwu323Qm1bF/kr2EhLKX3Gm6egg2ZkpLCrIcDqUkKsuzaNZg8S4Eew0RlIgQQFYa8eByXM8X6JY+/FhxiemT29FE0/S05JZVpytkaDMpPwVZxrbBqktzT9jW594UV2aR3f/CCdOabP7eBDsTNYuY8zXgG/6P/8IsCc8IUm4NbXHZ9N7QE1ZHrttD16vNy6TsCyY8lccGZ+c5kjXCe65rtbpUMKixp+Xm9oHtRRNHAh2JusjQAHwErAFKAY+Gq6gJLwa2gfJSEtmcVFsb6p6NrVl+Zw4NcHxgVGnQ5HooPwVR1o6hpj2eKmKo+VnZqouzcPlAtumu6TjQbAzWf/XWvuecAYikdPYNkBtWXytLzNTTZmvGdYe6aekMNPhaCQKKH/FkQb/8jPVcdb0HpCRnsKy4mzskQGnQ5EQCHYm6+6wRiERMz45TUvHCWrL4zNBAZQtySElOQnbpiQlgPJXXGk4MkhhXjr5cbxES01ZHo3tg3i9XqdDkQsU7EzWYWPME8ALwHDgQWvtV8MSlYRNyzHfVHtNWXz2YwEku5OoXJZLY5ua3wVQ/oorDW0DLI/jQSL4ZuOf33GM4wOjmo2PccEWWYGLwxcD08zaYkJiR2B2pyZOp9oDasvyeWZrG9PTHtxxthaYLJjyV5w4cWqCzr5T3BCHy8/MVOtveWhQy0PMC/a3z78Aa4C7gNcDtcBnwxSThFFD2wBFeenkxfFUO/hGghOTHo50nXQ6FHGe8lecaIjT7cBmC7Q8HFLLQ8wLtsj6AfBdIMP/5+fAv4crKAmfhrYB6uJ8qh04fTlUd+gIyl9xo6FtgCTXqzs7xCu1PMSPYC8XZlprvzPj828YY94fjoAkfIaGx+nqG+HGSyucDiXsFhdmkp2ZQkPbIHdc4XQ04jDlrzjR0DZAWUkOaWnB/uqKXWp5iA/B/p87bIy5MvCJMWYN0BKekCRcAqugV8dx03uAy+Wipiz/9OUFSWjKX3HA6/XS0DZIXVn8z8TDqy0Pbd1qeYhlwQ4HSoHnjDG7gSlgI9BljNkDYK1dF6b4JITsEd9UezxupzOXmrI8fvVMD6PjU2QkwMhXzkr5Kw509p3i5MgENQnQ7gCvtjwcOtJPdYLk7HgU7G+eT4Y1ComIhvYByhNkqh2grrwArxca2wdYV1fsdDjiHOWvONDg70+K936sgMWFmeRkpnLoyAB3XFHtdDhynoL6bWutfS7cgUh4eTxeGtsGuHT1EqdDiZjAgqsHWvpVZCUw5a/40NA2QFqKm9LF2U6HEhEul4u6inwOtermnVimbroEcaxnmJMjk9RVFDgdSsRkZfi2p1CSEol9B1v7qSvPJymBmsDrKvLp6PFdJpXYlDg/rQnOHvEVGvG8nc5c6irysW0D2p5CJIaNTUzRcmyI+soEy1/lvkGx9jGMXSqyEsTB1gGyM1MoKcpyOpSIWl5RwPDIJMd6hud/sohEpab2QaY9XmrLE2cmHnzN70lJLg609DkdipwnFVkJ4mBrP/UVBSQluZwOJaLqKnwjX10yFIldB/3/fhPlzsKAtNRkKpbkcEgzWTFLRVYCGB6ZoL37JMsrEitBASxdlE1mevLpJC0isedQ6wDLirPIzkx1OpSIqysvoLFtgGmPWh5ikYqsBBAYBSXaVDtAUpKL2vJ8jQRFYpTX6/XPxBc6HYoj6iryGZuYpq3rhNOhyHlQkZUADrX2k5TkSpj1ZWZbXlFAe/dJTo1OOh2KiCxQR6/v7rrlCdb0HrDcf0e4+rJik4qsBHCwtZ+qpbkJswjpbHUV+Xi9aIsdkRh0sCUx74wOWFSQQV52Kgdblb9ikYqsODc97aGhbYD6BFofa7basnxcLo0ERWLRoSP9ZGWksGRRYixCOptvUdIC3bwTo1RkxbnWzhOMTUyfvssuEWWkp1CxJJf9LUpSIrHG14+Vn3B3Rs9kqgrp7h+hb2jU6VBkgVRkxbn9/tmbRGx6n8lUFWKP9DM55XE6FBEJ0olTE7R1nTzdl5So6it93/++Zs3Gx5qINOkYY/KB2VMpZZE4d6Lbf7iP4oIMigoynA7FUaaqgCe2tNJ8bJAVlYl5l5KcH+Uv5wQu8ddXJfa/2cqluaSnutl3uI/rLtKPXiyJVCf0vcBnInQu8fN6vew/3MeG+sVOh+K4QJLe19ynIksWSvnLIfsP95GSnERNWWLeGR3gdidRV1GgvtIYFKnLhfcD1bP+XBOhcyeso8eHGRqewFQl9lQ7QF52GksWZbHvsJKULJjyl0P2He6jvqKA5GS306E4zlQV0tZ1UptFx5iIzGRZaweBwZmPGWMiceqEtt9fUCzXzA3gS1Lb9nfh8XgTuolWFkb5yxkjY5McPjrIG2+oczqUqGD8s/EHW/rZtHqJw9FIsNT4Hsf2H+4jPyeNxUWZTocSFUxVAadGJ2nrPul0KCIyj0OtA3i86scKqCnLI9mdxN7mXqdDkQVQkRWnvF4v+5p7WVldiMulWRt4dSS4T0lKJOrtO9yLO8mVcJtCn01qipuasrzTVygkNqjIilPd/SP0Do2xUqPA0xblZ1CYl66+LJEYsK+5j9qyfNJSE3OnirmYqkIOHxtibHzK6VAkSCqy4tTpfiwVWae5XC5WVBWyr7kPr1c72otEq/HJaRrbB1hRrZt2ZjLVhUx7vBzQ6u8xQ0VWnNrX3Ed2ZgpLixNzK4qzWVVbxNDwOG1d6ssSiVb2SD9T017qddPOGUxlAW63i10NPU6HIkFSkRWHvF4vuxp7WFO7SHfRzbKqZhEAuxqVpESi1a6GHpKSXGp6nyUtNZm68gL2KH/FDBVZcaij9xS9g6OsqS1yOpSos6ggg8WFmRoJikSx3Y091Ffkk56mfqzZVtUUcbhjSOtlxQgVWXEoUECsqFGRNZfVtUXsP9zH9LT2MRSJNsOjkzS1D7KmdpHToUSlVbVFeL26SzpWqMiKQ7sbe1hckEFxodbHmsuq2kWMjk/RdHRw/ieLSETtberF4/XN2Mhr+e64dGs2PkaoyIoz0x4vexp7WFu3SOtjncXKGl+fh/qyRKLP7sYe0tPcVGt9rDklJydhqgrZ3aiZrFigIivONB8d5NTYFKvrNAo8m9ysNCqW5ChJiUShXQ09rKouwu3Wr6ezWV1bxLGeYfqGRp0OReahn+I4E5hCNtUqss5lZW0Rh1r7GZ+cdjoUEfHrGRjlWM8wq3XTzjmt9F9K3a3Z+KinIivO7G7soWppLjlZaU6HEtXW1hUzOeVR86hIFAkUDerHOreKJbnkZKWy/dBxp0OReajIiiOj41McaOlnjS4VzmtFdSGpKUlsPdDtdCgi4rfTHic/O41lJTlOhxLVkpJcrKsvZoc9rt0ropyKrDiyq6GHqWkP6+oXOx1K1EtNcbOypojth1RkiUSD6WkP2+1xNprFumknCOvrixkemWRU+xhGNRVZcWTbwW4y05NZXqn9voKxvn4xXX0jdPQMOx2KSMI7dGSAU6OTrDdaHysYa5cX43LBiVNalDSaqciKE16vl20Hu1m3vFh35QRpfX0xAFsPajZLxGlbD3SR7HaxSouQBiUrI4XlFQUMj0w6HYqcg34bx4nDx4boPzHGBlPsdCgxo7gwk6XFWWxTkSXiuK0Hu1lZVUh6eorTocSMdfXFjI5PMTml3SuilYqsOLHtYDcuF6xZriJrIdbXL2Zfcx9j6msQcczx/hHauk6yYYX6SRdivb//dlj7GEYtFVlxYuvBburK8snN1tINC7HeFDM17dF6MyIOClyyX6tB4oJULM0hOTmJEyqyopaKrDgwNDxOQ9sAG4xGgQtlKgvJSEtmy74up0MRSVjbDnazpCiTkkVZTocSU1wuF9kZKQyPTDKhhZWjkoqsOLD1QBder+/6vCxMcnISG1cs5pX9nUxPq69BJNJGxibZ3djDRStKtHTDecjJSsXj8WrD6CilIisOvLC7g5LCTCqW5TodSky6ePUSTo5Msq+5z+lQRBLO1gPdTE55uGR1idOhxKTMjBSSkly8sLvD6VBkDiqyYtzwyAS7G3u4bM0SjQLP07rlxaSmuHlxj5KUSKS9uKeDgtw0asu1vt/5cLkgJzOVVw50MaXZ+KijIivGvby/i6lpL5esWuJ0KDErLdXN+vpi/rCvE49HW1SIRMro+BTbD3Zz2eqluJI0SDxfOVmpnBqdZG+T9mKNNiqyYtyLezpYlJ9BZVme06HEtItXlzBwchx7ZMDpUEQSxraD3UzoUuEFy8pIIS3VzUuajY86KrJi2KnRSXbaHi5fs1SXCi/QRrOYZHcSL+455nQoIgnjxd0d5Gensbyy0OlQYporCf9sfBfTmo2PKiqyYljgGvwlazQKvFAZ6SmsqVvEC7s7lKREImBsfIpth7rZtGaJLhWGwKVrljI4PM6+Zl0yjCYqsmLY73ceoygvnarSfKdDiQtXbSylb2iMfeprEAm7Vw50MT4xzSWr1U8aChtXLCYjLZnNW9udDkVmUJEVo/pPjLHjUDfXXlRGkkaBIbFxxWIy05PZvK3N6VBE4t7mre0U52dgqnSpMBRSU9xsWruUl/Z2aJuwKJIciZMYY/KB2dMtZZE4d7x6dns7Hi9cuWGZ06HEjdQUN5vWLOWlPR18eHyKjLSI/POQKKf8FXp9Q6PsajjOG2+o06XCELp6YynPbWtny75Obri43OlwhMjNZN0LtMz683yEzh13vF4vT21tx1QWULIo2+lw4spVG0sZn5hmy95Op0OR6KH8FWJPbwsMEkudDiWuLK8ooLggg81bNRsfLSJVZN0PVM/6c02Ezh13GtsHae8+ybUXaTAdavWV/iSlS4byKuWvEPJ6vWze2s6q6kKKi7RXYSglJbm4akMpe5p66RsadTocIUKXC621g8DgzMeMMZE4dVzavLWN1OQkLlmjhtFQc7lcXLWxlF8900R3/wglhZlOhyQOU/4KLds2wLGeYe6+dp3TocSlqzaW8tgzTTy1tY233KyfU6ep8T3GjI1P8dzOY2xas4SM9BSnw4lL1/l7GR5/qcXhSETizxN/OEJqipuLV2npmXAoKcpiVW0Rv93Sqk3vo4CKrBjzzI6jnBqd5MZNFU6HEreK8jO4eFUJT7x8hPHJaafDEYkbQ8PjPLfjKNduLCVdg8SwueXySnoHx3jlQJfToSQ8FVkxxOv18pvnD1NTmkdthTZTDaebL6/i5Mgkz+/UCvAiofLEy0eYmPJw8+WVTocS1zaYxRTlp/ObFzQb7zQVWTFkV0MP7d0nuf3KKm2jE2YrqwspXZzNb144jNerFeBFLtTUtIf/fbGFdcsXsawkx+lw4prbncSNmyrZ29RLW9cJp8NJaCqyYsivnz9MXnaqGt4jwOVycdNllRw+NqRNo0VCYMveTnqHxrj1Cs1iRcJ1l5SR7E7ivzWb5SgVWTHiWM8w2w52c8tllSQnu50OJyFctbGUrIwU/mtzo9OhiMQ0r9fLr3/fzJKiTNYuX+x0OAkhNyuNK9Yv46mtbQycGHM6nISlIitG/OdTDaSmuLlBDe8Rk5GWzG1XVvHKgS4OHxtyOhyRmLWnsZdDRwa48+pqrfAeQa+7rpapaQ+PPtvkdCgJS0VWDDjWM8yz29u59bJKcrLTnA4nodxyRRUZacn87EnrdCgiMcnr9fLw7w5RlJfO1VpAOaKWLMriivXL+N+XWhkaHnc6nISkIisG/OwJS3KymzuuqXY6lISTlZHCrVdWsWVvJ0c61UAqslA7G3o42NrPG26oU6uDA+65vo6JqWkefU6zWU5QkRXl2rtP8vudR7n9Cs1iOeW2K6tIT3XzkycOOR2KSEzxer385HeHKM7P4KqN2qfQCcuKs9m0Zin/80ILgyc1mxVpKrKi3I8eP0hKspvbr9YsllOyM1O54+oaXtrTyb7mXqfDEYkZf9jXhT0yoFksh73xpuVMTnn40eMHnQ4l4ajIimI77HG27O3kjTfUkp2lWSwn3XlNDUV56Xznsb1Me7Rulsh8xiam+N6v9lJeksOVmsVy1LLibG6+opInXzlC89HB+V8gIaMiK0pNTk3znUf3sHRRFrdepVksp6WlunnL7Sto6TjBU68ccTockaj386cbOT4wynvuWYXbrV81TnvDDcvJzkjlO4/t1QLLEaSf/Cj12HPNHOs5xbvuXqVp9ihx2dql1FcW8B//e1B36oicQ2fvKX75TBNXb1jG8qoip8MRfDfxvOmWeg609PPsjqNOh5MwVGRFofbuk/zsyQYuXVXC6uXFTocjfi6Xi3ffs5qRsSke+PlujQZF5jDt8fKN/9yF2+3iLbetcDocmeG6S8qpK8/n3x7dS+/gqNPhJAQVWVFmcmqar/x4O+mpbt71utVOhyOzlC/J5Y9vXs6WvZ08s73d6XBEos4vn2lkb3Mv73ndavJy050OR2ZISnLxwTevZ2rKw9cf2YlH/aVhpyIryvzH/x7kcMcQH/ijdUpQUeqOq2swVQU8+Mu9dPePOB2OSNRoaBvg4d8e4oq1S7lig5rdo1FJURZvu3Mluxp6+O8XDzsdTtxTkRVF/rCvk8eea+bWyytZt0L7e0WrpCQXH/jj9bhc8E/ff5nR8SmnQxJx3NDwOF/+8Tbyc9J4z+vX4HJp+5xodcOl5Wwwi/n+r/ezt0nL0oSTiqwo0dA2wJd/vJ268nz+RH0MUa+4MJOPvHUjbd0n+crD27WsgyS0iclpPv+DV+gbGuNjb9tIRkaK0yHJObhcLj70J+spKcrin3/4Ch29w06HFLdUZEWB7v4RPvf9l8nPTuPj77yY1FTdTRgL1i4v5h13ruSV/V18/9f71AgvCcnj8fK1n+7gYGs/f/mWDVSXFzgdkgQhMz2Fj//pxeCFf/zey1oNPkxUZDmso3eYT33rBSanPHzy3Zdo65wYc/Plldx6ZRW/fv4w3/uVCi1JLNPTHr72sx28sLuDd96xgo2rljgdkixASVEWH3vHxfQMjvCpb71A/4kxp0OKOyqyHNTaeYK/++YLjE1M8//92SZKirOdDkkWyOVy8Y47V3Kbv9D69i/2MD3tcToskbCbmJzmCz/cyrPbj/LW2wy3aNHkmLSiupBPvPtSjg+O8n+/9QLHB3QzTyipyHLIS3s6+NtvPo/L5eIf3n85ZUvznA5JzpPL5eLtd67krmtreHxLK5/97h+0WKnEteMDI3zq2y/y8v4u3nvPau68tlaN7jFsRXURn3zPpQycGOfjX3uO3Y09TocUN1RkRdjE5DTf/dVevvDDrSwrzubTH7hCM1hxwOXyLbz453+0lv0tfXz8a89pM2mJS68c6OLerz5LW9dJPv6Oi7jhskqnQ5IQqK8s5LMfvpKcrFQ+/W8v8chTlinNyl+wZKcDSCTbDnbzb4/uoatvhDuuquJPbl2BO1l1bjy59uJyypfk8sBPd/B/v/Uit2yq4L2vW01OZqrToYlckJ6BUb736728tKeTqqW5fPRtGykuynI6LAmhpcXZfOZDV/L9x/by48cP8cKuDj7ypvWsqCp0OrSYpSIrzLxeL/sO9/GfTzWwq6GH0uIsPvVnm1hRs8jp0CRMqkvz+PzHruWxpxt5/MUWXtzTweuuruH119Wq2JKY0zc0ymPPNfP4lla8XnjrrfXcelW19lSNU+lpyfzFWzZy2dpl/Oi/9/PJbzzPZauX8NZbDHXl+U6HF3NUZIXJyZEJnt91jKdeaaOxfZD87DTeeecKbrqsSrNXCSAt1c1bbl/BVRtLeXRzI4881cBjzzVz9YZl3LKpkpVVhSQlqYdFotO0x8vuxh6e3trOi3s68Hi9XL1+GW+8aTlFBZlOhycRcPGqElbVFvG7F1v43YstfHx/F6uqC7llUyVXrV9GRprKh2DoXQqRySkPrZ1D7G3qY/uhbg609DE17aViSQ7ve/1qrtpYRkqKRn6Jpqwkh4++/SLau07w5JZWXtzdweat7RTmpnPpqhI21BezsqqQorwMp0OVBOb1ejk+MMrBlj522OPssMcZGp4gOyOFmzaVc9uV1SwqVHGVaDLSknnDjcu59coqnnmljd9vP8rXH9nJt36xm3V1i7hkZQmra4qoWJKLW4PGOanIWoDJKQ9Dw+P0nxjj+MAIx/tHaO8epq37BC0dJ5ic8jUJlpfkcMdV1Vy2Zinly3J1141QviSX971xHW+/cxXbD3Sx69Bxfr/zGL/7wxEAFuVnULU0l4qSHJYuyqKkMJNF+RkU5KSRlZGinyG5YB6Pl+HRSQZOjtEzMErPwAhHe4Zp7zpJS+eJ04tR5mSmsL6+mEtWlbDOLNZlQSEzPYW7rq3lzmtqaDgywPYDXew8dJzth44DkJHmpmppHhVLcihbnE1JYSbF+ZkU5KaRn52G2524V28iUmQZY/KB2RdzKwG6urrmff2psUm27OlkenrmQo/e13x0+u8ZC0J6veDF6/vb4//b68WDL+l4PF6mpj2n/56c8jI5Nc341DTjE74/I2OTjIxNzblHXW5mKkuKs7isPpvKpblULsslNyewsfMwnR3armBiYgKAjmPHHI4kOlQvdlG9uIR7riqm4/gwrR1DtHWdpK2tnVd2jbxmnS2320VWWgoZ6SlkpLlJT00mNTWJlGQ3qclukt0ukpOTcLtcuN1JuFy+/RWTXJDkcoHL97HL5WJmrRYo3AIPnVnGnaOoO+MYcMmKEgrzgtvM/KabbqoCjlprY2bDxwvNX16vl20Hj9M/NHuhR++M/87MaK/msED+wgser+8Bj9eLx/tq/vJ4vEx5PExP+3LYxKSHialpJiY9jE/48tbI2CSnxqbwzNr+KSU5iSWLsqguzqZy7SLKl+ZSujjb9z8WD8e75//+xFmRzq85KXD9+jyuX5dL/4kxWo8NcaTzBF29vTzdcoSR0cnXvCYjPYXsjGTS05JJT00mLSWJ1GQ3qSn+/OVOwu1Owp3k8uWuJBdJvJqzXEn+v3k1h83OX2d+HFz+AihbnM3qmqKgv/+F5jBXJFaoNsZ8FvhM2E8kIrGg2lrb6nQQwVL+EpFZgs5hkbpceD/w0KzHUoEaoBGYjlAcF6IMeB64BjjqcCxO0vvgo/fB53zeh1h7v+Ihf4F+ZkHvQYDeB5/zfR+Cfm5Eiixr7SAwOMeXGiJx/lAwxgQ+PBpLo/BQ0/vgo/fBJxHeh3jIX5AY/6/mo/fAR++DTyTeh8TtRhMREREJIxVZIiIiImGgIktEREQkDFRkBW8QuI+5ezMSid4HH70PPnofYof+X+k9CND74BP29yEiSziIiIiIJBrNZImIiIiEgYosERERkTBQkSUiIiISBiqyRERERMJARZaIiIhIGKjIEhEREQmDSG0QLXHKGPMQsM9a+5UwnycXeBzIBz5trf3FjK/9J5BkrX3TjMc+AbweuNFaOxnO2EQkNil/SbipyJJYsQEosdbWzfG1PwO2GWPutdbeb4y5FfgosEkJSkSigPJXglKRJacZY34C7AiM6owxHwJuAN4GfA24HMgBXMCfW2tfnPV6L1Bsre2d/bkx5nXA3wOpwAjwCWvtljlieAPwGcANnAD+DzAEfB8oNcbsAq6w1o4GXmOtPWmMeTPwe2NMO/AN4A3W2u4QvTUiEuWUvyQaqSdLZvou8O4Zn7/X/9hlwDJ8yWEV8EPg74I9qDFmOfDPwJ3W2o3AB4BfGmOyZj1vBfAg8MfW2nXAp4FfAZ3AnwPN1toNMxNUgLV2D/A3wM+BL1hrXwk2PhGJC8pfEnVUZMlMzwLpxphLjDGrgGJgs3/E9vfAB40xXwHeBGQv4Li3AEuBzf6R3MOAB5g9dX6j/3yHAay1TwPHgYuDPCiUvm0AAAF/SURBVM9N+BLa3cYY/WyLJJZnUf6SKKP/kXKatdYL/DvwLnyjwH+31nqNMXcB/+N/2q/wjdZcZzmMC8AYkzrjMTe+5LMh8Aff1P2+Wa+d6+cxCUiZL3ZjzN8ABlgHlOMbRYpIglD+kmikIktmewi4B3gz8AP/Y7cAv7HWfhvYCrwBX+KZrQe4xP/xH814/GngVv90OsaYO4E9QPqs1weeV+N/3o34Es7L5wrYGHMz8Lf4pul7/bH/tTHmtvm+WRGJKw+h/CVRREWWnMFa2wXsAPZYazv8Dz8IXGeM2QNsAZqB6jmmtD8GPGCM2QFsxDf1jbV2P74+hp8ZY3YDnwPusdaemnXuA8Bf4Ot32Ad8EXidtXbobPEaY6qAnwLvs9Y2zzjfXwA/NsaUn987ISKxRvlLoo3L6/U6HYOIiIhI3NFMloiIiEgYqMgSERERCQMVWSIiIiJhoCJLREREJAxUZImIiIiEgYosERERkTBQkSUiIiISBiqyRERERMLg/we6fnZ03UpG7AAAAABJRU5ErkJggg==\n", "application/papermill.record/text/plain": "
" }, "metadata": { "scrapbook": { "mime_prefix": "application/papermill.record/", "name": "ttest_hypo_fig" } }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlkAAAENCAYAAAA8D3A7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl8XFd9///XaLTvi2XZ1r5Yx/uSxdn3fSFAC2UtW8tWCg3fQtsvvxZIKYUChfCFQAoUQiFAWiAB2gaSOAtZTOJ999FiyZKtxdptWbtmfn/MjCMrsjWyZ+bO8n4+Ho6l0cy9H03kjz7n3M89x+X1ehERERGR0EpyOgARERGReKQiS0RERCQMVGSJiIiIhIGKLBEREZEwUJElIiIiEgYqskRERETCQEWWnMEY02qMucQYc70xZt8cX5/z8TDEkWeMeXrG515jzKIQHfsfjTHvCsWxRCQ4xpiHjDGf8H/8aWPM6yN03kuNMQ/6P77EGPPzEB33s8aYb4biWPOcZ2b8Ic2/xpj/NcasCtXx5LWSnQ5A5CwKgE3hOLC19tPhOK6IBO1G4ECEzrUaKAOw1m4D3hSh84bK6fhDzVp7ZziOK69SkRWnjDHXA58HDgNrgDTgI9baZ4wxDwH7rLVf8T/3jM+DkG2M+RmwAkgH3g9sB44Bl1lrG/zHfRL4JvBGwAusBIqBJ4CPWWsnjTHXAF8GMoEJ4O+ttb8FfgBkGGN2ARf7z3ufMeZyoAj4srX2Af95/gz4C3wzs33AX1prDxljrga+Crj95/+CtfYXM79fY8x9/vgm/K99j7W2M8j3QURmMMYkAV8DLgdyABfw59baF2c85yPAJcCXjTHTwP8A/wJch+/f6k58+eGEMaYVeBlYB3zKf+yHgJuACuARa+3fnO28QBvwj0CeMeYHwA/x5aSrgHag3lrb5Y/rD8B9wOazxTPHt7zCGPMMsBToBt4K1AA/AyqttR5jTCbQii8PvwI8ClwD5AP/aq39tv/8HwA+Bkz7j/WXwOgc8b8m/1prnzfGpJ7jffww8CF8eW4M+KC19oD//X0TcAhfzl0OePDl8w9aaz1zfM+yALpcGN8uw/ePeCPw78BnQ3TcMuBr1toNwL8Bn7XWjuBLAH8OYIypBQzw3/7XrAduBlb5/3zQGFME/Bz4K2vtOuDdwI+NMdXAe4FRa+0Ga+20/xiHrbUX4yuK/tUYk2KMuc7/umv83+eXgF/6n38f8FX/a96Hb/R8mjGmHLgXuNRaewm+4u+yEL1HIonoMmAZcIW1dhW+nPB3M5/gHxxtAz5prX3U//Up4GJr7XqgA/jijJfss9au9D8XINtaew1wJfBRf76Y87zW2nbg08Dz1tr3zohhCF+x804AY8xKfIXS74KIZ6Ya4E+stSuAAV4tKPuA2/3PeSuw2Vp73P95JnApcD3wj8aYtcaYG4G/AW7wn/MnwGPA0Tnif03+9T8+Z9zGGDdwP3C7tfZS4DvA1bO+jzcCOf5jXjrje5MLpCIrvh2x1u7yf7wDKAzRcZuttS/7P94FLPZ//C3gXcaYFOADwPdmFEgPWWuHrbXjwH8At+FLjE2BY1lr9wMv4ks+c/nJjHOmAbnAXUAd8JJ/1utLQKExphD4T+ABY8zD+GbDPjXreMeA3cAOY8xXgF3W2scW/G6ICADW2i3A3+MbRH0F3yxJ9jwvuxt4PbDT/2/4DfgGYgHPz3r+r/znOgYcBwrP87zfxTdAA9+g7gf+mZv54pnpSWttj//j3byaCx/AN8MP8EHg2zNe84C11mutPQr8FrgVX0H2SOBY1tqHgFKgao5zni3/zhm3Pwf/F74c+U1gCN+ge6YXgNXGmGfxFWv3W2ubzvI9ywKoyIpvozM+9uKbQp/9MUDqAo87Oddx/ZcJ9+D7h/4O4Hsznjc14+MkfFPic/38JQEp5zqvtTaw4aYL37T4j/wzXhuAi/Bdihiw1v4bsBZ4El9Rt8cYkxc4mD+hXge8B9/I82vGmK+f6xsXkbMzxtyF7/If+IqhBzkz18zFjW82O/BveBNn9k0Nz3r+a/La+ZzXWvsCkGyM2QS8Hfh+kPHMNGcuBB4GrjbG3IBv5u33M54XbC50MXcuPNs5zxq3tfadwOuAJuBveXW2H//XW/ANVr+Ab/D6lDEm1nrXopKKrMTUg68QwX/H3jUhPPYD+HqsXrbWdsx4/C3GmDRjTDq+0eNvgD/4QjCb/LGsBq4FnsWXiNzGmPkS9BPA24wxS/2ffwhfTwXGmJeAjf5R4Qfw9UAUBF5ojFkP7AMOWmu/gK+nY/15ft8iArcAv/H3GW3FN5vinuN5U7xaQPwO+EtjTKq/t+q7+H7Zh+q8M8812/eAbwB7rLVtoYrH3z7xY3yF24OzvvwuAGNMBb5ZrMf953yLMabY/7X34hv4Nc0T/0xzxm2MWWSMaQf6rLX345vxOyPP+Xu2fgA8Ya39W/+x1izke5a5qchKTN8AlhpjLL4R17MhPPZ/45umn51YRvBN++/1//0Da20v8GbgG8aYvfguB77XPyPWie8S50F/79acrLW/w9fs+aQxZg++Eekf+We7/gZfz8NO4BngPmtt64zX7sZ3SXGbMWYbvr6tj1/g9y+SyB4ErvP/W9wCNAPV/l/6M/0G+Iox5t3A5/A1hu/Ed8ehC/jrEJ53C74G9UfneN0PgQ2cOeseinjAV7QsxtceMVO1MWY7vkuFH7M+T+Ib5D1tjNmPbyB6t3+2/VzxzzRn3P48+0/AZv95v4i/d3aG/8BXlB7w58JcQLP6IeDyer3zP0skSMaYK/GNoNYELuudx92LIiIxyz8D/7f47jD88IzHW4E3+ZeSkASgJRwkZIwxP8TXtP6uGX1TIiKJ5jC+tox7nA5EnKWZLBEREZEwUE+WiIiISBioyBIREREJA8d6sowxyfhWrj1qrZ2a7/kiItFC+UtEguFk43sZ0LJ582YHQxCRCJtv3bNYofwlkpgWlMN0uVBEREQkDFRkiYiIiISBiiwRERGRMFCRJSIiIhIGKrJEREREwkBFloiIiEgYqMgSERERCQMVWSIiIiJhoCJLREREJAxUZImIiMS46elpOjs7nQ5DZlGRJeftT//0T2lubgZgYGCAu+++25FjiIjEm4Xmxi9+8Ys89dRTF3wcCS0n9y6UGHfkyBGqq6sBsNZSX19/xtd/+9vf8vDDD5/x2Cc/+UnWrVsX9DFERBLRfLnxPe95D729vQB4vV6am5upq6tj6dKl3HzzzUEfR8JLRZacl2PHjlFSUkJSkm8y1FqLMeaM59x+++3cfvvt53WMkZER7rvvPlJSUti0aRP33HNPmL4TEZHoEkx+feihhwDYsWMHX/7yl9m9ezdpaWlBH0c5NjJUZMl5OXTo0Bn/6Pfv38+dd955xnPmm8k61zGeeOIJbrvtNm688UbuvfdeJQARSRjB5NfATFZnZyfZ2dn88R//MQD33nvv6Zks5VjnqciS83Lw4EHGx8cBaG1tZfPmzdx7771nPGe+maxzHaO7u/t0cnC73eH4FkREolIw+fXBBx/kfe97H5///OdZv379go+jHBsZESmyjDH5QP6sh8sicW4JD2stqamp3HPPPRhjqKur49FHH+UjH/lISI5RUlJCV1cXK1euxOPxhPE7ETk35S+JtGDz67333nvWAmu+4yjHRkakZrLuBT4ToXNJBFhr+eUvf0l2dnZYjnHrrbfyuc99jmeffZYbbrjhQkIVuVDKXxJRweTX9PR0Nm3adN7HUY6NjEgVWfcDD816rAx4PkLnlxAaHh7G5XJdUIE13zEyMzP5whe+cN7HFwkh5S+JmFDk12COoxwbGS6v1+vIiY0xVUDL5s2bKSvTzLtIgnA5HUAoKH+JJKwF5TAtRioiIiISBiqyRERERMJARZaIiIhIGKjIEhEREQkDFVkiIiIiYaAiS8LO4/EyNa3F7kQkNk1OKX/J+dG2OhI2E5PTPPlKG794ppGTpya4bPVSbrikjItXlDgdmojIvPYf7uNnT1p2NfSwsqqQazaUctOl5WSmpzgdmsQIFVkSFoMnx/nkN35PV98IqSf3UpCbznabxHM7j/LBN67l7qtrnA5RROSsvvWL3Tz+Uit52ancdkUlB1v6+c5je3lh9zH+6UNXkpIcHfv9/dd//RcAb37zmx2OROaiy4USctMeL1/+8Tb6h8b42/dcylTPDnoOv8T/+7ubuGhlCd99bC9bD3Q5HaaIyJyefPkIj7/Uyh1XVvGvf30D77h7Nf/00Wv48J9s4EBLP19/ZCdOLeQ92yOPPMIjjzzidBhyFiqyJOR++rtD7Gnq5X1vWMPq5cWn18dNdifx4T9ZT8XSXL70o220dp5wNlARkVkOHxviwV/uYd3yRbz1jpWkpr46Y3XF+mW86eZ6nttxjEeeanAwSokVKrIkpPY19/LIUw3cdGk5V2587XYjaanJfPxPLyE1xc13H9vrQIQiInObmvbwL/+xlZysVD705vW4kl67g8rrrq/l8nVLeeRJy/H+EQeilFiiIktC6qdPWApy03j7XavO+pyC3HTuvq6WPU297G3ujWB0IiJn9+z2djp6T/G+168hOyttzue4XC7eevsKXC4XP33SRjhCiTUqsiRkDrX2s6epl7uvqSEl5dxNoTduqqAgJ40fP34wanobRCRxTXu8/PzpRqqX5bKmvviczy3My+CGSyt4els7Hb3DEYpQYpGKLAmZR55qICczlWsvKZ/3uakpbl53fS0HWvrZ1dATgehERM7upT0dHOs5xeuvr8Pleu1lwtnuvq6WZLeLnz6h2Sw5OxVZEhKHjw2x7WA3d15VRVpqcCuDXHdJOUV56ZpyFxFHeb1e/mtzA6WLs9m4Mrh1/PJz0rjpskqe23GUzt5TYY5QYpWKLAmJR59rIiMtmRsuqwz6NSnJbm6+ooqDLf0c69GUu4g4Y2dDDy0dJ7jn2to5m93P5rYrqwHYvLUtXKFJjFORJRdsdHyKLXs7uXpDKZkZC1sJ+ar1y3C54GklKRFxyDPb2snOSGHT2qULel1hXjqraxfx9PZ2PB71lsprqciSC/aHfZ2MT0xzxfqFJSiA/Nx01tYV8/Q2JSkRibzR8Sm27Ovk8rVLcScv/Ffi1ReV0jMwyv7DfWGITmKdiiy5YM9uP8riggxqygvO6/VXX1RK79AYe5u0nIOIRNbLpweJy87r9RevXEJGWjJPvqLZeHktFVlyQQZOjrGr4ThXbVhG0gJ6GWa6aGUJmenJPKVLhiISYc/uOEpxfga1Fec3SExLdbNp7VJe2tvB6PhUiKOTWKciSy7I87uO4fHC5evObxQIvuUcLlu7lC17OxkZmwxhdCIiZzd4cpydDT0XNEgEuHpjKeMT02zZ2xHC6CQeqMiSC/Ls9qNUL8tl6eKcCzrOFeuXMT45zU6tmSUiEfL8rmN4PN4LGiQC1FcWUJSfzot7VGTJmVRkyXnrGRilsX3wvHsZZlpeUUBWRgov7+sKQWQiIvPbsreTiiU5LCu5sEGiy+Vig1nM7oZeJianQxSdxAMVWXLeth3qBmB9/eILPpbbncS6+mK2HepmWncZikiYnRqd5EBLHxetuPD8BbBxRQnjk9Ps0Q08MoOKLDlv2w92s7gggyXFWSE53sYVizl5aoKGIwMhOZ6IyNnsauhh2uNl3Tz7FAZrRXUhaaluXt7XGZLjSXxQkSXnZWJyml2NPWxcsTiofb6CsXZ5Me4kFy8fUJISkfDaerCL7IwUasryQ3K81BQ3a+oWsfVgtza9l9NUZMl52dfcx/jEdMhGgQBZGSnUVxXyyv7ukB1TRGQ2j8fL9oPHWV9fTJI7dL8GN65YTN/QGIePDYXsmBLbVGTJedl2qJvUFDcrqotCetyNKxbT3n2Srj5tuCoi4dF8bJDB4XHWm9ANEgE2mMW4XPDKAd3AIz4qsmTBvF4v2w50s6a2iJQUd0iPvdHfhLr1gGazRCQ8th3oxuWCNXWhLbJys9OoKctX/pLTkiNxEmNMPjD7wndZJM4todfRe4rOvlPccVVVyI9dUpTF4sJMdjX28LprakJ+fJGFUv6KP9sOdbO8vIDsrNSQH3vt8kX86pkmhkcnyc5ICfnxJbZEaibrXqBl1p/nI3RuCbGd9jgAq5eHdhQYsLK6kP3NfVrKQaKF8lccGR6ZoLF9kHX1i8Jy/FU1RXi9sL9ZSzlI5Iqs+4HqWX+uidC5JcT2NvdSXJBBcWFmWI6/sraIU2OTtKh5VKKD8lcc2Xe4D6+XkPeTBtSW55OSnMSuRhVZEqHLhdbaQWBw5mPGmEicWkLM4/Gyt6mPi1eGZgG/uazyJ789TT3UlYfm9mqR86X8FV/2NvWSmuKmpiwvLMdPSXZTX1nA3mZtESZqfJcFaus+ycmRibCNAgHyc9NZVpytkaCIhNze5l5MZQHJyaG9aWemVbVFHOk8ydDweNjOIbFBRZYsyJ4m3+isvqogrOdZWVPIgZY+pqY9YT2PiCSOE6cmaOk4wcrqwrCeZ6V/ELpXfVkJT0WWLMi+5j4WF2SwqCA8/VgBq2qKGJ+YprFtcP4ni4gEYf9hX9FjqsJbZFWX5pGelsyuBl0yTHQqsiRoHo+Xfc29rK4Jz105M62o8Y0EdzcpSYlIaOxt7vP3Y4W319PtTsJUFWgmS1RkSfCOdJ3g5MgkK2rCOwoEyMlMpWJprna0F5GQ2dvUy4rKAtzJ4f/Vt6qmiI6eU/QNjYb9XBK9VGRJ0Pb6C576ME+1B5iqAhqODKgvS0Qu2NDwOK2dJ1gZgUEivHpJ8sDhvoicT6KTiiwJ2r7DfZQUZlKUnxGR89VXFjI+OU1Lh9bLEpELc6DFV+yEux8roGJpLqkpbva39EfkfBKdVGRJULxeLwdb+jGV4b2rcKblFb5zHVCSEpELdKCln2R3ElWl4Vkfa7ZkdxK15fkcbFX+SmQqsiQoXX0jDA6PUxfBIqswL51F+RmnR6AiIufrUGs/tWV5YV0fa7blFQW0dp5gdHwqYueU6KIiS4ISGI1FegX25ZUFHGztx+vVPoYicn4mJqdpOjpEfQQHiQD1lQV4PF4ajgxE9LwSPVRkSVAOtfaTmZ5M6eKciJ53eUUBAyfGOT6gO3RE5Pw0Hx1iatpDXUVkB4l1Ffm4XLBfs/EJS0WWBOVgaz/LywtwJbkiet7AyFOXDEXkfAVm4mvLIzuTlZmeQtniHPVlJTAVWTKvkbFJjnSdYHll5DdrLivJISMtWc3vInLeDh3pZ0lRJrnZaRE/9/LKAuyRAaY9anlIRCqyZF72yABeb+T7sQCSklz+O3Q0kyUiC+f1ejnY2k99RWRnsQKWVxYwOj5FW9cJR84vzlKRJfM61NqPy0XYt6I4m/rKAtq6TnJqdNKR84tI7OruH2HwZGTvjJ4pUNxpUdLEpCJL5nWgtZ+KJbmkp6c4cv66iny8Xmhs1x06IrIwgVYDJ2biARYVZJCXncZB3WGYkFRkyTlNe7zYIwOOTbUDVJf6kuMhJSkRWaBDrf1kpEX+zugAl8tFTVkejW3KX4lIRZac07HjJxkdn6LWoVEgQFZGCkuLs7AqskRkgRraB6grz4/4ndEz1Zbn09F7iuGRCcdiEGeoyJJzavCPvqrLIrMVxdnUluXT2D6oRUlFJGjjk9O0dpygrtzh/OUfpDa0Dzoah0Seiiw5p4a2QTLTkykpynI0jpqyfIaGx+nRoqQiEqTDR4eY9nipKnVuJh6gujQPlwvsES1Fk2hUZMk5NbQPUFuWT5KDU+3w6khQSUpEgtXgv1mmJkKbQp9NZnoKSxdlq+UhAanIkrOKlql2gPIlOaQkJ3FIzaMiEqSGtgEW5aeTl5vudCjUluep5SEBqciSs4qWqXaAZHcSlctyT/eIiYjMp6HNNxMfDWrK8jlxaoLu/hGnQ5EIUpElZxUtU+0BtWX5pzd6FRE5l6Hhcbr6RqKmyArEoUuGiUVFlpxVQ9sARXnRMdUOvr6sySkPRzq1PYWInFuj/06+qigZJJb5Wx40G59YVGTJWTW2DTq2SvJcNBIUkWA1tg2Q5PLd2RcNkt1JVJXmYVVkJRQVWTKnoeFxOvtORc1UO/i2p8jOTDl9GVNE5Gxs2wBlJTmkpSU7HcppNaV5tHQMMa2Wh4ShIkvmFG1T7eDbnqK6NI+mo1rQT0TOzuv10tA2SE0U3LQzU3VpHhOTHtq6TzodikSIiiyZU9PRQVwuqFqW63QoZ6guzae9e5ixiSmnQxGRKHV8YJSTIxPURMHyMzMFds5o1MrvCSMi86jGmHxg9pCiLBLnlvPT1D7IsuJs0tNTnA7lDNWleXg8XlqOnWBldaHT4UgCUP6KPU2Bmfil0TVILCnMIiMtmYa2AW69rNLpcCQCgprJMsYsusDz3Au0zPrz/AUeU8KosX0wapZumCnQxNqoviwJkvJX4mlsHyDZ7aJsSY7ToZwhKclFlVoeEkqwlwv3G2MeNsZcfZ7nuR+onvXnmvM8loRZ39Ao/SfGouaunJkK89LJz0nTRquyEMpfCabp6CCVS3JJTnY7Hcpr1JTm0dp5gsmpaadDkQgI9nJhFfBW4CvGmCzg28CPrLVBde9ZaweBM34rGmMWEKZEUvPRISD6+rECqkvzTl8OEAlCFcpfCcPr9dLUPsgV65c5HcqcqkvzmJ720tp5guXlBU6HI2EW1EyWtXbUWvsDa+3lwEeBTwAdxpgHjDGLwxqhRFxj+yBJLiiPsn6GgOrSPDp6hxkZm3Q6FIkByl+JpbPvFKfGpqJyJh5mtDy0aaCYCIK+u9AYc7sx5hfAI8BjwJVAO/DrMMUmDmk6OuhbXyY1etaXmam6NA+v99UZN5H5KH8ljleb3qOzyNJ6f4klqN+ixpg2oBf4FvBOa+2o/0t7jTEfCFdwEnmBqfYNptjpUM4qMBJsaB9gbd2F9jRLvFP+SiyN7YOkJiexrCTb6VDmpPX+EkuwUxXvtNb+fuYDxphV1toD1tqaMMQlDukdHGNweDxqp9oBcrPTKMpP11ozEizlrwTSdHSQqmV5uN3RuwxkdWke//37w4xNTJEepVcMJDTO+X/XGBNYiOgbxpjrAZf/8xTgV8Dy8IUmTmg66pvCrloWvUUWqPld5qf8lXg8Hi/NRwe57qJyp0M5J633lzjmK/V/im+afS3Q5/+4F18vw47whiZOaGwfxJ0UfevLzFZdmkd3/wjDIxNOhyLRS/krwRzrGWZ0fDqqtgObS+BKQWBQK/HrnDNZ1trbAIwx37fWvi8yIYmTmtoHqViSQ0pK9K0vM1Ngpq356BDr66O3f0yco/yVeAJ9ThVRuvxMQEFuOrlZqWp5SADzXS5cYa09BHzTGHPR7K9bazUajCNer5emo0NcuqrE6VDmFRipNh4dUJElc1L+SjxNRwdJTXGzbFGW06Gck8vlW/m9+ZjukI5383Xc/StwF/CLOb7mBdQ0Gkd6/JuqRvtUO0BOZiqL8jNobFeSkrNS/kowzUeHqF6aS1IUN70HVJfm8evGHjW/x7n5Lhfe5f+7OjLhiJMCU+2VUboI6WxVpbk0H9N0u8xN+SuxTHu8HD4W/U3vAVXLfOv9tXacYEWVmt/j1XyXC//fub5urf1YaMMRJzUdjY2m94Dq0jy27e9meGSC7MxUp8ORKKP8lVg6Tje9x8YgsdofZ2P7gIqsODbfHGVfRKKQqBArTe8Ban6XeSh/JZBXm96jv90B1PyeKOa7XHhfpAIRZ8VS03uAmt/lXJS/EkusNL0HBFZ+V/N7fJvvcuEL1tqrjTEn8TWKnsFaGxvzsjKvWGp6D1Dzu5yL8ldiiaWm94Cq0jz2qPk9rs33f/XN/r/XhDsQcVasNb0HqPldzkH5K0F4YqzpPUDN7/HvnCW/tbbT//cRYAXwUeBDQIX/MYkTsdb0HlBdmkd3n1Z+l9dS/kocx2Ks6T0gsPJ7Y7tWfo9XQc2rGmM+BXwNGAGmgH83xnwknIFJZDUfHaK8JHaa3gNmNr+LzEX5K/41B5reY2wmviA3jbxsNb/Hs2AvAr8duMxaexLAGPNV4AXggXAFJpHja3of5OKVsdP0HqDmdwmC8lecazo65Gt6L852OpQFcblcVC1T83s8C7ZDcBQYDnxirR0AxsISkURcz8AoJ05NnJ66jiVqfpcgKH/FuaajgzHX9B5QVZpHe/dJxiamnA5FwmC+uwv/yP+hBR4zxnwPmAbeBWwLc2wSIbHa9B7guw1a0+1yJuWvxBCrTe8Ban6Pb/NdLvzorM//z4yPF4c4FnFIrDa9B1SV5rJ1f5dWfpfZlL8SQKw2vQfMbH5XkRV/5luM9IZIBSLOibWV3mfTyu8yF+WvxNAcYyu9z6bm9/gWVOO7MWY58JdANuAC3ECdtfaqMMYmERCLK73PpuZ3ORflr/jWGGMrvc+m5vf4FmyX4E+AVOBKoBVYBewNU0wSQcdjcKX32XIyU1lUoOZ3OSvlrzgWiyu9z6bm9/gV7E9ljrX2w8DvgMeBW4CLwxaVvMb4+Dh/9Vd/xdve9jbe9KY38dxzz53z8WCdbnpfFpv9DAHVy9T8Lmel/BUFwpHDpv1N79VlsTtIhDOb3yW+BFtk9fv/bgLWWGsH8U25S5AOHTrEO97xDu68805WrFiBMYavf/3rQb/+kUceYdGiRfz0pz/lgQce4B/+4R/O+XiwmgNN7yWx2fQeUFWaq5Xf5WyUv0IgGnNYR6DpPdYHiVr5PW4FuxhpozHmfuCH+FZLzgbSwhdWfBkfH+fee+/lS1/6EuvWreP+++9nfHycj33sY6ef89vf/paHH374jNd98pOfZN26dQC8/vWvx+32/V5wu91kZWWd8/FgNcZ403tAIEmp+V3moPx1gaI1hzXFeNN7gJrf41ewRdaHgTustTuNMd8BbgM+EL6w4stLL73E6tWrTycbYwzPP/88Lpfr9HNuv/12br/99rMeIy/Pl0R6enr44Ac/yH333XfOx4Ph9XppPjrIpauXLPh7ijaBOwwb2tX8Lq+h/HWBojWHNR0dJC2Gm94DAs3vTdoeLO4EVWRZa0eMMc8aY+4GWoD3+qfcJQiNjY3U19ef/vzAgQOsXr36jOfMNwoQ9GNyAAAgAElEQVQMePDBB3n/+9/Ppk2bgnr8XLr7Rzg5MhnTTe8B2ZmpFBdknB7ZigQof124aM1hTe2DVC2L7ab3gOrSPPY09jA2PkV6WrDzHxLtgl3C4S58U+0H8N0CXWeMeYu19vfhDC5e5Ofn84c//AGAlpYWnnjiCX72s5+d8Zz5RoEB69at48orrwz68XMJbKocqyu9z1ZdqpGgvJby14WLxhzma3of4vpLYnOl99mqS33N74c7hlhVXeR0OBIiwZbLnwOus9buBzDGXAR8B7gkmBcbY/KB/FkPlwUbZKy76667ePrpp7n77rspKCjgq1/9KgUFBed1rJ07d7J69erTU+zzPX4uXZuf4R3HXoTvbaXVNf/zz9dbp2FvGI8fUF2Wzyv7uhgaHicvWy03cpry1wWKxhxmf/Vb/ujw/7JsOJvWbeHf6SH/+hvIv+7asB0/0Ffa0DagIiuOBFtkeQMJCsBau8MYs5D52XuBzywosjiSlZXFgw8+GJJjffazn13Q4+fS3T/C0tRkXBEogCJhZvP7RSu0a4qcpvx1gaIxh3X3jwCQlhrbN+0E5OemU5Cbrub3ODPfBtGBjZS2GmM+ATwIeID3AE8v4Dz3Aw/NeqwMeH4Bx5AQ8ni8POddxlV3X8r196ye/wUX4LNvf0tYjx8QuI27oX1ARZYof8U5W7CczbVpPPj3t5KUFB8jRV/Lg4qseDLfTFYv4MXXxwDwpRlf8wKfCOYk/ibTM35yjDFBhijh0Nl3ipGxKapjdFPVuWSmp7BkUZZGghKg/BXHmtoHqS3Ni5sCC3xF1o6D3YyMTZKZnuJ0OBIC820QHfu3bMicGtt8i97Fw52FM1WX5tHQ2j//EyXuKX/Fr8kpD4c7hrj9yiqnQwmpmS0Pa+sWORyNhEKwdxcm4Rv13QGkAE8A/2yt1UZLMer0pqrF2U6HElLVpXls2d3BwIkxCnLTnQ5HooDyV/xp6zrB5JQn5ld6ny1QZNm2ARVZcSLYkd4XgBuBrwNfxbfR6lfCFZSEX2PbINVxsr7MTKe3p1Bfg7xK+SvOBFoCqkpn3/QZ23KyApvdK3/Fi2DvLrwduMRaOwlgjPkfYHfYopKwmp72TbXfdGl8rC8zU+XSXFwu323Qm1bF/kr2EhLKX3Gm6egg2ZkpLCrIcDqUkKsuzaNZg8S4Eew0RlIgQQFYa8eByXM8X6JY+/FhxiemT29FE0/S05JZVpytkaDMpPwVZxrbBqktzT9jW594UV2aR3f/CCdOabP7eBDsTNYuY8zXgG/6P/8IsCc8IUm4NbXHZ9N7QE1ZHrttD16vNy6TsCyY8lccGZ+c5kjXCe65rtbpUMKixp+Xm9oHtRRNHAh2JusjQAHwErAFKAY+Gq6gJLwa2gfJSEtmcVFsb6p6NrVl+Zw4NcHxgVGnQ5HooPwVR1o6hpj2eKmKo+VnZqouzcPlAtumu6TjQbAzWf/XWvuecAYikdPYNkBtWXytLzNTTZmvGdYe6aekMNPhaCQKKH/FkQb/8jPVcdb0HpCRnsKy4mzskQGnQ5EQCHYm6+6wRiERMz45TUvHCWrL4zNBAZQtySElOQnbpiQlgPJXXGk4MkhhXjr5cbxES01ZHo3tg3i9XqdDkQsU7EzWYWPME8ALwHDgQWvtV8MSlYRNyzHfVHtNWXz2YwEku5OoXJZLY5ua3wVQ/oorDW0DLI/jQSL4ZuOf33GM4wOjmo2PccEWWYGLwxcD08zaYkJiR2B2pyZOp9oDasvyeWZrG9PTHtxxthaYLJjyV5w4cWqCzr5T3BCHy8/MVOtveWhQy0PMC/a3z78Aa4C7gNcDtcBnwxSThFFD2wBFeenkxfFUO/hGghOTHo50nXQ6FHGe8lecaIjT7cBmC7Q8HFLLQ8wLtsj6AfBdIMP/5+fAv4crKAmfhrYB6uJ8qh04fTlUd+gIyl9xo6FtgCTXqzs7xCu1PMSPYC8XZlprvzPj828YY94fjoAkfIaGx+nqG+HGSyucDiXsFhdmkp2ZQkPbIHdc4XQ04jDlrzjR0DZAWUkOaWnB/uqKXWp5iA/B/p87bIy5MvCJMWYN0BKekCRcAqugV8dx03uAy+Wipiz/9OUFSWjKX3HA6/XS0DZIXVn8z8TDqy0Pbd1qeYhlwQ4HSoHnjDG7gSlgI9BljNkDYK1dF6b4JITsEd9UezxupzOXmrI8fvVMD6PjU2QkwMhXzkr5Kw509p3i5MgENQnQ7gCvtjwcOtJPdYLk7HgU7G+eT4Y1ComIhvYByhNkqh2grrwArxca2wdYV1fsdDjiHOWvONDg70+K936sgMWFmeRkpnLoyAB3XFHtdDhynoL6bWutfS7cgUh4eTxeGtsGuHT1EqdDiZjAgqsHWvpVZCUw5a/40NA2QFqKm9LF2U6HEhEul4u6inwOtermnVimbroEcaxnmJMjk9RVFDgdSsRkZfi2p1CSEol9B1v7qSvPJymBmsDrKvLp6PFdJpXYlDg/rQnOHvEVGvG8nc5c6irysW0D2p5CJIaNTUzRcmyI+soEy1/lvkGx9jGMXSqyEsTB1gGyM1MoKcpyOpSIWl5RwPDIJMd6hud/sohEpab2QaY9XmrLE2cmHnzN70lJLg609DkdipwnFVkJ4mBrP/UVBSQluZwOJaLqKnwjX10yFIldB/3/fhPlzsKAtNRkKpbkcEgzWTFLRVYCGB6ZoL37JMsrEitBASxdlE1mevLpJC0isedQ6wDLirPIzkx1OpSIqysvoLFtgGmPWh5ikYqsBBAYBSXaVDtAUpKL2vJ8jQRFYpTX6/XPxBc6HYoj6iryGZuYpq3rhNOhyHlQkZUADrX2k5TkSpj1ZWZbXlFAe/dJTo1OOh2KiCxQR6/v7rrlCdb0HrDcf0e4+rJik4qsBHCwtZ+qpbkJswjpbHUV+Xi9aIsdkRh0sCUx74wOWFSQQV52Kgdblb9ikYqsODc97aGhbYD6BFofa7basnxcLo0ERWLRoSP9ZGWksGRRYixCOptvUdIC3bwTo1RkxbnWzhOMTUyfvssuEWWkp1CxJJf9LUpSIrHG14+Vn3B3Rs9kqgrp7h+hb2jU6VBkgVRkxbn9/tmbRGx6n8lUFWKP9DM55XE6FBEJ0olTE7R1nTzdl5So6it93/++Zs3Gx5qINOkYY/KB2VMpZZE4d6Lbf7iP4oIMigoynA7FUaaqgCe2tNJ8bJAVlYl5l5KcH+Uv5wQu8ddXJfa/2cqluaSnutl3uI/rLtKPXiyJVCf0vcBnInQu8fN6vew/3MeG+sVOh+K4QJLe19ynIksWSvnLIfsP95GSnERNWWLeGR3gdidRV1GgvtIYFKnLhfcD1bP+XBOhcyeso8eHGRqewFQl9lQ7QF52GksWZbHvsJKULJjyl0P2He6jvqKA5GS306E4zlQV0tZ1UptFx5iIzGRZaweBwZmPGWMiceqEtt9fUCzXzA3gS1Lb9nfh8XgTuolWFkb5yxkjY5McPjrIG2+oczqUqGD8s/EHW/rZtHqJw9FIsNT4Hsf2H+4jPyeNxUWZTocSFUxVAadGJ2nrPul0KCIyj0OtA3i86scKqCnLI9mdxN7mXqdDkQVQkRWnvF4v+5p7WVldiMulWRt4dSS4T0lKJOrtO9yLO8mVcJtCn01qipuasrzTVygkNqjIilPd/SP0Do2xUqPA0xblZ1CYl66+LJEYsK+5j9qyfNJSE3OnirmYqkIOHxtibHzK6VAkSCqy4tTpfiwVWae5XC5WVBWyr7kPr1c72otEq/HJaRrbB1hRrZt2ZjLVhUx7vBzQ6u8xQ0VWnNrX3Ed2ZgpLixNzK4qzWVVbxNDwOG1d6ssSiVb2SD9T017qddPOGUxlAW63i10NPU6HIkFSkRWHvF4vuxp7WFO7SHfRzbKqZhEAuxqVpESi1a6GHpKSXGp6nyUtNZm68gL2KH/FDBVZcaij9xS9g6OsqS1yOpSos6ggg8WFmRoJikSx3Y091Ffkk56mfqzZVtUUcbhjSOtlxQgVWXEoUECsqFGRNZfVtUXsP9zH9LT2MRSJNsOjkzS1D7KmdpHToUSlVbVFeL26SzpWqMiKQ7sbe1hckEFxodbHmsuq2kWMjk/RdHRw/ieLSETtberF4/XN2Mhr+e64dGs2PkaoyIoz0x4vexp7WFu3SOtjncXKGl+fh/qyRKLP7sYe0tPcVGt9rDklJydhqgrZ3aiZrFigIivONB8d5NTYFKvrNAo8m9ysNCqW5ChJiUShXQ09rKouwu3Wr6ezWV1bxLGeYfqGRp0OReahn+I4E5hCNtUqss5lZW0Rh1r7GZ+cdjoUEfHrGRjlWM8wq3XTzjmt9F9K3a3Z+KinIivO7G7soWppLjlZaU6HEtXW1hUzOeVR86hIFAkUDerHOreKJbnkZKWy/dBxp0OReajIiiOj41McaOlnjS4VzmtFdSGpKUlsPdDtdCgi4rfTHic/O41lJTlOhxLVkpJcrKsvZoc9rt0ropyKrDiyq6GHqWkP6+oXOx1K1EtNcbOypojth1RkiUSD6WkP2+1xNprFumknCOvrixkemWRU+xhGNRVZcWTbwW4y05NZXqn9voKxvn4xXX0jdPQMOx2KSMI7dGSAU6OTrDdaHysYa5cX43LBiVNalDSaqciKE16vl20Hu1m3vFh35QRpfX0xAFsPajZLxGlbD3SR7HaxSouQBiUrI4XlFQUMj0w6HYqcg34bx4nDx4boPzHGBlPsdCgxo7gwk6XFWWxTkSXiuK0Hu1lZVUh6eorTocSMdfXFjI5PMTml3SuilYqsOLHtYDcuF6xZriJrIdbXL2Zfcx9j6msQcczx/hHauk6yYYX6SRdivb//dlj7GEYtFVlxYuvBburK8snN1tINC7HeFDM17dF6MyIOClyyX6tB4oJULM0hOTmJEyqyopaKrDgwNDxOQ9sAG4xGgQtlKgvJSEtmy74up0MRSVjbDnazpCiTkkVZTocSU1wuF9kZKQyPTDKhhZWjkoqsOLD1QBder+/6vCxMcnISG1cs5pX9nUxPq69BJNJGxibZ3djDRStKtHTDecjJSsXj8WrD6CilIisOvLC7g5LCTCqW5TodSky6ePUSTo5Msq+5z+lQRBLO1gPdTE55uGR1idOhxKTMjBSSkly8sLvD6VBkDiqyYtzwyAS7G3u4bM0SjQLP07rlxaSmuHlxj5KUSKS9uKeDgtw0asu1vt/5cLkgJzOVVw50MaXZ+KijIivGvby/i6lpL5esWuJ0KDErLdXN+vpi/rCvE49HW1SIRMro+BTbD3Zz2eqluJI0SDxfOVmpnBqdZG+T9mKNNiqyYtyLezpYlJ9BZVme06HEtItXlzBwchx7ZMDpUEQSxraD3UzoUuEFy8pIIS3VzUuajY86KrJi2KnRSXbaHi5fs1SXCi/QRrOYZHcSL+455nQoIgnjxd0d5Gensbyy0OlQYporCf9sfBfTmo2PKiqyYljgGvwlazQKvFAZ6SmsqVvEC7s7lKREImBsfIpth7rZtGaJLhWGwKVrljI4PM6+Zl0yjCYqsmLY73ceoygvnarSfKdDiQtXbSylb2iMfeprEAm7Vw50MT4xzSWr1U8aChtXLCYjLZnNW9udDkVmUJEVo/pPjLHjUDfXXlRGkkaBIbFxxWIy05PZvK3N6VBE4t7mre0U52dgqnSpMBRSU9xsWruUl/Z2aJuwKJIciZMYY/KB2dMtZZE4d7x6dns7Hi9cuWGZ06HEjdQUN5vWLOWlPR18eHyKjLSI/POQKKf8FXp9Q6PsajjOG2+o06XCELp6YynPbWtny75Obri43OlwhMjNZN0LtMz683yEzh13vF4vT21tx1QWULIo2+lw4spVG0sZn5hmy95Op0OR6KH8FWJPbwsMEkudDiWuLK8ooLggg81bNRsfLSJVZN0PVM/6c02Ezh13GtsHae8+ybUXaTAdavWV/iSlS4byKuWvEPJ6vWze2s6q6kKKi7RXYSglJbm4akMpe5p66RsadTocIUKXC621g8DgzMeMMZE4dVzavLWN1OQkLlmjhtFQc7lcXLWxlF8900R3/wglhZlOhyQOU/4KLds2wLGeYe6+dp3TocSlqzaW8tgzTTy1tY233KyfU6ep8T3GjI1P8dzOY2xas4SM9BSnw4lL1/l7GR5/qcXhSETizxN/OEJqipuLV2npmXAoKcpiVW0Rv93Sqk3vo4CKrBjzzI6jnBqd5MZNFU6HEreK8jO4eFUJT7x8hPHJaafDEYkbQ8PjPLfjKNduLCVdg8SwueXySnoHx3jlQJfToSQ8FVkxxOv18pvnD1NTmkdthTZTDaebL6/i5Mgkz+/UCvAiofLEy0eYmPJw8+WVTocS1zaYxRTlp/ObFzQb7zQVWTFkV0MP7d0nuf3KKm2jE2YrqwspXZzNb144jNerFeBFLtTUtIf/fbGFdcsXsawkx+lw4prbncSNmyrZ29RLW9cJp8NJaCqyYsivnz9MXnaqGt4jwOVycdNllRw+NqRNo0VCYMveTnqHxrj1Cs1iRcJ1l5SR7E7ivzWb5SgVWTHiWM8w2w52c8tllSQnu50OJyFctbGUrIwU/mtzo9OhiMQ0r9fLr3/fzJKiTNYuX+x0OAkhNyuNK9Yv46mtbQycGHM6nISlIitG/OdTDaSmuLlBDe8Rk5GWzG1XVvHKgS4OHxtyOhyRmLWnsZdDRwa48+pqrfAeQa+7rpapaQ+PPtvkdCgJS0VWDDjWM8yz29u59bJKcrLTnA4nodxyRRUZacn87EnrdCgiMcnr9fLw7w5RlJfO1VpAOaKWLMriivXL+N+XWhkaHnc6nISkIisG/OwJS3KymzuuqXY6lISTlZHCrVdWsWVvJ0c61UAqslA7G3o42NrPG26oU6uDA+65vo6JqWkefU6zWU5QkRXl2rtP8vudR7n9Cs1iOeW2K6tIT3XzkycOOR2KSEzxer385HeHKM7P4KqN2qfQCcuKs9m0Zin/80ILgyc1mxVpKrKi3I8eP0hKspvbr9YsllOyM1O54+oaXtrTyb7mXqfDEYkZf9jXhT0yoFksh73xpuVMTnn40eMHnQ4l4ajIimI77HG27O3kjTfUkp2lWSwn3XlNDUV56Xznsb1Me7Rulsh8xiam+N6v9lJeksOVmsVy1LLibG6+opInXzlC89HB+V8gIaMiK0pNTk3znUf3sHRRFrdepVksp6WlunnL7Sto6TjBU68ccTockaj386cbOT4wynvuWYXbrV81TnvDDcvJzkjlO4/t1QLLEaSf/Cj12HPNHOs5xbvuXqVp9ihx2dql1FcW8B//e1B36oicQ2fvKX75TBNXb1jG8qoip8MRfDfxvOmWeg609PPsjqNOh5MwVGRFofbuk/zsyQYuXVXC6uXFTocjfi6Xi3ffs5qRsSke+PlujQZF5jDt8fKN/9yF2+3iLbetcDocmeG6S8qpK8/n3x7dS+/gqNPhJAQVWVFmcmqar/x4O+mpbt71utVOhyOzlC/J5Y9vXs6WvZ08s73d6XBEos4vn2lkb3Mv73ndavJy050OR2ZISnLxwTevZ2rKw9cf2YlH/aVhpyIryvzH/x7kcMcQH/ijdUpQUeqOq2swVQU8+Mu9dPePOB2OSNRoaBvg4d8e4oq1S7lig5rdo1FJURZvu3Mluxp6+O8XDzsdTtxTkRVF/rCvk8eea+bWyytZt0L7e0WrpCQXH/jj9bhc8E/ff5nR8SmnQxJx3NDwOF/+8Tbyc9J4z+vX4HJp+5xodcOl5Wwwi/n+r/ezt0nL0oSTiqwo0dA2wJd/vJ268nz+RH0MUa+4MJOPvHUjbd0n+crD27WsgyS0iclpPv+DV+gbGuNjb9tIRkaK0yHJObhcLj70J+spKcrin3/4Ch29w06HFLdUZEWB7v4RPvf9l8nPTuPj77yY1FTdTRgL1i4v5h13ruSV/V18/9f71AgvCcnj8fK1n+7gYGs/f/mWDVSXFzgdkgQhMz2Fj//pxeCFf/zey1oNPkxUZDmso3eYT33rBSanPHzy3Zdo65wYc/Plldx6ZRW/fv4w3/uVCi1JLNPTHr72sx28sLuDd96xgo2rljgdkixASVEWH3vHxfQMjvCpb71A/4kxp0OKOyqyHNTaeYK/++YLjE1M8//92SZKirOdDkkWyOVy8Y47V3Kbv9D69i/2MD3tcToskbCbmJzmCz/cyrPbj/LW2wy3aNHkmLSiupBPvPtSjg+O8n+/9QLHB3QzTyipyHLIS3s6+NtvPo/L5eIf3n85ZUvznA5JzpPL5eLtd67krmtreHxLK5/97h+0WKnEteMDI3zq2y/y8v4u3nvPau68tlaN7jFsRXURn3zPpQycGOfjX3uO3Y09TocUN1RkRdjE5DTf/dVevvDDrSwrzubTH7hCM1hxwOXyLbz453+0lv0tfXz8a89pM2mJS68c6OLerz5LW9dJPv6Oi7jhskqnQ5IQqK8s5LMfvpKcrFQ+/W8v8chTlinNyl+wZKcDSCTbDnbzb4/uoatvhDuuquJPbl2BO1l1bjy59uJyypfk8sBPd/B/v/Uit2yq4L2vW01OZqrToYlckJ6BUb736728tKeTqqW5fPRtGykuynI6LAmhpcXZfOZDV/L9x/by48cP8cKuDj7ypvWsqCp0OrSYpSIrzLxeL/sO9/GfTzWwq6GH0uIsPvVnm1hRs8jp0CRMqkvz+PzHruWxpxt5/MUWXtzTweuuruH119Wq2JKY0zc0ymPPNfP4lla8XnjrrfXcelW19lSNU+lpyfzFWzZy2dpl/Oi/9/PJbzzPZauX8NZbDHXl+U6HF3NUZIXJyZEJnt91jKdeaaOxfZD87DTeeecKbrqsSrNXCSAt1c1bbl/BVRtLeXRzI4881cBjzzVz9YZl3LKpkpVVhSQlqYdFotO0x8vuxh6e3trOi3s68Hi9XL1+GW+8aTlFBZlOhycRcPGqElbVFvG7F1v43YstfHx/F6uqC7llUyVXrV9GRprKh2DoXQqRySkPrZ1D7G3qY/uhbg609DE17aViSQ7ve/1qrtpYRkqKRn6Jpqwkh4++/SLau07w5JZWXtzdweat7RTmpnPpqhI21BezsqqQorwMp0OVBOb1ejk+MMrBlj522OPssMcZGp4gOyOFmzaVc9uV1SwqVHGVaDLSknnDjcu59coqnnmljd9vP8rXH9nJt36xm3V1i7hkZQmra4qoWJKLW4PGOanIWoDJKQ9Dw+P0nxjj+MAIx/tHaO8epq37BC0dJ5ic8jUJlpfkcMdV1Vy2Zinly3J1141QviSX971xHW+/cxXbD3Sx69Bxfr/zGL/7wxEAFuVnULU0l4qSHJYuyqKkMJNF+RkU5KSRlZGinyG5YB6Pl+HRSQZOjtEzMErPwAhHe4Zp7zpJS+eJ04tR5mSmsL6+mEtWlbDOLNZlQSEzPYW7rq3lzmtqaDgywPYDXew8dJzth44DkJHmpmppHhVLcihbnE1JYSbF+ZkU5KaRn52G2524V28iUmQZY/KB2RdzKwG6urrmff2psUm27OlkenrmQo/e13x0+u8ZC0J6veDF6/vb4//b68WDL+l4PF6mpj2n/56c8jI5Nc341DTjE74/I2OTjIxNzblHXW5mKkuKs7isPpvKpblULsslNyewsfMwnR3armBiYgKAjmPHHI4kOlQvdlG9uIR7riqm4/gwrR1DtHWdpK2tnVd2jbxmnS2320VWWgoZ6SlkpLlJT00mNTWJlGQ3qclukt0ukpOTcLtcuN1JuFy+/RWTXJDkcoHL97HL5WJmrRYo3AIPnVnGnaOoO+MYcMmKEgrzgtvM/KabbqoCjlprY2bDxwvNX16vl20Hj9M/NHuhR++M/87MaK/msED+wgser+8Bj9eLx/tq/vJ4vEx5PExP+3LYxKSHialpJiY9jE/48tbI2CSnxqbwzNr+KSU5iSWLsqguzqZy7SLKl+ZSujjb9z8WD8e75//+xFmRzq85KXD9+jyuX5dL/4kxWo8NcaTzBF29vTzdcoSR0cnXvCYjPYXsjGTS05JJT00mLSWJ1GQ3qSn+/OVOwu1Owp3k8uWuJBdJvJqzXEn+v3k1h83OX2d+HFz+AihbnM3qmqKgv/+F5jBXJFaoNsZ8FvhM2E8kIrGg2lrb6nQQwVL+EpFZgs5hkbpceD/w0KzHUoEaoBGYjlAcF6IMeB64BjjqcCxO0vvgo/fB53zeh1h7v+Ihf4F+ZkHvQYDeB5/zfR+Cfm5Eiixr7SAwOMeXGiJx/lAwxgQ+PBpLo/BQ0/vgo/fBJxHeh3jIX5AY/6/mo/fAR++DTyTeh8TtRhMREREJIxVZIiIiImGgIktEREQkDFRkBW8QuI+5ezMSid4HH70PPnofYof+X+k9CND74BP29yEiSziIiIiIJBrNZImIiIiEgYosERERkTBQkSUiIiISBiqyRERERMJARZaIiIhIGKjIEhEREQmDSG0QLXHKGPMQsM9a+5UwnycXeBzIBz5trf3FjK/9J5BkrX3TjMc+AbweuNFaOxnO2EQkNil/SbipyJJYsQEosdbWzfG1PwO2GWPutdbeb4y5FfgosEkJSkSigPJXglKRJacZY34C7AiM6owxHwJuAN4GfA24HMgBXMCfW2tfnPV6L1Bsre2d/bkx5nXA3wOpwAjwCWvtljlieAPwGcANnAD+DzAEfB8oNcbsAq6w1o4GXmOtPWmMeTPwe2NMO/AN4A3W2u4QvTUiEuWUvyQaqSdLZvou8O4Zn7/X/9hlwDJ8yWEV8EPg74I9qDFmOfDPwJ3W2o3AB4BfGmOyZj1vBfAg8MfW2nXAp4FfAZ3AnwPN1toNMxNUgLV2D/A3wM+BL1hrXwk2PhGJC8pfEnVUZMlMzwLpxphLjDGrgGJgs3/E9vfAB40xXwHeBGQv4Li3AEuBzf6R3MOAB5g9dX6j/3yHAay1TwPHgYuDPCiUvm0AAAF/SURBVM9N+BLa3cYY/WyLJJZnUf6SKKP/kXKatdYL/DvwLnyjwH+31nqNMXcB/+N/2q/wjdZcZzmMC8AYkzrjMTe+5LMh8Aff1P2+Wa+d6+cxCUiZL3ZjzN8ABlgHlOMbRYpIglD+kmikIktmewi4B3gz8AP/Y7cAv7HWfhvYCrwBX+KZrQe4xP/xH814/GngVv90OsaYO4E9QPqs1weeV+N/3o34Es7L5wrYGHMz8Lf4pul7/bH/tTHmtvm+WRGJKw+h/CVRREWWnMFa2wXsAPZYazv8Dz8IXGeM2QNsAZqB6jmmtD8GPGCM2QFsxDf1jbV2P74+hp8ZY3YDnwPusdaemnXuA8Bf4Ot32Ad8EXidtXbobPEaY6qAnwLvs9Y2zzjfXwA/NsaUn987ISKxRvlLoo3L6/U6HYOIiIhI3NFMloiIiEgYqMgSERERCQMVWSIiIiJhoCJLREREJAxUZImIiIiEgYosERERkTBQkSUiIiISBiqyRERERMLg/we6fnZ03UpG7AAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots(1,2,figsize=(10,4))\n", "\n", "\n", "x = np.linspace(-5,30,100)\n", "x2 = np.linspace(-5,30,100)\n", "y=stats.norm.pdf(x, 12,3.5)\n", "y2=stats.norm.pdf(x2,15,3.5)\n", "\n", "ax[0].plot(x,y)\n", "ax[0].set_ylabel(\"probability\")\n", "ax[0].set_xlabel(\"value of X\")\n", "ax[0].set_title(\"null hypothesis\")\n", "ax[0].set_ylim(0,0.13)\n", "ax[0].fill_between(x,y, where=y>0.0,interpolate=True,facecolor='lightblue',alpha=0.2)\n", "ax[0].plot([12,12],[0,0.113],color='k')\n", "ax[0].plot([8,12],[0.06,0.06],color='r')\n", "ax[0].set_xticklabels([])\n", "ax[0].set_yticklabels([])\n", "ax[0].annotate(\"$\\sigma$ = ??\", xy=(2,0.06),xytext=(2,0.06))\n", "ax[0].annotate(\"$\\mu$ = $\\mu_0$\", xy=(10,0.12),xytext=(10,0.12))\n", "\n", "\n", "\n", "\n", "\n", "ax[1].plot(x,y)\n", "ax[1].set_ylabel(\"probability\")\n", "ax[1].set_xlabel(\"value of X\")\n", "ax[1].set_title(\"alternative hypothesis\")\n", "ax[1].set_ylim(0,0.13)\n", "ax[1].fill_between(x,y, where=y>0.0,interpolate=True,facecolor='lightblue',alpha=0.2)\n", "ax[1].plot([8,12],[0.06,0.06],color='r')\n", "ax[1].plot([18,18],[0,0.113],color='k')\n", "ax[1].annotate(\"$\\sigma$ = ??\", xy=(2,0.06),xytext=(2,0.06))\n", "ax[1].annotate(\"$\\mu \\\\neq \\mu_0$\", xy=(16,0.12),xytext=(16,0.12))\n", "ax[1].set_xticklabels([])\n", "ax[1].set_yticklabels([])\n", "\n", "sns.despine(top=True, right=True)\n", "\n", "#plt.show()\n", "glue(\"ttest_hypo_fig\",fig,display=False)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "```{glue:figure} ttest_hypo_fig\n", ":figwidth: 650px\n", ":name: \"fig:ttest_hypo\"\n", "\n", "Graphical illustration of the null and alternative hypotheses assumed by the (two sided) one sample $t$-test. Note the similarity to the $z$-test. The null hypothesis is that the population mean $\\mu$ is equal to some specified value $\\mu_0$, and the alternative hypothesis is that it is not. Like the $z$-test, we assume that the data are normally distributed; but we do not assume that the population standard deviation $\\sigma$ is known in advance.\n", "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Introducing the $t$-test\n", "\n", "This ambiguity is annoying, and it was resolved in 1908 by a guy called William Sealy Gosset {cite}`Student1908`, who was working as a chemist for the Guinness brewery at the time (see {cite}`Box1987`). [^gosset] Because Guinness took a dim view of its employees publishing statistical analysis (apparently they felt it was a trade secret), he published the work under the pseudonym \"A Student\", and to this day, the full name of the $t$-test is actually **_Student's $t$-test_**. The key thing that Gosset figured out is how we should accommodate the fact that we aren't completely sure what the true standard deviation is. The answer is that it subtly changes the sampling distribution. In the $t$-test, our test statistic (now called a $t$-statistic) is calculated in exactly the same way I mentioned above. If our null hypothesis is that the true mean is $\\mu$, but our sample has mean $\\bar{X}$ and our estimate of the population standard deviation is $\\hat{\\sigma}$, then our $t$ statistic is:\n", "$\n", "t = \\frac{\\bar{X} - \\mu}{\\hat{\\sigma}/\\sqrt{N} }\n", "$\n", "The only thing that has changed in the equation is that instead of using the known true value $\\sigma$, we use the estimate $\\hat{\\sigma}$. And if this estimate has been constructed from $N$ observations, then the sampling distribution turns into a $t$-distribution with $N-1$ **_degrees of freedom_** (df). The $t$ distribution is very similar to the normal distribution, but has \"heavier\" tails as illustrated in Figure \\@ref(fig:ttestdist). Notice, though, that as df gets larger, the $t$-distribution starts to look identical to the standard normal distribution. This is as it should be: if you have a sample size of $N = 70,000,000$ then your \"estimate\" of the standard deviation would be pretty much perfect, right? So, you should expect that for large $N$, the $t$-test would behave exactly the same way as a $z$-test. And that's exactly what happens! \n", "\n", "\n", "[^gosset]: Well, sort of. As I understand the history, Gosset only provided a partial solution: the general solution to the problem was provided by Sir Ronald Fisher." ] }, { "cell_type": "code", "execution_count": 68, "metadata": { "tags": [ "hide_cell" ] }, "outputs": [ { "data": { "application/papermill.record/image/png": "iVBORw0KGgoAAAANSUhEUgAAAm8AAAEPCAYAAAAUKiNPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xd43NWZ8P3vFPUpKlbv9bjbYGx6xxBagIQ0kvDu5snDpkCW7LUbyBvSF/LAbkI2gWSTJQmbApu8vAkktFANDmCMAVdJR82yitWlGfU2M88fMyOrWqMymhnp/lyXLjS/eg+Y2+f3O+c+x+DxeBBCCCGEEJHBGOoAhBBCCCFE4KTxJoQQQggRQaTxJoQQQggRQaTxJoQQQggRQaTxJoQQQggRQaTxJoQQQggRQaTxJoQQQggRQaTxJoQQQggRQaTxJoQQQggRQaTxJoQQQggRQaTxJoQQQggRQcyhDmA5KaXMQA7QpLUeD3U8QgixEJLDhBCBWFWNN7xJ7/jLL78c6jiEECvLEOoAlonkMCHWngXnL+k2FUIIIYSIINJ4E0IIIYSIINJ4E0IIIYSIINJ4E0IIIYSIIEEtWFBK3QLcA0QDD2qtH57juGuBh7TWhb7PicDvgCKgA/io1ro1mLEKIcRkkr+EEOEqaG/elFLZwL3ABcA24Dal1MZZjksH/p2p1Rb/CuzVWm8A/gv4j2DFKYQQ00n+EkKEs2B2m14BvKK17tZaDwBPADfPctwjwLenbbsW75MrwOPA1UqpqKBFKoQQU0n+EkKErWB2m2YBLZM+twC7Jh+glPoS8B6wb65ztdbjSqleIBU4OencRCBx2nk5yxK5iDhutwcAgwEMhtUy5ZcIoaDmL9/5ksMEcCp/ARiNkr/E/ILZeJvtT6Db/4tSajPwYeByZias057rcyfwzaUEKCKfs3+E+399gCO1nQBY46P550/u4Mz1aSGOTES4YOcvkBy25nk8Hv7wchX/84Jm3OXBaIDrLijiMx/cjEkaceI0gtlt2gxkTPqcydQnz4/4th0AngWylFJ7p5/rWy7GBnRNu/4PgcJpPxcu71cQ4ay5o59/+dFeKk908+FLS7jlqvWk2GP59i/28fxb9aEOT0S2YOcvkBy2po2Nu/mP37/Pb5+r5KwN6dxy1Xou2ZHLn/fWce+v3mZoRFZHE3ML5pu3l4BvKaVSgQG8T6m3+Xdqrb+J76lTKVUA7NFa+xPXs8CtwH3Ax/AO/h2bfHGttQNwTN6mlArKFxHhp6dvmK/8eC8GA9z3+fNZX5AMwA0XFfFvv32Xh584hMloYPfZ+SGOVESooOYv3zUkh61hP/r9++x5r4lbrlR8/Eo1MdxD5Sfxsz8e5ru/eJt7P3+eDAMRswramzetdTPwNeBV4CDwmNZ6v1LqWaXUWfOc/nXgHKXUMeALwBeDFaeITL9+poLB4THundRwA4iPjeKev9/F5uIUfvX0MXoHRkMY5fJoampCKcUbb7wxZftll11GU1MTLpeL22+/naGhoSXd5y9/+QvXXHMNu3fv5ne/+938J8zi7rvv5o9//GNAx/b393PdddfR1NQEQGtrK3fdddei7rvcJH+JYDpU3cGe95r42O4yPnHV+ikNtGvOK+RzH97GkdpO9rzXFMIol4/ksOUX1HnetNaPAY9N23bNLMfVAwWTPncDHwxmbCJy6RPdvPROAx+6pIT8DNuM/SaTkX+4aSv/+IM9/Pb5Cr7w4W0hiHJ5RUVF8fWvf50///nPWCyWKfsef/xxLrjgAuLi4hZ9/ba2Nh588EH++Mc/Eh0dzcc//nHOPvtsSkpKlhr6rA4dOsQ999xDfX39xLaMjAxSUlJ47bXXuPjii4Ny34WQ/CWCYdzl5udPHiEtOZ6PXF4GwJjTiXtsHIPRSHRyElednc+Lb5/g0aePcfamDOJjI79YWXLY8pIVFkREcbs9/OxPR0i2xfCx3WVzHleQaeOa8wr461v11DU7Vy7AIElLS+O8887j/vvvn7Ld4/Hwm9/8hmuvvXZi21e+8hWefPLJic/f/va3+d3vfseLL77IDTfcMOXnzjvvBODNN9/knHPOITExkfj4eK666iqef/75KfdqbW3lU5/6FB/60Ie4+eabOXjwIB6Ph+9973tcddVVfPrTn6ahoQHgtPcC+MMf/sA3v/lN0tKmFpbceOON/Nd//dfy/EsTIgw9+8ZxGlr7+OwHNxNtMlD3yK/Yf+tnOPC/buOdv/8s+vs/BNc4/3DTFrp7R/j9i1WhDnlZSA5bXkF98ybEctt7sJnqRgf/dMuZ8z6NfvKq9bz+fjO/evoY3/2H8xZ9z1cONPDi/oZFn386u3flcdlZeQEde/fdd3P99dfzxhtvcP755wPe1/ZWqxWr1Tpx3LFjx7jtttumfL7pppvYunUru3fvnvXa7e3tpKamTnxOS0vj8OHDU4554oknuOSSS/jsZz/L22+/zbvvvktrayvl5eU8/fTT9PX18cEPel847d69e857Adx7772zbi8rK6Ompgan04ndbp/n34gQkWVweIzH/lrJGWWp7Fq/jur/+DEde14n/fLLsBQVMdTSwsmnn2G8v4/1d/0LV+zM46nXa7nugiJSkxb3Vipc8hdIDltO0ngTEeWZN46TtS6Bi8+YfzosS3w0N1xUzG+eq+BkRz9ZqZZ5zwlnFouF7373uxNdDwBvvPEGGRmniiIHBwdpbW2lqKgIAJfLRW1tLUopXnzxRR566KEp1ywsLOSHP/whHo+H6aYPlD733HO54447qKio4OKLL+ZTn/oU999/P1deeSVRUVEkJydz0UUXAZz2XvPJyMigoaGBLVu2BPBvRYjI8dr7zQwMj3PLB9ZT958/p2PP6+R9/GPkXHvNxP9v8RkZ1Pzil1Te/298/PZ/4uUDDbzw9gk++YH1IY5+6SSHLR9pvImIcaK1l4r6bv7+uk0BT2S5e1cej/21kuf3neAz129a1H0vO2thT5fBdMEFF0zpejAajZhMpon95eXllJWVYTR6R0RUVFSQk5NDTEzMaZ8k09PTOXDgwMTn9vb2Gd0BO3bs4JlnnmHPnj08++yz/OlPf6KoqAi3+9QUZmazN6XM99R6OmazeSJ+IVYLj8fD82/VU5BpI3u0i8MvvULW9deRe921U45Lv+RiXMNDHP/tY2TWVXCmSuOFt0/w8d1lmEwL//8inPIXSA5bLpIhRcR4/q16zCYjl+/MDficJFssZ2/O4OV3GhgbdwUvuBV0991387e//Y329nbOPfdcTp48Nf3Y0aNHGR0dxe12Mzo6ys9+9jM2bNgw7zXPO+883nrrLbq7uxkaGuKFF16YeAL1e+CBB3jqqae46aab+MY3vkF5eTnnnnsuzz//PKOjozidTvbu3TvHHQLX2tpKTo4sNCBWl+pGB3XNTj5wTj71j/6GKJuN3A/OXteSccUVxGZkUP/or7lqVy7dvcPsL29b4YiDR3LY0knjTUSE4dFxXj3QyPlbs7BbYhZ07tXnFtA7MMqbh1vmPzgC+LsexsbGsFgs9PT00NfXB3jHhmRmZnLDDTdw6623kpOTw759+2hsbDztNdPT0/nyl7/Mrbfeyo033sh1113H1q1bAbjhhhtoa2vj05/+NC+88AI33HADt99+O9/85je54oor2LVrF9dddx2f//znKS4uXtJ3q6qqorCwUMa7iVXn+bfqiY02caahnd6jx8i9+cOY42JnPdZoNlPw8Y8x1NRMfvMxUuyxPL+vfkXjDSbJYUtnmK2fOFL5Jss8/vLLL8uT+yrz0v4T/MfvD/K9L5zP5uJ1CzrX7fbwuf/zMsn2WP7PFy8IUoSh8+tf/xqj0cinPvUprr76ah566KElJ6DJ7rvvPr70pS/NKO8Phvvuu4/zzjuPSy65ZKGnroqZTCWHrU4DQ2P8P9/5Kxdvz+b81x/F43Zxxn33YjTPPXLJ4/Fw9Lv3MtTeRu1H7uTxPcf5+VevICMlYQUjXxmSwxaev+TNm4gIL73TSHaqhU1FKQs+12g0cOU5+Ryr66K1ayAI0YXWJz7xCd544w36+/vp6uqaGOi7HDweD5s3b16RpNfS0kJXV9diGm5ChLW/HTrJyKiLS5OHGGpqIvdDN5224QbewfZ5H7mZMYeTXbQC8OqB0799ilSSwxZOGm8i7Dn7R6g43sWF27MXvVTMBduyANh3tHU5QwsLUVFR/PSnP8VisbB///5lXU7HYDBMlM4HW2ZmJt///vdX5F5CrKR9R1tIT44n6vDbmBISWLfjzIDOs61XxKanM/jmXjYUJK/K/AWSwxZDGm8i7O0/1orbA+dszpj/4DlkpCRQmGVj39HVMe5NCBEZBofHOFjVwXmliXTv20/qBedjjIoO6FyDwUDaRRfSe6yc83OiqTvppK17MMgRi0ggjTcR9vYdbSUtKY6i7KUNAD1ncyYVx7tw9I0sU2RCCHF67+l2xl1uto004B4dJe3ChY27TbvgAjAYKO6oAOBteQAVSONNhLmhkXHer2rnnM2ZS36Vfs7mTNweeKd8dXY9CCHCz74jrdgSojEd3E98Xh6W/PwFnR+Tkkzili0MvvUGBekJq7brVCyMNN5EWHtftzM27uaczZlLvlZhlo20pDhJfkKIFTE27uZARSsXZ5sYqKkh7ZKLFvUQmn7RhYx2dXNJ4iDH6jrpHRgNQrQikkjjTYS1fUdbsMZHsbEwecnXMhgMnLM5k/er2hkaGV+G6IQQYm5HazsZGB5ny3AjGAyknnPOoq6TvONMTHFxFHbX4fZ4xwGLtU0abyJsuVxu3ilvY+fGjEUtCzObczZnMjbu5j3dvizXE0KIuew72kJMtInY+kqsZaVE22yLuo4xKorELVsYrzzCOluMFF4JabyJ8FXd6KB/aIydG9OX7ZobC5OJjzXzvjTehBBB9r7uYGdOLIN1dSSfccaSrpV8xnbGehxcmOHhcE0nLpd7/pPEqhXUxptS6halVLlSqkYp9cVZ9t+klDqslDqmlHpUKRXt236rUqpFKXXQ93NvMOMU4elQdQcAWxa4osLpmExGthSv43B157JdM5j6+vr4whe+MOf+u+66i7a2NgYGBvjHf/xHrr/+eq6//nqeeeYZwLtO4AMPPLBS4a4qkr/EUrR3D9LSNcB2j/dBMemM7Uu6XtL2bWAwoAabGBoZp7rRsRxhBl2gOcxPa82111475Zhf/vKXfOADH+Cqq67ihRdeALzrh951113BCToCBK3xppTKBu4FLgC2AbcppTZO2p8APATs1lpvAmKBv/Pt3gn8k9Z6u+/na8GKU4SvQ9WdFGXZ513LdLCxiZbn/krLc3+la9/bzLfk29bSdbR0DdAeAfMlOZ1OKisrZ9336quvkpaWRnp6Oj//+c/JysriL3/5C48++ijf+9736OzsZPPmzbS2tqK1XuHII5vkL7FU/ofPdW21xKSmEp+VtaTrRVmtWEtKiKvXGAynrh/uAs1hAE8++SSf/exnGRoamjjm8OHD/PnPf+app57iscce44EHHsDhcJCRkUFKSgqvvfbainyPcHP69TmW5grgFa11N4BS6gngZuA7AFrrAaVUgdZ6zJcI04Ae37k7gRKl1N3AEeAOrXXPjDuIVWt4dJyK+m6uv/D0y6QM1J/gyFfvwTV4qiGW+4mPkffxj855zrbSVMCb/HafPX/Zfvsre2h7+ZUAI1+Y9MsvI+2yS+bc/6//+q+0t7fzxS9+kYcffnjKvkceeYTvfOc7AOzatYvCwkIAUlJSSExMpLOzk3Xr1nH99dfzy1/+kvvvvz8o32GVkvwlluRQdScpCSZGK8pJv+zSZVk1IPmM7Zz4w//HhnMu4WB1Bx/breY9J5T5CwLPYX19fbz88sv84Ac/mPJG7fXXX2f37t3ExMQQExPDrl272LNnDzfeeCM33ngj3/nOd7j44ouX+6uFvWB2m2YBk0dVtgBTVlr2Jb6rgQZgHfDCpGO/BWwHGvE+4U6hlEpUShVM/pl+fRG5Ko53eye2LJ27y3Sks4vy7/wrptgYtt//PXY+9CPSLryAxsd/f9pklZduJckaw6EI6Dq95557SEtLm5H0HA4H9fX1E4s3n3/++WT5nuyfffZZRkdHKSkpAWDnzp28+uqr876RFFMENX+B5LDVzOPxcKimgwusA7hHR0navrQuU78k37i5XaZOKut7GB4N/6r5QHOY1Wrlxz/+MZmZU6eFam9vJy0tbeJzamoqra3eatuysjJqampwOp1B/hbhJ5hv3mZ7zJgxwlJr/RyQopS6D/gpcIvW+ib/fqXUA0DdLNe6E/jmMsUqwsyh6g7MJgObCmdfiN49Nkb5d+/FNTjElm9+g4TsbACK/9dnGO1xUPvwfxKXmYlt44YZ5xoMBraWpHKopgOPxzPvE3HaZZfM+3S50hoaGqYkNL/nnnuO++67j0ceeQSzb+Fri8WCx+Ohp6eH5OSlT7myRgQ7f4HksFWrobUPR98IJYYmjLEx2FXZslw3PiebmNR1ZHUdZ9yVRPnxbs5UM/PAZOGYv2DuHDbdbA+dRuOp904ZGRk0NDSwZcuWZY0v3AXzzVszMHkxykzgpP+DUipZKXXlpP2/A7YqpexKqS9P2m4Axma5/g+Bwmk/Fy5T7CLEDlV3oPKTiY2Z/fmic+8bDNafoPTz/0BCTvbEdqPZjPrSHUTZbDT87vE5r7+9bB2OvhEaWvuWPfaVYDQaMZlMU7b95je/4f777+cXv/gF69evn7LPbDZPSXhiXsHOXyA5bNXyj0eLb67DvmkTxqioZbmuwWAgaetWqK8hyujhcISMe5vNbDlsNunp6XR0nPqeHR0dUxp9azW3BfMbvwRcrpRKVUrFAx8Gnp+03wD8VimV5/v8UeBvQD/wFaXU2b7ttwN/mn5xrbVDa10/+QdoCtJ3ESuob3CU2mYn20pm7zL1eDw0P/kU8Xm5s5bfm+PjyPrAVTiPHqOvumbWa2ydNO4tnJnNZsbHZ3aN5OTkTHQdALz00ks8+uijPP744yg1dRxMf38/Ho+HxMTEoMe7igQ1f4HksNXsUHUnxVYPY22t2DdtnP+EBbBv2IB7eJhdSeMcDPP8BYHnsLlcdNFFvPDCCwwNDdHd3c2+ffs499xzJ/a3traSk7P2RhsErfGmtW4Gvga8ChwEHtNa71dKPauUOktr3QXcBjytlDoElAF3aa1deBPhT5VSFcAO4CvBilOEn6O1nXg8pxpY0zneP8jgiQayr712zi7P9EsvxRQXR/Ofnpx1f1pSPJnrEsJ+3FtKSgpZWVl8+tOfnrI9MTGRvLw8amq8jdMf/ehHjIyM8LnPfY4bbriBG264gSNHjgDwzjvvcOmll6547JFM8pdYLJfLzdG6TnbG9QJgXz9z6MZS2DZ436pvNnRT1+ykbzC8l8oKNIfNZevWrXzwgx/k5ptv5hOf+ARf+tKXJqpTq6qqKCwsxG63By3+cGVYTYOYfQN+j7/88strsiW+Wjzy1FGee/M4/3PvtUSZZz5fHP36txhqambHD/4do3nuYZv1//N7mp95lh3/+RCxGRkz9v/o9++z72gLv/321RiNS68EW2kvv/wyBw4cmHeuozvuuIPbb799xhu5VSby/gPOQnJY5KttcnDng6/xFYsmuuYou37yMIZl7tZ7766vMppg5173WXz9f53Nro0z81skCDSHzeW+++7jvPPO45JLLlnewFbegvPX2usoFmGvor6L0rykWRtu/bV1OA8fIeuaq0/bcAPIvOpKDEYjJ596etb9GwuT6Rsco7mjf1niXmmXX3457e3tUya4nO7w4cNkZWWt9oabEGGjor4bgOjmOmwbNy57ww3AvnEDnhO1RBk8VBzvXvbrr5RActhcWlpa6OrqWg0Nt0WRxpsIK8Oj49Q2OdlQMHtVZPurezBERZF+8fzjumOSkkjZtZOO1/finmXMxQZfJWv58a6lBR1C3//+9ye6EGazdetWvvrVr65gREKsbRXHu8mPHWO8owP7huXtMvWzb9iAe2SEHbbhicZipJovh80lMzOT73//+0GIKDJI402EleoGBy63h42FMxtvHo+HrrfeJmnbVsxx8QFdb92uXYz399N79NiMfVnrErBboimP4CdXIUR4KT/exVmxwRnv5mf3jXvb5OmiqqGHsXFXUO4jwpc03kRYKa/3vgVbP8ubt/7qGkY7O0nZtTPg6yVu3YIxJpquN9+asc9gMLChIDnin1yFEOGhvWeQTucweYOtmG1W4rMz5z9pEaKsVuLzckntaWJs3E1t09qbpHatk8abCCsVx7vJTbdijY+esa/rrX0YTCaSt28L+HqmmBiStm2j6+39eFwzn043FKTQ0jlAT9/wkuIWQoiK493g8RDXchx7kMa7+dnXb8DQdByTxyW9B2uQNN5E2HC7PVSe6Jm7y/TNfdi3bMYcn7Cg66bs3MmYw0lv5czF2f33iuRBv0KI8FBR302qcRh3Tzf2aRNlLzf7hvV4xsbYFDNIRX3kjtsViyONNxE2Gtv6GBgam7VYYbD+BMOtraTsDLzL1C9p+zYMUVGzdp0W59iJMhul61QIsWQVx7vZET8AgLW0NKj3spZ61y7eHNVLRX23rF28xkjjTYSNcl8DasMsb94633wLjEZSzpy5osJ8zHFxJG7eTNe+t2ckuCizidLcRHnzJoRYksHhMepbnBS5ezDGxkxZti8YohMTiU1LI3OoDWf/KC2dA0G9nwgv0ngTYaPieBeJ1hgyU2Z2i/YceBebKiPKal3UtVPO2sFoZxeD9Sdm7NtYmEJNk4Ph0ZnTiQghRCD0iR7cHrB3N2EtKcEQwLqdS2UtLSGmpQE8noie8kgsnDTeRNjQJ3pQeUkzlrwa6+1l4Hg9iVu2LPraiZs3AeA4dHjGvvX5SbjcHuqapWJLCLE4uqGHaM8YnpZmrGVlK3JPa1kZ7r5eMk1D6AbHitxThAdpvImw0Dc4ysnOAVR+0ox9ziNHweMhcdOmRV8/JiWFuMxMnAcPzdhXmue9Z5UkPyHEIlU19LA1dhDcbmwlJStyT5tv3Nv22H6qGnpW5J4iPEjjTYSF6kZvw6ksd2bjzXHoMKb4OCwF+Uu6h33zJpzlFbjHxqZsT7bFsi4xjmpJfkKIRfB4PFQ3OFBGbx6zlhStyH3jc3IwxcZSMN5FfUsvI2MyWe9aIY03ERaqG3owGKAkN3HGPuehw945k5Y4hiRx40bcIyP0VVXP2FeWl0hVozTehBAL19EzhKN/hIyBNuJychY8ndFiGYxGrCUl2LtP4nZ7qJPJetcMabyJsKAbeshJs5AQFzVl+3BbG8Otbdg3b17yPewbN4DBMGvXaVluEq1dgzj7R5Z8HyHE2qIbesDjIbq1AZtamfFuftbSEmg7SbR71BuHWBOk8SZCzt/lUDprl+kRwPvWbKnMCQlYigpnLVoo842183ffCiFEoKoaekh39+EZHJyYf22lWMtKweNhvblPhn6sIdJ4EyHn73Ioy5ulWOHQYaKSkojLzFiWeyVu3ERfdQ3jg4NTtpfkJGI0IIN+hRALVt3oYFtsPwDW4uIVvbe1uBgMBjaanDL0Yw0xB/PiSqlbgHuAaOBBrfXD0/bfBHwbMAHvALdprUeVUnnAb4E0QAOf1Fr3BzNWETr+hKOmNd48bjeOw0e8KyRMmz5kseybN9H0l7/Qe/QYyZMWuI+LMZObbpXGm5gg+UsEwuVyU9Pk4Hx3D6b4eOLS01f0/ub4eOIyM8kc6qR1zDv0w26JWdEYxMoL2ps3pVQ2cC9wAbANuE0ptXHS/gTgIWC31noTEAv8nW/3T4CfaK3XAweArwcrThF6VQ0OosxG8jNtU7YPNTUx3tvrHau2TGylJRjMZpxHj83YV5aXRFWDQ5aZEZK/RMAa2voYGXWR5GzDWlIc1MXo52ItLia2sxk8Hhn6sUYE80/ZFcArWuturfUA8ARws3+nb1uB1rrNlwjTgB6lVBRwke94gEeBjwQxThFiVQ09FGV71xidrLe8EgBb6fINADZGR2MpKqSvonLGvtK8JPoGR2ntGpzlTLHGSP4SAalq6MHsHsfQfhLLCneZ+lmKi/D095HoGpDegzUimN2mWUDLpM8twK7JB2itx5RSV+PtYmgGXgDWAb1a6/FJ5+VMv7hSKhGYPq/EjONEePN3OVx59sw53HorKohKtBOblrqs97SVlXHyuedxjYxgijnVvVDmm6ZEN/SQuW5lSv1F2Apq/gLJYatFVYODQkMvuN1YilZmfrfprMXe+26OHZCK0zUimG/eZhuk5J6+QWv9nNY6BXga+Gmg5wF3Asen/exddLQiJJra+xkZdVE6y/xuveWV2JRatvFufjZVhsflor+6Zsr2/EwbUWYjtU3S7SCCnr9ActiqUNPoYFO0r1ihsCAkMcTn5mKIiqIEJ7VNMvRjLQhm460ZmFwimAmc9H9QSiUrpa6ctP93wFagA7AppUyznTfJD4HCaT8XLlv0YkXU+BpKJTlTG28jnV2MtLdjU2rZ72nzrTvYe6x8ynazyUhhlm0iJrGmBTt/geSwiDc65uJEay/ZY11Er0shOnHmQ+hKMJrNWPLzWNffhrN/lE7HcEjiECsnmN2mLwHfUkqlAgPAh4HbJu03AL9VSp2ltW4APgr8zdcVsRf4GPAYcCvw3PSLa60dwJS/ZVUQ/qIXwVXT6CA22kRWqmXK9l7fmDRrWemy39OckEB8Ts7EmLrJinMS2fNuE263B6Nxed/4iYgS1PwFksNWg/qWXlxuD9buFqyloRnv5mcpKqbv1T0Y8rxDUVKT4kIajwiuoL1501o3A18DXgUOAo9prfcrpZ71JbwuvMnwaaXUIaAMuMt3+hfwVneV430SvSdYcYrQqmlyUJyTiGlaQ6mvogJjbAyW3Nyg3NemyujTGo9r6lqApTmJDI2Mc7JTZnZYyyR/iUDUNDmIdQ1Dd2fIihX8LMVFMDZK6niv9B6sAUGd501r/Rjep8/J266Z9PuTwJOznHcCuCSYsYnQc7nc1J3s5QPnzlKsUF6JtbR0yeuZzsVaVkbry68w2NBIQmHBxHb/2qo1TU5y0qxBubeIDJK/xHyI6hSDAAAgAElEQVRqGh0Ue7zriVqLCkMay0TRQnSfNN7WAFlhQYRMU3s/o2OuGePdxgcGGDhxIijj3fz86w/2lk8d95abbpWiBSFEQGqbnGyI6gWDgYSCmQ+hKyk2PR1TfDwFrh4pWlgDpPEmQsY/meT0xlufrgK3G1sQxrv5xaSkEJ2cTO+xiinbpWhBCBEIf7FC5kgXcdnZmGNDO8bMYDBgLS4ipU+KFtYCabyJkKltmr1Yoa9Sg9GAJYjdEAaDAVtZqbehOE1xTiK1TU7cbnlyFULMrr6lF5fLTUJ3y0SXZahZCgsxdbVhdo/LA+gqJ403ETJzFivoKhLy8oL+JGstKWGks5ORru4p2/1FCy1dA0G9vxAictU0ObC6BqG/D0thaMe7+VkKC8HtJn3MIUM/VjlpvImQ8BcrFOfYp2z3uN30VVVjKQlel6mftaQEgD6tp2z3Fy3IGoFCiLnUNDoo9BUrhE3jzddbsSG6n2ppvK1q0ngTIdE4R7HCUFMTrsFBbCswZ1JCQT6GqChvN+0kUrQghJhPTZMDZe4Do5H43PBY1Sw6OZkom418l0OKFlY5abyJkKidY2UF/xg0S1HwG29GsxlLQf6McW9StCCEOJ3RMRcNrX1kjnSRkJeLKTo61CEB3rG8lsJCkqVoYdWTxpsIidpmJzGzraxQWYXZkkBcRvqKxGEtKWGgtg732NiU7cXZidQ1S9GCEGKmE63eYoX47hYSQrQY/VwsRYWYutuJco9R1ywPoKuVNN5ESNQ2OSjKss8oVuivqvJOzrvMi9HPxVpSgntsjIH6E1O2F+fYGRwep617cEXiEEJEjtomJ/bxARgcCJvxbn6WwkLweEgf7aG22RnqcESQSONNrDi328Pxk06Ks6cWK4wPDDDY2IS1NPjFCn4TRQvTxr0VZ3u7c+sk+QkhpqlrdpLv7gHAUlAQ2mCm8a8Ysz6qn9omyV+rlTTexIpr6RpgaMRF0bTGW391DXg8KzpnUkxKMtFJSTMab/mZVkxGA7XS7SCEmKa22UGZuR+D2URCTnaow5kiJimJ6KQk8t0O6TZdxaTxJlZcne9psHhasUJvpQZDcCfnnY21tGRG0UKU2URehlW6HYQQU7hcbupPeldWiM/LxxgVFeqQZrAUFpDU20ancxhH30iowxFBII03seJqmx2YTQZy06cu/N5fVUV8TjbmuPgVjcdaUsJIRwejPT1Tthdl26XcXggxhX9N5vjuFixhVqzgZyksxOzoJNo9JkM/VilpvIkVV9vkJD/TRpT51B8/j8fjnZx3Bce7+VlLvNOS9FXVTNlenJ2Is3+U7l4ptxdCeNU2O0gc68MwPISlsCDU4cwqwV+0MNItQz9WKWm8iRXl8XiobXZOFAT4Dbe0MN7XP1FAsJISCgowmEz0T1tpwb/6g3SdCiH8apud5Lh8xQr5+SGOZnb+RmWJqVfy1yoljTexojocQ/QNjs4oVvCPObOGoOzeFB1NfF4ufbp6yvbCLDsGA1KxJYSYUNvkpMzUj8FsJj7MihX8ou12opOSKHA7J8YYi9XFHMyLK6VuAe4BooEHtdYPT9t/A/BtwAAcB/5ea92jlLoVuB9o8x36jNb6a8GMVayM2olihWmNt6pqjLGxxGdnhSIsrCUltO/9Gx6XC4PJBEBcjJmsdRZZJmuNkvwlpnO7PdQ1O7l0tIuE/DyM5qD+FboklqJCkmsbaOkaYGBojIS48CusEIsXtDdvSqls4F7gAmAbcJtSauOk/Tbgp8C1WuttwGHgW77dO4F/0lpv9/1I4lsl6pqdGA1QkGmbsr1PV2MtKcZgDM3LYGtxMe7hYQabmqdsL86xU3dSnlzXGslfYjat3QMMDY+R0NNKQmF4Fiv4WQoKiHJ2eYsWJIetOsF8bLgCeEVr3Q2glHoCuBn4jm9/FPAFrbX/b8vDwCd9v+8ESpRSdwNHgDu01lNKAZVSicDUgVMQHqsDiznVNjvITrMSG33qj55rZITB+nqyr78uZHFNFC1oTUJ+3sT24mw7r7/fjLN/BLslJlThiZUX1Pzlu6bksAhT2+T0FiuMDGMpDM/xbn5TihaanGwpXhfqkMQyCug1h1JqMf/Vs4CWSZ9bmJSYtNZdWusnfdePA+4Gnpx07LeA7UAj8NAs178Tb1fF5J+9i4hTrKC65pkrKwzUHcfjcmEpDv5i9HOJTU/HbEmgf9p8b/6xecflyTVihWn+AslhEaeu2UnWWDcAlvyC0AYzD3/RQhFOmax3FQr0zdsxpdRLwE+11n8L8JzZFqd0T9+glLLjTXqHtNb/DaC1vmnS/geAulmu9UPg0WnbcpDkF7ac/SN0OYdnFitU+YoVikO3RqDBYMBSVExf1dSihaJJy2RtL0sLRWhi6cIxf4HksIhT1+ykzNQX1sUKftF2O9HJyRR4nOyRitNVJ9DGWwHwceDflVIJeMd6/EZr3Xeac5qBCyd9zgROTj5AKZUJ/BV4Bfiyb5sd+IzW+kHfYQZgbPrFtdYOYMrjhFIqwK8jQsFfsj6jWEFXEZOWSrTNPttpK8ZaUkzjn55kfHAIc3wcALaEaFKT4qTiNLIVEGb5CySHRRrvNEcOzhntDvtiBT9LYQEpNQ00tvczMuYiJsoU6pDEMgmo21RrPaS1/pXW+hzgDuCfgZNKqYeVUnO9jngJuFwplaqUigc+DDzv36mUMgFPA3/QWt+ptfZPY98PfEUpdbbv8+3Anxb8zUTY8VdtFmVNb7xVh2R+t+msxcXg8dBfM3Wy3qIsu8yVFMEkf4nl0N07jLNvBIuzzTueLAJYCgqIdnZhHh/lREtvqMMRyyjgRwel1AeA/423+up3wK+Aa4E/A+dMP15r3ayU+hrwKt5S+0e01vuVUs8C3wBygTMAk1LqZt9pB7TWn1VKfRT4qW8sSRVw62K/oAgfdc1O0pLjscRHT2wb7e5htLMTy9UfCGFkXhNFC5WaxK1bJrYXZ9vZX97K0Mg4cTHh/7QtZpL8JZaqttlbrGAcGQ7blRWm8zYy/SstOCnLSwp1SGKZBPQ3kVKqAegEfgJ8Sms95Nt1RCl121znaa0fAx6btu0a368HmOPNn9Z6L3BmILGJyDFbsUKfb1UDWxi8eTMnJBCXmTljkfrinEQ8Hm/RwsbClBBFJxZL8pdYDnXNTrJGu4DwL1bws/jeEOa5emSN01Um0NcIn9Javz55g1Jqo9a6XGsd3pPdiLAwODzGyc4BLj0rd8r2Pl2FwWwmIS93jjNXlrWkhJ5Dh/B4PBgM3jHr/gKLumZpvEUoyV9iyeqanRQbejFERYV9sYJftN1GdEoyRfTytlScriqnbbwppZJ9v/5YKXUJpyqwooCngJVfRVxEpOMnveMtZr55q8JSVIgxKjxm/7aWFNO+dy8jbW3EZmQAkGKPxZYQLU+uEUbyl1hOtc1Oto/3kJCfHxHFCn6WgkLWVddTf7IXl8uNySSrYq4G8/1XfBxvd8MWoMv3eyfeuYveC25oYjWp9T31TZ4mxD0+Tn9NLZYw6DL18xdO9FaeWqTeYDBQnC1FCxFI8pdYFn2Do7R3DWB1tmEpKgh1OAtiKSokprcLw8gwTe39oQ5HLJPTPj5ora8CUEr9Umv9mZUJSaxGdc1OEi0xJNtiJ7YN1p/APTo6USgQDuJzsjHGxNBfWUXaJRdPbC/KtvPU67WMjbuJMsuTaySQ/CWWS12zk+SxXoyjIxPjyCKFv7jCX7SQP21pQhGZ5us2Xa+1rgQeUkrNGICrtZanVxGQumYnRdn2iXFkwERhgC2EKytMZzCZsBYXTUwc7Fecnci4y0NDay/FOdNXNBLhSPKXWC51zU4yRnzFCgUFoQ1mgfyNzeyxbuqanVx2VniMLxZLM1/H/ffxltP//7Ps8wAy2FfMa2zcRUNrHzvWp0/Z3qeriEpKIjo5eY4zQ8NaXELzs8/iGhnBFONdz9Q/sXBts1Mab5FD8pdYFnXNTgo9TozRUcRnZYU6nAWJslqJWbeOYoOTg1K0sGrM1216re+fkfWeWISVEy19uNyeWVdWsJaWTHkbFw4sJcV4XC4GauuwbdwAQEZKAnExZilaiCCSv8RyqW12cO14DwkFBRhMkbdKgaWwkNSKGuqanbjdHozG8Mq5YuHm6zb90en2a62/tLzhiNXIX6xQnH3qjdWY08lwayvpl18aqrDm5C9a6NN6ovFmNBooyrZPrBIhwp/kL7EchkfGaW7rxdbbjmVX+OWrQFgKC4h55x1cAwO0dQ+SuS4h1CGJJZqv27RrRaIQq1ptk5OEWDMZKfET2/zj3axhNN7NL9puIzYtjb4KDTed2l6cbeevb5/A5fZgkifXSCD5SyxZfUsvSaO9GMdHI65Ywc9S5I07Y8Q77k0ab5Fvvm7Tb69UIGL18hYrJE7pHu2t1BhMJiz5+SGMbG7WkhIc5eVTJustzrEzstfFyY5+ctOtIY5QzEfyl1gOtU0OMob9xQrhma/mk+Arssga7aK22cH52yJr3J6Yab5u079prS9QSvXhHeA7hdZaao7Fablcbo6fdHLN+VOfWPsqKkkoLJwoCAg31rJSOt58c8pkvUW+bt/aJoc03iKA5C+xHGqbneS7HRhjYojLzAx1OIsSZbEQm5ZGkctJRZOM210N5us2/Yjvn5uDHYhYnZra+xkdd09ZWcE9NkZ/TS3pV1wewshOz1bqnXy/t0JPNN5y0yxEm43UNju5ZIeU20cAyV9iyWqbnFw53oOlsACDMXLneEwoLCDtiObpZseUHgURmU77J1Fr3eL75wlgPXAH8Dkgz7dNiNOaKFaYNL3GQN1x3KOj2MrCd3Wi+NwcTHFx9FVUTGwzmYwUZNmk4jRCSP4SSzU27qKp1YGtrx1LGE0mvhjW4mJiBp2MOZx09w6HOhyxRAE9Riil/l/gQWAQGAd+oZT6YjADE6tDbZOTmGgTWamWiW29lZUAYbWywnQGoxFrSTG9FXrK9uLsRGqbvE+uIjJI/hKLdaK1j6ShboyucSyFkT0toL9oIXOki1rpOo14gb4DvgU4W2v9Da3114GzgS8ELyyxWtQ2OynMtE2pzuyr0MSkpRKTmBTCyOZnLS1lsLGR8YGBiW1F2XYGhsdp6x4MYWRigSR/iUWpbXKeKlYoLAhpLEtlKSgAg4HMkU6Z8mgVCLTxNgRMrGirte4B5L2rOC2320Nds2NKl6nH46G3shKbUiGMLDC2slLweCamNYFJKy3Ik2skkfwlFqW22UHeeDdmi4XY1NRQh7MkpthY4rOzKXQ7qJWhHxFvvmrTD/l+1cCTSqlHABdwK3BgvosrpW4B7gGigQe11g9P238D8G3AABwH/l5r3aOUygN+C6T57v1JrXU/IqK0dg0wNOKaUqww0tbGWI8Da2n4jnfzsxQXg8FAb3kFSWeeAUB+hvctopTbhz/JX2Kp6pqcXD7WjaWkeFUM8LcUFZK27wDPNfaEOhSxRPO9ebvD95MN2IB/Av4FSAdO+7evUiobuBe4ANgG3KaU2jhpvw34KXCt1nobcBj4lm/3T4CfaK3X402yX1/QtxJhocb3ar5oUuOtt9I7hszmW8UgnJnj4kjIy6Wv8tS4t+goE3kZVnnzFhkkf4lFc7ncNDZ3YR3oxlIU2ePd/CzFxUSNDjHW1YWzfyTU4YglmG+S3qWsBXIF8IrWuhtAKfUEcDPwHd/+KOALWutm3+fDwCeVUlHARcCNvu2PAq8Bd02+uFIqEZi+QnjOEuIVy6ymyYnZZCQv49R0Wn0VlZji44jPyQ5hZIGzlpXR/vpePC7XxJqGJTmJvH2sVcrtw1w45y/fNSWHhbHG9n6S+zsweNwRu7LCdFZ/0cJwJzVNDnasTw9xRGKx5pvnDQClVClwO2DB20VgAkq01uef5rQsoGXS5xZgl/+D1roLeNJ3/TjgbuDHwDqgV2s9Pum82RLancA3A4lfhEZtk4PCLBtR5lMveHvLK7CWlkbMfEm2sjJaX3yJ/rrjWEu9bwuLcxJ5cX8DHY4h0pLi57mCCLUwzV8gOSys1TQ6yBzxFitYCwtCGstyic/NxWA2kzkijbdIF+jfoI/hHfdxHlAPbASOzHPObK8k3NM3KKXswLPAIa31fwd6HvBDoHDaz4XzxCRWiNvtobbJQcmkYoWx3l4GGxqxbVgfwsgWxrbeW1jRe6x8YluJr2ihplEqtiJEOOYvkBwW1mqaHOSMdROdkkJ04vQXpJHJaDaTkJ9PvqtH8leEC7TxZtVafx74K/AcsBvYMc85zUDGpM+ZwMnJByilMoG9wCHgs77NHYBNKWWa6zwArbVDa10/+QdoCvD7iCBr7RpgYHh8SqVpb7l3wlu7ipzGW0xSErHp6fQePTaxrSDLjslomBjTJ8Je2OUvkBwW7mqaHOSMdmEpXh3j3fysRYWkDnZSK0ULES3Qxlu37581wGattQNv18PpvARcrpRKVUrFAx8Gnvfv9CW3p4E/aK3v1Fp7ALTWY3gT4sd8h96KN+GKCOJv2JTmTmq8HSvHGB0VcYs729Yreisq8bi9L1BipGgh0kj+EgvicrlpaWgjYciJtTh8JxNfDEtxMSbXGLS34uiTooVIFdCYN6BaKfVD4L/xzk5uAU67orjWulkp9TXgVbxdFo9orfcrpZ4FvgHkAmcAJqXUzb7TDmitP4t3As3/VkrdAzQAn1joFxOhVdPkJMpsJC/j1ALuzmPlWEpLMUZFhTCyhbMrRftrrzPY0EiCr+FZkpPIvqNStBAhJH+JBWlo62NdfzsA1tX25s23so2/aOGsDTLuLRIF2nj7PHC11vp9pdTPgauA2+Y7SWv9GN7xJpO3XeP79QBzvPnzrTt4SYCxiTBU2+SgINOG2eT9Tzw+MMDA8Xpyb7pxnjPDj229t5u399ixU423XF/RQs8QaclStBDmJH+JBaltcpA93AkGQ8SvrDBdbHo6poQEskc6qJXGW8QKqNtUaz0I7FFKXcepySjfCGpkImK53R5qphUr9FVqcLsnCgAiSUzqOqJTknEenVy04P1uMu4t/En+EgtV0+QkZ7ST+Lw8TDGxoQ5nWRkMBmwlJeSPdUn+imCBLkx/Ld6Zwr+Cd8bxCqXURcEMTESu1q4BBofHKZk03s15rByDyRSRXRAGgwG7Wk9vecXEgvQFvvVaJfmFP8lfYqFqGnrIGumMiJVgFsNaUox9qIcT9e2hDkUsUqAFC98FLtZaX6S1vhC4FvhB8MISkczfoJn85q33WLl3oGz0aYcahS3besWYw8Fwi3fqr+goE/kZNim3jwySv0TAXC43zvoGosZHsZZE3sNmIKwlJRiA6PYmKVqIUIE23jxa64m5ErTW7y3gXLHGTC9WcA0P019TG1Hzu03n7+51Hjk6sa04x05Nk3PibZwIW5K/RMAa2vpIG2gDWHWVpn6W4iIwGMj2FS2IyDPfwvTJvl/fUUr9M/CfeCec/DvgleCGJiJVdWMPhVmnihV6yyvwjI9j37AhxJEtXlxmJlGJiTgPHSHjqisB7zQoL+5voK17kIyUhBBHKKaT/CUWo7rRQdZwJ8b4eOLSV+dgfnN8PLEZGWQ5O6hulKKFSDRftWkn4OHUrOEPTNrnAf45GEGJyOXyraxw+Vl5E9schw5jMJuxlYX/YvRzMRgMJG7aiOPIUTxuNwajkdK8JMCb7KXxFpYkf4kFq250kDPaiVWVRMwyfothKy0h5813eKOhe/6DRdiZb2H61fsnVwRFU3sfQyOuiYYNgPPwEaxlpRE73s3PvmkTHW+8yWBDAwkFBRRketdtrWro4cLt2aEOT0wj+UssRl1dG9uGe7CVXhbqUILKWlJC7Ot7aatpwOM5R+arjDCBLkxvxPuUejUQBbwA3Ddp8WUhAKhu8C65UpbnLVYY6+1j4Hg9eR+5+XSnRYTETRsB75vEhIICzCYjRdl2qqVoIaxJ/hKBGhlzMXriOAZW3+S80/kn67V2n5T5KiNQoE+m3wMuA/4Db5XWecC/BysoEbmqGhzEx5rJWmcBfAP8PR7sGzeGOLKli0lJITYjA+fBwxPbyvKSqGly4HLNtfa4CAOSv0RA6pqcZA22g8Gw6htv8Tk5GGJiyR5qp0rWOY04gTbePgBcr7V+Umv9R+AG3zYhpqhq7KE0NxGj0fsK3nn4MKa4OKyFBSGNa7kkbtqIs7wC97j3pU1ZbiIjoy4a2vpCHJk4DclfIiBVjT3kDLcTk5WNOX51j2M1GI1YS0vIHe6gqkF6DyJNoI03o2/BZQC01iPA2GmOF2vQ6JiL+pO9lE0a7+Y4fATbxg0YTPOtAx4Z7Js24R4epr+6BmDiu0ryC2uSv0RAqk50kTPcQdLGyJ3WaCESVRnrRnuoq20JdShigQJd2/SgUupB4CHf5y8Ch09zvFiD6k46cbk9lOZ6GzQjHR0Mn2wh84orQhzZ8rFv3AAGA46Dh7BtWE/mugQS4qKobuzhqnPyQx2emJ3kLxGQTl1HtHts1a6sMJ21rAwDMFJTg8t9OSajFC1EikDfvH0RSALeBN4CUoE7ghWUiExV04oVHIe8fz/aN0T+eDe/KIuFhIJ8HAcPAd4pREpzE6mWN2/hTPKXmFff4CixLScAsJWtkcZbcTEeg5G0/laaZOhHRAn0zdtXtdZ/F8xAROSrbnCQYo8lxR4HQM+77xOdnEx8TlaII1teSVu30vSXpxnv78dssVCWl8QTr1QzPDpObHSg/0uJFST5S8yrusFB9nA7BpudmJSUUIezIkyxMcTk5JLT0U5VQw/5mbZQhyQCFOibt+uCGoVYFaoavMUKAO7xcRwHD5F0xvZVN39Q0rat4HZPvH0ry03E7fZQ1+wMcWRiDpK/xLyqGnvIHW7HvmH9qstZp5OyUZE10kl1fVeoQxELEOhrgjql1AvA34B+/0at9WkXd1ZK3QLcA0QDD2qtH57juP8GXtVaP+r7fCtwP9DmO+QZrfXXAoxVhEDvwCgnOwe4Ypd3ZYU+rXENDpK0dWuII1t+1uJiTPHx9Bx4j3UXnD9RtKBP9LCxcG08sUcYyV9iXvUVJ7hwfJCkCF6DeTFsSmH+6wt0lGvgzFCHIwIUaOPNv37GDsAFzDvARymVDdzrO2cEeFMp9arWunzSMVnAz4DLgVcnnb4T+Cet9eMBxidCTJ/w/hFZX+BdTrLn3fcxmEzeAf6rjMFkImnrFnreP4jH7SbJFktacjyVJ2SZmTAl+UuclsfjYahKA2Aridxl/BbDP77P1HScweEx4mOjQhyRCESg3ab3A5uBa/HOkVQMfGuec64AXtFad2utB4AngOnT7H8SeAr4w7TtO4FblVKHlFK/VUolIcJa5YkejEYDpTnebtOed9/Dul5hjosLcWTBkbR1K2MOBwPH6wFYn59EZX0PHo8ntIGJ2Uj+EqfV3NFPSm8LnugYEnJzQh3OiopOTISkFLKH2mW1mAgSaOPtV8B/AXG+nyeAX8xzThYwefKYFmDK/xVa63/TWj8yy7kteJPrdqCRUyX+E5RSiUqpgsk/068vVk5lfTeFWTZiY8yMdHUxWH+CpO3bQh1W0CRu83YH97z7HgDr85Pp7h2mwzEUyrDE7MIuf4HksHBSWd9D7lAbccXFq2ZOyoVI2rie3KE2Kus7Qx2KCFCg3abxWuufT/r8Y6XU/57nnNlGfAa0hpDW+ib/70qpB4C6WQ67E/hmINcTweVyualq6OGKnd7xbo733gdYlePd/KLtdhIKC+h59z1yP3ozG3zdxbq+h7QkWSMwzIRj/gLJYWGjRjeyZdRB2rarQh1KSKzbvImeN96g6XA17F59Q11Wo0DfvNUppc7zf1BKbQaOz3NOM5Ax6XMmcHK+Gyml7EqpL0/aZGD22dB/CBRO+7lwvuuL5XeitY/hURfK14DpPvAe0SkpxGetrilCpkvato0+XcVYbx8FWTaio0xUyLi3cBSO+Qskh4UN59FjACRuWJsNF7uvSGOsplKGfkSIQN+8ZQOvKaUOAePAGUCrUuowgNZ6tlcsLwHfUkqlAgPAh4HbArhXP/AVpdSbWuu3gduBP00/SGvtYNrAY6VUgF9HLCf/QP31+Um4RkZwvPc+aZdesurL7ZPPPIOmJ5+i550DpF1+KaW5iVTWS+MtDIVd/vLdV3JYGBgYGiOupR63OZqE/LxQhxMSMevW4bYnk+48SXNHPzlp1lCHJOYRaOPtXxZ6Ya11s1Lqa3irsKKBR7TW+5VSzwLf0FofmOM8l1Lqo8BPlVJxQBVw60LvL1ZORX03SdYY0pPj6X57P+7RUVJ27Ah1WEFnKSwkOjmZrn37SLv8UjYUJPOnPTWMjLmIiVp742bCmOQvMSfd0EPeUBtRRSUYzWt3km2rUuQeeJfK413SeIsAAf1J1Vq/tpiLa60fAx6btu2aWY77u2mf9yITzkQMXd/D+oJkDAYD3W/vx2xJWBPLyxgMBlJ2nEnbntdwDQ973zy6PdQ0OthUJPO9hQvJX+J0qssbyBl1kL79ylCHElKZZ2xhYP9bVB6shLMLQh2OmEegY96EmJWjb4SWrgHW5yfjcbnofucASWeeuWaeYJPPOgv32BiO9w9OzHEnXadCRI7OQ0cAWLd59azBvBiJvjk5BysqQhyJCIQ03sSSVNT7J+dNwnmsnPG+/jXRZepnX68wWxLoeutt7JYYMtclTPw7EUKEN5fbg/FEDS5zNAl5a3O8m19MSgpjtiQs7SfoH5qrxkaEC2m8iSUpP95FlNlISU4i3fvexhgdReLmTaEOa8UYTCaSzziD7gPv4h4fZ2NhMuXHu3G7pWJLiHB3oqWXrL4WDPlFa6a34HTiShV5Q21U1Ml8b+FOGm9iSY7WdaHyk4gyGejat5/EbdswxcSEOqwVlXzWDlwDA/QePcbmonX0DY7S2N4X6rCEEPM4driWdWNO0rZtCXUoYSF3x1Zi3aPU7D8S6lDEPDGnQl0AACAASURBVKTxJhZtcHiMuibv4Pw+XcVoVxcpO3eGOqwVl7hlC8bYWDr3vsHmYm+hwrG6rhBHJYSYT8c73gnFc3ZuD3Ek4WGdb+WY/iOHQxyJmI803sSiVdb34PbA5qIUOl7bizE6iuQz114SNEVHk3LWDjrf2keqNYoUeyzHaqXxJkQ483g8GGs1o7EJxOfIqmQA0XYbwymZWE/WMTw6HupwxGlI400s2tG6TkxGAyrbRucbb5J01g7MsatzIfr5pJ57Lq6BARzvH2RTUQpH67pkpnIhwlhjay/ZvU0YitWqn1B8IRLWbyBrqJ1K3TL/wSJkpPEmFu1YXRclOYkM6wrGe3tJPffcUIcUMvZNGzFbrXS+tpfNRSl09w7T2jUY6rCEEHOo3HeEePcIWTvWXm/B6RScuwMTHo6/Oes81CJMSONNLMrImIuqBu94t47X9mJKSCBp8+ZQhxUyRrOZdWfvovudA2zI8i5Mf0wqtoQIW13vese75Z99RogjCS9pm9YzbjQzeESKFsKZNN7EolQ19DDucrMx10rXvrdJOXsXxqioUIcVUqnnnYt7dJT445XYEqI5IuPehAhLHo8H83FNvz2NGLs91OGEFWNUFEOZBdhbjzM27gp1OGIO0ngTi3KsrguDAbK6juMeHib13HNCHVLIWUtKiFm3jo49r7GpKEUqToUIU60tPaT3t2Eu3RDqUMKSbdMmksZ6qTxYE+pQxByk8SYW5UhNJwWZNpyv7SEmNRW7UqEOKeQMRiOpF5yP49Bhtqwz0tY9SHu3jHsTItxUvLIPE25ydsl4t9mUnH8WACf2vh3iSMRcpPEmFmx4dJz/296dx0dZnvsf/8yWyb7vgSwQuCFhCTsIKAouRa1dXKqc41aPth5rbW1t/dVTq22P1vZUa2u1PfWUtmqtRa11rbKoKIuC7CE3SSCBkH1fJsssz++PCRhjkACZPJnker9e80ryzDMzX8jkmuvZ7rvwUCNzU+207NpNyrnLsFjlrQSQcs7ZAGRXFgKwq7jOzDhCiAE0b99Ot9VB7rwZZkcZkZImZNIWGo17r4z3NlLJJ644ZfsPNeLx+phcr8FqJXnJErMjjRihSUnETsuna+v7xEU62CnNmxAjis/rJfKwpi19IrYxfp7uiVgsFtw5U4lvKKejpd3sOGIA0ryJU7aruA6H1cC6cytxBTNxxseZHWlESVm2jJ76es6O7mBXcZ3McyrECFK6dQ8Rnk6iZ8oh08+SOn8OdsNH4VubzI4iBiDNmzhlOw7UsTSyFXdjIynLzjE7zogTP3sW9qgoJtfup6W9h/LqVrMjCSF6HXp7Ez4sTDlngdlRRrRpi2fRZQ2hdouc9zYS2QP55Eqpa4B7gBDgYa31YydY70/ABq316t6fM4GngGRAA6u01rLvdgRoae/m4NEWLvVoHDExxM2Qc0b6szocJC9ZTOWbbxExfhI7D9SRky7DEQQbqV+jk2//bmqj0lianmB2lBEtLNxJQ3IOCWUaw+vFYrOZHUn0EbA9b0qpDOCnwBJgJnCzUiqv3zrpSqmXgSv6Pfy3wG+11lOAbcB/BSqnODW7S+qJ62klrFyTsmI5VntA+/+glbr8PPD5OMdTJue9BSGpX6NTe2U1Ua11+CblnXxlQVjedELdnVTtLDQ7iugnkIdNVwDrtdaNWusOYA1web91VgEvAc8dW6CUcgBn964PsJpPF0dhkl3FdSxsP4DFZiXt3HPNjjNihaWmEldQQF5dIUUlNTLYZfCR+jUKHXhzIwAZC+eanCQ4TFo6Dy8WStdtNDuK6CeQu03Sgb4z21YB8/uuoLX+OYBSqu/liolAq9ba0+dx4/o/uVIqFojtt/hT64mhYxgGhYUVfKWlmMTFZxESK4cCP0v6RRfStGMHuY0lFJU1MT030exIYvACWr96Hyc1bJg1bt2KyxHDebMmmR0lKEyamMqOiDSSd+/AMAwsFovZkUSvQO55G+i37BvCx90BHOp3k82DADpa105q+R5sXjfpF1xgdpwRLyZvKqEZ45jXXMT2/dVmxxGnJtD1C6SGDauexiZCKw9Rm6GIDJMhQgbDZrXQNTGf0LZG2g8eNDuO6COQzdtRILXPz2lA5SAeVwdEK6WOnR15osc9AuT0uy097bTipD7cW8mcliJCJ00mMjvL7DgjnsViYdzKC0nqaeLwlu1mxxGnJtD1C6SGDasjGzZiAeLmzz/puuJj4xcvxIeF0jfeNjuK6COQh03XAj9SSiUBHcCXgZtP9iCttVsptRG4CngGuBZ4fYD1moHmvsuUTNEUUJXr3qHA0072ZZeYHSVoJC1ahH76OXJLt1LdcDmpCRFmRxKDE9D61buu1LBhdHT9uzSExDJ7vsxneirmzMzklfA0Mjdvxrj1Rjl0OkIEbM+b1voo8ANgA7ATeEZr/YFS6jWl1MnOFr0V/9Vdhfi3RO8JVE4xOG0d3WTqzXTHpxI/c6bZcYKGNSSEpAsvIquzhp1vbTY7jhgkqV+jS3d9A7aKQxxOzCU7JdLsOEElLtJJ87gp2NuaaC8pNTuO6BXQcR601s/g3/rsu2zlAOtd3+/ncmBZILOJU7NzzRvEu1uJvPgK2fI6RZMvuYANL79C91uvwVdWmB1HDJLUr9GjduN7AETMmiv16zSkLJyH98DbVKx7h6mTcs2OI5AZFsQgGD4fXWtfpcEZS/5ymcf0VNmcTtpmnEVifTn1e2S8JCGG25H171LtjGfmnMlmRwlKc6dncig8jfr3N2H4BnPdjgg0ad7ESdVufJ/w1gYaC87GbpdRtk9HzucuwGV1ov/4tNlRhBhTOo9WYhwu40B0DtOzZR7m05GTGsnhpMlYW5tp3ScboCOBNG/iM/ncbg6u/gs1IXFMPOcss+MErfxJKWxLmgmlRTTt2Gl2HCHGjJp16/FhgelzCA2Rjc/TYbFYiJ87h26rg6o315odRyDNmziJqldfx9fYwDvJc5k9OdnsOEHLYbfimL+YlpAoyv74JwyvzLggRKAZXi9Va9dTGp7B7Jk5ZscJagvy0ymMzKFh8xY8LpfZccY8ad7ECbnb2jjy3BqORI8nccZ0IkJlHtMzsXhGBhviCnCVH6Z2wztmxxFi1GvasRNfSwt7Y3JZOCXJ7DhBbeaEeIoTJ4PbTX3vBSDCPNK8iRM68uxzeF0u3owpYEl+itlxgt7s3ATK4yfSEZ/G4aefwePqNDuSEKNazVvr6LSHEjFtOjERIWbHCWoOu5UJs/JocMZS/dZ6s+OMedK8iQG1HzxI1Wtv0DhpNs3hCSxQstV6ppwOG/NUEq/HzqGnsYkjf33W7EhCjFrulhYaP9jGnsgJLJ6ebnacUWHxtFR2RU6ko7gY1+EjZscZ06R5E59ieL2U/vZ3OKKieDk0n9m58YTLIdMhsSQ/hRJrPPY5i6h8+VWZL1CIAKl5ax34vOyRQ6ZDZmZOPIeSJuOzWKl+419mxxnTpHkTn1L9xpu0F5cQ8rkvUuVCDpkOodm5CYSF2Ng+fgGOqChKH3tCLl4QYoj5PB6qXnuDyuh0xk+ZSHS4HDIdCg67lZnTMjkQnUPNug14OjrMjjRmSfMmPqGrtpbyp54hdsYMPrCm47BZmT9ZtlqHitNhY75K4r3SNsZffTXtJaVUvvKa2bGEGFUat2ylp6GBTRGKJflylfxQWpKfwuaoKfi6uqhZu87sOGOWNG/iOMPrpfiRX4NhkHXddbyzt4Z5kxPlkOkQO2d6Km2dbg4l5BI/exblf3majvLDZscSYtSofPlVuqPiKI/KZNFUad6G0swJ8XQnpNESl07VK6/LkQOTSPMmjjv60su07itkwg3XsbvBoNXl5vzZcqLvUJs9MZ74yBDW7axi4le/ij0sjOJfPoLP7TY7mhBBr624hLYizdbIySzKSyYyzGF2pFHFbrOybEYqb4dOoru2lsZt282ONCZJ8yYAaC89yOGn/0rCgvkkLVrEWzsqSYhyMmtigtnRRh2bzcp5BelsK26g3eok96av0lFWTvlfZOosIc5U5Uv/xAhxsi0sh/NnycZnIKyYlU5R+Hi8kTFUvvgShmGYHWnMkeZN4G5to+jBh3DExDDxhhtobOvmo5J6zitIw2a1mB1vVFpRkIbPMFi/q4r42bNIXbGcypdepn7TZrOjCRG0XEcqqH9vE4cyZhATF82MnHizI41KWcmRTB4Xy47E6bTuL6Jlz16zI4050ryNcYbXy4H/eZiexiamfOubOCIjWL+rCp8BKwpkqzVQMhIjyMuMZe2OSgzDIGfVNUROnEjxr36D60iF2fGECEpHnluDJSSEVyw5LC9IwyobnwGzYlY6G6xZWKOiOfLsc2bHGXOkeRvjyp96huadu5hw4/VEZWfj8xm8taOS/KxY0hPCzY43qp0/K52jDS4KD7dgdTiYcvs3sIWEUPTAz/C0t5sdT4ig4qqooH7je7RMmYfLGspy2fgMqKXTUrGFODicO5/WfYW07N1ndqQxJaDNm1LqGqVUoVKqRCn1nwPcX6CU+lApdUAp9QellL13+bVKqSql1M7e208DmXOsqnr9DY6+8A9SL1hB6tlnA/BRaQNVjZ1cNCfD5HSj3+K8ZCJC7bzygX+kcmdCPOr22+iqqWX/f/8MX0+PyQnHNqlfwaXiueexhoTwojeLWRPjSY0LMzvSqBYRaufsaSm84ErFHhPD4b/+zexIY0rAmjelVAbwU2AJMBO4WSmV12+1p4BvaK0nAxbgP3qXzwO+rbUu6L39IFA5x6qGrR9w8PdPEjdnNhNWrTq+/KXNh4mPcrI4TwbmDbQwp50LZ2ewqbCGmib/PKcxU6Yw6Zabad1XyIFHfo3h85mccmyS+hVc2g8epO7djfQULKKqy8ZlCzPNjjQmXLYoC5fXSkP+WbTu3UfT9o/MjjRmBHLP2wpgvda6UWvdAawBLj92p1IqCwjTWm/pXbQauKL3+3nAtUqpXUqpp5RScQHMOeY079rNgV88TOSEHNStX8diswFQVtPOzoONXDJ/PA67HFEfDpcsGA9Yju99A0hatJDsq79Cw/ubKH3i99LAmUPqV5AwDINDT67GHhXJy5ZcxidFMDtXrpIfDtkpkRRMiOfvHWk4U1I49H+r8Xk8ZscaEwI5+mo6UNXn5ypg/knuH9fn+weBD4D/Bn4DrOqzLkqpWCC232uOQ3ym5t172P+TBwhNSyXvO9/B5nQev++lzeU4HVY5ZDqMkmJCWZKfzJsfHeXqcyYcHxA5feXn8HR0UPHPl7FYLEz42s1YLHLy9TAKaP0CqWFDpWHzFlr37sP5havQe3u47dKJ8rcyjC5blMl9T++k46yLsL/4J6rfeJP0S1aaHWvUC2TzNtBfj28w92utv3hsgVLqIWCg2bvvAO49k4BjTdNHOyh64CFCU1OYdvf3cURGfHxfezdv76nm/FkZRIXLoJbD6bJFmby7t4Y3dxzlC4uyALBYLGRecTmGz8fRV17F8PmY+LWbj+8lFQEX6PoFUsPOmK+nh7LVfyY8M5NXu9KIDm9j2YxUs2ONKbMnJjAuMZwX66zclJ/Pkb8+S9LZS3FER5kdbVQL5LGxo0Dfv6I0oPJk9yulYpRS3+qz3AIMNPT8I0BOv9vSIcg9KtW+/Q77f/IAYelp5N/9fRyRkZ+4/4X3y/H5DC5bON6khGPX5IwY8rNieXHTYbrdH081Y7FYyLrqSsZ9/lJq3lxL0c9+gbe728SkY0qg6xdIDTtjR55bQ3dNLc7PfZGtJY1cPG8cTods4Awnq9XCFxZlUVrdTseSz+FxdVK2+k9mxxr1Atm8rQWWK6WSlFLhwJeBN47dqbUuB7qUUot7F10LvA60A3cppRb0Lr8NeLH/k2utm7XWZX1vgAyQ1Y9hGFSseYHihx8lOm8q037wA0KiPrlF1NDaxasfVLBsRhoZiREneCYRSKvOnUhjWzevffjJt7DFYiHryivIufbfaPzgQ/bdez89zS0mpRxTAlq/ep9DatgZaC8ppeL5F0k+9xz+fthKZKidy3r3XIvhtbwgjdS4MJ7Z5yLj4oupXbdBLl4IsIA1b1rro8APgA3ATuAZrfUHSqnXlFJze1dbBTyslNoPRACPaq29wJXA473L5wB3BSrnaObt7ET//H8o/8vTJC5ZTN6d38IeFvqp9f727iEMw+DqZRNMSCkApmfHUTAhnjXvleHq/vQJv+kXXIC67T/pKCll15130V5SakLKsUPq18jmc7spfvQ3hMTG0L10JduKG/jS4mwiQgN5JpA4EbvNytXLJnCwup2KKWcRlpFByWNP4OnoMDvaqGUZTXOSKaWygUPr1q1j3Lixfd6v6/Bh9C8exnWkguxrrib9wgsGPIm3utHF136zmQvnZPD1i6eYkFQcc6CihTv/8CGrzp3AV84ZuJFuP1RG0a9+RU9LKxNuupGUC8+Xk7P9RsV/gtSwwSn/y9NUrHmBKd+9k1985Kai3sX/fnMxoSFyyNQsXp/BNx7fgmEYPHhRCnvvu5/kZecw6Y5vmB0tGJxy/ZLxIEYZwzCoeu0Ndt35PdzNLeR977tkXHThCT/g/7yuFJvVwlVn5wxzUtHf5HExLJySxIubymlqG/jctsicbGbefx8xU6ZQ+vjvKHrgIdytbcMbVAgTNW7bTsWaF0hefi4HwzLYW97MlWdnS+NmMpvVwr+dO5GKehebm52Mu+zz1G54m5q31podbVSS5m0U6aquZt8P7+Pg7/6X6Lw8Ch78b+Ly80+4/kclDWzcV8OXF2cRH+U84Xpi+Fy/Ipcej48n3yw+4TqO6Gjyvnsn2ddcTdO27ey47ZvUv/c+o2kvuhAD6aqpofjhR4nIySbjyq/wxGtFjEsM56I5spdyJFg0NYn8rFj+tLaEmAsvJmZaPqW/+wPtpSe64FqcLmneRgGf203F8y+y4xvfor24hAk33Ujet+/41IUJfXW7vTzxahHp8eFcviR7+MKKz5SRGMHlS7J5Z081O0sbTriexWolY+XnmHn/fYTEx6N//kv2//RBOquqhzGtEMPH29lJ0YM/xzAMptx+O2s2H6W2uYtbL5kqg4qPEBaLhVsvnkJXj5c/ri1F3fp1HFFRFD34ED3NzWbHG1XkHR/EDMOgYfNWdtx2B+V/forYmTOY9dCDpC1bhsX62b/av28so6qpk1svmUKIXFo/olyxJJu0+DAef1XT02fokIFEZGUy80c/JPvqr9Cyew87bvsmZX9+Sk4UFqOKz+2m6MGf01FWjrrtP6kxQnlhUznnzUxjerZMYDGSZCZH8sXFWazfVUVRg4cp3/wG7uYWCu/7KR5Xp9nxRg1p3oKQYRg079zF7u/eTdGDD2Fx2Mm7+3tM/ebtOONOXsgOHG3h+ffKWDY9lZkT4ochsTgVIQ4bt148hcpGF39aW3LS9S02GxkXr2T2Lx4icdFCjj7/IttvuZWK51/E29U1DImFCBzD56P40cdo3rmL3JtvInJqHo+8uI9wp50bL5hkdjwxgCuX5pAaF8avXtqPNSML9Y3b6Cgro+jBh/C5TzTsoTgV0rwFEcPno2HLVnbfdTf77r0fd1MTubf8B7N+8uPPPLetr/ZONz/7+x7io5zcslIFOLE4XQUTE7h0wXj+ufUIW4pqB/UYZ1wck2+5mZk/vp+oCRMp//NTbPuPr3Pkb3/H3SYXNYjgY3i9lPz6Merf3UjW1VeRsmQJq98qpqSqjdsvm0pMRIjZEcUAQkNs3PmlfOpauvj1PwuJK5jJpJu+Ssuu3RQ98JAMNj4EZFCcIOBp76B2/QaqXnudrqpqQlNSmPDVG0hZugSrffBTWRmGwaP/LKShtZsHb5hLZJhMgzWS3XD+JAoPN/PIPwp59GtRJMeGDepxkTnZ5H33TloPFFPxyiscfuZZKp5/kaRlZ5O28iIisrMDmluIoeBzuznwPw/TsHkrmVddScbKlWzeX8s/tx7h8wvGs3BKstkRxWeYMj6Wa5dPZPXaEl77sIKLz16Kz+Oh9I+rKbzvJ0y9527s4eFmxwxa0ryNUIbPR8vefdSuW0/Dpi34enqIUpPJvOJyEufMOa05Lp979xCb99dxw/m5TBkfE4DUYig57Fbuunw6d/xuKz99dhcPXD/3+MT1gxE9eRJ53/4WHUeOUPmvN6lb/zY1/3qLyMmTSFlxHolLFmOPkBk1xMjT09yCfugXtO4rJOf6a0lfsYJD1W386h+F5KZFcf35crg0GHzxrCz2lDXxh38dYHxSBDPOOxdbaCjFv/s9e+6+h6n/73uEpqSYHTMoySC9I4jh89FeXEL9e+9T/94mehobsYWHk7T4LFKWnUNk1ulP/fKv7Uf5zcv7WTYjlW99IR+rdVSMaTombC+u58d/3UV+Viw/WjXrtK+sc7e3U7vxPWrfeRdXRQUWu524ObNJXLqEuDmzgn0reFS8oYO9hg2FtuISih54CE9bG7m3/AdJCxZQ09TJXU9+iNVq4Wc3ziM59tMzxYiRqc3l5nt/3EZDaxcPXD+XCWlRNO3ejX7st1gsVtR3v01swUyzY5rtlOuXNG8m87g6adm9m6aPdtD4wYe4m5qx2G3EFRSQeNYi4mcVYHOc2Xkd7xfW8NDf91AwMYH/unomdpuc6hhs1u+q4uEX97E4L5nvfHnaGf0ODcOg/eAh6rZsoX7LVtxNTVjsdmJmTCd+7mzi5swmNDX15E80skjzFuQMr5eK51/kyN/+TkhcHFO+dQeRmeNpbOvm/63eTnNHDz+7cS5ZyZFmRxWnqK6li7ue/BCvz+DBG+aSnhBOZ3UNRY/8CtfRo6RfdimZ13wFm3PMjjcqzRsjvPB5u7tpP1BMy959tOzeQ9uBYgyPB1tYGLEzZ5Awdw5xM6ZjDx+aw1lvbKvg8VeLmJQRw4//fRZhTjlSHqz+samcJ98sZnZuAt+/YvqQ/C4Nn4+24mIaPtpB47btdNXUABCamkrMjGnETJ9OdP5UnAkJZ/xaASbNWxBrLz1I6eO/o724hISzFjLx2utwREZQUd/BvU/toLXDzX3/Pou8zFizo4rTdLi2nbtXbwfg3msKmDwuBm9XF2XPPkv12vWEjctg4tdvIWba4C6+G2WkeWMEFT7D56OzsoqO0oO0HThAmy6m4+BBDK8XrBYiJ0wgZlo+cdOmEZWbi9U+dI2V12fw17cP8rd3DzF3UgLfu2KGTB8zCvxr+1F++0oRE9KiuOcrM0mIHtot1c7qGpp276Fl3z5a9hfi7R2XyZmcTNSUyURNnkRkbi4RE3JG2layNG9BqLuhgcNPP0vt+g04oqLIuf46kubPA2BfeTM/fXYXVgvcu2oWkzKiTU4rzlRlg4sf/mUHzR3dfPfL01kwJQmA5j17KXny/+iurydh0QKyrvt3wtLSTE47rKR5w6TC525tw3XkCK7DR3CVH8ZVXk7HoTK8nf4PP6vTSeTECURNnkT0ZEV07oQh27vWX31LF798cR97yppYUZDGf146VQ6VjiIf6DoeWrOHELuN2y+bGrCr7gyvl47Dh2k9UEzrgQO0lZTQ09Dov9NqJSwjnYicbCKysgjPHE/Y+PGEJied1sU0Q0CatyDSVV1NxQsvUbtuPQBpn7uI8Z+/FHtYGF6vj+c2lvHsO4dIiQvlR6tmkZ4Q1Odjij6a2ru5/+mdlFS1cemC8Vy/IpcQhw1vTw+Vr71Oxcuv4HO7SVyymHGXf4mIrEyzIw8Had4IUOEzDANPaytdNbX+W3U1XVXVdFZW0nm0Ek9r6/F1beFhRGRmEp6ZSWRONpFZWYRnZAT8Q83r9fHmjkr+vLYEj9fglpWK5QVpJ5yUXgSvivoOfr5mLwer2zhvZhrXrcgdlvlpuxsbaS8ro6OsnPbyclyHD9NdV3/8fovDQVh6GmHp6YSmpRKalkZoagqhKcmEJCQM6d7lfkbFm3w0N28+t5umj3ZQ8683afpoJxabjeRzlzHu4pWEJiYCUHy0ld+/rimqaGHZjFS+vnLKKV1hLYJDj9vL6rUlvLz1CJlJEdyyUjEjxz9gfE9zM0dff4PqtevwdXcTnZ9H6kUXEL9g/kjb2z+UpHnjNAqfz+3G3dJKT1MT7uZmehob6WlopLuhkZ76errrG+iuq8PXb2BBR1wcYakphKWnE5aWRnh6OmHpaTgTEoa1YfL5DD48UM9T60spq20nPzOW2y/Lk63VUc7t8fHM2wf5x6Zy7DYrX1qcxSXzxxMVPrzj93lcLlyVR3FVVNJZXU1nZRWdVVV019ViePpM72W1EhIfjzMpEWdiAiEJCTgTEgiJj8MRF0dIXCyO2FhsYWGn8/cjzdsI5O3upmXPXho2b6Vxy1Y87e2ExMeRfO65pC5bhjPOfw7b0foOnttYxvpdVcRGhPDVCyexbMaYOmw2Jm07UM/jrxZR29LFApXENcsmMCHNPye3u62NmnfepWbDBrpqarGGhhI/fx4JixYQO3PGaBvmSJo3TqHwla3+MzVvrcPT3v7pOy0WHLGxOBPicSYk4ExM9H9NSiQ0MYnQpCRsoeZuBbR09LBxbw0vbz1CZaOLlNgwbrggl7OmJsvetjGkssHF6reK2VxUh9NhZUVBOitmpTMxLcrU94Hh89Hd0EBXXR3ddfV0NTTQXV9Pd0MDPQ2N9DQ24Ov59FQ51pAQwjLSyb//Rziiowb7cqPiDR/szZvH5aK9pJTWwv207iukdX8RhtuNLSyM+LlzSFy4gLhp07DYbHi8PnaWNvL6tgo+PFCP3Wbl8wvHc+XSHNnbNoZ0u738c8th/r6xjM4eLzNy4lg5bxxzJyXidNj8Y57uL6J+61YaPvgQT3s7FpuNKDWZ6LypROfnETkpF0fUoGvFSDSymjel1DXAPUAI8LDW+rF+9xcA/wvEAO8CX9Nae5RSmcBTQDKggVVa6wE6rE+9XjanUPjq3t1I695CHNHRhERH44iNISQmIsaxaQAADr5JREFUhpDYWEJiYsw6d+eEDMOgvLaDXQcb2V5Sz66DTfgMg9z0aL64KJOz8pLl3LYx7FB1Gy9tOcw7u6vx+AzS48NZOCWJmRPiycuMHXEXrBiGgaejw7/Hu6WFnpZWepqbcbe2gdVC5r9fcyqHSYa8eRvu+tX7nNkEQfPm6eigq7rGv5e1ogLX4SN0lJXTVVnpX8FiISIrk5j8fOJmTCd68mSsDgfN7T3sPtTIzoONbCmqo63TTXS4g5XzxrFy3jjiIkftYTFxEu2dbv61/Sgvbz1CQ1s3YSE25qskZk2MZ2ZOPIkxoRheL63FJTTv3k3zvkLaDx0Cnw/wX1QVkZPtP/923DjC0tMITU3FHhUZDDszRk7zppTKAN4D5gDdwCbgaq11YZ919gI3aa23KKWeBLZprR9XSr0CPKW1flYp9V9ApNb6e4N4zWxOtfB198AAW/9mcnt8NLR2UdvSRWWDi6MNLg5Wt1Fa2UZHtweAjIRwzspL5uxpqWQlRwTDm1MMkzaXm037a3lvXw17y5rw+AysFguZyRHkpkUxPimSjIRwUuLCSIx2EhFqH3nvH4sFIk/psP+Q/gPMqF+9z5nNMDdvhs+Hr7sbj6sTr8uF1+XC3daGp70dd0srntZWepqa6Wlqoqd376m3w/XxE1gshKYkEz7ef45veFYWRtp4Gt1Wqhs7Odrgory2nZLKNmqa/RdwRTjtzJmUwDnTU5k1MeG0B54Wo4/X62NPWRPv7q3hA11Hi8v/+ZwQ5SQ3PZrsFH/9SosPJ8FpYKutwFV+mPZDh3AdOUJnVfXxhg7AGhrqP1UjIeHj0zNiYnBER2OPisQeGYk9IgJbeDi28DBsoaFYrMP+fjzl+hXIfdMrgPVa60YApdQa4HLg/t6fs4AwrfWW3vVXA/cppf4AnA18oc/yd4BPFD+lVCzQf9CfU6p21Q0dFB+sh77n5Rz36abWMPxLP9nvGvh6Fx67z2cY+Hz+5V6fD6/PwOs18PgM3B4fbo+PHo+XbrePzh4vri4PHd0e2lxuWlw9dHR5PvG6IXYrmcmRnD09hckZMczIiZcRxsUJRYU7uHBOBhfOyaCrx0vh4Wb2lTdRUtXGtuIG1u6s+sT6IXYr0eEOYiJCiAi1E+G0ExpiIzTEhtNhw2G3EmK3YrNasdss2Kz+m9VqwWqxYLWApfcrFgu9XzhWjywW+izrb+CaFR0Rwozpp3Xu21AJaP3qfY4zqmHt1XXseuYFjB43GD7wev0fWl4v+Lz+r14veDzg9YDH7b+5j33tgZ4ecLuxDFDvjjGsVnxhkXgjovCERdGTNY3u0Cg6wmJod0bT6IiizWOho9NDy4EeWnfW4fXVHn+8BUiJCyM3PYrPzc1genYcE9OjscksL2IANpuVgokJFExMwOczKK9tZ/ehJkoqWymubOXDA3X+z9xeVgtEh0cSHT6bSLWAiHyI97QR3d1GRFcLzs5WnK5W7FUN2ErLsbrasHgH+sz/mOEIgeM3B9gdH3+12cFm63ezg9UKVpv/q81G3pdXEj/h9GdFOplANm/pQN9PiSpg/knuHwckAq1aa0+/5f3dAdx7JgGfeGE324tqT77iEAuxW3HYrf4PSIeN8N4PzOTYMGIi/B+iiTGhJEaHkp4QTmJ0qExnJU5LaKiV2ZOTmD056fiy9k43R+s7qGvpor6li4a2blpdblo7eujo9nC00UVXj5euHi/dbi9uj+8TxXI4WK0W/u+eBBJiwob3hT8W6PoFZ1jDPtq4C8+7G7Bg4LNY8GHFZ7Hi/cT3NrwWK57e7z0WGx5LKB5rBG6bHXe4DbfVQY/VTrfVQbc1hG5rCJ22ELqsTlw2J93WkE903navBUeXFafPhrPHRrjTR0SonZT4MCaPjyEmPISEGCcJUaGkxoeRFh+O0zGyDtmL4GC1Qk56DDnpH8/F7fb4qG5yUdXYSUNrFw2t3TR39NDa0UN7p5uGTg8V3SF09cTS5Y7C7fXhsRsQhf9mGDh9bsK8XYT6egjzduP09eD0uXH63IT43IQYHuw+DyE+D7YuLw6fF7vRic3owG54sRo+bIYPG77j31sNH1Z8WAwDC7AlIp6VtwZn8zZQt+EbxP0ne9wxj+Dfqu1rHLBxMOEAvn/tPGqbXCe8/0Rb/RbLJ+/z71mwHF9utVj8TbjFv3fCZrNiP/bVZhl5h6jEmBIZEYZKjEadwmO8Xh8en4HX+/GeZK/P59/T7PPvdfZ/9e+ePtbrGYbBic7M+KxTNiLCHGY2bhD4+gVnWMOWXr6cqmUL8XhP9PSDq2HHdpJaLf7aZMHfPFv77GG1WS3YbVZsNqvsMROmcgDjYyIYnz34x/h8/nrl8fapYT4Dwzj21V+PfMan65f/66ef87Pql8ViISMpsNO4BbJ5Owos7fNzGlDZ7/7UAe6vA6KVUjattXeAxwGgtW4GmvsuU+pUPo4g1GknM1VG7RbiZGw2KzYbMHb2oAS0fsGZ1zCLxUJ6gD8ghBgN/BsjNhyj6CLmQJ6VtxZYrpRKUkqFA18G3jh2p9a6HOhSSi3uXXQt8LrW2o1/y/OqvssDmFMIIfqT+iWEGLEC1rxprY8CPwA2ADuBZ7TWHyilXlNKze1dbRXwsFJqPxABPNq7/FbgZqVUIf6t33sClVMIIfqT+iWEGMnG9CC9QohRY1SciCU1TIgx6ZTrlwyuI4QQQggRRKR5E0IIIYQIItK8CSGEEEIEkVF04SwANoDq6mqzcwghhtHy5cuzgYo+g+MGK6lhQowxp1O/RlvzlgawatUqs3MIIYbXISAHKDM5x5mSGibE2HPK9Wu0NW8f4r80vwr47MnLAu/YSOlLgQqTs5wKyT28JPfQGSk5zsRIqWEj8fc7GMGaG4I3u+QeGqeUYVQ1b1rrbuA9s3PAJ0ZKr9Bal5kY5ZRI7uEluUVfI6WGBevvN1hzQ/Bml9zmkAsWhBBCCCGCiDRvQgghhBBBRJo3IYQQQoggIs1b4DQD9/V+DSaSe3hJbjESBevvN1hzQ/Bml9wmGFVzmwohhBBCjHay500IIYQQIohI8yaEEEIIEURG1ThvI5VSahawRWvtNDvLYCilFgOPAA6gAbhRa11ubqrPppS6BrgHCAEe1lo/ZnKkQVFK3Qtc2fvjq1rru8zMcyqUUj8HkrTW15udRQSW1LDAkvpljmCuYbLnLcCUUuHAb/D/UQaLp4Gvaq0Ler9/1OQ8n0kplQH8FFgCzARuVkrlmZvq5JRSK4ALgFlAATBHKfVFc1MNjlJqOXC92TlE4EkNCyypX+YI9homzVvg/Q/wsNkhBksp5QTu0Vrv7l20G8g0MdJgrADWa60btdYdwBrgcpMzDUYVcKfWukdr7Qb2M/L/r1FKxeP/sPlvs7OIYSE1LLCkfg2z0VDD5LBpACmlPg+Ea63X9JmKY0TrnZ7nKQCllBX4EfAPMzMNQjr+QnJMFTDfpCyDprXed+x7pdQk4CrgLPMSDdrvgB8A480OIgJLatiwkPo1/IK+hknzNgSUUlfw6S3TIiAa/1bViHSi3FrrFUqpEOBP+N8jI33rxDLAMt+wpzhNSql84FXgO1rrYrPzfBal1E3AEa31OqXU9WbnEUNDapippH4No9FSw2SctwDpfYPcDbT1LpoJ7AKWaq3bTvjAEUApFQn8E/+Jvv/WuyU7YimlrsP//3pT78//BVi01vebm+zkek+sfh64Q2v9rNl5TkYp9RaQBniAeCAS+JPW+lumBhNDTmrY8JD6NbxGSw2T5m2YKKUMrfVAW1gjjlLqH0AtcIvWesS/QXpP+H0P/6GGDmATcLPW+gNTg52EUmo88BFwldZ6vdl5TlXvVuuyYLxSS5w6qWGBIfXLPMFcw+SwqfiE3iEBLgMKgR2957lUaq1XmhrsM2itjyqlfgBswH9F3B9GeuHr9R0gFPhln/OJntBaP2FeJCGCW7DVMKlf4nTInjchhBBCiCAiQ4UIIYQQQgQRad6EEEIIIYKING9CCCGEEEFEmjchhBBCiCAizZsQQgghRBCRoULEiKOUWg3s1Vr/IsCvEw28DsQCP9RaP9/nvucAq9b68j7LvoN/CILzeufyE0KIT5EaJgJNmjcxlhUAKVrr3AHu+yqwTSl1h9b6EaXUBcA3gPlS9IQQI4TUsDFKmjcRUEqpZ4CPjm2BKqW+BpwLXI1/TsKFQBT++f1u0lq/3+/xBpCkta7v/7NS6lLgHvwDW7rwz623eYAMXwDuBWxAK/BtoAX4PyBDKbUTWKS17jz2GK11W++8ie8qpY4Avwa+oLWuGaL/GiFEEJAaJkYiOedNBNr/Atf1+fmG3mULgHT8BScP/wTS3x/skyqlJuGfbHql1noWcDPwglIqot96U4AngC9rrWcAPwReAqqAm4BSrXVB36J3jNZ6N3AXsAZ4IEhGPRdCDC2pYWLEkeZNBNrbQKhSaq5SKg9IAtb1bl3eA9yilPoFcDn+CYIH63z8kwuv693qfBrwAf0PH5zX+3oHAXrn4KsF5gzydZbjL5KXKKXk70WIsedtpIaJEUZ+kSKgeieFfhK4Fv8W65Naa0MpdTHwau9qL+HfsjzRpNcWAKVUSJ9lNvwFreDYDf/hi739HjvQe9wKOE6WXSl1F6CAGcB4/Fu8QogxRGqYGImkeRPDYTXweeAK4I+9y84HXtZaPw58CHwBfzHrrw6Y2/v9l/osXw9c0HtIAaXUSmA3/omSGWC9Cb3rnYe/iG39rMBKqRXA9/AfqqjvzX6nUurCk/1jhRCjzmqkhokRRJo3EXBa62rgI2C31rqyd/ETwDlKqd3AZqAUyBlgt/7twGNKqY+AWfh3/6O13of/HJFnlVK7gB8Dn9dad/R77ULgVvznkuwFHgQu1Vq3nCivUiob+Ctwo9a6tM/r3Qo8pZQaf3r/E0KIYCQ1TIw0FsMwzM4ghBBCCCEGSfa8CSGEEEIEEWnehBBCCCGCiDRvQgghhBBBRJo3IYQQQoggIs2bEEIIIUQQkeZNCCGEECKISPMmhBBCCBFEpHkTQgghhAgi/x/L9QU//eqCagAAAABJRU5ErkJggg==\n", "application/papermill.record/text/plain": "
" }, "metadata": { "scrapbook": { "mime_prefix": "application/papermill.record/", "name": "ttestdist_fig" } }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm8AAAEPCAYAAAAUKiNPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xd43NWZ8P3vFPUpKlbv9bjbYGx6xxBagIQ0kvDu5snDpkCW7LUbyBvSF/LAbkI2gWSTJQmbApu8vAkktFANDmCMAVdJR82yitWlGfU2M88fMyOrWqMymhnp/lyXLjS/eg+Y2+f3O+c+x+DxeBBCCCGEEJHBGOoAhBBCCCFE4KTxJoQQQggRQaTxJoQQQggRQaTxJoQQQggRQaTxJoQQQggRQaTxJoQQQggRQaTxJoQQQggRQaTxJoQQQggRQaTxJoQQQggRQaTxJoQQQggRQaTxJoQQQggRQcyhDmA5KaXMQA7QpLUeD3U8QgixEJLDhBCBWFWNN7xJ7/jLL78c6jiEECvLEOoAlonkMCHWngXnL+k2FUIIIYSIINJ4E0IIIYSIINJ4E0IIIYSIINJ4E0IIIYSIIEEtWFBK3QLcA0QDD2qtH57juGuBh7TWhb7PicDvgCKgA/io1ro1mLEKIcRkkr+EEOEqaG/elFLZwL3ABcA24Dal1MZZjksH/p2p1Rb/CuzVWm8A/gv4j2DFKYQQ00n+EkKEs2B2m14BvKK17tZaDwBPADfPctwjwLenbbsW75MrwOPA1UqpqKBFKoQQU0n+EkKErWB2m2YBLZM+twC7Jh+glPoS8B6wb65ztdbjSqleIBU4OencRCBx2nk5yxK5iDhutwcAgwEMhtUy5ZcIoaDmL9/5ksMEcCp/ARiNkr/E/ILZeJvtT6Db/4tSajPwYeByZias057rcyfwzaUEKCKfs3+E+399gCO1nQBY46P550/u4Mz1aSGOTES4YOcvkBy25nk8Hv7wchX/84Jm3OXBaIDrLijiMx/cjEkaceI0gtlt2gxkTPqcydQnz4/4th0AngWylFJ7p5/rWy7GBnRNu/4PgcJpPxcu71cQ4ay5o59/+dFeKk908+FLS7jlqvWk2GP59i/28fxb9aEOT0S2YOcvkBy2po2Nu/mP37/Pb5+r5KwN6dxy1Xou2ZHLn/fWce+v3mZoRFZHE3ML5pu3l4BvKaVSgQG8T6m3+Xdqrb+J76lTKVUA7NFa+xPXs8CtwH3Ax/AO/h2bfHGttQNwTN6mlArKFxHhp6dvmK/8eC8GA9z3+fNZX5AMwA0XFfFvv32Xh584hMloYPfZ+SGOVESooOYv3zUkh61hP/r9++x5r4lbrlR8/Eo1MdxD5Sfxsz8e5ru/eJt7P3+eDAMRswramzetdTPwNeBV4CDwmNZ6v1LqWaXUWfOc/nXgHKXUMeALwBeDFaeITL9+poLB4THundRwA4iPjeKev9/F5uIUfvX0MXoHRkMY5fJoampCKcUbb7wxZftll11GU1MTLpeL22+/naGhoSXd5y9/+QvXXHMNu3fv5ne/+938J8zi7rvv5o9//GNAx/b393PdddfR1NQEQGtrK3fdddei7rvcJH+JYDpU3cGe95r42O4yPnHV+ikNtGvOK+RzH97GkdpO9rzXFMIol4/ksOUX1HnetNaPAY9N23bNLMfVAwWTPncDHwxmbCJy6RPdvPROAx+6pIT8DNuM/SaTkX+4aSv/+IM9/Pb5Cr7w4W0hiHJ5RUVF8fWvf50///nPWCyWKfsef/xxLrjgAuLi4hZ9/ba2Nh588EH++Mc/Eh0dzcc//nHOPvtsSkpKlhr6rA4dOsQ999xDfX39xLaMjAxSUlJ47bXXuPjii4Ny34WQ/CWCYdzl5udPHiEtOZ6PXF4GwJjTiXtsHIPRSHRyElednc+Lb5/g0aePcfamDOJjI79YWXLY8pIVFkREcbs9/OxPR0i2xfCx3WVzHleQaeOa8wr461v11DU7Vy7AIElLS+O8887j/vvvn7Ld4/Hwm9/8hmuvvXZi21e+8hWefPLJic/f/va3+d3vfseLL77IDTfcMOXnzjvvBODNN9/knHPOITExkfj4eK666iqef/75KfdqbW3lU5/6FB/60Ie4+eabOXjwIB6Ph+9973tcddVVfPrTn6ahoQHgtPcC+MMf/sA3v/lN0tKmFpbceOON/Nd//dfy/EsTIgw9+8ZxGlr7+OwHNxNtMlD3yK/Yf+tnOPC/buOdv/8s+vs/BNc4/3DTFrp7R/j9i1WhDnlZSA5bXkF98ybEctt7sJnqRgf/dMuZ8z6NfvKq9bz+fjO/evoY3/2H8xZ9z1cONPDi/oZFn386u3flcdlZeQEde/fdd3P99dfzxhtvcP755wPe1/ZWqxWr1Tpx3LFjx7jtttumfL7pppvYunUru3fvnvXa7e3tpKamTnxOS0vj8OHDU4554oknuOSSS/jsZz/L22+/zbvvvktrayvl5eU8/fTT9PX18cEPel847d69e857Adx7772zbi8rK6Ompgan04ndbp/n34gQkWVweIzH/lrJGWWp7Fq/jur/+DEde14n/fLLsBQVMdTSwsmnn2G8v4/1d/0LV+zM46nXa7nugiJSkxb3Vipc8hdIDltO0ngTEeWZN46TtS6Bi8+YfzosS3w0N1xUzG+eq+BkRz9ZqZZ5zwlnFouF7373uxNdDwBvvPEGGRmniiIHBwdpbW2lqKgIAJfLRW1tLUopXnzxRR566KEp1ywsLOSHP/whHo+H6aYPlD733HO54447qKio4OKLL+ZTn/oU999/P1deeSVRUVEkJydz0UUXAZz2XvPJyMigoaGBLVu2BPBvRYjI8dr7zQwMj3PLB9ZT958/p2PP6+R9/GPkXHvNxP9v8RkZ1Pzil1Te/298/PZ/4uUDDbzw9gk++YH1IY5+6SSHLR9pvImIcaK1l4r6bv7+uk0BT2S5e1cej/21kuf3neAz129a1H0vO2thT5fBdMEFF0zpejAajZhMpon95eXllJWVYTR6R0RUVFSQk5NDTEzMaZ8k09PTOXDgwMTn9vb2Gd0BO3bs4JlnnmHPnj08++yz/OlPf6KoqAi3+9QUZmazN6XM99R6OmazeSJ+IVYLj8fD82/VU5BpI3u0i8MvvULW9deRe921U45Lv+RiXMNDHP/tY2TWVXCmSuOFt0/w8d1lmEwL//8inPIXSA5bLpIhRcR4/q16zCYjl+/MDficJFssZ2/O4OV3GhgbdwUvuBV0991387e//Y329nbOPfdcTp48Nf3Y0aNHGR0dxe12Mzo6ys9+9jM2bNgw7zXPO+883nrrLbq7uxkaGuKFF16YeAL1e+CBB3jqqae46aab+MY3vkF5eTnnnnsuzz//PKOjozidTvbu3TvHHQLX2tpKTo4sNCBWl+pGB3XNTj5wTj71j/6GKJuN3A/OXteSccUVxGZkUP/or7lqVy7dvcPsL29b4YiDR3LY0knjTUSE4dFxXj3QyPlbs7BbYhZ07tXnFtA7MMqbh1vmPzgC+LsexsbGsFgs9PT00NfXB3jHhmRmZnLDDTdw6623kpOTw759+2hsbDztNdPT0/nyl7/Mrbfeyo033sh1113H1q1bAbjhhhtoa2vj05/+NC+88AI33HADt99+O9/85je54oor2LVrF9dddx2f//znKS4uXtJ3q6qqorCwUMa7iVXn+bfqiY02caahnd6jx8i9+cOY42JnPdZoNlPw8Y8x1NRMfvMxUuyxPL+vfkXjDSbJYUtnmK2fOFL5Jss8/vLLL8uT+yrz0v4T/MfvD/K9L5zP5uJ1CzrX7fbwuf/zMsn2WP7PFy8IUoSh8+tf/xqj0cinPvUprr76ah566KElJ6DJ7rvvPr70pS/NKO8Phvvuu4/zzjuPSy65ZKGnroqZTCWHrU4DQ2P8P9/5Kxdvz+b81x/F43Zxxn33YjTPPXLJ4/Fw9Lv3MtTeRu1H7uTxPcf5+VevICMlYQUjXxmSwxaev+TNm4gIL73TSHaqhU1FKQs+12g0cOU5+Ryr66K1ayAI0YXWJz7xCd544w36+/vp6uqaGOi7HDweD5s3b16RpNfS0kJXV9diGm5ChLW/HTrJyKiLS5OHGGpqIvdDN5224QbewfZ5H7mZMYeTXbQC8OqB0799ilSSwxZOGm8i7Dn7R6g43sWF27MXvVTMBduyANh3tHU5QwsLUVFR/PSnP8VisbB///5lXU7HYDBMlM4HW2ZmJt///vdX5F5CrKR9R1tIT44n6vDbmBISWLfjzIDOs61XxKanM/jmXjYUJK/K/AWSwxZDGm8i7O0/1orbA+dszpj/4DlkpCRQmGVj39HVMe5NCBEZBofHOFjVwXmliXTv20/qBedjjIoO6FyDwUDaRRfSe6yc83OiqTvppK17MMgRi0ggjTcR9vYdbSUtKY6i7KUNAD1ncyYVx7tw9I0sU2RCCHF67+l2xl1uto004B4dJe3ChY27TbvgAjAYKO6oAOBteQAVSONNhLmhkXHer2rnnM2ZS36Vfs7mTNweeKd8dXY9CCHCz74jrdgSojEd3E98Xh6W/PwFnR+Tkkzili0MvvUGBekJq7brVCyMNN5EWHtftzM27uaczZlLvlZhlo20pDhJfkKIFTE27uZARSsXZ5sYqKkh7ZKLFvUQmn7RhYx2dXNJ4iDH6jrpHRgNQrQikkjjTYS1fUdbsMZHsbEwecnXMhgMnLM5k/er2hkaGV+G6IQQYm5HazsZGB5ny3AjGAyknnPOoq6TvONMTHFxFHbX4fZ4xwGLtU0abyJsuVxu3ilvY+fGjEUtCzObczZnMjbu5j3dvizXE0KIuew72kJMtInY+kqsZaVE22yLuo4xKorELVsYrzzCOluMFF4JabyJ8FXd6KB/aIydG9OX7ZobC5OJjzXzvjTehBBB9r7uYGdOLIN1dSSfccaSrpV8xnbGehxcmOHhcE0nLpd7/pPEqhXUxptS6halVLlSqkYp9cVZ9t+klDqslDqmlHpUKRXt236rUqpFKXXQ93NvMOMU4elQdQcAWxa4osLpmExGthSv43B157JdM5j6+vr4whe+MOf+u+66i7a2NgYGBvjHf/xHrr/+eq6//nqeeeYZwLtO4AMPPLBS4a4qkr/EUrR3D9LSNcB2j/dBMemM7Uu6XtL2bWAwoAabGBoZp7rRsRxhBl2gOcxPa82111475Zhf/vKXfOADH+Cqq67ihRdeALzrh951113BCToCBK3xppTKBu4FLgC2AbcppTZO2p8APATs1lpvAmKBv/Pt3gn8k9Z6u+/na8GKU4SvQ9WdFGXZ513LdLCxiZbn/krLc3+la9/bzLfk29bSdbR0DdAeAfMlOZ1OKisrZ9336quvkpaWRnp6Oj//+c/JysriL3/5C48++ijf+9736OzsZPPmzbS2tqK1XuHII5vkL7FU/ofPdW21xKSmEp+VtaTrRVmtWEtKiKvXGAynrh/uAs1hAE8++SSf/exnGRoamjjm8OHD/PnPf+app57iscce44EHHsDhcJCRkUFKSgqvvfbainyPcHP69TmW5grgFa11N4BS6gngZuA7AFrrAaVUgdZ6zJcI04Ae37k7gRKl1N3AEeAOrXXPjDuIVWt4dJyK+m6uv/D0y6QM1J/gyFfvwTV4qiGW+4mPkffxj855zrbSVMCb/HafPX/Zfvsre2h7+ZUAI1+Y9MsvI+2yS+bc/6//+q+0t7fzxS9+kYcffnjKvkceeYTvfOc7AOzatYvCwkIAUlJSSExMpLOzk3Xr1nH99dfzy1/+kvvvvz8o32GVkvwlluRQdScpCSZGK8pJv+zSZVk1IPmM7Zz4w//HhnMu4WB1Bx/breY9J5T5CwLPYX19fbz88sv84Ac/mPJG7fXXX2f37t3ExMQQExPDrl272LNnDzfeeCM33ngj3/nOd7j44ouX+6uFvWB2m2YBk0dVtgBTVlr2Jb6rgQZgHfDCpGO/BWwHGvE+4U6hlEpUShVM/pl+fRG5Ko53eye2LJ27y3Sks4vy7/wrptgYtt//PXY+9CPSLryAxsd/f9pklZduJckaw6EI6Dq95557SEtLm5H0HA4H9fX1E4s3n3/++WT5nuyfffZZRkdHKSkpAWDnzp28+uqr876RFFMENX+B5LDVzOPxcKimgwusA7hHR0navrQuU78k37i5XaZOKut7GB4N/6r5QHOY1Wrlxz/+MZmZU6eFam9vJy0tbeJzamoqra3eatuysjJqampwOp1B/hbhJ5hv3mZ7zJgxwlJr/RyQopS6D/gpcIvW+ib/fqXUA0DdLNe6E/jmMsUqwsyh6g7MJgObCmdfiN49Nkb5d+/FNTjElm9+g4TsbACK/9dnGO1xUPvwfxKXmYlt44YZ5xoMBraWpHKopgOPxzPvE3HaZZfM+3S50hoaGqYkNL/nnnuO++67j0ceeQSzb+Fri8WCx+Ohp6eH5OSlT7myRgQ7f4HksFWrobUPR98IJYYmjLEx2FXZslw3PiebmNR1ZHUdZ9yVRPnxbs5UM/PAZOGYv2DuHDbdbA+dRuOp904ZGRk0NDSwZcuWZY0v3AXzzVszMHkxykzgpP+DUipZKXXlpP2/A7YqpexKqS9P2m4Axma5/g+Bwmk/Fy5T7CLEDlV3oPKTiY2Z/fmic+8bDNafoPTz/0BCTvbEdqPZjPrSHUTZbDT87vE5r7+9bB2OvhEaWvuWPfaVYDQaMZlMU7b95je/4f777+cXv/gF69evn7LPbDZPSXhiXsHOXyA5bNXyj0eLb67DvmkTxqioZbmuwWAgaetWqK8hyujhcISMe5vNbDlsNunp6XR0nPqeHR0dUxp9azW3BfMbvwRcrpRKVUrFAx8Gnp+03wD8VimV5/v8UeBvQD/wFaXU2b7ttwN/mn5xrbVDa10/+QdoCtJ3ESuob3CU2mYn20pm7zL1eDw0P/kU8Xm5s5bfm+PjyPrAVTiPHqOvumbWa2ydNO4tnJnNZsbHZ3aN5OTkTHQdALz00ks8+uijPP744yg1dRxMf38/Ho+HxMTEoMe7igQ1f4HksNXsUHUnxVYPY22t2DdtnP+EBbBv2IB7eJhdSeMcDPP8BYHnsLlcdNFFvPDCCwwNDdHd3c2+ffs499xzJ/a3traSk7P2RhsErfGmtW4Gvga8ChwEHtNa71dKPauUOktr3QXcBjytlDoElAF3aa1deBPhT5VSFcAO4CvBilOEn6O1nXg8pxpY0zneP8jgiQayr712zi7P9EsvxRQXR/Ofnpx1f1pSPJnrEsJ+3FtKSgpZWVl8+tOfnrI9MTGRvLw8amq8jdMf/ehHjIyM8LnPfY4bbriBG264gSNHjgDwzjvvcOmll6547JFM8pdYLJfLzdG6TnbG9QJgXz9z6MZS2DZ436pvNnRT1+ykbzC8l8oKNIfNZevWrXzwgx/k5ptv5hOf+ARf+tKXJqpTq6qqKCwsxG63By3+cGVYTYOYfQN+j7/88strsiW+Wjzy1FGee/M4/3PvtUSZZz5fHP36txhqambHD/4do3nuYZv1//N7mp95lh3/+RCxGRkz9v/o9++z72gLv/321RiNS68EW2kvv/wyBw4cmHeuozvuuIPbb799xhu5VSby/gPOQnJY5KttcnDng6/xFYsmuuYou37yMIZl7tZ7766vMppg5173WXz9f53Nro0z81skCDSHzeW+++7jvPPO45JLLlnewFbegvPX2usoFmGvor6L0rykWRtu/bV1OA8fIeuaq0/bcAPIvOpKDEYjJ596etb9GwuT6Rsco7mjf1niXmmXX3457e3tUya4nO7w4cNkZWWt9oabEGGjor4bgOjmOmwbNy57ww3AvnEDnhO1RBk8VBzvXvbrr5RActhcWlpa6OrqWg0Nt0WRxpsIK8Oj49Q2OdlQMHtVZPurezBERZF+8fzjumOSkkjZtZOO1/finmXMxQZfJWv58a6lBR1C3//+9ye6EGazdetWvvrVr65gREKsbRXHu8mPHWO8owP7huXtMvWzb9iAe2SEHbbhicZipJovh80lMzOT73//+0GIKDJI402EleoGBy63h42FMxtvHo+HrrfeJmnbVsxx8QFdb92uXYz399N79NiMfVnrErBboimP4CdXIUR4KT/exVmxwRnv5mf3jXvb5OmiqqGHsXFXUO4jwpc03kRYKa/3vgVbP8ubt/7qGkY7O0nZtTPg6yVu3YIxJpquN9+asc9gMLChIDnin1yFEOGhvWeQTucweYOtmG1W4rMz5z9pEaKsVuLzckntaWJs3E1t09qbpHatk8abCCsVx7vJTbdijY+esa/rrX0YTCaSt28L+HqmmBiStm2j6+39eFwzn043FKTQ0jlAT9/wkuIWQoiK493g8RDXchx7kMa7+dnXb8DQdByTxyW9B2uQNN5E2HC7PVSe6Jm7y/TNfdi3bMYcn7Cg66bs3MmYw0lv5czF2f33iuRBv0KI8FBR302qcRh3Tzf2aRNlLzf7hvV4xsbYFDNIRX3kjtsViyONNxE2Gtv6GBgam7VYYbD+BMOtraTsDLzL1C9p+zYMUVGzdp0W59iJMhul61QIsWQVx7vZET8AgLW0NKj3spZ61y7eHNVLRX23rF28xkjjTYSNcl8DasMsb94633wLjEZSzpy5osJ8zHFxJG7eTNe+t2ckuCizidLcRHnzJoRYksHhMepbnBS5ezDGxkxZti8YohMTiU1LI3OoDWf/KC2dA0G9nwgv0ngTYaPieBeJ1hgyU2Z2i/YceBebKiPKal3UtVPO2sFoZxeD9Sdm7NtYmEJNk4Ph0ZnTiQghRCD0iR7cHrB3N2EtKcEQwLqdS2UtLSGmpQE8noie8kgsnDTeRNjQJ3pQeUkzlrwa6+1l4Hg9iVu2LPraiZs3AeA4dHjGvvX5SbjcHuqapWJLCLE4uqGHaM8YnpZmrGVlK3JPa1kZ7r5eMk1D6AbHitxThAdpvImw0Dc4ysnOAVR+0ox9ziNHweMhcdOmRV8/JiWFuMxMnAcPzdhXmue9Z5UkPyHEIlU19LA1dhDcbmwlJStyT5tv3Nv22H6qGnpW5J4iPEjjTYSF6kZvw6ksd2bjzXHoMKb4OCwF+Uu6h33zJpzlFbjHxqZsT7bFsi4xjmpJfkKIRfB4PFQ3OFBGbx6zlhStyH3jc3IwxcZSMN5FfUsvI2MyWe9aIY03ERaqG3owGKAkN3HGPuehw945k5Y4hiRx40bcIyP0VVXP2FeWl0hVozTehBAL19EzhKN/hIyBNuJychY8ndFiGYxGrCUl2LtP4nZ7qJPJetcMabyJsKAbeshJs5AQFzVl+3BbG8Otbdg3b17yPewbN4DBMGvXaVluEq1dgzj7R5Z8HyHE2qIbesDjIbq1AZtamfFuftbSEmg7SbR71BuHWBOk8SZCzt/lUDprl+kRwPvWbKnMCQlYigpnLVoo842183ffCiFEoKoaekh39+EZHJyYf22lWMtKweNhvblPhn6sIdJ4EyHn73Ioy5ulWOHQYaKSkojLzFiWeyVu3ERfdQ3jg4NTtpfkJGI0IIN+hRALVt3oYFtsPwDW4uIVvbe1uBgMBjaanDL0Yw0xB/PiSqlbgHuAaOBBrfXD0/bfBHwbMAHvALdprUeVUnnAb4E0QAOf1Fr3BzNWETr+hKOmNd48bjeOw0e8KyRMmz5kseybN9H0l7/Qe/QYyZMWuI+LMZObbpXGm5gg+UsEwuVyU9Pk4Hx3D6b4eOLS01f0/ub4eOIyM8kc6qR1zDv0w26JWdEYxMoL2ps3pVQ2cC9wAbANuE0ptXHS/gTgIWC31noTEAv8nW/3T4CfaK3XAweArwcrThF6VQ0OosxG8jNtU7YPNTUx3tvrHau2TGylJRjMZpxHj83YV5aXRFWDQ5aZEZK/RMAa2voYGXWR5GzDWlIc1MXo52ItLia2sxk8Hhn6sUYE80/ZFcArWuturfUA8ARws3+nb1uB1rrNlwjTgB6lVBRwke94gEeBjwQxThFiVQ09FGV71xidrLe8EgBb6fINADZGR2MpKqSvonLGvtK8JPoGR2ntGpzlTLHGSP4SAalq6MHsHsfQfhLLCneZ+lmKi/D095HoGpDegzUimN2mWUDLpM8twK7JB2itx5RSV+PtYmgGXgDWAb1a6/FJ5+VMv7hSKhGYPq/EjONEePN3OVx59sw53HorKohKtBOblrqs97SVlXHyuedxjYxgijnVvVDmm6ZEN/SQuW5lSv1F2Apq/gLJYatFVYODQkMvuN1YilZmfrfprMXe+26OHZCK0zUimG/eZhuk5J6+QWv9nNY6BXga+Gmg5wF3Asen/exddLQiJJra+xkZdVE6y/xuveWV2JRatvFufjZVhsflor+6Zsr2/EwbUWYjtU3S7SCCnr9ActiqUNPoYFO0r1ihsCAkMcTn5mKIiqIEJ7VNMvRjLQhm460ZmFwimAmc9H9QSiUrpa6ctP93wFagA7AppUyznTfJD4HCaT8XLlv0YkXU+BpKJTlTG28jnV2MtLdjU2rZ72nzrTvYe6x8ynazyUhhlm0iJrGmBTt/geSwiDc65uJEay/ZY11Er0shOnHmQ+hKMJrNWPLzWNffhrN/lE7HcEjiECsnmN2mLwHfUkqlAgPAh4HbJu03AL9VSp2ltW4APgr8zdcVsRf4GPAYcCvw3PSLa60dwJS/ZVUQ/qIXwVXT6CA22kRWqmXK9l7fmDRrWemy39OckEB8Ts7EmLrJinMS2fNuE263B6Nxed/4iYgS1PwFksNWg/qWXlxuD9buFqyloRnv5mcpKqbv1T0Y8rxDUVKT4kIajwiuoL1501o3A18DXgUOAo9prfcrpZ71JbwuvMnwaaXUIaAMuMt3+hfwVneV430SvSdYcYrQqmlyUJyTiGlaQ6mvogJjbAyW3Nyg3NemyujTGo9r6lqApTmJDI2Mc7JTZnZYyyR/iUDUNDmIdQ1Dd2fIihX8LMVFMDZK6niv9B6sAUGd501r/Rjep8/J266Z9PuTwJOznHcCuCSYsYnQc7nc1J3s5QPnzlKsUF6JtbR0yeuZzsVaVkbry68w2NBIQmHBxHb/2qo1TU5y0qxBubeIDJK/xHyI6hSDAAAgAElEQVRqGh0Ue7zriVqLCkMay0TRQnSfNN7WAFlhQYRMU3s/o2OuGePdxgcGGDhxIijj3fz86w/2lk8d95abbpWiBSFEQGqbnGyI6gWDgYSCmQ+hKyk2PR1TfDwFrh4pWlgDpPEmQsY/meT0xlufrgK3G1sQxrv5xaSkEJ2cTO+xiinbpWhBCBEIf7FC5kgXcdnZmGNDO8bMYDBgLS4ipU+KFtYCabyJkKltmr1Yoa9Sg9GAJYjdEAaDAVtZqbehOE1xTiK1TU7cbnlyFULMrr6lF5fLTUJ3y0SXZahZCgsxdbVhdo/LA+gqJ403ETJzFivoKhLy8oL+JGstKWGks5ORru4p2/1FCy1dA0G9vxAictU0ObC6BqG/D0thaMe7+VkKC8HtJn3MIUM/VjlpvImQ8BcrFOfYp2z3uN30VVVjKQlel6mftaQEgD6tp2z3Fy3IGoFCiLnUNDoo9BUrhE3jzddbsSG6n2ppvK1q0ngTIdE4R7HCUFMTrsFBbCswZ1JCQT6GqChvN+0kUrQghJhPTZMDZe4Do5H43PBY1Sw6OZkom418l0OKFlY5abyJkKidY2UF/xg0S1HwG29GsxlLQf6McW9StCCEOJ3RMRcNrX1kjnSRkJeLKTo61CEB3rG8lsJCkqVoYdWTxpsIidpmJzGzraxQWYXZkkBcRvqKxGEtKWGgtg732NiU7cXZidQ1S9GCEGKmE63eYoX47hYSQrQY/VwsRYWYutuJco9R1ywPoKuVNN5ESNQ2OSjKss8oVuivqvJOzrvMi9HPxVpSgntsjIH6E1O2F+fYGRwep617cEXiEEJEjtomJ/bxARgcCJvxbn6WwkLweEgf7aG22RnqcESQSONNrDi328Pxk06Ks6cWK4wPDDDY2IS1NPjFCn4TRQvTxr0VZ3u7c+sk+QkhpqlrdpLv7gHAUlAQ2mCm8a8Ysz6qn9omyV+rlTTexIpr6RpgaMRF0bTGW391DXg8KzpnUkxKMtFJSTMab/mZVkxGA7XS7SCEmKa22UGZuR+D2URCTnaow5kiJimJ6KQk8t0O6TZdxaTxJlZcne9psHhasUJvpQZDcCfnnY21tGRG0UKU2URehlW6HYQQU7hcbupPeldWiM/LxxgVFeqQZrAUFpDU20ancxhH30iowxFBII03seJqmx2YTQZy06cu/N5fVUV8TjbmuPgVjcdaUsJIRwejPT1Tthdl26XcXggxhX9N5vjuFixhVqzgZyksxOzoJNo9JkM/VilpvIkVV9vkJD/TRpT51B8/j8fjnZx3Bce7+VlLvNOS9FXVTNlenJ2Is3+U7l4ptxdCeNU2O0gc68MwPISlsCDU4cwqwV+0MNItQz9WKWm8iRXl8XiobXZOFAT4Dbe0MN7XP1FAsJISCgowmEz0T1tpwb/6g3SdCiH8apud5Lh8xQr5+SGOZnb+RmWJqVfy1yoljTexojocQ/QNjs4oVvCPObOGoOzeFB1NfF4ufbp6yvbCLDsGA1KxJYSYUNvkpMzUj8FsJj7MihX8ou12opOSKHA7J8YYi9XFHMyLK6VuAe4BooEHtdYPT9t/A/BtwAAcB/5ea92jlLoVuB9o8x36jNb6a8GMVayM2olihWmNt6pqjLGxxGdnhSIsrCUltO/9Gx6XC4PJBEBcjJmsdRZZJmuNkvwlpnO7PdQ1O7l0tIuE/DyM5qD+FboklqJCkmsbaOkaYGBojIS48CusEIsXtDdvSqls4F7gAmAbcJtSauOk/Tbgp8C1WuttwGHgW77dO4F/0lpv9/1I4lsl6pqdGA1QkGmbsr1PV2MtKcZgDM3LYGtxMe7hYQabmqdsL86xU3dSnlzXGslfYjat3QMMDY+R0NNKQmF4Fiv4WQoKiHJ2eYsWJIetOsF8bLgCeEVr3Q2glHoCuBn4jm9/FPAFrbX/b8vDwCd9v+8ESpRSdwNHgDu01lNKAZVSicDUgVMQHqsDiznVNjvITrMSG33qj55rZITB+nqyr78uZHFNFC1oTUJ+3sT24mw7r7/fjLN/BLslJlThiZUX1Pzlu6bksAhT2+T0FiuMDGMpDM/xbn5TihaanGwpXhfqkMQyCug1h1JqMf/Vs4CWSZ9bmJSYtNZdWusnfdePA+4Gnpx07LeA7UAj8NAs178Tb1fF5J+9i4hTrKC65pkrKwzUHcfjcmEpDv5i9HOJTU/HbEmgf9p8b/6xecflyTVihWn+AslhEaeu2UnWWDcAlvyC0AYzD3/RQhFOmax3FQr0zdsxpdRLwE+11n8L8JzZFqd0T9+glLLjTXqHtNb/DaC1vmnS/geAulmu9UPg0WnbcpDkF7ac/SN0OYdnFitU+YoVikO3RqDBYMBSVExf1dSihaJJy2RtL0sLRWhi6cIxf4HksIhT1+ykzNQX1sUKftF2O9HJyRR4nOyRitNVJ9DGWwHwceDflVIJeMd6/EZr3Xeac5qBCyd9zgROTj5AKZUJ/BV4Bfiyb5sd+IzW+kHfYQZgbPrFtdYOYMrjhFIqwK8jQsFfsj6jWEFXEZOWSrTNPttpK8ZaUkzjn55kfHAIc3wcALaEaFKT4qTiNLIVEGb5CySHRRrvNEcOzhntDvtiBT9LYQEpNQ00tvczMuYiJsoU6pDEMgmo21RrPaS1/pXW+hzgDuCfgZNKqYeVUnO9jngJuFwplaqUigc+DDzv36mUMgFPA3/QWt+ptfZPY98PfEUpdbbv8+3Anxb8zUTY8VdtFmVNb7xVh2R+t+msxcXg8dBfM3Wy3qIsu8yVFMEkf4nl0N07jLNvBIuzzTueLAJYCgqIdnZhHh/lREtvqMMRyyjgRwel1AeA/423+up3wK+Aa4E/A+dMP15r3ayU+hrwKt5S+0e01vuVUs8C3wBygTMAk1LqZt9pB7TWn1VKfRT4qW8sSRVw62K/oAgfdc1O0pLjscRHT2wb7e5htLMTy9UfCGFkXhNFC5WaxK1bJrYXZ9vZX97K0Mg4cTHh/7QtZpL8JZaqttlbrGAcGQ7blRWm8zYy/SstOCnLSwp1SGKZBPQ3kVKqAegEfgJ8Sms95Nt1RCl121znaa0fAx6btu0a368HmOPNn9Z6L3BmILGJyDFbsUKfb1UDWxi8eTMnJBCXmTljkfrinEQ8Hm/RwsbClBBFJxZL8pdYDnXNTrJGu4DwL1bws/jeEOa5emSN01Um0NcIn9Javz55g1Jqo9a6XGsd3pPdiLAwODzGyc4BLj0rd8r2Pl2FwWwmIS93jjNXlrWkhJ5Dh/B4PBgM3jHr/gKLumZpvEUoyV9iyeqanRQbejFERYV9sYJftN1GdEoyRfTytlScriqnbbwppZJ9v/5YKXUJpyqwooCngJVfRVxEpOMnveMtZr55q8JSVIgxKjxm/7aWFNO+dy8jbW3EZmQAkGKPxZYQLU+uEUbyl1hOtc1Oto/3kJCfHxHFCn6WgkLWVddTf7IXl8uNySSrYq4G8/1XfBxvd8MWoMv3eyfeuYveC25oYjWp9T31TZ4mxD0+Tn9NLZYw6DL18xdO9FaeWqTeYDBQnC1FCxFI8pdYFn2Do7R3DWB1tmEpKgh1OAtiKSokprcLw8gwTe39oQ5HLJPTPj5ora8CUEr9Umv9mZUJSaxGdc1OEi0xJNtiJ7YN1p/APTo6USgQDuJzsjHGxNBfWUXaJRdPbC/KtvPU67WMjbuJMsuTaySQ/CWWS12zk+SxXoyjIxPjyCKFv7jCX7SQP21pQhGZ5us2Xa+1rgQeUkrNGICrtZanVxGQumYnRdn2iXFkwERhgC2EKytMZzCZsBYXTUwc7Fecnci4y0NDay/FOdNXNBLhSPKXWC51zU4yRnzFCgUFoQ1mgfyNzeyxbuqanVx2VniMLxZLM1/H/ffxltP//7Ps8wAy2FfMa2zcRUNrHzvWp0/Z3qeriEpKIjo5eY4zQ8NaXELzs8/iGhnBFONdz9Q/sXBts1Mab5FD8pdYFnXNTgo9TozRUcRnZYU6nAWJslqJWbeOYoOTg1K0sGrM1216re+fkfWeWISVEy19uNyeWVdWsJaWTHkbFw4sJcV4XC4GauuwbdwAQEZKAnExZilaiCCSv8RyqW12cO14DwkFBRhMkbdKgaWwkNSKGuqanbjdHozG8Mq5YuHm6zb90en2a62/tLzhiNXIX6xQnH3qjdWY08lwayvpl18aqrDm5C9a6NN6ovFmNBooyrZPrBIhwp/kL7EchkfGaW7rxdbbjmVX+OWrQFgKC4h55x1cAwO0dQ+SuS4h1CGJJZqv27RrRaIQq1ptk5OEWDMZKfET2/zj3axhNN7NL9puIzYtjb4KDTed2l6cbeevb5/A5fZgkifXSCD5SyxZfUsvSaO9GMdHI65Ywc9S5I07Y8Q77k0ab5Fvvm7Tb69UIGL18hYrJE7pHu2t1BhMJiz5+SGMbG7WkhIc5eVTJustzrEzstfFyY5+ctOtIY5QzEfyl1gOtU0OMob9xQrhma/mk+Arssga7aK22cH52yJr3J6Yab5u079prS9QSvXhHeA7hdZaao7Fablcbo6fdHLN+VOfWPsqKkkoLJwoCAg31rJSOt58c8pkvUW+bt/aJoc03iKA5C+xHGqbneS7HRhjYojLzAx1OIsSZbEQm5ZGkctJRZOM210N5us2/Yjvn5uDHYhYnZra+xkdd09ZWcE9NkZ/TS3pV1wewshOz1bqnXy/t0JPNN5y0yxEm43UNju5ZIeU20cAyV9iyWqbnFw53oOlsACDMXLneEwoLCDtiObpZseUHgURmU77J1Fr3eL75wlgPXAH8Dkgz7dNiNOaKFaYNL3GQN1x3KOj2MrCd3Wi+NwcTHFx9FVUTGwzmYwUZNmk4jRCSP4SSzU27qKp1YGtrx1LGE0mvhjW4mJiBp2MOZx09w6HOhyxRAE9Riil/l/gQWAQGAd+oZT6YjADE6tDbZOTmGgTWamWiW29lZUAYbWywnQGoxFrSTG9FXrK9uLsRGqbvE+uIjJI/hKLdaK1j6ShboyucSyFkT0toL9oIXOki1rpOo14gb4DvgU4W2v9Da3114GzgS8ELyyxWtQ2OynMtE2pzuyr0MSkpRKTmBTCyOZnLS1lsLGR8YGBiW1F2XYGhsdp6x4MYWRigSR/iUWpbXKeKlYoLAhpLEtlKSgAg4HMkU6Z8mgVCLTxNgRMrGirte4B5L2rOC2320Nds2NKl6nH46G3shKbUiGMLDC2slLweCamNYFJKy3Ik2skkfwlFqW22UHeeDdmi4XY1NRQh7MkpthY4rOzKXQ7qJWhHxFvvmrTD/l+1cCTSqlHABdwK3BgvosrpW4B7gGigQe11g9P238D8G3AABwH/l5r3aOUygN+C6T57v1JrXU/IqK0dg0wNOKaUqww0tbGWI8Da2n4jnfzsxQXg8FAb3kFSWeeAUB+hvctopTbhz/JX2Kp6pqcXD7WjaWkeFUM8LcUFZK27wDPNfaEOhSxRPO9ebvD95MN2IB/Av4FSAdO+7evUiobuBe4ANgG3KaU2jhpvw34KXCt1nobcBj4lm/3T4CfaK3X402yX1/QtxJhocb3ar5oUuOtt9I7hszmW8UgnJnj4kjIy6Wv8tS4t+goE3kZVnnzFhkkf4lFc7ncNDZ3YR3oxlIU2ePd/CzFxUSNDjHW1YWzfyTU4YglmG+S3qWsBXIF8IrWuhtAKfUEcDPwHd/+KOALWutm3+fDwCeVUlHARcCNvu2PAq8Bd02+uFIqEZi+QnjOEuIVy6ymyYnZZCQv49R0Wn0VlZji44jPyQ5hZIGzlpXR/vpePC7XxJqGJTmJvH2sVcrtw1w45y/fNSWHhbHG9n6S+zsweNwRu7LCdFZ/0cJwJzVNDnasTw9xRGKx5pvnDQClVClwO2DB20VgAkq01uef5rQsoGXS5xZgl/+D1roLeNJ3/TjgbuDHwDqgV2s9Pum82RLancA3A4lfhEZtk4PCLBtR5lMveHvLK7CWlkbMfEm2sjJaX3yJ/rrjWEu9bwuLcxJ5cX8DHY4h0pLi57mCCLUwzV8gOSys1TQ6yBzxFitYCwtCGstyic/NxWA2kzkijbdIF+jfoI/hHfdxHlAPbASOzHPObK8k3NM3KKXswLPAIa31fwd6HvBDoHDaz4XzxCRWiNvtobbJQcmkYoWx3l4GGxqxbVgfwsgWxrbeW1jRe6x8YluJr2ihplEqtiJEOOYvkBwW1mqaHOSMdROdkkJ04vQXpJHJaDaTkJ9PvqtH8leEC7TxZtVafx74K/AcsBvYMc85zUDGpM+ZwMnJByilMoG9wCHgs77NHYBNKWWa6zwArbVDa10/+QdoCvD7iCBr7RpgYHh8SqVpb7l3wlu7ipzGW0xSErHp6fQePTaxrSDLjslomBjTJ8Je2OUvkBwW7mqaHOSMdmEpXh3j3fysRYWkDnZSK0ULES3Qxlu37581wGattQNv18PpvARcrpRKVUrFAx8Gnvfv9CW3p4E/aK3v1Fp7ALTWY3gT4sd8h96KN+GKCOJv2JTmTmq8HSvHGB0VcYs729Yreisq8bi9L1BipGgh0kj+EgvicrlpaWgjYciJtTh8JxNfDEtxMSbXGLS34uiTooVIFdCYN6BaKfVD4L/xzk5uAU67orjWulkp9TXgVbxdFo9orfcrpZ4FvgHkAmcAJqXUzb7TDmitP4t3As3/VkrdAzQAn1joFxOhVdPkJMpsJC/j1ALuzmPlWEpLMUZFhTCyhbMrRftrrzPY0EiCr+FZkpPIvqNStBAhJH+JBWlo62NdfzsA1tX25s23so2/aOGsDTLuLRIF2nj7PHC11vp9pdTPgauA2+Y7SWv9GN7xJpO3XeP79QBzvPnzrTt4SYCxiTBU2+SgINOG2eT9Tzw+MMDA8Xpyb7pxnjPDj229t5u399ixU423XF/RQs8QaclStBDmJH+JBaltcpA93AkGQ8SvrDBdbHo6poQEskc6qJXGW8QKqNtUaz0I7FFKXcepySjfCGpkImK53R5qphUr9FVqcLsnCgAiSUzqOqJTknEenVy04P1uMu4t/En+EgtV0+QkZ7ST+Lw8TDGxoQ5nWRkMBmwlJeSPdUn+imCBLkx/Ld6Zwr+Cd8bxCqXURcEMTESu1q4BBofHKZk03s15rByDyRSRXRAGgwG7Wk9vecXEgvQFvvVaJfmFP8lfYqFqGnrIGumMiJVgFsNaUox9qIcT9e2hDkUsUqAFC98FLtZaX6S1vhC4FvhB8MISkczfoJn85q33WLl3oGz0aYcahS3besWYw8Fwi3fqr+goE/kZNim3jwySv0TAXC43zvoGosZHsZZE3sNmIKwlJRiA6PYmKVqIUIE23jxa64m5ErTW7y3gXLHGTC9WcA0P019TG1Hzu03n7+51Hjk6sa04x05Nk3PibZwIW5K/RMAa2vpIG2gDWHWVpn6W4iIwGMj2FS2IyDPfwvTJvl/fUUr9M/CfeCec/DvgleCGJiJVdWMPhVmnihV6yyvwjI9j37AhxJEtXlxmJlGJiTgPHSHjqisB7zQoL+5voK17kIyUhBBHKKaT/CUWo7rRQdZwJ8b4eOLSV+dgfnN8PLEZGWQ5O6hulKKFSDRftWkn4OHUrOEPTNrnAf45GEGJyOXyraxw+Vl5E9schw5jMJuxlYX/YvRzMRgMJG7aiOPIUTxuNwajkdK8JMCb7KXxFpYkf4kFq250kDPaiVWVRMwyfothKy0h5813eKOhe/6DRdiZb2H61fsnVwRFU3sfQyOuiYYNgPPwEaxlpRE73s3PvmkTHW+8yWBDAwkFBRRketdtrWro4cLt2aEOT0wj+UssRl1dG9uGe7CVXhbqUILKWlJC7Ot7aatpwOM5R+arjDCBLkxvxPuUejUQBbwA3Ddp8WUhAKhu8C65UpbnLVYY6+1j4Hg9eR+5+XSnRYTETRsB75vEhIICzCYjRdl2qqVoIaxJ/hKBGhlzMXriOAZW3+S80/kn67V2n5T5KiNQoE+m3wMuA/4Db5XWecC/BysoEbmqGhzEx5rJWmcBfAP8PR7sGzeGOLKli0lJITYjA+fBwxPbyvKSqGly4HLNtfa4CAOSv0RA6pqcZA22g8Gw6htv8Tk5GGJiyR5qp0rWOY04gTbePgBcr7V+Umv9R+AG3zYhpqhq7KE0NxGj0fsK3nn4MKa4OKyFBSGNa7kkbtqIs7wC97j3pU1ZbiIjoy4a2vpCHJk4DclfIiBVjT3kDLcTk5WNOX51j2M1GI1YS0vIHe6gqkF6DyJNoI03o2/BZQC01iPA2GmOF2vQ6JiL+pO9lE0a7+Y4fATbxg0YTPOtAx4Z7Js24R4epr+6BmDiu0ryC2uSv0RAqk50kTPcQdLGyJ3WaCESVRnrRnuoq20JdShigQJd2/SgUupB4CHf5y8Ch09zvFiD6k46cbk9lOZ6GzQjHR0Mn2wh84orQhzZ8rFv3AAGA46Dh7BtWE/mugQS4qKobuzhqnPyQx2emJ3kLxGQTl1HtHts1a6sMJ21rAwDMFJTg8t9OSajFC1EikDfvH0RSALeBN4CUoE7ghWUiExV04oVHIe8fz/aN0T+eDe/KIuFhIJ8HAcPAd4pREpzE6mWN2/hTPKXmFff4CixLScAsJWtkcZbcTEeg5G0/laaZOhHRAn0zdtXtdZ/F8xAROSrbnCQYo8lxR4HQM+77xOdnEx8TlaII1teSVu30vSXpxnv78dssVCWl8QTr1QzPDpObHSg/0uJFST5S8yrusFB9nA7BpudmJSUUIezIkyxMcTk5JLT0U5VQw/5mbZQhyQCFOibt+uCGoVYFaoavMUKAO7xcRwHD5F0xvZVN39Q0rat4HZPvH0ry03E7fZQ1+wMcWRiDpK/xLyqGnvIHW7HvmH9qstZp5OyUZE10kl1fVeoQxELEOhrgjql1AvA34B+/0at9WkXd1ZK3QLcA0QDD2qtH57juP8GXtVaP+r7fCtwP9DmO+QZrfXXAoxVhEDvwCgnOwe4Ypd3ZYU+rXENDpK0dWuII1t+1uJiTPHx9Bx4j3UXnD9RtKBP9LCxcG08sUcYyV9iXvUVJ7hwfJCkCF6DeTFsSmH+6wt0lGvgzFCHIwIUaOPNv37GDsAFzDvARymVDdzrO2cEeFMp9arWunzSMVnAz4DLgVcnnb4T+Cet9eMBxidCTJ/w/hFZX+BdTrLn3fcxmEzeAf6rjMFkImnrFnreP4jH7SbJFktacjyVJ2SZmTAl+UuclsfjYahKA2Aridxl/BbDP77P1HScweEx4mOjQhyRCESg3ab3A5uBa/HOkVQMfGuec64AXtFad2utB4AngOnT7H8SeAr4w7TtO4FblVKHlFK/VUolIcJa5YkejEYDpTnebtOed9/Dul5hjosLcWTBkbR1K2MOBwPH6wFYn59EZX0PHo8ntIGJ2Uj+EqfV3NFPSm8LnugYEnJzQh3OiopOTISkFLKH2mW1mAgSaOPtV8B/AXG+nyeAX8xzThYwefKYFmDK/xVa63/TWj8yy7kteJPrdqCRUyX+E5RSiUqpgsk/068vVk5lfTeFWTZiY8yMdHUxWH+CpO3bQh1W0CRu83YH97z7HgDr85Pp7h2mwzEUyrDE7MIuf4HksHBSWd9D7lAbccXFq2ZOyoVI2rie3KE2Kus7Qx2KCFCg3abxWuufT/r8Y6XU/57nnNlGfAa0hpDW+ib/70qpB4C6WQ67E/hmINcTweVyualq6OGKnd7xbo733gdYlePd/KLtdhIKC+h59z1yP3ozG3zdxbq+h7QkWSMwzIRj/gLJYWGjRjeyZdRB2rarQh1KSKzbvImeN96g6XA17F59Q11Wo0DfvNUppc7zf1BKbQaOz3NOM5Ax6XMmcHK+Gyml7EqpL0/aZGD22dB/CBRO+7lwvuuL5XeitY/hURfK14DpPvAe0SkpxGetrilCpkvato0+XcVYbx8FWTaio0xUyLi3cBSO+Qskh4UN59FjACRuWJsNF7uvSGOsplKGfkSIQN+8ZQOvKaUOAePAGUCrUuowgNZ6tlcsLwHfUkqlAgPAh4HbArhXP/AVpdSbWuu3gduBP00/SGvtYNrAY6VUgF9HLCf/QP31+Um4RkZwvPc+aZdesurL7ZPPPIOmJ5+i550DpF1+KaW5iVTWS+MtDIVd/vLdV3JYGBgYGiOupR63OZqE/LxQhxMSMevW4bYnk+48SXNHPzlp1lCHJOYRaOPtXxZ6Ya11s1Lqa3irsKKBR7TW+5VSzwLf0FofmOM8l1Lqo8BPlVJxQBVw60LvL1ZORX03SdYY0pPj6X57P+7RUVJ27Ah1WEFnKSwkOjmZrn37SLv8UjYUJPOnPTWMjLmIiVp742bCmOQvMSfd0EPeUBtRRSUYzWt3km2rUuQeeJfK413SeIsAAf1J1Vq/tpiLa60fAx6btu2aWY77u2mf9yITzkQMXd/D+oJkDAYD3W/vx2xJWBPLyxgMBlJ2nEnbntdwDQ973zy6PdQ0OthUJPO9hQvJX+J0qssbyBl1kL79ylCHElKZZ2xhYP9bVB6shLMLQh2OmEegY96EmJWjb4SWrgHW5yfjcbnofucASWeeuWaeYJPPOgv32BiO9w9OzHEnXadCRI7OQ0cAWLd59azBvBiJvjk5BysqQhyJCIQ03sSSVNT7J+dNwnmsnPG+/jXRZepnX68wWxLoeutt7JYYMtclTPw7EUKEN5fbg/FEDS5zNAl5a3O8m19MSgpjtiQs7SfoH5qrxkaEC2m8iSUpP95FlNlISU4i3fvexhgdReLmTaEOa8UYTCaSzziD7gPv4h4fZ2NhMuXHu3G7pWJLiHB3oqWXrL4WDPlFa6a34HTiShV5Q21U1Ml8b+FOGm9iSY7WdaHyk4gyGejat5/EbdswxcSEOqwVlXzWDlwDA/QePcbmonX0DY7S2N4X6rCEEPM4driWdWNO0rZtCXUoYSF3x1Zi3aPU7D8S6lDEPDGnQl0AACAASURBVKTxJhZtcHiMuibv4Pw+XcVoVxcpO3eGOqwVl7hlC8bYWDr3vsHmYm+hwrG6rhBHJYSYT8c73gnFc3ZuD3Ek4WGdb+WY/iOHQxyJmI803sSiVdb34PbA5qIUOl7bizE6iuQz114SNEVHk3LWDjrf2keqNYoUeyzHaqXxJkQ483g8GGs1o7EJxOfIqmQA0XYbwymZWE/WMTw6HupwxGlI400s2tG6TkxGAyrbRucbb5J01g7MsatzIfr5pJ57Lq6BARzvH2RTUQpH67pkpnIhwlhjay/ZvU0YitWqn1B8IRLWbyBrqJ1K3TL/wSJkpPEmFu1YXRclOYkM6wrGe3tJPffcUIcUMvZNGzFbrXS+tpfNRSl09w7T2jUY6rCEEHOo3HeEePcIWTvWXm/B6RScuwMTHo6/Oes81CJMSONNLMrImIuqBu94t47X9mJKSCBp8+ZQhxUyRrOZdWfvovudA2zI8i5Mf0wqtoQIW13vese75Z99RogjCS9pm9YzbjQzeESKFsKZNN7EolQ19DDucrMx10rXvrdJOXsXxqioUIcVUqnnnYt7dJT445XYEqI5IuPehAhLHo8H83FNvz2NGLs91OGEFWNUFEOZBdhbjzM27gp1OGIO0ngTi3KsrguDAbK6juMeHib13HNCHVLIWUtKiFm3jo49r7GpKEUqToUIU60tPaT3t2Eu3RDqUMKSbdMmksZ6qTxYE+pQxByk8SYW5UhNJwWZNpyv7SEmNRW7UqEOKeQMRiOpF5yP49Bhtqwz0tY9SHu3jHsTItxUvLIPE25ydsl4t9mUnH8WACf2vh3iSMRcpPEmFmx4dJz/296dx0dZnvsf/8yWyb7vgSwQuCFhCTsIKAouRa1dXKqc41aPth5rbW1t/dVTq22P1vZUa2u1PfWUtmqtRa11rbKoKIuC7CE3SSCBkH1fJsssz++PCRhjkACZPJnker9e80ryzDMzX8jkmuvZ7rvwUCNzU+207NpNyrnLsFjlrQSQcs7ZAGRXFgKwq7jOzDhCiAE0b99Ot9VB7rwZZkcZkZImZNIWGo17r4z3NlLJJ644ZfsPNeLx+phcr8FqJXnJErMjjRihSUnETsuna+v7xEU62CnNmxAjis/rJfKwpi19IrYxfp7uiVgsFtw5U4lvKKejpd3sOGIA0ryJU7aruA6H1cC6cytxBTNxxseZHWlESVm2jJ76es6O7mBXcZ3McyrECFK6dQ8Rnk6iZ8oh08+SOn8OdsNH4VubzI4iBiDNmzhlOw7UsTSyFXdjIynLzjE7zogTP3sW9qgoJtfup6W9h/LqVrMjCSF6HXp7Ez4sTDlngdlRRrRpi2fRZQ2hdouc9zYS2QP55Eqpa4B7gBDgYa31YydY70/ABq316t6fM4GngGRAA6u01rLvdgRoae/m4NEWLvVoHDExxM2Qc0b6szocJC9ZTOWbbxExfhI7D9SRky7DEQQbqV+jk2//bmqj0lianmB2lBEtLNxJQ3IOCWUaw+vFYrOZHUn0EbA9b0qpDOCnwBJgJnCzUiqv3zrpSqmXgSv6Pfy3wG+11lOAbcB/BSqnODW7S+qJ62klrFyTsmI5VntA+/+glbr8PPD5OMdTJue9BSGpX6NTe2U1Ua11+CblnXxlQVjedELdnVTtLDQ7iugnkIdNVwDrtdaNWusOYA1web91VgEvAc8dW6CUcgBn964PsJpPF0dhkl3FdSxsP4DFZiXt3HPNjjNihaWmEldQQF5dIUUlNTLYZfCR+jUKHXhzIwAZC+eanCQ4TFo6Dy8WStdtNDuK6CeQu03Sgb4z21YB8/uuoLX+OYBSqu/liolAq9ba0+dx4/o/uVIqFojtt/hT64mhYxgGhYUVfKWlmMTFZxESK4cCP0v6RRfStGMHuY0lFJU1MT030exIYvACWr96Hyc1bJg1bt2KyxHDebMmmR0lKEyamMqOiDSSd+/AMAwsFovZkUSvQO55G+i37BvCx90BHOp3k82DADpa105q+R5sXjfpF1xgdpwRLyZvKqEZ45jXXMT2/dVmxxGnJtD1C6SGDauexiZCKw9Rm6GIDJMhQgbDZrXQNTGf0LZG2g8eNDuO6COQzdtRILXPz2lA5SAeVwdEK6WOnR15osc9AuT0uy097bTipD7cW8mcliJCJ00mMjvL7DgjnsViYdzKC0nqaeLwlu1mxxGnJtD1C6SGDasjGzZiAeLmzz/puuJj4xcvxIeF0jfeNjuK6COQh03XAj9SSiUBHcCXgZtP9iCttVsptRG4CngGuBZ4fYD1moHmvsuUTNEUUJXr3qHA0072ZZeYHSVoJC1ahH76OXJLt1LdcDmpCRFmRxKDE9D61buu1LBhdHT9uzSExDJ7vsxneirmzMzklfA0Mjdvxrj1Rjl0OkIEbM+b1voo8ANgA7ATeEZr/YFS6jWl1MnOFr0V/9Vdhfi3RO8JVE4xOG0d3WTqzXTHpxI/c6bZcYKGNSSEpAsvIquzhp1vbTY7jhgkqV+jS3d9A7aKQxxOzCU7JdLsOEElLtJJ87gp2NuaaC8pNTuO6BXQcR601s/g3/rsu2zlAOtd3+/ncmBZILOJU7NzzRvEu1uJvPgK2fI6RZMvuYANL79C91uvwVdWmB1HDJLUr9GjduN7AETMmiv16zSkLJyH98DbVKx7h6mTcs2OI5AZFsQgGD4fXWtfpcEZS/5ymcf0VNmcTtpmnEVifTn1e2S8JCGG25H171LtjGfmnMlmRwlKc6dncig8jfr3N2H4BnPdjgg0ad7ESdVufJ/w1gYaC87GbpdRtk9HzucuwGV1ov/4tNlRhBhTOo9WYhwu40B0DtOzZR7m05GTGsnhpMlYW5tp3ScboCOBNG/iM/ncbg6u/gs1IXFMPOcss+MErfxJKWxLmgmlRTTt2Gl2HCHGjJp16/FhgelzCA2Rjc/TYbFYiJ87h26rg6o315odRyDNmziJqldfx9fYwDvJc5k9OdnsOEHLYbfimL+YlpAoyv74JwyvzLggRKAZXi9Va9dTGp7B7Jk5ZscJagvy0ymMzKFh8xY8LpfZccY8ad7ECbnb2jjy3BqORI8nccZ0IkJlHtMzsXhGBhviCnCVH6Z2wztmxxFi1GvasRNfSwt7Y3JZOCXJ7DhBbeaEeIoTJ4PbTX3vBSDCPNK8iRM68uxzeF0u3owpYEl+itlxgt7s3ATK4yfSEZ/G4aefwePqNDuSEKNazVvr6LSHEjFtOjERIWbHCWoOu5UJs/JocMZS/dZ6s+OMedK8iQG1HzxI1Wtv0DhpNs3hCSxQstV6ppwOG/NUEq/HzqGnsYkjf33W7EhCjFrulhYaP9jGnsgJLJ6ebnacUWHxtFR2RU6ko7gY1+EjZscZ06R5E59ieL2U/vZ3OKKieDk0n9m58YTLIdMhsSQ/hRJrPPY5i6h8+VWZL1CIAKl5ax34vOyRQ6ZDZmZOPIeSJuOzWKl+419mxxnTpHkTn1L9xpu0F5cQ8rkvUuVCDpkOodm5CYSF2Ng+fgGOqChKH3tCLl4QYoj5PB6qXnuDyuh0xk+ZSHS4HDIdCg67lZnTMjkQnUPNug14OjrMjjRmSfMmPqGrtpbyp54hdsYMPrCm47BZmT9ZtlqHitNhY75K4r3SNsZffTXtJaVUvvKa2bGEGFUat2ylp6GBTRGKJflylfxQWpKfwuaoKfi6uqhZu87sOGOWNG/iOMPrpfiRX4NhkHXddbyzt4Z5kxPlkOkQO2d6Km2dbg4l5BI/exblf3majvLDZscSYtSofPlVuqPiKI/KZNFUad6G0swJ8XQnpNESl07VK6/LkQOTSPMmjjv60su07itkwg3XsbvBoNXl5vzZcqLvUJs9MZ74yBDW7axi4le/ij0sjOJfPoLP7TY7mhBBr624hLYizdbIySzKSyYyzGF2pFHFbrOybEYqb4dOoru2lsZt282ONCZJ8yYAaC89yOGn/0rCgvkkLVrEWzsqSYhyMmtigtnRRh2bzcp5BelsK26g3eok96av0lFWTvlfZOosIc5U5Uv/xAhxsi0sh/NnycZnIKyYlU5R+Hi8kTFUvvgShmGYHWnMkeZN4G5to+jBh3DExDDxhhtobOvmo5J6zitIw2a1mB1vVFpRkIbPMFi/q4r42bNIXbGcypdepn7TZrOjCRG0XEcqqH9vE4cyZhATF82MnHizI41KWcmRTB4Xy47E6bTuL6Jlz16zI4050ryNcYbXy4H/eZiexiamfOubOCIjWL+rCp8BKwpkqzVQMhIjyMuMZe2OSgzDIGfVNUROnEjxr36D60iF2fGECEpHnluDJSSEVyw5LC9IwyobnwGzYlY6G6xZWKOiOfLsc2bHGXOkeRvjyp96huadu5hw4/VEZWfj8xm8taOS/KxY0hPCzY43qp0/K52jDS4KD7dgdTiYcvs3sIWEUPTAz/C0t5sdT4ig4qqooH7je7RMmYfLGspy2fgMqKXTUrGFODicO5/WfYW07N1ndqQxJaDNm1LqGqVUoVKqRCn1nwPcX6CU+lApdUAp9QellL13+bVKqSql1M7e208DmXOsqnr9DY6+8A9SL1hB6tlnA/BRaQNVjZ1cNCfD5HSj3+K8ZCJC7bzygX+kcmdCPOr22+iqqWX/f/8MX0+PyQnHNqlfwaXiueexhoTwojeLWRPjSY0LMzvSqBYRaufsaSm84ErFHhPD4b/+zexIY0rAmjelVAbwU2AJMBO4WSmV12+1p4BvaK0nAxbgP3qXzwO+rbUu6L39IFA5x6qGrR9w8PdPEjdnNhNWrTq+/KXNh4mPcrI4TwbmDbQwp50LZ2ewqbCGmib/PKcxU6Yw6Zabad1XyIFHfo3h85mccmyS+hVc2g8epO7djfQULKKqy8ZlCzPNjjQmXLYoC5fXSkP+WbTu3UfT9o/MjjRmBHLP2wpgvda6UWvdAawBLj92p1IqCwjTWm/pXbQauKL3+3nAtUqpXUqpp5RScQHMOeY079rNgV88TOSEHNStX8diswFQVtPOzoONXDJ/PA67HFEfDpcsGA9Yju99A0hatJDsq79Cw/ubKH3i99LAmUPqV5AwDINDT67GHhXJy5ZcxidFMDtXrpIfDtkpkRRMiOfvHWk4U1I49H+r8Xk8ZscaEwI5+mo6UNXn5ypg/knuH9fn+weBD4D/Bn4DrOqzLkqpWCC232uOQ3ym5t172P+TBwhNSyXvO9/B5nQev++lzeU4HVY5ZDqMkmJCWZKfzJsfHeXqcyYcHxA5feXn8HR0UPHPl7FYLEz42s1YLHLy9TAKaP0CqWFDpWHzFlr37sP5havQe3u47dKJ8rcyjC5blMl9T++k46yLsL/4J6rfeJP0S1aaHWvUC2TzNtBfj28w92utv3hsgVLqIWCg2bvvAO49k4BjTdNHOyh64CFCU1OYdvf3cURGfHxfezdv76nm/FkZRIXLoJbD6bJFmby7t4Y3dxzlC4uyALBYLGRecTmGz8fRV17F8PmY+LWbj+8lFQEX6PoFUsPOmK+nh7LVfyY8M5NXu9KIDm9j2YxUs2ONKbMnJjAuMZwX66zclJ/Pkb8+S9LZS3FER5kdbVQL5LGxo0Dfv6I0oPJk9yulYpRS3+qz3AIMNPT8I0BOv9vSIcg9KtW+/Q77f/IAYelp5N/9fRyRkZ+4/4X3y/H5DC5bON6khGPX5IwY8rNieXHTYbrdH081Y7FYyLrqSsZ9/lJq3lxL0c9+gbe728SkY0qg6xdIDTtjR55bQ3dNLc7PfZGtJY1cPG8cTods4Awnq9XCFxZlUVrdTseSz+FxdVK2+k9mxxr1Atm8rQWWK6WSlFLhwJeBN47dqbUuB7qUUot7F10LvA60A3cppRb0Lr8NeLH/k2utm7XWZX1vgAyQ1Y9hGFSseYHihx8lOm8q037wA0KiPrlF1NDaxasfVLBsRhoZiREneCYRSKvOnUhjWzevffjJt7DFYiHryivIufbfaPzgQ/bdez89zS0mpRxTAlq/ep9DatgZaC8ppeL5F0k+9xz+fthKZKidy3r3XIvhtbwgjdS4MJ7Z5yLj4oupXbdBLl4IsIA1b1rro8APgA3ATuAZrfUHSqnXlFJze1dbBTyslNoPRACPaq29wJXA473L5wB3BSrnaObt7ET//H8o/8vTJC5ZTN6d38IeFvqp9f727iEMw+DqZRNMSCkApmfHUTAhnjXvleHq/vQJv+kXXIC67T/pKCll15130V5SakLKsUPq18jmc7spfvQ3hMTG0L10JduKG/jS4mwiQgN5JpA4EbvNytXLJnCwup2KKWcRlpFByWNP4OnoMDvaqGUZTXOSKaWygUPr1q1j3Lixfd6v6/Bh9C8exnWkguxrrib9wgsGPIm3utHF136zmQvnZPD1i6eYkFQcc6CihTv/8CGrzp3AV84ZuJFuP1RG0a9+RU9LKxNuupGUC8+Xk7P9RsV/gtSwwSn/y9NUrHmBKd+9k1985Kai3sX/fnMxoSFyyNQsXp/BNx7fgmEYPHhRCnvvu5/kZecw6Y5vmB0tGJxy/ZLxIEYZwzCoeu0Ndt35PdzNLeR977tkXHThCT/g/7yuFJvVwlVn5wxzUtHf5HExLJySxIubymlqG/jctsicbGbefx8xU6ZQ+vjvKHrgIdytbcMbVAgTNW7bTsWaF0hefi4HwzLYW97MlWdnS+NmMpvVwr+dO5GKehebm52Mu+zz1G54m5q31podbVSS5m0U6aquZt8P7+Pg7/6X6Lw8Ch78b+Ly80+4/kclDWzcV8OXF2cRH+U84Xpi+Fy/Ipcej48n3yw+4TqO6Gjyvnsn2ddcTdO27ey47ZvUv/c+o2kvuhAD6aqpofjhR4nIySbjyq/wxGtFjEsM56I5spdyJFg0NYn8rFj+tLaEmAsvJmZaPqW/+wPtpSe64FqcLmneRgGf203F8y+y4xvfor24hAk33Ujet+/41IUJfXW7vTzxahHp8eFcviR7+MKKz5SRGMHlS7J5Z081O0sbTriexWolY+XnmHn/fYTEx6N//kv2//RBOquqhzGtEMPH29lJ0YM/xzAMptx+O2s2H6W2uYtbL5kqg4qPEBaLhVsvnkJXj5c/ri1F3fp1HFFRFD34ED3NzWbHG1XkHR/EDMOgYfNWdtx2B+V/forYmTOY9dCDpC1bhsX62b/av28so6qpk1svmUKIXFo/olyxJJu0+DAef1XT02fokIFEZGUy80c/JPvqr9Cyew87bvsmZX9+Sk4UFqOKz+2m6MGf01FWjrrtP6kxQnlhUznnzUxjerZMYDGSZCZH8sXFWazfVUVRg4cp3/wG7uYWCu/7KR5Xp9nxRg1p3oKQYRg079zF7u/eTdGDD2Fx2Mm7+3tM/ebtOONOXsgOHG3h+ffKWDY9lZkT4ochsTgVIQ4bt148hcpGF39aW3LS9S02GxkXr2T2Lx4icdFCjj7/IttvuZWK51/E29U1DImFCBzD56P40cdo3rmL3JtvInJqHo+8uI9wp50bL5hkdjwxgCuX5pAaF8avXtqPNSML9Y3b6Cgro+jBh/C5TzTsoTgV0rwFEcPno2HLVnbfdTf77r0fd1MTubf8B7N+8uPPPLetr/ZONz/7+x7io5zcslIFOLE4XQUTE7h0wXj+ufUIW4pqB/UYZ1wck2+5mZk/vp+oCRMp//NTbPuPr3Pkb3/H3SYXNYjgY3i9lPz6Merf3UjW1VeRsmQJq98qpqSqjdsvm0pMRIjZEcUAQkNs3PmlfOpauvj1PwuJK5jJpJu+Ssuu3RQ98JAMNj4EZFCcIOBp76B2/QaqXnudrqpqQlNSmPDVG0hZugSrffBTWRmGwaP/LKShtZsHb5hLZJhMgzWS3XD+JAoPN/PIPwp59GtRJMeGDepxkTnZ5H33TloPFFPxyiscfuZZKp5/kaRlZ5O28iIisrMDmluIoeBzuznwPw/TsHkrmVddScbKlWzeX8s/tx7h8wvGs3BKstkRxWeYMj6Wa5dPZPXaEl77sIKLz16Kz+Oh9I+rKbzvJ0y9527s4eFmxwxa0ryNUIbPR8vefdSuW0/Dpi34enqIUpPJvOJyEufMOa05Lp979xCb99dxw/m5TBkfE4DUYig57Fbuunw6d/xuKz99dhcPXD/3+MT1gxE9eRJ53/4WHUeOUPmvN6lb/zY1/3qLyMmTSFlxHolLFmOPkBk1xMjT09yCfugXtO4rJOf6a0lfsYJD1W386h+F5KZFcf35crg0GHzxrCz2lDXxh38dYHxSBDPOOxdbaCjFv/s9e+6+h6n/73uEpqSYHTMoySC9I4jh89FeXEL9e+9T/94mehobsYWHk7T4LFKWnUNk1ulP/fKv7Uf5zcv7WTYjlW99IR+rdVSMaTombC+u58d/3UV+Viw/WjXrtK+sc7e3U7vxPWrfeRdXRQUWu524ObNJXLqEuDmzgn0reFS8oYO9hg2FtuISih54CE9bG7m3/AdJCxZQ09TJXU9+iNVq4Wc3ziM59tMzxYiRqc3l5nt/3EZDaxcPXD+XCWlRNO3ejX7st1gsVtR3v01swUyzY5rtlOuXNG8m87g6adm9m6aPdtD4wYe4m5qx2G3EFRSQeNYi4mcVYHOc2Xkd7xfW8NDf91AwMYH/unomdpuc6hhs1u+q4uEX97E4L5nvfHnaGf0ODcOg/eAh6rZsoX7LVtxNTVjsdmJmTCd+7mzi5swmNDX15E80skjzFuQMr5eK51/kyN/+TkhcHFO+dQeRmeNpbOvm/63eTnNHDz+7cS5ZyZFmRxWnqK6li7ue/BCvz+DBG+aSnhBOZ3UNRY/8CtfRo6RfdimZ13wFm3PMjjcqzRsjvPB5u7tpP1BMy959tOzeQ9uBYgyPB1tYGLEzZ5Awdw5xM6ZjDx+aw1lvbKvg8VeLmJQRw4//fRZhTjlSHqz+samcJ98sZnZuAt+/YvqQ/C4Nn4+24mIaPtpB47btdNXUABCamkrMjGnETJ9OdP5UnAkJZ/xaASbNWxBrLz1I6eO/o724hISzFjLx2utwREZQUd/BvU/toLXDzX3/Pou8zFizo4rTdLi2nbtXbwfg3msKmDwuBm9XF2XPPkv12vWEjctg4tdvIWba4C6+G2WkeWMEFT7D56OzsoqO0oO0HThAmy6m4+BBDK8XrBYiJ0wgZlo+cdOmEZWbi9U+dI2V12fw17cP8rd3DzF3UgLfu2KGTB8zCvxr+1F++0oRE9KiuOcrM0mIHtot1c7qGpp276Fl3z5a9hfi7R2XyZmcTNSUyURNnkRkbi4RE3JG2layNG9BqLuhgcNPP0vt+g04oqLIuf46kubPA2BfeTM/fXYXVgvcu2oWkzKiTU4rzlRlg4sf/mUHzR3dfPfL01kwJQmA5j17KXny/+iurydh0QKyrvt3wtLSTE47rKR5w6TC525tw3XkCK7DR3CVH8ZVXk7HoTK8nf4PP6vTSeTECURNnkT0ZEV07oQh27vWX31LF798cR97yppYUZDGf146VQ6VjiIf6DoeWrOHELuN2y+bGrCr7gyvl47Dh2k9UEzrgQO0lZTQ09Dov9NqJSwjnYicbCKysgjPHE/Y+PGEJied1sU0Q0CatyDSVV1NxQsvUbtuPQBpn7uI8Z+/FHtYGF6vj+c2lvHsO4dIiQvlR6tmkZ4Q1Odjij6a2ru5/+mdlFS1cemC8Vy/IpcQhw1vTw+Vr71Oxcuv4HO7SVyymHGXf4mIrEyzIw8Had4IUOEzDANPaytdNbX+W3U1XVXVdFZW0nm0Ek9r6/F1beFhRGRmEp6ZSWRONpFZWYRnZAT8Q83r9fHmjkr+vLYEj9fglpWK5QVpJ5yUXgSvivoOfr5mLwer2zhvZhrXrcgdlvlpuxsbaS8ro6OsnPbyclyHD9NdV3/8fovDQVh6GmHp6YSmpRKalkZoagqhKcmEJCQM6d7lfkbFm3w0N28+t5umj3ZQ8683afpoJxabjeRzlzHu4pWEJiYCUHy0ld+/rimqaGHZjFS+vnLKKV1hLYJDj9vL6rUlvLz1CJlJEdyyUjEjxz9gfE9zM0dff4PqtevwdXcTnZ9H6kUXEL9g/kjb2z+UpHnjNAqfz+3G3dJKT1MT7uZmehob6WlopLuhkZ76errrG+iuq8PXb2BBR1wcYakphKWnE5aWRnh6OmHpaTgTEoa1YfL5DD48UM9T60spq20nPzOW2y/Lk63VUc7t8fHM2wf5x6Zy7DYrX1qcxSXzxxMVPrzj93lcLlyVR3FVVNJZXU1nZRWdVVV019ViePpM72W1EhIfjzMpEWdiAiEJCTgTEgiJj8MRF0dIXCyO2FhsYWGn8/cjzdsI5O3upmXPXho2b6Vxy1Y87e2ExMeRfO65pC5bhjPOfw7b0foOnttYxvpdVcRGhPDVCyexbMaYOmw2Jm07UM/jrxZR29LFApXENcsmMCHNPye3u62NmnfepWbDBrpqarGGhhI/fx4JixYQO3PGaBvmSJo3TqHwla3+MzVvrcPT3v7pOy0WHLGxOBPicSYk4ExM9H9NSiQ0MYnQpCRsoeZuBbR09LBxbw0vbz1CZaOLlNgwbrggl7OmJsvetjGkssHF6reK2VxUh9NhZUVBOitmpTMxLcrU94Hh89Hd0EBXXR3ddfV0NTTQXV9Pd0MDPQ2N9DQ24Ov59FQ51pAQwjLSyb//Rziiowb7cqPiDR/szZvH5aK9pJTWwv207iukdX8RhtuNLSyM+LlzSFy4gLhp07DYbHi8PnaWNvL6tgo+PFCP3Wbl8wvHc+XSHNnbNoZ0u738c8th/r6xjM4eLzNy4lg5bxxzJyXidNj8Y57uL6J+61YaPvgQT3s7FpuNKDWZ6LypROfnETkpF0fUoGvFSDSymjel1DXAPUAI8LDW+rF+9xcA/wvEAO8CX9Nae5RSmcBTQDKggVVa6wE6rE+9XjanUPjq3t1I695CHNHRhERH44iNISQmIsaxaQAADr5JREFUhpDYWEJiYsw6d+eEDMOgvLaDXQcb2V5Sz66DTfgMg9z0aL64KJOz8pLl3LYx7FB1Gy9tOcw7u6vx+AzS48NZOCWJmRPiycuMHXEXrBiGgaejw7/Hu6WFnpZWepqbcbe2gdVC5r9fcyqHSYa8eRvu+tX7nNkEQfPm6eigq7rGv5e1ogLX4SN0lJXTVVnpX8FiISIrk5j8fOJmTCd68mSsDgfN7T3sPtTIzoONbCmqo63TTXS4g5XzxrFy3jjiIkftYTFxEu2dbv61/Sgvbz1CQ1s3YSE25qskZk2MZ2ZOPIkxoRheL63FJTTv3k3zvkLaDx0Cnw/wX1QVkZPtP/923DjC0tMITU3FHhUZDDszRk7zppTKAN4D5gDdwCbgaq11YZ919gI3aa23KKWeBLZprR9XSr0CPKW1flYp9V9ApNb6e4N4zWxOtfB198AAW/9mcnt8NLR2UdvSRWWDi6MNLg5Wt1Fa2UZHtweAjIRwzspL5uxpqWQlRwTDm1MMkzaXm037a3lvXw17y5rw+AysFguZyRHkpkUxPimSjIRwUuLCSIx2EhFqH3nvH4sFIk/psP+Q/gPMqF+9z5nNMDdvhs+Hr7sbj6sTr8uF1+XC3daGp70dd0srntZWepqa6Wlqoqd376m3w/XxE1gshKYkEz7ef45veFYWRtp4Gt1Wqhs7Odrgory2nZLKNmqa/RdwRTjtzJmUwDnTU5k1MeG0B54Wo4/X62NPWRPv7q3hA11Hi8v/+ZwQ5SQ3PZrsFH/9SosPJ8FpYKutwFV+mPZDh3AdOUJnVfXxhg7AGhrqP1UjIeHj0zNiYnBER2OPisQeGYk9IgJbeDi28DBsoaFYrMP+fjzl+hXIfdMrgPVa60YApdQa4HLg/t6fs4AwrfWW3vVXA/cppf4AnA18oc/yd4BPFD+lVCzQf9CfU6p21Q0dFB+sh77n5Rz36abWMPxLP9nvGvh6Fx67z2cY+Hz+5V6fD6/PwOs18PgM3B4fbo+PHo+XbrePzh4vri4PHd0e2lxuWlw9dHR5PvG6IXYrmcmRnD09hckZMczIiZcRxsUJRYU7uHBOBhfOyaCrx0vh4Wb2lTdRUtXGtuIG1u6s+sT6IXYr0eEOYiJCiAi1E+G0ExpiIzTEhtNhw2G3EmK3YrNasdss2Kz+m9VqwWqxYLWApfcrFgu9XzhWjywW+izrb+CaFR0Rwozpp3Xu21AJaP3qfY4zqmHt1XXseuYFjB43GD7wev0fWl4v+Lz+r14veDzg9YDH7b+5j33tgZ4ecLuxDFDvjjGsVnxhkXgjovCERdGTNY3u0Cg6wmJod0bT6IiizWOho9NDy4EeWnfW4fXVHn+8BUiJCyM3PYrPzc1genYcE9OjscksL2IANpuVgokJFExMwOczKK9tZ/ehJkoqWymubOXDA3X+z9xeVgtEh0cSHT6bSLWAiHyI97QR3d1GRFcLzs5WnK5W7FUN2ErLsbrasHgH+sz/mOEIgeM3B9gdH3+12cFm63ezg9UKVpv/q81G3pdXEj/h9GdFOplANm/pQN9PiSpg/knuHwckAq1aa0+/5f3dAdx7JgGfeGE324tqT77iEAuxW3HYrf4PSIeN8N4PzOTYMGIi/B+iiTGhJEaHkp4QTmJ0qExnJU5LaKiV2ZOTmD056fiy9k43R+s7qGvpor6li4a2blpdblo7eujo9nC00UVXj5euHi/dbi9uj+8TxXI4WK0W/u+eBBJiwob3hT8W6PoFZ1jDPtq4C8+7G7Bg4LNY8GHFZ7Hi/cT3NrwWK57e7z0WGx5LKB5rBG6bHXe4DbfVQY/VTrfVQbc1hG5rCJ22ELqsTlw2J93WkE903navBUeXFafPhrPHRrjTR0SonZT4MCaPjyEmPISEGCcJUaGkxoeRFh+O0zGyDtmL4GC1Qk56DDnpH8/F7fb4qG5yUdXYSUNrFw2t3TR39NDa0UN7p5uGTg8V3SF09cTS5Y7C7fXhsRsQhf9mGDh9bsK8XYT6egjzduP09eD0uXH63IT43IQYHuw+DyE+D7YuLw6fF7vRic3owG54sRo+bIYPG77j31sNH1Z8WAwDC7AlIp6VtwZn8zZQt+EbxP0ne9wxj+Dfqu1rHLBxMOEAvn/tPGqbXCe8/0Rb/RbLJ+/z71mwHF9utVj8TbjFv3fCZrNiP/bVZhl5h6jEmBIZEYZKjEadwmO8Xh8en4HX+/GeZK/P59/T7PPvdfZ/9e+ePtbrGYbBic7M+KxTNiLCHGY2bhD4+gVnWMOWXr6cqmUL8XhP9PSDq2HHdpJaLf7aZMHfPFv77GG1WS3YbVZsNqvsMROmcgDjYyIYnz34x/h8/nrl8fapYT4Dwzj21V+PfMan65f/66ef87Pql8ViISMpsNO4BbJ5Owos7fNzGlDZ7/7UAe6vA6KVUjattXeAxwGgtW4GmvsuU+pUPo4g1GknM1VG7RbiZGw2KzYbMHb2oAS0fsGZ1zCLxUJ6gD8ghBgN/BsjNhyj6CLmQJ6VtxZYrpRKUkqFA18G3jh2p9a6HOhSSi3uXXQt8LrW2o1/y/OqvssDmFMIIfqT+iWEGLEC1rxprY8CPwA2ADuBZ7TWHyilXlNKze1dbRXwsFJqPxABPNq7/FbgZqVUIf6t33sClVMIIfqT+iWEGMnG9CC9QohRY1SciCU1TIgx6ZTrlwyuI4QQQggRRKR5E0IIIYQIItK8CSGEEEIEkVF04SwANoDq6mqzcwghhtHy5cuzgYo+g+MGK6lhQowxp1O/RlvzlgawatUqs3MIIYbXISAHKDM5x5mSGibE2HPK9Wu0NW8f4r80vwr47MnLAu/YSOlLgQqTs5wKyT28JPfQGSk5zsRIqWEj8fc7GMGaG4I3u+QeGqeUYVQ1b1rrbuA9s3PAJ0ZKr9Bal5kY5ZRI7uEluUVfI6WGBevvN1hzQ/Bml9zmkAsWhBBCCCGCiDRvQgghhBBBRJo3IYQQQoggIs1b4DQD9/V+DSaSe3hJbjESBevvN1hzQ/Bml9wmGFVzmwohhBBCjHay500IIYQQIohI8yaEEEIIEURG1ThvI5VSahawRWvtNDvLYCilFgOPAA6gAbhRa11ubqrPppS6BrgHCAEe1lo/ZnKkQVFK3Qtc2fvjq1rru8zMcyqUUj8HkrTW15udRQSW1LDAkvpljmCuYbLnLcCUUuHAb/D/UQaLp4Gvaq0Ler9/1OQ8n0kplQH8FFgCzARuVkrlmZvq5JRSK4ALgFlAATBHKfVFc1MNjlJqOXC92TlE4EkNCyypX+YI9homzVvg/Q/wsNkhBksp5QTu0Vrv7l20G8g0MdJgrADWa60btdYdwBrgcpMzDUYVcKfWukdr7Qb2M/L/r1FKxeP/sPlvs7OIYSE1LLCkfg2z0VDD5LBpACmlPg+Ea63X9JmKY0TrnZ7nKQCllBX4EfAPMzMNQjr+QnJMFTDfpCyDprXed+x7pdQk4CrgLPMSDdrvgB8A480OIgJLatiwkPo1/IK+hknzNgSUUlfw6S3TIiAa/1bViHSi3FrrFUqpEOBP+N8jI33rxDLAMt+wpzhNSql84FXgO1rrYrPzfBal1E3AEa31OqXU9WbnEUNDapippH4No9FSw2SctwDpfYPcDbT1LpoJ7AKWaq3bTvjAEUApFQn8E/+Jvv/WuyU7YimlrsP//3pT78//BVi01vebm+zkek+sfh64Q2v9rNl5TkYp9RaQBniAeCAS+JPW+lumBhNDTmrY8JD6NbxGSw2T5m2YKKUMrfVAW1gjjlLqH0AtcIvWesS/QXpP+H0P/6GGDmATcLPW+gNTg52EUmo88BFwldZ6vdl5TlXvVuuyYLxSS5w6qWGBIfXLPMFcw+SwqfiE3iEBLgMKgR2957lUaq1XmhrsM2itjyqlfgBswH9F3B9GeuHr9R0gFPhln/OJntBaP2FeJCGCW7DVMKlf4nTInjchhBBCiCAiQ4UIIYQQQgQRad6EEEIIIYKING9CCCGEEEFEmjchhBBCiCAizZsQQgghRBCRoULEiKOUWg3s1Vr/IsCvEw28DsQCP9RaP9/nvucAq9b68j7LvoN/CILzeufyE0KIT5EaJgJNmjcxlhUAKVrr3AHu+yqwTSl1h9b6EaXUBcA3gPlS9IQQI4TUsDFKmjcRUEqpZ4CPjm2BKqW+BpwLXI1/TsKFQBT++f1u0lq/3+/xBpCkta7v/7NS6lLgHvwDW7rwz623eYAMXwDuBWxAK/BtoAX4PyBDKbUTWKS17jz2GK11W++8ie8qpY4Avwa+oLWuGaL/GiFEEJAaJkYiOedNBNr/Atf1+fmG3mULgHT8BScP/wTS3x/skyqlJuGfbHql1noWcDPwglIqot96U4AngC9rrWcAPwReAqqAm4BSrXVB36J3jNZ6N3AXsAZ4IEhGPRdCDC2pYWLEkeZNBNrbQKhSaq5SKg9IAtb1bl3eA9yilPoFcDn+CYIH63z8kwuv693qfBrwAf0PH5zX+3oHAXrn4KsF5gzydZbjL5KXKKXk70WIsedtpIaJEUZ+kSKgeieFfhK4Fv8W65Naa0MpdTHwau9qL+HfsjzRpNcWAKVUSJ9lNvwFreDYDf/hi739HjvQe9wKOE6WXSl1F6CAGcB4/Fu8QogxRGqYGImkeRPDYTXweeAK4I+9y84HXtZaPw58CHwBfzHrrw6Y2/v9l/osXw9c0HtIAaXUSmA3/omSGWC9Cb3rnYe/iG39rMBKqRXA9/AfqqjvzX6nUurCk/1jhRCjzmqkhokRRJo3EXBa62rgI2C31rqyd/ETwDlKqd3AZqAUyBlgt/7twGNKqY+AWfh3/6O13of/HJFnlVK7gB8Dn9dad/R77ULgVvznkuwFHgQu1Vq3nCivUiob+Ctwo9a6tM/r3Qo8pZQaf3r/E0KIYCQ1TIw0FsMwzM4ghBBCCCEGSfa8CSGEEEIEEWnehBBCCCGCiDRvQgghhBBBRJo3IYQQQoggIs2bEEIIIUQQkeZNCCGEECKISPMmhBBCCBFEpHkTQgghhAgi/x/L9QU//eqCagAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots(1,2,figsize=(10,4))\n", "\n", "\n", "x = np.linspace(-5,5,100)\n", "y= stats.norm.pdf(x, 0,1)\n", "y2= stats.t.pdf(x,df=2,loc=0,scale=1)\n", "\n", "ax[0].plot(x,y,label='N($\\mu$=0,sd=1)')\n", "ax[0].plot(x,y2,'r',label='t (2)')\n", "ax[0].set_ylabel(\"probability\")\n", "ax[0].set_xlabel(\"value of X\")\n", "#ax[0].fill_between(x,y, where=y>0.0,interpolate=True,facecolor='lightblue',alpha=0.2)\n", "ax[0].fill_between(x,y2, where=y>0.0,interpolate=True,facecolor='pink',alpha=0.2)\n", "ax[0].legend(loc='best', frameon=False)\n", "#ax[0].set_xticklabels([])\n", "#ax[0].set_yticklabels([])\n", "\n", "\n", "x = np.linspace(-5,5,100)\n", "y=stats.norm.pdf(x,0,1)\n", "y2=stats.t.pdf(x,10,0,1)\n", "\n", "ax[1].plot(x,y,label='N($\\mu$=0,sd=1)')\n", "ax[1].plot(x,y2,'r',label='t (10)')\n", "ax[1].set_ylabel(\"probability\")\n", "ax[1].set_xlabel(\"value of X\")\n", "#ax[1].fill_between(x,y, where=y>0.0,interpolate=True,facecolor='lightblue',alpha=0.2)\n", "ax[1].fill_between(x,y2, where=y>0.0,interpolate=True,facecolor='pink',alpha=0.2)\n", "ax[1].legend(loc='best', frameon=False)\n", "sns.despine(top=True, right=True)\n", "\n", "glue(\"ttestdist_fig\",fig,display=False)" ] }, { "cell_type": "markdown", "metadata": { "tags": [ "full_width" ] }, "source": [ "```{glue:figure} ttestdist_fig\n", ":figwidth: 650px\n", ":name: \"fig:ttestdist\"\n", "\n", "The $t$ distribution with 2 degrees of freedom (left) and 10 degrees of freedom (right), with a standard normal distribution (i.e., mean 0 and std dev 1) plotted as a blue line for comparison purposes. Notice that the $t$ distribution has heavier tails (higher kurtosis) than the normal distribution; this effect is quite exaggerated when the degrees of freedom are very small, but negligible for larger values. In other words, for large $df$ the $t$ distribution is essentially identical to a normal distribution.\"))\n", "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Doing the test in Python\n", "\n", "As you might expect, the mechanics of the $t$-test are almost identical to the mechanics of the $z$-test. So there's not much point in going through the tedious exercise of showing you how to do the calculations using low level commands: it's pretty much identical to the calculations that we did earlier, except that we use the estimated standard deviation (i.e., something like `se_est = grades.std(ddof=1)`), and then we test our hypothesis using the $t$ distribution rather than the normal distribution (i.e. we use `stats.t.cdf()` rather than `stats.norm.cdf()`. And so instead of going through the calculations in tedious detail for a second time, I'll jump straight to showing you how $t$-tests are actually done in practice. \n", "\n", "Python has a nice package called [pingouin](https://pingouin-stats.org/index.html) which provides easy access to most common statistics. Although you can definitely find a t-test in [statsmodels](https://www.statsmodels.org/stable/generated/statsmodels.stats.weightstats.ttest_ind.html) pingouin is really simple and fun.\n", "\n", "\n", "To use this function we just import pinguoin:" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "import pingouin as pg" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Next we run the function `pg.ttest`. The documentation for this command is [here](https://pingouin-stats.org/generated/pingouin.ttest.html#pingouin.ttest). It's pretty straightforward to use: all you need to do is specify `x`, the variable containing the data, and `y`, the true population mean according to the null hypothesis. All you need to type is this:" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Tdoftailp-valCI95%cohen-dBF10power
T-test2.25519two-sided0.036145[0.34, 9.26]0.5041.7950.571
\n", "
" ], "text/plain": [ " T dof tail p-val CI95% cohen-d BF10 power\n", "T-test 2.255 19 two-sided 0.036145 [0.34, 9.26] 0.504 1.795 0.571" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pg.ttest(x=zeppo_df.grades,y=67.5)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Easy enough. Now lets go through the output. \n", "\n", "The first column in the output it the value of the t-statistic (2.255). The 'dof' refers to the degrees of freedom which is one less than the number of observations in x (so 19). Here we conductes a two-sided test. Then the $p$-value (0.036) of the test of the null hypothesis that the population mean equals 67.5 (what we provided as y). The confidence interval around the mean of the provided data $x$. The estimated effect size (cohen's d is 0.504), more on that later. The final column is a Bayes Factor in support of the alternative hypothesis. Finally, the post-hoc power was estimated to be 0.571. We will ignore that one for now.\n", "\n", "So that seems straightforward enough. Now what do we *do* with this output? Well, since we're pretending that we actually care about my toy example, we're overjoyed to discover that the result is statistically significant (i.e. $p$ value below .05). We could report the result by saying something like this:\n", "\n", "> With a mean grade of 72.3, the psychology students scored slightly higher than the average grade of 67.5 ($t(19) = 2.25$, $p<.05$).\n", "\n", "where $t(19)$ is shorthand notation for a $t$-statistic that has 19 degrees of freedom. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A technical comment... in the same way that we can weaken the assumptions of the $z$-test so that we're only talking about the sampling distribution, we *can* weaken the $t$ test assumptions so that we don't have to assume normality of the population. However, for the $t$-test, it's trickier to do this. As before, we can replace the assumption of population normality with an assumption that the sampling distribution of $\\bar{X}$ is normal. However, remember that we're also relying on a sample estimate of the standard deviation; and so we also require the sampling distribution of $\\hat{\\sigma}$ to be chi-square. That makes things nastier, and this version is rarely used in practice: fortunately, if the population is normal, then both of these two assumptions are met, and as noted earlier, there are standard tools that you can use to check to see if this assumption is met (see below), and other tests you can do in it's place if this assumption is violated (also see below)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Assumptions of the one sample $t$-test\n", "\n", "Okay, so what assumptions does the one-sample $t$-test make? Well, since the $t$-test is basically a $z$-test with the assumption of known standard deviation removed, you shouldn't be surprised to see that it makes the same assumptions as the $z$-test, minus the one about the known standard deviation. That is\n", "\n", "- *Normality*. We're still assuming that the the population distribution is normal.\n", "- *Independence*. Once again, we have to assume that the observations in our sample are generated independently of one another. See the earlier discussion about the $z$-test for specifics.\n", "\n", "Overall, these two assumptions aren't terribly unreasonable, and as a consequence the one-sample $t$-test is pretty widely used in practice as a way of comparing a sample mean against a hypothesised population mean.\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## The independent samples $t$-test (Student test)\n", "\n", "Although the one sample $t$-test has its uses, it's not the most typical example of a $t$-test. A much more common situation arises when you've got two different groups of observations. In psychology, this tends to correspond to two different groups of participants, where each group corresponds to a different condition in your study. For each person in the study, you measure some outcome variable of interest, and the research question that you're asking is whether or not the two groups have the same population mean. This is the situation that the independent samples $t$-test is designed for. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### The data\n", "\n", "Suppose we have 33 students taking Dr Harpo's statistics lectures, and Dr Harpo doesn't grade to a curve. Actually, Dr Harpo's grading is a bit of a mystery, so we don't really know anything about what the average grade is for the class as a whole. There are two tutors for the class, Anastasia and Bernadette. There are $N_1 = 15$ students in Anastasia's tutorials, and $N_2 = 18$ in Bernadette's tutorials. The research question I'm interested in is whether Anastasia or Bernadette is a better tutor, or if it doesn't make much of a difference. Dr Harpo emails me the course grades, in the `harpo.csv` (hosted on the course website) file. As usual, I'll load the file and have a look at what variables it contains:" ] }, { "cell_type": "code", "execution_count": 55, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
gradetutor
165Anastasia
272Bernadette
366Bernadette
474Anastasia
573Anastasia
\n", "
" ], "text/plain": [ " grade tutor\n", "1 65 Anastasia\n", "2 72 Bernadette\n", "3 66 Bernadette\n", "4 74 Anastasia\n", "5 73 Anastasia" ] }, "execution_count": 55, "metadata": {}, "output_type": "execute_result" } ], "source": [ "harpo_df=pd.read_csv('http://gureckislab.org/courses/fall19/labincp/data/harpo.csv',index_col=0)\n", "harpo_df.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As we can see, there's a single data frame with two variables, `grade` and `tutor`. The `grade` variable is a numeric vector, containing the grades for all $N = 33$ students taking Dr Harpo's class; the `tutor` variable is a factor that indicates who each student's tutor was. The first fiv observations in this data set are shown above." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can calculate means and standard deviations, using the `mean()` and `sd()` functions. Rather than show the R output, here's a nice little summary table:" ] }, { "cell_type": "code", "execution_count": 56, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
grade
countmeanstdmin25%50%75%max
tutor
Anastasia15.074.5333338.99894255.069.0076.079.090.0
Bernadette18.069.0555565.77491856.066.2569.073.079.0
\n", "
" ], "text/plain": [ " grade \n", " count mean std min 25% 50% 75% max\n", "tutor \n", "Anastasia 15.0 74.533333 8.998942 55.0 69.00 76.0 79.0 90.0\n", "Bernadette 18.0 69.055556 5.774918 56.0 66.25 69.0 73.0 79.0" ] }, "execution_count": 56, "metadata": {}, "output_type": "execute_result" } ], "source": [ "harpo_df.groupby('tutor').describe()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To give you a more detailed sense of what's going on here, I've plotted histograms showing the distribution of grades for both tutors ({numref}`fig:anastasia` and {numref}`fig:bernadette`). Inspection of these histograms suggests that the students in Anastasia's class may be getting slightly better grades on average, though they also seem a little more variable." ] }, { "cell_type": "code", "execution_count": 66, "metadata": { "tags": [ "hide_cell" ] }, "outputs": [ { "data": { "application/papermill.record/image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAFoCAYAAABpMiEhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAG6lJREFUeJzt3XuUXWWZ5/FvkQShQSlpGQ1GBFp5vAMSxBYYFaK28YIKNg6xGWyucpF0mxGHW4QZUFEgzZKLRjC2NF65zCABbYEWEGxECLSCj/ZqwpgQl6hUI0gkgcwfe5duD6cqlcuu95yq72etWuvs/e79nuecqvrVW+85+z0Da9asQZI0/jYpXYAkTVYGsCQVYgBLUiEGsCQVYgBLUiEGsCQVYgBrg0XEtIh4MCKua/E+To2I/Tbg/CURMbgR6tgqIm5Yj/MOiIh/2cD7/nZEPGdD+lBvMYC1MbwbuAfYLSJe2tJ97ANMW9+TM3OXzBzaCHU8G3jNRuhnfbyp0P2qJVNLF6AJ4WjgK8C/A3OBIyPiDcAZwH8ArwCeARyTmTdGxE7A+cCWwLbAEuDAzFwZEadRBfoTwK+BQ4D3ADOBT0XEk8CP1+X8zFwREWuAbYDHgQuBnYCtgd8CB2VmNh9QRDwP+EdgeMR5TWaeAnwB2DwilgC7AauBbTLzV/V5a4a3I+J0YE5dx88afW8KfBJ4PTAFuAv4UGY+EhFLgUXAvsB2wFcz8yMR8YX69BsjYjbwduCo+nGuBI7MzHvX/q1SL3EErA0SES8DXgt8Dfgi8DcR8ed18x7A2Zm5K3Ax8LF6/+HAFzPzL4EXATsAb4uIF1AF+O6ZORP4NrBHZp4P3AH8j8y8cl3P7yj5rcBQZr42M3cCfgAc2+WhHQ78R2a+GtgbeHFEbAV8AHi8HlE/Ocrzsh+wP7AL8Dpgq0bzR6mCe7fM3Bl4EPhEo33LzNy7Pu+4iNghMz9Qt72xPn4B8FeZuTvwOWCvkWpR7zKAtaE+SDU6/E1m/gC4HziybnsgM5fUt++kGnECnAA8FBEfoRqNbks1ml0O3A3cGRGfBpZk5lVd7nO9z8/MbwCLIuK4iPgH4A31uZ2uA/aPiMX14/loZv7nOjwvs4ArMvO3mbkauKTR9nZgP+CueiT9LuBljfb/U9e6HPglf3zehh/Dk8DXgVsj4jPAf1L9gVOfMYC13iJiC+BgYK+IWFr/+zwdOIZqvvbxxuFrgIH69peBI4AHgHOpwnkgM5+i+rf8EKp/28+tQ7LTep8fER+kCqvfAZfVfQ3Qof5jsgPV6HJ74PaIeN0IT8VA3femIzxeqEa8w6YAx9ej6F2o5pQPaLSP9Lw163s/8A6qaZ8TgCtGqE09zADWhpgD/ArYNjO3z8ztgR2pRpT/ZZTz3gKcnplfpQqYPYApEbEz8CPgvsz8OFW47lyfs5o/vgi3Puc373tRZl4MJFWITeksMCI+AZxSj6CPp5p33qmuY0pEDIfiQ1Tz01DNVQ+7DnhvRAxGxCbA3zTavgUcGxGb1m0LgY+P8nwNexKYFhHPiYifA7/OzAXAyV0ep/qAL8JpQ3wQOKc5F5qZQxFxHtVc7EhOBK6MiN9QjUS/C7woMy+OiK8Bd0TEo1QjwQ/V51wNfLoeZa7P+cM+DXwuIj5AFWg/BF7ZpcYFwBcj4kfA76mmNr5MFcB3AvdFxJ51/+dHxBDwz8CK+nlYHBGvpJq7frg+f5u67/9V13EXVfgvAT48yvM17ArgFqrpi/8NXB8Rj9c1HTaG89VjBlyOUpLKcApCkgoxgCWpEANYkgrpyxfhImIqMANYVr/HUpL6Tl8GMFX43n/99deXrkOSmp72nu3ROAUhSYUYwJJUiAEsSYUYwJJUiAEsSYUYwJJUiAEsSYUYwJJUiAEsSYUYwJJUSOuXIkfEp6g+JfaQjv3bAZdSfXJCAnMy89G265GkXtHqCDgi9qX6fK5uLgAuyMyXUH1qwClt1iJJvaa1AI6IrYEzgDO7tE0D/ivwjXrXIuC9bdUiSb2ozSmIzwInAS/o0vYc4JHGUpIrqFY4e5qIGAQGO3Z3PVaS+kkrI+CIOAz4eWaOtF5ktyXbnhrh2LnA/R1fN29wkVKPWrV6pF+F/roPrV1bI+ADgekRsQTYGtgyIs7NzL+r2x8CnhURU+pP1J0OPDhCXwuopiiaZmAIa4KaNnUTTrzge63ex5lH79lq/xqbVgI4M980fDsiDgHe0AhfMnNVRNxMFdSXAQcD147Q1xAw1NwXES1ULUnja1zfBxwRn4+Id9abRwNHRMS9wN7AyeNZiySV1vr7gDNzEfUUQmYe1tj/APCGtu9fknqVV8JJUiEGsCQVYgBLUiEGsCQVYgBLUiEGsCQVYgBLUiEGsCQVYgBLUiEGsCQVYgBLUiEGsCQVYgBLUiEGsCQVYgBLUiEGsCQVYgBLUiEGsCQVYgBLUiEGsCQVYgBLUiEGsCQVYgBLUiEGsCQVYgBLUiEGsCQVYgBLUiFT2+w8Ik4HDgDWABdn5jkd7acChwIP17sWZub5bdYkSb2itQCOiNcD+wCvAqYB90bENZmZjcN2B96Xmbe1VYck9arWAjgzvxsRb8zM1RHx/Pq+Hus4bCZwQkTsCNwEzMvMlc0DImIQGOw4b0ZbdUvSeGl1DjgzV0XEacC9wPXA8uG2iNgSuAuYB7yaKmRP6dLNXOD+jq+b26xbksZD6y/CZeZ8YBvgBcDhjf2PZubszPz3zFwNnA3M7tLFAmCHjq+9265bktrW5hzwS4DNMnNJZv4uIq6gmg8ebt8OmJWZl9S7BoBVnf1k5hAw1NF3W2VL0rhp810QOwKnRcReVO+C2A+4pNH+OHBWRNwILAWOAa5ssR5J6imtTUFk5mJgMdU87w+BWzPzKxGxOCJmZuZDwJHA1UBSjYDPbqseSeo1rb4PuJ7/nd+xb3bj9uXA5W3WIEm9yivhJKkQA1iSCjGAJakQA1iSCjGAJakQA1iSCjGAJakQA1iSCjGAJakQA1iSCjGAJakQA1iSCjGAJakQA1iSCjGAJakQA1iSCjGAJakQA1iSCjGAJakQA1iSCjGAJakQA1iSCjGAJakQA1iSCjGAJakQA1iSCjGAJamQqW12HhGnAwcAa4CLM/OcjvZdgIXAVsBNwFGZubrNmiSpV7Q2Ao6I1wP7AK8CZgLHRUR0HHYpcFxm7gQMAIe3VY8k9ZrWRsCZ+d2IeGNmro6I59f39dhwe0S8ENg8M79f71oEnAZc2OwnIgaBwY7uZ7RVtySNl1bngDNzVUScBtwLXA8sbzRvC6xobK+ge7DOBe7v+Lq5lYI1Iaxa/VTL/T/Zav+aPFqdAwbIzPkR8Ungaqophs/VTQNdDu/2m7OAanTcNANDWCOYNnUTTrzge631f+bRe7bevyaH1gI4Il4CbJaZSzLzdxFxBdV88LDlwPMa29OBBzv7ycwhYKij7xYqlqTx1eYUxI7Awoh4RkRsCuwH3DLcmJkPACsjYvjP/cHAtS3WI0k9pbUAzszFwGLgLuCHwK2Z+ZWIWBwRM+vD5gDnRsR9wBbAeW3VI0m9ptU54MycD8zv2De7cftu4DVt1iBJvcor4SSpEANYkgoxgCWpEANYkgoxgCWpEANYkgoxgCWpEANYkgoxgCWpEANYkgoxgCWpEANYkgoxgCWpEANYkgoxgCWpEANYkgoxgCWpEANYkgoxgCWpEANYkgoxgCWpEANYkgoxgCWpEANYkgoxgCWpEANYkgqZ2mbnETEf+Ot685rM/EhH+6nAocDD9a6FmXl+mzVJUq9oLYAjYhbwZmBXYA1wXUS8OzOvbBy2O/C+zLytrTokqVe1OQJeAXw4M58AiIj7gO06jpkJnBAROwI3AfMyc2XzgIgYBAY7zpvRTsmSNH5aC+DM/PHw7Yh4MXAg8LrGvi2Bu4B5wFJgEXAKcFJHV3OB+W3VKUmltDoHDBARLweuoRrd/mx4f2Y+CsxuHHc2cAlPD+AFVOHcNAO4uY16JWm8tP0i3J7A5cDczPxKR9t2wKzMvKTeNQCs6uwjM4eAoY5z2ylYksZRmy/CvQC4CjgwM2/ocsjjwFkRcSPVFMQxwJVdjpOkCanNEfA8YDPgnMaI9SLgncCpmXlHRBwJXA1sCtwCnN1iPZLUU9p8Ee544PguTRc1jrmcaopCkiYdr4STpEIMYEkqxACWpEIMYEkqxACWpEIMYEkqxACWpEIMYEkqxACWpEIMYEkqZEwBHBEXd9nnJcSStAFGXQsiIi4Eng/sHRHbNJqmAS9pszBJmujWthjPxcArgJ3500VzVgN+jpskbYBRAzgz7wDuiIjvZOaycapJkiaFsS5H+RcR8SVga6pPrgAgM1/VSlWSNAmMNYDPp/q8tjupPmJekrSBxhrAT2TmOa1WIkmTzFjfB/yjiHhlq5VI0iQz1hHwjsAPI+IBqg/TBJwDlqQNMdYAPqnVKiRpEhprAP9bq1VI0iQ01gD+FdW7Hwb447sgVgAz2ihKkiaDMQVwZv7hxbqImAbsT3V1nCRpPa3zamiZuSozvwK8qYV6JGnSGNMIOCK2bmwOADOBZ7dSkSRNEuszBwzwS+BDrVQkSZPEOs8BS5I2jrFOQWwCzAPeSrUW8LeBMzNz9VrOmw/8db15TWZ+pKN9F2AhsBVwE3DU2vqUpIlirCPbjwP7AP8AnAO8DvjUaCdExCzgzcCuwC7AbhHx7o7DLgWOy8ydqKY3Dh976ZLU38Y6B/xXwMzMXAUQEdcAdwN/N8o5K4APZ+YT9Tn3AdsNN0bEC4HNM/P79a5FwGnAhc1OImIQGOzo2/cfS+p7Yw3gTYbDFyAzfx8Rq0Y7ITN/PHw7Il4MHEg1ch62LVVIDxvpwo65wPwx1ilpDFatfoppU9t7aaft/ieKsQbwkog4F/hMvX0scM9YToyIlwPXAPMy82eNpoEuhz/VZd8CqtFx0wzg5rHcv6SnmzZ1E0684Hut9X/m0Xu21vdEMtYAPgY4D7iVat74OuC4tZ0UEXtSfZbc3PrijablwPMa29OBBzv7yMwhYKij3zGWLUm9a9T/ESJi04j4IrBPZh6Smc8FbgeeBB5Zy7kvAK4CDuoSvmTmA8DKOqQBDgauXY/HIEl9aW0j4NOBZ1GNfIcdDlwAfAw4eZRz5wGbAec0RqwXAe8ETq0/8HMOsDAingncRTXKlqRJYW0B/HZg98xsLsL+YEQcTPWx9CMGcGYeDxzfpemixjF3A69Zp4olaYJY28uUTzTDd1hmPgL8vp2SJGlyWFsAP1lPD/yJet+0dkqSpMlhbQH8ZeDzEbHF8I769uep3t0gSVpPa5sDXkA1Z/uLiPgxVWC/FPgnqhfoJEnradQAzsyngCMi4kzg1VQXStyemU97v64kad2MdTnKpcDSViuRpEnGi7UlqRADWJIKMYAlqRADWJIKMYAlqRADWJIKMYAlqRADWJIKMYAlqRADWJIKMYAlqRADWJIKMYAlqRADWJIKMYAlqRADWJIKMYAlqRADWJIKMYAlqRADWJIKGdOHcm6IiHgWcCvw9vrDPZttpwKHAg/XuxZm5vlt1yRJvaDVAI6IPYCFwE4jHLI78L7MvK3NOiSpF7U9BXE4cAzw4AjtM4ETIuKeiPhMRGzWcj2S1DNaHQFn5mEAEfG0tojYErgLmAcsBRYBpwAndRw3CAx2nD5joxcrSeOs9TngkWTmo8Ds4e2IOBu4hI4ABuYC88exNEkaF8XeBRER20XE3zZ2DQCruhy6ANih42vv9iuUpHYVGwEDjwNnRcSNVFMQxwBXdh6UmUPAUHNftykNSeo34z4CjojFETEzMx8CjgSuBpJqBHz2eNcjSaWMywg4M7dv3J7duH05cPl41CBJvcYr4SSpEANYkgoxgCWpEANYkgoxgCWpEANYkgoxgCWpEANYkgoxgCWpEANYkgoxgCWpEANYkgoxgCWpEANYkgoxgCWpEANYkgoxgCWpEANYkgoxgCWpEANYkgoxgCWpEANYkgoxgCWpEANYkgoxgCWpEANYkgoxgCWpkKlt30FEPAu4FXh7Zi7taNsFWAhsBdwEHJWZq9uuSZJ6Qasj4IjYA7gF2GmEQy4FjsvMnYAB4PA265GkXtL2CPhw4BjgS50NEfFCYPPM/H69axFwGnBhx3GDwGDH6TM2eqWSNM5aDeDMPAwgIro1bwusaGyvoHuwzgXmb/Ti1NWq1U8xbWq7Lw2Mx32orLa/x6tWP8m0qVNa7H98fkZbnwMexUCXfU912beAanTcNAO4eWMXJJg2dRNOvOB7rd7HmUfv2Wr/Kq/tn6Mzj96z9f7HQ8kAXg48r7E9HXiw86DMHAKGmvtGGFFLUl8p9n9gZj4ArIyI4T81BwPXlqpHksbbuAdwRCyOiJn15hzg3Ii4D9gCOG+865GkUsZlCiIzt2/cnt24fTfwmvGoQZJ6jS9FS1IhBrAkFWIAS1IhBrAkFWIAS1IhBrAkFWIAS1IhBrAkFWIAS1IhBrAkFWIAS1IhBrAkFWIAS1IhBrAkFWIAS1IhBrAkFWIAS1IhBrAkFWIAS1IhBrAkFWIAS1IhBrAkFWIAS1IhBrAkFWIAS1IhBrAkFWIAS1IhU9vsPCIOAk4GNgXOzczzO9pPBQ4FHq53Lew8RpImqtYCOCKeD5wB7Ab8Hrg1Im7MzHsbh+0OvC8zb2urDknqVW2OgGcBN2TmbwAi4hvAAcDpjWNmAidExI7ATcC8zFzZ7CQiBoHBjr5ntFa1JI2TNueAtwVWNLZX0AjOiNgSuAuYB7yaKmRP6dLPXOD+jq+b2ylZksZPmyPggS77nhq+kZmPArOHtyPibOAS4KSOcxYAizr2zcAQltTn2gzg5cDeje3pwIPDGxGxHTArMy+pdw0Aqzo7ycwhYKi5LyI2erGSNN7aDODvAB+LiG2Ax4D9gSMa7Y8DZ0XEjcBS4BjgyhbrkaSe0toccGYup5pOuBFYAlyWmbdHxOKImJmZDwFHAlcDSTUCPruteiSp17T6PuDMvAy4rGPf7Mbty4HL26xBknqVV8JJUiEGsCQVYgBLUiEGsCQVYgBLUiEGsCQVYgBLUiEGsCQVYgBLUiEGsCQVYgBLUiEGsCQVYgBLUiEGsCQVYgBLUiEGsCQVYgBLUiEGsCQVYgBLUiEGsCQVYgBLUiEGsCQVYgBLUiEGsCQVYgBLUiEGsCQVMrXNziPiIOBkYFPg3Mw8v6N9F2AhsBVwE3BUZq5usyZJ6hWtjYAj4vnAGcBewM7AERHxso7DLgWOy8ydgAHg8LbqkaRe0+YIeBZwQ2b+BiAivgEcAJxeb78Q2Dwzv18fvwg4Dbiw2UlEDAKDHX2/EOAXv/hFW7VPao898qtW+1+2bFmr/UO7j2HZsmV93f943MdE6H997LvvvtsDy8b6n3ybAbwtsKKxvQJ4zVraZ3TpZy4wv9sdzJkzZwNLVAnXfaF0BRum7frH4/np98fQw/3fD+wALB3LwW0G8ECXfU+tQ/uwBVSj46ZNgR2BnwFPrkNNM4Cbgb2B9odhG1+/1w/9/xj6vX7o/8fQ6/WPuaY2A3g51RM0bDrwYEf780ZpByAzh4ChLv3/dF0Liojhm8syc+m6nl9av9cP/f8Y+r1+6P/H0O/1N7X5NrTvAPtGxDYR8WfA/sB1w42Z+QCwMiL2rHcdDFzbYj2S1FNaC+DMXA6cBNwILAEuy8zbI2JxRMysD5sDnBsR9wFbAOe1VY8k9ZpW3wecmZcBl3Xsm924fTd/+sKcJE0ak+1KuCGqt7p1m1PuB/1eP/T/Y+j3+qH/H0O/1/8HA2vWrCldgyRNSpNtBCxJPcMAlqRCDGBJKqTVd0H0ioj4FLBNZh7STyuwRcQNwHOBVfWuI4G/YJQV5npNRLwD+BjV2wy/lZnHR8Qs4Bxgc+CrmXlywRJHFBGHAcc2du0AfAm4ij6of1hEvB/4n/XmtZk5r89+Dz4KfAD4PdXzfUY/1T+aCT8Cjoh9gUMau/piBbaIGABeAuycmbtk5i5UlziubYW5nhEROwIXAfsBrwReHRFvBS6p970U2L3e13My8/ON534O8Evgk/RJ/QD1RVDnAa+n+pnZu/4D2C+/B7OAg4DdgV2BPSLiPfRJ/WszoQM4IramCqwz6+1uK7C9t0x1axXAGuDaiLg7Io6lscJcZj4GDK8w16veTTViWZaZq4ADgd8BP8vM++sRy6X07veg6ULgROo1SPqo/ilUv+dbANPqr1X0z+/BrlT/OT2SmU9SXU17HP1T/6gmdAADn6W6Gu/henusK7D1gmcD1wPvAvYFjgK2o3/qB3gRMCUivhURdwNH01/fA+APo7DNM/Pr9Fn9mflb4BTgJ1TrrywFnqB/HsOdwFsiYuuI2Ax4J7Ca/ql/VBM2gOv5u59n5vWN3WNdga24zLwtMw/OzMcy81fAxdRrKXfoyfprU6lG7e8HXkt11eMOXY7r5ccA1dz7OfXtvvkZAoiIVwF/S7WG9nSq1QPf3OXQnnwM9e/vIuBfqEa/t1CN6jv1ZP1rM5FfhDsQmB4RS4CtgS2p/qVf6wpsvSAi9gKe0fgDMkA1eumL+mu/AL6TmQ8BRMRVVP8qNpcQ7enHEBGbUs2fHlLvGtMqfj3kLcD1mflLgIhYBMyjTx5DRDwTuCIzz6m3/x54gNFXWuwbE3YEnJlvysxX1C+gnAr838z8AP2zAtsg8KmI2Kz+IfzvVCPJEVeY60HfpPr3cTAipgBvpZq3joh4Ub3vIHr3ewDwKuCn9Zw7wL/SX/XfDcyKiC3qF3bfAXyX/vk92AG4KiKmRsRWwGHA5+mf+kc1YQN4FH2xAltmfhO4BrgL+CFwSWZ+jy4rzJWrcnSZ+a/AWVT/Nt5LNXK5kGo0eXm97ydUodyrdqSxwHZmrqSP6s/MbwNfpvoZuofqRbhP0D+/B/dQPdf3ALcD59W/B31R/9q4FoQkFTIZR8CS1BMMYEkqxACWpEIMYEkqxACWpEIMYKmLiHhORPgWIbXKAJakQibypciaZOp1Yw8Ffku1Ruy7qNYQ2JpqHeVvUq2pcT7VpenbUl3QcmBmrqyXOTyDasW2H3T0fSjVYkKbAL8Gjs3Mn7T/qDSROQLWhBARb6G6Qm13YDfgmY3mP8vMl2fmCVTrxn4xM/+SarW2HYC3RcRzqdb53T8zd6O6am+479dTXQq+d2buSnV13xXtPypNdAawJorZwNczcygz11CNcofd0rh9AvBQRHyE6rLobalGw3sB/5aZ99bHfbZxztuowvrWenGns4Ct6/WmpfXmFIQmitX86VKRzRXXHm3c/jLVz/3XqNba2K4+b03H+c2Pt5kCfKkeQRMRm1AF98NIG8ARsCaKa4D96xWzoJoL7vYuhrcAp2fmV+v2PagC9mbg5RGxc33cIY1zvg38t4iYXm8fRbVYvrRBDGBNCJl5A9WHNN4WEXdQfVjj77oceiJwZX3MRVRLM76oXrP4IOCfIuJOGgvHZ+a3qD4L7p8j4p76uPfUUx3SenM1NE0IETETeF1mnldv/z2wR2YeWLYyaWTOAWui+ClwQkQcQTW18P+AI8qWJI3OEbAkFeIcsCQVYgBLUiEGsCQVYgBLUiEGsCQV8v8BxkkpUsalZGYAAAAASUVORK5CYII=\n", "application/papermill.record/text/plain": "
" }, "metadata": { "scrapbook": { "mime_prefix": "application/papermill.record/", "name": "anastasia_fig" } }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAFoCAYAAABpMiEhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAG6lJREFUeJzt3XuUXWWZ5/FvkQShQSlpGQ1GBFp5vAMSxBYYFaK28YIKNg6xGWyucpF0mxGHW4QZUFEgzZKLRjC2NF65zCABbYEWEGxECLSCj/ZqwpgQl6hUI0gkgcwfe5duD6cqlcuu95yq72etWuvs/e79nuecqvrVW+85+z0Da9asQZI0/jYpXYAkTVYGsCQVYgBLUiEGsCQVYgBLUiEGsCQVYgBrg0XEtIh4MCKua/E+To2I/Tbg/CURMbgR6tgqIm5Yj/MOiIh/2cD7/nZEPGdD+lBvMYC1MbwbuAfYLSJe2tJ97ANMW9+TM3OXzBzaCHU8G3jNRuhnfbyp0P2qJVNLF6AJ4WjgK8C/A3OBIyPiDcAZwH8ArwCeARyTmTdGxE7A+cCWwLbAEuDAzFwZEadRBfoTwK+BQ4D3ADOBT0XEk8CP1+X8zFwREWuAbYDHgQuBnYCtgd8CB2VmNh9QRDwP+EdgeMR5TWaeAnwB2DwilgC7AauBbTLzV/V5a4a3I+J0YE5dx88afW8KfBJ4PTAFuAv4UGY+EhFLgUXAvsB2wFcz8yMR8YX69BsjYjbwduCo+nGuBI7MzHvX/q1SL3EErA0SES8DXgt8Dfgi8DcR8ed18x7A2Zm5K3Ax8LF6/+HAFzPzL4EXATsAb4uIF1AF+O6ZORP4NrBHZp4P3AH8j8y8cl3P7yj5rcBQZr42M3cCfgAc2+WhHQ78R2a+GtgbeHFEbAV8AHi8HlE/Ocrzsh+wP7AL8Dpgq0bzR6mCe7fM3Bl4EPhEo33LzNy7Pu+4iNghMz9Qt72xPn4B8FeZuTvwOWCvkWpR7zKAtaE+SDU6/E1m/gC4HziybnsgM5fUt++kGnECnAA8FBEfoRqNbks1ml0O3A3cGRGfBpZk5lVd7nO9z8/MbwCLIuK4iPgH4A31uZ2uA/aPiMX14/loZv7nOjwvs4ArMvO3mbkauKTR9nZgP+CueiT9LuBljfb/U9e6HPglf3zehh/Dk8DXgVsj4jPAf1L9gVOfMYC13iJiC+BgYK+IWFr/+zwdOIZqvvbxxuFrgIH69peBI4AHgHOpwnkgM5+i+rf8EKp/28+tQ7LTep8fER+kCqvfAZfVfQ3Qof5jsgPV6HJ74PaIeN0IT8VA3femIzxeqEa8w6YAx9ej6F2o5pQPaLSP9Lw163s/8A6qaZ8TgCtGqE09zADWhpgD/ArYNjO3z8ztgR2pRpT/ZZTz3gKcnplfpQqYPYApEbEz8CPgvsz8OFW47lyfs5o/vgi3Puc373tRZl4MJFWITeksMCI+AZxSj6CPp5p33qmuY0pEDIfiQ1Tz01DNVQ+7DnhvRAxGxCbA3zTavgUcGxGb1m0LgY+P8nwNexKYFhHPiYifA7/OzAXAyV0ep/qAL8JpQ3wQOKc5F5qZQxFxHtVc7EhOBK6MiN9QjUS/C7woMy+OiK8Bd0TEo1QjwQ/V51wNfLoeZa7P+cM+DXwuIj5AFWg/BF7ZpcYFwBcj4kfA76mmNr5MFcB3AvdFxJ51/+dHxBDwz8CK+nlYHBGvpJq7frg+f5u67/9V13EXVfgvAT48yvM17ArgFqrpi/8NXB8Rj9c1HTaG89VjBlyOUpLKcApCkgoxgCWpEANYkgrpyxfhImIqMANYVr/HUpL6Tl8GMFX43n/99deXrkOSmp72nu3ROAUhSYUYwJJUiAEsSYUYwJJUiAEsSYUYwJJUiAEsSYUYwJJUiAEsSYUYwJJUSOuXIkfEp6g+JfaQjv3bAZdSfXJCAnMy89G265GkXtHqCDgi9qX6fK5uLgAuyMyXUH1qwClt1iJJvaa1AI6IrYEzgDO7tE0D/ivwjXrXIuC9bdUiSb2ozSmIzwInAS/o0vYc4JHGUpIrqFY4e5qIGAQGO3Z3PVaS+kkrI+CIOAz4eWaOtF5ktyXbnhrh2LnA/R1fN29wkVKPWrV6pF+F/roPrV1bI+ADgekRsQTYGtgyIs7NzL+r2x8CnhURU+pP1J0OPDhCXwuopiiaZmAIa4KaNnUTTrzge63ex5lH79lq/xqbVgI4M980fDsiDgHe0AhfMnNVRNxMFdSXAQcD147Q1xAw1NwXES1ULUnja1zfBxwRn4+Id9abRwNHRMS9wN7AyeNZiySV1vr7gDNzEfUUQmYe1tj/APCGtu9fknqVV8JJUiEGsCQVYgBLUiEGsCQVYgBLUiEGsCQVYgBLUiEGsCQVYgBLUiEGsCQVYgBLUiEGsCQVYgBLUiEGsCQVYgBLUiEGsCQVYgBLUiEGsCQVYgBLUiEGsCQVYgBLUiEGsCQVYgBLUiEGsCQVYgBLUiEGsCQVYgBLUiFT2+w8Ik4HDgDWABdn5jkd7acChwIP17sWZub5bdYkSb2itQCOiNcD+wCvAqYB90bENZmZjcN2B96Xmbe1VYck9arWAjgzvxsRb8zM1RHx/Pq+Hus4bCZwQkTsCNwEzMvMlc0DImIQGOw4b0ZbdUvSeGl1DjgzV0XEacC9wPXA8uG2iNgSuAuYB7yaKmRP6dLNXOD+jq+b26xbksZD6y/CZeZ8YBvgBcDhjf2PZubszPz3zFwNnA3M7tLFAmCHjq+9265bktrW5hzwS4DNMnNJZv4uIq6gmg8ebt8OmJWZl9S7BoBVnf1k5hAw1NF3W2VL0rhp810QOwKnRcReVO+C2A+4pNH+OHBWRNwILAWOAa5ssR5J6imtTUFk5mJgMdU87w+BWzPzKxGxOCJmZuZDwJHA1UBSjYDPbqseSeo1rb4PuJ7/nd+xb3bj9uXA5W3WIEm9yivhJKkQA1iSCjGAJakQA1iSCjGAJakQA1iSCjGAJakQA1iSCjGAJakQA1iSCjGAJakQA1iSCjGAJakQA1iSCjGAJakQA1iSCjGAJakQA1iSCjGAJakQA1iSCjGAJakQA1iSCjGAJakQA1iSCjGAJakQA1iSCjGAJamQqW12HhGnAwcAa4CLM/OcjvZdgIXAVsBNwFGZubrNmiSpV7Q2Ao6I1wP7AK8CZgLHRUR0HHYpcFxm7gQMAIe3VY8k9ZrWRsCZ+d2IeGNmro6I59f39dhwe0S8ENg8M79f71oEnAZc2OwnIgaBwY7uZ7RVtySNl1bngDNzVUScBtwLXA8sbzRvC6xobK+ge7DOBe7v+Lq5lYI1Iaxa/VTL/T/Zav+aPFqdAwbIzPkR8Ungaqophs/VTQNdDu/2m7OAanTcNANDWCOYNnUTTrzge631f+bRe7bevyaH1gI4Il4CbJaZSzLzdxFxBdV88LDlwPMa29OBBzv7ycwhYKij7xYqlqTx1eYUxI7Awoh4RkRsCuwH3DLcmJkPACsjYvjP/cHAtS3WI0k9pbUAzszFwGLgLuCHwK2Z+ZWIWBwRM+vD5gDnRsR9wBbAeW3VI0m9ptU54MycD8zv2De7cftu4DVt1iBJvcor4SSpEANYkgoxgCWpEANYkgoxgCWpEANYkgoxgCWpEANYkgoxgCWpEANYkgoxgCWpEANYkgoxgCWpEANYkgoxgCWpEANYkgoxgCWpEANYkgoxgCWpEANYkgoxgCWpEANYkgoxgCWpEANYkgoxgCWpEANYkgqZ2mbnETEf+Ot685rM/EhH+6nAocDD9a6FmXl+mzVJUq9oLYAjYhbwZmBXYA1wXUS8OzOvbBy2O/C+zLytrTokqVe1OQJeAXw4M58AiIj7gO06jpkJnBAROwI3AfMyc2XzgIgYBAY7zpvRTsmSNH5aC+DM/PHw7Yh4MXAg8LrGvi2Bu4B5wFJgEXAKcFJHV3OB+W3VKUmltDoHDBARLweuoRrd/mx4f2Y+CsxuHHc2cAlPD+AFVOHcNAO4uY16JWm8tP0i3J7A5cDczPxKR9t2wKzMvKTeNQCs6uwjM4eAoY5z2ylYksZRmy/CvQC4CjgwM2/ocsjjwFkRcSPVFMQxwJVdjpOkCanNEfA8YDPgnMaI9SLgncCpmXlHRBwJXA1sCtwCnN1iPZLUU9p8Ee544PguTRc1jrmcaopCkiYdr4STpEIMYEkqxACWpEIMYEkqxACWpEIMYEkqxACWpEIMYEkqxACWpEIMYEkqZEwBHBEXd9nnJcSStAFGXQsiIi4Eng/sHRHbNJqmAS9pszBJmujWthjPxcArgJ3500VzVgN+jpskbYBRAzgz7wDuiIjvZOaycapJkiaFsS5H+RcR8SVga6pPrgAgM1/VSlWSNAmMNYDPp/q8tjupPmJekrSBxhrAT2TmOa1WIkmTzFjfB/yjiHhlq5VI0iQz1hHwjsAPI+IBqg/TBJwDlqQNMdYAPqnVKiRpEhprAP9bq1VI0iQ01gD+FdW7Hwb447sgVgAz2ihKkiaDMQVwZv7hxbqImAbsT3V1nCRpPa3zamiZuSozvwK8qYV6JGnSGNMIOCK2bmwOADOBZ7dSkSRNEuszBwzwS+BDrVQkSZPEOs8BS5I2jrFOQWwCzAPeSrUW8LeBMzNz9VrOmw/8db15TWZ+pKN9F2AhsBVwE3DU2vqUpIlirCPbjwP7AP8AnAO8DvjUaCdExCzgzcCuwC7AbhHx7o7DLgWOy8ydqKY3Dh976ZLU38Y6B/xXwMzMXAUQEdcAdwN/N8o5K4APZ+YT9Tn3AdsNN0bEC4HNM/P79a5FwGnAhc1OImIQGOzo2/cfS+p7Yw3gTYbDFyAzfx8Rq0Y7ITN/PHw7Il4MHEg1ch62LVVIDxvpwo65wPwx1ilpDFatfoppU9t7aaft/ieKsQbwkog4F/hMvX0scM9YToyIlwPXAPMy82eNpoEuhz/VZd8CqtFx0wzg5rHcv6SnmzZ1E0684Hut9X/m0Xu21vdEMtYAPgY4D7iVat74OuC4tZ0UEXtSfZbc3PrijablwPMa29OBBzv7yMwhYKij3zGWLUm9a9T/ESJi04j4IrBPZh6Smc8FbgeeBB5Zy7kvAK4CDuoSvmTmA8DKOqQBDgauXY/HIEl9aW0j4NOBZ1GNfIcdDlwAfAw4eZRz5wGbAec0RqwXAe8ETq0/8HMOsDAingncRTXKlqRJYW0B/HZg98xsLsL+YEQcTPWx9CMGcGYeDxzfpemixjF3A69Zp4olaYJY28uUTzTDd1hmPgL8vp2SJGlyWFsAP1lPD/yJet+0dkqSpMlhbQH8ZeDzEbHF8I769uep3t0gSVpPa5sDXkA1Z/uLiPgxVWC/FPgnqhfoJEnradQAzsyngCMi4kzg1VQXStyemU97v64kad2MdTnKpcDSViuRpEnGi7UlqRADWJIKMYAlqRADWJIKMYAlqRADWJIKMYAlqRADWJIKMYAlqRADWJIKMYAlqRADWJIKMYAlqRADWJIKMYAlqRADWJIKMYAlqRADWJIKMYAlqRADWJIKGdOHcm6IiHgWcCvw9vrDPZttpwKHAg/XuxZm5vlt1yRJvaDVAI6IPYCFwE4jHLI78L7MvK3NOiSpF7U9BXE4cAzw4AjtM4ETIuKeiPhMRGzWcj2S1DNaHQFn5mEAEfG0tojYErgLmAcsBRYBpwAndRw3CAx2nD5joxcrSeOs9TngkWTmo8Ds4e2IOBu4hI4ABuYC88exNEkaF8XeBRER20XE3zZ2DQCruhy6ANih42vv9iuUpHYVGwEDjwNnRcSNVFMQxwBXdh6UmUPAUHNftykNSeo34z4CjojFETEzMx8CjgSuBpJqBHz2eNcjSaWMywg4M7dv3J7duH05cPl41CBJvcYr4SSpEANYkgoxgCWpEANYkgoxgCWpEANYkgoxgCWpEANYkgoxgCWpEANYkgoxgCWpEANYkgoxgCWpEANYkgoxgCWpEANYkgoxgCWpEANYkgoxgCWpEANYkgoxgCWpEANYkgoxgCWpEANYkgoxgCWpEANYkgoxgCWpkKlt30FEPAu4FXh7Zi7taNsFWAhsBdwEHJWZq9uuSZJ6Qasj4IjYA7gF2GmEQy4FjsvMnYAB4PA265GkXtL2CPhw4BjgS50NEfFCYPPM/H69axFwGnBhx3GDwGDH6TM2eqWSNM5aDeDMPAwgIro1bwusaGyvoHuwzgXmb/Ti1NWq1U8xbWq7Lw2Mx32orLa/x6tWP8m0qVNa7H98fkZbnwMexUCXfU912beAanTcNAO4eWMXJJg2dRNOvOB7rd7HmUfv2Wr/Kq/tn6Mzj96z9f7HQ8kAXg48r7E9HXiw86DMHAKGmvtGGFFLUl8p9n9gZj4ArIyI4T81BwPXlqpHksbbuAdwRCyOiJn15hzg3Ii4D9gCOG+865GkUsZlCiIzt2/cnt24fTfwmvGoQZJ6jS9FS1IhBrAkFWIAS1IhBrAkFWIAS1IhBrAkFWIAS1IhBrAkFWIAS1IhBrAkFWIAS1IhBrAkFWIAS1IhBrAkFWIAS1IhBrAkFWIAS1IhBrAkFWIAS1IhBrAkFWIAS1IhBrAkFWIAS1IhBrAkFWIAS1IhBrAkFWIAS1IhU9vsPCIOAk4GNgXOzczzO9pPBQ4FHq53Lew8RpImqtYCOCKeD5wB7Ab8Hrg1Im7MzHsbh+0OvC8zb2urDknqVW2OgGcBN2TmbwAi4hvAAcDpjWNmAidExI7ATcC8zFzZ7CQiBoHBjr5ntFa1JI2TNueAtwVWNLZX0AjOiNgSuAuYB7yaKmRP6dLPXOD+jq+b2ylZksZPmyPggS77nhq+kZmPArOHtyPibOAS4KSOcxYAizr2zcAQltTn2gzg5cDeje3pwIPDGxGxHTArMy+pdw0Aqzo7ycwhYKi5LyI2erGSNN7aDODvAB+LiG2Ax4D9gSMa7Y8DZ0XEjcBS4BjgyhbrkaSe0toccGYup5pOuBFYAlyWmbdHxOKImJmZDwFHAlcDSTUCPruteiSp17T6PuDMvAy4rGPf7Mbty4HL26xBknqVV8JJUiEGsCQVYgBLUiEGsCQVYgBLUiEGsCQVYgBLUiEGsCQVYgBLUiEGsCQVYgBLUiEGsCQVYgBLUiEGsCQVYgBLUiEGsCQVYgBLUiEGsCQVYgBLUiEGsCQVYgBLUiEGsCQVYgBLUiEGsCQVYgBLUiEGsCQVMrXNziPiIOBkYFPg3Mw8v6N9F2AhsBVwE3BUZq5usyZJ6hWtjYAj4vnAGcBewM7AERHxso7DLgWOy8ydgAHg8LbqkaRe0+YIeBZwQ2b+BiAivgEcAJxeb78Q2Dwzv18fvwg4Dbiw2UlEDAKDHX2/EOAXv/hFW7VPao898qtW+1+2bFmr/UO7j2HZsmV93f943MdE6H997LvvvtsDy8b6n3ybAbwtsKKxvQJ4zVraZ3TpZy4wv9sdzJkzZwNLVAnXfaF0BRum7frH4/np98fQw/3fD+wALB3LwW0G8ECXfU+tQ/uwBVSj46ZNgR2BnwFPrkNNM4Cbgb2B9odhG1+/1w/9/xj6vX7o/8fQ6/WPuaY2A3g51RM0bDrwYEf780ZpByAzh4ChLv3/dF0Liojhm8syc+m6nl9av9cP/f8Y+r1+6P/H0O/1N7X5NrTvAPtGxDYR8WfA/sB1w42Z+QCwMiL2rHcdDFzbYj2S1FNaC+DMXA6cBNwILAEuy8zbI2JxRMysD5sDnBsR9wFbAOe1VY8k9ZpW3wecmZcBl3Xsm924fTd/+sKcJE0ak+1KuCGqt7p1m1PuB/1eP/T/Y+j3+qH/H0O/1/8HA2vWrCldgyRNSpNtBCxJPcMAlqRCDGBJKqTVd0H0ioj4FLBNZh7STyuwRcQNwHOBVfWuI4G/YJQV5npNRLwD+BjV2wy/lZnHR8Qs4Bxgc+CrmXlywRJHFBGHAcc2du0AfAm4ij6of1hEvB/4n/XmtZk5r89+Dz4KfAD4PdXzfUY/1T+aCT8Cjoh9gUMau/piBbaIGABeAuycmbtk5i5UlziubYW5nhEROwIXAfsBrwReHRFvBS6p970U2L3e13My8/ON534O8Evgk/RJ/QD1RVDnAa+n+pnZu/4D2C+/B7OAg4DdgV2BPSLiPfRJ/WszoQM4IramCqwz6+1uK7C9t0x1axXAGuDaiLg7Io6lscJcZj4GDK8w16veTTViWZaZq4ADgd8BP8vM++sRy6X07veg6ULgROo1SPqo/ilUv+dbANPqr1X0z+/BrlT/OT2SmU9SXU17HP1T/6gmdAADn6W6Gu/henusK7D1gmcD1wPvAvYFjgK2o3/qB3gRMCUivhURdwNH01/fA+APo7DNM/Pr9Fn9mflb4BTgJ1TrrywFnqB/HsOdwFsiYuuI2Ax4J7Ca/ql/VBM2gOv5u59n5vWN3WNdga24zLwtMw/OzMcy81fAxdRrKXfoyfprU6lG7e8HXkt11eMOXY7r5ccA1dz7OfXtvvkZAoiIVwF/S7WG9nSq1QPf3OXQnnwM9e/vIuBfqEa/t1CN6jv1ZP1rM5FfhDsQmB4RS4CtgS2p/qVf6wpsvSAi9gKe0fgDMkA1eumL+mu/AL6TmQ8BRMRVVP8qNpcQ7enHEBGbUs2fHlLvGtMqfj3kLcD1mflLgIhYBMyjTx5DRDwTuCIzz6m3/x54gNFXWuwbE3YEnJlvysxX1C+gnAr838z8AP2zAtsg8KmI2Kz+IfzvVCPJEVeY60HfpPr3cTAipgBvpZq3joh4Ub3vIHr3ewDwKuCn9Zw7wL/SX/XfDcyKiC3qF3bfAXyX/vk92AG4KiKmRsRWwGHA5+mf+kc1YQN4FH2xAltmfhO4BrgL+CFwSWZ+jy4rzJWrcnSZ+a/AWVT/Nt5LNXK5kGo0eXm97ydUodyrdqSxwHZmrqSP6s/MbwNfpvoZuofqRbhP0D+/B/dQPdf3ALcD59W/B31R/9q4FoQkFTIZR8CS1BMMYEkqxACWpEIMYEkqxACWpEIMYKmLiHhORPgWIbXKAJakQibypciaZOp1Yw8Ffku1Ruy7qNYQ2JpqHeVvUq2pcT7VpenbUl3QcmBmrqyXOTyDasW2H3T0fSjVYkKbAL8Gjs3Mn7T/qDSROQLWhBARb6G6Qm13YDfgmY3mP8vMl2fmCVTrxn4xM/+SarW2HYC3RcRzqdb53T8zd6O6am+479dTXQq+d2buSnV13xXtPypNdAawJorZwNczcygz11CNcofd0rh9AvBQRHyE6rLobalGw3sB/5aZ99bHfbZxztuowvrWenGns4Ct6/WmpfXmFIQmitX86VKRzRXXHm3c/jLVz/3XqNba2K4+b03H+c2Pt5kCfKkeQRMRm1AF98NIG8ARsCaKa4D96xWzoJoL7vYuhrcAp2fmV+v2PagC9mbg5RGxc33cIY1zvg38t4iYXm8fRbVYvrRBDGBNCJl5A9WHNN4WEXdQfVjj77oceiJwZX3MRVRLM76oXrP4IOCfIuJOGgvHZ+a3qD4L7p8j4p76uPfUUx3SenM1NE0IETETeF1mnldv/z2wR2YeWLYyaWTOAWui+ClwQkQcQTW18P+AI8qWJI3OEbAkFeIcsCQVYgBLUiEGsCQVYgBLUiEGsCQV8v8BxkkpUsalZGYAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "p1=sns.displot(harpo_df[harpo_df['tutor']==\"Anastasia\"].grade,bins=np.arange(40,100,5))\n", "p1.ax.set_title(\"Anastasia students\")\n", "glue(\"anastasia_fig\",p1.fig,display=False)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "```{glue:figure} anastasia_fig\n", ":figwidth: 550px\n", ":name: \"fig:anastasia\"\n", "\n", "Histogram showing the overall distribution of grades for students in Anastasia’s class.\n", "```" ] }, { "cell_type": "code", "execution_count": 64, "metadata": { "tags": [ "hide_cell" ] }, "outputs": [ { "data": { "application/papermill.record/image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAFoCAYAAABpMiEhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAF2NJREFUeJzt3X20HVV5x/Fvwk2EpuqFihYNIAg+WAXCi9DyIrYBKRRFRM0qvqUtBhZFSZXWilIQl/EFF0SrgEugsb4hVkQFESWojYBa5E1FH2wX0IaXBbbehSJKQtI/Zi4eDzf3nkR29pnc72etu3Jmzszsvc/N+d199szsM2Pt2rVIkja+mbUrIEnTlQEsSZUYwJJUiQEsSZUYwJJUiQEsSZWM1K6AhlNEPBP4L+D77arNgF8Cb8rMayrU5+XAiZn5wim2OxaYnZnnRMQOwPsz8+jHqQ7/BNycmV9Yz/1+ATwvM+/YwHIfbdOG7K/hZQBrMg9l5rzxhYh4JbAM2LlajaZ2APCD9vH2QDyOx/4z4NbH8XiD6m2TNiEGsNbHHwD3jC9ExIuBtwOzaXrHJ2fmdRFxOvAnwDbALcB/As9sl7cH7gcWZObdEXEEcEp7jKcCH8vMU9vjnwG8Cvhf4Cc95c4G3gscRNMzvxF4IzAfeAlwSEQ8BPwd8IyIuDIzD42I/dr95gBrgNMz87L+RkbEO4CjgIfbshcCLwP2Bs6MiEeAI4EfZOb7232WjS9HxIHAPwNrgf+gZ6hvitfsMa8RsG9fm5YDFwCbAzOA8+0Zd5djwJrMFhFxU/tzJ/AB4N0AEbEzsAQ4PDP3ABYBl0TEnHbf7YE9M/PV7fKBwCsycxfgZ8BxETEDeDPwuszcG/hj4K0R8ZSIOBI4GpgH7Ac8uade/wisBvbKzN2Bu4H3ZObngS8CZ2fmh4Fjgf9qw3dL4F+A12TmnjShdm5EbNfb4IjYFlgMPL+t01eBfdvjXQ/8fVvOhNo/Dp8F3ty+Ll8HthjwNXvMazRBm/4e+FJm7gUcDrwgInwfd5Q9YE2mfwhiP+CKiJgHHELTW1se8ein/DXATu3jb2fm6p5jfSMzH2gf3whslZlr2x7hERFxDPAcml7dHOBg4JLM/Hlb9oU0vVyAI4BRml4hNL3J+6Zoy3iP/NKe+q4FdgP+u2e7u4CbgRsi4grgisxcPsWxe+0KrBrfJzM/HREfaZ+b6jV7zGs0wfE/D/xrROwDXAW8MTPXrEf9NET8y6mBZea1QAL70Hz0X56Z88Z/aHqw42OVv+jb/aGex2uBGW3P70ZgT+AGmt7dKpoQXtv+O643zDcDTuopdx/g5VNUfzPgRxPU98q+Nq6hGdpYSDP8cHZEfGCC4/XXb/Y61vfWfarX7DGvUX+h7ZDJzsDFwB7A9yPiWetstYaaAayBRcSzgWfThObVwIsiYpf2ucNpxns3X49D7gw8CXh7Zn6JJvieQBNUXwFeERGj7Ufs1/TsdyVwYkTMbp/7KO3QCE3YzZrg8beBnSPiBW1959GMKz+9r4270wTijzLz3cDZwO4THO9+mjFhIuIpNMMH0Fw1MqN9PYiIlwBbts9t6Gv2aLkR8Sma8fOLgBOAB4Btp9hfQ8ohCE1mi4i4qWd5JrAoM28DiIhFwEXtWO5q4CWZ+WDPx+up3AJcBvw4IsZoTtbdCuyUmV+OiF1pxl1/RjMssHW73zuB99P8IdgMuIlmLBngCuBDbR3OAx6JiO/SnMw6muYk2uZtW16TmXf2Vigzb46Ii4Hr28vHHuI3Qx9fAt7fjvP+M/DJiEjgDuAb7f6rIuKlwHkRsaSt233tcz/cwNest03vBM6PiOOAR2iGJL456ausoTXD6SglqQ6HICSpEgNYkioxgCWpkqE7CRcRI8BcYGXfdaSStEkZugCmCd/bly9fn2vfJWkoPOba7ck4BCFJlRjAklSJASxJlRjAklSJASxJlRjAklSJASxJlRjAklSJASxJlRjAklRJsVuRI+JY4MSeVTsAH8/ME9exiyRNK8UCODPPB84HiIjnApcCp5cqT5K6ZmMNQZwLnJKZP91I5UnS0Cs+G1pEHAxskZmfneC5UZqvF+81t3SdJGkYbIzpKI8DzlrHc4uB0zZCHbSJWrV6DbNGyn6Q2xhlaHoqGsDtt8ceBCxcxyZLgWV96+YCK8rVSpuSWSMzOeWca4qWseSE/YseX9NX6R7wbsBtmfngRE9m5hgw1rtuPb7SXJI6rfTnqh2BlYXLkKROKtoDzsyLgYtLliFJXeWZBUmqxACWpEoMYEmqxACWpEoMYEmqxACWpEoMYEmqxACWpEoMYEmqxACWpEoMYEmqxACWpEoMYEmqxACWpEoMYEmqxACWpEoMYEmqxACWpEoMYEmqxACWpEoMYEmqxACWpEoMYEmqxACWpEoMYEmqxACWpEoMYEmqxACWpEoMYEmqxACWpEoMYEmqxACWpEpGSh48Il4MnA7MAa7MzJNKlidJXVKsBxwROwLnAUcCuwJ7RsRhpcqTpK4p2QM+CvhMZq4EiIgFwK96N4iIUWC0b7+5BeskSUOjZADvBDwcEVcCfwh8CTi1b5vFwGkF6yD9zlatXsOskbKnSzZGGRo+JQN4BHgB8ELgF8AXgNcBy3q2Wdq3DE0PeEXBeknrZdbITE4555qiZSw5Yf+ix9dwKhnA9wJXZeb9ABFxKbAPPYGbmWPAWO9OEVGwSpI0PEoG8GXAx9px3p8DhwGXFixPkjql2KBTZn4HeB/wLeBW4E7gX0qVJ0ldU/Q64My8ELiwZBmS1FWedpWkSgxgSarEAJakSgxgSarEAJakSgxgSarEAJakSgxgSarEAJakSgxgSarEAJakSgxgSarEAJakSgxgSarEAJakSgxgSarEAJakSgxgSarEAJakSgxgSarEAJakSgxgSarEAJakSgxgSarEAJakSgxgSarEAJakSgxgSarEAJakSgxgSarEAJakSgxgSapkpOTBI+Jq4GnAqnbVcZn5nZJlSlJXFAvgiJgB7AJsl5mrS5UjSV1VsgccwFrgioh4KvDRzPzQb20QMQqM9u03t2CdJGlolBwD3hJYDrwUmA8cHxGH9G2zGLi972dFwTpJ0tAo1gPOzOuA69rFByPiAuBw4Gs9my0FlvXtOhdDWNI0UHIM+ADgCZm5vF01g9+cjAMgM8eAsb79SlVJkoZKyTHgUeCMiNgPmAW8Dji+YHmS1CnFxoAz8zLgcuBG4HvAhe2whCSJwtcBZ+apwKkly5CkrvJOOEmqxACWpEoMYEmqxACWpEoMYEmqxACWpEoMYEmqxACWpEoMYEmqxACWpEoMYEmqxACWpEoMYEmqxACWpEoMYEmqxACWpEoMYEmqxACWpEoMYEmqxACWpEoMYEmqxACWpEoMYEmqxACWpEoMYEmqxACWpEoMYEmqxACWpEoMYEmqxACWpEoMYEmqpHgAR8SZEbGsdDmS1DVFAzgi5gMLS5YhSV1VLIAjYivgXcCSUmVIUpeNFDz2R4C3Aduua4OIGAVG+1bPLVgnSRoaA/WAI+KCCdZ9bpLtjwX+JzOXT3HoxcDtfT8rBqmTJHXdpD3giDgXeAZwYERs3fPULGCXSXZdAGwTETcBWwG/HxFnZ+bf9W23FFjWt24uhrCkaWCqIYgLgOcBuwO9Pd7VwHXr2ikzDxl/HBELgRdOEL5k5hgw1rsuIqastCRtCiYN4My8Hrg+Iq7KzJUbqU6SNC0MehLuWRHxcZrhhBnjKzNzt6l2zMxlPHaYQZKmvUED+MPAhcANwNpy1ZGk6WPQAH44M88qWhNJmmYGvRHjBxGxa9GaSNI0M2gPeEfgexFxJ/DQ+MpBxoAlSRMbNIDfVrQWkjQNDRrA3y9aC0mahgYN4J/SXP0wg99cBXEPztsgSRtsoADOzEdP1kXELOBomrvjJEkbaL2no8zMVZl5EXDIlBtLktZpoB5wO7fvuBnA3sCWRWokSdPEhowBA9wHvLFIjSRpmljvMWBJ0uNj0CGImcDJwGE0cwF/FViSmasL1k2SNmmD9mzfDfwZ8AHgLGA/4MxSlZKk6WDQMeA/B/bOzFUAEXE5cDPwmEnWJUmDGbQHPHM8fAEy89fAqkm2lyRNYdAe8E0RcTbwoXb5ROCWMlWSpOlh0B7w39Jc93st8G3gKcAbSlVKkqaDqb4VeTbwUeDzmbmwXXc58AjwQPHaSdImbKoe8BnAk2h6vuNeD4wCpxeqkyRNC1MF8BHAMZl53/iKzLwbeC1wVMmKSdKmbqoAfjgzH+pfmZkPAL8uUyVJmh6mCuBHIuKJ/SvbdbPKVEmSpoepAvjTwPkRMWd8Rfv4fOBzJSsmSZu6qa4DXgqcB9wbET+kCeznAJ+kOUEnSdpAkwZwZq4BFkXEEmBPYA3w3fZEnCTpdzDodJR3AHcUrYkkTTPO8ytJlRjAklSJASxJlRjAklSJASxJlQw6H/AGiYgzgJfTfKPyBZl5VsnyJKlLivWAI+Igmu+R2w3YG3hDRESp8iSpa4r1gDPzmxHxp5m5OiKe0Zb1YO82ETFKM7Vlr7ml6iRJw6ToGHBmroqIdwC3AsuBu/o2WQzc3vezomSdJGlYFD8Jl5mnAVsD29JM5t5rKbBD38+BpeskScOg2BBEROwCbJ6ZN2XmLyPiEprx4Edl5hgw1rdfqSpJ0lApeRXEjsA7IuIAmqsgjgQuLFieJHVKsSGIzPwy8GXgRuB7wLWZeVGp8iSpa4peB9yO/55WsgxJ6irvhJOkSgxgSarEAJakSgxgSarEAJakSgxgSarEAJakSgxgSarEAJakSgxgSarEAJakSgxgSarEAJakSgxgSarEAJakSgxgSarEAJakSgxgSarEAJakSgxgSarEAJakSgxgSarEAJakSgxgSarEAJakSgxgSarEAJakSgxgSarEAJakSgxgSarEAJakSgxgSapkpOTBI+I04JXt4uWZ+Q8ly5OkLinWA46Ig4EXAXsA84C9IuKoUuVJUteU7AHfA7w5Mx8GiIgfAdv1bhARo8Bo335zC9ZJkoZGsQDOzB+OP46InYEFwH59my0GTitVB9W1avUaZo14mmEQG+O18vcxfIqOAQNExHOBy4GTM/MnfU8vBZb1rZsLrChdL5U3a2Qmp5xzTdEylpywf9Hjbyy+VtNT6ZNw+wOfAxZn5kX9z2fmGDDWt0/JKknS0CgWwBGxLXApsCAzry5VjiR1Vcke8MnA5sBZPb3a8zLzvIJlSlJnlDwJdxJwUqnjS1LXeUpUkioxgCWpEgNYkioxgCWpEgNYkioxgCWpEgNYkioxgCWpEgNYkioxgCWpEgNYkioxgCWpEgNYkioxgCWpEgNYkioxgCWpEgNYkioxgCWpEgNYkioxgCWpEgNYkioxgCWpEgNYkioxgCWpEgNYkioxgCWpEgNYkioxgCWpEgNYkioxgCWpEgNYkioZKV1ARDwJuBY4IjPvKF2eJHVF0R5wROwLfAt4dslyJKmLSg9BvB74W+DuwuVIUucUHYLIzGMBImLC5yNiFBjtWz23ZJ0kaVgUHwOewmLgtMp1mJZWrV7DrBHPwUo11Q7gpcCyvnVzgRUbvyrTy6yRmZxyzjVFy1hywv5Fjy91XdUAzswxYKx33bqGKyRpU+NnUEmqZKP0gDPzmRujHEnqEnvAklSJASxJlRjAklSJASxJlRjAklSJASxJlRjAklSJASxJlRjAklSJASxJlRjAklSJASxJlRjAklSJASxJlRjAklSJASxJlRjAklSJASxJlRjAklSJASxJlRjAklSJASxJlRjAklSJASxJlRjAklSJASxJlRjAklSJASxJlRjAklSJASxJlRjAklSJASxJlYyUPHhEHAO8HZgNnJ2ZHy5ZniR1SbEecEQ8A3gXcACwO7AoIv6oVHmS1DUle8AHA1dn5v8BRMS/AS8HzhjfICJGgdG+/bYHuPfeewtWTQAPPvDTosdfuXKlZQxZGSpr/vz5zwRWZubqQbafsXbt2iIViYi3AnMy8+3t8rHAPpm5qGeb04HTilRAkurYITPvGGTDkj3gGROsW9O3vBRY1rduNrAj8BPgkfUoby6wAjgQ6PKfetsxXGzHcOlCOwauV8kAvovmRRq3DXB37waZOQaMTbDvbetbWESMP1w56F+fYWQ7hovtGC6bSjvGlQzgq4DTI2Jr4EHgaGDR5LtI0vRR7CqIzLwLeBvwdeAm4FOZ+d1S5UlS1xS9DjgzPwV8qmQZktRVm9KdcGPAO5h4TLlLbMdwsR3DZVNpB1DwMjRJ0uQ2pR6wJHWKASxJlRjAklRJ0asgNoaIOBPYOjMXRsQ84KPAk4F/B44f9J7sWiLiauBpwKp21XHAs+jYLHIR8WLgdGAOcGVmnhQRBwNnAVsAnxm/LX1YtbfLn9izagfg48CldKgdABHxauCt7eIVmXlyR98f/wj8FfBrmtf+XV1sx7p0ugccEfOBhT2rPgG8ITOfTXMr9Otr1GtQETED2AXYPTPnZeY8mtsYOzWLXETsCJwHHAnsCuwZEYcBF7brngM8v103tDLz/J7fw6uA+4D30rF2RMTvAR8EDqL5P3Rg+8ewa++Pg4FjgOcDewD7RsTL6Fg7JtPZAI6IrWiCakm7vD2wRWZ+u91kGfCKOrUbWABrgSsi4uaIOJGeWeQy80FgfBa5YXYUTe9kZWauAhYAvwR+kpm3t72TTzD8v49e5wKn0M5L0rF2bEbz3p4DzGp/VtG998ceNJ+mHsjMR4CvAG+ge+1Yp84GMPARmjvtftYuPx24p+f5e2gm7hhmWwLLgZcC84Hjge3oXjt2AjaLiCsj4mbgBLr5+wAe7XltkZmfpYPtyMyfA6cCP6aZk+UO4GE61g7gBuDQiNgqIjYHXgKspnvtWKdOBnA7Vvc/mbm8Z/Ugs68Nlcy8LjNfm5kPZuZPgQvomS+5x1C3g+ZcwsHAq4E/BvahGT/tN+ztGHcczZgvdPD/VUTsBvw1zdza29DMKviiCTYd6na07+9lwDdoer/found9xvqdkymqyfhFgDbRMRNwFbA79N8lP/Dnm0eM/vasImIA4An9PwhmUHTW+lUO4B7gasy836AiLiU5mNh73SiXWgHETGbZux0YbvqLrr3+zgUWJ6Z9wFExDLgZDrWjoh4InBJZp7VLr8JuJMpZlnskk72gDPzkMx8Xnuy5J+AL2bmXwG/ioj9281eC1xRrZKDGQXOjIjN2/9sr6PpRc6PiK3bkylH0/z1H2aX0XxUHI2IzYDDaMauIyJ2atcdw/D/PgB2A25rx98BvkP32nEzcHBEzGlP9L4Y+Cbde3/sAFwaESMR8WTgWOB8uteOdepkAE/iVcDZEfEjmhMQH6xcn0ll5mXA5cCNwPeACzPzGjo2i1xmfgd4H81HxFtpeinn0vQiP9eu+zFNKA+7HemZUDszf0XH2pGZXwU+TfN/6haak3DvoXvvj1toXvdbgO8CH2zfH51qx2ScC0KSKtnUesCS1BkGsCRVYgBLUiUGsCRVYgBLUiUGsKa9iHhKRHg5kDY6A1iSKunqrcia5tp5Yv8G+DnNnLAvpZkzYCua+ZQvo5lb48M0t6o/nebGlgWZ+at2WsN30cza9h99x/4bmgmFZgL/C5yYmT8u3ypNN/aA1TkRcSjN3WnPB/YCntjz9O9l5nMz8y0088R+LDP/hGbGth2Av4iIp9HM8Xt0Zu5Fc+fe+LEPorkl/MDM3IPmDr9LyrdK05EBrC46HPhsZo5l5lqaXu64b/U8fgtwf0T8A82t0U+n6Q0fAHw/M29tt/tIzz5/QRPW17aTPb0P2Kqdf1p6XDkEoS5azW9PE9k769oveh5/mub/+MU0c25s1+63tm//3q+z2Qz4eNuDJiJm0gT3z5AeZ/aA1UWXA0e3M2RBMxY80VUMhwJnZOZn2uf3pQnYFcBzI2L3druFPft8FfjLiNimXT6eZtJ86XFnAKtzMvNqmi9lvC4irqf5csZfTrDpKcDn223Oo5mScad23uJjgE9GxA30TB6fmVfSfA/c1yLilna7l7VDHdLjytnQ1DkRsTewX2Z+sF1+E7BvZi6oWzNp/TgGrC66DXhLRCyiGVr4b2BR3SpJ688esCRV4hiwJFViAEtSJQawJFViAEtSJQawJFXy/7fUan1UzHG9AAAAAElFTkSuQmCC\n", "application/papermill.record/text/plain": "
" }, "metadata": { "scrapbook": { "mime_prefix": "application/papermill.record/", "name": "bernadette_fig" } }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAFoCAYAAABpMiEhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAF2NJREFUeJzt3X20HVV5x/Fvwk2EpuqFihYNIAg+WAXCi9DyIrYBKRRFRM0qvqUtBhZFSZXWilIQl/EFF0SrgEugsb4hVkQFESWojYBa5E1FH2wX0IaXBbbehSJKQtI/Zi4eDzf3nkR29pnc72etu3Jmzszsvc/N+d199szsM2Pt2rVIkja+mbUrIEnTlQEsSZUYwJJUiQEsSZUYwJJUiQEsSZWM1K6AhlNEPBP4L+D77arNgF8Cb8rMayrU5+XAiZn5wim2OxaYnZnnRMQOwPsz8+jHqQ7/BNycmV9Yz/1+ATwvM+/YwHIfbdOG7K/hZQBrMg9l5rzxhYh4JbAM2LlajaZ2APCD9vH2QDyOx/4z4NbH8XiD6m2TNiEGsNbHHwD3jC9ExIuBtwOzaXrHJ2fmdRFxOvAnwDbALcB/As9sl7cH7gcWZObdEXEEcEp7jKcCH8vMU9vjnwG8Cvhf4Cc95c4G3gscRNMzvxF4IzAfeAlwSEQ8BPwd8IyIuDIzD42I/dr95gBrgNMz87L+RkbEO4CjgIfbshcCLwP2Bs6MiEeAI4EfZOb7232WjS9HxIHAPwNrgf+gZ6hvitfsMa8RsG9fm5YDFwCbAzOA8+0Zd5djwJrMFhFxU/tzJ/AB4N0AEbEzsAQ4PDP3ABYBl0TEnHbf7YE9M/PV7fKBwCsycxfgZ8BxETEDeDPwuszcG/hj4K0R8ZSIOBI4GpgH7Ac8uade/wisBvbKzN2Bu4H3ZObngS8CZ2fmh4Fjgf9qw3dL4F+A12TmnjShdm5EbNfb4IjYFlgMPL+t01eBfdvjXQ/8fVvOhNo/Dp8F3ty+Ll8HthjwNXvMazRBm/4e+FJm7gUcDrwgInwfd5Q9YE2mfwhiP+CKiJgHHELTW1se8ein/DXATu3jb2fm6p5jfSMzH2gf3whslZlr2x7hERFxDPAcml7dHOBg4JLM/Hlb9oU0vVyAI4BRml4hNL3J+6Zoy3iP/NKe+q4FdgP+u2e7u4CbgRsi4grgisxcPsWxe+0KrBrfJzM/HREfaZ+b6jV7zGs0wfE/D/xrROwDXAW8MTPXrEf9NET8y6mBZea1QAL70Hz0X56Z88Z/aHqw42OVv+jb/aGex2uBGW3P70ZgT+AGmt7dKpoQXtv+O643zDcDTuopdx/g5VNUfzPgRxPU98q+Nq6hGdpYSDP8cHZEfGCC4/XXb/Y61vfWfarX7DGvUX+h7ZDJzsDFwB7A9yPiWetstYaaAayBRcSzgWfThObVwIsiYpf2ucNpxns3X49D7gw8CXh7Zn6JJvieQBNUXwFeERGj7Ufs1/TsdyVwYkTMbp/7KO3QCE3YzZrg8beBnSPiBW1959GMKz+9r4270wTijzLz3cDZwO4THO9+mjFhIuIpNMMH0Fw1MqN9PYiIlwBbts9t6Gv2aLkR8Sma8fOLgBOAB4Btp9hfQ8ohCE1mi4i4qWd5JrAoM28DiIhFwEXtWO5q4CWZ+WDPx+up3AJcBvw4IsZoTtbdCuyUmV+OiF1pxl1/RjMssHW73zuB99P8IdgMuIlmLBngCuBDbR3OAx6JiO/SnMw6muYk2uZtW16TmXf2Vigzb46Ii4Hr28vHHuI3Qx9fAt7fjvP+M/DJiEjgDuAb7f6rIuKlwHkRsaSt233tcz/cwNest03vBM6PiOOAR2iGJL456ausoTXD6SglqQ6HICSpEgNYkioxgCWpkqE7CRcRI8BcYGXfdaSStEkZugCmCd/bly9fn2vfJWkoPOba7ck4BCFJlRjAklSJASxJlRjAklSJASxJlRjAklSJASxJlRjAklSJASxJlRjAklRJsVuRI+JY4MSeVTsAH8/ME9exiyRNK8UCODPPB84HiIjnApcCp5cqT5K6ZmMNQZwLnJKZP91I5UnS0Cs+G1pEHAxskZmfneC5UZqvF+81t3SdJGkYbIzpKI8DzlrHc4uB0zZCHbSJWrV6DbNGyn6Q2xhlaHoqGsDtt8ceBCxcxyZLgWV96+YCK8rVSpuSWSMzOeWca4qWseSE/YseX9NX6R7wbsBtmfngRE9m5hgw1rtuPb7SXJI6rfTnqh2BlYXLkKROKtoDzsyLgYtLliFJXeWZBUmqxACWpEoMYEmqxACWpEoMYEmqxACWpEoMYEmqxACWpEoMYEmqxACWpEoMYEmqxACWpEoMYEmqxACWpEoMYEmqxACWpEoMYEmqxACWpEoMYEmqxACWpEoMYEmqxACWpEoMYEmqxACWpEoMYEmqxACWpEoMYEmqxACWpEoMYEmqxACWpEoMYEmqxACWpEpGSh48Il4MnA7MAa7MzJNKlidJXVKsBxwROwLnAUcCuwJ7RsRhpcqTpK4p2QM+CvhMZq4EiIgFwK96N4iIUWC0b7+5BeskSUOjZADvBDwcEVcCfwh8CTi1b5vFwGkF6yD9zlatXsOskbKnSzZGGRo+JQN4BHgB8ELgF8AXgNcBy3q2Wdq3DE0PeEXBeknrZdbITE4555qiZSw5Yf+ix9dwKhnA9wJXZeb9ABFxKbAPPYGbmWPAWO9OEVGwSpI0PEoG8GXAx9px3p8DhwGXFixPkjql2KBTZn4HeB/wLeBW4E7gX0qVJ0ldU/Q64My8ELiwZBmS1FWedpWkSgxgSarEAJakSgxgSarEAJakSgxgSarEAJakSgxgSarEAJakSgxgSarEAJakSgxgSarEAJakSgxgSarEAJakSgxgSarEAJakSgxgSarEAJakSgxgSarEAJakSgxgSarEAJakSgxgSarEAJakSgxgSarEAJakSgxgSarEAJakSgxgSarEAJakSgxgSapkpOTBI+Jq4GnAqnbVcZn5nZJlSlJXFAvgiJgB7AJsl5mrS5UjSV1VsgccwFrgioh4KvDRzPzQb20QMQqM9u03t2CdJGlolBwD3hJYDrwUmA8cHxGH9G2zGLi972dFwTpJ0tAo1gPOzOuA69rFByPiAuBw4Gs9my0FlvXtOhdDWNI0UHIM+ADgCZm5vF01g9+cjAMgM8eAsb79SlVJkoZKyTHgUeCMiNgPmAW8Dji+YHmS1CnFxoAz8zLgcuBG4HvAhe2whCSJwtcBZ+apwKkly5CkrvJOOEmqxACWpEoMYEmqxACWpEoMYEmqxACWpEoMYEmqxACWpEoMYEmqxACWpEoMYEmqxACWpEoMYEmqxACWpEoMYEmqxACWpEoMYEmqxACWpEoMYEmqxACWpEoMYEmqxACWpEoMYEmqxACWpEoMYEmqxACWpEoMYEmqxACWpEoMYEmqxACWpEoMYEmqpHgAR8SZEbGsdDmS1DVFAzgi5gMLS5YhSV1VLIAjYivgXcCSUmVIUpeNFDz2R4C3Aduua4OIGAVG+1bPLVgnSRoaA/WAI+KCCdZ9bpLtjwX+JzOXT3HoxcDtfT8rBqmTJHXdpD3giDgXeAZwYERs3fPULGCXSXZdAGwTETcBWwG/HxFnZ+bf9W23FFjWt24uhrCkaWCqIYgLgOcBuwO9Pd7VwHXr2ikzDxl/HBELgRdOEL5k5hgw1rsuIqastCRtCiYN4My8Hrg+Iq7KzJUbqU6SNC0MehLuWRHxcZrhhBnjKzNzt6l2zMxlPHaYQZKmvUED+MPAhcANwNpy1ZGk6WPQAH44M88qWhNJmmYGvRHjBxGxa9GaSNI0M2gPeEfgexFxJ/DQ+MpBxoAlSRMbNIDfVrQWkjQNDRrA3y9aC0mahgYN4J/SXP0wg99cBXEPztsgSRtsoADOzEdP1kXELOBomrvjJEkbaL2no8zMVZl5EXDIlBtLktZpoB5wO7fvuBnA3sCWRWokSdPEhowBA9wHvLFIjSRpmljvMWBJ0uNj0CGImcDJwGE0cwF/FViSmasL1k2SNmmD9mzfDfwZ8AHgLGA/4MxSlZKk6WDQMeA/B/bOzFUAEXE5cDPwmEnWJUmDGbQHPHM8fAEy89fAqkm2lyRNYdAe8E0RcTbwoXb5ROCWMlWSpOlh0B7w39Jc93st8G3gKcAbSlVKkqaDqb4VeTbwUeDzmbmwXXc58AjwQPHaSdImbKoe8BnAk2h6vuNeD4wCpxeqkyRNC1MF8BHAMZl53/iKzLwbeC1wVMmKSdKmbqoAfjgzH+pfmZkPAL8uUyVJmh6mCuBHIuKJ/SvbdbPKVEmSpoepAvjTwPkRMWd8Rfv4fOBzJSsmSZu6qa4DXgqcB9wbET+kCeznAJ+kOUEnSdpAkwZwZq4BFkXEEmBPYA3w3fZEnCTpdzDodJR3AHcUrYkkTTPO8ytJlRjAklSJASxJlRjAklSJASxJlQw6H/AGiYgzgJfTfKPyBZl5VsnyJKlLivWAI+Igmu+R2w3YG3hDRESp8iSpa4r1gDPzmxHxp5m5OiKe0Zb1YO82ETFKM7Vlr7ml6iRJw6ToGHBmroqIdwC3AsuBu/o2WQzc3vezomSdJGlYFD8Jl5mnAVsD29JM5t5rKbBD38+BpeskScOg2BBEROwCbJ6ZN2XmLyPiEprx4Edl5hgw1rdfqSpJ0lApeRXEjsA7IuIAmqsgjgQuLFieJHVKsSGIzPwy8GXgRuB7wLWZeVGp8iSpa4peB9yO/55WsgxJ6irvhJOkSgxgSarEAJakSgxgSarEAJakSgxgSarEAJakSgxgSarEAJakSgxgSarEAJakSgxgSarEAJakSgxgSarEAJakSgxgSarEAJakSgxgSarEAJakSgxgSarEAJakSgxgSarEAJakSgxgSarEAJakSgxgSarEAJakSgxgSarEAJakSgxgSarEAJakSgxgSapkpOTBI+I04JXt4uWZ+Q8ly5OkLinWA46Ig4EXAXsA84C9IuKoUuVJUteU7AHfA7w5Mx8GiIgfAdv1bhARo8Bo335zC9ZJkoZGsQDOzB+OP46InYEFwH59my0GTitVB9W1avUaZo14mmEQG+O18vcxfIqOAQNExHOBy4GTM/MnfU8vBZb1rZsLrChdL5U3a2Qmp5xzTdEylpywf9Hjbyy+VtNT6ZNw+wOfAxZn5kX9z2fmGDDWt0/JKknS0CgWwBGxLXApsCAzry5VjiR1Vcke8MnA5sBZPb3a8zLzvIJlSlJnlDwJdxJwUqnjS1LXeUpUkioxgCWpEgNYkioxgCWpEgNYkioxgCWpEgNYkioxgCWpEgNYkioxgCWpEgNYkioxgCWpEgNYkioxgCWpEgNYkioxgCWpEgNYkioxgCWpEgNYkioxgCWpEgNYkioxgCWpEgNYkioxgCWpEgNYkioxgCWpEgNYkioxgCWpEgNYkioxgCWpEgNYkioZKV1ARDwJuBY4IjPvKF2eJHVF0R5wROwLfAt4dslyJKmLSg9BvB74W+DuwuVIUucUHYLIzGMBImLC5yNiFBjtWz23ZJ0kaVgUHwOewmLgtMp1mJZWrV7DrBHPwUo11Q7gpcCyvnVzgRUbvyrTy6yRmZxyzjVFy1hywv5Fjy91XdUAzswxYKx33bqGKyRpU+NnUEmqZKP0gDPzmRujHEnqEnvAklSJASxJlRjAklSJASxJlRjAklSJASxJlRjAklSJASxJlRjAklSJASxJlRjAklSJASxJlRjAklSJASxJlRjAklSJASxJlRjAklSJASxJlRjAklSJASxJlRjAklSJASxJlRjAklSJASxJlRjAklSJASxJlRjAklSJASxJlRjAklSJASxJlRjAklSJASxJlYyUPHhEHAO8HZgNnJ2ZHy5ZniR1SbEecEQ8A3gXcACwO7AoIv6oVHmS1DUle8AHA1dn5v8BRMS/AS8HzhjfICJGgdG+/bYHuPfeewtWTQAPPvDTosdfuXKlZQxZGSpr/vz5zwRWZubqQbafsXbt2iIViYi3AnMy8+3t8rHAPpm5qGeb04HTilRAkurYITPvGGTDkj3gGROsW9O3vBRY1rduNrAj8BPgkfUoby6wAjgQ6PKfetsxXGzHcOlCOwauV8kAvovmRRq3DXB37waZOQaMTbDvbetbWESMP1w56F+fYWQ7hovtGC6bSjvGlQzgq4DTI2Jr4EHgaGDR5LtI0vRR7CqIzLwLeBvwdeAm4FOZ+d1S5UlS1xS9DjgzPwV8qmQZktRVm9KdcGPAO5h4TLlLbMdwsR3DZVNpB1DwMjRJ0uQ2pR6wJHWKASxJlRjAklRJ0asgNoaIOBPYOjMXRsQ84KPAk4F/B44f9J7sWiLiauBpwKp21XHAs+jYLHIR8WLgdGAOcGVmnhQRBwNnAVsAnxm/LX1YtbfLn9izagfg48CldKgdABHxauCt7eIVmXlyR98f/wj8FfBrmtf+XV1sx7p0ugccEfOBhT2rPgG8ITOfTXMr9Otr1GtQETED2AXYPTPnZeY8mtsYOzWLXETsCJwHHAnsCuwZEYcBF7brngM8v103tDLz/J7fw6uA+4D30rF2RMTvAR8EDqL5P3Rg+8ewa++Pg4FjgOcDewD7RsTL6Fg7JtPZAI6IrWiCakm7vD2wRWZ+u91kGfCKOrUbWABrgSsi4uaIOJGeWeQy80FgfBa5YXYUTe9kZWauAhYAvwR+kpm3t72TTzD8v49e5wKn0M5L0rF2bEbz3p4DzGp/VtG998ceNJ+mHsjMR4CvAG+ge+1Yp84GMPARmjvtftYuPx24p+f5e2gm7hhmWwLLgZcC84Hjge3oXjt2AjaLiCsj4mbgBLr5+wAe7XltkZmfpYPtyMyfA6cCP6aZk+UO4GE61g7gBuDQiNgqIjYHXgKspnvtWKdOBnA7Vvc/mbm8Z/Ugs68Nlcy8LjNfm5kPZuZPgQvomS+5x1C3g+ZcwsHAq4E/BvahGT/tN+ztGHcczZgvdPD/VUTsBvw1zdza29DMKviiCTYd6na07+9lwDdoer/found9xvqdkymqyfhFgDbRMRNwFbA79N8lP/Dnm0eM/vasImIA4An9PwhmUHTW+lUO4B7gasy836AiLiU5mNh73SiXWgHETGbZux0YbvqLrr3+zgUWJ6Z9wFExDLgZDrWjoh4InBJZp7VLr8JuJMpZlnskk72gDPzkMx8Xnuy5J+AL2bmXwG/ioj9281eC1xRrZKDGQXOjIjN2/9sr6PpRc6PiK3bkylH0/z1H2aX0XxUHI2IzYDDaMauIyJ2atcdw/D/PgB2A25rx98BvkP32nEzcHBEzGlP9L4Y+Cbde3/sAFwaESMR8WTgWOB8uteOdepkAE/iVcDZEfEjmhMQH6xcn0ll5mXA5cCNwPeACzPzGjo2i1xmfgd4H81HxFtpeinn0vQiP9eu+zFNKA+7HemZUDszf0XH2pGZXwU+TfN/6haak3DvoXvvj1toXvdbgO8CH2zfH51qx2ScC0KSKtnUesCS1BkGsCRVYgBLUiUGsCRVYgBLUiUGsKa9iHhKRHg5kDY6A1iSKunqrcia5tp5Yv8G+DnNnLAvpZkzYCua+ZQvo5lb48M0t6o/nebGlgWZ+at2WsN30cza9h99x/4bmgmFZgL/C5yYmT8u3ypNN/aA1TkRcSjN3WnPB/YCntjz9O9l5nMz8y0088R+LDP/hGbGth2Av4iIp9HM8Xt0Zu5Fc+fe+LEPorkl/MDM3IPmDr9LyrdK05EBrC46HPhsZo5l5lqaXu64b/U8fgtwf0T8A82t0U+n6Q0fAHw/M29tt/tIzz5/QRPW17aTPb0P2Kqdf1p6XDkEoS5azW9PE9k769oveh5/mub/+MU0c25s1+63tm//3q+z2Qz4eNuDJiJm0gT3z5AeZ/aA1UWXA0e3M2RBMxY80VUMhwJnZOZn2uf3pQnYFcBzI2L3druFPft8FfjLiNimXT6eZtJ86XFnAKtzMvNqmi9lvC4irqf5csZfTrDpKcDn223Oo5mScad23uJjgE9GxA30TB6fmVfSfA/c1yLilna7l7VDHdLjytnQ1DkRsTewX2Z+sF1+E7BvZi6oWzNp/TgGrC66DXhLRCyiGVr4b2BR3SpJ688esCRV4hiwJFViAEtSJQawJFViAEtSJQawJFXy/7fUan1UzHG9AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "p2=sns.displot(harpo_df[harpo_df['tutor']==\"Bernadette\"].grade,bins=np.arange(40,100,5))\n", "p2.ax.set_title(\"Bernadette students\")\n", "glue(\"bernadette_fig\",p2.fig,display=False)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "```{glue:figure} bernadette_fig\n", ":figwidth: 550px\n", ":name: \"fig:bernadette\"\n", "\n", "Histogram showing the overall distribution of grades for students in Bernadette’s class.\n", "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here is a simpler plot showing the means and corresponding confidence intervals for both groups of students ({numref}`fig:teachers`)." ] }, { "cell_type": "code", "execution_count": 69, "metadata": { "tags": [ "hide_cell" ] }, "outputs": [ { "data": { "application/papermill.record/image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFuCAYAAAChovKPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAGAlJREFUeJzt3X+0XWV95/F3SPgRQLnQQZMYhh9GvmLRhN8ZgUKF4tCqLKrATKAWLIgdZcioQ3+AptKhFVnGDF2gFszEmlKDAam/MvwIIEEMDJRAFfI11eAUcqkic7uAKBKS+WPvqyeHk3hS7j4nz7nv11pn3Xue+zx7f2/uvp8899n77DNh06ZNSJLKsUO/C5AkbRuDW5IKY3BLUmEMbkkqjMEtSYUxuCWpMAa3JBXG4JakwhjcklQYg1uSCjOp3wV0KyImAdOBxzNzQ7/rkaR+KSa4qUJ77fLly/tdhySNtQnb0tmlEkkqjMEtSYUxuCWpMAa3JBXG4JakwhjcklQYg1uSCtPoddwRcRbwJ/XTZZn54YiYBVwD7AHcBbzPF9RIUvcam3FHxK7AlcBxwEzg2Ig4EVgMXJCZB1JddH5eUzVI0iBqcqlkYr393YAd68cLwOTMXFn3WQSc1mANkjRwGlsqycxnIuIjwGrgp8CdwM+B4ZZuw1QvZd9MRAwBQ23NL+knSeNRk0slbwLeA+wLTAVeBE7q0HVjh7a5wNq2x4pmKpWksjS5VPJWYHlm/igzn6daFjkemNLSZyqwrsPYBcD+bY9jG6xVkorR5FUlDwGfiIjdgPXA24FvAu+KiKMz81vAu4Fl7QMzcwQYaW2LiAZLHVwrV67k+uuv5/TTT2f27Nn9LkfSGGhyjfuWiDgEeIDqpOR9wMeBLwPXRMQrgAeprjxRQxYtWsSaNWtYv369wS0NiEav487My4HL25ofAo5scr/6pfXr12/2UVL5fOWkJBXG4JakwhjcklQYg1uSCmNwS1JhDG5JKozBLUmFMbglqTAGtyQVxuCWpMIY3JJUGINbkgpjcEtSYQxuSSqMwS1JhRlXwf3zF17sdwnqIX/eGlSNvpHC9manHScy56K/7XcZPfXUU88A8ORTz4y77/26T5zZ7xKkRoyrGbckDQKDW5IKY3BLUmEMbkkqjMEtSYUxuCWpMAa3JBXG4JakwhjcksbEypUr+eAHP8jKlSv7XcrAG1evnJTUnEWLFrFmzRrWr1/P7Nmz+13OQHPGLWlMrF+/frOPao7BLUmFaWypJCLOBT7Q0rQ/8AXgJmA+MBlYkpmXNFWDJA2ixmbcmXltZs7KzFnAmcCPgMuBhcApwEHAERFxclM1SNIg6tXJyU8DfwocAKzJzLUAEbEYOA1Y1to5IoaAobZtTO9BnZK03Wt8jTsiTgQmZ+aXgGnAcMuXh+kcyHOBtW2PFQ2XOpAmTNxxs4+SyteLk5PnU61pA0zo8PWNHdoWUK2Jtz6ObaS6Abf7tEPZcfcp7D7t0H6XImmMNLpUEhE7AccBZ9dNTwBTWrpMBda1j8vMEWCkbVvNFDngdt5jH3beY59+lyFpDDW9xv0m4HuZ+Vz9/F4gImIG1fLHHKqTlZKkLjW9VHIA8Pjok8z8GdXs+wbgEWA1sLThGqSe27jhhX6XoB7q9c+70Rl3Zl4PXN/WthyY2eR+pX7bYdKOPPCJc/tdRk89///+5Rcfx9v3fthF1/Z0f75yUpIKY3BLUmEMbkkqjMEtSYUxuCWpMAa3JBXG4JakwhjcklQYg1uSCmNwSxoTO0/aYbOPao7/wpLGxEkz9uSAPXfhpBl79ruUgderd8CRNOAO2ntXDtp7136XMS4445akwhjcklQYg1uSCmNwS1JhDG5JKozBLUmFMbglqTAGtyQVxuCWpMIY3JJUGINbkgpjcEtSYQxuSSqMwS1JhTG4JakwBrckFcbglqTCNPoOOBHxduDPgN2AmzPzwog4EZgPTAaWZOYlTdYgSYOmsRl3RBwAfAY4BXgjcGhEnAwsrNsOAo6o2yRJXWpyxn0q1Yz6cYCIOAN4HbAmM9fWbYuB04BlrQMjYggYatve9AZrlaRiNBncM4CfR8TNwBTgq8B3geGWPsN0DuS5wLwGa5OkYjUZ3JOA3wCOB54F/h5Y36Hfxg5tC4BFbW3TgRVjV54klanJ4H4SuC0zfwwQETdRLYu82NJnKrCufWBmjgAjrW0R0VylklSQJoP7a8Dn6/XqZ4CTgaXAH0fEDGAtMIfqZKUkqUuNXVWSmfcCnwDuBh4Bfgh8GjgbuKFuW00V5pKkLjV6HXdmLuSlM+rlwMwm9ytJg8xXTkpSYQxuSSqMwS1JhTG4JakwBrckFcbglqTCGNySVBiDW5IKY3BLUmEMbkkqjMEtSYUxuCWpMAa3JBXG4JakwhjcklQYg1uSCmNwS1JhDG5JKozBLUmFMbglqTAGtyQVxuCWpMIY3JJUGINbkgpjcEtSYQxuSSqMwS1JhTG4JakwBrckFWZSkxuPiNuBVwMv1E3nA68FLgF2Aj6VmVc1WYMkDZrGgjsiJgCvB/59Zm6o214DfBE4DHgeuCci7sjMR5qqQ5IGTZMz7gA2Acsi4lXANcAzwO2Z+TRARCwF3gVcutnAiCFgqG170xusVZKK0WRw7wksB/4QmAzcCSwBhlv6DANHdhg7F5jXYG2SVKzGgjszvw18u376XER8DpgPXNbWdWOH4QuARW1t04EVY1mjJJWoyTXuY4CdM3N53TQBeAyY0tJtKrCufWxmjgAjbdtrplBJKkyTSyVDwKUR8WZgR+D3gbOAxRGxN/Ac8E7gvQ3WIEkDp7HruDPza8DXgQeBB4CFmfkt4GLgDmAVcF1m3tdUDZI0iBq9jjszPwJ8pK3tOuC6JvcrSYPMV05KUmEMbkkqjMEtSYUxuCWpMAa3JBXG4JakwhjcklQYg1uSCmNwS1JhDG5JKozBLUmFMbglqTAGtyQVZpuCu34vSElSH3V1W9eo3n7mRmAoIo4EbgNOzczVTRYnSXqpbmfcf0X1Br4/yswn6ud/3VhVkqQt6ja4fy0zbx19kplXA69spiRJ0tZ0G9ybImIXYBNAREwBJjZWlSRpi7oN7quBm4FXRcRfAivrNklSj3V1cjIzF0bE94HfpnrH9vdm5i2NViZJ6qjrNwvOzG8C32ywFklSF7Ya3BGxkXpdu5PMdJ1bknrsV8249wYmAH8O/BD4LPAicDawb6OVSZI62mpwZ+ZPACLi8Mz8w5YvXRkR9zdamSSpo26vKtmtfvUkABHxRmDnZkqSJG1NtycnLwFWRsTDVGH/BmBOY1VJkrao28sBb4yIu4FjqE5WrsjMpxqtTJLUUVdLJRGxE3A0sBvwCuDtEXFZk4VJkjrrdqlkCXAAMBV4EDgKuLObgRFxBbB3Zp4dEbOAa4A9gLuA92Xmhm0tWpLGs25PTs4CDgP+nuougW8GfuW9uSPiBKpLB0ctBi7IzAOpLjM8b1uKlSR1P+Nel5kbIuJ7wMGZ+aWI2HVrAyJiL+Ay4C+AmRGxLzA5M1fWXRYBHwM+3WHsEC/9j2F6l7VK0kDrNrifi4g5wEPAeRGxGvi1XzHms8DFwD7182nAcMvXh9lyGM8F5nVZmySNK90ulbyfarnkVmAj1T1LrthS54g4F/jnzFze0jyhQ9eNW9jEAmD/tsexXdYqSQOt2xn3ezLzovrzM7rofwYwNSJWAXsBu1NdRjilpc9UYF2nwZk5Aoy0trW8/keSxrVuZ9xv25aNZuZvZebBmTkL+Cjwlcw8B/hZRBxdd3s3sGxbtitJ6n7G/YOIuAW4G3h2tDEz52/j/s4EromIV1BdVnjlNo6XpHGv2+B+mmqpY79t3UFmLqK6goTMfAg4clu3IUn6pW6D+3iq4B49wbgRWB8Rfwd8MDOHtzRQkjS2ug3um6he6n4V1f24/4DqXd4fBv4aeHsj1UmSXqLb4D42Mw9veX5hRNyXmedExDlNFCZJ6qzbq0peWZ9QBCAiXgmMvnKy0/XZkqSGdDvjXgjcGxFfogrqdwLXRsQFwKNNFSdJeqmuZtyZ+XHgv1Hd1W9X4AOZ+SngHqr1bklSj3Q74yYzbwZubmt7YMwrkiRtVbdr3JKk7YTBLUmFMbglqTAGtyQVxuCWpMIY3JJUGINbkgpjcEtSYQxuSSqMwS1JhTG4JakwBrckFcbglqTCGNySVBiDW5IKY3BLUmEMbkkqjMEtSYUxuCWpMAa3JBXG4JakwhjcklSYSU1uPCIuBd4FbAI+l5nzI+JEYD4wGViSmZc0WYMkDZrGZtwRcRzwFuBNwOHABRExE1gInAIcBBwRESc3VYMkDaLGZtyZ+c2I+M3M3BARr6n3NQSsycy1ABGxGDgNWNY6NiKG6r6tpjdVqySVpNE17sx8ISI+BjwCLAemAcMtXYbpHMhzgbVtjxVN1ipJpWj85GRmzgP2BvYBXtehy8YObQuA/dsexzZVoySVpLGlkoh4PbBLZq7KzPURcSPVicoXW7pNBda1j83MEWCkbXtNlSpJRWnyqpIDgI9FxDFUV5WcAnwWuCIiZlAtf8yhOlkpSepSY0slmfkN4BvAg8ADwD2Z+UXgbOAGqnXv1cDSpmqQpEHU6HXc9fr2vLa25cDMJvcrSYPMV05KUmEMbkkqjMEtSYUxuCWpMAa3JBXG4JakwhjcklQYg1uSCmNwS1JhDG5JKozBLUmFMbglqTAGtyQVxuCWpMIY3JJUGINbkgpjcEtSYQxuSSqMwS1JhTG4JakwBrckFcbglqTCGNySVBiDW5IKY3BLUmEMbkkqjMEtSYUxuCWpMAa3JBVmUpMbj4h5wOn1069n5kURcSIwH5gMLMnMS5qsQZIGTWMz7jqgTwIOAWYBh0XEfwYWAqcABwFHRMTJTdUgSYOoyRn3MPChzPw5QEQ8ChwIrMnMtXXbYuA0YFnrwIgYAobatje9wVolqRiNBXdmfnf084h4HXAGcCVVoI8apnMgzwXmNVWbJJWs8ZOTEfHrwK3Ah4Hvd+iysUPbAmD/tsexTdUoSSVp+uTk0cANwNzM/GJEHAdMaekyFVjXPi4zR4CRtm01WaokFaOx4I6IfYCbgDMy8/a6+d7qSzEDWAvMoTpZKUnqUpMz7g8DuwDzW2bLnwHOppqF7wJ8A1jaYA2SNHCaPDl5IXDhFr48s6n9StKg85WTklQYg1uSCmNwS1JhDG5JKozBLUmFMbglqTAGtyQVxuCWpMIY3JJUGINbkgpjcEtSYQxuSSqMwS1JhTG4JakwBrckFcbglqTCGNySVBiDW5IKY3BLUmEMbkkqjMEtSYUxuCWpMAa3JBXG4JakwhjcklQYg1uSCmNwS1JhDG5JKsykpncQEa8E7gHelpmPRcSJwHxgMrAkMy9pugZJGiSNzrgj4ijgbuDA+vlkYCFwCnAQcEREnNxkDZI0aJpeKjkPeD+wrn5+JLAmM9dm5gZgMXBawzVI0kBpdKkkM88FiIjRpmnAcEuXYWB6+7iIGAKG2ppf0k+SxqPG17jbTOjQtrFD21xgXsO1SFKReh3cTwBTWp5P5ZfLKK0WAIva2qYDK5opS5LK0evgvheIiJgBrAXmUJ2s3ExmjgAjrW0tyy2SNK719DruzPwZcDZwA/AIsBpY2ssaJKl0PZlxZ+Z+LZ8vB2b2Yr+SNIh85aQkFcbglqTCGNySVBiDW5IKY3BLUmEMbkkqjMEtSYUxuCWpMAa3JBXG4JakwhjcklQYg1uSCmNwS1JhDG5JKozBLUmFMbglqTAGtyQVxuCWpMIY3JJUGINbkgpjcEtSYQxuSSqMwS1JhTG4JakwBrckFcbglqTCGNySVBiDW5IKY3BLUmEm9WOnETEHuATYCfhUZl7VjzokqUQ9n3FHxGuAy4BjgJnAeyPiDb2uQ5JK1Y8Z94nA7Zn5NEBELAXeBVw62iEihoChtnH7Ajz55JMva+fPrx95WeNVjscff7yv+//xMz/r6/7VOy/3WDvhhBP2Ax7PzA3d9O9HcE8DhlueDwNHtvWZC8zrNPjMM89sqCwNmhNuvbLfJWi8uP6El7uFtcD+wGPddO5HcE/o0Lax7fkCYFFb207AAcAa4MWxL2tgTQdWAMcC/Z2CatB5rL08Xf+b9SO4n6D6wY6aCqxr7ZCZI0CnNY3vNVjXQIqI0U8fz8zH+liKBpzHWu/0I7hvA/4sIvYGngPeCby3D3VIUpF6flVJZj4BXAzcAawCrsvM+3pdhySVqi/XcWfmdcB1/di3JJXOV04OvhHgY3Q+ZyCNJY+1HpmwadOmftcgSdoGzrglqTAGtyQVxuCWpMIY3NuZiDg4IjZFxDvHeLt7RMRN/8axl0bEO8ayHvVWRBwfEc9GxKqIeCgiHo2Ii3u4//0i4rFf0efIiLi8/nz/iPhcL2orUV8uB9RWnQMsBd4H3DCG290TmPVvGZiZHx3DOtQ/92fm8QARsTvwaER8OTMf6W9Zv/AG4NX15/sCr+1jLds1g3s7EhGTgLOobglwT0S8NjO/X89UvgC8FdgNeHdmPhARx1HdIndXqmC+KDO/VN/v/CKqe7qsrbd5JTCt/kU9NSIuA04A9gKeAn4X+AmwEDi4LunqzLwmIhYBd2bmok7jMvPl3bJR/bAr1fHxrxFxBPCpuu0p4PzMXBsRdwJPA78OnAEso5pUHANsAE6v+50GfAiYXD/Ozcy7IuIQYHTW/NDojiPi1cBngX2o7lP0J8D9VHcI3b3+S+AM4ICIuCoz3x8RfwycDkwEbgb+KDPH7SVxLpVsX34H+GFmfg+4CTi/5Ws/ycwjgc8Af1q3XUD1S3Io8AfA6Mz4fwAnZeZhwGrg9cB/BdbVoT2jbntzZh4I/BNwJvBmYK/MPITq9rtHtxa3lXEqw+H1UsnDVHehu5MqqK8F5tTH0SeBa1rGPJyZkZmrgCnA8vr4uAv4QETsQPXX4dsycybwceC/12P/hmoycSjwg5Zt/k9gYX18voMqxF+kOn6/kpmXUR2v99eh/R+Bw4AjgEOA1zDOjzuDe/tyDvB39edLgLMjYqf6+f+uP36HarYL1Uz64Ij4CNWMZ/e6/avAtyLiCuBr9S/dL2TmP9X9z42ITwL/oR77HSAi4uZ623/U5TiV4f7MnJWZbwJeBexH9ZfZa4GvRMQq4HKqu3COurdtG5sdh5m5ETgVeGtEXAqcTTVr/nfAtMy8re6/qGUbJwKX1vtbBuzI1pdFTgSOAh4A/gE4nOqvgHHL4N5ORMSrgN8GPlQvjVxLtfwxepJy9K78m/jlrXFXUN3L/AGqJZMJAJl5YT3uaWBxRJzVtq/DgFuofv5LgS8DEzLzJ1S/EH8FBPAP9ZtabHXcWHz/6q3MfJbq5/cW4Ad1oM+imtke09L1p23jNjsO67Xy/0N1L+m7qJbkJrD5cQrV0sqoicBbWvY5G/jHrZQ7EVjQ0v8oquN93DK4tx9nUf0ZOj0z98vMfakOzvM7dY6IvYADgY9m5jeAk4CJETEpItYAT2XmX1L9uXoI1S/O6DmN46jWrD8DPNIy9h3AYuDrVH+qPku1DsnWxo3Zv4B6JiImAscDK4G9ImL0VsvvYdvuI3Qg1Tr1XwC3AycDE+tJwA8j4nfqfnNaxtwO/Je6jjcAD1Otr7ceo62f3w78XkTsXp8HuonqXbPGLYN7+3EOcHVb29VUM+pd2jvXb/12LfDdiHiQ6k/fXYGdqdYKb4uI+4HfAOYD/wL834i4g2oZZma91nk71S/O/lR/tv4U+C5wH3BjZrbOhLY0TmUYXeNeRXXuYz3V+ZDTgE/WP9ffpzpf0q2HqO7yuZpqGeNZ6rcZpJqMzKuPz9alkAuA2fX+lgC/l5nPUB1zsyPi48CjwFBEfCEzv0p1hdW9VEs0q4DPb/N3P0C8V4kkFcYZtyQVxuCWpMIY3JJUGINbkgpjcEtSYQxujSsRcUv9qr6t9bmmfrGRtF0yuDXe/FaXfXxFqLZbXsetcSMi/hfVvTS+Q3UL0aMy8/76a49RvRrvVKqbJK0F3g08AXya6r4eE4DPZ+YVEbEf1S0HHq2/dlxmDvfqe9H45oxb40ZmnlN/+pvAP2+hz8XAOuDMzLwX+Fvgjsx8I9XdEs+KiP9Ud58O/HlmHmhoq5cMbmkLImI3qrC+CiAz/5XqLncn1102AN/uS3Ea1wxujVftd6/bqUOfHXjpWvcOVLchBXg+Mzcg9ZjBrfHmRarg/THVfZ2JiNnA1JY+G4Ad6xsfrQTeX/fbg2rd+9ZeFiy1M7g13twI3E31VnAX1nfKO4/qnuajbgKWRMRJVO+0ckJE/CPV3etuYPM3BZB6zqtKJKkwzrglqTAGtyQVxuCWpMIY3JJUGINbkgpjcEtSYQxuSSrM/we7grOn01g4OwAAAABJRU5ErkJggg==\n", "application/papermill.record/text/plain": "
" }, "metadata": { "scrapbook": { "mime_prefix": "application/papermill.record/", "name": "teachers_fig" } }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFuCAYAAAChovKPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAGAlJREFUeJzt3X+0XWV95/F3SPgRQLnQQZMYhh9GvmLRhN8ZgUKF4tCqLKrATKAWLIgdZcioQ3+AptKhFVnGDF2gFszEmlKDAam/MvwIIEEMDJRAFfI11eAUcqkic7uAKBKS+WPvqyeHk3hS7j4nz7nv11pn3Xue+zx7f2/uvp8899n77DNh06ZNSJLKsUO/C5AkbRuDW5IKY3BLUmEMbkkqjMEtSYUxuCWpMAa3JBXG4JakwhjcklQYg1uSCjOp3wV0KyImAdOBxzNzQ7/rkaR+KSa4qUJ77fLly/tdhySNtQnb0tmlEkkqjMEtSYUxuCWpMAa3JBXG4JakwhjcklQYg1uSCtPoddwRcRbwJ/XTZZn54YiYBVwD7AHcBbzPF9RIUvcam3FHxK7AlcBxwEzg2Ig4EVgMXJCZB1JddH5eUzVI0iBqcqlkYr393YAd68cLwOTMXFn3WQSc1mANkjRwGlsqycxnIuIjwGrgp8CdwM+B4ZZuw1QvZd9MRAwBQ23NL+knSeNRk0slbwLeA+wLTAVeBE7q0HVjh7a5wNq2x4pmKpWksjS5VPJWYHlm/igzn6daFjkemNLSZyqwrsPYBcD+bY9jG6xVkorR5FUlDwGfiIjdgPXA24FvAu+KiKMz81vAu4Fl7QMzcwQYaW2LiAZLHVwrV67k+uuv5/TTT2f27Nn9LkfSGGhyjfuWiDgEeIDqpOR9wMeBLwPXRMQrgAeprjxRQxYtWsSaNWtYv369wS0NiEav487My4HL25ofAo5scr/6pfXr12/2UVL5fOWkJBXG4JakwhjcklQYg1uSCmNwS1JhDG5JKozBLUmFMbglqTAGtyQVxuCWpMIY3JJUGINbkgpjcEtSYQxuSSqMwS1JhRlXwf3zF17sdwnqIX/eGlSNvpHC9manHScy56K/7XcZPfXUU88A8ORTz4y77/26T5zZ7xKkRoyrGbckDQKDW5IKY3BLUmEMbkkqjMEtSYUxuCWpMAa3JBXG4JakwhjcksbEypUr+eAHP8jKlSv7XcrAG1evnJTUnEWLFrFmzRrWr1/P7Nmz+13OQHPGLWlMrF+/frOPao7BLUmFaWypJCLOBT7Q0rQ/8AXgJmA+MBlYkpmXNFWDJA2ixmbcmXltZs7KzFnAmcCPgMuBhcApwEHAERFxclM1SNIg6tXJyU8DfwocAKzJzLUAEbEYOA1Y1to5IoaAobZtTO9BnZK03Wt8jTsiTgQmZ+aXgGnAcMuXh+kcyHOBtW2PFQ2XOpAmTNxxs4+SyteLk5PnU61pA0zo8PWNHdoWUK2Jtz6ObaS6Abf7tEPZcfcp7D7t0H6XImmMNLpUEhE7AccBZ9dNTwBTWrpMBda1j8vMEWCkbVvNFDngdt5jH3beY59+lyFpDDW9xv0m4HuZ+Vz9/F4gImIG1fLHHKqTlZKkLjW9VHIA8Pjok8z8GdXs+wbgEWA1sLThGqSe27jhhX6XoB7q9c+70Rl3Zl4PXN/WthyY2eR+pX7bYdKOPPCJc/tdRk89///+5Rcfx9v3fthF1/Z0f75yUpIKY3BLUmEMbkkqjMEtSYUxuCWpMAa3JBXG4JakwhjcklQYg1uSCmNwSxoTO0/aYbOPao7/wpLGxEkz9uSAPXfhpBl79ruUgderd8CRNOAO2ntXDtp7136XMS4445akwhjcklQYg1uSCmNwS1JhDG5JKozBLUmFMbglqTAGtyQVxuCWpMIY3JJUGINbkgpjcEtSYQxuSSqMwS1JhTG4JakwBrckFcbglqTCNPoOOBHxduDPgN2AmzPzwog4EZgPTAaWZOYlTdYgSYOmsRl3RBwAfAY4BXgjcGhEnAwsrNsOAo6o2yRJXWpyxn0q1Yz6cYCIOAN4HbAmM9fWbYuB04BlrQMjYggYatve9AZrlaRiNBncM4CfR8TNwBTgq8B3geGWPsN0DuS5wLwGa5OkYjUZ3JOA3wCOB54F/h5Y36Hfxg5tC4BFbW3TgRVjV54klanJ4H4SuC0zfwwQETdRLYu82NJnKrCufWBmjgAjrW0R0VylklSQJoP7a8Dn6/XqZ4CTgaXAH0fEDGAtMIfqZKUkqUuNXVWSmfcCnwDuBh4Bfgh8GjgbuKFuW00V5pKkLjV6HXdmLuSlM+rlwMwm9ytJg8xXTkpSYQxuSSqMwS1JhTG4JakwBrckFcbglqTCGNySVBiDW5IKY3BLUmEMbkkqjMEtSYUxuCWpMAa3JBXG4JakwhjcklQYg1uSCmNwS1JhDG5JKozBLUmFMbglqTAGtyQVxuCWpMIY3JJUGINbkgpjcEtSYQxuSSqMwS1JhTG4JakwBrckFWZSkxuPiNuBVwMv1E3nA68FLgF2Aj6VmVc1WYMkDZrGgjsiJgCvB/59Zm6o214DfBE4DHgeuCci7sjMR5qqQ5IGTZMz7gA2Acsi4lXANcAzwO2Z+TRARCwF3gVcutnAiCFgqG170xusVZKK0WRw7wksB/4QmAzcCSwBhlv6DANHdhg7F5jXYG2SVKzGgjszvw18u376XER8DpgPXNbWdWOH4QuARW1t04EVY1mjJJWoyTXuY4CdM3N53TQBeAyY0tJtKrCufWxmjgAjbdtrplBJKkyTSyVDwKUR8WZgR+D3gbOAxRGxN/Ac8E7gvQ3WIEkDp7HruDPza8DXgQeBB4CFmfkt4GLgDmAVcF1m3tdUDZI0iBq9jjszPwJ8pK3tOuC6JvcrSYPMV05KUmEMbkkqjMEtSYUxuCWpMAa3JBXG4JakwhjcklQYg1uSCmNwS1JhDG5JKozBLUmFMbglqTAGtyQVZpuCu34vSElSH3V1W9eo3n7mRmAoIo4EbgNOzczVTRYnSXqpbmfcf0X1Br4/yswn6ud/3VhVkqQt6ja4fy0zbx19kplXA69spiRJ0tZ0G9ybImIXYBNAREwBJjZWlSRpi7oN7quBm4FXRcRfAivrNklSj3V1cjIzF0bE94HfpnrH9vdm5i2NViZJ6qjrNwvOzG8C32ywFklSF7Ya3BGxkXpdu5PMdJ1bknrsV8249wYmAH8O/BD4LPAicDawb6OVSZI62mpwZ+ZPACLi8Mz8w5YvXRkR9zdamSSpo26vKtmtfvUkABHxRmDnZkqSJG1NtycnLwFWRsTDVGH/BmBOY1VJkrao28sBb4yIu4FjqE5WrsjMpxqtTJLUUVdLJRGxE3A0sBvwCuDtEXFZk4VJkjrrdqlkCXAAMBV4EDgKuLObgRFxBbB3Zp4dEbOAa4A9gLuA92Xmhm0tWpLGs25PTs4CDgP+nuougW8GfuW9uSPiBKpLB0ctBi7IzAOpLjM8b1uKlSR1P+Nel5kbIuJ7wMGZ+aWI2HVrAyJiL+Ay4C+AmRGxLzA5M1fWXRYBHwM+3WHsEC/9j2F6l7VK0kDrNrifi4g5wEPAeRGxGvi1XzHms8DFwD7182nAcMvXh9lyGM8F5nVZmySNK90ulbyfarnkVmAj1T1LrthS54g4F/jnzFze0jyhQ9eNW9jEAmD/tsexXdYqSQOt2xn3ezLzovrzM7rofwYwNSJWAXsBu1NdRjilpc9UYF2nwZk5Aoy0trW8/keSxrVuZ9xv25aNZuZvZebBmTkL+Cjwlcw8B/hZRBxdd3s3sGxbtitJ6n7G/YOIuAW4G3h2tDEz52/j/s4EromIV1BdVnjlNo6XpHGv2+B+mmqpY79t3UFmLqK6goTMfAg4clu3IUn6pW6D+3iq4B49wbgRWB8Rfwd8MDOHtzRQkjS2ug3um6he6n4V1f24/4DqXd4fBv4aeHsj1UmSXqLb4D42Mw9veX5hRNyXmedExDlNFCZJ6qzbq0peWZ9QBCAiXgmMvnKy0/XZkqSGdDvjXgjcGxFfogrqdwLXRsQFwKNNFSdJeqmuZtyZ+XHgv1Hd1W9X4AOZ+SngHqr1bklSj3Q74yYzbwZubmt7YMwrkiRtVbdr3JKk7YTBLUmFMbglqTAGtyQVxuCWpMIY3JJUGINbkgpjcEtSYQxuSSqMwS1JhTG4JakwBrckFcbglqTCGNySVBiDW5IKY3BLUmEMbkkqjMEtSYUxuCWpMAa3JBXG4JakwhjcklSYSU1uPCIuBd4FbAI+l5nzI+JEYD4wGViSmZc0WYMkDZrGZtwRcRzwFuBNwOHABRExE1gInAIcBBwRESc3VYMkDaLGZtyZ+c2I+M3M3BARr6n3NQSsycy1ABGxGDgNWNY6NiKG6r6tpjdVqySVpNE17sx8ISI+BjwCLAemAcMtXYbpHMhzgbVtjxVN1ipJpWj85GRmzgP2BvYBXtehy8YObQuA/dsexzZVoySVpLGlkoh4PbBLZq7KzPURcSPVicoXW7pNBda1j83MEWCkbXtNlSpJRWnyqpIDgI9FxDFUV5WcAnwWuCIiZlAtf8yhOlkpSepSY0slmfkN4BvAg8ADwD2Z+UXgbOAGqnXv1cDSpmqQpEHU6HXc9fr2vLa25cDMJvcrSYPMV05KUmEMbkkqjMEtSYUxuCWpMAa3JBXG4JakwhjcklQYg1uSCmNwS1JhDG5JKozBLUmFMbglqTAGtyQVxuCWpMIY3JJUGINbkgpjcEtSYQxuSSqMwS1JhTG4JakwBrckFcbglqTCGNySVBiDW5IKY3BLUmEMbkkqjMEtSYUxuCWpMAa3JBVmUpMbj4h5wOn1069n5kURcSIwH5gMLMnMS5qsQZIGTWMz7jqgTwIOAWYBh0XEfwYWAqcABwFHRMTJTdUgSYOoyRn3MPChzPw5QEQ8ChwIrMnMtXXbYuA0YFnrwIgYAobatje9wVolqRiNBXdmfnf084h4HXAGcCVVoI8apnMgzwXmNVWbJJWs8ZOTEfHrwK3Ah4Hvd+iysUPbAmD/tsexTdUoSSVp+uTk0cANwNzM/GJEHAdMaekyFVjXPi4zR4CRtm01WaokFaOx4I6IfYCbgDMy8/a6+d7qSzEDWAvMoTpZKUnqUpMz7g8DuwDzW2bLnwHOppqF7wJ8A1jaYA2SNHCaPDl5IXDhFr48s6n9StKg85WTklQYg1uSCmNwS1JhDG5JKozBLUmFMbglqTAGtyQVxuCWpMIY3JJUGINbkgpjcEtSYQxuSSqMwS1JhTG4JakwBrckFcbglqTCGNySVBiDW5IKY3BLUmEMbkkqjMEtSYUxuCWpMAa3JBXG4JakwhjcklQYg1uSCmNwS1JhDG5JKsykpncQEa8E7gHelpmPRcSJwHxgMrAkMy9pugZJGiSNzrgj4ijgbuDA+vlkYCFwCnAQcEREnNxkDZI0aJpeKjkPeD+wrn5+JLAmM9dm5gZgMXBawzVI0kBpdKkkM88FiIjRpmnAcEuXYWB6+7iIGAKG2ppf0k+SxqPG17jbTOjQtrFD21xgXsO1SFKReh3cTwBTWp5P5ZfLKK0WAIva2qYDK5opS5LK0evgvheIiJgBrAXmUJ2s3ExmjgAjrW0tyy2SNK719DruzPwZcDZwA/AIsBpY2ssaJKl0PZlxZ+Z+LZ8vB2b2Yr+SNIh85aQkFcbglqTCGNySVBiDW5IKY3BLUmEMbkkqjMEtSYUxuCWpMAa3JBXG4JakwhjcklQYg1uSCmNwS1JhDG5JKozBLUmFMbglqTAGtyQVxuCWpMIY3JJUGINbkgpjcEtSYQxuSSqMwS1JhTG4JakwBrckFcbglqTCGNySVBiDW5IKY3BLUmEm9WOnETEHuATYCfhUZl7VjzokqUQ9n3FHxGuAy4BjgJnAeyPiDb2uQ5JK1Y8Z94nA7Zn5NEBELAXeBVw62iEihoChtnH7Ajz55JMva+fPrx95WeNVjscff7yv+//xMz/r6/7VOy/3WDvhhBP2Ax7PzA3d9O9HcE8DhlueDwNHtvWZC8zrNPjMM89sqCwNmhNuvbLfJWi8uP6El7uFtcD+wGPddO5HcE/o0Lax7fkCYFFb207AAcAa4MWxL2tgTQdWAMcC/Z2CatB5rL08Xf+b9SO4n6D6wY6aCqxr7ZCZI0CnNY3vNVjXQIqI0U8fz8zH+liKBpzHWu/0I7hvA/4sIvYGngPeCby3D3VIUpF6flVJZj4BXAzcAawCrsvM+3pdhySVqi/XcWfmdcB1/di3JJXOV04OvhHgY3Q+ZyCNJY+1HpmwadOmftcgSdoGzrglqTAGtyQVxuCWpMIY3NuZiDg4IjZFxDvHeLt7RMRN/8axl0bEO8ayHvVWRBwfEc9GxKqIeCgiHo2Ii3u4//0i4rFf0efIiLi8/nz/iPhcL2orUV8uB9RWnQMsBd4H3DCG290TmPVvGZiZHx3DOtQ/92fm8QARsTvwaER8OTMf6W9Zv/AG4NX15/sCr+1jLds1g3s7EhGTgLOobglwT0S8NjO/X89UvgC8FdgNeHdmPhARx1HdIndXqmC+KDO/VN/v/CKqe7qsrbd5JTCt/kU9NSIuA04A9gKeAn4X+AmwEDi4LunqzLwmIhYBd2bmok7jMvPl3bJR/bAr1fHxrxFxBPCpuu0p4PzMXBsRdwJPA78OnAEso5pUHANsAE6v+50GfAiYXD/Ozcy7IuIQYHTW/NDojiPi1cBngX2o7lP0J8D9VHcI3b3+S+AM4ICIuCoz3x8RfwycDkwEbgb+KDPH7SVxLpVsX34H+GFmfg+4CTi/5Ws/ycwjgc8Af1q3XUD1S3Io8AfA6Mz4fwAnZeZhwGrg9cB/BdbVoT2jbntzZh4I/BNwJvBmYK/MPITq9rtHtxa3lXEqw+H1UsnDVHehu5MqqK8F5tTH0SeBa1rGPJyZkZmrgCnA8vr4uAv4QETsQPXX4dsycybwceC/12P/hmoycSjwg5Zt/k9gYX18voMqxF+kOn6/kpmXUR2v99eh/R+Bw4AjgEOA1zDOjzuDe/tyDvB39edLgLMjYqf6+f+uP36HarYL1Uz64Ij4CNWMZ/e6/avAtyLiCuBr9S/dL2TmP9X9z42ITwL/oR77HSAi4uZ623/U5TiV4f7MnJWZbwJeBexH9ZfZa4GvRMQq4HKqu3COurdtG5sdh5m5ETgVeGtEXAqcTTVr/nfAtMy8re6/qGUbJwKX1vtbBuzI1pdFTgSOAh4A/gE4nOqvgHHL4N5ORMSrgN8GPlQvjVxLtfwxepJy9K78m/jlrXFXUN3L/AGqJZMJAJl5YT3uaWBxRJzVtq/DgFuofv5LgS8DEzLzJ1S/EH8FBPAP9ZtabHXcWHz/6q3MfJbq5/cW4Ad1oM+imtke09L1p23jNjsO67Xy/0N1L+m7qJbkJrD5cQrV0sqoicBbWvY5G/jHrZQ7EVjQ0v8oquN93DK4tx9nUf0ZOj0z98vMfakOzvM7dY6IvYADgY9m5jeAk4CJETEpItYAT2XmX1L9uXoI1S/O6DmN46jWrD8DPNIy9h3AYuDrVH+qPku1DsnWxo3Zv4B6JiImAscDK4G9ImL0VsvvYdvuI3Qg1Tr1XwC3AycDE+tJwA8j4nfqfnNaxtwO/Je6jjcAD1Otr7ceo62f3w78XkTsXp8HuonqXbPGLYN7+3EOcHVb29VUM+pd2jvXb/12LfDdiHiQ6k/fXYGdqdYKb4uI+4HfAOYD/wL834i4g2oZZma91nk71S/O/lR/tv4U+C5wH3BjZrbOhLY0TmUYXeNeRXXuYz3V+ZDTgE/WP9ffpzpf0q2HqO7yuZpqGeNZ6rcZpJqMzKuPz9alkAuA2fX+lgC/l5nPUB1zsyPi48CjwFBEfCEzv0p1hdW9VEs0q4DPb/N3P0C8V4kkFcYZtyQVxuCWpMIY3JJUGINbkgpjcEtSYQxujSsRcUv9qr6t9bmmfrGRtF0yuDXe/FaXfXxFqLZbXsetcSMi/hfVvTS+Q3UL0aMy8/76a49RvRrvVKqbJK0F3g08AXya6r4eE4DPZ+YVEbEf1S0HHq2/dlxmDvfqe9H45oxb40ZmnlN/+pvAP2+hz8XAOuDMzLwX+Fvgjsx8I9XdEs+KiP9Ud58O/HlmHmhoq5cMbmkLImI3qrC+CiAz/5XqLncn1102AN/uS3Ea1wxujVftd6/bqUOfHXjpWvcOVLchBXg+Mzcg9ZjBrfHmRarg/THVfZ2JiNnA1JY+G4Ad6xsfrQTeX/fbg2rd+9ZeFiy1M7g13twI3E31VnAX1nfKO4/qnuajbgKWRMRJVO+0ckJE/CPV3etuYPM3BZB6zqtKJKkwzrglqTAGtyQVxuCWpMIY3JJUGINbkgpjcEtSYQxuSSrM/we7grOn01g4OwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "p1=sns.catplot(x=\"tutor\", y=\"grade\", data=harpo_df, kind='bar',ci=95)\n", "glue(\"teachers_fig\",p1.fig,display=False)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "```{glue:figure} teachers_fig\n", ":figwidth: 550px\n", ":name: \"fig:teachers\"\n", "\n", "Plot showing the mean grade for the students in Anastasia’s and Bernadette’s tutorials. Error bars depict 95% confidence intervals around the mean. On the basis of visual inspection, it does look like there’s a real difference between the groups, though it’s hard to say for sure.\n", "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Introducing the test\n", "\n", "The **_independent samples $t$-test_** comes in two different forms, Student's and Welch's. The original Student $t$-test -- which is the one I'll describe in this section -- is the simpler of the two, but relies on much more restrictive assumptions than the Welch $t$-test. Assuming for the moment that you want to run a two-sided test, the goal is to determine whether two \"independent samples\" of data are drawn from populations with the same mean (the null hypothesis) or different means (the alternative hypothesis). When we say \"independent\" samples, what we really mean here is that there's no special relationship between observations in the two samples. This probably doesn't make a lot of sense right now, but it will be clearer when we come to talk about the paired samples $t$-test later on. For now, let's just point out that if we have an experimental design where participants are randomly allocated to one of two groups, and we want to compare the two groups' mean performance on some outcome measure, then an independent samples $t$-test (rather than a paired samples $t$-test) is what we're after.\n", "\n", "Okay, so let's let $\\mu_1$ denote the true population mean for group 1 (e.g., Anastasia's students), and $\\mu_2$ will be the true population mean for group 2 (e.g., Bernadette's students),[^funnyquestion] and as usual we'll let $\\bar{X}_1$ and $\\bar{X}_2$ denote the observed sample means for both of these groups. Our null hypothesis states that the two population means are identical ($\\mu_1 = \\mu_2$) and the alternative to this is that they are not ($\\mu_1 \\neq \\mu_2$). Written in mathematical-ese, this is...\n", "\n", "$\n", "\\begin{array}{ll}\n", "H_0: & \\mu_1 = \\mu_2 \\\\\n", "H_1: & \\mu_1 \\neq \\mu_2\n", "\\end{array}\n", "$\n", "\n", "[^funnyquestion]: A funny question almost always pops up at this point: what the heck *is* the population being referred to in this case? Is it the set of students actually taking Dr Harpo's class (all 33 of them)? The set of people who might take the class (an unknown number) of them? Or something else? Does it matter which of these we pick? It's traditional in an introductory behavioral stats class to mumble a lot at this point, but since I get asked this question every year by my students, I'll give a brief answer. Technically yes, it does matter: if you change your definition of what the \"real world\" population actually is, then the sampling distribution of your observed mean $\\bar{X}$ changes too. The $t$-test relies on an assumption that the observations are sampled at random from an infinitely large population; and to the extent that real life isn't like that, then the $t$-test can be wrong. In practice, however, this isn't usually a big deal: even though the assumption is almost always wrong, it doesn't lead to a lot of pathological behavior from the test, so we tend to just ignore it." ] }, { "cell_type": "code", "execution_count": 73, "metadata": { "tags": [ "hide_cell" ] }, "outputs": [ { "data": { "application/papermill.record/image/png": "iVBORw0KGgoAAAANSUhEUgAAAlkAAAENCAYAAAA8D3A7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Wd0XNl14Pv/rVzIOWeAPAQzO6qT1N2SupVteeRsy3Ek27I8mvc89nte8/ws2WPNWLKlUbBky7aCbSXLUsuSLKuTOrMD2cwELnIORM5VqHDnQ1Wx0WiAAMiqOhX2by2sBoGqezfZ5ME+5+y7j2FZFkIIIYQQIr5sugMQQgghhMhEkmQJIYQQQiSAJFlCCCGEEAkgSZYQQgghRAJIkiWEEEIIkQCSZAkhhBBCJIAkWeJVlFIDSqlblFL3KqUubvH9Lb+egDgKlVKPb/i1pZQqi9O1P6KUem88riWE2B2l1JeUUr8f/fyPlVI/kaT73qqU+nz081uUUt+K03X/RCn1mXhca4f7bIw/ruOvUurflVIH43U98VoO3QEIsY1i4LZEXNg0zT9OxHWFELt2P3A5Sfc6BNQBmKZ5CnhPku4bL1fjjzfTNN+WiOuKV0iSlaGUUvcC/wPoAw4DbuADpmn+WCn1JeCiaZofj772Vb/ehTyl1NeBA4AH+M/AaWAUuN00za7odR8BPgO8G7CAdqAceBj4PdM0A0qpe4CPATnAOvDfTdP8D+CLgFcpdRa4OXrfDyulXgeUAh8zTfOz0fv8BvA7RFZmZ4DfNU2zUyl1N/BXgD16/4+apvmvG3+/SqkPR+Nbj773V03THN/ln4MQYgOllA34BPA6IB8wgN80TfPZDa/5AHAL8DGlVAj4AfC/gDcQ+bd6hsj4sKiUGgBeAI4CfxS99peANwINwDdM0/yD7e4LDAEfAQqVUl8EvkxkTLoLGAb2m6Y5EY3reeDDwGPbxbPFb/mAUurHQDUwCfwc0AJ8HWg0TTOslMoBBoiMwy8C3wHuAYqAvzRN83PR+78P+D0gFL3W7wJrW8T/mvHXNM2nlVKua/w5/jbwW0TGOR/wftM0L0f/fN8DdBIZc/cBYSLj+ftN0wxv8XsWeyDbhZntdiL/iE8Afw/8SZyuWwd8wjTN48DfAH9imuYqkQHgNwGUUq2AAr4ffc8x4E3AwejH+5VSpcC3gP9imuZR4FeAf1JKNQO/BqyZpnncNM1Q9Bp9pmneTCQp+kullFMp9Ybo++6J/j7/Avh29PUfBv4q+p5fJzJ7vkopVQ98CLjVNM1biCR/t8fpz0iIbHQ7UAPcYZrmQSJjwv+z8QXRydEp4L+Zpvmd6PeDwM2maR4DxoD/ueEtF03TbI++FiDPNM17gDuBD0bHiy3va5rmMPDHwNOmaf7ahhgWiCQ7vwSglGonkij9aBfxbNQC/IxpmgeAOV5JKGeAt0Rf83PAY6ZpXon+Oge4FbgX+IhS6ohS6n7gD4D7ovf8KvAQMLJF/K8Zf6Nf3zJupZQd+CTwFtM0bwX+Frh70+/j3UB+9Jq3bvi9iRskSVZmGzRN82z085eBkjhdt9c0zRein58FKqKf/zXwXqWUE3gf8HcbEqQvmaa5bJqmH/gK8CCRgbEndi3TNC8BzxIZfLby1Q33dAMFwNuBNuC56KrXXwAlSqkS4JvAZ5VS/0xkNeyPNl1vFDgHvKyU+jhw1jTNh/b8pyGEAMA0zZPAfycyifo4kVWSvB3e9g7gJ4Az0X/DP0lkIhbz9KbXfzd6r1HgClBynff9ApEJGkQmdV+MrtzsFM9Gj5imORX9/ByvjIWfJbLCD/B+4HMb3vNZ0zQt0zRHgP8AHiCSkH0jdi3TNL8E1AJNW9xzu/F3y7ijY/C/EBkjPwMsEJl0b/QMcEgp9QSRZO2Tpmn2bPN7FnsgSVZmW9vwuUVkCX3z5wCuPV43sNV1o9uE54n8Q/9F4O82vC644XMbkSXxrf7+2QDnte5rmmbswE2DyLL4P0ZXvI4DNxHZipgzTfNvgCPAI0SSuvNKqcLYxaID6huAXyUy8/yEUup/X+s3LoTYnlLq7US2/yCSDH2eV481W7ETWc2O/Ru+jVfXTS1vev1rxrXrua9pms8ADqXUbcAvAP+wy3g22nIsBP4ZuFspdR+RlbenNrxut2OhwdZj4Xb33DZu0zR/CXgn0AP8Ia+s9hP9fj+RyepHiUxeH1VKpVvtWkqSJCs7TRFJRIg+sXdPHK/9WSI1Vi+Ypjm24es/q5RyK6U8RGaP3wOej4SgbovGcgh4PfAEkYHIrpTaaYB+GPh5pVR19Ne/RaSmAqXUc8CJ6KzwfURqIIpjb1RKHQMuAh2maX6USE3Hsev8fQsh4M3A96J1Ri8RWU2xb/G6IK8kED8Cflcp5YrWVn2ByA/7eN134702+zvg08B50zSH4hVPtHzin4gkbp/f9O33AiilGoisYv0wes+fVUqVR7/3a0Qmfj07xL/RlnErpcqUUsPAjGmanySy4veqcS5as/VF4GHTNP8weq3De/k9i61JkpWdPg1UK6VMIjOuJ+J47e8TWabfPLCsEln2vxD97xdN05wGfhr4tFLqApHtwF+LroiNE9ni7IjWbm3JNM0fESn2fEQpdZ7IjPSnoqtdf0Ck5uEM8GPgw6ZpDmx47zkiW4qnlFKniNRt/dcb/P0Lkc0+D7wh+m/xJNALNEd/6G/0PeDjSqlfAf6USGH4GSJPHBrA/x3H+54kUqD+nS3e92XgOK9edY9HPBBJWiqIlEds1KyUOk1kq/D3zIhHiEzyHldKXSIyEX1HdLX9WvFvtGXc0XH2z4DHovf9n0RrZzf4CpGk9HJ0LCwAZFU/DgzLsnZ+lRC7pJS6k8gM6nBsW+86nl4UQoi0FV2B/0MiTxj+9oavDwDvibaSEFlAWjiIuFFKfZlI0fp7N9RNCSFEtukjUpbxLt2BCL1kJUsIIYQQIgGkJksIIYQQIgEkyRJCCCGESABtNVlKKQeRzrUjpmkGd3q9EEKkChm/hBC7obPwvQ7of+yxxzSGIIRIsp36nqULGb+EyE57GsNku1AIIYQQIgEkyRJCCCGESABJsoQQQgghEkCSLCGEEEKIBJAkSwghhBAiASTJEkIIIYRIAEmyhBBCCCESQJIsIYQQQogEkCRLCCGEECIBJMkSQgghhEgASbJEUv3yL/8yvb29AMzNzfGOd7xDc0RCiGyUCmNRKsQgEkuSLJFUg4ODNDc3A2CaJvv379cckRAiG6XCWJQKMYjE0nlAtMgyo6OjVFZWYrNFcnvTNFFKaY5KCJFtthuLVldX+fCHP4zT6eS2227jXe96V9JjGB4e5nOf+xzLy8t86lOfStj9RXLISpZIms7OzlclVZcuXZIkSwiRdNuNRQ8//DAPPvggf/Znf8bjjz+uJYb6+nr+/M//PKH3FskjSZZImo6ODvx+PwADAwM89thjsjwuhEi67caiyclJqqurAbDb7VpiEJklKduFSqkioGjTl+uScW+ROkzTxOVy8a53vQulFG1tbXznO9/hAx/4gO7QhNiWjF+ZZ7uxqLa2lomJCdrb2wmHw1pikPEwsySrJutDwP+fpHuJFGWaJt/+9rfJy8vTHYoQeyHjV4bZbixaXV3lT//0T3niiSe47777tMQwNzfHJz7xCS5fvszf/M3f8P73vz+hcYjESlaS9UngS5u+Vgc8naT7C82Wl5cxDEMSLJGOZPzKINcai3JycvjoRz+qNYbi4mI+8pGPJDwGkRyGZVlabqyUagL6H3vsMerqZOVdiCxh6A4gHmT8EiJr7WkMk8J3IYQQQogEkCRLCCGEECIBJMkSQgghhEgASbKEEEIIIRJAkiwhhBBCiASQJEskXDhsEQwltrGfEEIIkWrkgGiRMOuBEI+8OMS//ribpZV1bj9UzX231HHzgUrdoQkhsswjLwzytUdM7DaDXK+Tt93ZzAO3Nybt/pYVZv6Zb7HS+QJh/wqG3UHpA79BTuuJpMUgkk9WskRCzC/5+cDHHufz3z5PSYGHO4/VcNqc5E++8Dzff6ZPd3hCiCzhD4T41DfO8KlvnqWkwENbfRGWBZ/+5ln+8YcdJKNXpBUKMPVvn2buqW9gc7nw1DQDFhNf/x/MPfVNLEtW+jOVrGSJuAuFLT72T6eYXfDxh796KwfbyjAMg1965yE+87UzfOGhC1SW5HDrwSrdoQohMtxf/vNpTl4Y56fua+Mn7t+HYTMIhcJ8+d8u8c1Hu1haWed33nMsYfe3wiEmvvlR1vrOUXzXOyk6chTDsAgHAkw//TBzT3+DcNBP6f2/nLAYhD6ykiXi7ms/6uR8zzS//pOHObSvHMOINMh12G389s8co6G6gL/4x1MMjC9qjlQIkclOXhjj5IVxfv5BxU++aT+GLTIW2e02fu0nD/PgXU388OQAZ7uuJCyGpTOPsNZ3jrL730Px0UiCBWBzOim/723kHTjGwvP/hn+iP2ExCH0kyRJxdbF3mm882sUbb63nzhOvPW7E7XLwX3/5FlxOO1946IKGCIUQ2WBlLcDnv32BpuoCHrir+TXfNwyDn36zoqIkh89/5wKBYPy37EKrS8w++TU8DQfI36+AV29NGoZB6R33Y/d4mf7BX2OFQ3GPQeglSZaIq689bFJc4OYX3n5w29cUF3h4xxtaOd8zzYXe6SRGJ4TIFl/598vMLfn4zXcfxm7f+kedy2nnF9/WzuiV5YTUis4+8VXCvlXK7n7g6grWZnaPl9K734x/oo/FUz+MewxCL0myRNx0Dsxyvmead9zTgtNpv+Zr77+tgeJ8N/+UpMJTIUT2uDK3yn+cHOCB1zXSUFt0zdceP1DBsf3lfO1hk/klf9xi8E8OsHTmEQpO3IurMP+ar81tbcdb38Lc098kHIhfDEI/SbJE3Hzj0S7yc1y8/pb6HV/rctp5572tXO6f5WzXVBKiE0Jki39/NlLf9Na7WnZ8rWEY/NxbD7DmD/LwC4Nxi2Hhxe9jOF0Un7iVzduEW8VQdOIOwr4Vli89E7cYhH6SZIm46Btd4FTHJG+7qwm3a3cPrb7hlnpKCz187REzwdEJIbKFPxDi4RcGufVQFSXF3l29p7Yin/aWUv7j+QFC4RtfWQ+tLbFy+Vny2m/D7rr2qn6Mp6YBV0kFiy99X1b3M4gkWSIuvvNkD163g/v20NzP6bDzpjua6OifZXRqOYHRCSGyxZMvj7C0GuDNr9tbo9E33tbA1NwaL3dO3nAMS+efwAquU3Dw6K7fYxgGBUduZv3KEL7hjhuOQaQGSbLEDVvzBzl5YZy7j9eS43Xu6b13HavBMODxl4YSFJ0QIltYlsX3n+mjsSqffU0le3rvTQcrKcxz84PnBm44hqWXH8Zd04q7uHhP783bdxib28Pii9+7oRhE6pAkS9yw5y+O418Pccex6j2/t6jAw5G2ch4/NUw4Dsv0Qojs1TkwR//YIg/e2XS1P99uOew23nBLHS93TnJldvW6Y/ANXiQwO0bB4duAvbWFsDmd5LcfZ6XrFMGlueuOQaQOSbLEDXvi9AgVxV5a6vc2a4u5+6Zaphd8XOiRdg5CiOv31NkRnA4btxze+4QP4N5bGwB45MXrL4BfPPMINk8euU3Xdy5i/oGjYIVZ6Tx53TGI1CFJlrghc0s+znZd4a7jNdhse5s5xtzUXkmOx8GjsmUohLhO4bDFc+fHOaHK8biv78S4siIvB5pKeObc2PXFEFxntfs0ufuOY9umN9dOXMVlOIvLWemQpwwzgSRZ4oY8fXaUsAWvO1pz3ddwOe3cfqSakxfGWfUF4hidECJbdA7OMrvo49ZD17eKFXPzoSpGriwzPLm05/eu9Z3DCvjIbd53QzHktip8w10El2XLMN1JkiVuyBOnR2iuKaC64trN9nZyx7Ea/IEQZ6RnlhDiOjx7fgyH3cYxVX5D17nlYCUAJy+M7/m9K+YL2Nw5eKtvLNHLa20HLFY7X7ih6wj9JMkS121qbo3u4XnuOHb9q1gx+xqKyfU6eeHiRBwiE0Jkk3DY4rlzYxzfX47Hs7cnnDcrKfTSWl/Ecxf2tmVohYKsdr9ETssRjBv8yeosLsNZVMqybBmmPUmyxHU7Fe0nc2x/xQ1fy263cXR/Oac6J+PSDFAIkT26hueYXvBx2+GquFzvloOV9I4scGVu908Z+oYuE15bJrflxrYKIdIzK7f1AL7hTkIrCzd8PaGPJFniup3umKSi2EtVeW5crnfiQAVLK+t0DUodghBi9547P47DbnBU3fiED+Dmg5FkbS9bhivmCxgOF96aurjEkNvaDpbFiilbhulMkixxXdYDIc52T3HiQMWe+9Fs58i+cuw2gxcu770WQgiRvU53TnKwuXTPzZC3U1WWS31lPs+d392WoWWFWTFfxNt8CJsjPj9WXSXlOPILWe05FZfrCT0kyRLX5WLvDP71EEf331iR6Ua5Xif7m0p48dKNH2shhMgO0/NrDE0scXR/WVyve/xABZ2Dc7t64nn9yhCh5Vlym258qzDGMAy89c2sDV7CCgXjdl2RXJJkietyqnMSl9POgebSuF73xIEKhieXmJhZiet1hRCZ6WzXFQAOtsY3yTrcVkY4bO2qSfJa/zkAvNW1cY3BW9eCte7DP9YT1+uK5JEkS+yZZVmcujzJ4dZSnM7dnTC/WycORGoqXrosq1lCiJ2dMacozndTW3ljbWQ2a2sowuW08/Iu2sqs9Z/DWVqDIzc+9akx3romMAxWe0/H9boiea6vLe4eKaWKgKJNX45PdaBIurHpFcZnVnjrXU1xv3ZlaS4VJTmc7Z7infe0xP36QuyVjF+pKxS2ONM1xU1xrA2NcTrsHGguubpStp1wcB3fUAf5R+5kr2cV7sTu9uCuqGGt7wzc+4txvbZIjmStZH0I6N/08XSS7i3i7IwZGXQO7YtfPdZG7c0lXOqdkVYOIlXI+JWi+kbnWVpd53BbfLcKYw63lTE2tcLU3Nq2r/EPd2IF1/HWNiQkBm99M/7xAUJre+9AL/RLVpL1SaB508c9Sbq3iLMLvdOUF3spL8lJyPXbW0tZ8QXoH5X+MCIlyPiVol6OTvjaW+NbGxoTS97OXGM1a7X/HNjseKturMv7dnLqWwCLtf7zCbm+SKykbBeapjkPzG/8mlIqGbcWcRYpBJ3h5vb49KPZysFoMf35nina6jfv0giRXDJ+pa4z5hTNNQUU5LkTcv3aijyK8t2c6brCA7c3bvmatf7zeGpasDkdQPxX390VNdhcbtZ6T5N38K64X18klhS+iz0ZmlxiaXU97k8VblRU4KGmPI+z3Ts/1SOEyE6+9SDm4CxH9iVmqxAibRQOtZZxrnua8BblC6HVRdYn+vHWt5GIBAvAsNnw1DaxNnAxIdcXiSVJltiT8z2RJ232NxUn9D7tLSVc7p8hGIpvIakQIjOYg3MEQxaqqSSh9zncVsbSyjoD44uv+d7a4EXAwltTn9AYvDUNBBdnCC7s/KSjSC2SZIk9udg7Q0Wxl7LixNRjxRxsKcW/HqJ7aH7nFwshss6lvhkMA9oaEjvhU80l0fu9dmXdN3QZw+nGXZ6Yh4BiPNWRJG5t6HJC7yPiT5IssWvhsMXF3mkOtSRueT7mQEtkO/Jcj8zchBCvdalvhqbqArye+Byls52yIi8lhR4u9s285nu+oQ481S0YRmKfhHaVVmC43PgGLyT0PiL+JMkSuzY4scjSaoADLYldngfIz3HRUF3A+V10WxZCZJdAMEznwCztCawN3Ug1lXC5fxbLeiWZCvlWWL8yiKdm64L4eDJsNjxVdfiGOxJ+LxFfkmSJXYsdL7E/wTUQMaqpmK7BOanLEkK8Ss/wPOvBMPsbE7tVGKMai5lf8jO+4bgv/0gnYOFJUOuGzbw1DQRmJwitSGubdCJJlti1i30zVJbkUFrkTcr99jeW4A+E6B+TQUUI8YqL0fqofQl+ACcmNrG81PvKlqFvuANsdtzllUmJIVaXJatZ6UWSLLErlmXR0T+LStLMEWBftKD1cv9s0u4phEh9l/pmqKvIIz83Mf2xNqspzyPX6+Ri/ytJ1tpQB+7KRmyO+J7fuh13eTWGw8HagNRlpRNJssSuTMysMr/spy2JSVZJoYeyIi+X+19bcCqEyE6hsMXl/lkONCenbAHAZjPY31jM5Wjxezi4jn+8B09NM4nqj7WZYbfjrqzFNyxPGKYTSbLErnQMRFaTkt2BfV9jMR0Dry44FUJkr/6xBdb8QQ4kaaswRjWVMDGzytyiD/9YN4SCeKpqkhqDt7qB9SvDhH0rO79YpARJssSudA7MkuNxUFuRn9T77msoZm7Rz5VrHNAqhMgendEJX2t98laygKtNTy/2zeAbitRFeSqTU48V466uAyx8Y91Jva+4fpJkiV3pGJhlX30xhs1I6n1jTw/JlqEQAqBzYI7ifDclRZ6k3rexpgCX087l/hl8IybO0hrs7uTUhMV4KiIrZ37ZMkwbkmSJHa36AgxOLLKvMfmHNddV5uN1O6T4XQgBgDk0y76GYgwjuRM+h91Gc20h5sAs/rEuPNXJq8eKsbncOEvK8Y2aSb2vuH6SZIkdmYNzWFby67EgUnDaWl9Ex4CsZAmR7eaX/EzMrLKvIfljEUTGwKXJYcJry7grk1uPFeOprMU/1otlSf/AdCBJlthR58AshgEtdXoGtv2NxQxNLLGyFtByfyFEajAHIyvausai1voi6o3IUV+eBJ9XuB1PVS1h/xqBmTEt9xd7I0mW2NHlgVkaqgrwJPiMsO20NRRhWdA9PKfl/kKI1NA5OIfdZtBUW6jl/q31RTQ5pgjZ3TiLk1t4H+OurAXAPyJbhulAkixxTaGwhTk4x/4En3R/Lc21kVlr56AkWUJkM3NwjqaaApzO5DQA3ay4wEOre4YpeyUGerbrnEWl2NwefCPS+T0dSJIlrmn0yhJr/iCtGuqxYnK9TqrLczElyRIia4VCYbqG59hXr2/CZwV8VBqzdPv0rGIBGIaBu6IG/2iXthjE7kmSJa6payiS2DTX6Vmej2mtK6J7eF6akgqRpQbGF/Gvh2it1zcWBSf7sWFxeaWEmaWQtjg8lbWsT48R9q9qi0HsjiRZ4pq6hubJ8TioLM3VGkdLXRELy36mpCmpEFnJjE74WjSuZIWiTUAHg2V0ja5ri8NdVQtY+Md6tMUgdkeSLHFNXcNztNYVYUtyE9LNYtuVsaeLhBDZxRycozDPRVmxV1sMwfFujMIKfIaHjlG/tjjc0aakvpFObTGI3ZEkS2zLHwgxMLZIm8bl+Zj6qnycDhudQ1KXJUQ26h6eo62+KOlNSGMsyyI43oOrqpGmCifmiL6VLLvbg7OoFP+Y1GWlOkmyxLb6RhYIhS2aavUVvcc47DYaawqu1ogJIbLHqi/AyJVlWjSORdbyLNbKHM7yKlqrnfROBgiF9dWIuiuq8Y/3abu/2B1JssS2uqJ9qVo09aTZrLWuiN6RBYIh6XQsRDbpGZnHsvQ+gBOc6AXAUVpOS5UTf8BiZDqoLR53eTWhlQWCi3IaRiqTJEtsq2tojtJCD4UFyT2IdTut9UUEgmEGxxd1hyKESKLuoXkAmmr0JVmhiV6w2bEXldJaFWnM3DWmvy5Lit9TmyRZYlvdQ/NazivcTmtdrPhdtgyFyCZdw3NUluSQl+vSFkNwog97aQ2G3UZViR2vy6BrTF9dlqusEmw2/GNS/J7KJMkSW1pY9jM+s3I1sUkFZcVe8nKcV7cxhRDZoXt4XutYZFkWock+nBX1gIXNMGiudNI9ru88VZvDgaukXFayUpwkWWJL3cPR5fkUqceCSKfj5tpCekbmdYcihEiS+aVIf7wWjfVY4fkJLP8KjrLKq19rqXIycCVAIKi5+H2iH8uSOtVUJUmW2FLPyDyGAU01BbpDeZXm2iKGJ5fxresrOBVCJE/sYHjt9ViAs7Ts6tdaqpyEwtB/Rd9qlruihrB/jcDshLYYxLU5knETpVQRsHmtty4Z9xbXp2d4npryPDwep+5QXqW5tpBw2KJ/dJH2Zn3nh4nsIeOXXl1D89gMaNQ44QtO9ILDha2wBIisXLVEi9+7x/zsr9FTK/ZK8Xs3rtIaLTGIa9vVSpZSqmznV13Th4D+TR9P3+A1RQJ1D8+nTOuGjZqjMXVLXZbYJRm/0lv38Bx1lfm43UlZE9hScKIPR3kdG/uglhXYKPDaMHUWvxeXYTgc+Eel+D1V7Xa78JJS6p+VUndf530+CTRv+rjnOq8lEmxmYY3ZRd/VhCaVlBR6KMp30zUsdVli12T8SlOWZUUnfBqL3sMhQlf6cVbUEVvFgkiNaEuVkx6Nxe+GzYarrAr/eK+2GMS17XZq0AT8HPBxpVQu8DngH03TXNrNm03TnAde9VNRKbWHMEUy9Y4sAKlXjxXTXFtIjyRZYveakPErLU3NrbG4sq616D00MwLBdRylFa/5XkuVg3MDftbWw3hdekqc3RXVLF0+ixUOYdjsWmIQ29vV3wrTNNdM0/yiaZqvAz4I/D4wppT6rFLqtX/zRFrrHo7UQNRXp26SNTa9zKpP3wxSpA8Zv9JX7EniRo1jUazo3VFS/prvtVQ5sSzom9BY/F5ejRUMEJge0RaD2N6uU2+l1FuUUv8KfAN4CLgTGAb+LUGxCU16RuYjNRAufTUQ19JcW4hlvbLiJsROZPxKTz0j89htBnVV+dpiCE32Y7g82Apeu5rWHCt+H9dXl+UurwKk83uq2tVPUaXUEDAN/DXwS6ZprkW/dUEp9b5EBSeSz7IseobnOa5eO2tLFbFasa7hOY603WhNs8h0Mn6lr57heRqq8nE69W2DBSf7cJQ3YPDaflhFuXaK82xakyxnUSmG04V/vIv842/UFofY2m6XKn7JNM2nNn5BKXXQNM3Lpmm2JCAuocn0vI/5ZX9KFr3HFOS5KS3yXG2YKsQOZPxKQ5Zl0TMyz62HqvTFEAoSmhrCdeQu2CLJAmiudNKrMckyDAN3WaUUv6eoayZZSqlYI6JPK6XuBWIPsDqB7wL7Ehea0KFnRH/jv92Q4nexExm/0tvk7CpLqwGtE77QzAiEAjjKti/da6kVvY0cAAAgAElEQVRycqbXz6o/TI5bX/H74sUzWKEghj01yzyy1U5/I75GZJn9CDAT/XyaSC3Dy4kNTejQPay/BmI3mmsLmZxdZXlV3wxSpDwZv9JYrOZSb9F7HwDO4tJtX9Nc6cQC+iY1F7+HAqxL8XvKuWbKa5rmgwBKqX8wTfPXkxOS0CkVaiB2I7bS1juywLH9qVs/JvSR8Su9dQ/P4bDrnfAFr/RhuLwY+YXA1ucDNldGfox2j/k53OBOYnSvcMWK38d7cFc2aYlBbG2n7cIDpml2Ap9RSt20+fumacpsMINEaiAWuPVg5c4v1ix2cHX3yJwkWWJLMn6lt56ReRqqCnA49E34QhN9OCq2LnqPKcy1U5Jvo1tjU1JnYQmGy836WBccf5O2OMRr7bR5+5fA24F/3eJ7FiBFoxlkam6NpdX1qwlMKsvPcVFW5KV7WNo4iG3J+JWmYhO+O45U64shFCQ0PYTr6D1sV/Qe01zppHdCd/G7dH5PRTttF749+t/m5IQjdEqFxn970VRbQO+oFL+Lrcn4lb4mZlZZWQtonfCFpochFNyy0/tmzZVOTvekQPH7hVNYoQCG3aklBvFaO20Xfupa3zdN8/fiG47QKRUa/+1Fc20hpy5Nsry6Tl6OS3c4IsXI+JW+Yk8Oay16n4wWvZdsX/Qe01wZSWp6J9Y50uhJaFzbcZdXYYWCrE8N466SRdpUsdN24UxSohApIV2K3mOk+F3sQMavNNUzMo/DbqOuUmPR+2QfhjsHI6+A7YreY2LF711jepMsAP94ryRZKWSn7cIPJysQoVc6Fb3HSPG7uBYZv9JXz8g8jVX52B16tt4gcpyOo6IeY4cECyLF76X5Nno0Fr87Coqxudz4x7rgxJu1xSFebaftwmdM07xbKbXEFpV/pmmmR/GO2FE6Fb3HSPG7uBYZv9KTZVn0jqZS0fvupELxu6usivVoby+RGnbaLvzp6H8PJzoQoVe6Fb3HSPG7uAYZv9JQahW9736FvKnSyakePyu+MLkeTcXv5VUsXjwtnd9TyDX/JpimOR797yBwAPgg8FtAQ/RrIkOkW9F7THNtIZMz0vldvJaMX+kpFSZ8rxS97/4A+ljxe9+kvrFoY/G7SA27SreVUn8EfAJYBYLA3yulPpDIwERy9Y4sUF+ZPkXvMRuL34XYioxf6aV3ZB6H3aC2Mk9bDMHJ/g1F77tztfO7xsOi3eWRLVb/eI+2GMSr7XZN8xeA203T/GPTNP8/4HbgdxIXlkim2Gn3Og9ivV4bi9+F2IaMX2kkJTq9T/bhKN9d0XtMrPO71uL3wuJI5/fxbm0xiFfbbZK1BizHfmGa5hzgS0hEIumm5tZYXFlPyyRLit/FLsj4lSYsy6J3ZEHrWBQreneU1+z5valQ/O4uq8Q/LsXvqWKnpwt/KvqpCTyklPo7IAS8FziV4NhEkqRCDcSNaK4tlOJ38RoyfqWfydlVltcCNNVorMfaQ6f3zVKi83t5tRS/p5Cd/g98cNOv/68Nn+/9b6BISela9B7TVFvAS5cmpPO72EzGrzTTnUqd3otL9vze1Ov8LidK6bZTM9L7khWI0CfdOr1vJp3fxVZk/Eo/saJ3nRO+4GQ/hsuLkV/ITp3eN9tY/K4vyXql+F2SLP12tZaolNoH/C6QBxiAHWgzTfOuBMYmkiAdO71vJp3fxbXI+JU+UqbovaJhT0XvMSlX/C6d37Xb7abxVwEXcCcwABwELiQoJpFEV9Kw0/tm+Tkuyoql+F1sS8avNBCb8LWkadF7TGoUv1dJ8XuK2G2SlW+a5m8DPwJ+CLwZuDlhUYmkuVr0rrHQNB6aa6T4XWxLxq80kFqd3q+/ZK+50snYbIhV/95XwuLFXV7F+tQwVkjfipqI2G2SNRv9bw9w2DTNeSJL7iLN9caK3jWedh8PTbUF0vldbEfGrzTQk0pF7yWl132NlqpXit91cVdUS+f3FLHbJKtbKfVJ4Fngg0qpDwLuxIUlkqU7zYveY2J9daTzu9iCjF9poGdkHofdpnXCF5zs23On981iTxh2jek9XgfAP96rLQYRsdsk67eBp03TPAP8LXA/8L6ERSWSItL4Lz07vW8We8Kwa1g6v4vXkPErDfSMzNNUU4Ddoae/FEBo4vqL3mMKcmyU5tu0Hq/jKCjG5nLjHzW1xSAidvW32TTNVeAJpdQ7gH7g10zTfDahkYmEm5xdZWlVbw1EvOTluCgv9l6tMRMiRsav1BcORyd8NRqL3oOBGy56j2mpctI7oa8eyjAM3OXVrE9I8btuuz0g+u1Euib/AfDfgQ6l1OsTGZhIvNjWWrp2et+subaQHtkuFJvI+JX6JmZWWPEFaa7V2el9CMIhHKU33gamucrJxFyI5TV9xe+u8ir8UyNYQSl+12m3Pff/FHiDaZqXAJRSNxFZdr9lN29WShUBRZu+XLfbIEVidA/P4bAb1Kdpp/fNmuuKePHiBAvLfgrzpORGXCXjV4q72uld40rWK0XvZTd8rZYNnd+PNWtqSlpRDeEQ61NDuKtbtcQgdl+TZcUGKADTNF/ew3sBPkRkmX7jx9N7eL9IgO7heRo1N/6LJyl+F9uQ8SvF9YzM43TYqKnI0xZDcKIPw5OHkXvjk86rxe8a67JeKX7v0RaD2PmA6NjhTS8ppX4f+DyRcwZ+FXh8D/f5JPClTV+rQwYqbcJhi56Ree46Vqs7lLiJHSrbNTzHTQfkaLpsJ+NX+ugZmaepugC7XWPR+2T/DRe9x+R5bVQU2unRWfyeX4TN7cE/2gU3Pagtjmy303bhNGAROYoC4C82fM8Cfn83N4n2pXlVRbJSapchikQYn1lhVXMNRLzleJxUleVe3XoQWU/GrzQQKXpf4J4T+iZ8VmCd0Mww7hP3xu2azZVOrcfrxIrf/RPSxkGnnQ6I1jetEAnVPRRpdZAJTxZu1FxbSNfA7M4vFBlPxq/0MDq1zJo/SEudzk7vgxAOYb+BTu+bNVc5eKHLx+JqiIIcPSUZ7vJq5s89Tzi4js3h0hJDttvtAdE2IrO+twJO4GHgz03TDCYwNpFA3SPzuJx2asr11UAkQnNtISfPjTG36KO4QE/BqUgtMn6ltu5obzudRe/B6GpPPIreY2Kd33vGA9zUqinJqqyGcJj1yQE8tfu1xJDtdjvT+yiRBn7/G/grIgetfjxRQYnE6x6ap7mmAJvGGohEiBW/d0u/LPEKGb9SWPfQPB633glfaKIPI6cQIycnbtdsrnRiAF1j/rhdc6/c0Z5f/tEubTFku922cHgLcItpmgEApdQPgHMJi0okVCgUpm9sgTfeWq87lLhrrC7AMKBraI7bDlbpDkekBhm/UljX8ByttYUYNmPnFydIcKIHZ2UDBlbcrpnjtlFdYsfUeLyOIy8fe05etPP7O7TFkc12u4xhiw1QAKZp+gHpcJamhq8s418PXT2KJpN43A5qyvOk+F1sJONXigoEw/SNLtJSt7kNWfJY/lXCs+Nx6fS+WUtVpPjdsuKXvO2Vu6JazjDUaLcrWWeVUp8APhP99QeA84kJSSRaz3BmFr3HtNQVcs6cwrIsDEPf7FikDBm/UtTg+CLBUFjrcTrByT7AwhHHoveY1ionz1z2Mb0Uorxgtz9u48tdUc3qQDdh3wo2T66WGLLZbleyPgAUA88BJ4Fy4IOJCkokVtfwPF63g4rSzPwH11pXxOLKOlfm1nSHIlKDjF8p6mrRu8YJXyhW9F4av6L3mJbqSPF795i+hVN3RbQuS84x1GK3qfX/a5rmryYyEJE83UNztNYVYtNYA5FIsa0Hc3CWypL4FbKKtCXjV4rqHp4nP8dJWbFXWwzBiV5sheUYbjdY8T1rsKHcid0G5qifOw/o+T26y6sB8I+aeJuOaIkhm+12JUsq5jKEPxCif2yR1np9NRCJVleVj9Nhw4z2AhNZT8avFNU9PE9rXZHWbf3gRC/Oyoa4J1gALodBQ7mDbo2d3+0eL46CYvxj3dpiyGa7XcnqU0o9DDwDLMe+aJrmXyUkKpEw/aMLhMKW1sZ/ieaw22isKaB7SIrfBSDjV0ry+YMMTSxyc3ubthjCK/NYSzM4jt6RsHu0VDl5rsNH2LKwaUomI8Xvsl2ow25XsmaBUeBm4G7gcPRDpJnY6k5LbeauZEGkLqt3dJ5QKP6zU5F2ZPxKQb2jC4QtvQ/gJKIJ6WatVU7W1i1GZ/T1vnVX1BBcmiW4LKv7ybbbJOt/ERmU3g78BNAK/EmCYhIJ1DU0R2mhh8IM74beUlfEeiDM4MSS7lCEfjJ+pSBzMPIDv1lj+4bQRC8YNhwl5Qm7R6zze7fGflmeymjx+1iPthiy1W6TrC8CXwC80Y9vAX+fqKBE4nQNzdGWwfVYMbHtUHNIzjEUMn6lInMo8mBKQZ5bWwzB8R7spTWQwJMvaksdeJwGHaP6kixXWSXYbPhHLmuLIVvttiYrxzTNv93w608rpf5zIgISibOw7GdiZpX7b23QHUrCVZTkkJfjpGtonrcmrtxCpAcZv1KQOTjHgeYSbfe3rDChiR7cbcchjp3eN7PZDFqqnFpXsmwOJ+7SSnxyvE7S7TZ971NK3Rn7hVLqMNCfmJBEosS6oDdncNF7jGEYtNQV0SVPGAoZv1LO9PwaMws+2jRuFYZnx7H8qzgr4t/pfbN9NU4GrgTwBfTViLora/CP92OFQ9piyEa7XcmqBZ5USp0DgsAJYEIpdR7ANM2jCYpPxJE5OIfNICOP09lKS10h3/3xFGv+IF63nm7LIiXI+JViYg/g6KzHCo5HWho4ShNXjxXTVuMkFIbeiQCH6vVsj7ora1m8eJrA9AiuikYtMWSj3f7k+W8JjUIkRdfwHPWV+bizJOFoqy/GsiJdpY+2JX4gFSlLxq8UYw7O4bDbaKjO1xZDcLwbw52LraAQSOwKU2u0+L1zxK8tyfJEV+x8I6YkWUm0q5+2pmk+mehARGKFwxbdQ3PceqhKdyhJE2u4erl/VpKsLCbjV+rpGpqjpbYQh8OuLYbQWDeOqkaMBCdYAIW5dioK7XSO6KvLchQWY3N78Y90wk0PaIsj2yTukQqRUkanlllaDdDWUKw7lKTJ9TqpKc+jc0CeMBQiVQRDYbqH52mr11e2YK2vEZoexllRl7R7ttU4McfWsazEFdlfi2EYuCtr8Enn96SSJCtLmIORRCOTj9PZSltDEebQnLaBTQjxagPji6wHQlfPGNUh0oTUwlFWmbR7tlU7mVsOM72kr/DcU1lDYGacsH9VWwzZRpKsLNExMEdejpPK0lzdoSTVvoZillcDjE4t7/xiIUTCxZ74bdE44YsVvTvLEtfpfbO2aheA1i1Dd2UtYElT0iSSJCtLdAzMsr+hGJtN30GsOrQ1RAZy2TIUIjV0DMxSmOeitMirLYbQWA/24ioMZ/KK0BsrHDjt0KmxKak7Vvw+LE1Jk0WSrCywvLrO8OQS+xqya6sQoLosjxyPgw5JsoRICR39sxxoKsHQdFiyZVkEx7txVDaS6KcKN3LYDZoqnZgj/qTdczO724OzpBzfSIe2GLKNJFlZoDN6RlhrffYUvcfYbAat9UVX/wyEEPrMLvqYnF1lv8YHcMLzE1hrizgrE9+EdLP9NU56JwOsB/XViHqq6vCN9khT0iSRJCsLdA7MYrMZNGs87V6nfQ3FDE8usbIW0B2KEFmtoz/6AI7GJCs4agLgTGLRe8z+OhfBEHSPazwsuqoOa93H+tSwthiyiSRZWaBjYJam6oKsaUK6WVtDEZaFHLEjhGaXB2ZwOWw0VhdoiyE42onhycNWmPzyif01keL3S0P6tgw91ZG2Fb5h2TJMBkmyMlwoFKZraE7r8rxurXVFGAZc7p/RHYoQWa2jf5a2+iLsDn0/eoKjJs7q5qQ0Id2sIMdGTYmdy8P6kixHfhH2nDz8Q5e0xZBNJMnKcAPji/jWQ1efsstGXo+ThqoCLvVL8bsQuvj8QXpHF1BNGuuxVhcIz43jrKrXFsP+WhedI+uENTYljdRlmVrun20kycpwl6KrN9lY9L6RairBHJwlEEz+7FUIETk7NRy2tJ46cbUeq1zf8WKq1sWK32J4OqgtBk9VHcHFWYKLsrqfaEkp0lFKFQGbl1KSd55BFrvUN0N5sZfSYn09aVKBairm4ZMD9I7Oc6CxRHc4Io3I+BUfV4veNU74gqMm2J3YS0q1xaDqIodFXx7y01ju1BKDe0NdVt6hu7XEkC2StZL1IaB/08fTSbp31rIsi0t9Mxxs1jegpIr9TZHE6mKvzNzEnsn4FQeXB2apr8wnx6snsYBI0bujsgnDpm8Tp6LQTlGujUsa67LcpZUYDie+YanLSrRk/U37JNC86eOeJN07a41cWWZheV1rDUSqKMxzU1WWy8U+SbLEnsn4dYNCYYvOgVmtY5EV8BO6MoCzqgHQ16fKMAz21Tjp0Hi8jmG3466okScMkyAp24Wmac4D8xu/ppRKxq2z2qVoQrFPtseASF3WqUsThMNW1h0vJK6fjF83rn90gVVfkPZmfWNRcLwHwiGcFfrqsWJUnYuXuv1MLwYpK9DTWsdb28DcS88QWlvG7s3TEkM2kML3DHapb4aifDcVpTm6Q0kJqqmYlbUAQ5NLukMRIqtc6J0GYL/GCV9w+DIYBs6K5Dch3ay9LtIv68Kgxn5ZNY2AJatZCSZJVoayLIuLvdO0N+s7IyzVqKt1WdOaIxEiu1zonaa2PJfCAo+2GILDl3CUN2A49NWExTSUO8hxG5zXmGS5K2ow7A58A+e0xZANJMnKUJOzq0wv+Ghvkq3CmLIiLyWFHqnLEiKJQuHIAzjtLfoewLECfoLj3ThrW9BZjxVjsxm017u0rmTZHA7clbWsDUrxeyJJkpWhrtZjSZJ1lWEYHGgq4WLvDJamRoBCZJtYPdYBjWNRcKwrUo9VVasths0O1ruYnA9xZUFfvyxvbQPrV4YJrS1riyHTSZKVoS72zpCX46S6XAoaNzrYWsrCsp+hCanLEiIZYvVYSmeSNXwZDBvOcv31WDEHG6QuKxtIkpWBLMvibPcUh1vL5Cm6TQ62lAFwtntKcyRCZIcLvdPUaK7HCgxfwlHRiOHQ8yTfVurKHOR5Dc4P+LTFIHVZiSdJVgYam15hen6Nw63ShHSzsmIvFSU5nO2SJEuIRIvVYx3UWY+17iM00YuztplUqMeKsRkG7XUuLgzq65cldVmJJ0lWBoolEAc0Dmyp7FBrKZf6ZgiF5BxDIRKpb3Q+BeqxzJSrx4o5WO9iajHExHwq1GVJCUUiSJKVgc51T1FR7KW8RPpjbeVgaxlr/iA9I/M7v1gIcd1SYcIXGLoENjuustSpx4qJ1WXp3DL01jYBFmsDF7XFkMkkycowobDF+e4pjrSVSX+sbbS3RGbVUpclRGK9bF6huaaAgjy3thiCgxdwVDWDw64thu3UljooyrVxpk9jv6zKWgyXm7WeU9piyGSSZGWY3pF5VnxBDrXJVuF2CnLdNFTlc65bmpIKkSirvgCdA7Mc3VeuLYbw6gKhK/246ttIpXqsGMMwONLo4tyAj1BYT3yGzYa3tpG1/vPS2iYBJMnKMLHledUsSda1tLeW0jkwiz8Q0h2KEBnpYt8MwZCldcIXGLwAgKu6TlsMOznS7GZpzaJ3IqAthpz6FoJLswRmx7TFkKkkycow57qnaKouID9X3/J8OjjSVk4gGJYjdoRIkDPmFdxOO20NxdpiCPafxfDmYS8p0xbDTo40ujGA071r2mLw1rcAsNZ7VlsMmUqSrAyy5g9yuX+Ww7JVuKMDzSW4nDZeujypOxQhMtIZ8wqHWktxaKqFsqwwgcELuOoVBqn7JHFBjo3mSgcva6zLchYU4SgsZq33tLYYMpUkWRnkbNcUwVCYo/srdIeS8lxOO+0tpZzulCRLiHibnF1ldGqFw236VpBCVwaxVhdw1TVri2G3jjS76RpdZ9mnLxnMqWtmbagDK6hv2zITSZKVQU51TJLjcbCvUd/yfDo5tr+CiZlVxqbk3C4h4uls1xUADrXqS7IC0S7mrhTsj7XZsSY3YQvO6WzlUN+CFVzHN9KpLYZMJElWhrAsi1MdkxzdV47dLv9bd+PY/shTTy91yGqWEPH00uVJyoq8VJXnaoshOHAOe1kdhserLYbdaq124nUZnO7V2S+rEWw2VqWVQ1zJT+MM0Te6wOyij+NK3+PS6aa8JIfq8lxOSZIlRNz4AyHOdE1xS3ultl59Yd8KwbEuXA37IYXrsWIcdoPDjS5O9/i0tVGwudx4a5tY7ZYkK54kycoQpzomMQw4rLEnTTo6tr+Ci70z+Pz6jrUQIpOc655iPRDi+AF9Y1Gw/wyEQ7jrmrTFsFc3tXqYXQ7TM66xlUNTG4HZCdZnRrXFkGkkycoQL3VM0lZXpLWzcjo6psoJhsKck+7vQsTFi5cm8LodqCZ9Tzmv95zCyCnAXpo+k84TrW4MA57v0tfKIbdxHwCr5ovaYsg0kmRlgIVlP11DcxxX8lThXqnGErxuBycvTugORYi0Fw5bvHhpghOqHLtDz48XKxggMHAOd9MhDCN9Opjne20cqHXyvKkvyXLkF+Iqq2S1+wVtMWQaSbIywEuXJ7AsOLo/fWZtqcLhsHHiQAUvXhonFEr92g0hUlnPyDxzS35OHNB3GHNw+BKsr+FqbNUWw/W6uc3D0HSQ8Tl95Qs5jfvwjfYQWlnQFkMmkSQrAzxzbozKkhwaagp0h5KWbj5UxdJqgIu9M7pDESKtPX9xHJvN4PA+fa0b1ntPgdONq6JaWwzX6+a2SLnH8+aqthhym/eBZbHa87K2GDKJJFlpbnl1nXPdU9x+uErbkzzp7ui+clxOO8+el3O7hLgRL1yaoL2phNwcl5b7W1aYQO9pXA3tYE+/8bCiyEF9mYPnu/S1cnCVVWHPzWfFPKkthkwiSVaae+HSBMGQxS0Hq3SHkrbcLjvH9pfz/MVxwuH0qeEQIpUMTiwyNLHErYf0bRWGJnqxludwRwu409EtbW46RtZZWNFzeL1hGOS2KNb6zhP261tRyxSSZKW5Z8+PUVbkpbGuUHcoae3mQ5XMLfkxB+d0hyJEWnr67Cg2A24+pG+bbt08CXYHrto6bTHcqNuUB8uCZzr0JTh5bQexQgFWul7SFkOmkCQrja2sBThjTvG6w9WyVXiDTqgKHHYbz56X/jBC7JVlWTx9ZpRDrWUU5utpI2OFw6x3nsTVeAjDqWe7Mh7qyxzUljp48pK+pwzdlbU48gpYufikthgyhSRZaezFyxMEQ2FuOaxveT5TeD1ODreV8cy5MUKyZSjEnvSOLjA2vcIdR/WtYgVHLmOtzOFubQfS99+wYRjc2e6hY2SdKwt6njI0DIPctoOsDlwgtLakJYZMIUlWGnvqzCilhR6aaot0h5IR7jpRy8yCj4s907pDESKtPH1mFLvN4ES7vgnfesez4PTgrqnXFkO83HnAA8BTl/RuGRIOs9L5vLYYMoEkWWlqdtHHy52TvP6mOmw22SqMhxMHKsjxOHjs1JDuUIRIG+GwxVNnRzm+v1zfU4XBAIHuF3G3HE3Lpwo3qyhy0Fbt5EmNSZarrBJnYQnLF5/SFkMmcCTjJkqpImDzckv6ViamgCdODxO24M7jNbpDyRgup53bDlfz3PkxftsfxOtOyj8PkeJk/Lq2y/0zTM+v8TNv3q8thsDAOSz/Cp7WA9piiLc72z185fElhqYCNJQ7k37/2Jbh/OlnCS7O4CjQd0xSOkvWStaHgP5NH08n6d4Zx7IsHn1pGNVYTGVZnu5wMspdJ2rxr4c4eWFcdygidcj4dQ0PvzBIjsfBiYMatwovP4XhzcdRmTmtbF6nPNgMeOzCirYY8tURwGLp3OPaYkh3yUqyPgk0b/q4J0n3zjjdw/MMTy7x+ptkMh1v+xuLKS/2ypah2EjGr20sr67z7Lkx7jpWi9ulZ+U3vDxHoOcUngO3kkkPWRfm2jnR6uaxc6sEQnoK+Z2FxXhqm1g69yiWJceOXY+k/KswTXMemN/4NaVUMm6dkR57aQiXw8YthzNn1pYqDMPgrhO1fPfHPUzOrlJZkqM7JKGZjF/be/LlEdaDYd5wi74Jn//SE2CF8bS1a4shUe4/msPpnjle7FrjrnY9Y1FB+zGuPPpd1vovkNNyTEsM6UwK39OMzx/kyTOj3Ha4Cq8n+fv02eANN0eeTvrhc/2aIxEidVmWxY9eGKS5poCGGj3NkC0rzPr5x3HWKez5mVc6cbTJRVm+jR++vKwthtwWhc3tZenMj7TFkM4kyUozP355hJW1APff1qA7lIxVWuTl5oOVPPzCIP6AnqMthEh13cPz9I8tah2LggPnCS9O4Wm/iXTujbUdm83g3qM5nBtYZ2xWU88su4M8dZiVrlOEVha0xJDOJMlKI5Zl8b2n+2ipLaS1oVh3OBntTa9rYmk1wNNnpAO8EFv54XMDkSdyj+hrQOo//xiGNx93beZOOu894sVmwI/O6FvNKmg/DuEQi2cf1RZDupIkK42c7ZpieHKJt9zZJMfoJFh7cwm1FXl875k+LCvzZshC3IjZRR9PvDzMfbfUaStbCM1PEug9haf9NrBl7r/R4jw7N7e5efjsCr51PcXnrpJyvHXNLL70A6xgQEsM6UqSrDTyb0/3UZjnkoL3JDAMgzfe3kjf6IIcGi3EJt97uo9w2OKBO5q0xeA/9QMwbHgPHNIWQ7K8/dZcln0WPzqjr51D4fHbCa0ssHxJupfshSRZaWJ0aplTHZO8+fZGHA677nCywl0nasn1OvmXx7p1hyJEylj1BfjhyQFuO1xNeWmulhjCqwv4L/0Yz4HbsHm8WmJIpn01LlSdk4deXCaoqZ2Dt64ZV2kl8ye/I+0c9kCSrDTxzUe7cDnt3CcF70njdTt48M4mXrw8Qd+oFHwKAfDIixE6nwcAABHTSURBVEOsrAV4693N2mLwn/kPCAbxHsrMgvetvPPWXKYXQzx1Wc9RO4ZhUHj8dgIzY6z1nNESQzqSJCsNjE4t88TpYR64vZH8PLfucLLKm+9owut28PVHTN2hCKHdeiDEQ0/2crC5hOY6PQfTW+s+/GcfxtV6LCPbNmzneIubujIH33puibCmOtG81nbsuQXMPfsvUqu6S5JkpYGvP2zicNh56z36Zo7ZKtfr5IE7mzh5YZzB8UXd4Qih1b8/N8D0/BrvfmObthh8p3+A5VvBe+RWsmUVCyIrSe+6LZfh6SDPdqzpicFup/jmO/GPdrPac1pLDOlGkqwUNzy5xFNnRnjLHbKKpcuDdzbhcdn56sOdukMRQpuVtQDffLSL4/vLUc1lWmIIr8zje+l7uFqP4ywp0RKDTncc8NBQ7uDLP14gENSTYOYfOIazsITZx/8RKyx9BHciSVaK+8cfduB02HmLxvqHbJeX4+Ktd7fw3PlxLvZO6w5HCC2+80QPS6vr/PSb92uLwXfy2xBcJ/fmu8mmVawYm83g51+fz+R8SFsXeMNup/i21xOYHmH5ojxpuBNJslLYy+YVTl4Y5933tZKXK6tYOr3tnhZKCz387UMXCIWzb3AX2W1mYY2HnurlzqM11Gs6Qic0O4b//KN4Dt+FPU/PU42p4EiTi8ONLr7+zBLLPj1P+eW2tuMqr2Luya8SDvi1xJAuJMlKUYFgiL/9znmqy3J54C5ZxdLN7bLzs285QP/YIo++OKg7HCGS6gsPXSQctvipN+3Tcn/Lslh94ivgcJF79GaycRUrxjAiq1nLa2G++qSep54Nw6D0jjcSXJxh/pl/0RJDupAkK0U99GQvo1MrvPcdB6UvVoq4/Ug1+xuL+cq/d7CwLLM3kR1euDjOs+fHeM8b91GhqS/WesczBPvPknv7WzDcLi0xpJKmSidvOp7D90+t0DGiZyzy1jaSp44y//x38U8OaIkhHUiSlYKGJ5f4+iNd3HqwkkP7ynWHI6IMw+BX3nWIVV+Qz37rnDzCLDLeqi/A5799nsaqfG0r6uGVedZ+/GUc1a149iktMaSin319HqX5Nj71/TnWNRXBl955Pza3h+kf/LUUwW9DkqwUEwiG+Pg/ncbjsvPed2b+cRHppr6qgP/0pn2cvDDOj08P6w5HiIT6u+9eZGbRx2+++wh2e/J/XFiWxerjX8QK+Mi/5y0YhkxsYrwuG7/xQCEjM0G+9rSebUO7J4eyO9+Mf7yXhef/TUsMqU6SrBTzlX/voG9sgff91FEKCzy6wxFbeOvdLaimYj7/7QtMzurpvixEoj320hCPvDjEu+9to1FT41H/2YcJdL1A7m1vyepi9+0cbXbzhsNe/vW5ZU716OmdlbvvILmt7cw+8VXWhi5piSGVSZKVQp6/OM5DT/bywOsaOXqgQnc4Yhs2m8H7/tMxDAP+7B9eYM0f1B2SEHE1ML7IX//reQ63lvIT9+spdg+Omqw98RWcTUfwtB/WEkM6+JU3FtBQ7uAvvzvLxHzyxyLDMCi/9204C4q48p2/Irg8n/QYUpkkWSmia2iOj/3Tadrqi/iZBw/oDkfsoLwkhw/83AmGJpf4+D+flrYOImPMLfn48y+9SK7HwW/99HEMm5H0GMJLsyx/75PY8kspeP2DGMiBxNtxOw3+y/9p7+6joyrvBI5/77xPkpmEhBCCARKkPmDQkoIQqqVbECwo4lFrT2urx+paj+dsj2Vtu9utlB73aM+u59Sz3W5ffCk9u9bWg1Xc3eOeKpSKlig2QgT0IRAwhJCEJGQmk8lkZu69+8ed0BCpoDKTTPL7HIY7c+flPvPMzW9+95nnPs/6EmwbHtrSw2Ay93Xl8vmZds2NWIMxup79VxnWYQRJssaBzt44Dz75OiVFfr75lUX4fHI2YT647BPl3Lp2Pm/s7+DJF/ZJR3iR92KDKTb9ooHeSIL7bv0U4VDux+ez4hH6t/wzpAYpXnUzhke+ps6losTDvdeW8F5Xigef6WYolftY5C+bRvmK60i0abp+9wi2KS38IEnWmGvvjvHd/3iVVNriW7cvlqlz8szV9bNZ/elqXtjZwuNbJdES+SueSPHgEw20dkbZ8JVF1MyckvMyWIkYsS0PYUW7Ca/5Ku7w5JkA+uNaOMfPPWuL2fdekoef7SZl5j4WFc29lKnLP0/8UCNdL/xYzjgEPGNdgMns6IkoG3/+J0zL5p/uXEJFuQSUfGMYBreunY8BvLCzhVTa4utjdCaWEB9VbzTBDx5v4Gh7hG98qY75c3M/N6EZ6SL23L9g9XVQvOY2vGW5T/Ly3ZXzgyRTNo//Psqmp7v5x5vKKArmNhaFa+uwkgl6G/5Ax1Ccihs34PIFc1qG8US+CcbIn5ra+c6/78QwDB7423qqKsdmqgrx8RmGwZfXzufa5XN4cddRNj3WIIOVirxxpD3C/f/2Cu0nY3zrtiv4VG1lzsuQbm+m/9cPYMd6KV57O95pYzMB9UTwucsLuGdNMfuPDXH/5i7ae3P/s11J3TKmLl/DYMtbtP/nA6Sjk3fOV0myciyZMnls69s8/KvdzCgvYuPdy6QFawIwDIMvXjOPu268jP1Hevjmj/4ok0mLcc2ybJ7/4yE2PPoKadNi49311F6S28GPbctksOE5+n+7CcPro2T91/CWl+W0DBPRZ2qDfPeWUqKDJvc90clLewZy3pUhXFvH9DW3kOppp+2xDcQOvJbT7Y8Xxlj1IVFKVQNHtm3bRlVV1ZiUIdfefKeTnz/XREdPnDVXVnPL6nm4pVPnhHPkeISfPN1I16lBVi2ZxR3ragkVyFQgGbk/VS0L8j1+HWrr4/Gt+9jf0sMVtRXcsX5BziehT59oJr59M2bHYXyXLCa0dDmGV3qwXEgnI2l+8X9RDhxLsvjiAHeuKqaqzJvTMqQip+ja9j8MdR6jcF49pSu+infK9JyW4QL7UDFMkqwss22bfS09PPPyQfYcPMlF5YXcfn0t8+ZIc/hENpQ0eX57My++doSAz826q+aw/rMXS7IlSdaYau2IsmV7Mzsa2ygK+vjyGsWn66owjNx9LObJVgZ3bSHV/AZGQZjQVdfjm1kFtgzTkA2WbfP7xjjPvBojlba5pq6Qm5aFqCjJXUJrWxZ9bzXQ1/gatm1TvOjzFC9dhyecl9+DkmSNB/3xJDv3HOflN1ppPtZHSZGf65bXsHJptbReTSJtnf08t62Z3fs78HvdXLVwBquWzGZ+dSmuMRh/aByYEG86n+JXIpnmzXc6een1Vhp1F16PizVX1nDt8jkEA7lp1bCTg6QONzLU9DLptnfAG6Cg7m8IzlsgQzTkSGTA5PmGAbbtjWPbcMXcAKvrCqmrCeD15ObPMh3rp3f3q8T0HsCgcF49oU+uIFh9GYY7b1oxJckaC6m0xdETEd4+1MOf3+3kwJEe0qbNrOkhrl46iyvrqvB6ZfyryepYR5SXdh2loekEiaRJaTjAFZdWsPCScuZXl1JWPGnOvpEkK8ssy6a9O0bToW72Np+k8d0uEkmTKWE/q+tns3zxTEJZ/mnQti2snuOkju0n/d7bpI42gZnCFZ5KsLaewMWXYPjy5kt1QumJmmzbG2d70yD9gxYFfoPFcwN8sjrAgll+Kqe4s96ymYpGiO5/i/533sIaGsQVLKJg7iKC1ZcRmF2LJ1ye09bVD0mSrGxJpS0isSF6owm6TsXp6o1zrDNGa2eUI+1RUmmnuXtmRYiFqpylCyqZOSM8nncWkWOJoTR/PtDBnne7aGruPj0lz9SSINWVYWZVhKicWkhFaQFTS4JMCfkpDHon0j40Id7IWMcv07KJDgzRE0nQG0lwomeA4ydjHOvsp+V4hHhieL8KsFBNY8mCSlR16QUdvd22TOx4FCvWi9XfixXpxDzVgdndinnyPciM+u0KleGvqcU3+2I8U6fJJM/jRCpts781ye6DCRpbhojGne+vUNBFTYWXWVO9zCj1ML3ETVnIuYQKXLguYCyy0mkG244y0HKQeOshrMEYAK6CMP6KGrxTq/CWzsBbMg13qBRPqAxXsBDDGNPWz/GXZCmlSoDRM4zOBnY89dRTTJ/+wZ3gBhIpdjWdwDxjcDX7fddOL0e8J9sGG9tZWpmlbWPhHPFZlk3atE4vU2mbVNpkKG0ylHQu8USKeCJ91jnqwgU+ppcXclF5EbMrw8yeESYckomdxbmZpkV7V4yj7RFaO/rp7B6gozeOaZ7ZN8XtNij0ewkGvAT9bgI+Dz6fC6/Hjc/jxuM28HhcuA0Dt9uFYTjzK7oMnIBoONcNw2BkfBxO3IZXnRk5PiCOnPEasHheBaXF57fPr1y5sgZo01rnzXDQHzd+2bbN3h3bGerrwcYm88/5z3ZikoXtxKVMnLIsG9MGy7JImxZp0yaVtjBNi2TKJJl+f/8lr9sgXOijuMhPcZGP0uIABQGv83n9ZYN/uW4P37bAsrBtC6cAJraVBtMEK42dTmGbKUglsZMJ7NQg9tAgJM8yOboviLtkGp4p5XhKy/GUleMqKJT+VuOcjU3nKYvDJ5Ic70nT1mPS2Zd+38jxhgEFfheFfhcBn0HQZ+DzGPi8Bl6XgccNHreB22XgdoHL5cQgJxYBw8vMaxk46zJ34R+KUBDvIpjoJZDoxTd0CredHlVWg7Q7iOXxY7n9WC4fltuLbXiwXB5sw43tcjtLDDDc2EZmC5nl6dtAUWU1qn7ZedfVh41huUqyNgHfz/qGhBD5oEZrfXSsC3G+JH4JIUY57xiWqx/FHwU2j1rnA+YAzUA+jL1fBewEPgO0jXFZxpLUg0PqwfFR6iHf6msixC+QfRakDoZJPTg+aj2c92NzkmRprfuAvrPcdTAX278QlFLDV9vy6Sj8QpN6cEg9OCZDPUyE+AWT47M6F6kDh9SDIxf1IOfOCiGEEEJkgSRZQgghhBBZIEmWEEIIIUQWSJJ1/vqAH3D2vhmTidSDQ+rBIfWQP+SzkjoYJvXgyHo9jNlgpEIIIYQQE5m0ZAkhhBBCZIEkWUIIIYQQWSBJlhBCCCFEFkiSJYQQQgiRBZJkCSGEEEJkgSRZQgghhBBZkKsJosUEpZTaDOzTWj+S5e2EgReBEmCj1vrZEfc9A7i01jePWHc/sB5YobVOZbNsQoj8JPFLZJskWSJfLAQqtNZzz3LfncCbSqn7tNaPKqVWA38HLJEAJYQYByR+TVKSZInTlFK/BhqHj+qUUvcAnwO+BPwIqAdCgAHcpbV+bdTzbaBca909+rZSah3wPcAHxIH7tda7zlKGG4DvA24gCmwAIsCTwEVKqT3AMq314PBztNb9SqkvAK8opY4BPwZu0Fp3XqCqEUKMcxK/xHgkfbLESI8Bt4+4fUdm3VJgBk5wuBT4FfAP5/uiSqlPAA8Ba7XWdcDdwO+UUoWjHjcP+Blwk9b6cmAjsBU4AdwFHNZaLxwZoIZprZuAbwNbgIe11m+cb/mEEBOCxC8x7kiSJUbaAQSUUouVUpcC5cC2zBHb94CvK6UeAW4Gij7E664CKoFtmSO5pwALGN10viKzvRYArfV2oAtYdJ7bWYkT0K5TSsm+LcTksgOJX2KckQ9SnKa1toEngNtwjgKf0FrbSqlrgf/NPGwrztGa8VdexgBQSvlGrHPjBJ+Fwxecpvt9o557tv3RBXjPVXal1LcBBVwOzMQ5ihRCTBISv8R4JEmWGG0zcD3wBeCXmXWrgP/WWv8U2A3cgBN4RjsJLM5cv3HE+u3A6kxzOkqptUATEBj1/OHHzck8bgVOwHn9gwqslLoa+A5OM313pux/r5S65lxvVggxoWxG4pcYRyTJEmfQWncAjUCT1ro9s/pnwGeVUk3ALuAwUHOWJu1vAD9RSjUCdThN32it9+P0Y/iNUmov8CBwvdZ6YNS2DwD34vR32Af8EFintY78tfIqpaqBp4Gvaa0Pj9jevcB/KaVmfrSaEELkG4lfYrwxbNse6zIIIYQQQkw40pIlhBBCCJEFkmQJIYQQQmSBJFlCCCGEEFkgSZYQQgghRBZIkiWEEEIIkQWSZAkhhBBCZIEkWUIIIYQQWSBJlhBCCCFEFvw/aGt5qp2vLDEAAAAASUVORK5CYII=\n", "application/papermill.record/text/plain": "
" }, "metadata": { "scrapbook": { "mime_prefix": "application/papermill.record/", "name": "twosamplettestdist_fig" } }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlkAAAENCAYAAAA8D3A7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Wd0XNl14Pv/rVzIOWeAPAQzO6qT1N2SupVteeRsy3Ek27I8mvc89nte8/ws2WPNWLKlUbBky7aCbSXLUsuSLKuTOrMD2cwELnIORM5VqHDnQ1Wx0WiAAMiqOhX2by2sBoGqezfZ5ME+5+y7j2FZFkIIIYQQIr5sugMQQgghhMhEkmQJIYQQQiSAJFlCCCGEEAkgSZYQQgghRAJIkiWEEEIIkQCSZAkhhBBCJIAkWeJVlFIDSqlblFL3KqUubvH9Lb+egDgKlVKPb/i1pZQqi9O1P6KUem88riWE2B2l1JeUUr8f/fyPlVI/kaT73qqU+nz081uUUt+K03X/RCn1mXhca4f7bIw/ruOvUurflVIH43U98VoO3QEIsY1i4LZEXNg0zT9OxHWFELt2P3A5Sfc6BNQBmKZ5CnhPku4bL1fjjzfTNN+WiOuKV0iSlaGUUvcC/wPoAw4DbuADpmn+WCn1JeCiaZofj772Vb/ehTyl1NeBA4AH+M/AaWAUuN00za7odR8BPgO8G7CAdqAceBj4PdM0A0qpe4CPATnAOvDfTdP8D+CLgFcpdRa4OXrfDyulXgeUAh8zTfOz0fv8BvA7RFZmZ4DfNU2zUyl1N/BXgD16/4+apvmvG3+/SqkPR+Nbj773V03THN/ln4MQYgOllA34BPA6IB8wgN80TfPZDa/5AHAL8DGlVAj4AfC/gDcQ+bd6hsj4sKiUGgBeAI4CfxS99peANwINwDdM0/yD7e4LDAEfAQqVUl8EvkxkTLoLGAb2m6Y5EY3reeDDwGPbxbPFb/mAUurHQDUwCfwc0AJ8HWg0TTOslMoBBoiMwy8C3wHuAYqAvzRN83PR+78P+D0gFL3W7wJrW8T/mvHXNM2nlVKua/w5/jbwW0TGOR/wftM0L0f/fN8DdBIZc/cBYSLj+ftN0wxv8XsWeyDbhZntdiL/iE8Afw/8SZyuWwd8wjTN48DfAH9imuYqkQHgNwGUUq2AAr4ffc8x4E3AwejH+5VSpcC3gP9imuZR4FeAf1JKNQO/BqyZpnncNM1Q9Bp9pmneTCQp+kullFMp9Ybo++6J/j7/Avh29PUfBv4q+p5fJzJ7vkopVQ98CLjVNM1biCR/t8fpz0iIbHQ7UAPcYZrmQSJjwv+z8QXRydEp4L+Zpvmd6PeDwM2maR4DxoD/ueEtF03TbI++FiDPNM17gDuBD0bHiy3va5rmMPDHwNOmaf7ahhgWiCQ7vwSglGonkij9aBfxbNQC/IxpmgeAOV5JKGeAt0Rf83PAY6ZpXon+Oge4FbgX+IhS6ohS6n7gD4D7ovf8KvAQMLJF/K8Zf6Nf3zJupZQd+CTwFtM0bwX+Frh70+/j3UB+9Jq3bvi9iRskSVZmGzRN82z085eBkjhdt9c0zRein58FKqKf/zXwXqWUE3gf8HcbEqQvmaa5bJqmH/gK8CCRgbEndi3TNC8BzxIZfLby1Q33dAMFwNuBNuC56KrXXwAlSqkS4JvAZ5VS/0xkNeyPNl1vFDgHvKyU+jhw1jTNh/b8pyGEAMA0zZPAfycyifo4kVWSvB3e9g7gJ4Az0X/DP0lkIhbz9KbXfzd6r1HgClBynff9ApEJGkQmdV+MrtzsFM9Gj5imORX9/ByvjIWfJbLCD/B+4HMb3vNZ0zQt0zRHgP8AHiCSkH0jdi3TNL8E1AJNW9xzu/F3y7ijY/C/EBkjPwMsEJl0b/QMcEgp9QSRZO2Tpmn2bPN7FnsgSVZmW9vwuUVkCX3z5wCuPV43sNV1o9uE54n8Q/9F4O82vC644XMbkSXxrf7+2QDnte5rmmbswE2DyLL4P0ZXvI4DNxHZipgzTfNvgCPAI0SSuvNKqcLYxaID6huAXyUy8/yEUup/X+s3LoTYnlLq7US2/yCSDH2eV481W7ETWc2O/Ru+jVfXTS1vev1rxrXrua9pms8ADqXUbcAvAP+wy3g22nIsBP4ZuFspdR+RlbenNrxut2OhwdZj4Xb33DZu0zR/CXgn0AP8Ia+s9hP9fj+RyepHiUxeH1VKpVvtWkqSJCs7TRFJRIg+sXdPHK/9WSI1Vi+Ypjm24es/q5RyK6U8RGaP3wOej4SgbovGcgh4PfAEkYHIrpTaaYB+GPh5pVR19Ne/RaSmAqXUc8CJ6KzwfURqIIpjb1RKHQMuAh2maX6USE3Hsev8fQsh4M3A96J1Ri8RWU2xb/G6IK8kED8Cflcp5YrWVn2ByA/7eN134702+zvg08B50zSH4hVPtHzin4gkbp/f9O33AiilGoisYv0wes+fVUqVR7/3a0Qmfj07xL/RlnErpcqUUsPAjGmanySy4veqcS5as/VF4GHTNP8weq3De/k9i61JkpWdPg1UK6VMIjOuJ+J47e8TWabfPLCsEln2vxD97xdN05wGfhr4tFLqApHtwF+LroiNE9ni7IjWbm3JNM0fESn2fEQpdZ7IjPSnoqtdf0Ck5uEM8GPgw6ZpDmx47zkiW4qnlFKniNRt/dcb/P0Lkc0+D7wh+m/xJNALNEd/6G/0PeDjSqlfAf6USGH4GSJPHBrA/x3H+54kUqD+nS3e92XgOK9edY9HPBBJWiqIlEds1KyUOk1kq/D3zIhHiEzyHldKXSIyEX1HdLX9WvFvtGXc0XH2z4DHovf9n0RrZzf4CpGk9HJ0LCwAZFU/DgzLsnZ+lRC7pJS6k8gM6nBsW+86nl4UQoi0FV2B/0MiTxj+9oavDwDvibaSEFlAWjiIuFFKfZlI0fp7N9RNCSFEtukjUpbxLt2BCL1kJUsIIYQQIgGkJksIIYQQIgEkyRJCCCGESABtNVlKKQeRzrUjpmkGd3q9EEKkChm/hBC7obPwvQ7of+yxxzSGIIRIsp36nqULGb+EyE57GsNku1AIIYQQIgEkyRJCCCGESABJsoQQQgghEkCSLCGEEEKIBJAkSwghhBAiASTJEkIIIYRIAEmyhBBCCCESQJIsIYQQQogEkCRLCCGEECIBJMkSQgghhEgASbJEUv3yL/8yvb29AMzNzfGOd7xDc0RCiGyUCmNRKsQgEkuSLJFUg4ODNDc3A2CaJvv379cckRAiG6XCWJQKMYjE0nlAtMgyo6OjVFZWYrNFcnvTNFFKaY5KCJFtthuLVldX+fCHP4zT6eS2227jXe96V9JjGB4e5nOf+xzLy8t86lOfStj9RXLISpZIms7OzlclVZcuXZIkSwiRdNuNRQ8//DAPPvggf/Znf8bjjz+uJYb6+nr+/M//PKH3FskjSZZImo6ODvx+PwADAwM89thjsjwuhEi67caiyclJqqurAbDb7VpiEJklKduFSqkioGjTl+uScW+ROkzTxOVy8a53vQulFG1tbXznO9/hAx/4gO7QhNiWjF+ZZ7uxqLa2lomJCdrb2wmHw1pikPEwsySrJutDwP+fpHuJFGWaJt/+9rfJy8vTHYoQeyHjV4bZbixaXV3lT//0T3niiSe47777tMQwNzfHJz7xCS5fvszf/M3f8P73vz+hcYjESlaS9UngS5u+Vgc8naT7C82Wl5cxDEMSLJGOZPzKINcai3JycvjoRz+qNYbi4mI+8pGPJDwGkRyGZVlabqyUagL6H3vsMerqZOVdiCxh6A4gHmT8EiJr7WkMk8J3IYQQQogEkCRLCCGEECIBJMkSQgghhEgASbKEEEIIIRJAkiwhhBBCiASQJEskXDhsEQwltrGfEEIIkWrkgGiRMOuBEI+8OMS//ribpZV1bj9UzX231HHzgUrdoQkhsswjLwzytUdM7DaDXK+Tt93ZzAO3Nybt/pYVZv6Zb7HS+QJh/wqG3UHpA79BTuuJpMUgkk9WskRCzC/5+cDHHufz3z5PSYGHO4/VcNqc5E++8Dzff6ZPd3hCiCzhD4T41DfO8KlvnqWkwENbfRGWBZ/+5ln+8YcdJKNXpBUKMPVvn2buqW9gc7nw1DQDFhNf/x/MPfVNLEtW+jOVrGSJuAuFLT72T6eYXfDxh796KwfbyjAMg1965yE+87UzfOGhC1SW5HDrwSrdoQohMtxf/vNpTl4Y56fua+Mn7t+HYTMIhcJ8+d8u8c1Hu1haWed33nMsYfe3wiEmvvlR1vrOUXzXOyk6chTDsAgHAkw//TBzT3+DcNBP6f2/nLAYhD6ykiXi7ms/6uR8zzS//pOHObSvHMOINMh12G389s8co6G6gL/4x1MMjC9qjlQIkclOXhjj5IVxfv5BxU++aT+GLTIW2e02fu0nD/PgXU388OQAZ7uuJCyGpTOPsNZ3jrL730Px0UiCBWBzOim/723kHTjGwvP/hn+iP2ExCH0kyRJxdbF3mm882sUbb63nzhOvPW7E7XLwX3/5FlxOO1946IKGCIUQ2WBlLcDnv32BpuoCHrir+TXfNwyDn36zoqIkh89/5wKBYPy37EKrS8w++TU8DQfI36+AV29NGoZB6R33Y/d4mf7BX2OFQ3GPQeglSZaIq689bFJc4OYX3n5w29cUF3h4xxtaOd8zzYXe6SRGJ4TIFl/598vMLfn4zXcfxm7f+kedy2nnF9/WzuiV5YTUis4+8VXCvlXK7n7g6grWZnaPl9K734x/oo/FUz+MewxCL0myRNx0Dsxyvmead9zTgtNpv+Zr77+tgeJ8N/+UpMJTIUT2uDK3yn+cHOCB1zXSUFt0zdceP1DBsf3lfO1hk/klf9xi8E8OsHTmEQpO3IurMP+ar81tbcdb38Lc098kHIhfDEI/SbJE3Hzj0S7yc1y8/pb6HV/rctp5572tXO6f5WzXVBKiE0Jki39/NlLf9Na7WnZ8rWEY/NxbD7DmD/LwC4Nxi2Hhxe9jOF0Un7iVzduEW8VQdOIOwr4Vli89E7cYhH6SZIm46Btd4FTHJG+7qwm3a3cPrb7hlnpKCz187REzwdEJIbKFPxDi4RcGufVQFSXF3l29p7Yin/aWUv7j+QFC4RtfWQ+tLbFy+Vny2m/D7rr2qn6Mp6YBV0kFiy99X1b3M4gkWSIuvvNkD163g/v20NzP6bDzpjua6OifZXRqOYHRCSGyxZMvj7C0GuDNr9tbo9E33tbA1NwaL3dO3nAMS+efwAquU3Dw6K7fYxgGBUduZv3KEL7hjhuOQaQGSbLEDVvzBzl5YZy7j9eS43Xu6b13HavBMODxl4YSFJ0QIltYlsX3n+mjsSqffU0le3rvTQcrKcxz84PnBm44hqWXH8Zd04q7uHhP783bdxib28Pii9+7oRhE6pAkS9yw5y+O418Pccex6j2/t6jAw5G2ch4/NUw4Dsv0Qojs1TkwR//YIg/e2XS1P99uOew23nBLHS93TnJldvW6Y/ANXiQwO0bB4duAvbWFsDmd5LcfZ6XrFMGlueuOQaQOSbLEDXvi9AgVxV5a6vc2a4u5+6Zaphd8XOiRdg5CiOv31NkRnA4btxze+4QP4N5bGwB45MXrL4BfPPMINk8euU3Xdy5i/oGjYIVZ6Tx53TGI1CFJlrghc0s+znZd4a7jNdhse5s5xtzUXkmOx8GjsmUohLhO4bDFc+fHOaHK8biv78S4siIvB5pKeObc2PXFEFxntfs0ufuOY9umN9dOXMVlOIvLWemQpwwzgSRZ4oY8fXaUsAWvO1pz3ddwOe3cfqSakxfGWfUF4hidECJbdA7OMrvo49ZD17eKFXPzoSpGriwzPLm05/eu9Z3DCvjIbd53QzHktip8w10El2XLMN1JkiVuyBOnR2iuKaC64trN9nZyx7Ea/IEQZ6RnlhDiOjx7fgyH3cYxVX5D17nlYCUAJy+M7/m9K+YL2Nw5eKtvLNHLa20HLFY7X7ih6wj9JMkS121qbo3u4XnuOHb9q1gx+xqKyfU6eeHiRBwiE0Jkk3DY4rlzYxzfX47Hs7cnnDcrKfTSWl/Ecxf2tmVohYKsdr9ETssRjBv8yeosLsNZVMqybBmmPUmyxHU7Fe0nc2x/xQ1fy263cXR/Oac6J+PSDFAIkT26hueYXvBx2+GquFzvloOV9I4scGVu908Z+oYuE15bJrflxrYKIdIzK7f1AL7hTkIrCzd8PaGPJFniup3umKSi2EtVeW5crnfiQAVLK+t0DUodghBi9547P47DbnBU3fiED+Dmg5FkbS9bhivmCxgOF96aurjEkNvaDpbFiilbhulMkixxXdYDIc52T3HiQMWe+9Fs58i+cuw2gxcu770WQgiRvU53TnKwuXTPzZC3U1WWS31lPs+d392WoWWFWTFfxNt8CJsjPj9WXSXlOPILWe05FZfrCT0kyRLX5WLvDP71EEf331iR6Ua5Xif7m0p48dKNH2shhMgO0/NrDE0scXR/WVyve/xABZ2Dc7t64nn9yhCh5Vlym258qzDGMAy89c2sDV7CCgXjdl2RXJJkietyqnMSl9POgebSuF73xIEKhieXmJhZiet1hRCZ6WzXFQAOtsY3yTrcVkY4bO2qSfJa/zkAvNW1cY3BW9eCte7DP9YT1+uK5JEkS+yZZVmcujzJ4dZSnM7dnTC/WycORGoqXrosq1lCiJ2dMacozndTW3ljbWQ2a2sowuW08/Iu2sqs9Z/DWVqDIzc+9akx3romMAxWe0/H9boiea6vLe4eKaWKgKJNX45PdaBIurHpFcZnVnjrXU1xv3ZlaS4VJTmc7Z7infe0xP36QuyVjF+pKxS2ONM1xU1xrA2NcTrsHGguubpStp1wcB3fUAf5R+5kr2cV7sTu9uCuqGGt7wzc+4txvbZIjmStZH0I6N/08XSS7i3i7IwZGXQO7YtfPdZG7c0lXOqdkVYOIlXI+JWi+kbnWVpd53BbfLcKYw63lTE2tcLU3Nq2r/EPd2IF1/HWNiQkBm99M/7xAUJre+9AL/RLVpL1SaB508c9Sbq3iLMLvdOUF3spL8lJyPXbW0tZ8QXoH5X+MCIlyPiVol6OTvjaW+NbGxoTS97OXGM1a7X/HNjseKturMv7dnLqWwCLtf7zCbm+SKykbBeapjkPzG/8mlIqGbcWcRYpBJ3h5vb49KPZysFoMf35nina6jfv0giRXDJ+pa4z5hTNNQUU5LkTcv3aijyK8t2c6brCA7c3bvmatf7zeGpasDkdQPxX390VNdhcbtZ6T5N38K64X18klhS+iz0ZmlxiaXU97k8VblRU4KGmPI+z3Ts/1SOEyE6+9SDm4CxH9iVmqxAibRQOtZZxrnua8BblC6HVRdYn+vHWt5GIBAvAsNnw1DaxNnAxIdcXiSVJltiT8z2RJ232NxUn9D7tLSVc7p8hGIpvIakQIjOYg3MEQxaqqSSh9zncVsbSyjoD44uv+d7a4EXAwltTn9AYvDUNBBdnCC7s/KSjSC2SZIk9udg7Q0Wxl7LixNRjxRxsKcW/HqJ7aH7nFwshss6lvhkMA9oaEjvhU80l0fu9dmXdN3QZw+nGXZ6Yh4BiPNWRJG5t6HJC7yPiT5IssWvhsMXF3mkOtSRueT7mQEtkO/Jcj8zchBCvdalvhqbqArye+Byls52yIi8lhR4u9s285nu+oQ481S0YRmKfhHaVVmC43PgGLyT0PiL+JMkSuzY4scjSaoADLYldngfIz3HRUF3A+V10WxZCZJdAMEznwCztCawN3Ug1lXC5fxbLeiWZCvlWWL8yiKdm64L4eDJsNjxVdfiGOxJ+LxFfkmSJXYsdL7E/wTUQMaqpmK7BOanLEkK8Ss/wPOvBMPsbE7tVGKMai5lf8jO+4bgv/0gnYOFJUOuGzbw1DQRmJwitSGubdCJJlti1i30zVJbkUFrkTcr99jeW4A+E6B+TQUUI8YqL0fqofQl+ACcmNrG81PvKlqFvuANsdtzllUmJIVaXJatZ6UWSLLErlmXR0T+LStLMEWBftKD1cv9s0u4phEh9l/pmqKvIIz83Mf2xNqspzyPX6+Ri/ytJ1tpQB+7KRmyO+J7fuh13eTWGw8HagNRlpRNJssSuTMysMr/spy2JSVZJoYeyIi+X+19bcCqEyE6hsMXl/lkONCenbAHAZjPY31jM5Wjxezi4jn+8B09NM4nqj7WZYbfjrqzFNyxPGKYTSbLErnQMRFaTkt2BfV9jMR0Dry44FUJkr/6xBdb8QQ4kaaswRjWVMDGzytyiD/9YN4SCeKpqkhqDt7qB9SvDhH0rO79YpARJssSudA7MkuNxUFuRn9T77msoZm7Rz5VrHNAqhMgendEJX2t98laygKtNTy/2zeAbitRFeSqTU48V466uAyx8Y91Jva+4fpJkiV3pGJhlX30xhs1I6n1jTw/JlqEQAqBzYI7ifDclRZ6k3rexpgCX087l/hl8IybO0hrs7uTUhMV4KiIrZ37ZMkwbkmSJHa36AgxOLLKvMfmHNddV5uN1O6T4XQgBgDk0y76GYgwjuRM+h91Gc20h5sAs/rEuPNXJq8eKsbncOEvK8Y2aSb2vuH6SZIkdmYNzWFby67EgUnDaWl9Ex4CsZAmR7eaX/EzMrLKvIfljEUTGwKXJYcJry7grk1uPFeOprMU/1otlSf/AdCBJlthR58AshgEtdXoGtv2NxQxNLLGyFtByfyFEajAHIyvausai1voi6o3IUV+eBJ9XuB1PVS1h/xqBmTEt9xd7I0mW2NHlgVkaqgrwJPiMsO20NRRhWdA9PKfl/kKI1NA5OIfdZtBUW6jl/q31RTQ5pgjZ3TiLk1t4H+OurAXAPyJbhulAkixxTaGwhTk4x/4En3R/Lc21kVlr56AkWUJkM3NwjqaaApzO5DQA3ay4wEOre4YpeyUGerbrnEWl2NwefCPS+T0dSJIlrmn0yhJr/iCtGuqxYnK9TqrLczElyRIia4VCYbqG59hXr2/CZwV8VBqzdPv0rGIBGIaBu6IG/2iXthjE7kmSJa6payiS2DTX6Vmej2mtK6J7eF6akgqRpQbGF/Gvh2it1zcWBSf7sWFxeaWEmaWQtjg8lbWsT48R9q9qi0HsjiRZ4pq6hubJ8TioLM3VGkdLXRELy36mpCmpEFnJjE74WjSuZIWiTUAHg2V0ja5ri8NdVQtY+Md6tMUgdkeSLHFNXcNztNYVYUtyE9LNYtuVsaeLhBDZxRycozDPRVmxV1sMwfFujMIKfIaHjlG/tjjc0aakvpFObTGI3ZEkS2zLHwgxMLZIm8bl+Zj6qnycDhudQ1KXJUQ26h6eo62+KOlNSGMsyyI43oOrqpGmCifmiL6VLLvbg7OoFP+Y1GWlOkmyxLb6RhYIhS2aavUVvcc47DYaawqu1ogJIbLHqi/AyJVlWjSORdbyLNbKHM7yKlqrnfROBgiF9dWIuiuq8Y/3abu/2B1JssS2uqJ9qVo09aTZrLWuiN6RBYIh6XQsRDbpGZnHsvQ+gBOc6AXAUVpOS5UTf8BiZDqoLR53eTWhlQWCi3IaRiqTJEtsq2tojtJCD4UFyT2IdTut9UUEgmEGxxd1hyKESKLuoXkAmmr0JVmhiV6w2bEXldJaFWnM3DWmvy5Lit9TmyRZYlvdQ/NazivcTmtdrPhdtgyFyCZdw3NUluSQl+vSFkNwog97aQ2G3UZViR2vy6BrTF9dlqusEmw2/GNS/J7KJMkSW1pY9jM+s3I1sUkFZcVe8nKcV7cxhRDZoXt4XutYZFkWock+nBX1gIXNMGiudNI9ru88VZvDgaukXFayUpwkWWJL3cPR5fkUqceCSKfj5tpCekbmdYcihEiS+aVIf7wWjfVY4fkJLP8KjrLKq19rqXIycCVAIKi5+H2iH8uSOtVUJUmW2FLPyDyGAU01BbpDeZXm2iKGJ5fxresrOBVCJE/sYHjt9ViAs7Ts6tdaqpyEwtB/Rd9qlruihrB/jcDshLYYxLU5knETpVQRsHmtty4Z9xbXp2d4npryPDwep+5QXqW5tpBw2KJ/dJH2Zn3nh4nsIeOXXl1D89gMaNQ44QtO9ILDha2wBIisXLVEi9+7x/zsr9FTK/ZK8Xs3rtIaLTGIa9vVSpZSqmznV13Th4D+TR9P3+A1RQJ1D8+nTOuGjZqjMXVLXZbYJRm/0lv38Bx1lfm43UlZE9hScKIPR3kdG/uglhXYKPDaMHUWvxeXYTgc+Eel+D1V7Xa78JJS6p+VUndf530+CTRv+rjnOq8lEmxmYY3ZRd/VhCaVlBR6KMp30zUsdVli12T8SlOWZUUnfBqL3sMhQlf6cVbUEVvFgkiNaEuVkx6Nxe+GzYarrAr/eK+2GMS17XZq0AT8HPBxpVQu8DngH03TXNrNm03TnAde9VNRKbWHMEUy9Y4sAKlXjxXTXFtIjyRZYveakPErLU3NrbG4sq616D00MwLBdRylFa/5XkuVg3MDftbWw3hdekqc3RXVLF0+ixUOYdjsWmIQ29vV3wrTNNdM0/yiaZqvAz4I/D4wppT6rFLqtX/zRFrrHo7UQNRXp26SNTa9zKpP3wxSpA8Zv9JX7EniRo1jUazo3VFS/prvtVQ5sSzom9BY/F5ejRUMEJge0RaD2N6uU2+l1FuUUv8KfAN4CLgTGAb+LUGxCU16RuYjNRAufTUQ19JcW4hlvbLiJsROZPxKTz0j89htBnVV+dpiCE32Y7g82Apeu5rWHCt+H9dXl+UurwKk83uq2tVPUaXUEDAN/DXwS6ZprkW/dUEp9b5EBSeSz7IseobnOa5eO2tLFbFasa7hOY603WhNs8h0Mn6lr57heRqq8nE69W2DBSf7cJQ3YPDaflhFuXaK82xakyxnUSmG04V/vIv842/UFofY2m6XKn7JNM2nNn5BKXXQNM3Lpmm2JCAuocn0vI/5ZX9KFr3HFOS5KS3yXG2YKsQOZPxKQ5Zl0TMyz62HqvTFEAoSmhrCdeQu2CLJAmiudNKrMckyDAN3WaUUv6eoayZZSqlYI6JPK6XuBWIPsDqB7wL7Ehea0KFnRH/jv92Q4nexExm/0tvk7CpLqwGtE77QzAiEAjjKti/da6kVvY0cAAAgAElEQVRycqbXz6o/TI5bX/H74sUzWKEghj01yzyy1U5/I75GZJn9CDAT/XyaSC3Dy4kNTejQPay/BmI3mmsLmZxdZXlV3wxSpDwZv9JYrOZSb9F7HwDO4tJtX9Nc6cQC+iY1F7+HAqxL8XvKuWbKa5rmgwBKqX8wTfPXkxOS0CkVaiB2I7bS1juywLH9qVs/JvSR8Su9dQ/P4bDrnfAFr/RhuLwY+YXA1ucDNldGfox2j/k53OBOYnSvcMWK38d7cFc2aYlBbG2n7cIDpml2Ap9RSt20+fumacpsMINEaiAWuPVg5c4v1ix2cHX3yJwkWWJLMn6lt56ReRqqCnA49E34QhN9OCq2LnqPKcy1U5Jvo1tjU1JnYQmGy836WBccf5O2OMRr7bR5+5fA24F/3eJ7FiBFoxlkam6NpdX1qwlMKsvPcVFW5KV7WNo4iG3J+JWmYhO+O45U64shFCQ0PYTr6D1sV/Qe01zppHdCd/G7dH5PRTttF749+t/m5IQjdEqFxn970VRbQO+oFL+Lrcn4lb4mZlZZWQtonfCFpochFNyy0/tmzZVOTvekQPH7hVNYoQCG3aklBvFaO20Xfupa3zdN8/fiG47QKRUa/+1Fc20hpy5Nsry6Tl6OS3c4IsXI+JW+Yk8Oay16n4wWvZdsX/Qe01wZSWp6J9Y50uhJaFzbcZdXYYWCrE8N466SRdpUsdN24UxSohApIV2K3mOk+F3sQMavNNUzMo/DbqOuUmPR+2QfhjsHI6+A7YreY2LF711jepMsAP94ryRZKWSn7cIPJysQoVc6Fb3HSPG7uBYZv9JXz8g8jVX52B16tt4gcpyOo6IeY4cECyLF76X5Nno0Fr87Coqxudz4x7rgxJu1xSFebaftwmdM07xbKbXEFpV/pmmmR/GO2FE6Fb3HSPG7uBYZv9KTZVn0jqZS0fvupELxu6usivVoby+RGnbaLvzp6H8PJzoQoVe6Fb3HSPG7uAYZv9JQahW9736FvKnSyakePyu+MLkeTcXv5VUsXjwtnd9TyDX/JpimOR797yBwAPgg8FtAQ/RrIkOkW9F7THNtIZMz0vldvJaMX+kpFSZ8rxS97/4A+ljxe9+kvrFoY/G7SA27SreVUn8EfAJYBYLA3yulPpDIwERy9Y4sUF+ZPkXvMRuL34XYioxf6aV3ZB6H3aC2Mk9bDMHJ/g1F77tztfO7xsOi3eWRLVb/eI+2GMSr7XZN8xeA203T/GPTNP8/4HbgdxIXlkim2Gn3Og9ivV4bi9+F2IaMX2kkJTq9T/bhKN9d0XtMrPO71uL3wuJI5/fxbm0xiFfbbZK1BizHfmGa5hzgS0hEIumm5tZYXFlPyyRLit/FLsj4lSYsy6J3ZEHrWBQreneU1+z5valQ/O4uq8Q/LsXvqWKnpwt/KvqpCTyklPo7IAS8FziV4NhEkqRCDcSNaK4tlOJ38RoyfqWfydlVltcCNNVorMfaQ6f3zVKi83t5tRS/p5Cd/g98cNOv/68Nn+/9b6BISela9B7TVFvAS5cmpPO72EzGrzTTnUqd3otL9vze1Ov8LidK6bZTM9L7khWI0CfdOr1vJp3fxVZk/Eo/saJ3nRO+4GQ/hsuLkV/ITp3eN9tY/K4vyXql+F2SLP12tZaolNoH/C6QBxiAHWgzTfOuBMYmkiAdO71vJp3fxbXI+JU+UqbovaJhT0XvMSlX/C6d37Xb7abxVwEXcCcwABwELiQoJpFEV9Kw0/tm+Tkuyoql+F1sS8avNBCb8LWkadF7TGoUv1dJ8XuK2G2SlW+a5m8DPwJ+CLwZuDlhUYmkuVr0rrHQNB6aa6T4XWxLxq80kFqd3q+/ZK+50snYbIhV/95XwuLFXV7F+tQwVkjfipqI2G2SNRv9bw9w2DTNeSJL7iLN9caK3jWedh8PTbUF0vldbEfGrzTQk0pF7yWl132NlqpXit91cVdUS+f3FLHbJKtbKfVJ4Fngg0qpDwLuxIUlkqU7zYveY2J9daTzu9iCjF9poGdkHofdpnXCF5zs23On981iTxh2jek9XgfAP96rLQYRsdsk67eBp03TPAP8LXA/8L6ERSWSItL4Lz07vW8We8Kwa1g6v4vXkPErDfSMzNNUU4Ddoae/FEBo4vqL3mMKcmyU5tu0Hq/jKCjG5nLjHzW1xSAidvW32TTNVeAJpdQ7gH7g10zTfDahkYmEm5xdZWlVbw1EvOTluCgv9l6tMRMiRsav1BcORyd8NRqL3oOBGy56j2mpctI7oa8eyjAM3OXVrE9I8btuuz0g+u1Euib/AfDfgQ6l1OsTGZhIvNjWWrp2et+subaQHtkuFJvI+JX6JmZWWPEFaa7V2el9CMIhHKU33gamucrJxFyI5TV9xe+u8ir8UyNYQSl+12m3Pff/FHiDaZqXAJRSNxFZdr9lN29WShUBRZu+XLfbIEVidA/P4bAb1Kdpp/fNmuuKePHiBAvLfgrzpORGXCXjV4q72uld40rWK0XvZTd8rZYNnd+PNWtqSlpRDeEQ61NDuKtbtcQgdl+TZcUGKADTNF/ew3sBPkRkmX7jx9N7eL9IgO7heRo1N/6LJyl+F9uQ8SvF9YzM43TYqKnI0xZDcKIPw5OHkXvjk86rxe8a67JeKX7v0RaD2PmA6NjhTS8ppX4f+DyRcwZ+FXh8D/f5JPClTV+rQwYqbcJhi56Ree46Vqs7lLiJHSrbNTzHTQfkaLpsJ+NX+ugZmaepugC7XWPR+2T/DRe9x+R5bVQU2unRWfyeX4TN7cE/2gU3Pagtjmy303bhNGAROYoC4C82fM8Cfn83N4n2pXlVRbJSapchikQYn1lhVXMNRLzleJxUleVe3XoQWU/GrzQQKXpf4J4T+iZ8VmCd0Mww7hP3xu2azZVOrcfrxIrf/RPSxkGnnQ6I1jetEAnVPRRpdZAJTxZu1FxbSNfA7M4vFBlPxq/0MDq1zJo/SEudzk7vgxAOYb+BTu+bNVc5eKHLx+JqiIIcPSUZ7vJq5s89Tzi4js3h0hJDttvtAdE2IrO+twJO4GHgz03TDCYwNpFA3SPzuJx2asr11UAkQnNtISfPjTG36KO4QE/BqUgtMn6ltu5obzudRe/B6GpPPIreY2Kd33vGA9zUqinJqqyGcJj1yQE8tfu1xJDtdjvT+yiRBn7/G/grIgetfjxRQYnE6x6ap7mmAJvGGohEiBW/d0u/LPEKGb9SWPfQPB633glfaKIPI6cQIycnbtdsrnRiAF1j/rhdc6/c0Z5f/tEubTFku922cHgLcItpmgEApdQPgHMJi0okVCgUpm9sgTfeWq87lLhrrC7AMKBraI7bDlbpDkekBhm/UljX8ByttYUYNmPnFydIcKIHZ2UDBlbcrpnjtlFdYsfUeLyOIy8fe05etPP7O7TFkc12u4xhiw1QAKZp+gHpcJamhq8s418PXT2KJpN43A5qyvOk+F1sJONXigoEw/SNLtJSt7kNWfJY/lXCs+Nx6fS+WUtVpPjdsuKXvO2Vu6JazjDUaLcrWWeVUp8APhP99QeA84kJSSRaz3BmFr3HtNQVcs6cwrIsDEPf7FikDBm/UtTg+CLBUFjrcTrByT7AwhHHoveY1ionz1z2Mb0Uorxgtz9u48tdUc3qQDdh3wo2T66WGLLZbleyPgAUA88BJ4Fy4IOJCkokVtfwPF63g4rSzPwH11pXxOLKOlfm1nSHIlKDjF8p6mrRu8YJXyhW9F4av6L3mJbqSPF795i+hVN3RbQuS84x1GK3qfX/a5rmryYyEJE83UNztNYVYtNYA5FIsa0Hc3CWypL4FbKKtCXjV4rqHp4nP8dJWbFXWwzBiV5sheUYbjdY8T1rsKHcid0G5qifOw/o+T26y6sB8I+aeJuOaIkhm+12JUsq5jKEPxCif2yR1np9NRCJVleVj9Nhw4z2AhNZT8avFNU9PE9rXZHWbf3gRC/Oyoa4J1gALodBQ7mDbo2d3+0eL46CYvxj3dpiyGa7XcnqU0o9DDwDLMe+aJrmXyUkKpEw/aMLhMKW1sZ/ieaw22isKaB7SIrfBSDjV0ry+YMMTSxyc3ubthjCK/NYSzM4jt6RsHu0VDl5rsNH2LKwaUomI8Xvsl2ow25XsmaBUeBm4G7gcPRDpJnY6k5LbeauZEGkLqt3dJ5QKP6zU5F2ZPxKQb2jC4QtvQ/gJKIJ6WatVU7W1i1GZ/T1vnVX1BBcmiW4LKv7ybbbJOt/ERmU3g78BNAK/EmCYhIJ1DU0R2mhh8IM74beUlfEeiDM4MSS7lCEfjJ+pSBzMPIDv1lj+4bQRC8YNhwl5Qm7R6zze7fGflmeymjx+1iPthiy1W6TrC8CXwC80Y9vAX+fqKBE4nQNzdGWwfVYMbHtUHNIzjEUMn6lInMo8mBKQZ5bWwzB8R7spTWQwJMvaksdeJwGHaP6kixXWSXYbPhHLmuLIVvttiYrxzTNv93w608rpf5zIgISibOw7GdiZpX7b23QHUrCVZTkkJfjpGtonrcmrtxCpAcZv1KQOTjHgeYSbfe3rDChiR7cbcchjp3eN7PZDFqqnFpXsmwOJ+7SSnxyvE7S7TZ971NK3Rn7hVLqMNCfmJBEosS6oDdncNF7jGEYtNQV0SVPGAoZv1LO9PwaMws+2jRuFYZnx7H8qzgr4t/pfbN9NU4GrgTwBfTViLora/CP92OFQ9piyEa7XcmqBZ5USp0DgsAJYEIpdR7ANM2jCYpPxJE5OIfNICOP09lKS10h3/3xFGv+IF63nm7LIiXI+JViYg/g6KzHCo5HWho4ShNXjxXTVuMkFIbeiQCH6vVsj7ora1m8eJrA9AiuikYtMWSj3f7k+W8JjUIkRdfwHPWV+bizJOFoqy/GsiJdpY+2JX4gFSlLxq8UYw7O4bDbaKjO1xZDcLwbw52LraAQSOwKU2u0+L1zxK8tyfJEV+x8I6YkWUm0q5+2pmk+mehARGKFwxbdQ3PceqhKdyhJE2u4erl/VpKsLCbjV+rpGpqjpbYQh8OuLYbQWDeOqkaMBCdYAIW5dioK7XSO6KvLchQWY3N78Y90wk0PaIsj2yTukQqRUkanlllaDdDWUKw7lKTJ9TqpKc+jc0CeMBQiVQRDYbqH52mr11e2YK2vEZoexllRl7R7ttU4McfWsazEFdlfi2EYuCtr8Enn96SSJCtLmIORRCOTj9PZSltDEebQnLaBTQjxagPji6wHQlfPGNUh0oTUwlFWmbR7tlU7mVsOM72kr/DcU1lDYGacsH9VWwzZRpKsLNExMEdejpPK0lzdoSTVvoZillcDjE4t7/xiIUTCxZ74bdE44YsVvTvLEtfpfbO2aheA1i1Dd2UtYElT0iSSJCtLdAzMsr+hGJtN30GsOrQ1RAZy2TIUIjV0DMxSmOeitMirLYbQWA/24ioMZ/KK0BsrHDjt0KmxKak7Vvw+LE1Jk0WSrCywvLrO8OQS+xqya6sQoLosjxyPgw5JsoRICR39sxxoKsHQdFiyZVkEx7txVDaS6KcKN3LYDZoqnZgj/qTdczO724OzpBzfSIe2GLKNJFlZoDN6RlhrffYUvcfYbAat9UVX/wyEEPrMLvqYnF1lv8YHcMLzE1hrizgrE9+EdLP9NU56JwOsB/XViHqq6vCN9khT0iSRJCsLdA7MYrMZNGs87V6nfQ3FDE8usbIW0B2KEFmtoz/6AI7GJCs4agLgTGLRe8z+OhfBEHSPazwsuqoOa93H+tSwthiyiSRZWaBjYJam6oKsaUK6WVtDEZaFHLEjhGaXB2ZwOWw0VhdoiyE42onhycNWmPzyif01keL3S0P6tgw91ZG2Fb5h2TJMBkmyMlwoFKZraE7r8rxurXVFGAZc7p/RHYoQWa2jf5a2+iLsDn0/eoKjJs7q5qQ0Id2sIMdGTYmdy8P6kixHfhH2nDz8Q5e0xZBNJMnKcAPji/jWQ1efsstGXo+ThqoCLvVL8bsQuvj8QXpHF1BNGuuxVhcIz43jrKrXFsP+WhedI+uENTYljdRlmVrun20kycpwl6KrN9lY9L6RairBHJwlEEz+7FUIETk7NRy2tJ46cbUeq1zf8WKq1sWK32J4OqgtBk9VHcHFWYKLsrqfaEkp0lFKFQGbl1KSd55BFrvUN0N5sZfSYn09aVKBairm4ZMD9I7Oc6CxRHc4Io3I+BUfV4veNU74gqMm2J3YS0q1xaDqIodFXx7y01ju1BKDe0NdVt6hu7XEkC2StZL1IaB/08fTSbp31rIsi0t9Mxxs1jegpIr9TZHE6mKvzNzEnsn4FQeXB2apr8wnx6snsYBI0bujsgnDpm8Tp6LQTlGujUsa67LcpZUYDie+YanLSrRk/U37JNC86eOeJN07a41cWWZheV1rDUSqKMxzU1WWy8U+SbLEnsn4dYNCYYvOgVmtY5EV8BO6MoCzqgHQ16fKMAz21Tjp0Hi8jmG3466okScMkyAp24Wmac4D8xu/ppRKxq2z2qVoQrFPtseASF3WqUsThMNW1h0vJK6fjF83rn90gVVfkPZmfWNRcLwHwiGcFfrqsWJUnYuXuv1MLwYpK9DTWsdb28DcS88QWlvG7s3TEkM2kML3DHapb4aifDcVpTm6Q0kJqqmYlbUAQ5NLukMRIqtc6J0GYL/GCV9w+DIYBs6K5Dch3ay9LtIv68Kgxn5ZNY2AJatZCSZJVoayLIuLvdO0N+s7IyzVqKt1WdOaIxEiu1zonaa2PJfCAo+2GILDl3CUN2A49NWExTSUO8hxG5zXmGS5K2ow7A58A+e0xZANJMnKUJOzq0wv+Ghvkq3CmLIiLyWFHqnLEiKJQuHIAzjtLfoewLECfoLj3ThrW9BZjxVjsxm017u0rmTZHA7clbWsDUrxeyJJkpWhrtZjSZJ1lWEYHGgq4WLvDJamRoBCZJtYPdYBjWNRcKwrUo9VVasths0O1ruYnA9xZUFfvyxvbQPrV4YJrS1riyHTSZKVoS72zpCX46S6XAoaNzrYWsrCsp+hCanLEiIZYvVYSmeSNXwZDBvOcv31WDEHG6QuKxtIkpWBLMvibPcUh1vL5Cm6TQ62lAFwtntKcyRCZIcLvdPUaK7HCgxfwlHRiOHQ8yTfVurKHOR5Dc4P+LTFIHVZiSdJVgYam15hen6Nw63ShHSzsmIvFSU5nO2SJEuIRIvVYx3UWY+17iM00YuztplUqMeKsRkG7XUuLgzq65cldVmJJ0lWBoolEAc0Dmyp7FBrKZf6ZgiF5BxDIRKpb3Q+BeqxzJSrx4o5WO9iajHExHwq1GVJCUUiSJKVgc51T1FR7KW8RPpjbeVgaxlr/iA9I/M7v1gIcd1SYcIXGLoENjuustSpx4qJ1WXp3DL01jYBFmsDF7XFkMkkycowobDF+e4pjrSVSX+sbbS3RGbVUpclRGK9bF6huaaAgjy3thiCgxdwVDWDw64thu3UljooyrVxpk9jv6zKWgyXm7WeU9piyGSSZGWY3pF5VnxBDrXJVuF2CnLdNFTlc65bmpIKkSirvgCdA7Mc3VeuLYbw6gKhK/246ttIpXqsGMMwONLo4tyAj1BYT3yGzYa3tpG1/vPS2iYBJMnKMLHledUsSda1tLeW0jkwiz8Q0h2KEBnpYt8MwZCldcIXGLwAgKu6TlsMOznS7GZpzaJ3IqAthpz6FoJLswRmx7TFkKkkycow57qnaKouID9X3/J8OjjSVk4gGJYjdoRIkDPmFdxOO20NxdpiCPafxfDmYS8p0xbDTo40ujGA071r2mLw1rcAsNZ7VlsMmUqSrAyy5g9yuX+Ww7JVuKMDzSW4nDZeujypOxQhMtIZ8wqHWktxaKqFsqwwgcELuOoVBqn7JHFBjo3mSgcva6zLchYU4SgsZq33tLYYMpUkWRnkbNcUwVCYo/srdIeS8lxOO+0tpZzulCRLiHibnF1ldGqFw236VpBCVwaxVhdw1TVri2G3jjS76RpdZ9mnLxnMqWtmbagDK6hv2zITSZKVQU51TJLjcbCvUd/yfDo5tr+CiZlVxqbk3C4h4uls1xUADrXqS7IC0S7mrhTsj7XZsSY3YQvO6WzlUN+CFVzHN9KpLYZMJElWhrAsi1MdkxzdV47dLv9bd+PY/shTTy91yGqWEPH00uVJyoq8VJXnaoshOHAOe1kdhserLYbdaq124nUZnO7V2S+rEWw2VqWVQ1zJT+MM0Te6wOyij+NK3+PS6aa8JIfq8lxOSZIlRNz4AyHOdE1xS3ultl59Yd8KwbEuXA37IYXrsWIcdoPDjS5O9/i0tVGwudx4a5tY7ZYkK54kycoQpzomMQw4rLEnTTo6tr+Ci70z+Pz6jrUQIpOc655iPRDi+AF9Y1Gw/wyEQ7jrmrTFsFc3tXqYXQ7TM66xlUNTG4HZCdZnRrXFkGkkycoQL3VM0lZXpLWzcjo6psoJhsKck+7vQsTFi5cm8LodqCZ9Tzmv95zCyCnAXpo+k84TrW4MA57v0tfKIbdxHwCr5ovaYsg0kmRlgIVlP11DcxxX8lThXqnGErxuBycvTugORYi0Fw5bvHhpghOqHLtDz48XKxggMHAOd9MhDCN9Opjne20cqHXyvKkvyXLkF+Iqq2S1+wVtMWQaSbIywEuXJ7AsOLo/fWZtqcLhsHHiQAUvXhonFEr92g0hUlnPyDxzS35OHNB3GHNw+BKsr+FqbNUWw/W6uc3D0HSQ8Tl95Qs5jfvwjfYQWlnQFkMmkSQrAzxzbozKkhwaagp0h5KWbj5UxdJqgIu9M7pDESKtPX9xHJvN4PA+fa0b1ntPgdONq6JaWwzX6+a2SLnH8+aqthhym/eBZbHa87K2GDKJJFlpbnl1nXPdU9x+uErbkzzp7ui+clxOO8+el3O7hLgRL1yaoL2phNwcl5b7W1aYQO9pXA3tYE+/8bCiyEF9mYPnu/S1cnCVVWHPzWfFPKkthkwiSVaae+HSBMGQxS0Hq3SHkrbcLjvH9pfz/MVxwuH0qeEQIpUMTiwyNLHErYf0bRWGJnqxludwRwu409EtbW46RtZZWNFzeL1hGOS2KNb6zhP261tRyxSSZKW5Z8+PUVbkpbGuUHcoae3mQ5XMLfkxB+d0hyJEWnr67Cg2A24+pG+bbt08CXYHrto6bTHcqNuUB8uCZzr0JTh5bQexQgFWul7SFkOmkCQrja2sBThjTvG6w9WyVXiDTqgKHHYbz56X/jBC7JVlWTx9ZpRDrWUU5utpI2OFw6x3nsTVeAjDqWe7Mh7qyxzUljp48pK+pwzdlbU48gpYufikthgyhSRZaezFyxMEQ2FuOaxveT5TeD1ODreV8cy5MUKyZSjEnvSOLjA2vcIdR/WtYgVHLmOtzOFubQfS99+wYRjc2e6hY2SdKwt6njI0DIPctoOsDlwgtLakJYZMIUlWGnvqzCilhR6aaot0h5IR7jpRy8yCj4s907pDESKtPH1mFLvN4ES7vgnfesez4PTgrqnXFkO83HnAA8BTl/RuGRIOs9L5vLYYMoEkWWlqdtHHy52TvP6mOmw22SqMhxMHKsjxOHjs1JDuUIRIG+GwxVNnRzm+v1zfU4XBAIHuF3G3HE3Lpwo3qyhy0Fbt5EmNSZarrBJnYQnLF5/SFkMmcCTjJkqpImDzckv6ViamgCdODxO24M7jNbpDyRgup53bDlfz3PkxftsfxOtOyj8PkeJk/Lq2y/0zTM+v8TNv3q8thsDAOSz/Cp7WA9piiLc72z185fElhqYCNJQ7k37/2Jbh/OlnCS7O4CjQd0xSOkvWStaHgP5NH08n6d4Zx7IsHn1pGNVYTGVZnu5wMspdJ2rxr4c4eWFcdygidcj4dQ0PvzBIjsfBiYMatwovP4XhzcdRmTmtbF6nPNgMeOzCirYY8tURwGLp3OPaYkh3yUqyPgk0b/q4J0n3zjjdw/MMTy7x+ptkMh1v+xuLKS/2ypah2EjGr20sr67z7Lkx7jpWi9ulZ+U3vDxHoOcUngO3kkkPWRfm2jnR6uaxc6sEQnoK+Z2FxXhqm1g69yiWJceOXY+k/KswTXMemN/4NaVUMm6dkR57aQiXw8YthzNn1pYqDMPgrhO1fPfHPUzOrlJZkqM7JKGZjF/be/LlEdaDYd5wi74Jn//SE2CF8bS1a4shUe4/msPpnjle7FrjrnY9Y1FB+zGuPPpd1vovkNNyTEsM6UwK39OMzx/kyTOj3Ha4Cq8n+fv02eANN0eeTvrhc/2aIxEidVmWxY9eGKS5poCGGj3NkC0rzPr5x3HWKez5mVc6cbTJRVm+jR++vKwthtwWhc3tZenMj7TFkM4kyUozP355hJW1APff1qA7lIxVWuTl5oOVPPzCIP6AnqMthEh13cPz9I8tah2LggPnCS9O4Wm/iXTujbUdm83g3qM5nBtYZ2xWU88su4M8dZiVrlOEVha0xJDOJMlKI5Zl8b2n+2ipLaS1oVh3OBntTa9rYmk1wNNnpAO8EFv54XMDkSdyj+hrQOo//xiGNx93beZOOu894sVmwI/O6FvNKmg/DuEQi2cf1RZDupIkK42c7ZpieHKJt9zZJMfoJFh7cwm1FXl875k+LCvzZshC3IjZRR9PvDzMfbfUaStbCM1PEug9haf9NrBl7r/R4jw7N7e5efjsCr51PcXnrpJyvHXNLL70A6xgQEsM6UqSrDTyb0/3UZjnkoL3JDAMgzfe3kjf6IIcGi3EJt97uo9w2OKBO5q0xeA/9QMwbHgPHNIWQ7K8/dZcln0WPzqjr51D4fHbCa0ssHxJupfshSRZaWJ0aplTHZO8+fZGHA677nCywl0nasn1OvmXx7p1hyJEylj1BfjhyQFuO1xNeWmulhjCqwv4L/0Yz4HbsHm8WmJIpn01LlSdk4deXCaoqZ2Dt64ZV2kl8ye/I+0c9kCSrDTxzUe7cDnt3CcF70njdTt48M4mXrw8Qd+oFHwKAfDIixE6nwcAABHTSURBVEOsrAV4693N2mLwn/kPCAbxHsrMgvetvPPWXKYXQzx1Wc9RO4ZhUHj8dgIzY6z1nNESQzqSJCsNjE4t88TpYR64vZH8PLfucLLKm+9owut28PVHTN2hCKHdeiDEQ0/2crC5hOY6PQfTW+s+/GcfxtV6LCPbNmzneIubujIH33puibCmOtG81nbsuQXMPfsvUqu6S5JkpYGvP2zicNh56z36Zo7ZKtfr5IE7mzh5YZzB8UXd4Qih1b8/N8D0/BrvfmObthh8p3+A5VvBe+RWsmUVCyIrSe+6LZfh6SDPdqzpicFup/jmO/GPdrPac1pLDOlGkqwUNzy5xFNnRnjLHbKKpcuDdzbhcdn56sOdukMRQpuVtQDffLSL4/vLUc1lWmIIr8zje+l7uFqP4ywp0RKDTncc8NBQ7uDLP14gENSTYOYfOIazsITZx/8RKyx9BHciSVaK+8cfduB02HmLxvqHbJeX4+Ktd7fw3PlxLvZO6w5HCC2+80QPS6vr/PSb92uLwXfy2xBcJ/fmu8mmVawYm83g51+fz+R8SFsXeMNup/i21xOYHmH5ojxpuBNJslLYy+YVTl4Y5933tZKXK6tYOr3tnhZKCz387UMXCIWzb3AX2W1mYY2HnurlzqM11Gs6Qic0O4b//KN4Dt+FPU/PU42p4EiTi8ONLr7+zBLLPj1P+eW2tuMqr2Luya8SDvi1xJAuJMlKUYFgiL/9znmqy3J54C5ZxdLN7bLzs285QP/YIo++OKg7HCGS6gsPXSQctvipN+3Tcn/Lslh94ivgcJF79GaycRUrxjAiq1nLa2G++qSep54Nw6D0jjcSXJxh/pl/0RJDupAkK0U99GQvo1MrvPcdB6UvVoq4/Ug1+xuL+cq/d7CwLLM3kR1euDjOs+fHeM8b91GhqS/WesczBPvPknv7WzDcLi0xpJKmSidvOp7D90+t0DGiZyzy1jaSp44y//x38U8OaIkhHUiSlYKGJ5f4+iNd3HqwkkP7ynWHI6IMw+BX3nWIVV+Qz37rnDzCLDLeqi/A5799nsaqfG0r6uGVedZ+/GUc1a149iktMaSin319HqX5Nj71/TnWNRXBl955Pza3h+kf/LUUwW9DkqwUEwiG+Pg/ncbjsvPed2b+cRHppr6qgP/0pn2cvDDOj08P6w5HiIT6u+9eZGbRx2+++wh2e/J/XFiWxerjX8QK+Mi/5y0YhkxsYrwuG7/xQCEjM0G+9rSebUO7J4eyO9+Mf7yXhef/TUsMqU6SrBTzlX/voG9sgff91FEKCzy6wxFbeOvdLaimYj7/7QtMzurpvixEoj320hCPvDjEu+9to1FT41H/2YcJdL1A7m1vyepi9+0cbXbzhsNe/vW5ZU716OmdlbvvILmt7cw+8VXWhi5piSGVSZKVQp6/OM5DT/bywOsaOXqgQnc4Yhs2m8H7/tMxDAP+7B9eYM0f1B2SEHE1ML7IX//reQ63lvIT9+spdg+Omqw98RWcTUfwtB/WEkM6+JU3FtBQ7uAvvzvLxHzyxyLDMCi/9204C4q48p2/Irg8n/QYUpkkWSmia2iOj/3Tadrqi/iZBw/oDkfsoLwkhw/83AmGJpf4+D+flrYOImPMLfn48y+9SK7HwW/99HEMm5H0GMJLsyx/75PY8kspeP2DGMiBxNtxOw3+y/9p7+6joyrvBI5/77xPkpmEhBCCARKkPmDQkoIQqqVbECwo4lFrT2urx+paj+dsj2Vtu9utlB73aM+u59Sz3W5ffCk9u9bWg1Xc3eOeKpSKlig2QgT0IRAwhJCEJGQmk8lkZu69+8ed0BCpoDKTTPL7HIY7c+flPvPMzW9+95nnPs/6EmwbHtrSw2Ay93Xl8vmZds2NWIMxup79VxnWYQRJssaBzt44Dz75OiVFfr75lUX4fHI2YT647BPl3Lp2Pm/s7+DJF/ZJR3iR92KDKTb9ooHeSIL7bv0U4VDux+ez4hH6t/wzpAYpXnUzhke+ps6losTDvdeW8F5Xigef6WYolftY5C+bRvmK60i0abp+9wi2KS38IEnWmGvvjvHd/3iVVNriW7cvlqlz8szV9bNZ/elqXtjZwuNbJdES+SueSPHgEw20dkbZ8JVF1MyckvMyWIkYsS0PYUW7Ca/5Ku7w5JkA+uNaOMfPPWuL2fdekoef7SZl5j4WFc29lKnLP0/8UCNdL/xYzjgEPGNdgMns6IkoG3/+J0zL5p/uXEJFuQSUfGMYBreunY8BvLCzhVTa4utjdCaWEB9VbzTBDx5v4Gh7hG98qY75c3M/N6EZ6SL23L9g9XVQvOY2vGW5T/Ly3ZXzgyRTNo//Psqmp7v5x5vKKArmNhaFa+uwkgl6G/5Ax1Ccihs34PIFc1qG8US+CcbIn5ra+c6/78QwDB7423qqKsdmqgrx8RmGwZfXzufa5XN4cddRNj3WIIOVirxxpD3C/f/2Cu0nY3zrtiv4VG1lzsuQbm+m/9cPYMd6KV57O95pYzMB9UTwucsLuGdNMfuPDXH/5i7ae3P/s11J3TKmLl/DYMtbtP/nA6Sjk3fOV0myciyZMnls69s8/KvdzCgvYuPdy6QFawIwDIMvXjOPu268jP1Hevjmj/4ok0mLcc2ybJ7/4yE2PPoKadNi49311F6S28GPbctksOE5+n+7CcPro2T91/CWl+W0DBPRZ2qDfPeWUqKDJvc90clLewZy3pUhXFvH9DW3kOppp+2xDcQOvJbT7Y8Xxlj1IVFKVQNHtm3bRlVV1ZiUIdfefKeTnz/XREdPnDVXVnPL6nm4pVPnhHPkeISfPN1I16lBVi2ZxR3ragkVyFQgGbk/VS0L8j1+HWrr4/Gt+9jf0sMVtRXcsX5BziehT59oJr59M2bHYXyXLCa0dDmGV3qwXEgnI2l+8X9RDhxLsvjiAHeuKqaqzJvTMqQip+ja9j8MdR6jcF49pSu+infK9JyW4QL7UDFMkqwss22bfS09PPPyQfYcPMlF5YXcfn0t8+ZIc/hENpQ0eX57My++doSAz826q+aw/rMXS7IlSdaYau2IsmV7Mzsa2ygK+vjyGsWn66owjNx9LObJVgZ3bSHV/AZGQZjQVdfjm1kFtgzTkA2WbfP7xjjPvBojlba5pq6Qm5aFqCjJXUJrWxZ9bzXQ1/gatm1TvOjzFC9dhyecl9+DkmSNB/3xJDv3HOflN1ppPtZHSZGf65bXsHJptbReTSJtnf08t62Z3fs78HvdXLVwBquWzGZ+dSmuMRh/aByYEG86n+JXIpnmzXc6een1Vhp1F16PizVX1nDt8jkEA7lp1bCTg6QONzLU9DLptnfAG6Cg7m8IzlsgQzTkSGTA5PmGAbbtjWPbcMXcAKvrCqmrCeD15ObPMh3rp3f3q8T0HsCgcF49oU+uIFh9GYY7b1oxJckaC6m0xdETEd4+1MOf3+3kwJEe0qbNrOkhrl46iyvrqvB6ZfyryepYR5SXdh2loekEiaRJaTjAFZdWsPCScuZXl1JWPGnOvpEkK8ssy6a9O0bToW72Np+k8d0uEkmTKWE/q+tns3zxTEJZ/mnQti2snuOkju0n/d7bpI42gZnCFZ5KsLaewMWXYPjy5kt1QumJmmzbG2d70yD9gxYFfoPFcwN8sjrAgll+Kqe4s96ymYpGiO5/i/533sIaGsQVLKJg7iKC1ZcRmF2LJ1ye09bVD0mSrGxJpS0isSF6owm6TsXp6o1zrDNGa2eUI+1RUmmnuXtmRYiFqpylCyqZOSM8nncWkWOJoTR/PtDBnne7aGruPj0lz9SSINWVYWZVhKicWkhFaQFTS4JMCfkpDHon0j40Id7IWMcv07KJDgzRE0nQG0lwomeA4ydjHOvsp+V4hHhieL8KsFBNY8mCSlR16QUdvd22TOx4FCvWi9XfixXpxDzVgdndinnyPciM+u0KleGvqcU3+2I8U6fJJM/jRCpts781ye6DCRpbhojGne+vUNBFTYWXWVO9zCj1ML3ETVnIuYQKXLguYCyy0mkG244y0HKQeOshrMEYAK6CMP6KGrxTq/CWzsBbMg13qBRPqAxXsBDDGNPWz/GXZCmlSoDRM4zOBnY89dRTTJ/+wZ3gBhIpdjWdwDxjcDX7fddOL0e8J9sGG9tZWpmlbWPhHPFZlk3atE4vU2mbVNpkKG0ylHQu8USKeCJ91jnqwgU+ppcXclF5EbMrw8yeESYckomdxbmZpkV7V4yj7RFaO/rp7B6gozeOaZ7ZN8XtNij0ewkGvAT9bgI+Dz6fC6/Hjc/jxuM28HhcuA0Dt9uFYTjzK7oMnIBoONcNw2BkfBxO3IZXnRk5PiCOnPEasHheBaXF57fPr1y5sgZo01rnzXDQHzd+2bbN3h3bGerrwcYm88/5z3ZikoXtxKVMnLIsG9MGy7JImxZp0yaVtjBNi2TKJJl+f/8lr9sgXOijuMhPcZGP0uIABQGv83n9ZYN/uW4P37bAsrBtC6cAJraVBtMEK42dTmGbKUglsZMJ7NQg9tAgJM8yOboviLtkGp4p5XhKy/GUleMqKJT+VuOcjU3nKYvDJ5Ic70nT1mPS2Zd+38jxhgEFfheFfhcBn0HQZ+DzGPi8Bl6XgccNHreB22XgdoHL5cQgJxYBw8vMaxk46zJ34R+KUBDvIpjoJZDoxTd0CredHlVWg7Q7iOXxY7n9WC4fltuLbXiwXB5sw43tcjtLDDDc2EZmC5nl6dtAUWU1qn7ZedfVh41huUqyNgHfz/qGhBD5oEZrfXSsC3G+JH4JIUY57xiWqx/FHwU2j1rnA+YAzUA+jL1fBewEPgO0jXFZxpLUg0PqwfFR6iHf6msixC+QfRakDoZJPTg+aj2c92NzkmRprfuAvrPcdTAX278QlFLDV9vy6Sj8QpN6cEg9OCZDPUyE+AWT47M6F6kDh9SDIxf1IOfOCiGEEEJkgSRZQgghhBBZIEmWEEIIIUQWSJJ1/vqAH3D2vhmTidSDQ+rBIfWQP+SzkjoYJvXgyHo9jNlgpEIIIYQQE5m0ZAkhhBBCZIEkWUIIIYQQWSBJlhBCCCFEFkiSJYQQQgiRBZJkCSGEEEJkgSRZQgghhBBZkKsJosUEpZTaDOzTWj+S5e2EgReBEmCj1vrZEfc9A7i01jePWHc/sB5YobVOZbNsQoj8JPFLZJskWSJfLAQqtNZzz3LfncCbSqn7tNaPKqVWA38HLJEAJYQYByR+TVKSZInTlFK/BhqHj+qUUvcAnwO+BPwIqAdCgAHcpbV+bdTzbaBca909+rZSah3wPcAHxIH7tda7zlKGG4DvA24gCmwAIsCTwEVKqT3AMq314PBztNb9SqkvAK8opY4BPwZu0Fp3XqCqEUKMcxK/xHgkfbLESI8Bt4+4fUdm3VJgBk5wuBT4FfAP5/uiSqlPAA8Ba7XWdcDdwO+UUoWjHjcP+Blwk9b6cmAjsBU4AdwFHNZaLxwZoIZprZuAbwNbgIe11m+cb/mEEBOCxC8x7kiSJUbaAQSUUouVUpcC5cC2zBHb94CvK6UeAW4Gij7E664CKoFtmSO5pwALGN10viKzvRYArfV2oAtYdJ7bWYkT0K5TSsm+LcTksgOJX2KckQ9SnKa1toEngNtwjgKf0FrbSqlrgf/NPGwrztGa8VdexgBQSvlGrHPjBJ+Fwxecpvt9o557tv3RBXjPVXal1LcBBVwOzMQ5ihRCTBISv8R4JEmWGG0zcD3wBeCXmXWrgP/WWv8U2A3cgBN4RjsJLM5cv3HE+u3A6kxzOkqptUATEBj1/OHHzck8bgVOwHn9gwqslLoa+A5OM313pux/r5S65lxvVggxoWxG4pcYRyTJEmfQWncAjUCT1ro9s/pnwGeVUk3ALuAwUHOWJu1vAD9RSjUCdThN32it9+P0Y/iNUmov8CBwvdZ6YNS2DwD34vR32Af8EFintY78tfIqpaqBp4Gvaa0Pj9jevcB/KaVmfrSaEELkG4lfYrwxbNse6zIIIYQQQkw40pIlhBBCCJEFkmQJIYQQQmSBJFlCCCGEEFkgSZYQQgghRBZIkiWEEEIIkQWSZAkhhBBCZIEkWUIIIYQQWSBJlhBCCCFEFvw/aGt5qp2vLDEAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots(1,2,figsize=(10,4))\n", "\n", "\n", "x = np.linspace(-5,30,100)\n", "y=stats.norm.pdf(x, 12,3.5)\n", "y2=stats.norm.pdf(x,15,3.5)\n", "\n", "ax[0].plot(x,y)\n", "ax[0].set_ylabel(\"probability\")\n", "ax[0].set_xlabel(\"value of X\")\n", "ax[0].set_title(\"null hypothesis\")\n", "ax[0].set_ylim(0,0.13)\n", "ax[0].fill_between(x,y, where=y>0.0,interpolate=True,facecolor='lightblue',alpha=0.2)\n", "ax[0].set_xticklabels([])\n", "ax[0].set_yticklabels([])\n", "ax[0].annotate(\"$\\mu$\", xy=(12,0.12),xytext=(12,0.12))\n", "\n", "x = np.linspace(-5,30,100)\n", "y=stats.norm.pdf(x, 10,3.5)\n", "y2=stats.norm.pdf(x,15,3.5)\n", "\n", "\n", "ax[1].plot(x,y)\n", "ax[1].plot(x,y2)\n", "ax[1].set_ylabel(\"probability\")\n", "ax[1].set_xlabel(\"value of X\")\n", "ax[1].set_title(\"alternative hypothesis\")\n", "ax[1].set_ylim(0,0.13)\n", "ax[1].fill_between(x,y, where=y>0.0,interpolate=True,facecolor='lightblue',alpha=0.2)\n", "ax[1].fill_between(x,y2, where=y>0.0,interpolate=True,facecolor='orange',alpha=0.2)\n", "ax[1].annotate(\"$\\mu_0$\", xy=(10,0.12),xytext=(10,0.12))\n", "ax[1].annotate(\"$\\mu_1$\", xy=(15,0.12),xytext=(15,0.12))\n", "ax[1].set_xticklabels([])\n", "ax[1].set_yticklabels([])\n", "\n", "sns.despine(top=True, right=True)\n", "glue(\"twosamplettestdist_fig\",fig,display=False)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "```{glue:figure} twosamplettestdist_fig\n", ":figwidth: 650px\n", ":name: \"fig:twosamplettestdist\"\n", "\n", "Graphical illustration of the null and alternative hypotheses assumed by the (two sided) one sample $t$-test. Note the similarity to the $z$-test. The null hypothesis is that the population mean $\\\\mu$ is equal to some specified value $\\\\mu_0$, and the alternative hypothesis is that it is not. Like the $z$-test, we assume that the data are normally distributed; but we do not assume that the population standard deviation $\\\\sigma$ is known in advance.\n", "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To construct a hypothesis test that handles this scenario, we start by noting that if the null hypothesis is true, then the difference between the population means is *exactly* zero, \n", "\n", "$\\mu_1 - \\mu_2 = 0$\n", "\n", "As a consequence, a diagnostic test statistic will be based on the difference between the two sample means. Because if the null hypothesis is true, then we'd expect \n", "\n", "$\n", "\\bar{X}_1 - \\bar{X}_2\n", "$\n", "\n", "to be *pretty close* to zero. However, just like we saw with our one-sample tests (i.e., the one-sample $z$-test and the one-sample $t$-test) we have to be precise about exactly *how close* to zero this difference should be. And the solution to the problem is more or less the same one: we calculate a standard error estimate (SE), just like last time, and then divide the difference between means by this estimate. So our **_$t$-statistic_** will be of the form\n", "\n", "$\n", "t = \\frac{\\bar{X}_1 - \\bar{X}_2}{\\mbox{SE}}\n", "$\n", "\n", "We just need to figure out what this standard error estimate actually is. This is a bit trickier than was the case for either of the two tests we've looked at so far, so we need to go through it a lot more carefully to understand how it works.\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### A \"pooled estimate\" of the standard deviation\n", "\n", "In the original \"Student $t$-test\", we make the assumption that the two groups have the same population standard deviation: that is, regardless of whether the population means are the same, we assume that the population standard deviations are identical, $\\sigma_1 = \\sigma_2$. Since we're assuming that the two standard deviations are the same, we drop the subscripts and refer to both of them as $\\sigma$. How should we estimate this? How should we construct a single estimate of a standard deviation when we have two samples? The answer is, basically, we average them. Well, sort of. Actually, what we do is take a *weighed* average of the *variance* estimates, which we use as our **_pooled estimate of the variance_**. The weight assigned to each sample is equal to the number of observations in that sample, minus 1. Mathematically, we can write this as\n", "\n", "$\n", "\\begin{array}{rcl}\n", "w_1 &=& N_1 - 1\\\\\n", "w_2 &=& N_2 - 1\n", "\\end{array}\n", "$\n", "\n", "Now that we've assigned weights to each sample, we calculate the pooled estimate of the variance by taking the weighted average of the two variance estimates, ${\\hat\\sigma_1}^2$ and ${\\hat\\sigma_2}^2$ \n", "\n", "$\n", "\\hat\\sigma^2_p = \\frac{w_1 {\\hat\\sigma_1}^2 + w_2 {\\hat\\sigma_2}^2}{w_1 + w_2}\n", "$\n", "\n", "Finally, we convert the pooled variance estimate to a pooled standard deviation estimate, by taking the square root. This gives us the following formula for $\\hat\\sigma_p$,\n", "\n", "$\n", "\\hat\\sigma_p = \\sqrt{\\frac{w_1 {\\hat\\sigma_1}^2 + w_2 {\\hat\\sigma_2}^2}{w_1 + w_2}}\n", "$\n", "\n", "And if you mentally substitute $w_1 = N_1 -1$ and $w_2 = N_2 -1$ into this equation you get a very ugly looking formula; a very ugly formula that actually seems to be the \"standard\" way of describing the pooled standard deviation estimate. It's not my favourite way of thinking about pooled standard deviations, however." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### The same pooled estimate, described differently\n", "\n", "I prefer to think about it like this. Our data set actually corresponds to a set of $N$ observations, which are sorted into two groups. So let's use the notation $X_{ik}$ to refer to the grade received by the $i$-th student in the $k$-th tutorial group: that is, $X_{11}$ is the grade received by the first student in Anastasia's class, $X_{21}$ is her second student, and so on. And we have two separate group means $\\bar{X}_1$ and $\\bar{X}_2$, which we could \"generically\" refer to using the notation $\\bar{X}_k$, i.e., the mean grade for the $k$-th tutorial group. So far, so good. Now, since every single student falls into one of the two tutorials, and so we can describe their deviation from the group mean as the difference\n", "$\n", "X_{ik} - \\bar{X}_k\n", "$\n", "So why not just use these deviations (i.e., the extent to which each student's grade differs from the mean grade in their tutorial?) Remember, a variance is just the average of a bunch of squared deviations, so let's do that. Mathematically, we could write it like this:\n", "$\n", "\\frac{\\sum_{ik} \\left( X_{ik} - \\bar{X}_k \\right)^2}{N}\n", "$\n", "where the notation \"$\\sum_{ik}$\" is a lazy way of saying \"calculate a sum by looking at all students in all tutorials\", since each \"$ik$\" corresponds to one student. But, as we saw in the previous chapter, calculating the variance by dividing by $N$ produces a biased estimate of the population variance. And previously, we needed to divide by $N-1$ to fix this. However, as I mentioned at the time, the reason why this bias exists is because the variance estimate relies on the sample mean; and to the extent that the sample mean isn't equal to the population mean, it can systematically bias our estimate of the variance. But this time we're relying on *two* sample means! Does this mean that we've got more bias? Yes, yes it does. And does this mean we now need to divide by $N-2$ instead of $N-1$, in order to calculate our pooled variance estimate? Why, yes...\n", "$\n", "\\hat\\sigma^2_p = \\frac{\\sum_{ik} \\left( X_{ik} - \\bar{X}_k \\right)^2}{N -2}\n", "$\n", "Oh, and if you take the square root of this then you get $\\hat{\\sigma}_p$, the pooled standard deviation estimate. In other words, the pooled standard deviation calculation is nothing special: it's not terribly different to the regular standard deviation calculation. \n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Completing the test\n", "\n", "Regardless of which way you want to think about it, we now have our pooled estimate of the standard deviation. From now on, I'll drop the silly $p$ subscript, and just refer to this estimate as $\\hat\\sigma$. Great. Let's now go back to thinking about the bloody hypothesis test, shall we? Our whole reason for calculating this pooled estimate was that we knew it would be helpful when calculating our *standard error* estimate. But, standard error of *what*? In the one-sample $t$-test, it was the standard error of the sample mean, $\\mbox{SE}({\\bar{X}})$, and since $\\mbox{SE}({\\bar{X}}) = \\sigma / \\sqrt{N}$ that's what the denominator of our $t$-statistic looked like. This time around, however, we have *two* sample means. And what we're interested in, specifically, is the the difference between the two $\\bar{X}_1 - \\bar{X}_2$. As a consequence, the standard error that we need to divide by is in fact the **_standard error of the difference_** between means. As long as the two variables really do have the same standard deviation, then our estimate for the standard error is\n", "$\n", "\\mbox{SE}({\\bar{X}_1 - \\bar{X}_2}) = \\hat\\sigma \\sqrt{\\frac{1}{N_1} + \\frac{1}{N_2}}\n", "$\n", "and our $t$-statistic is therefore \n", "$\n", "t = \\frac{\\bar{X}_1 - \\bar{X}_2}{\\mbox{SE}({\\bar{X}_1 - \\bar{X}_2})}\n", "$\n", "Just as we saw with our one-sample test, the sampling distribution of this $t$-statistic is a $t$-distribution (shocking, isn't it?) as long as the null hypothesis is true, and all of the assumptions of the test are met. The degrees of freedom, however, is slightly different. As usual, we can think of the degrees of freedom to be equal to the number of data points minus the number of constraints. In this case, we have $N$ observations ($N_1$ in sample 1, and $N_2$ in sample 2), and 2 constraints (the sample means). So the total degrees of freedom for this test are $N-2$. \n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Doing the test in Python\n", "\n", "The independent samples $t$-test is just a special case of the pingouin `ttest()` function we learned about earlier. Instead of providing argument $y$ as a single number (the null hypothesis in a one sample test), we provide another list of number which is the second group:" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Tdoftailp-valCI95%cohen-dBF10power
T-test-2.1231two-sided0.04[-10.76, -0.2]0.741.7550.54
\n", "
" ], "text/plain": [ " T dof tail p-val CI95% cohen-d BF10 power\n", "T-test -2.12 31 two-sided 0.04 [-10.76, -0.2] 0.74 1.755 0.54" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "group1 = harpo_df[harpo_df['tutor']==\"Bernadette\"].grade\n", "group2 = harpo_df[harpo_df['tutor']==\"Anastasia\"].grade\n", "\n", "pg.ttest(x=group1, y=group2, correction=False).round(2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here argument x and y just contain the data from each of the two groups. By saying `correction = False`, what we're really doing is telling pingouin to use the *Student* independent samples $t$-test. More on this later. For now, lets ignore that bit and look at the output:\n", "\n", "The output has a very familiar form including the test results ($t$-statistic, the degrees of freedom, and the $p$-value). The final section reports two things: it gives you a confidence interval, and an effect size. I'll talk about effect sizes later. The confidence interval, however, I should talk about now. " ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(69.05555555555556, 74.53333333333333)" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "group1.mean(), group2.mean()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "\n", "It's pretty important to be clear on what this confidence interval actually refers to: it is a confidence interval for the *difference* between the group means. In our example, Anastasia's students had an average grade of 74.5, and Bernadette's students had an average grade of 69.1, so the difference between the two sample means is 5.4. But of course the difference between population means might be bigger or smaller than this. The confidence interval reported by pingouin `ttest()` function tells you that there's a 95\\% chance that the true difference between means lies between 0.2 and 10.8. \n", "\n", "In any case, the difference between the two groups is significant (just barely), so we might write up the result using text like this:" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "> The mean grade in Anastasia's class was 74.5\\% (std dev = 9.0), whereas the mean in Bernadette's class was 69.1\\% (std dev = 5.8). A Student's independent samples $t$-test showed that this 5.4\\% difference was significant ($t(31) = 2.1$, $p<.05$, $CI_{95} = [0.2, 10.8]$, $d = .74$), suggesting that a genuine difference in learning outcomes has occurred. \n", "\n", "Notice that I've included the confidence interval and the effect size in the stat block. People don't always do this. At a bare minimum, you'd expect to see the $t$-statistic, the degrees of freedom and the $p$ value. So you should include something like this at a minimum: $t(31) = 2.1$, $p<.05$. If statisticians had their way, everyone would also report the confidence interval and probably the effect size measure too, because they are useful things to know. But real life doesn't always work the way statisticians want it to: you should make a judgment based on whether you think it will help your readers, and (if you're writing a scientific paper) the editorial standard for the journal in question. Some journals expect you to report effect sizes, others don't. Within some scientific communities it is standard practice to report confidence intervals, in other it is not. You'll need to figure out what your audience expects. But, just for the sake of clarity, if you're taking my class: my default position is that it's usually worth includng the effect size, but don't worry about the confidence interval unless the assignment asks you to or implies that you should." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Positive and negative $t$ values\n", "\n", "Before moving on to talk about the assumptions of the $t$-test, there's one additional point I want to make about the use of $t$-tests in practice. The first one relates to the sign of the $t$-statistic (that is, whether it is a positive number or a negative one). One very common worry that students have when they start running their first $t$-test is that they often end up with negative values for the $t$-statistic, and don't know how to interpret it. In fact, it's not at all uncommon for two people working independently to end up with python outputs that are almost identical, except that one person has a negative $t$ values and the other one has a positive $t$ value. Assuming that you're running a two-sided test, then the $p$-values will be identical. On closer inspection, the students will notice that the confidence intervals also have the opposite signs. This is perfectly okay: whenever this happens, what you'll find is that the two versions of the python output arise from slightly different ways of running the $t$-test. What's happening here is very simple. The $t$-statistic that R is calculating here is always of the form \n", "$\n", "t = \\frac{\\mbox{(mean 1)} -\\mbox{(mean 2)}}{ \\mbox{(SE)}}\n", "$\n", "If \"mean 1\" is larger than \"mean 2\" the $t$ statistic will be positive, whereas if \"mean 2\" is larger then the $t$ statistic will be negative. Similarly, the confidence interval that R reports is the confidence interval for the difference \"(mean 1) minus (mean 2)\", which will be the reverse of what you'd get if you were calculating the confidence interval for the difference \"(mean 2) minus (mean 1)\".\n", "\n", "Okay, that's pretty straightforward when you think about it, but now consider our $t$-test comparing Anastasia's class to Bernadette's class. Which one should we call \"mean 1\" and which one should we call \"mean 2\". It's arbitrary. However, you really do need to designate one of them as \"mean 1\" and the other one as \"mean 2\". \n", "\n", "For example, consider the following two ways to run the above test:" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Tdoftailp-valCI95%cohen-dBF10power
T-test-2.1231two-sided0.04[-10.76, -0.2]0.741.7550.54
\n", "
" ], "text/plain": [ " T dof tail p-val CI95% cohen-d BF10 power\n", "T-test -2.12 31 two-sided 0.04 [-10.76, -0.2] 0.74 1.755 0.54" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pg.ttest(x=group1, y=group2, correction=False).round(2)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Tdoftailp-valCI95%cohen-dBF10power
T-test2.1231two-sided0.04[0.2, 10.76]0.741.7550.54
\n", "
" ], "text/plain": [ " T dof tail p-val CI95% cohen-d BF10 power\n", "T-test 2.12 31 two-sided 0.04 [0.2, 10.76] 0.74 1.755 0.54" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pg.ttest(x=group2, y=group1, correction=False).round(2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Notice that evertyhing is the same except the t-value and the confidence intervals which have their signed flipped depending on which one we call $x$ and which we call $y$ (it is arbitrary).\n", "\n", "Because of this whenever I get a significant $t$-test result, and I want to figure out which mean is the larger one, I don't try to figure it out by looking at the $t$-statistic. Why would I bother doing that? It's foolish. It's easier just look at the actual group means, since the R output actually shows them!\n", "\n", "\n", "Here's the important thing. Because it really doesn't matter what R printed out, I usually try to *report* the $t$-statistic in such a way that the numbers match up with the text. Here's what I mean... suppose that what I want to write in my report is \"Anastasia's class had higher grades than Bernadette's class\". The phrasing here implies that Anastasia's group comes first, so it makes sense to report the $t$-statistic as if Anastasia's class corresponded to group 1. If so, I would write \n", "\n", ">Anastasia's class had *higher* grades than Bernadette's class ($t(31)= 2.1, p=.04$). \n", "\n", "(I wouldn't actually emphasise the word \"higher\" in real life, I'm just doing it to emphasise the point that \"higher\" corresponds to positive $t$ values). On the other hand, suppose the phrasing I wanted to use has Bernadette's class listed first. If so, it makes more sense to treat her class as group 1, and if so, the write up looks like this:\n", "\n", "> Bernadette's class had *lower* grades than Anastasia's class ($t(31)= -2.1, p=.04$). \n", "\n", "Because I'm talking about one group having \"lower\" scores this time around, it is more sensible to use the negative form of the $t$-statistic. It just makes it read more cleanly.\n", "\n", "One last thing: please note that you *can't* do this for other types of test statistics. It works for $t$-tests, but it wouldn't be meaningful for chi-square testsm $F$-tests or indeed for most of the tests I talk about in this book. So don't overgeneralise this advice! I'm really just talking about $t$-tests here and nothing else!" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Assumptions of the test\n", "\n", "As always, our hypothesis test relies on some assumptions. So what are they? For the Student t-test there are three assumptions, some of which we saw previously in the context of the one sample $t$-test:\n", "\n", "\n", "- *Normality*. Like the one-sample $t$-test, it is assumed that the data are normally distributed. Specifically, we assume that both groups are normally distributed. A bit later we'll discuss how to test for normality, and we'll also discuss possible solutions when data are not normally distributed.\n", "- *Independence*. Once again, it is assumed that the observations are independently sampled. In the context of the Student test this has two aspects to it. Firstly, we assume that the observations within each sample are independent of one another (exactly the same as for the one-sample test). However, we also assume that there are no cross-sample dependencies. If, for instance, it turns out that you included some participants in both experimental conditions of your study (e.g., by accidentally allowing the same person to sign up to different conditions), then there are some cross sample dependencies that you'd need to take into account.\n", "- *Homogeneity of variance* (also called \"homoscedasticity\"). The third assumption is that the population standard deviation is the same in both groups. This is not always true for several reasons (if one condition in a experiment is harder it might not *only* influence the mean of the data but also the variability). However, there's a very simple remedy for this assumption, which I'll talk about in the next section." ] }, { "cell_type": "markdown", "metadata": { "variables": { "\\hat{\\sigma_1": "

SyntaxError: unexpected character after line continuation character (, line 1)

\n", "\\hat{\\sigma_2": "

SyntaxError: unexpected character after line continuation character (, line 1)

\n" } }, "source": [ "## The independent samples $t$-test (Welch test)\n", "\n", "The biggest problem with using the Student test in practice is the third assumption listed in the previous section: it assumes that both groups have the same standard deviation. This is rarely true in real life: if two samples don't have the same means, why should we expect them to have the same standard deviation? There's really no reason to expect this assumption to be true. We'll talk a little bit about how you can check this assumption later on because it does crop up in a few different places, not just the $t$-test. But right now I'll talk about a different form of the $t$-test {cite}`Welch1947` that does not rely on this assumption. A graphical illustration of what the **_Welch $t$ test_** assumes about the data is shown in Figure 11, to provide a contrast with the Student test version in Figure 10. I'll admit it's a bit odd to talk about the cure before talking about the diagnosis, but as it happens the Welch test is the default $t$-test in R, so this is probably the best place to discuss it. \n", "\n", "The Welch test is very similar to the Student test. For example, the $t$-statistic that we use in the Welch test is calculated in much the same way as it is for the Student test. That is, we take the difference between the sample means, and then divide it by some estimate of the standard error of that difference:\n", "$\n", "t = \\frac{\\bar{X}_1 - \\bar{X}_2}{\\mbox{SE}({\\bar{X}_1 - \\bar{X}_2})}\n", "$\n", "The main difference is that the standard error calculations are different. If the two populations have different standard deviations, then it's a complete nonsense to try to calculate a pooled standard deviation estimate, because you're averaging apples and oranges. (Well, I guess you can average apples and oranges, and what you end up with is a delicious fruit smoothie. But no one really thinks that a fruit smoothie is a very good way to describe the original fruits, do they?) But you can still estimate the standard error of the difference between sample means; it just ends up looking different:\n", "$\\mbox{SE}({\\bar{X}_1 - \\bar{X}_2}) = \\sqrt{ \\frac{{\\hat{\\sigma_1}}^2}{N_1} + \\frac{{\\hat{\\sigma_2}}^2}{N_2} }$\n", "The reason why it's calculated this way is beyond the scope of this book. What matters for our purposes is that the $t$-statistic that comes out of the Welch test is actually somewhat different to the one that comes from the Student test. \n", "\n", "The second difference between Welch and Student is that the degrees of freedom are calculated in a very different way. In the Welch test, the \"degrees of freedom \" doesn't have to be a whole number any more, and it doesn't correspond all that closely to the \"number of data points minus the number of constraints\" heuristic that I've been using up to this point. The degrees of freedom are, in fact...\n", "$\\mbox{df} = \\frac{ ({\\hat{\\sigma_1}}^2 / N_1 + {\\hat{\\sigma_2}}^2 / N_2)^2 }{ ({\\hat{\\sigma_1}}^2 / N_1)^2 / (N_1 -1 ) + ({\\hat{\\sigma_2}}^2 / N_2)^2 / (N_2 -1 ) } $\n", "... which is all pretty straightforward and obvious, right? Well, perhaps not. It doesn't really matter for out purposes. What matters is that you'll see that the \"df\" value that pops out of a Welch test tends to be a little bit smaller than the one used for the Student test, and it doesn't have to be a whole number. " ] }, { "cell_type": "code", "execution_count": 74, "metadata": { "tags": [ "hide_cell" ] }, "outputs": [ { "data": { "application/papermill.record/image/png": "iVBORw0KGgoAAAANSUhEUgAAAlkAAAENCAYAAAA8D3A7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xd4HOd1+PvvbEPvvVfiBUiwiU0iqW6rWLJc4sRO4thxip3EcX7OvSn3l5snN7Zz4yR2YseOXJPYcpOsyCqWrEKZklhEihQpdoKDQoJoBIiyi14Wu/P7Y3cpCAaIBbG7s7s4n+fBIxDcnfeAIg/OvHPmjGYYBkIIIYQQIrQsZgcghBBCCBGPpMgSQgghhAgDKbKEEEIIIcJAiiwhhBBCiDCQIksIIYQQIgykyBJCCCGECAMpssQ7KKXalVJblVJ3KKXOLvD7C349DHFkKKVemfNrQymVG6Jjf14p9bFQHEsIERyl1PeVUn/h//zvlFLvi9C625RS3/J/vlUp9USIjvv3Sqn/CMWxllhnbvwhzb9KqeeVUmtDdTzxq2xmByDEIrKA7eE4sK7rfxeO4wohgnYXcD5Ca60DSgF0XT8GfChC64bKtfhDTdf194TjuOJtUmTFKaXUHcD/D1wEGoEE4NO6rr+qlPo+cFbX9S/7X/uOXwchVSn1GFAPJAJ/CBwHuoEduq43+4/7MvAfwAcAA2gA8oA9wJ/puu5WSt0KfAlIBmaAv9V1/UXge0CSUuoksMW/7ueUUjcDOcCXdF1/2L/O7wN/gm9ndhD4U13XLyildgP/Blj9639R1/Wfzf1+lVKf88c343/v7+q6fiXIPwchxBxKKQvwFeBmIA3QgD/Qdf31Oa/5NLAV+JJSygP8Avhn4HZ8/1ZP4MsPI0qpduAIsAH4G/+xvw/cDZQDP9V1/a8WWxfoAD4PZCilvgc8gi8n7QI6gTpd13v9cb0BfA7Yu1g8C3zL9UqpV4EioA/4CFANPAZU6LruVUolA+348vBR4CngViAT+Fdd17/pX/+TwJ8BHv+x/hSYXCD+X8m/uq4fUEo5rvPn+MfAH+HLc1PAp3RdP+//8/0QcAFfzl0DePHl80/puu5d4HsWyyCXC+PbDnz/iDcD/wX8fYiOWwp8Rdf1TcC3gb/XdX0CXwL4AwClVA2ggOf879kIvAtY6//4lFIqB3gC+F+6rm8APg78SClVBXwCmNR1fZOu6x7/MS7qur4FX1H0r0opu1Lqdv/7bvV/n/8CPOl//eeAf/O/5/fwnT1fo5QqAz4LbNN1fSu+4m9HiP6MhFiNdgDFwC26rq/FlxP+n7kv8J8cHQP+Utf1p/y/Pwts0XV9I9AD/NOct5zVdb3B/1qAVF3XbwV2Ap/x54sF19V1vRP4O+CAruufmBPDML5i56MASqkGfIXSS0HEM1c18Bu6rtcDTt4uKAeB+/yv+QiwV9f1q/5fJwPbgDuAzyul1iul7gL+CrjTv+ZPgKeBrgXi/5X86//6gnErpazAV4H7dF3fBnwH2D3v+/gAkOY/5rY535tYISmy4ttlXddP+j9/C8gO0XHbdF0/4v/8JJDv//wbwMeUUnbgk8B/zimQvq/r+piu69PAD4B78SXG1sCxdF0/B7yOL/ks5Cdz1kwA0oEHgFrgkH/X61+AbKVUNvA48LBS6sf4dsP+Zt7xuoFTwFtKqS8DJ3Vdf3rZfxpCCAB0XT8M/C2+k6gv49slSV3ibQ8C7wNO+P8Nvx/fiVjAgXmvf8a/VjdwFci+wXW/i+8EDXwndd/z79wsFc9cL+u63u///BRv58KH8e3wA3wK+Oac9zys67qh63oX8CJwD76C7KeBY+m6/n2gBKhcYM3F8u+Ccftz8P/gy5H/AQzjO+me6yCwTin1Gr5i7au6rrcu8j2LZZAiK75NzvncwLeFPv9zAMcyj+te6Lj+y4Sn8f1D/23gP+e8bnbO5xZ8W+IL/f2zAPbrravreuCBmxq+bfEf+ne8NgE34bsU4dR1/dvAeuBlfEXdaaVURuBg/oR6O/C7+M48v6KU+vfrfeNCiMUppR7Ad/kPfMXQt3hnrlmIFd9uduDf8Hbe2Tc1Nu/1v5LXbmRdXdcPAjal1Hbgt4D/DjKeuRbMhcCPgd1KqTvx7bztn/O6YHOhxsK5cLE1F41b1/WPAu8FWoG/5u3dfvy/fwnfyeoX8Z28/lIpFWu9a1FJiqzVqR9fIYL/jr1bQ3jsh/H1WB3Rdb1nztc/rJRKUEol4jt7fBZ4wxeC2u6PZR1wG/AavkRkVUotlaD3AL+plCry//qP8PVUoJQ6BGz2nxV+El8PRFbgjUqpjcBZoEnX9S/i6+nYeIPftxAC3g086+8zehPfbop1gdfN8nYB8RLwp0oph7+36rv4ftiHat25a833n8DXgdO6rneEKh5/+8SP8BVu35r32x8DUEqV49vFesG/5oeVUnn+3/sEvhO/1iXin2vBuJVSuUqpTmBQ1/Wv4tvxe0ee8/dsfQ/Yo+v6X/uP1bic71ksTIqs1enrQJFSSsd3xvVaCI/9HL5t+vmJZQLftv8Z/3+/p+v6APDrwNeVUmfwXQ78hH9H7Aq+S5xN/t6tBem6/hK+Zs+XlVKn8Z2RftC/2/VX+HoeTgCvAp/Tdb19zntP4bukeEwpdQxf39afr/D7F2I1+xZwu//f4mGgDajy/9Cf61ngy0qpjwNfwNcYfgLfHYca8H+HcN3D+BrUn1rgfY8Am3jnrnso4gFf0ZKPrz1iriql1HF8lwr/TPd5Gd9J3itKqXP4TkQf9O+2Xy/+uRaM259n/wHY61/3n/D3zs7xA3xF6Xl/LkwHZFc/BDTDMJZ+lRBBUkrtxHcG1Ri4rHcDdy8KIUTM8u/A/zW+Owz/eM7X24EP+UdJiFVARjiIkFFKPYKvaf1jc/qmhBBitbmIry3jIbMDEeaSnSwhhBBCiDCQniwhhBBCiDCQIksIIYQQIgxM68lSStnwTa7t0nV9dqnXCyFEtJD8JYQIhpmN76XApb1795oYghAiwpaaexYrJH8JsTotK4fJ5UIhhBBCiDCQIksIIYQQIgykyBJCCCGECAMpsoQQQgghwkCKLCGEEEKIMJAiSwghhBAiDKTIEkIIIYQIAymyhBBCCCHCQIosIYQQQogwkCJLCCGEECIMpMgSEfU7v/M7tLW1AeB0OnnwwQdNjkgIsRpFQy6KhhhEeEmRJSLq8uXLVFVVAaDrOnV1dSZHJIRYjaIhF0VDDCK8zHxAtFhluru7KSgowGLx1fa6rqOUMjkqIcRqs1gumpiY4HOf+xx2u53t27fz0EMPRTyGzs5OvvnNbzI2NsbXvva1sK0vIkN2skTEXLhw4R1F1blz56TIEkJE3GK5aM+ePdx77738wz/8A6+88oopMZSVlfGP//iPYV1bRI4UWSJimpqamJ6eBqC9vZ29e/fK9rgQIuIWy0V9fX0UFRUBYLVaTYlBxJeIXC5USmUCmfO+XBqJtUX00HUdh8PBQw89hFKK2tpannrqKT796U+bHZoQi5L8FX8Wy0UlJSX09vbS0NCA1+s1JQbJh/ElUj1ZnwX+vwitJaKUrus8+eSTpKammh2KEMsh+SvOLJaLJiYm+MIXvsBrr73GnXfeaUoMTqeTr3zlK5w/f55vf/vbfOpTnwprHCK8IlVkfRX4/ryvlQIHIrS+MNnY2BiapkmBJWKR5K84cr1clJyczBe/+EVTY8jKyuLzn/982GMQkaEZhmHKwkqpSuDS3r17KS2VnXchVgnN7ABCQfKXEKvWsnKYNL4LIYQQQoSBFFlCCCGEEGEgRZYQQgghRBhIkSWEEEIIEQZSZAkhhBBChIEUWSLsvF6DWU94B/sJIYQQ0UYeEC3CZsbt4eWjHfzs1RZGx2fYsa6IO7eWsqW+wOzQhBCrzMtHLvPoyzpWi0ZKkp337Kzinh0VZocl4pwUWSIsXKPT/OXX99M7OIGqyGJ9bS5Hz/Wy70QXn/rAeh7cXW12iEKIVWDa7eHbT57m5aMdqIos8rKS6Okf5+uPn6RvaIKP3lePpsXF+DYRhaTIEiHn8Rp86UfHGBqe4q9/dxtra3PRNI2Pvncd//HoCb779BkKspPZtrbQ7FCFEHHuX398nMNnrvDBO2t5311r0CwaHo+XR35+jsd/2czo+Ax/8qGNZocp4pT0ZImQe/SlC5xuHeD33t/IujV5184SbVYLf/wbGykvSudffniM9isjJkcqhIhnh8/0cPjMFX7zXsX731WHZvHlIqvVwife38i9uyp54XA7J5uvmhuoiFtSZImQOts2wE9/2czd28rYuflXHzeS4LDx57+zFYfdynefPmNChEKI1WB80s23njxDZVE69+yq+pXf1zSNX3+3Ij87mW89dQb3rNycI0JPiiwRUo/u0clKT+C3Hli76Guy0hN58PYaTrcOcKZtIILRCSFWix88fx7n6BR/8IFGrNaFf9Q57FZ++z0NdF8d47mDFyMcoVgNpMgSIXOhfYjTrQM8eGs1drv1uq+9a3s5WWkJ/OiFJsx6SLkQIj5ddU7w4uF27rm5gvKSzOu+dlN9Phvr8nh0j45rdDoyAYpVQ4osETI//WUzackObttatuRrHXYr772jhvOXhjjZ3B+B6IQQq8Xzr18C4P5dS9/FrGkaH7m/nsnpWfYcuRzu0MQqI0WWCImL3cMca+rjPbsqSXAEd9Pq7VvLyMlI5NGX9TBHJ4RYLabdHvYcucy2dYVkZyUF9Z6S/DQaqnN48Y12PF7ZWRehI0WWCImn9rWSlGDjzmUM97PbrLzrlkqaLg3R3T8WxuiEEKvFvre6GJ1w8+6blzdo9O7t5fQ7J3nrQl+YIhOrkRRZYsUmp2c5fOYKuzeVkJxkX9Z7d20sRtPglTc7whSdEGK1MAyD5w5epKIwjTWV2ct6701rC8hITeAXh9rDE5xYlaTIEiv2xtkrTM94uGVj0bLfm5meyPraPF451olXtumFECtwod3JpZ4R7t1Zuewp7jarhdu3lvLWhT6uDk2EKUKx2kiRJVbsteNd5GclUV2WdUPv331TCQPDU5xplXEOQogbt/9kF3abha2Nyz/hA7hjWzkALx+VBngRGlJkiRVxjk5xsvkquzYVY7Hc2PO/bmooIDnRxi/lkqEQ4gZ5vQaHTl9hs8ojMeHGnhiXm5lEfWU2B0/1hDg6sVpJkSVW5MDJbrwG3Lyh+IaP4bBb2bG+iMNnrjAx5Q5hdEKI1eLC5SGGRqbYtu7GdrECtqwrpOvqGJ19oyGKTKxmUmSJFXnteBdVxekU5aet6Di3bCxm2u3hhMzMEkLcgNdP92CzWtio8lZ0nK1rCwA4fOZKKMISq5wUWeKG9Tsnael0ccvGG9/FClhTnkVKkp0jZ3tDEJkQYjXxeg0OnephU10eiYnLu8N5vuyMJGrKMjl0Ri4ZipWTIkvcsGP+eTIb6/JXfCyr1cKGujyOXeiTYYBCiGVp7nQyMDzF9sbCkBxv69oC2rqGueqUuwzFykiRJW7Y8aY+8rOSKMxLCcnxNtfnMzo+Q/NlZ0iOJ4RYHQ6dvoLNqrFBrfyED2DLWl+xJpcMxUpJkSVuyIzbw8mWfjbX5y97Hs1i1q/Jw2rROHJeEpsQInjHL/Sxtipn2cOQF1OYm0JZQRqHTsslQ7EyUmSJG3K2bZDpGQ8b6lbWZDpXSpKduspsjp6Tx1oIIYIz4Jqko3eUDXW5IT3upvp8Llx2yh3PYkWkyBI35NiFPhx2K/VVOSE97ub6fDr7RukdHA/pcYUQ8elk81UA1taEtshqrM3F6zVkSLJYESmyxLIZhsGx83001uRgt1tDeuzN9b6eijfPy26WEGJpJ/R+stISKClY2RiZ+WrLM3HYrbwlY2XECtzYWNxlUkplApnzvlwaibVF6PUMjHNlcJz7d1WG/NgFOSnkZydzsqWf995aHfLjC7Fckr+il8drcKK5n5tC2BsaYLdZqa/KvrZTJsSNiNRO1meBS/M+DkRobRFiJ3Rf0lm3JnT9WHM1VGVzrm1QRjmIaCH5K0pd7HYxOjFDY21oLxUGNNbm0tM/Tr9zMizHF/EvUkXWV4GqeR+3RmhtEWJn2gbIy0oiLzs5LMdvqMlhfMrNpe7hsBxfiGWS/BWl3vKf8DXUhLY3NCBQvJ2Q3SxxgyJyuVDXdRfgmvs1pVQklhYh5msEHWRLQ2jm0Sxkrb+Z/nRrP7Vl86/SCBFZkr+i1wm9n6ridNJTE8Jy/JL8VDLTEjjRfJV7dlSEZQ0R36TxXSxLR98ooxMzIb+rcK7M9ESK81I52SJ39QghFjY1M4t+eYj1a8JzqRBA0zTW1eRyqmUAr7QviBsgRZZYltOtvjtt6iqzwrpOQ3U25y8NMuvxhnUdIURs0i87mfUYqMrssK7TWJvL6PgM7VdGwrqOiE9SZIllOds2SH5WErlZ4enHClhbncP0jIeWDtfSLxZCrDrnLg6iaVBbHt4TPlWV7V9PdtbF8kmRJYLm9RqcbRtgXXX4tucD6qt9lyNPtcqMGiHErzp3cZDKonSSEkPzKJ3F5GYmkZ2RyNmLg2FdR8QnKbJE0C73jjA64aa+Orzb8wBpyQ7Ki9I5LdOWhRDzuGe9XGgfoiGMvaFzqcpszl8awjCkL0ssjxRZImiBx0vUhbkHIkBVZtF82Sl9WUKId2jtdDEz66WuIryXCgNURRau0WmuyOO+xDJJkSWCdvbiIAXZyeRkJkVkvbqKbKbdHi71yLwsIcTbzvr7o9aE+QacgMCJ5bk2uWQolkeKLBEUwzBoujSEitCZI8Aaf0Pr+UtDEVtTCBH9zl0cpDQ/lbSU8MzHmq84L5WUJDtnL0mRJZZHiiwRlN7BCVxj09RGsMjKzkgkNzOJ85LYhBB+Hq/B+UtD1FdFpm0BwGLRqKvI4rw0v4tlkiJLBKWp3bebFOkJ7Gsqsmhql4ZTIYTPpZ5hJqdnqY/QpcIAVZlN7+AEzpGpiK4rYpsUWSIoF9qHSE60UZKfFtF115Rn4RyZ5qo8oFUIgS8XAdSURW4nC7g29FRGOYjlkCJLBKWpfYg1ZVloFi2i6wbuHpJLhkIIgAvtTrLSEsjOTIzouhXF6TjsVslFYlmkyBJLmphyc7l3hDUVkX9Yc2lBGkkJNml+F0IAoHcMsaY8C02L7AmfzWqhqiQD/bIzouuK2CZFlliSftmJYUS+Hwt8Dac1ZZk0tcvZoxCrnWt0mt7BCdaURz4XgS8HXuwZZsbtMWV9EXukyBJLutA+hKZBdak5ia2uIouO3lHGJ92mrC+EiA76Zd+Otlm5qKYsE4/H4GK3zO4TwZEiSyzpfPsQ5YXpJIb5GWGLqS3PxDCgpVO26YVYzS5cdmK1aFSWZJiyfo1/N7/psrQviOBIkSWuy+M10C87qQvzk+6vp6rEl9guSC+EEKuaftlJZXE6drvVlPWz0hPJyUzkQrvkIhEcKbLEdXVfHWVyevbaGZwZUpLsFOWlSMOpEKuYx+OludPJmjLzTvgAasqyaO6QXCSCI0WWuK5AMqkqNWd7PqCmNJOWTpcMJRVilWq/MsL0jIeaMnNzUW1ZJgOuSQaHZXafWJoUWeK6mjtcJCfaKMhJMTWO6tJMhsem6ZehpEKsSrr/hK/a9J0s366+7GaJYEiRJa6rudNJTWkmlggPIZ0vkNh0aTgVYlXSLzvJSHWQm5VkahwVRelYrRpN0pclgiBFlljUtNtDe88ItSZvzwOUFaZht1m4IGePQqxKLZ1OassyIz6EdD6H3UpFUToX5IRPBEGKLLGoi13DeLwGlSXmNb0H2KwWKorTZYteiFVoYspN19UxqqMgF4FvZ/1ity8/CnE9UmSJRTX751JVmzSTZr6a0kzauoaZ9XjNDkUIEUGtXS4Mw/wbcAKqSzKZnvHQ1TdqdigiykmRJRbV3OEkJyORjPTIPoh1MTVlmbhnvVy+MmJ2KEKICGrpcAFQWRwdRVag2JOddbEUKbLEolo6XKY8r3AxNaWB5ndJbEKsJs2dTgqyk0lNcZgdCgCFOSkkJdiu7fYLsRgpssSChsemuTI4fq2wiQa5WUmkJtslsQmxyrR0uqIqF1n8j/Zp6XSZHYqIclJkiQUFkodZzwhbiKZpVJVk0NoliU2I1cI16puPVx0l/VgB1SUZtF8ZwT3rMTsUEcWkyBILau1yoWlQWZxudijvUFWSSWffGFMzs2aHIoSIgMCD4aOlHyugqjQDj8fgUo/0iIrF2SKxiFIqE5i/11saibXFjWntdFGcl0piot3sUN6hqiQDr9fgUvcIDVXZZocjVgHJX+Zq7nBh0aAiyk74AuMkWjqc1JWbO4VeRK+gdrKUUrkrXOezwKV5HwdWeEwRRi2drqgZ3TBXlT+mFunLEkGS/BXbWjqdlBakkZAQkT2BoOVkJpKW4kCXvixxHcFeLjynlPqxUmr3Da7zVaBq3setN3gsEWaDw5MMjUxdK2iiSXZGIplpCTRLYhPBk/wVowzD8J/wRU/Te4CmaVSXZNAquUhcR7CnBpXAR4AvK6VSgG8CP9R1PahJbLquu4B3/E1USi0jTBFJbV3DQPT1YwVUSWITy1OJ5K+Y1O+cZGR8Juqa3gOqSjM43dLP5PQsSVG20yaiQ1A7WbquT+q6/j1d128GPgP8BdCjlHpYKZUf1ghFxLV0+nogyoqit8jqGRhjYsptdigiBkj+il2BO4krojQXVZdkYhhwsXvY7FBElAr67kKl1H1KqZ8BPwWeBnYCncDPwxSbMElrl8vXA+GIzjOzqpIMDOPtHTchliL5Kza1drmwWjRKC9PMDmVBldIjKpYQ1E9RpVQHMAB8A/ioruuT/t86o5T6ZLiCE5FnGAatnS42qTyzQ1lUoFesudPJ+tqV9jSLeCf5K3a1drooL0zDbreaHcqCMtMSyEpPlKGkYlHBblV8VNf1/XO/oJRaq+v6eV3Xq8MQlzDJgGsK19h0VDa9B6SnJpCTKYlNBE3yVwwyDIPWLhfb1hWaHcp1VRany666WNR1iyylVGAQ0deVUncAmv/XduAZYE34QhNmaO2KzsF/80nzu1iK5K/Y1jc0weiEO6pP+MCXi07qV5mYcpMcZXMFhfmW6sl6FN82+3pg0P/5AL5ehrfCG5owQ0tndPdABFSVZNA3NMHYxIzZoYjoJfkrhgV2h6K16T0g0CMqze9iIdfdydJ1/V4ApdR/67r+e5EJSZgp2nsgAgI7bW1dw2ysi97+MWEeyV+xraXTic0a/Sd8bze/u2iskR5R8U5LXS6s13X9AvAfSqmb5v++rutyNhhHfD0Qw2xbW2B2KEu6lti6nFJkiQVJ/optrV0uygvTsdmi+4QvIzWB7AzpERULW6rx/V+BB4CfLfB7BiBNo3Gk3znJ6MTMtQImmqUlO8jNTKKlU7boxaIkf8WowAnfLeuLzA4lKJXFGddmegkx11KXCx/w/7cqMuEIM0X74L/5KkvSaeuWxCYWJvkrdvUOTjA+6Y6JEz7w9WW91dS3aPP77Mggkx3nmO7SmR3ux/B60SwWHPkVOIqqSa7aiCUh2YTIRbgtdbnwa9f7fV3X/yy04QgzRfvgv/mqSjI4dq6PsYkZUpMdZocjoozkr9gVuHM4Zk74/I8ga+savja7zzAMpjqbGD7yLBPNbwIGmiMRe2YemsWKMetm4uJJ8HrQ7ImkNt5Gxrb34MgrM/E7EaG21OXCwYhEIaJCrDS9B0jzu1iC5K8Y1drlwma1UFoQOyd88PaA5NnRIQZe/A4TzW9iSUwlc/u7SamsxpGdg6YZ197nnfUwM9DLyIUzjJ15ldGTvyRjx4Nk3fphLI5Es74dEUJLXS78XKQCEeaKpab3AGl+F9cj+St2tXa5qChMw2oL+slvpkr3N7+3droYO3uAgRe/g+Fxk737IdIb1mGxBUa0Ge94n8VmJbGwhMTCEjw7bmPoyH6G3/g5402Hyf/gX5BYXBv5b0aE1FKXCw/qur5bKTXK/L8dgK7rsbGXK5YUS03vAdL8Lq5H8ldsMgyDtu7YaXoPqCpKp7hzD1c73yKxtI68Ox7AnpYU9PutScnk3XEfaaqRq3t/zpUf/i15D3ya1MZbwxi1CLelLhf+uv+/jeEORJgr1preA6T5XVyH5K8YFGtN7wCGZ5b7Zl4kn7Mkrd1F4a23o93gJlxiUSklv/Zx+vY8zdVnvop7+CpZu34ttAGLiLnuXwNd16/4/3sZqAc+A/wRUO7/mogTsdb0HlBVkkHfoEx+F79K8ldsirUTPsPrYfz5r5PvOsszEzcxUHHzDRdYAdakFIoe/AipaxpxvvYTnK8/GZpgRcQF9VdBKfU3wFeACWAW+C+l1KfDGZiIrLauYcoKYqfpPWBu87sQC5H8FVvaulzYrBolBalmh7Ikw+tl4sVv4m4+gnXbg7wy1UhL73RIjq1ZreTd9aC/0PoxrjeeCclxRWQtdbkw4LeAHbqujwIopf4NOAg8HK7AROQEnna/pSF2mt4DpPldBEHyVwyJlUnvAJMHfsJM00GSb36A5LXryD7UR+sVd8iOr1ks5N31IIbXy9DeH2DLyCO1YWfIji/CL9hNzUlgLPALXdedwFRYIhIR1++cZGR8Juqfdr8QaX4XQZD8FSMMw6CtazgmctH0uX1MH3uOxPW3kbxuPWBQVWCnrTe0rQuBQiuhsJT+n3+NqZ7WkB5fhNdSdxd+0P+pDjytlPpPwAN8DDgW5thEhMRaD8R8VSUZ0vwufoXkr9jTNzTB2KT72nDPaDXbrTPx8nexl9aTsvVmMLwAVBXYOd46zcS0l+SE0I2fsNhsFN77a3Q/+Qh9j3+Rkt//Mra0rJAdX4TPUpcLPzPv1//XnM/zQxyLMEmsNr0HVJak8+a5Xpn8LuaT/BVjWmJg0rt3cpSx5/4dS2oW6Xc+gKa9/XtVBb5H6rT1zrC+IrTDRK3JKRTe/yG6n3yEq898laLf+js0S/RfUl3tlhpGemekAhHmibVJ7/PJ5HexEMlfsSfQ9B6tJ3yGYTDx0rcxJobJeP8fos3LmVUFvh+pLVdCX2QBOHLyydl9DwOv/QLXoafI2v2hkK8hQiuoxnel1BrgT4FUQAOsQK0C2VN/AAAgAElEQVSu67vCGJuIgFic9D6fNL+L65H8FTuivel9+uQe3G3HSNn1PmyZGcyfcZuRYiU7zRLS5vf50uo3MNXdjnP/YySWryWpfG3Y1hIrF+xF458ADmAn0A6sBc6EKSYRQVdjcNL7fGnJDnKzpPldLEryVwwInPBVR2ku8gz1MLn/R9grG0lUDSzwEAGAsDS/z6VpGrm33YctLZP+Z7+Od0bu4YhmwRZZabqu/zHwEvAC8G5gS9iiEhFzrek9yhtNl1JVLM3vYlGSv2JANE96N7xexl/6FpotgfRd96DhXfS1VQV2eoY8TEwv/pqVsjgSyLvzPcy6rjL06o/Cto5YuWCLrCH/f1uBRl3XXfi23EWMaws0vcfI0+4XU1mSLpPfxWIkf8WA1ihuep8+8SKenmZSdz2IlnD9Lpvqwreb38MpqbiC9PVbGTn2ApOXz4V1LXHjgi2yWpRSXwVeBz6jlPoMkBC+sESktMR403tAYK6OTH4XC5D8FQNau1zYrJaoO+HzuHqZPPgY9sr1OCoqlnx94A7D5p7wn/Bl77gDW3oW/b94GO+snGBGo2CLrD8GDui6fgL4DnAX8MmwRSUiwjf4zxUTg/+WErjDsLnTaXIkIgpJ/ooBrV0uKovTsdpCN19qpQzDYGLv90CzkHbL3WiL9GHNlZ5sISfNQsuV8Bc9FruDvNvvY9bZh0uebxiVgvrbrOv6BPCaUupB4BLwCV3XXw9rZCLs+oYmGJ2Izh6I5UpNdpCXlXStx0yIAMlf0c/r9Z/wFUdXLnK3vsls+ylStt+DJSn4GXzVhXbaesN3h+FcSaVVpNSuw3X4KdxDPRFZUwQv2AdEP4BvavJfAX8LNCmlbgtnYCL8ApfWorEH4kZUlWTQKpcLxTySv6Jf7+A441OzVJVETy4y3FNMvPoI1txSEusalvXeqkI7vU4PY5Pha36fK2fX3WhWKwMvfAfDWHq3TUROsA+I/gJwu67r5wCUUjfh23bfGsyblVKZQOa8L5cGG6QIj5ZOJzarRlmUDv5brqrSTI6e7WV4bJqMVGm5EddI/opy1ya9R9FO1tQbT2GMDpJ21x+gacsrXKrnTH7fWBX6oaTz2ZJTyd5+O4MH9zChHyGl/uawrymCE+zFbyOQoAB0XX9rGe8F+Cy+bfq5HweW8X4RBi2dLiqiePDfcknzu1iE5K8o19rlwm6zUJyfanYoAHhcfUwd/wUJ9Tuw5eQs+/3Xmt8j0JcVkL7uJuzZeQz+8vvSBB9FlnpAdLb/0zeVUn8BfAvwAr8LvLKMdb4KfH/e10qRRGUar9egtcvFro0lZocSMoGHyjZ3OrmpXh5Nt9pJ/oodrV0uKovSsVqjo+l9cv+PQbOSctMtLDZ09HpSkyzkZ1hpjWCRpVks5Ox6F73PPsrIkefI3PXBpd8kwm6py4UD+P6GBR6B+S9zfs8A/iKYRfxzad7RkayUCjJEEQ5XBseZiLIeiJVKTrRTmJty7dKDWPUkf8UAX9P7MLdujo4TPnfnedwtR0necT+WxBt/4HxVgT2sj9dZSHJpFcmVa3C+/gSpG+7ElpYV0fXFr1rqAdHRcVohQq6lwzfqIB7uLJyrqiSD5vahpV8o4p7kr9jQ3T/G5PQs1aXm5yLD8DL52g+xpGWT3NC4omNVFdo40jzFyISH9OTItWTk3HI3nT/9Ls59PyHvwU9HbF2xsGAfEG3Bd9Z3P2AH9gD/qOv6bBhjE2HU0uXCYbdSnBcdPRChUlWSweFTPThHpshKD3/DqYh+kr+iW4t/tl00NL3PXDiE5+ol0t71EbBoS7/hOgKT31uvuLmpJnJFlj0zm/R1mxk5/SoZOx7CkVcWsbXFrwr2TO+L+Ab4/Tvwb/getPrlcAUlwq+lw0VVcTqWKOmBCJVA83uLzMsSb5P8FcVaOlwkJph/wmfMupk6+FOseeU4yitXfLyqAjsa0NwzveJjLVfWll1oNjtDr/4w4muLdwp2hMN9wFZd190ASqlfAKfCFpUIK4/Hy8WeYe7eFn9nOBVF6WgaNHc42b620OxwRHSQ/BXFmjud1JRkoK1w52ilpk+9jHekn4wHPnHdB0AHKznBQlG2FT0Cj9eZz5qUQubmW3Ae3cdUZxOJZcub8yVCJ9htDEsgQQHouj4NRLajT4RM59Uxpmc81x5FE08SE2wU56VK87uYS/JXlHLPernYPUJ16fwxZJFlTE8w9cZT2MsasBcWhOy41YW+5nczBoRmbNiONSWNwb2PyIBSEwW7k3VSKfUV4D/8v/40cDo8IYlwa+2Mz6b3gOrSDE7p/RiGgaaZe3YsooLkryh1+coIsx6v6Y/TmTr2HMbUKCnbbgMjdFPaawrtHDw/xcCoh7z0YH/chobFbidr624G9r3AROtxUtYENXtXhFiwO1mfBrKAQ8BhIA/4TLiCEuHV3OkiKcFGfk6K2aGERU1pJiPjM1x1TpodiogOkr+i1LWmdxNP+LwTI0wdfx5H7U3YMkO7o1Zd5Gt+b+kxZ+M0TW3Alp6F89UfYYSweBTBC7a0/t+6rv9uOAMRkdPS4aSmNAOLyT0Q4RK49KBfHqIgO9nkaEQUkPwVpVo6XaQl28nNSjIthqmjz8Ds9A0PHr2e8jw7Vgvo3dPsrI/896hZrWRvu42re59hvOkwqWt3RTyG1S7YnawHwxqFiJhpt4dLPSPUlJnbAxFOpYVp2G0WdP8sMLHqSf6KUi2dLmpKM027rO8dG2L61B4S1HasqaG/u9Fh0yjPs9ESwcnv86WsWYsjOx/naz/G8HpMi2O1CnYn66JSag9wEBgLfFHX9X8LS1QibC51D+PxGlEx+C9cbFYLFcXptHRI87sAJH9FpanpWTp6R9jSUGteDG88DV4vKRu3E+pdrIDqQjuHmqbwGgYWE4pJTdPI2n4bfS8+wdiZfaRtvCviMaxmwe5kDQHdwBZgN9Do/xAxJrC7U10SvztZ4OvLaut24fFIH4KQ/BWN2rqH8Rrm3YDjHRlg+sxeEtfegiUlfG0FNYV2JmcMugfNm32bXLkGR14RzgOPY3hkBm8kBVtk/TO+pPQA8D6gBvj7MMUkwqi5w0lORiIZcT4Nvbo0kxm3l8u9o2aHIswn+SsK6Zd9J3xVJo1vmDzyFGgayetvIly7WPD25PcWE+ZlBWiaRva2W5kd7mf09GumxbEaBVtkfQ/4LpDk/3gC+K9wBSXCp7nDSW0c92MFBC6H6h3yHEMh+Ssa6R2+G1PSUxMivrZn+CozZ1/z7WIlhbchvSTHRqJdo6nbvCILIKm8hoT8YlwHH8fwyJi4SAm2yErWdf07uq67dV2f0XX960DoJraJiBgem6Z3cIIakwf/RUJ+djKpyXaapS9LSP6KSvplJ7Xl5uSiqTeeAs1C8vrNhHMXC8Bi0agutJu6kwX+3qxttzE7MsjoyVdMjWU1CbbIuqiU2hn4hVKqEbgUnpBEuASmoFfFcdN7gKZpVJdm0ix3GArJX1FnwDXJ4PAUtSac8Hlcfcyc30/iuluwJEambWJNsZ32q26m3Ob2iCaVVZFQUIrz9SdkNytCgi2ySoB9SqljSqk3gOPAJqXUaaWUTE6OEfplJxaNuHyczkKqSzPo7BtlcloaPVc5yV9RJnADjhn9WFNHnvbtYjVujtiatcV2PF5o6zW3sPHtZu3GMzrE6KlXTY1ltQh2hMNfhjUKERHNnU7KCtJISIjs4x3MUluWhWH4pkpvqM0zOxxhHslfUUa/7MRmtVBelBbRdT3DV5k5v5+kxt1YEiPXC1bjb36/0DXNurLI96DNlVRaRUJBCa7XnyBt451oVrup8cS7oH7a6rq+L9yBiPDyeg1aOpxsW1dodigRExi4ev7SkBRZq5jkr+jT3OGkuiQDm80a0XV9u1gaSY0bI7puRoqV/AwrF7rM7csC/27W1lvp/cVjjJ56lfSb7jE7pLgW7OVCEeO6+8cYnXBTW55ldigRk5JkpzgvlQvtcoehENFi1uOlpdNFbVlk2xY8w1eZObePxHU7sSRG/hE3tcV29J4ZDCO8jfbB8PVm+XazpDcrvKTIWiX0y75CI54fp7OQ2vJM9A5nVCQ2IQS0Xxlhxu259ozRSJk6+nPfXKx14b+jcCG1RXacY14GRs1/tI2maWRt2e270/CMbPSGkxRZq0RTu5PUZDsFOSlmhxJRa8qzGJtw090/tvSLhRBhF7jjtzqCJ3zekQFmzr5K4tqbsSSZM4i5tsgBEBWXDAGSyqtJyCvCdfAJmQIfRlJkrRJN7UPUlWdhsZjzIFazBObwyCVDIaJDU/sQGakOcjIjd8lu6ujPAUhu3IIZu1gAFfk27Fa4YPJQ0gBN08jcupvZ4X7Gzu43O5y4JUXWKjA2MUNn3yhrTBr8Z6ai3FSSE200SZElRFRoujREfWU2WoQeluwdHWT67CskNpi3iwVgs2pUFtjRu6ZNi2G+5IpaHLmFOA/+D4bX/MuY8UiKrFXggv8ZYTVlq6fpPcBi0agpy7z2ZyCEMM/QyBR9QxPURfAGnKk3nwXDIHm9ebtYAXXFdtr63MzMRkePqO9Ow13Muq4ydu6g2eHEJSmyVoEL7UNYLBpVJj3t3mxryrPo7BtlfFLuohHCTE2X/DfgRKjI8o45mT69l8T67ViSI39H4Xx1pQ5mPdByJTouGQIkV9bhyMnHJbtZYSFF1irQ1D5EZVH6qhlCOl9teSaGgTxiRwiTnW8fxGGzUFGUHpH1po49C14Pyeu3YvYuFkBdsa/5/VxH9Fwy1DSNzC27cQ9dYbzpkNnhxB0psuKcx+OlucMZ0e35aFNTmommwflLg2aHIsSq1nRpiNqyTKy28P/o8Y67mD71SxLUNiwpyWFfLxjpyRaKs62c74yeIgsgpVphz87DeeBxDMPc5yvGGymy4lz7lRGmZjymPe0+GiQl2ikvTOfcJWl+F8IsU9OztHUPoyojc8I3dew58LhJ3rCNaNjFCqgrcXChawZvFM3u883N2oV7sIfxpsNmhxNXpMiKc+f8uzersel9LlWZjX55CPesnKUJYYbmTiderxGRp054J0aYPvkyCXVbsaZG12xAVeJgfNqgcyC6ZlOlVNdjz8zBeeCnspsVQhFp0lFKZQLzt1JKI7H2anfu4iB5WUnkZJnf9GkmVZnFnsPttHW7qK/INjscEUMkf4XGtab3CJzwTR17FmZnSN6wnWjaxQJQpb4HMp/vmKYiL3oezqxZLGRt2c3Vvc8wfuEIqQ23mB1SXIjUTtZngUvzPg5EaO1VyzAMzl0cZG1VjtmhmK6u0ldYnW2TviyxbJK/QuB8+xBlBWkkJ4W3sPDtYu0hoW4L1rTUsK51I/IzrGSmWDgXZX1ZACm1Ddgzc3DJblbIRKrI+ipQNe/j1gitvWp1XR1jeGwmYj0Q0SwjNYHC3BTOXpQiSyyb5K8V8ngNLrQPRSQXTR//BbhnSN64g2jbxQJf/9OaYjtNUfJ4nbk0i4XMLbuY6e9kQj9qdjhxISKXC3VddwGuuV9TSkVi6VXtnL+gWCOXxwBfX9axc714vcaqe7yQuHGSv1buUvcwE1OzNFSFNxd5J0eZOvESjjWBXazoK7IAVKmDN1umGRiZJTc9ukbrpNauxXX8IM4DPyVZbUfTpHV7JeRPL46duzhIZloC+TnRcfuy2VRlFuOTbjr6Rs0ORYhV5UzbAAB1YT7hmz72HLinSdkYfb1YczWU+uZlnbkcfZcMfbtZu5m52iG7WSEgRVacMgyDs20DNFRF7hlh0U5d68saMDkSIVaXM20DlOSlkJEevmcHeidGmDrxom8XKz0tbOuEQnmejeQEjdNRWGSBbzfLnpmDc/9j0pu1QlJkxam+oQkGhqdoqJRLhQG5mUlkZyRKX5YQEeTx+m7AaagO7w04U8eeBfcMKZuisxdrLotFo6HMEZU7WfD2nYYz/Z2MXzhidjgxTYqsOHWtH0uKrGs0TaO+MpuzbYMYUTQIUIh4FujHqg9jLvJODDN9Yg8JamtU3lG4kLVlDvpcHq4OR9e8rICU2gbsWbk49z8qu1krIEVWnDrbNkhqsp2ivNhIOJGytiaH4bFpOnqlL0uISAj0Y6kwFllTR38OnhmSN0T/LlbA2vLo7cuCwG7WLtwD3Yyfl2ca3igpsuKQYRicbOmnsSZX7qKbZ211LgAnW/pNjkSI1eFM2wDFYezH8o4NMX1qDwlqO9a06Jrufj2luTZSkzROt0+ZHcqiUmrX+p5puP8xDK/H7HBikhRZcahnYJwB1ySNNTKEdL7crCTys5M52SxFlhDhFujHWhvGfqypI0+D10tKlM7FWoxF02godXDmcvTNywrQNI3sbbfhHrrC2Nn9ZocTk6TIikOBAqI+zI2msWpdTQ7nLg7i8UifgRDhdLHbFdZ+LM9IP9On95K49mYsKbH36LC1ZQ76Rzz0uqKzLwsguaoOR24hzv0/xfBEb5zRSoqsOHSqpZ/8rCTysmU+1kLW1uQyOT1La5dr6RcLIW5YuE/4pg7/DDQLyeu3Eku7WAGBvqxovmSoaRrZ229jdrif0ZN7zQ4n5kiRFWc8XoPTLf2sr82V+ViLaKj2nVVLX5YQ4fWWfpWq4nTSUxNCfmzPYDcz5/aR2LgTS1Lojx8JJTk2MlMsnLgYnc3vAUnlNSQUluI88Dhed3THGm2kyIozbV0uxqdmWVcrlwoXk56SQHlhGqdaZCipEOEyMeXmQvsQG9bkheX4k4ceB1sCKetvCsvxI0HTNNZXODjVPoXHG707cZqmkXPznXjGXYy8+bzZ4cQUKbLiTGB7XlVJkXU9DTU5XGgfYtotd8wIEQ5nLw4y6zHCcsI329uGu/kISZtuR3PYQ378SFpflcDopEFbr9vsUK4rsaiMpPIaXIeexDM5ZnY4MUOKrDhzqqWfyqJ00lJic/s8UtbX5uGe9cojdoQIkxP6VRLsVmrLs0J+7MkDj6IlpZHcsD7kx4609RUJaMDxtkmzQ1lS9o478E5PMHz4KbNDiRlSZMWRyelZzl8aolEuFS6pviobh93Cm+f7zA5FiLh0Qr/KupocbDZrSI/rbj/NbMdZkrfchWaL/R9h6ckWqgpsvBXlfVkACbkFpK5Zx/Cbv2B2RB5PFozY/xsqrjnZ3M+sx8uGunyzQ4l6DruVhuocjl+QIkuIUOsbmqC7f5zG2tyQHtfwepnc/yMs6Xkk1aqQHttM66sSaO6eYWwq+sfKZG2/HcPrZWjfT8wOJSZIkRVHjjX1kZxoY01F6Lfn49HGunx6Byfo6Zf+AiFC6WTzVQDW1YS2yJo5vx9PfwcpO94dVz+9NlYm4DXgVBSPcgiwp2eSsX4rY6f3MXP1stnhRL04+mu6uhmGwbGmPjasycNqlf+twdhY57vr6c0m2c0SIpTePN9HbmYShXmhe8yN4Z5m8vXHsRVU4SgrD9lxo0FNkZ0kh8bxtugvsgAyb9qJJSGBwb2PmB1K1JOfxnHiYvcwQyNTbFLhuV06HuVlJ1OUl8IxKbKECJlpt4cTzf1sbSgI6ay+qePPY4wNkXLzXWhE/2W15bBZNRorHBxvncIwoneUQ4A1MYnMm3YxefEUE20nzA4nqkmRFSeONfWhadAYppk08WpjXT5n2waZmpbHRQgRCqda+plxe9hUH7pc5B0bYuro0zhqNmHPic8cd1NNIkNjXlqvRPcoh4CM9VuwpWcx+PJ/y8Ojr0OKrDjxZlMftaWZYZmsHM82qjxmPV5OyfR3IULi6LlekhJsqMrQ3eU8eeAx8HpI3XobxNkuVsDmmgQ0Dd5ojv5RDgCa1UbOzrtwD/Ywcvwls8OJWlJkxYHhsWmaO5xsUnJX4XKpimySEmwcPttrdihCxDyv1+DouV42qzysIRqvMHullZnz+0naeEdMPgQ6WGlJFupL7Lyhx0aRBZBcWUdiSSXO/Y/hmRw1O5yoJEVWHHjzfC+GARvq4nMbPZxsNgub6/M5eu4KHk98niELESmtXS6co9Nsri8IyfEMw8vEq4+gJWeQ3LiJWHwI9HJsqU2kY2CWK87YaF/QNI2cXe/COz2B8zUZ6bAQKbLiwMFTPRRkJ1NenG52KDFpy7pCRifcnG2T4XpCrMQbZ69gsWg0rgnN6IaZs/vwXGkh9eb74mLw6FK21PraPd7QJ0yOJHgJOfmkN25h5K2Xmb5y0exwok78/62Nc2MTM5xq6WdHY2FI7+RZTTasycNht/L66R6zQxEiph0510tDZTYpyY4VH8s7OcbkgZ9gK67FUVkVguiiX36mjbJcG280x8Yoh4CsbbdhTUpm4MVvYxhyRWAuKbJi3JFzvcx6DLauLTQ7lJiV4LCysS6PN85eweuN78sRQoTL5d4ROnpH2bYuNJcKJw8+hjE1TurOd8fdyIbr2VqbQFPXDMPjsXPHnjUhkeyb72S6p5XRU6+aHU5UkSIrxr1+uofczCQqSjPMDiWmbVlXgHN0Gv2y0+xQhIhJB052Y9Fgy7qiFR9r9korM6f3krjxNmzpq6sNYrtKxDDgYFPsXDIESFXrSSwsY+iVH+AZHzY7nKghRVYMG590c0Lv5+bGIrlUuEKbVT42q4XXT3ebHYoQMccwDA6c6GZdTS4ZaSsbI2N4ZpnY8x0sqZmkbNhGvDe7z1eWa6Mkx8a+c7FzlyH4muBzb78P7/Qkgy9/z+xwooYUWTHs6PleZj1etjaGZnt+NUtKtNNYm8vBUz145JKhEMvS1j1Mz8A4t2xY+S7W1LFn8Qx0kLr7vWi21XfyqGkaOxsSaeqa4epwbNxlGODIziNz8y2MnTvAxMWTZocTFaTIimH7T3STk5FIZUmm2aHEhV2bSxgcnuJs64DZoQgRUw6c6MZq0djcsLITPs9QD1OHn8RRexOO4uIQRRd7dtYnArD/XGxdMgTfcw3tmTkMPP8tvDOx1cAfDlJkxaihkSneutDHbTeVYrGsvrO9cNhcn09yoo29xzrMDkWImOH1Guw/2c2murwV3VVoeL2Mv/RtNJudtB23E6+T3YORn2mjtsjOvhgssiw2G7m338/s8ABDr/zI7HBMZ4vEIkqpTGD+dktpJNaOV68d78RrwM5Nq/dsL9QcdivbG4s4dLqHP56eJSkhIv88RJST/HV95y8NMuCa5DfeXbei40wf/wWeHp20uz+ClmAPUXSxa2dDIj94ZZSOfjflebH155FUXE76hm2MHH+BlPodJFWuNzsk00RqJ+uzwKV5HwcitHbcMQyDX77ZiarIoiA31exw4squzSVMz3g4fOaK2aGI6CH56zr2HLlMcqKNzWtv/FKhZ6CTydd/iqNmE46KihBGF7tuVolYNNh7ZtzsUG5I9vbbsWdk0//cw3inY6uJP5QiVWR9Faia93FrhNaOOy2dLjr7RrntJjmZDrW6iizyspLkkqGYS/LXIsYmZnj9VA+7NpaQ4LixnV/DM8v4C99AcySRdsudaKvsbsLFZKRY2VyTwN5TE7g9sfdnYrHbybvrQWZHBhjY819mh2OaiFwP0XXdBbjmfk0pFYml49LeNztw2CxsbZQBpKGmaRq7NpfwzKut9A1NUJCdbHZIwmSSvxa3760uZma93L71xk/4Jg8+hufqJdLv+xiaI7Yui4XbXRuSOd7q5GjzJLsaYi8XJRaWknnTTlzHXyW5ZjOpa3eZHVLESeN7jJmanmXfiW62NxaSlCgJKRxu31IGwAuHLpkciRDRyzAMXjpymaridMqLb2wYsrv9FNPHniNx/a04ilc+/iHebKh0kJtm4YW3xswO5YZlbdlNQkEJA89/C/fwVbPDiTgpsmLMq291MT7p5q7t5WaHErdyMpPYsraAPUcuM+2OnUdbCBFJLZ0uLvWM3HAu8o67GH/hG1hzSkjdcgurbehoMCwWjTs2JHOqfYaeodiamRWgWa3kv+shDK+Hq0/9G4bHbXZIESVFVgwxDINnD1ykuiSDmvIss8OJa++6uZLRCTcHTsgEeCEW8sKhdt8dueuXvwNleD2MP/fvGDOTpN/1PvlJdB13rE/CosFLJ2J3N8uenkXeHfcz3d3C4N4fmh1ORMlf7Rhysrmfzr5R7ttZKY/RCbOGqmxK8lN59uBFDEPOsIWYa2hkitfe6uTOraU31LYweeBRZruaSLv9g1jT5A7p68lKtbKlNoE9J8eZmond2WGptWtJX7+NkTd/wdj5180OJ2KkyIohPz9wkYxUhzS8R4Cmady9o4KL3cPy0Ggh5nn2wEW8XoN7bqlc9ntn9Df8fVi3kVCx/PevRg9sS2FsyuClE7E5ziEg55a7SCgopf+5h5nuazc7nIiQIitGdPePcaypj3fvqMBms5odzqqwa3MJKUl2/mdvi9mhCBE1JqbcvHC4ne2NReTlpCzrvbO9bYy/+A1sRbX+PqzY3ZmJpDXFDlSpnaePjjEbg+McAjSrlYJ7PoDF7qDv8S/iGR82O6SwkyIrRjz+y2Ycdit3SsN7xCQl2Lh3ZyVHz/dysTv+k4EQwXj5aAfjk27u3121rPd5RwcZe/rLWJLTybj7IbDEbrFghvduS2FgxMP+87H3qJ25bKlpFN7/ITzjLnqf+GeM2fhuhJciKwZ094/x2vFO7tlRQVpqgtnhrCrvvqWSpAQbj72smx2KEKabcXt4el8ba6uyqSoN/sH0xvQEY099CdyTZNz7YbQbHFy6mm2qTqA018YTh0bxxnifaEJ+EXl3Pch0l87Vn38Nw4jfHU0psmLAY3t0bDYr99+6vDNHsXIpSXbu2VnJ4TNXuHxlxOxwhDDV84faGXBN8oG7a4N+jzE7w9gzX8Yz2En6u38La9ryLjEKH03TeGh7Cp0Ds7zeFPuPqUmtXUv2zXcx3nSIwT3fi9sbjKTIinKdfaPsP9HFfbfILpZZ7t1ZSaLDyk/2XDA7FCFMMz7p5vFfNrOpLg9VlRvUewyvh/FffJ3ZzvOk3fVh7Ja/LD4AABCLSURBVAV5YY4yvt1Sn0h5no1HXh3GPRv7RUnGph1kbNzByLHncb3+M7PDCQspsqLcD19owm6zct8y+x9E6KQmO7h/dzWHTl/hbNuA2eEIYYqnXmtldGKGX393XVCvN7wexl94GHfrm6Tsfj8J5WXIwNGVsVg0fvO2NPpcnpieAh+gaRrZt9xFat16nPsexXX4abNDCjkpsqLYW/pVDp+5wgfurCE1RXaxzPSeW6vJyUjkO0+fweOVHxRidRkcnuTp/W3s3FBMWRCP0DG8Hsaffxj3hUOk3PIgSXUKKbBCY32lg8YKB48dHGVsKvZ7mTRNI+/OB0ipXcfQKz/E9cYzZocUUlJkRSn3rIfvPHWaotwU7tklu1hmS3BY+fB99VzqGeGXRy+bHY4QEfXdp8/i9Rp88F1rlnytMTvD+HP/jlv3F1gN65ACK3Q0zbebNTbp5Sf74uOuZ81iIf/u95JSs5ahvT9gaN9jcdOjJUVWlHp6Xxvd/eN87MG1MhcrSuxYX0RdRRY/eL6J4bFps8MRIiKOnL3C66d7+NDda8hfYi6WMT3B2JP/hLvlKCm73icFVphUFth516Zknjs2TlNXfOQizWIh/10PkVq/EdfB/2Hwpf+Mi7sOpciKQp19ozz2cjPb1hawbo00ikYLTdP4+EPrmJia5eEnTsXNmZYQi5mYcvOtJ09TUZi25I66d2SA0Z9+jtlunbS7P0KSqkcKrPD58G2p5KRZ+NpzTmbioAkefIVW3h3vIWPjzYwcf5G+J76Edya276SUIivKuGc9fPlHx0l0WPnYe9eZHY6Yp6wwnV971xoOn7nCq8c7zQ5HiLD6z2fOMjgyxR98YD1W6+I/Lma7dUZ+/P/iHb5Kxv0fJ6GiAimwwivJYeH378mga3CWRw/Ex2VDCDTD30nOrnuYaHmTnkf+ltnhfrPDumFSZEWZHzzfxMWeYT75wQ1kpCeaHY5YwP27q1GVWXzryTP0DcX29GUhFrP3zQ5ePtrBB+6opWKRwaOGYTB14iVG/+cLaI5EMt//+9gLcpECKzI2VCVwe2MSPzs0xrHW2N7xmUvTNDI2bKXwPR/G7eql67/+kom2E2aHdUOkyIoib5y9wtP72rjn5go21OebHY5YhMWi8clf24imwT/89xEmp2fNDkmIkGq/MsI3fnaaxpoc3nfXws3u3qkxxp/9CpOvfA97WQNZ7/0o1tTkCEcqPn53OuV5Nv71mSF6XfGVi5LLqyn54MexJSfT+9g/MPTqjzE8sfUYHimyokRzh5Mv/eg4tWWZ/Ma99WaHI5aQl53Mpz+ymY6+Ub784+My1kHEDefoFP/4/aOkJNr4o1/fhGbRfuU17osnGHnkL3G3HSdl50Ok3/UAml1u0DFDgl3jf70vE8OAf3xikMmZ2G8Wn8uRlUPxBz5GWsNmXIeepPt7/5uZq7Fzh7cUWVGgb2iCL/z3ETJTE/jzj27B4ZBkFQvWr8njt9/TwNFzvfz3z89KI7yIeWOTbv7+O28wNDzFZ3/7JtLT3jmfzzvuYvyFbzD21D9jSUgm8/1/SFJ9Axrx9YM91hRk2viT/9PevQfHVZ53HP+evWl3dbEkW5FlS7JkO36R7WILfCGBhOJbghMDE6CZkA40AZpMps10UqDtkDjJMNN0OpkJnU4mpAFqpqU0LjTBGTctiVxqgzFxMLZ8wa+NbGMLyZIlW9fVSrt7Tv9YySMLxRfitVar32dm56zOnsu7zx49+5x3z+77mWLea0/wxOYOBhO5lYt8wSBlf3g75Z++h1TPGZqffYyz//cCbiL7v1mpUTonWEtHH996aieJpMvjD67U0DmTzJqb5tB2NsaWHccAeOjOxTjOB8/8RbJdLJ7giWd2cbKth0fvX05tVcn5x7xUksF9vyK+8z/wEoNElq0jf/HS4dP03HpDn6yWzs3jq+un8aOt3XzvpQ4ev3cGQX9u5aL82gWEZ86m8/VtdL32In0HtjN99Z8QNSuyNu+qyJpAJ1p72PjjnaRcj8cfXEF5WcFEN0mukOM4fHF9HQ6wZccxEkmXr1zim1gi2eZsT5zvPr2LEy3dfP0L9dTNT49N6HkuQ4d3En99M253O8HqhRTctAp/QT4qrrLPzXURhhIeT7/Sw3de6OBv7p5OQSS3cpE/ks9H1mygsG4JHa+9QttLf0/ebEPpqi8Sqc6+b+SryJogOxtb+Iefvk04FOBbD69UgTWJOY7DfevrCAR8bN1+jNaOfh754xuZpl5JmQSOt3TzxLNv0ts/xKP3L2fRgjK8VJKhQzuI7/4F7rkW/DOqKLr9AYIVM3HwUIGVvW67PkrA7/CT/+nmkU3tbPz8DGaV5t5bfWR2NZX3fpleu59zu1+j9V82Eq6qo/jjnyMyrz5reracibqOxBhTAxxvaGigsrJyQtowEYYSKZ77r0Ns2X6M+VXF/Nnn6yktiUx0s+Qq2f7WKZ7bcpDigjy+cd8NLJ43Y6KblG2yI/P9nnIhf7mux5YdTTy39R0K84M8ev8yZuUnGNzfwOD+/8Xr78JfVkV06ScIVVXruqtJ5nDzEE++fI5kCh5eW8yaJdGsKTyuNjeRoPdwI1173yTV10Vw+myKbvw0hX9wK77wxUcp+BCuKIgqsq6h377Txo9/1sjpzhi331zDH627Dn8gt7pyBY6/380PX9hD+7kB1q6o5ksbFlEYDU10s7JFTmT5yZ6/3m3u4umXD3DwWCcfryvmvoUDOE27SJ48AECwZhHRRTcSKK9QcTWJnelO8k//3cOhU0MsmxfmwbXTqJwenOhmZYyXStH37jv0HNzLYNtJnECI6ILlFCz+JNHaJTiBq/LcVWRlE8/zOHCsk82/PsLeI2eYXZbPA3cs4rq56uHIZYNDKX6+7Si/fP044ZCfDbfM5c5b56nYUpE1oU6e7uHFhiMc3PcO10fbua28g4KuJnBT+KaVEV5QT3iewReNoo8Ec4PrebyyJ8bm1/pIJD0+VZ/P3R8rpLw49z5CHG2w/TS9Rw7Rd3Q/brwfJxQhOv8GovNvIFK7hEBByaU3Mj4VWdmgNzbEjr3v8+vfnOToqS6KC/L47CdrWb2yRr1XU0hzWy8/azjK7oOnyQv6uWXpLNaumENdTSm+cX5/aArIiSc9mfLXwECcfbv30fT22wQ6m5gfbKPE1w+Ar7icvLmLyKuqxT+9TL1WOay7P8XPd/XTsC+G58Hy+WHW1edTXxsmGMiJf8txeakUAy0n6T/+LrHjh0nFegEIllURqVpI/qJbiFQvvJJNqsiaCImky4nWbva/28lbh9s4dLyTZMqjemYha1ZWc3N9JUH9WN+Udep0D7964wS7GluJD6UoLQqzfGE5SxeUUVdTyvRpU+a6vJzI5tmYv9zkEMmudoY6W+g8dYLO95pwO5spHDpD0EkBMBTIJ1w5j2j1XEIzZ+ErLAJPhdVU0tmTomFfjG2NA/QOuETzHJbND7OkJszi6jwqSvw5e+2W53kMdbYTO/Ue8dZm4q0nCBZ/hMqHf3Alm1GRlSmJpEt33yBne+K0n4vRfjbGqbY+Trb1cLylh0QynayqygtZaspYubiCqllFOXvAypWLDyZ569Bp9h5up/Fox/kheWYUR6ipKKK6vJCKGfmUl0aZURyhpDCP/Egwl46hnHgi1yJ/eW4Kd3AAdzCGG+/HjfeRGujDHegl0ddFvKuTeFcnyd6z0H+WYKL3gvW73QidTgnetArKaiuZ89EKfEXF6q0SABJJj4Mnh9h9JM6eY4P0xNLHRWHER215kOoZQWaVBphZ7Gd6YfpWGPXhy51chOe6EJyOM23ulayWfUWWMaYYGDvC6Bzg1eeff56ZM2dedP3+eII3GltJpUa31fvAvfPTUc/J88DDS0/d4ann4ZL+do3reiRT7vlpIumRSKYYTKYYHErfYvEEsXhy3DHqiqIhZpblM7usgDkVRcyZVURRoQZ2lktLpVxa2vs40dLNydO9tHX0c/psjFTqwjdBv98hPy9IJBwkkucnHAoQCvkIBvyEAn4CfodAwIffcfD7fThOenxFn0M6ITrp+47jMDo/jhRuI7MuzBwXySMXbAOWXVdO6bTLO+ZXr15dCzRbayfNIGu/b/7yPI9DW39KsqcDx0vheG765ibBTeF4SXxu8vzU5ybwewn8Xuqi2425QfrcCD1emF4vQh8FEC0iUlpMSVkJNZX5TC9ycHKjrpUM8vBoO+fS1DrE+51JmjtTtHUlP/DL8Y4D0Twf+Xk+wiGHSMghFHAIBR2CPoeAHwJ+B7/Pwe8Dny+dg9K5CBiZDm/LIT3PgQtOJJ0P3MmcyvISFtWZy17+SnPYtSqyvgN8O+M7EpHJoNZae2KiG3G5lL9EZIzLzmHX6usFTwKbxswLAXOBo8DFT9myQyWwA/gE0DzBbZlIikOa4pD2YeIw2eKVC/kLdMyCYjBCcUj7sHG47GWvSZFlre0CusZ56Mi12P/VYMz57sTmyXQWfrUpDmmKQ9pUiEMu5C+YGq/VpSgGaYpD2rWIg35LQERERCQDVGSJiIiIZICKLBEREZEMUJF1+bqA7zL+tRlTieKQpjikKQ6Th14rxWCE4pCW8ThM2I+RioiIiOQy9WSJiIiIZICKLBEREZEMUJElIiIikgEqskREREQyQEWWiIiISAaoyBIRERHJgGs1QLTkKGPMJuCAtfb7Gd5PEfBLoBjYaK19adRjmwGftfaeUfMeAe4EVllrE5lsm4hMTspfkmkqsmSyWAqUW2vnj/PYg8BvjTF/Ya190hizDvhzYIUSlIhkAeWvKUpFlpxnjPk3YM/IWZ0x5qvAbcAXgB8ANwGFgAM8ZK19fcz6HlBmre0Y+7cxZgPwTSAExIBHrLVvjNOGu4BvA36gB/gG0A08C8w2xuwFPmatHRhZx1rba4y5F9hujDkF/CNwl7W27SqFRkSynPKXZCNdkyWj/QR4YNTfXxqetxKYRTo5LASeA/76cjdqjPko8LfAemttPfCnwH8aY/LHLHcd8BRwt7X2emAj8DLQCjwENFlrl45OUCOstY3AY8CLwPestb+53PaJSE5Q/pKsoyJLRnsVCBtjlhljFgJlQMPwGds3ga8YY74P3AMUXMF21wIVQMPwmdzzgAuM7TpfNby/YwDW2m1AO3DjZe5nNemE9lljjI5tkanlVZS/JMvohZTzrLUe8AxwP+mzwGestZ4x5jPA1uHFXiZ9tub8js04AMaY0Kh5ftLJZ+nIjXTX/YEx6453PPqA4KXabox5DDDA9UAV6bNIEZkilL8kG6nIkrE2AXcA9wL/PDxvLfALa+2PgN3AXaQTz1hngGXD9z83av42YN1wdzrGmPVAIxAes/7IcnOHl1tFOuG8ebEGG2PWAH9Fupu+Y7jtf2mM+dSlnqyI5JRNKH9JFlGRJRew1p4G9gCN1tqW4dlPAbcaYxqBN4AmoHacLu2vAz80xuwB6kl3fWOtPUj6OoZ/N8bsA54A7rDW9o/Z9yHga6SvdzgA/B2wwVrb/bvaa4ypAV4AvmytbRq1v68B/2qMqfpwkRCRyUb5S7KN43neRLdBREREJOeoJ0tEREQkA1RkiYiIiGSAiiwRERGRDFCRJSIiIpIBKrJEREREMkBFloiIiEgGqMgSERERyQAVWSIiIiIZ8P9QFjHNZwkhAAAAAABJRU5ErkJggg==\n", "application/papermill.record/text/plain": "
" }, "metadata": { "scrapbook": { "mime_prefix": "application/papermill.record/", "name": "twosamplewelchtestdist_fig" } }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlkAAAENCAYAAAA8D3A7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xd4HOd1+PvvbEPvvVfiBUiwiU0iqW6rWLJc4sRO4thxip3EcX7OvSn3l5snN7Zz4yR2YseOXJPYcpOsyCqWrEKZklhEihQpdoKDQoJoBIiyi14Wu/P7Y3cpCAaIBbG7s7s4n+fBIxDcnfeAIg/OvHPmjGYYBkIIIYQQIrQsZgcghBBCCBGPpMgSQgghhAgDKbKEEEIIIcJAiiwhhBBCiDCQIksIIYQQIgykyBJCCCGECAMpssQ7KKXalVJblVJ3KKXOLvD7C349DHFkKKVemfNrQymVG6Jjf14p9bFQHEsIERyl1PeVUn/h//zvlFLvi9C625RS3/J/vlUp9USIjvv3Sqn/CMWxllhnbvwhzb9KqeeVUmtDdTzxq2xmByDEIrKA7eE4sK7rfxeO4wohgnYXcD5Ca60DSgF0XT8GfChC64bKtfhDTdf194TjuOJtUmTFKaXUHcD/D1wEGoEE4NO6rr+qlPo+cFbX9S/7X/uOXwchVSn1GFAPJAJ/CBwHuoEduq43+4/7MvAfwAcAA2gA8oA9wJ/puu5WSt0KfAlIBmaAv9V1/UXge0CSUuoksMW/7ueUUjcDOcCXdF1/2L/O7wN/gm9ndhD4U13XLyildgP/Blj9639R1/Wfzf1+lVKf88c343/v7+q6fiXIPwchxBxKKQvwFeBmIA3QgD/Qdf31Oa/5NLAV+JJSygP8Avhn4HZ8/1ZP4MsPI0qpduAIsAH4G/+xvw/cDZQDP9V1/a8WWxfoAD4PZCilvgc8gi8n7QI6gTpd13v9cb0BfA7Yu1g8C3zL9UqpV4EioA/4CFANPAZU6LruVUolA+348vBR4CngViAT+Fdd17/pX/+TwJ8BHv+x/hSYXCD+X8m/uq4fUEo5rvPn+MfAH+HLc1PAp3RdP+//8/0QcAFfzl0DePHl80/puu5d4HsWyyCXC+PbDnz/iDcD/wX8fYiOWwp8Rdf1TcC3gb/XdX0CXwL4AwClVA2ggOf879kIvAtY6//4lFIqB3gC+F+6rm8APg78SClVBXwCmNR1fZOu6x7/MS7qur4FX1H0r0opu1Lqdv/7bvV/n/8CPOl//eeAf/O/5/fwnT1fo5QqAz4LbNN1fSu+4m9HiP6MhFiNdgDFwC26rq/FlxP+n7kv8J8cHQP+Utf1p/y/Pwts0XV9I9AD/NOct5zVdb3B/1qAVF3XbwV2Ap/x54sF19V1vRP4O+CAruufmBPDML5i56MASqkGfIXSS0HEM1c18Bu6rtcDTt4uKAeB+/yv+QiwV9f1q/5fJwPbgDuAzyul1iul7gL+CrjTv+ZPgKeBrgXi/5X86//6gnErpazAV4H7dF3fBnwH2D3v+/gAkOY/5rY535tYISmy4ttlXddP+j9/C8gO0XHbdF0/4v/8JJDv//wbwMeUUnbgk8B/zimQvq/r+piu69PAD4B78SXG1sCxdF0/B7yOL/ks5Cdz1kwA0oEHgFrgkH/X61+AbKVUNvA48LBS6sf4dsP+Zt7xuoFTwFtKqS8DJ3Vdf3rZfxpCCAB0XT8M/C2+k6gv49slSV3ibQ8C7wNO+P8Nvx/fiVjAgXmvf8a/VjdwFci+wXW/i+8EDXwndd/z79wsFc9cL+u63u///BRv58KH8e3wA3wK+Oac9zys67qh63oX8CJwD76C7KeBY+m6/n2gBKhcYM3F8u+Ccftz8P/gy5H/AQzjO+me6yCwTin1Gr5i7au6rrcu8j2LZZAiK75NzvncwLeFPv9zAMcyj+te6Lj+y4Sn8f1D/23gP+e8bnbO5xZ8W+IL/f2zAPbrravreuCBmxq+bfEf+ne8NgE34bsU4dR1/dvAeuBlfEXdaaVURuBg/oR6O/C7+M48v6KU+vfrfeNCiMUppR7Ad/kPfMXQt3hnrlmIFd9uduDf8Hbe2Tc1Nu/1v5LXbmRdXdcPAjal1Hbgt4D/DjKeuRbMhcCPgd1KqTvx7bztn/O6YHOhxsK5cLE1F41b1/WPAu8FWoG/5u3dfvy/fwnfyeoX8Z28/lIpFWu9a1FJiqzVqR9fIYL/jr1bQ3jsh/H1WB3Rdb1nztc/rJRKUEol4jt7fBZ4wxeC2u6PZR1wG/AavkRkVUotlaD3AL+plCry//qP8PVUoJQ6BGz2nxV+El8PRFbgjUqpjcBZoEnX9S/i6+nYeIPftxAC3g086+8zehPfbop1gdfN8nYB8RLwp0oph7+36rv4ftiHat25a833n8DXgdO6rneEKh5/+8SP8BVu35r32x8DUEqV49vFesG/5oeVUnn+3/sEvhO/1iXin2vBuJVSuUqpTmBQ1/Wv4tvxe0ee8/dsfQ/Yo+v6X/uP1bic71ksTIqs1enrQJFSSsd3xvVaCI/9HL5t+vmJZQLftv8Z/3+/p+v6APDrwNeVUmfwXQ78hH9H7Aq+S5xN/t6tBem6/hK+Zs+XlVKn8Z2RftC/2/VX+HoeTgCvAp/Tdb19zntP4bukeEwpdQxf39afr/D7F2I1+xZwu//f4mGgDajy/9Cf61ngy0qpjwNfwNcYfgLfHYca8H+HcN3D+BrUn1rgfY8Am3jnrnso4gFf0ZKPrz1iriql1HF8lwr/TPd5Gd9J3itKqXP4TkQf9O+2Xy/+uRaM259n/wHY61/3n/D3zs7xA3xF6Xl/LkwHZFc/BDTDMJZ+lRBBUkrtxHcG1Ri4rHcDdy8KIUTM8u/A/zW+Owz/eM7X24EP+UdJiFVARjiIkFFKPYKvaf1jc/qmhBBitbmIry3jIbMDEeaSnSwhhBBCiDCQniwhhBBCiDCQIksIIYQQIgxM68lSStnwTa7t0nV9dqnXCyFEtJD8JYQIhpmN76XApb1795oYghAiwpaaexYrJH8JsTotK4fJ5UIhhBBCiDCQIksIIYQQIgykyBJCCCGECAMpsoQQQgghwkCKLCGEEEKIMJAiSwghhBAiDKTIEkIIIYQIAymyhBBCCCHCQIosIYQQQogwkCJLCCGEECIMpMgSEfU7v/M7tLW1AeB0OnnwwQdNjkgIsRpFQy6KhhhEeEmRJSLq8uXLVFVVAaDrOnV1dSZHJIRYjaIhF0VDDCK8zHxAtFhluru7KSgowGLx1fa6rqOUMjkqIcRqs1gumpiY4HOf+xx2u53t27fz0EMPRTyGzs5OvvnNbzI2NsbXvva1sK0vIkN2skTEXLhw4R1F1blz56TIEkJE3GK5aM+ePdx77738wz/8A6+88oopMZSVlfGP//iPYV1bRI4UWSJimpqamJ6eBqC9vZ29e/fK9rgQIuIWy0V9fX0UFRUBYLVaTYlBxJeIXC5USmUCmfO+XBqJtUX00HUdh8PBQw89hFKK2tpannrqKT796U+bHZoQi5L8FX8Wy0UlJSX09vbS0NCA1+s1JQbJh/ElUj1ZnwX+vwitJaKUrus8+eSTpKammh2KEMsh+SvOLJaLJiYm+MIXvsBrr73GnXfeaUoMTqeTr3zlK5w/f55vf/vbfOpTnwprHCK8IlVkfRX4/ryvlQIHIrS+MNnY2BiapkmBJWKR5K84cr1clJyczBe/+EVTY8jKyuLzn/982GMQkaEZhmHKwkqpSuDS3r17KS2VnXchVgnN7ABCQfKXEKvWsnKYNL4LIYQQQoSBFFlCCCGEEGEgRZYQQgghRBhIkSWEEEIIEQZSZAkhhBBChIEUWSLsvF6DWU94B/sJIYQQ0UYeEC3CZsbt4eWjHfzs1RZGx2fYsa6IO7eWsqW+wOzQhBCrzMtHLvPoyzpWi0ZKkp337Kzinh0VZocl4pwUWSIsXKPT/OXX99M7OIGqyGJ9bS5Hz/Wy70QXn/rAeh7cXW12iEKIVWDa7eHbT57m5aMdqIos8rKS6Okf5+uPn6RvaIKP3lePpsXF+DYRhaTIEiHn8Rp86UfHGBqe4q9/dxtra3PRNI2Pvncd//HoCb779BkKspPZtrbQ7FCFEHHuX398nMNnrvDBO2t5311r0CwaHo+XR35+jsd/2czo+Ax/8qGNZocp4pT0ZImQe/SlC5xuHeD33t/IujV5184SbVYLf/wbGykvSudffniM9isjJkcqhIhnh8/0cPjMFX7zXsX731WHZvHlIqvVwife38i9uyp54XA7J5uvmhuoiFtSZImQOts2wE9/2czd28rYuflXHzeS4LDx57+zFYfdynefPmNChEKI1WB80s23njxDZVE69+yq+pXf1zSNX3+3Ij87mW89dQb3rNycI0JPiiwRUo/u0clKT+C3Hli76Guy0hN58PYaTrcOcKZtIILRCSFWix88fx7n6BR/8IFGrNaFf9Q57FZ++z0NdF8d47mDFyMcoVgNpMgSIXOhfYjTrQM8eGs1drv1uq+9a3s5WWkJ/OiFJsx6SLkQIj5ddU7w4uF27rm5gvKSzOu+dlN9Phvr8nh0j45rdDoyAYpVQ4osETI//WUzackObttatuRrHXYr772jhvOXhjjZ3B+B6IQQq8Xzr18C4P5dS9/FrGkaH7m/nsnpWfYcuRzu0MQqI0WWCImL3cMca+rjPbsqSXAEd9Pq7VvLyMlI5NGX9TBHJ4RYLabdHvYcucy2dYVkZyUF9Z6S/DQaqnN48Y12PF7ZWRehI0WWCImn9rWSlGDjzmUM97PbrLzrlkqaLg3R3T8WxuiEEKvFvre6GJ1w8+6blzdo9O7t5fQ7J3nrQl+YIhOrkRRZYsUmp2c5fOYKuzeVkJxkX9Z7d20sRtPglTc7whSdEGK1MAyD5w5epKIwjTWV2ct6701rC8hITeAXh9rDE5xYlaTIEiv2xtkrTM94uGVj0bLfm5meyPraPF451olXtumFECtwod3JpZ4R7t1Zuewp7jarhdu3lvLWhT6uDk2EKUKx2kiRJVbsteNd5GclUV2WdUPv331TCQPDU5xplXEOQogbt/9kF3abha2Nyz/hA7hjWzkALx+VBngRGlJkiRVxjk5xsvkquzYVY7Hc2PO/bmooIDnRxi/lkqEQ4gZ5vQaHTl9hs8ojMeHGnhiXm5lEfWU2B0/1hDg6sVpJkSVW5MDJbrwG3Lyh+IaP4bBb2bG+iMNnrjAx5Q5hdEKI1eLC5SGGRqbYtu7GdrECtqwrpOvqGJ19oyGKTKxmUmSJFXnteBdVxekU5aet6Di3bCxm2u3hhMzMEkLcgNdP92CzWtio8lZ0nK1rCwA4fOZKKMISq5wUWeKG9Tsnael0ccvGG9/FClhTnkVKkp0jZ3tDEJkQYjXxeg0OnephU10eiYnLu8N5vuyMJGrKMjl0Ri4ZipWTIkvcsGP+eTIb6/JXfCyr1cKGujyOXeiTYYBCiGVp7nQyMDzF9sbCkBxv69oC2rqGueqUuwzFykiRJW7Y8aY+8rOSKMxLCcnxNtfnMzo+Q/NlZ0iOJ4RYHQ6dvoLNqrFBrfyED2DLWl+xJpcMxUpJkSVuyIzbw8mWfjbX5y97Hs1i1q/Jw2rROHJeEpsQInjHL/Sxtipn2cOQF1OYm0JZQRqHTsslQ7EyUmSJG3K2bZDpGQ8b6lbWZDpXSpKduspsjp6Tx1oIIYIz4Jqko3eUDXW5IT3upvp8Llx2yh3PYkWkyBI35NiFPhx2K/VVOSE97ub6fDr7RukdHA/pcYUQ8elk81UA1taEtshqrM3F6zVkSLJYESmyxLIZhsGx83001uRgt1tDeuzN9b6eijfPy26WEGJpJ/R+stISKClY2RiZ+WrLM3HYrbwlY2XECtzYWNxlUkplApnzvlwaibVF6PUMjHNlcJz7d1WG/NgFOSnkZydzsqWf995aHfLjC7Fckr+il8drcKK5n5tC2BsaYLdZqa/KvrZTJsSNiNRO1meBS/M+DkRobRFiJ3Rf0lm3JnT9WHM1VGVzrm1QRjmIaCH5K0pd7HYxOjFDY21oLxUGNNbm0tM/Tr9zMizHF/EvUkXWV4GqeR+3RmhtEWJn2gbIy0oiLzs5LMdvqMlhfMrNpe7hsBxfiGWS/BWl3vKf8DXUhLY3NCBQvJ2Q3SxxgyJyuVDXdRfgmvs1pVQklhYh5msEHWRLQ2jm0Sxkrb+Z/nRrP7Vl86/SCBFZkr+i1wm9n6ridNJTE8Jy/JL8VDLTEjjRfJV7dlSEZQ0R36TxXSxLR98ooxMzIb+rcK7M9ESK81I52SJ39QghFjY1M4t+eYj1a8JzqRBA0zTW1eRyqmUAr7QviBsgRZZYltOtvjtt6iqzwrpOQ3U25y8NMuvxhnUdIURs0i87mfUYqMrssK7TWJvL6PgM7VdGwrqOiE9SZIllOds2SH5WErlZ4enHClhbncP0jIeWDtfSLxZCrDrnLg6iaVBbHt4TPlWV7V9PdtbF8kmRJYLm9RqcbRtgXXX4tucD6qt9lyNPtcqMGiHErzp3cZDKonSSEkPzKJ3F5GYmkZ2RyNmLg2FdR8QnKbJE0C73jjA64aa+Orzb8wBpyQ7Ki9I5LdOWhRDzuGe9XGgfoiGMvaFzqcpszl8awjCkL0ssjxRZImiBx0vUhbkHIkBVZtF82Sl9WUKId2jtdDEz66WuIryXCgNURRau0WmuyOO+xDJJkSWCdvbiIAXZyeRkJkVkvbqKbKbdHi71yLwsIcTbzvr7o9aE+QacgMCJ5bk2uWQolkeKLBEUwzBoujSEitCZI8Aaf0Pr+UtDEVtTCBH9zl0cpDQ/lbSU8MzHmq84L5WUJDtnL0mRJZZHiiwRlN7BCVxj09RGsMjKzkgkNzOJ85LYhBB+Hq/B+UtD1FdFpm0BwGLRqKvI4rw0v4tlkiJLBKWp3bebFOkJ7Gsqsmhql4ZTIYTPpZ5hJqdnqY/QpcIAVZlN7+AEzpGpiK4rYpsUWSIoF9qHSE60UZKfFtF115Rn4RyZ5qo8oFUIgS8XAdSURW4nC7g29FRGOYjlkCJLBKWpfYg1ZVloFi2i6wbuHpJLhkIIgAvtTrLSEsjOTIzouhXF6TjsVslFYlmkyBJLmphyc7l3hDUVkX9Yc2lBGkkJNml+F0IAoHcMsaY8C02L7AmfzWqhqiQD/bIzouuK2CZFlliSftmJYUS+Hwt8Dac1ZZk0tcvZoxCrnWt0mt7BCdaURz4XgS8HXuwZZsbtMWV9EXukyBJLutA+hKZBdak5ia2uIouO3lHGJ92mrC+EiA76Zd+Otlm5qKYsE4/H4GK3zO4TwZEiSyzpfPsQ5YXpJIb5GWGLqS3PxDCgpVO26YVYzS5cdmK1aFSWZJiyfo1/N7/psrQviOBIkSWuy+M10C87qQvzk+6vp6rEl9guSC+EEKuaftlJZXE6drvVlPWz0hPJyUzkQrvkIhEcKbLEdXVfHWVyevbaGZwZUpLsFOWlSMOpEKuYx+OludPJmjLzTvgAasqyaO6QXCSCI0WWuK5AMqkqNWd7PqCmNJOWTpcMJRVilWq/MsL0jIeaMnNzUW1ZJgOuSQaHZXafWJoUWeK6mjtcJCfaKMhJMTWO6tJMhsem6ZehpEKsSrr/hK/a9J0s366+7GaJYEiRJa6rudNJTWkmlggPIZ0vkNh0aTgVYlXSLzvJSHWQm5VkahwVRelYrRpN0pclgiBFlljUtNtDe88ItSZvzwOUFaZht1m4IGePQqxKLZ1OassyIz6EdD6H3UpFUToX5IRPBEGKLLGoi13DeLwGlSXmNb0H2KwWKorTZYteiFVoYspN19UxqqMgF4FvZ/1ity8/CnE9UmSJRTX751JVmzSTZr6a0kzauoaZ9XjNDkUIEUGtXS4Mw/wbcAKqSzKZnvHQ1TdqdigiykmRJRbV3OEkJyORjPTIPoh1MTVlmbhnvVy+MmJ2KEKICGrpcAFQWRwdRVag2JOddbEUKbLEolo6XKY8r3AxNaWB5ndJbEKsJs2dTgqyk0lNcZgdCgCFOSkkJdiu7fYLsRgpssSChsemuTI4fq2wiQa5WUmkJtslsQmxyrR0uqIqF1n8j/Zp6XSZHYqIclJkiQUFkodZzwhbiKZpVJVk0NoliU2I1cI16puPVx0l/VgB1SUZtF8ZwT3rMTsUEcWkyBILau1yoWlQWZxudijvUFWSSWffGFMzs2aHIoSIgMCD4aOlHyugqjQDj8fgUo/0iIrF2SKxiFIqE5i/11saibXFjWntdFGcl0piot3sUN6hqiQDr9fgUvcIDVXZZocjVgHJX+Zq7nBh0aAiyk74AuMkWjqc1JWbO4VeRK+gdrKUUrkrXOezwKV5HwdWeEwRRi2drqgZ3TBXlT+mFunLEkGS/BXbWjqdlBakkZAQkT2BoOVkJpKW4kCXvixxHcFeLjynlPqxUmr3Da7zVaBq3setN3gsEWaDw5MMjUxdK2iiSXZGIplpCTRLYhPBk/wVowzD8J/wRU/Te4CmaVSXZNAquUhcR7CnBpXAR4AvK6VSgG8CP9R1PahJbLquu4B3/E1USi0jTBFJbV3DQPT1YwVUSWITy1OJ5K+Y1O+cZGR8Juqa3gOqSjM43dLP5PQsSVG20yaiQ1A7WbquT+q6/j1d128GPgP8BdCjlHpYKZUf1ghFxLV0+nogyoqit8jqGRhjYsptdigiBkj+il2BO4krojQXVZdkYhhwsXvY7FBElAr67kKl1H1KqZ8BPwWeBnYCncDPwxSbMElrl8vXA+GIzjOzqpIMDOPtHTchliL5Kza1drmwWjRKC9PMDmVBldIjKpYQ1E9RpVQHMAB8A/ioruuT/t86o5T6ZLiCE5FnGAatnS42qTyzQ1lUoFesudPJ+tqV9jSLeCf5K3a1drooL0zDbreaHcqCMtMSyEpPlKGkYlHBblV8VNf1/XO/oJRaq+v6eV3Xq8MQlzDJgGsK19h0VDa9B6SnJpCTKYlNBE3yVwwyDIPWLhfb1hWaHcp1VRany666WNR1iyylVGAQ0deVUncAmv/XduAZYE34QhNmaO2KzsF/80nzu1iK5K/Y1jc0weiEO6pP+MCXi07qV5mYcpMcZXMFhfmW6sl6FN82+3pg0P/5AL5ehrfCG5owQ0tndPdABFSVZNA3NMHYxIzZoYjoJfkrhgV2h6K16T0g0CMqze9iIdfdydJ1/V4ApdR/67r+e5EJSZgp2nsgAgI7bW1dw2ysi97+MWEeyV+xraXTic0a/Sd8bze/u2iskR5R8U5LXS6s13X9AvAfSqmb5v++rutyNhhHfD0Qw2xbW2B2KEu6lti6nFJkiQVJ/optrV0uygvTsdmi+4QvIzWB7AzpERULW6rx/V+BB4CfLfB7BiBNo3Gk3znJ6MTMtQImmqUlO8jNTKKlU7boxaIkf8WowAnfLeuLzA4lKJXFGddmegkx11KXCx/w/7cqMuEIM0X74L/5KkvSaeuWxCYWJvkrdvUOTjA+6Y6JEz7w9WW91dS3aPP77Mggkx3nmO7SmR3ux/B60SwWHPkVOIqqSa7aiCUh2YTIRbgtdbnwa9f7fV3X/yy04QgzRfvgv/mqSjI4dq6PsYkZUpMdZocjoozkr9gVuHM4Zk74/I8ga+savja7zzAMpjqbGD7yLBPNbwIGmiMRe2YemsWKMetm4uJJ8HrQ7ImkNt5Gxrb34MgrM/E7EaG21OXCwYhEIaJCrDS9B0jzu1iC5K8Y1drlwma1UFoQOyd88PaA5NnRIQZe/A4TzW9iSUwlc/u7SamsxpGdg6YZ197nnfUwM9DLyIUzjJ15ldGTvyRjx4Nk3fphLI5Es74dEUJLXS78XKQCEeaKpab3AGl+F9cj+St2tXa5qChMw2oL+slvpkr3N7+3droYO3uAgRe/g+Fxk737IdIb1mGxBUa0Ge94n8VmJbGwhMTCEjw7bmPoyH6G3/g5402Hyf/gX5BYXBv5b0aE1FKXCw/qur5bKTXK/L8dgK7rsbGXK5YUS03vAdL8Lq5H8ldsMgyDtu7YaXoPqCpKp7hzD1c73yKxtI68Ox7AnpYU9PutScnk3XEfaaqRq3t/zpUf/i15D3ya1MZbwxi1CLelLhf+uv+/jeEORJgr1preA6T5XVyH5K8YFGtN7wCGZ5b7Zl4kn7Mkrd1F4a23o93gJlxiUSklv/Zx+vY8zdVnvop7+CpZu34ttAGLiLnuXwNd16/4/3sZqAc+A/wRUO7/mogTsdb0HlBVkkHfoEx+F79K8ldsirUTPsPrYfz5r5PvOsszEzcxUHHzDRdYAdakFIoe/AipaxpxvvYTnK8/GZpgRcQF9VdBKfU3wFeACWAW+C+l1KfDGZiIrLauYcoKYqfpPWBu87sQC5H8FVvaulzYrBolBalmh7Ikw+tl4sVv4m4+gnXbg7wy1UhL73RIjq1ZreTd9aC/0PoxrjeeCclxRWQtdbkw4LeAHbqujwIopf4NOAg8HK7AROQEnna/pSF2mt4DpPldBEHyVwyJlUnvAJMHfsJM00GSb36A5LXryD7UR+sVd8iOr1ks5N31IIbXy9DeH2DLyCO1YWfIji/CL9hNzUlgLPALXdedwFRYIhIR1++cZGR8Juqfdr8QaX4XQZD8FSMMw6CtazgmctH0uX1MH3uOxPW3kbxuPWBQVWCnrTe0rQuBQiuhsJT+n3+NqZ7WkB5fhNdSdxd+0P+pDjytlPpPwAN8DDgW5thEhMRaD8R8VSUZ0vwufoXkr9jTNzTB2KT72nDPaDXbrTPx8nexl9aTsvVmMLwAVBXYOd46zcS0l+SE0I2fsNhsFN77a3Q/+Qh9j3+Rkt//Mra0rJAdX4TPUpcLPzPv1//XnM/zQxyLMEmsNr0HVJak8+a5Xpn8LuaT/BVjWmJg0rt3cpSx5/4dS2oW6Xc+gKa9/XtVBb5H6rT1zrC+IrTDRK3JKRTe/yG6n3yEq898laLf+js0S/RfUl3tlhpGemekAhHmibVJ7/PJ5HexEMlfsSfQ9B6tJ3yGYTDx0rcxJobJeP8fos3LmVUFvh+pLVdCX2QBOHLyydl9DwOv/QLXoafI2v2hkK8hQiuoxnel1BrgT4FUQAOsQK0C2VN/AAAgAElEQVSu67vCGJuIgFic9D6fNL+L65H8FTuivel9+uQe3G3HSNn1PmyZGcyfcZuRYiU7zRLS5vf50uo3MNXdjnP/YySWryWpfG3Y1hIrF+xF458ADmAn0A6sBc6EKSYRQVdjcNL7fGnJDnKzpPldLEryVwwInPBVR2ku8gz1MLn/R9grG0lUDSzwEAGAsDS/z6VpGrm33YctLZP+Z7+Od0bu4YhmwRZZabqu/zHwEvAC8G5gS9iiEhFzrek9yhtNl1JVLM3vYlGSv2JANE96N7xexl/6FpotgfRd96DhXfS1VQV2eoY8TEwv/pqVsjgSyLvzPcy6rjL06o/Cto5YuWCLrCH/f1uBRl3XXfi23EWMaws0vcfI0+4XU1mSLpPfxWIkf8WA1ihuep8+8SKenmZSdz2IlnD9Lpvqwreb38MpqbiC9PVbGTn2ApOXz4V1LXHjgi2yWpRSXwVeBz6jlPoMkBC+sESktMR403tAYK6OTH4XC5D8FQNau1zYrJaoO+HzuHqZPPgY9sr1OCoqlnx94A7D5p7wn/Bl77gDW3oW/b94GO+snGBGo2CLrD8GDui6fgL4DnAX8MmwRSUiwjf4zxUTg/+WErjDsLnTaXIkIgpJ/ooBrV0uKovTsdpCN19qpQzDYGLv90CzkHbL3WiL9GHNlZ5sISfNQsuV8Bc9FruDvNvvY9bZh0uebxiVgvrbrOv6BPCaUupB4BLwCV3XXw9rZCLs+oYmGJ2Izh6I5UpNdpCXlXStx0yIAMlf0c/r9Z/wFUdXLnK3vsls+ylStt+DJSn4GXzVhXbaesN3h+FcSaVVpNSuw3X4KdxDPRFZUwQv2AdEP4BvavJfAX8LNCmlbgtnYCL8ApfWorEH4kZUlWTQKpcLxTySv6Jf7+A441OzVJVETy4y3FNMvPoI1txSEusalvXeqkI7vU4PY5Pha36fK2fX3WhWKwMvfAfDWHq3TUROsA+I/gJwu67r5wCUUjfh23bfGsyblVKZQOa8L5cGG6QIj5ZOJzarRlmUDv5brqrSTI6e7WV4bJqMVGm5EddI/opy1ya9R9FO1tQbT2GMDpJ21x+gacsrXKrnTH7fWBX6oaTz2ZJTyd5+O4MH9zChHyGl/uawrymCE+zFbyOQoAB0XX9rGe8F+Cy+bfq5HweW8X4RBi2dLiqiePDfcknzu1iE5K8o19rlwm6zUJyfanYoAHhcfUwd/wUJ9Tuw5eQs+/3Xmt8j0JcVkL7uJuzZeQz+8vvSBB9FlnpAdLb/0zeVUn8BfAvwAr8LvLKMdb4KfH/e10qRRGUar9egtcvFro0lZocSMoGHyjZ3OrmpXh5Nt9pJ/oodrV0uKovSsVqjo+l9cv+PQbOSctMtLDZ09HpSkyzkZ1hpjWCRpVks5Ox6F73PPsrIkefI3PXBpd8kwm6py4UD+P6GBR6B+S9zfs8A/iKYRfxzad7RkayUCjJEEQ5XBseZiLIeiJVKTrRTmJty7dKDWPUkf8UAX9P7MLdujo4TPnfnedwtR0necT+WxBt/4HxVgT2sj9dZSHJpFcmVa3C+/gSpG+7ElpYV0fXFr1rqAdHRcVohQq6lwzfqIB7uLJyrqiSD5vahpV8o4p7kr9jQ3T/G5PQs1aXm5yLD8DL52g+xpGWT3NC4omNVFdo40jzFyISH9OTItWTk3HI3nT/9Ls59PyHvwU9HbF2xsGAfEG3Bd9Z3P2AH9gD/qOv6bBhjE2HU0uXCYbdSnBcdPRChUlWSweFTPThHpshKD3/DqYh+kr+iW4t/tl00NL3PXDiE5+ol0t71EbBoS7/hOgKT31uvuLmpJnJFlj0zm/R1mxk5/SoZOx7CkVcWsbXFrwr2TO+L+Ab4/Tvwb/getPrlcAUlwq+lw0VVcTqWKOmBCJVA83uLzMsSb5P8FcVaOlwkJph/wmfMupk6+FOseeU4yitXfLyqAjsa0NwzveJjLVfWll1oNjtDr/4w4muLdwp2hMN9wFZd190ASqlfAKfCFpUIK4/Hy8WeYe7eFn9nOBVF6WgaNHc42b620OxwRHSQ/BXFmjud1JRkoK1w52ilpk+9jHekn4wHPnHdB0AHKznBQlG2FT0Cj9eZz5qUQubmW3Ae3cdUZxOJZcub8yVCJ9htDEsgQQHouj4NRLajT4RM59Uxpmc81x5FE08SE2wU56VK87uYS/JXlHLPernYPUJ16fwxZJFlTE8w9cZT2MsasBcWhOy41YW+5nczBoRmbNiONSWNwb2PyIBSEwW7k3VSKfUV4D/8v/40cDo8IYlwa+2Mz6b3gOrSDE7p/RiGgaaZe3YsooLkryh1+coIsx6v6Y/TmTr2HMbUKCnbbgMjdFPaawrtHDw/xcCoh7z0YH/chobFbidr624G9r3AROtxUtYENXtXhFiwO1mfBrKAQ8BhIA/4TLiCEuHV3OkiKcFGfk6K2aGERU1pJiPjM1x1TpodiogOkr+i1LWmdxNP+LwTI0wdfx5H7U3YMkO7o1Zd5Gt+b+kxZ+M0TW3Alp6F89UfYYSweBTBC7a0/t+6rv9uOAMRkdPS4aSmNAOLyT0Q4RK49KBfHqIgO9nkaEQUkPwVpVo6XaQl28nNSjIthqmjz8Ds9A0PHr2e8jw7Vgvo3dPsrI/896hZrWRvu42re59hvOkwqWt3RTyG1S7YnawHwxqFiJhpt4dLPSPUlJnbAxFOpYVp2G0WdP8sMLHqSf6KUi2dLmpKM027rO8dG2L61B4S1HasqaG/u9Fh0yjPs9ESwcnv86WsWYsjOx/naz/G8HpMi2O1CnYn66JSag9wEBgLfFHX9X8LS1QibC51D+PxGlEx+C9cbFYLFcXptHRI87sAJH9FpanpWTp6R9jSUGteDG88DV4vKRu3E+pdrIDqQjuHmqbwGgYWE4pJTdPI2n4bfS8+wdiZfaRtvCviMaxmwe5kDQHdwBZgN9Do/xAxJrC7U10SvztZ4OvLaut24fFIH4KQ/BWN2rqH8Rrm3YDjHRlg+sxeEtfegiUlfG0FNYV2JmcMugfNm32bXLkGR14RzgOPY3hkBm8kBVtk/TO+pPQA8D6gBvj7MMUkwqi5w0lORiIZcT4Nvbo0kxm3l8u9o2aHIswn+SsK6Zd9J3xVJo1vmDzyFGgayetvIly7WPD25PcWE+ZlBWiaRva2W5kd7mf09GumxbEaBVtkfQ/4LpDk/3gC+K9wBSXCp7nDSW0c92MFBC6H6h3yHEMh+Ssa6R2+G1PSUxMivrZn+CozZ1/z7WIlhbchvSTHRqJdo6nbvCILIKm8hoT8YlwHH8fwyJi4SAm2yErWdf07uq67dV2f0XX960DoJraJiBgem6Z3cIIakwf/RUJ+djKpyXaapS9LSP6KSvplJ7Xl5uSiqTeeAs1C8vrNhHMXC8Bi0agutJu6kwX+3qxttzE7MsjoyVdMjWU1CbbIuqiU2hn4hVKqEbgUnpBEuASmoFfFcdN7gKZpVJdm0ix3GArJX1FnwDXJ4PAUtSac8Hlcfcyc30/iuluwJEambWJNsZ32q26m3Ob2iCaVVZFQUIrz9SdkNytCgi2ySoB9SqljSqk3gOPAJqXUaaWUTE6OEfplJxaNuHyczkKqSzPo7BtlcloaPVc5yV9RJnADjhn9WFNHnvbtYjVujtiatcV2PF5o6zW3sPHtZu3GMzrE6KlXTY1ltQh2hMNfhjUKERHNnU7KCtJISIjs4x3MUluWhWH4pkpvqM0zOxxhHslfUUa/7MRmtVBelBbRdT3DV5k5v5+kxt1YEiPXC1bjb36/0DXNurLI96DNlVRaRUJBCa7XnyBt451oVrup8cS7oH7a6rq+L9yBiPDyeg1aOpxsW1dodigRExi4ev7SkBRZq5jkr+jT3OGkuiQDm80a0XV9u1gaSY0bI7puRoqV/AwrF7rM7csC/27W1lvp/cVjjJ56lfSb7jE7pLgW7OVCEeO6+8cYnXBTW55ldigRk5JkpzgvlQvtcoehENFi1uOlpdNFbVlk2xY8w1eZObePxHU7sSRG/hE3tcV29J4ZDCO8jfbB8PVm+XazpDcrvKTIWiX0y75CI54fp7OQ2vJM9A5nVCQ2IQS0Xxlhxu259ozRSJk6+nPfXKx14b+jcCG1RXacY14GRs1/tI2maWRt2e270/CMbPSGkxRZq0RTu5PUZDsFOSlmhxJRa8qzGJtw090/tvSLhRBhF7jjtzqCJ3zekQFmzr5K4tqbsSSZM4i5tsgBEBWXDAGSyqtJyCvCdfAJmQIfRlJkrRJN7UPUlWdhsZjzIFazBObwyCVDIaJDU/sQGakOcjIjd8lu6ujPAUhu3IIZu1gAFfk27Fa4YPJQ0gBN08jcupvZ4X7Gzu43O5y4JUXWKjA2MUNn3yhrTBr8Z6ai3FSSE200SZElRFRoujREfWU2WoQeluwdHWT67CskNpi3iwVgs2pUFtjRu6ZNi2G+5IpaHLmFOA/+D4bX/MuY8UiKrFXggv8ZYTVlq6fpPcBi0agpy7z2ZyCEMM/QyBR9QxPURfAGnKk3nwXDIHm9ebtYAXXFdtr63MzMRkePqO9Ow13Muq4ydu6g2eHEJSmyVoEL7UNYLBpVJj3t3mxryrPo7BtlfFLuohHCTE2X/DfgRKjI8o45mT69l8T67ViSI39H4Xx1pQ5mPdByJTouGQIkV9bhyMnHJbtZYSFF1irQ1D5EZVH6qhlCOl9teSaGgTxiRwiTnW8fxGGzUFGUHpH1po49C14Pyeu3YvYuFkBdsa/5/VxH9Fwy1DSNzC27cQ9dYbzpkNnhxB0psuKcx+OlucMZ0e35aFNTmommwflLg2aHIsSq1nRpiNqyTKy28P/o8Y67mD71SxLUNiwpyWFfLxjpyRaKs62c74yeIgsgpVphz87DeeBxDMPc5yvGGymy4lz7lRGmZjymPe0+GiQl2ikvTOfcJWl+F8IsU9OztHUPoyojc8I3dew58LhJ3rCNaNjFCqgrcXChawZvFM3u883N2oV7sIfxpsNmhxNXpMiKc+f8uzersel9LlWZjX55CPesnKUJYYbmTiderxGRp054J0aYPvkyCXVbsaZG12xAVeJgfNqgcyC6ZlOlVNdjz8zBeeCnspsVQhFp0lFKZQLzt1JKI7H2anfu4iB5WUnkZJnf9GkmVZnFnsPttHW7qK/INjscEUMkf4XGtab3CJzwTR17FmZnSN6wnWjaxQJQpb4HMp/vmKYiL3oezqxZLGRt2c3Vvc8wfuEIqQ23mB1SXIjUTtZngUvzPg5EaO1VyzAMzl0cZG1VjtmhmK6u0ldYnW2TviyxbJK/QuB8+xBlBWkkJ4W3sPDtYu0hoW4L1rTUsK51I/IzrGSmWDgXZX1ZACm1Ddgzc3DJblbIRKrI+ipQNe/j1gitvWp1XR1jeGwmYj0Q0SwjNYHC3BTOXpQiSyyb5K8V8ngNLrQPRSQXTR//BbhnSN64g2jbxQJf/9OaYjtNUfJ4nbk0i4XMLbuY6e9kQj9qdjhxISKXC3VddwGuuV9TSkVi6VXtnL+gWCOXxwBfX9axc714vcaqe7yQuHGSv1buUvcwE1OzNFSFNxd5J0eZOvESjjWBXazoK7IAVKmDN1umGRiZJTc9ukbrpNauxXX8IM4DPyVZbUfTpHV7JeRPL46duzhIZloC+TnRcfuy2VRlFuOTbjr6Rs0ORYhV5UzbAAB1YT7hmz72HLinSdkYfb1YczWU+uZlnbkcfZcMfbtZu5m52iG7WSEgRVacMgyDs20DNFRF7hlh0U5d68saMDkSIVaXM20DlOSlkJEevmcHeidGmDrxom8XKz0tbOuEQnmejeQEjdNRWGSBbzfLnpmDc/9j0pu1QlJkxam+oQkGhqdoqJRLhQG5mUlkZyRKX5YQEeTx+m7AaagO7w04U8eeBfcMKZuisxdrLotFo6HMEZU7WfD2nYYz/Z2MXzhidjgxTYqsOHWtH0uKrGs0TaO+MpuzbYMYUTQIUIh4FujHqg9jLvJODDN9Yg8JamtU3lG4kLVlDvpcHq4OR9e8rICU2gbsWbk49z8qu1krIEVWnDrbNkhqsp2ivNhIOJGytiaH4bFpOnqlL0uISAj0Y6kwFllTR38OnhmSN0T/LlbA2vLo7cuCwG7WLtwD3Yyfl2ca3igpsuKQYRicbOmnsSZX7qKbZ211LgAnW/pNjkSI1eFM2wDFYezH8o4NMX1qDwlqO9a06Jrufj2luTZSkzROt0+ZHcqiUmrX+p5puP8xDK/H7HBikhRZcahnYJwB1ySNNTKEdL7crCTys5M52SxFlhDhFujHWhvGfqypI0+D10tKlM7FWoxF02godXDmcvTNywrQNI3sbbfhHrrC2Nn9ZocTk6TIikOBAqI+zI2msWpdTQ7nLg7i8UifgRDhdLHbFdZ+LM9IP9On95K49mYsKbH36LC1ZQ76Rzz0uqKzLwsguaoOR24hzv0/xfBEb5zRSoqsOHSqpZ/8rCTysmU+1kLW1uQyOT1La5dr6RcLIW5YuE/4pg7/DDQLyeu3Eku7WAGBvqxovmSoaRrZ229jdrif0ZN7zQ4n5kiRFWc8XoPTLf2sr82V+ViLaKj2nVVLX5YQ4fWWfpWq4nTSUxNCfmzPYDcz5/aR2LgTS1Lojx8JJTk2MlMsnLgYnc3vAUnlNSQUluI88Dhed3THGm2kyIozbV0uxqdmWVcrlwoXk56SQHlhGqdaZCipEOEyMeXmQvsQG9bkheX4k4ceB1sCKetvCsvxI0HTNNZXODjVPoXHG707cZqmkXPznXjGXYy8+bzZ4cQUKbLiTGB7XlVJkXU9DTU5XGgfYtotd8wIEQ5nLw4y6zHCcsI329uGu/kISZtuR3PYQ378SFpflcDopEFbr9vsUK4rsaiMpPIaXIeexDM5ZnY4MUOKrDhzqqWfyqJ00lJic/s8UtbX5uGe9cojdoQIkxP6VRLsVmrLs0J+7MkDj6IlpZHcsD7kx4609RUJaMDxtkmzQ1lS9o478E5PMHz4KbNDiRlSZMWRyelZzl8aolEuFS6pviobh93Cm+f7zA5FiLh0Qr/KupocbDZrSI/rbj/NbMdZkrfchWaL/R9h6ckWqgpsvBXlfVkACbkFpK5Zx/Cbv2B2RB5PFozY/xsqrjnZ3M+sx8uGunyzQ4l6DruVhuocjl+QIkuIUOsbmqC7f5zG2tyQHtfwepnc/yMs6Xkk1aqQHttM66sSaO6eYWwq+sfKZG2/HcPrZWjfT8wOJSZIkRVHjjX1kZxoY01F6Lfn49HGunx6Byfo6Zf+AiFC6WTzVQDW1YS2yJo5vx9PfwcpO94dVz+9NlYm4DXgVBSPcgiwp2eSsX4rY6f3MXP1stnhRL04+mu6uhmGwbGmPjasycNqlf+twdhY57vr6c0m2c0SIpTePN9HbmYShXmhe8yN4Z5m8vXHsRVU4SgrD9lxo0FNkZ0kh8bxtugvsgAyb9qJJSGBwb2PmB1K1JOfxnHiYvcwQyNTbFLhuV06HuVlJ1OUl8IxKbKECJlpt4cTzf1sbSgI6ay+qePPY4wNkXLzXWhE/2W15bBZNRorHBxvncIwoneUQ4A1MYnMm3YxefEUE20nzA4nqkmRFSeONfWhadAYppk08WpjXT5n2waZmpbHRQgRCqda+plxe9hUH7pc5B0bYuro0zhqNmHPic8cd1NNIkNjXlqvRPcoh4CM9VuwpWcx+PJ/y8Ojr0OKrDjxZlMftaWZYZmsHM82qjxmPV5OyfR3IULi6LlekhJsqMrQ3eU8eeAx8HpI3XobxNkuVsDmmgQ0Dd5ojv5RDgCa1UbOzrtwD/Ywcvwls8OJWlJkxYHhsWmaO5xsUnJX4XKpimySEmwcPttrdihCxDyv1+DouV42qzysIRqvMHullZnz+0naeEdMPgQ6WGlJFupL7Lyhx0aRBZBcWUdiSSXO/Y/hmRw1O5yoJEVWHHjzfC+GARvq4nMbPZxsNgub6/M5eu4KHk98niELESmtXS6co9Nsri8IyfEMw8vEq4+gJWeQ3LiJWHwI9HJsqU2kY2CWK87YaF/QNI2cXe/COz2B8zUZ6bAQKbLiwMFTPRRkJ1NenG52KDFpy7pCRifcnG2T4XpCrMQbZ69gsWg0rgnN6IaZs/vwXGkh9eb74mLw6FK21PraPd7QJ0yOJHgJOfmkN25h5K2Xmb5y0exwok78/62Nc2MTM5xq6WdHY2FI7+RZTTasycNht/L66R6zQxEiph0510tDZTYpyY4VH8s7OcbkgZ9gK67FUVkVguiiX36mjbJcG280x8Yoh4CsbbdhTUpm4MVvYxhyRWAuKbJi3JFzvcx6DLauLTQ7lJiV4LCysS6PN85eweuN78sRQoTL5d4ROnpH2bYuNJcKJw8+hjE1TurOd8fdyIbr2VqbQFPXDMPjsXPHnjUhkeyb72S6p5XRU6+aHU5UkSIrxr1+uofczCQqSjPMDiWmbVlXgHN0Gv2y0+xQhIhJB052Y9Fgy7qiFR9r9korM6f3krjxNmzpq6sNYrtKxDDgYFPsXDIESFXrSSwsY+iVH+AZHzY7nKghRVYMG590c0Lv5+bGIrlUuEKbVT42q4XXT3ebHYoQMccwDA6c6GZdTS4ZaSsbI2N4ZpnY8x0sqZmkbNhGvDe7z1eWa6Mkx8a+c7FzlyH4muBzb78P7/Qkgy9/z+xwooYUWTHs6PleZj1etjaGZnt+NUtKtNNYm8vBUz145JKhEMvS1j1Mz8A4t2xY+S7W1LFn8Qx0kLr7vWi21XfyqGkaOxsSaeqa4epwbNxlGODIziNz8y2MnTvAxMWTZocTFaTIimH7T3STk5FIZUmm2aHEhV2bSxgcnuJs64DZoQgRUw6c6MZq0djcsLITPs9QD1OHn8RRexOO4uIQRRd7dtYnArD/XGxdMgTfcw3tmTkMPP8tvDOx1cAfDlJkxaihkSneutDHbTeVYrGsvrO9cNhcn09yoo29xzrMDkWImOH1Guw/2c2murwV3VVoeL2Mv/RtNJudtB23E6+T3YORn2mjtsjOvhgssiw2G7m338/s8ABDr/zI7HBMZ4vEIkqpTGD+dktpJNaOV68d78RrwM5Nq/dsL9QcdivbG4s4dLqHP56eJSkhIv88RJST/HV95y8NMuCa5DfeXbei40wf/wWeHp20uz+ClmAPUXSxa2dDIj94ZZSOfjflebH155FUXE76hm2MHH+BlPodJFWuNzsk00RqJ+uzwKV5HwcitHbcMQyDX77ZiarIoiA31exw4squzSVMz3g4fOaK2aGI6CH56zr2HLlMcqKNzWtv/FKhZ6CTydd/iqNmE46KihBGF7tuVolYNNh7ZtzsUG5I9vbbsWdk0//cw3inY6uJP5QiVWR9Faia93FrhNaOOy2dLjr7RrntJjmZDrW6iizyspLkkqGYS/LXIsYmZnj9VA+7NpaQ4LixnV/DM8v4C99AcySRdsudaKvsbsLFZKRY2VyTwN5TE7g9sfdnYrHbybvrQWZHBhjY819mh2OaiFwP0XXdBbjmfk0pFYml49LeNztw2CxsbZQBpKGmaRq7NpfwzKut9A1NUJCdbHZIwmSSvxa3760uZma93L71xk/4Jg8+hufqJdLv+xiaI7Yui4XbXRuSOd7q5GjzJLsaYi8XJRaWknnTTlzHXyW5ZjOpa3eZHVLESeN7jJmanmXfiW62NxaSlCgJKRxu31IGwAuHLpkciRDRyzAMXjpymaridMqLb2wYsrv9FNPHniNx/a04ilc+/iHebKh0kJtm4YW3xswO5YZlbdlNQkEJA89/C/fwVbPDiTgpsmLMq291MT7p5q7t5WaHErdyMpPYsraAPUcuM+2OnUdbCBFJLZ0uLvWM3HAu8o67GH/hG1hzSkjdcgurbehoMCwWjTs2JHOqfYaeodiamRWgWa3kv+shDK+Hq0/9G4bHbXZIESVFVgwxDINnD1ykuiSDmvIss8OJa++6uZLRCTcHTsgEeCEW8sKhdt8dueuXvwNleD2MP/fvGDOTpN/1PvlJdB13rE/CosFLJ2J3N8uenkXeHfcz3d3C4N4fmh1ORMlf7Rhysrmfzr5R7ttZKY/RCbOGqmxK8lN59uBFDEPOsIWYa2hkitfe6uTOraU31LYweeBRZruaSLv9g1jT5A7p68lKtbKlNoE9J8eZmond2WGptWtJX7+NkTd/wdj5180OJ2KkyIohPz9wkYxUhzS8R4Cmady9o4KL3cPy0Ggh5nn2wEW8XoN7bqlc9ntn9Df8fVi3kVCx/PevRg9sS2FsyuClE7E5ziEg55a7SCgopf+5h5nuazc7nIiQIitGdPePcaypj3fvqMBms5odzqqwa3MJKUl2/mdvi9mhCBE1JqbcvHC4ne2NReTlpCzrvbO9bYy/+A1sRbX+PqzY3ZmJpDXFDlSpnaePjjEbg+McAjSrlYJ7PoDF7qDv8S/iGR82O6SwkyIrRjz+y2Ycdit3SsN7xCQl2Lh3ZyVHz/dysTv+k4EQwXj5aAfjk27u3121rPd5RwcZe/rLWJLTybj7IbDEbrFghvduS2FgxMP+87H3qJ25bKlpFN7/ITzjLnqf+GeM2fhuhJciKwZ094/x2vFO7tlRQVpqgtnhrCrvvqWSpAQbj72smx2KEKabcXt4el8ba6uyqSoN/sH0xvQEY099CdyTZNz7YbQbHFy6mm2qTqA018YTh0bxxnifaEJ+EXl3Pch0l87Vn38Nw4jfHU0psmLAY3t0bDYr99+6vDNHsXIpSXbu2VnJ4TNXuHxlxOxwhDDV84faGXBN8oG7a4N+jzE7w9gzX8Yz2En6u38La9ryLjEKH03TeGh7Cp0Ds7zeFPuPqUmtXUv2zXcx3nSIwT3fi9sbjKTIinKdfaPsP9HFfbfILpZZ7t1ZSaLDyk/2XDA7FCFMMz7p5vFfNrOpLg9VlRvUewyvh/FffJ3ZzvOk3fVh7Ja/LD4AABCLSURBVAV5YY4yvt1Sn0h5no1HXh3GPRv7RUnGph1kbNzByLHncb3+M7PDCQspsqLcD19owm6zct8y+x9E6KQmO7h/dzWHTl/hbNuA2eEIYYqnXmtldGKGX393XVCvN7wexl94GHfrm6Tsfj8J5WXIwNGVsVg0fvO2NPpcnpieAh+gaRrZt9xFat16nPsexXX4abNDCjkpsqLYW/pVDp+5wgfurCE1RXaxzPSeW6vJyUjkO0+fweOVHxRidRkcnuTp/W3s3FBMWRCP0DG8Hsaffxj3hUOk3PIgSXUKKbBCY32lg8YKB48dHGVsKvZ7mTRNI+/OB0ipXcfQKz/E9cYzZocUUlJkRSn3rIfvPHWaotwU7tklu1hmS3BY+fB99VzqGeGXRy+bHY4QEfXdp8/i9Rp88F1rlnytMTvD+HP/jlv3F1gN65ACK3Q0zbebNTbp5Sf74uOuZ81iIf/u95JSs5ahvT9gaN9jcdOjJUVWlHp6Xxvd/eN87MG1MhcrSuxYX0RdRRY/eL6J4bFps8MRIiKOnL3C66d7+NDda8hfYi6WMT3B2JP/hLvlKCm73icFVphUFth516Zknjs2TlNXfOQizWIh/10PkVq/EdfB/2Hwpf+Mi7sOpciKQp19ozz2cjPb1hawbo00ikYLTdP4+EPrmJia5eEnTsXNmZYQi5mYcvOtJ09TUZi25I66d2SA0Z9+jtlunbS7P0KSqkcKrPD58G2p5KRZ+NpzTmbioAkefIVW3h3vIWPjzYwcf5G+J76Edya276SUIivKuGc9fPlHx0l0WPnYe9eZHY6Yp6wwnV971xoOn7nCq8c7zQ5HiLD6z2fOMjgyxR98YD1W6+I/Lma7dUZ+/P/iHb5Kxv0fJ6GiAimwwivJYeH378mga3CWRw/Ex2VDCDTD30nOrnuYaHmTnkf+ltnhfrPDumFSZEWZHzzfxMWeYT75wQ1kpCeaHY5YwP27q1GVWXzryTP0DcX29GUhFrP3zQ5ePtrBB+6opWKRwaOGYTB14iVG/+cLaI5EMt//+9gLcpECKzI2VCVwe2MSPzs0xrHW2N7xmUvTNDI2bKXwPR/G7eql67/+kom2E2aHdUOkyIoib5y9wtP72rjn5go21OebHY5YhMWi8clf24imwT/89xEmp2fNDkmIkGq/MsI3fnaaxpoc3nfXws3u3qkxxp/9CpOvfA97WQNZ7/0o1tTkCEcqPn53OuV5Nv71mSF6XfGVi5LLqyn54MexJSfT+9g/MPTqjzE8sfUYHimyokRzh5Mv/eg4tWWZ/Ma99WaHI5aQl53Mpz+ymY6+Ub784+My1kHEDefoFP/4/aOkJNr4o1/fhGbRfuU17osnGHnkL3G3HSdl50Ok3/UAml1u0DFDgl3jf70vE8OAf3xikMmZ2G8Wn8uRlUPxBz5GWsNmXIeepPt7/5uZq7Fzh7cUWVGgb2iCL/z3ETJTE/jzj27B4ZBkFQvWr8njt9/TwNFzvfz3z89KI7yIeWOTbv7+O28wNDzFZ3/7JtLT3jmfzzvuYvyFbzD21D9jSUgm8/1/SFJ9Axrx9YM91hRk2viT/9PevQfHVZ53HP+evWl3dbEkW5FlS7JkO36R7WILfCGBhOJbghMDE6CZkA40AZpMps10UqDtkDjJMNN0OpkJnU4mpAFqpqU0LjTBGTctiVxqgzFxMLZ8wa+NbGMLyZIlW9fVSrt7Tv9YySMLxRfitVar32dm56zOnsu7zx49+5x3z+77mWLea0/wxOYOBhO5lYt8wSBlf3g75Z++h1TPGZqffYyz//cCbiL7v1mpUTonWEtHH996aieJpMvjD67U0DmTzJqb5tB2NsaWHccAeOjOxTjOB8/8RbJdLJ7giWd2cbKth0fvX05tVcn5x7xUksF9vyK+8z/wEoNElq0jf/HS4dP03HpDn6yWzs3jq+un8aOt3XzvpQ4ev3cGQX9u5aL82gWEZ86m8/VtdL32In0HtjN99Z8QNSuyNu+qyJpAJ1p72PjjnaRcj8cfXEF5WcFEN0mukOM4fHF9HQ6wZccxEkmXr1zim1gi2eZsT5zvPr2LEy3dfP0L9dTNT49N6HkuQ4d3En99M253O8HqhRTctAp/QT4qrrLPzXURhhIeT7/Sw3de6OBv7p5OQSS3cpE/ks9H1mygsG4JHa+9QttLf0/ebEPpqi8Sqc6+b+SryJogOxtb+Iefvk04FOBbD69UgTWJOY7DfevrCAR8bN1+jNaOfh754xuZpl5JmQSOt3TzxLNv0ts/xKP3L2fRgjK8VJKhQzuI7/4F7rkW/DOqKLr9AYIVM3HwUIGVvW67PkrA7/CT/+nmkU3tbPz8DGaV5t5bfWR2NZX3fpleu59zu1+j9V82Eq6qo/jjnyMyrz5reracibqOxBhTAxxvaGigsrJyQtowEYYSKZ77r0Ns2X6M+VXF/Nnn6yktiUx0s+Qq2f7WKZ7bcpDigjy+cd8NLJ43Y6KblG2yI/P9nnIhf7mux5YdTTy39R0K84M8ev8yZuUnGNzfwOD+/8Xr78JfVkV06ScIVVXruqtJ5nDzEE++fI5kCh5eW8yaJdGsKTyuNjeRoPdwI1173yTV10Vw+myKbvw0hX9wK77wxUcp+BCuKIgqsq6h377Txo9/1sjpzhi331zDH627Dn8gt7pyBY6/380PX9hD+7kB1q6o5ksbFlEYDU10s7JFTmT5yZ6/3m3u4umXD3DwWCcfryvmvoUDOE27SJ48AECwZhHRRTcSKK9QcTWJnelO8k//3cOhU0MsmxfmwbXTqJwenOhmZYyXStH37jv0HNzLYNtJnECI6ILlFCz+JNHaJTiBq/LcVWRlE8/zOHCsk82/PsLeI2eYXZbPA3cs4rq56uHIZYNDKX6+7Si/fP044ZCfDbfM5c5b56nYUpE1oU6e7uHFhiMc3PcO10fbua28g4KuJnBT+KaVEV5QT3iewReNoo8Ec4PrebyyJ8bm1/pIJD0+VZ/P3R8rpLw49z5CHG2w/TS9Rw7Rd3Q/brwfJxQhOv8GovNvIFK7hEBByaU3Mj4VWdmgNzbEjr3v8+vfnOToqS6KC/L47CdrWb2yRr1XU0hzWy8/azjK7oOnyQv6uWXpLNaumENdTSm+cX5/aArIiSc9mfLXwECcfbv30fT22wQ6m5gfbKPE1w+Ar7icvLmLyKuqxT+9TL1WOay7P8XPd/XTsC+G58Hy+WHW1edTXxsmGMiJf8txeakUAy0n6T/+LrHjh0nFegEIllURqVpI/qJbiFQvvJJNqsiaCImky4nWbva/28lbh9s4dLyTZMqjemYha1ZWc3N9JUH9WN+Udep0D7964wS7GluJD6UoLQqzfGE5SxeUUVdTyvRpU+a6vJzI5tmYv9zkEMmudoY6W+g8dYLO95pwO5spHDpD0EkBMBTIJ1w5j2j1XEIzZ+ErLAJPhdVU0tmTomFfjG2NA/QOuETzHJbND7OkJszi6jwqSvw5e+2W53kMdbYTO/Ue8dZm4q0nCBZ/hMqHf3Alm1GRlSmJpEt33yBne+K0n4vRfjbGqbY+Trb1cLylh0QynayqygtZaspYubiCqllFOXvAypWLDyZ569Bp9h5up/Fox/kheWYUR6ipKKK6vJCKGfmUl0aZURyhpDCP/Egwl46hnHgi1yJ/eW4Kd3AAdzCGG+/HjfeRGujDHegl0ddFvKuTeFcnyd6z0H+WYKL3gvW73QidTgnetArKaiuZ89EKfEXF6q0SABJJj4Mnh9h9JM6eY4P0xNLHRWHER215kOoZQWaVBphZ7Gd6YfpWGPXhy51chOe6EJyOM23ulayWfUWWMaYYGDvC6Bzg1eeff56ZM2dedP3+eII3GltJpUa31fvAvfPTUc/J88DDS0/d4ann4ZL+do3reiRT7vlpIumRSKYYTKYYHErfYvEEsXhy3DHqiqIhZpblM7usgDkVRcyZVURRoQZ2lktLpVxa2vs40dLNydO9tHX0c/psjFTqwjdBv98hPy9IJBwkkucnHAoQCvkIBvyEAn4CfodAwIffcfD7fThOenxFn0M6ITrp+47jMDo/jhRuI7MuzBwXySMXbAOWXVdO6bTLO+ZXr15dCzRbayfNIGu/b/7yPI9DW39KsqcDx0vheG765ibBTeF4SXxu8vzU5ybwewn8Xuqi2425QfrcCD1emF4vQh8FEC0iUlpMSVkJNZX5TC9ycHKjrpUM8vBoO+fS1DrE+51JmjtTtHUlP/DL8Y4D0Twf+Xk+wiGHSMghFHAIBR2CPoeAHwJ+B7/Pwe8Dny+dg9K5CBiZDm/LIT3PgQtOJJ0P3MmcyvISFtWZy17+SnPYtSqyvgN8O+M7EpHJoNZae2KiG3G5lL9EZIzLzmHX6usFTwKbxswLAXOBo8DFT9myQyWwA/gE0DzBbZlIikOa4pD2YeIw2eKVC/kLdMyCYjBCcUj7sHG47GWvSZFlre0CusZ56Mi12P/VYMz57sTmyXQWfrUpDmmKQ9pUiEMu5C+YGq/VpSgGaYpD2rWIg35LQERERCQDVGSJiIiIZICKLBEREZEMUJF1+bqA7zL+tRlTieKQpjikKQ6Th14rxWCE4pCW8ThM2I+RioiIiOQy9WSJiIiIZICKLBEREZEMUJElIiIikgEqskREREQyQEWWiIiISAaoyBIRERHJgGs1QLTkKGPMJuCAtfb7Gd5PEfBLoBjYaK19adRjmwGftfaeUfMeAe4EVllrE5lsm4hMTspfkmkqsmSyWAqUW2vnj/PYg8BvjTF/Ya190hizDvhzYIUSlIhkAeWvKUpFlpxnjPk3YM/IWZ0x5qvAbcAXgB8ANwGFgAM8ZK19fcz6HlBmre0Y+7cxZgPwTSAExIBHrLVvjNOGu4BvA36gB/gG0A08C8w2xuwFPmatHRhZx1rba4y5F9hujDkF/CNwl7W27SqFRkSynPKXZCNdkyWj/QR4YNTfXxqetxKYRTo5LASeA/76cjdqjPko8LfAemttPfCnwH8aY/LHLHcd8BRwt7X2emAj8DLQCjwENFlrl45OUCOstY3AY8CLwPestb+53PaJSE5Q/pKsoyJLRnsVCBtjlhljFgJlQMPwGds3ga8YY74P3AMUXMF21wIVQMPwmdzzgAuM7TpfNby/YwDW2m1AO3DjZe5nNemE9lljjI5tkanlVZS/JMvohZTzrLUe8AxwP+mzwGestZ4x5jPA1uHFXiZ9tub8js04AMaY0Kh5ftLJZ+nIjXTX/YEx6453PPqA4KXabox5DDDA9UAV6bNIEZkilL8kG6nIkrE2AXcA9wL/PDxvLfALa+2PgN3AXaQTz1hngGXD9z83av42YN1wdzrGmPVAIxAes/7IcnOHl1tFOuG8ebEGG2PWAH9Fupu+Y7jtf2mM+dSlnqyI5JRNKH9JFlGRJRew1p4G9gCN1tqW4dlPAbcaYxqBN4AmoHacLu2vAz80xuwB6kl3fWOtPUj6OoZ/N8bsA54A7rDW9o/Z9yHga6SvdzgA/B2wwVrb/bvaa4ypAV4AvmytbRq1v68B/2qMqfpwkRCRyUb5S7KN43neRLdBREREJOeoJ0tEREQkA1RkiYiIiGSAiiwRERGRDFCRJSIiIpIBKrJEREREMkBFloiIiEgGqMgSERERyQAVWSIiIiIZ8P9QFjHNZwkhAAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots(1,2,figsize=(10,4))\n", "\n", "x = np.linspace(-5,30,100)\n", "y=stats.norm.pdf(x, 12,3.5)\n", "y2=stats.norm.pdf(x,15,3.5)\n", "\n", "ax[0].plot(x,y)\n", "ax[0].set_ylabel(\"probability\")\n", "ax[0].set_xlabel(\"value of X\")\n", "ax[0].set_title(\"null hypothesis\")\n", "ax[0].set_ylim(0,0.13)\n", "ax[0].fill_between(x,y, where=y>0.0,interpolate=True,facecolor='lightblue',alpha=0.2)\n", "ax[0].set_xticklabels([])\n", "ax[0].set_yticklabels([])\n", "ax[0].annotate(\"$\\mu$\", xy=(12,0.12),xytext=(12,0.12))\n", "\n", "x = np.linspace(-5,30,100)\n", "y=stats.norm.pdf(x, 10,3.5)\n", "y2=stats.norm.pdf(x,15,5.5)\n", "\n", "\n", "ax[1].plot(x,y)\n", "ax[1].plot(x,y2)\n", "ax[1].set_ylabel(\"probability\")\n", "ax[1].set_xlabel(\"value of X\")\n", "ax[1].set_title(\"alternative hypothesis\")\n", "ax[1].set_ylim(0,0.13)\n", "ax[1].fill_between(x,y, where=y>0.0,interpolate=True,facecolor='lightblue',alpha=0.2)\n", "ax[1].fill_between(x,y2, where=y>0.0,interpolate=True,facecolor='orange',alpha=0.2)\n", "ax[1].annotate(\"$\\mu_0$\", xy=(10,0.12),xytext=(10,0.12))\n", "ax[1].annotate(\"$\\mu_1$\", xy=(15,0.12),xytext=(15,0.12))\n", "ax[1].set_xticklabels([])\n", "ax[1].set_yticklabels([])\n", "\n", "sns.despine(top=True, right=True)\n", "glue(\"twosamplewelchtestdist_fig\",fig,display=False)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "```{glue:figure} twosamplewelchtestdist_fig\n", ":figwidth: 650px\n", ":name: \"fig:twosamplewelchtestdist\"\n", "\n", "Graphical illustration of the null and alternative hypotheses assumed by the Welch $t$-test. Like the Student test we assume that both samples are drawn from a normal population; but the alternative hypothesis no longer requires the two populations to have equal variance.\n", "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Doing the test in Python\n", "\n", "To run a Welch test in Python is pretty easy. All you have to do in pingouin it to tell the `ttest()` function to not assume equal variances but setting `correction=True`. I like to do this explicitly. If you do not provide the correction command to pinguoin it will run a test (see below) to see if the standard deviations seem like they might be different and then choses to use the correct or not. By being explicit in your code is good practice." ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Tdoftailp-valCI95%cohen-dBF10power
T-test-2.03423.02two-sided0.054[-11.05, 0.09]0.741.5560.536
\n", "
" ], "text/plain": [ " T dof tail p-val CI95% cohen-d BF10 power\n", "T-test -2.034 23.02 two-sided 0.054 [-11.05, 0.09] 0.74 1.556 0.536" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pg.ttest(x=group1, y=group2, correction=True).round(3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Not too difficult, right? Not surprisingly, the output has exactly the same format as it did last time too. Of course all the numbers are a bit different. But I hope that the interpretation of this output should be fairly obvious. You read the output in the same way that you would for the Student test. You've got your descriptive statistics, the hypotheses, the test results and some other information. So that's all pretty easy. \n", "\n", "Except, except... our result isn't significant anymore. When we ran the Student test, we did get a significant effect; but the Welch test on the same data set is not ($t(23.03) = 2.03$, $p = .054$). What does this mean? Should we panic? Is the sky burning? Probably not. The fact that one test is significant and the other isn't doesn't itself mean very much, especially since I kind of rigged the data so that this would happen. As a general rule, it's not a good idea to go out of your way to try to interpret or explain the difference between a $p$-value of .049 and a $p$-value of .051. If this sort of thing happens in real life, the *difference* in these $p$-values is almost certainly due to chance. What does matter is that you take a little bit of care in thinking about what test you use. The Student test and the Welch test have different strengths and weaknesses. If the two populations really do have equal variances, then the Student test is slightly more powerful (lower Type II error rate) than the Welch test. However, if they *don't* have the same variances, then the assumptions of the Student test are violated and you may not be able to trust it: you might end up with a higher Type I error rate. So it's a trade off. However, in real life, I tend to prefer the Welch test; because almost no-one *actually* believes that the population variances are identical." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Assumptions of the test\n", "\n", "The assumptions of the Welch test are very similar to those made by the Student $t$-test, except that the Welch test does not assume homogeneity of variance. This leaves only the assumption of normality, and the assumption of independence. The specifics of these assumptions are the same for the Welch test as for the Student test. \n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## The paired-samples $t$-test\n", "\n", "Regardless of whether we're talking about the Student test or the Welch test, an independent samples $t$-test is intended to be used in a situation where you have two samples that are, well, independent of one another. This situation arises naturally when participants are assigned randomly to one of two experimental conditions, but it provides a very poor approximation to other sorts of research designs. In particular, a repeated measures design -- in which each participant is measured (with respect to the same outcome variable) in both experimental conditions -- is not suited for analysis using independent samples $t$-tests. For example, we might be interested in whether listening to music reduces people's working memory capacity. To that end, we could measure each person's working memory capacity in two conditions: with music, and without music. In an experimental design such as this one, each participant appears in *both* groups. This requires us to approach the problem in a different way; by using the **_paired samples $t$-test_**." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### The data\n", "\n", "The data set that we'll use this time comes from Dr Chico's class. In her class, students take two major tests, one early in the semester and one later in the semester. To hear her tell it, she runs a very hard class, one that most students find very challenging; but she argues that by setting hard assessments, students are encouraged to work harder. Her theory is that the first test is a bit of a \"wake up call\" for students: when they realise how hard her class really is, they'll work harder for the second test and get a better mark. Is she right? To test this, let's have a look at the `chico.csv` file: " ] }, { "cell_type": "code", "execution_count": 75, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
idgrade_test1grade_test2
1student142.944.6
2student251.854.0
3student371.772.3
4student451.653.4
5student563.563.8
\n", "
" ], "text/plain": [ " id grade_test1 grade_test2\n", "1 student1 42.9 44.6\n", "2 student2 51.8 54.0\n", "3 student3 71.7 72.3\n", "4 student4 51.6 53.4\n", "5 student5 63.5 63.8" ] }, "execution_count": 75, "metadata": {}, "output_type": "execute_result" } ], "source": [ "chico_df=pd.read_csv('http://gureckislab.org/courses/fall19/labincp/data/chico.csv',index_col=0)\n", "chico_df.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The pandas data frame `chico` contains three variables: an `id` variable that identifies each student in the class, the `grade_test1` variable that records the student grade for the first test, and the `grade_test2` variable that has the grades for the second test. Above are the first five students.\n", "\n", "At a glance, it does seem like the class is a hard one (most grades are between 50\\% and 60\\%), but it does look like there's an improvement from the first test to the second one. If we take a quick look at the descriptive statistics" ] }, { "cell_type": "code", "execution_count": 76, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
grade_test1grade_test2
count20.00000020.000000
mean56.98000058.385000
std6.6161376.405612
min42.90000044.600000
25%51.75000053.100000
50%57.70000059.700000
75%62.05000063.050000
max71.70000072.300000
\n", "
" ], "text/plain": [ " grade_test1 grade_test2\n", "count 20.000000 20.000000\n", "mean 56.980000 58.385000\n", "std 6.616137 6.405612\n", "min 42.900000 44.600000\n", "25% 51.750000 53.100000\n", "50% 57.700000 59.700000\n", "75% 62.050000 63.050000\n", "max 71.700000 72.300000" ] }, "execution_count": 76, "metadata": {}, "output_type": "execute_result" } ], "source": [ "chico_df.describe()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "we see that this impression seems to be supported. Across all 20 students the mean grade for the first test is 57\\%, but this rises to 58\\% for the second test. Although, given that the standard deviations are 6.6\\% and 6.4\\% respectively, it's starting to feel like maybe the improvement is just illusory; maybe just random variation. This impression is reinforced when you see the means and confidence intervals plotted in {numref}`fig:chicogrades`. If we were to rely on this plot alone, we'd come to the same conclusion that we got from looking at the descriptive statistics that the `describe()` function produced. Looking at how wide those confidence intervals are, we'd be tempted to think that the apparent improvement in student performance is pure chance." ] }, { "cell_type": "code", "execution_count": 81, "metadata": { "tags": [ "hide_cell" ] }, "outputs": [ { "data": { "application/papermill.record/image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFuCAYAAAChovKPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XmYnnV97/H3ZA/ZJgGykJlhEfjGsIcMILIEBrVoPZZuXhUv0bqVY1XaYz21yoFKW1ROLaeuLSVAq8diK+IRi5FMSAQMMFlYAz+RbSYbe0L2ZJbzx/2EK3kmgUnIncnvmffrunIl87uX58vwzCe/fJ/7/t11PT09SJLyMai/C5Ak7RmDW5IyY3BLUmYMbknKjMEtSZkxuCUpMwa3JGXG4JakzBjckpQZg1uSMjOkvwvoq4gYAjQAy1NKnf1djyT1l2yCmyK0n25tbe3vOiRpX6vbk51tlUhSZgxuScqMwS1JmTG4JSkzBrckZcbglqTMGNySlBmDW5IyY3BLUmYMbknKjMEtSZkxuCUpMwa3JGXG4Ja0T7QtW80Xvn03bctW93cpNS+nZV0lHcC+P+dxnly+lk1bOmmePrm/y6lpzrgl7RObNnfu9LvKU+qMOyLeC1wJjALmpJQ+WxkfCvwcuCqlNL/MGiSp1pQW3BFxFPBd4HTgOWBeRFwIPAXMBmaU9dqSVMvKnHFfBNycUloOEBHvBzYDfwlcA1y2uwMjoh6orxpuKKlOScpKmcF9NLA1IuYAk4GfApenlD4PEBG7DW6KUL+ixNokKVtlfjg5BLgA+CBwBnAacEkfj70WOLLq19kl1ChJ2Slzxr0amJtSegEgIm6lCO8b3+jAlNIaYM2OYxFRQomSlJ8yg/s24KZKv3odcCFwa4mvJ0kDQmmtkpTSfcDXgLuBZcCzwA1lvZ4kDRSlXsedUppNcenfrrbNKvO1JalWeeekJGXG4JakzBjckpQZg1uSMmNwS1JmDG5JyozBLUmZMbglKTMGtyRlxuCWpMwY3JKUGYNbkjJjcEtSZgxuScqMwS1JmTG4JSkzBrckZcbglqTMGNySlBmDW5IyY3BLUmYMbknKjMEtSZkxuCUpMwa3JGXG4JakzBjckpQZg1uSMmNwS1JmDG5JyozBLUmZMbglKTNDyjx5RLwXuBIYBcxJKX02Ii4Avg6MBG5OKX2pzBokqdaUNuOOiKOA7wLvA04AZkTEhcDsythbgebKmCSpj8qccV9EMaNeDhAR7weOAZ5IKT1dGfse8AfA7TseGBH1QH3V+RpKrFWSslFmcB8NbI2IOcBk4KfAo8CqHfZZxa4D+TLgihJrk6RslRncQ4BzgFnAeuAnwMZd7Ne9i7FrgRurxhqAu/ZdeQND27LV3DL/N/zurKNpnj65v8uRtA+UGdyrgbkppRcAIuJWirZI1w77TAFWVh+YUloDrNlxLCLKq7SGfX/O4zy5fC2btnQa3FKNKDO4bwNuqvSr1wEXAv8J/GVEHA08DXyA4sNKlWTT5s6dfpeUv9KuKkkp3Qd8DbgbWAY8C3wH+DDwo8rY4xRhLknqo1Kv404pzab3jLoVOKnM15WkWuadk5KUGYNbkjJjcEtSZgxuScqMwS1JmTG4JSkzBrckZcbglqTMGNySlBmDW5IyY3BLUmYMbknKjMEtSZkxuCUpMwa3JGXG4JakzBjckpQZg1uSMmNwS1JmDG5JyozBLUmZMbglKTMGtyRlxuCWpMwY3JKUGYNbkjJjcEtSZgxuScqMwS1JmTG4JSkzBrckZcbglqTMGNySlJkhZZ48IuYBk4BtlaFPAucBHwG2ADenlP62zBokqdaUNuOOiDpgGnBSSunklNLJwBjgA0AzcApwekT8blk1SFItKnPGHUAPcHtETASuA0YCc1JKrwJExM+B3wFu2enAiHqgvup8DSXWKknZKDO4xwOtwKUUgT0f+B/ANRFxNbAR+G/setZ/GXBFibVJUrZKC+6U0kJgYeXLDRFxPfBbwI0UIf4yMBc4YxeHX1vZb0cNwF0llCpJWSktuCPiLGB4Sqm1MlRX+f2WlNLXK/v8OfBk9bEppTXAmqrzlVWqJGWlzFZJPfDliDgTGApcAnwGuDUiZgKjgI8BHy+xBkmqOaVdVZJSug34GbAUWAzMTiktAH4EPATcD/xjSumesmqQpFpU6nXcKaXLgcurxq4CrirzdSWplnnnpCRlxuCWpMwY3JKUGYNbkjJjcEtSZgxuScqMwS1JmTG4JSkzBrckZcbglqTMGNySlBmDW5IyY3BLUmYMbknKjMEt6U3r7u6hs7unv8sYMAxuSXutp6eH2xc+w8evnsvzL28E4PlXNnLPQyv7t7AaZ3BL2ms/nPtrvv2fD74W2gCdXT185aY25i3q6MfKapvBLWmvrFm3hX+/I+12+w0/fZRtnd37saKBw+CWtFfue3Q1nV2772uvWb+FR596cT9WNHAY3JL22DOrXmX+kjduhWza0rkfqhl4Sn1YsKTasXb9Fn65dAWti9p5cvnaN9y/rg6OPGzcfqhs4DG4Je1WZ1c3ix97jtZFHbQt690aGVQHu7sK8PTjJjP54FH7ocqBx+CW1MvTK9cyt62dBUuWs3b91p22DaqDU2IiLc1NHDFlDH8z+35Wvrhhp32Obarn0394yv4seUAxuCUBxVUiC5YuZ15bB0+t7N0KaZw0mguamzh3RgMHjxv52vg3/+I87nloFd/50YNs3NzJhLEj+Nqnz2HwoLr9Wf6AYnBLA9i2zm4WPfYcrW3tLHrsObqq+h6jRw7lnFOm0tLcxDGN9dTV9Q7joUMGM2tGAz+Y8zgbN3cyYthgQ7tkBrc0wPT09PDUirW0LupgwZLlvLqhqhUyqI4ZMZELmps47bhJDB0yuJ8q1e4Y3NIA8cq6zSxYspzWtg6eWfVqr+2HTx5DS3MTs2Y0MH7siH6oUH1lcEs1bFtnF/cvK1ohix9/nu6qVsiYg4Zy7owGWpqbeMvUcbtshejAY3BLNaanp4cnl6+lta2dBUuXs27jtp22DxpUx8xpk2hpbqR5uq2QHBncUo14+dXNzF+8nNZF7bSvXtdr+xFTxtLS3MS5M6YyfoytkJwZ3FLGtm7r4v5lq2lt62BJ6t0KGTtqGLMqrZCjpnoXY60wuKXM9PT08ETHGua2tXPX0hWs37RzK2TwoDqap0+ipbmJU6dNYugQlySqNaUGd0TMAyYB299ZnwSOAb5Q+fr2lNLnyqxBqhUvrd30Wiuk47n1vbYfNXUcLTMbOXdGA+NGD++HCrW/lBbcEVEHTAOaUkqdlbGDgNuBY4E1wD0RcUFKaW5ZdUg527qti/seWc3cRe08kJ7vtS5I/ejhlatCGl3QaQApc8YdQA9we0RMBK4DbqJYSnYUsAEYCmzqdWBEPVBfNdxQYq3SAaOnp4fU/gqtbR3ctXQ5GzbvvDTqkMF1NE+fzAXNTcyYNpEhg22FDDR7FNwRUZ9SWtPH3ccDrcClwEhgPpCAy4HHKQJ7PvCrXRx7GXDFntQm5e7FNZu4c3EHrW3trHhhQ6/tRzeMo6W5iXNOaWDsqGH9UKEOFH0K7ogI4BagPiJOA+YCF6WUHt/dMSmlhcDCypcbIuJ64L8DRwCHA2uB7wGfA66pOvxa4MaqsQbgrr7UK+Vi89ZO7n1kNfPa2nngiRfoqW6FjBnOeac20jKzkcOnjO2fInXA6euM+xsUs+CvpZRWRMQ3gH8GztndARFxFjA8pdRaGaoDfgf4+5TS85V9bqQI852CuzKr32lmX/zdIeWvp6eHx555mXmLOrjrgRVs7NUKGcTpx0+mZWYjM2Iig22FqEpfg/vglNId28MzpfTtiPjEGxxTD3w5Is6k6GVfAlwJXBQRo4CNwHuBtr0pXMrN869s5M7FHcxr6+i1fjXAMY31lVbIVMYcZCtEu9fX4O6JiBEUHzYSEZOB171PNqV0W0ScDiyt7PutlNL/iYjNwGKKSwTvB76yt8VLB7rNWztZ+PAqWtvaeeg3L/ZqhUwYW7RCzp/ZSNNkWyHqm74G97eBOcDEiLga+CPgq290UErpcooPI3cc+2pfjpVy1dPTw7KnX6a1rZ27H1zZ64G5Q4cM4ozjp3D+zEZOOfZQWyHaY30K7pTS7Ih4Eng3RdvjEymlX5RamZSZ51/eyLxKK2TVS71bIXH4eFpmNnL2yVMZbStEb0KfLwdMKS0AFpRYi5SdTVs6WfjwSlrbOnjoNy/22j5h7AjOn1m0QhonjemHClWLXje4I6KbSl97V1JKrgepAae7u4dHn36J1rZ27nlwJZu3du20fdiQQZxxwhRamps46ZhDfYyX9rk3mnEfSnEZ31XAs8A/AV3AhymuxZYGjNUvbWDeog7mLerguZc39tr+1iMm0NLcyFknTWXUyKH9UKEGitcN7pTSSwARMTOldOkOm/4xIhaVWpl0ANi4eRu/emglrYs6eOTJl3ptP2TcCM5vbuL8mY1MPXR0P1SogaivPe5REREppQQQEScALj+mmtTd3cPDT77IvEUd3PPQSrZUt0KGDubME6bQ0tzICUfbCtH+19fg/hJwb0Q8RLFI1HTgA6VVJfWDVS9uoHVRO/MWdfDCK73WPmP6kRNoaW7irJMO46ARtkLUf/p6OeAtEXE3cBbFh5V3pZR6f4QuZWbj5m3c/eBKWtvaWfb0y722Hzp+5GtXhRx2iK0QHRj6usjUMODtFMux1gHvjYijU0pfLLM4qQxd3T08/JsXaG3r4FcPr2Lrtp1bIcOHDebtJx5GS3Mjxx91CINshegA09dWyc3AUcAUilvYT6dYklXKxooX1tPa1s6di5fz4prerZDj33IwLTMbOfNEWyE6sPU1uE+meOTYd4CvU8y6v11WUdK+smHTNu5+cAWtbR089kzvVsjECQfRUmmFTD54VD9UKO25vgb3ypRSZ0T8Gjg+pfQflceQSQecru4eHnziBVrb2rn34VVs7ezeafuIYYN5+0mH0dLcxHFHHmwrRNnpa3BviIgPAA8CH4+Ix4GDyytL2nMdz61j3qIO7lzcwUtrN/fafuLRh9DS3MjbTjiMkcNLfU62VKq+vns/BXwc+J/ARynWLPmrsoqS+mr9xq3c9cAKWhd1kJ59pdf2yQcfREtzE+ed2sikCf4jUbWhr8H9xymlz1f+/P6yipH6oqu7hwd+/TytbR3c+8gqtlW1QkYOH8xZJ02lpbmJ6UdOoK7OVohqS1+D+7eBL5RZiPRG2le/+lor5OVXt+y0ra5ueyukibcdP4URtkJUw/r67n4qIn4B3A2s3z6YUvp6KVVJFes2buWXS1fQ2tbOEx1rem2fcsgoWpobOe/URiaOtxWigaGvwf0yxR2TR5RXilTo6upmSSpaIfc9uprOrp1bIQeNGMLZJ0+lZWYT044YbytEA05fg3sWRXBv/wnpBjZGxA+AP08prSqhNg0wz656ldZKK2TNut6tkJOPOZTzm5s44/jJjBhmK0QDV1/f/bcCY4BvUazH/VFgLPAQ8M8UT2uX9tirG7byy6XLaW1r5zfL1/baPvXQ0a+1Qg6pH9kPFUoHnr4G99kppZk7fP3ZiLg/pfSRiPhIGYWpdnV2dbPk8eeZ29ZO27LVdHbt/JClUSOGcPYpDbQ0NxJNtkKkan0N7rERMSaltA4gIsYC2z8J8qdKffL0yrW0tnWwYMly1qzfuRUyqA5OjolcMLOJ046fzPChPhVP2p2+Bvds4L6I+A+KoP494F8i4tPAY2UVp/ytXb+FBUuW07qog6dW9G6FNE4azfkzmzjv1AYOHmcrROqLvq7H/ZWIWApcCHQCf5pSujMiTgVuLLE+ZWhbZzeLHnuOeYvaaVv2HF3dVa2QkUM555SpXNDcxDGN9bZCpD3U54/mU0pzgDlVY4v3eUXK1lMr1tLa1s78Jct5dcPWnbYNqoMZ0ybR0tzIadMnM8xWiLTXvKZKb8qadVuYv6S4KuSZVa/22t40eQwtM5uYdWoDE8aO6IcKpdpjcGuPbevspm3ZauYt6mDRY71bIWMOGsq5pzRwfnMjRzfYCpH2NYNbfdLT08OTy9fSuqidBUtWsG5jVStkUB0zp03i/OZGTps+iaFDbIVIZTG49bpeeXXza62QZ1ev67X9iCljaWlu5NwZDYwfYytE2h8MbvWyrbOL+x99jrlt7SxJz9PdqxUyjFmnNtAys5Gjpo6zFSLtZwa3gKIV8kTHGlrb2vnl0hWs37Rtp+2DB9Ux862TaGluYuZbJzF0yKB+qlSSwV3Durp76O7ped19Xlq7ifmLixtkOp7r3Qo56rBxtDQ3cs4pDdSPGV5WqZL2QKnBHRHzgEnA9unbD4A/2mGXI4F/Syn9aZl1DDRbtnVx8x2JOfc++9r11K+s28JLazdx8LiRbN3WxX2PrKZ1UTtL0/NUdUIYN3oY585ooGVmE0dNHdcP/wWSXk9pwR0RdcA0oCml1LnDpq9Wth9HserglWXVMBB1dnVz1fX38uATL+40vmlLJ5f9wwJOOXYi9y9bzYaqVsiQwXU0T59My8xGTn3rJIYMthUiHajKnHEHxRret0fEROC6lNI3d9j+HeCvUkov9jowoh6orxpuKK3SGnL3Ayt6hfZ2a9Zt4c7FHTuNvaVhHC0zmzjnlKmMG20rRMpBmcE9HmgFLgVGAvMjIqWU7oiIC4CRKaX/2M2xlwFXlFhbzVqwdMUb7lM/ZjizZjTQ0tzEEVPG7oeqJO1LpQV3SmkhsLDy5YaIuB54N3AH8Eng9Z5XeS29F69qAO7ax2XWnOoWyK7M/tI7vEFGyliZPe6zgOEppdbKUB2wLSKGAecCH97dsSmlNcBOT4aNiJIqrS1Nk8fw2DMv73b7EVPGGtpS5sr8BKoeuCYiRkTEGOAS4MfAicCvU0obSnztAes9bz+S17sf5j1vP3L/FSOpFKUFd0rpNuBnwFJgMTC70j45Clhe1usOdEceNo5P/f5Juwzvd51xOO88/fD9X5SkfarU67hTSpcDl1eN/RD4YZmvO9C964wjOP4thzDn3me5/VdPs3lrF4eMG1EJdG9Pl3Lnxbo1auqho/nj9x732hrYw4YONrSlGmFwS1JmDG5JyozBLUmZMbglKTMGtyRlxuCWpMwY3JKUGYNbkjJjcEtSZgxuScqMwS1JmTG4JSkzBrckZcbglqTMGNySlBmDW5IyY3BLUmYMbknKjMEtSZkxuCUpMwa3JGXG4JakzBjckpQZg1uSMmNwS1JmDG5JyozBLUmZMbglKTMGtyRlxuCWpMwY3JKUGYNbkjIzpMyTR8Q8YBKwrTL0SWAicCUwCpiTUvpsmTVIUq0pbcYdEXXANOCklNLJKaWTgReA7wLvA04AZkTEhWXVIEm1qMwZdwA9wO0RMRG4DhgO3JxSWg4QEe8HNvc6MKIeqK8abiixVknKRpnBPR5oBS4FRgLzgcHALyJiDjAZ+Clw+S6OvQy4osTaJClbpQV3SmkhsLDy5YaIuB44EbgAmAWsB34CXALcWHX4tbsYawDuKqdaScpHacEdEWcBw1NKrZWhOuBFYG5K6YXKPrcCp1EV0imlNcCaqvOVVaokZaXMVkk98OWIOBMYSjGz/gzwT5Ue9jrgQuDWEmuQpJpT2lUlKaXbgJ8BS4HFwOyU0gLga8DdwDLgWeCGsmqQpFpU6nXcKaXLqfrwMaU0G5hd5utKUi3zzklJyozBLUmZMbglKTMGtyRlxuCWpMwY3JKUGYNbkjJjcEtSZgxuSfvEyBFDdvpd5TG4Je0TF79rGie85RAufte0/i6l5vlXo6R9onn6ZJqnT+7vMgYEZ9ySlBmDW5IyY3BLUmYMbknKjMEtSZkxuCUpMwa3JGXG4JakzBjckpQZg1uSMmNwS1JmDG5JyozBLUmZMbglKTMGtyRlxuCWpMwY3JKUGYNbkjJjcEtSZgxuScqMwS1JmSn1Ke8RMQ+YBGyrDH0SuLp6LKV0X5l1SFItKS24I6IOmAY0pZQ6dzcmSdozZc64A+gBbo+IicB1wNzqsZTSN3sdGFEP1FcNN5RYqyRlo8zgHg+0ApcCI4H5uxqLiJRSuqPq2MuAK0qsTZKyVVpwp5QWAgsrX26IiOspWiQfqhp7N1Ad3NcCN1aNNQB3lVSuJGWjzB73WcDwlFJrZagOOCkiWqrGtlUfm1JaA6ypOl9ZpUpSVspsldQDX46IM4GhwCXAfwLXVI39SYk1SFLNKe067pTSbcDPgKXAYmB2SumqXYwt3P1ZJEnVSr2OO6V0OXD5G41JkvrOOyclKTMGtyRlxuCWpMwY3JKUGYNbkjJjcEtSZgxuScqMwS1JmTG4JSkzBrckZcbglqTMGNySlBmDW5IyY3BLUmYMbknKjMEtSZkxuCUpMwa3JGXG4JakzBjckpQZg1uSMmNwS1JmDG5JyozBLUmZMbglKTMGd40bOWLITr9Lyp/BXeMuftc0TnjLIVz8rmn9XYqkfcRpWI1rnj6Z5umT+7sMSfuQM25JyozBLUmZMbglKTMGtyRlptQPJyNiHjAJ2FYZ+mRK6b7KtmuAQ1NKHy6zBkmqNaUFd0TUAdOAppRSZ9W2FuDDwM/Ken1JqlVlzrgD6AFuj4iJwHUppW9GxATgb4G/A07a5YER9UB91XBDibVKUjbKDO7xQCtwKTASmB8RCfgE8EWg8XWOvQy4osTaJClbpQV3SmkhsLDy5YaIuB74IXBDSqk1Ij78OodfC9xYNdYA3LWv65Sk3JTZ4z4LGJ5Saq0M1QGLgHdGxAPABGB0RPxDSunPdjw2pbQGWFN1vrJKlaSslNkqqQe+HBFnAkOBS4A/qczEqcy4Z1WH9usYDLB69eoSSpWk/tPS0nIEsLz6Qo7dKbNVcltEnA4spQjdb20P7b00BeDiiy/eF+VJ0oHkaeBI4Jm+7FzX09NTajX7SkQMB5qBVUBXP5eTk+2fDZwNLO/nWlTbfK+9OX2ecWcT3No7EXEElb/NU0rP9G81qmW+1/Yfb3mXpMwY3JKUGYNbkjJjcNe+NcBfU3VdvFQC32v7iR9OSlJmnHFLUmYMbknKjMEtSZkxuDMWETe+wSqLr3fsX0fE2Xtx3LiIuLVqbGhEtEbErL2pRQe+A+G9FhGfiIhHIuLhiLghIobtTT21wOAeuM6lsnDXHhoPnLz9iyiWbZwPnLlvylINetPvtYg4FvgLivfZiRTZ9al9VWBuSn3mpHYtIq4Gfh94kWLtlf8H/GXl683A7wLXU6z9cBjwS+BDlcP/HvhtYCXFD8P8yjk/RPEAikHAYuBTKaXNu3n9DwEzgX+JiIuATcB3gIOBjcCnU0pLI+IDwOcp1oZ5Gvgg8I/AYRHx45TSRcBHgWsqr60DTK281yqvd2lK6dXKeR8Gmt70NyhTzrj3s4h4L3AWcBzwbuCU7ZuAD6aULgDeAzyQUnobcAzwNmAG8HuV/Y8D/gA4unLO44CPA2emlE4Gngc+t7saUkr/SrE2+sdSSg8DNwGfTynNoHhC0b9Xdv0b4J0ppVOBxymeIfoZYGUltEkpfT6ldGv1a6j/1dJ7LaX0bEppbqWGQ4E/BX7y5r5D+XLGvf+9A/hhSmkrsHWHHt7z2xfmSSn9ICJOi4jLgLdSzE5GA7OAW1JK24AXIuK/KseeR/FDd2/lgRPDgCV9KSYiRlOsunjDDg+rGB0RBwM/Be6p1PijlNIDlYWElIeae69FxFTgduD6lNL8vn4jao3Bvf91set/6Wza/oeI+DTFP2//GZgLHE/xBKGeqmO3LwE5mOIH9DOV40fT9/+3g4HNldnT9tdvAF5OKX228si59wDfi4grgbv7eF71v5p6r0XENODnwDdSSn/fx9esSbZK9r87gN+LiGERMZaih3h41T7vAP4ppfR9ih+gkyne9HOBP4iI4RExHvityv7zgYsiYmJE1FH0EN+o59wJDEkprQWeiIgPAkTEOyj6nEMi4gngxZTS1cC/UvzTuRP/ws9FzbzXImIM8AvgSwM9tMHg3u9SSv9F8WZdCvyM4oOfTVW7XQtcERFLgG8Dv6JY4/gnFD84j1B8yLSscs4HKdaImAc8SvH/9StvUMrPge9WHi13MfCxiHgIuBp4f+WfyP8LmBsRi4BzgK8DzwHtEXHn3n4PtH/U2HvtY8Ak4HMR8UDl15f36htTA1yrZD+LiLcBx6aUboqIocBC4I9TSg/1c2mqMb7XapfBvZ9FxATg/1I8Q3MQcFNK6X+X9Fp3UlwLW+27KaXvlvGaOnD4XqtdBrckZcYetyRlxuCWpMwY3JKUGYNbWYqIX0TEIXt57HURceq+rmmH83+zcgOJVAqDW7l6x5s8tm5fFSLtb94Bp+xExA2VP94ZEb9NcRNJEzAU+PeU0t9FxBDgGxSLLG0FngI+AnyBYhW871dWrnsJmA1MoFg9rw74HsXNJ3cBjwFHUCxN+hHgd4ARwCjgcymlH1fuSvwX4KTKOTqp3K5dWVvjm9X1lfF90cDhjFvZSSl9pPLH84AbgNmVVeVOAy6IiD+kWOVuFnBiZdtTlT9/keIOwotTSvcB/wb8IKV0PMVqdG/b4aUagKtSSsdSLKZ0AXBuSulE4IvA9jv3/prijsRpFCvpxQ7n+Lfd1CftNWfcytkoipnwhIi4qjI2mmK9jV9QLLJ0X0TMoVhx7v4dD66swXEaxS3WpJQei4jWHXbppLjbkJTSsxFxCXBxRBwNnFF5LSgC/bKUUg/FSno/rpz/9er74T76HmgAcsatnPVQtDbOTCmdXFl17gzg71JKayhaF5+jCPCbI+LPqo7vqvxet4sxgC0ppU6AiJhBsY7HWIq/FL66w3E9VefYcSW9Xda3l/+9EmBwK19dwDbgXuDPASKiHrgHeF+l990K/CqldCXFinMnVY7tBIZWnqZyD0Xvmog4EmihCOJq5wCLUkpfBxZQ9Lq3P47r58BHI2JQZRb/PoDK+XdZ3775FmigMriVq1soPgD8BHBG5VFW91H0q79Psdj+o8AjlRXnzgSurBx7K8UM/J0Uj+n6w4h4EPgWxWOzNu7i9X4AHBIRyyge17WeogUypnLebRRPbvkp8PAOx31gN/VJe821SjSgRcQXKfrUtnmXAAAARklEQVTfj0fEOOAh4MKU0rJ+Lk3aLT+c1ED3a4rZdzfFz8NXDG0d6JxxS1Jm7HFLUmYMbknKjMEtSZkxuCUpMwa3JGXm/wOXE+euHVhDQgAAAABJRU5ErkJggg==\n", "application/papermill.record/text/plain": "
" }, "metadata": { "scrapbook": { "mime_prefix": "application/papermill.record/", "name": "chicogrades_fig" } }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFuCAYAAAChovKPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XmYnnV97/H3ZA/ZJgGykJlhEfjGsIcMILIEBrVoPZZuXhUv0bqVY1XaYz21yoFKW1ROLaeuLSVAq8diK+IRi5FMSAQMMFlYAz+RbSYbe0L2ZJbzx/2EK3kmgUnIncnvmffrunIl87uX58vwzCe/fJ/7/t11PT09SJLyMai/C5Ak7RmDW5IyY3BLUmYMbknKjMEtSZkxuCUpMwa3JGXG4JakzBjckpQZg1uSMjOkvwvoq4gYAjQAy1NKnf1djyT1l2yCmyK0n25tbe3vOiRpX6vbk51tlUhSZgxuScqMwS1JmTG4JSkzBrckZcbglqTMGNySlBmDW5IyY3BLUmYMbknKjMEtSZkxuCUpMwa3JGXG4Ja0T7QtW80Xvn03bctW93cpNS+nZV0lHcC+P+dxnly+lk1bOmmePrm/y6lpzrgl7RObNnfu9LvKU+qMOyLeC1wJjALmpJQ+WxkfCvwcuCqlNL/MGiSp1pQW3BFxFPBd4HTgOWBeRFwIPAXMBmaU9dqSVMvKnHFfBNycUloOEBHvBzYDfwlcA1y2uwMjoh6orxpuKKlOScpKmcF9NLA1IuYAk4GfApenlD4PEBG7DW6KUL+ixNokKVtlfjg5BLgA+CBwBnAacEkfj70WOLLq19kl1ChJ2Slzxr0amJtSegEgIm6lCO8b3+jAlNIaYM2OYxFRQomSlJ8yg/s24KZKv3odcCFwa4mvJ0kDQmmtkpTSfcDXgLuBZcCzwA1lvZ4kDRSlXsedUppNcenfrrbNKvO1JalWeeekJGXG4JakzBjckpQZg1uSMmNwS1JmDG5JyozBLUmZMbglKTMGtyRlxuCWpMwY3JKUGYNbkjJjcEtSZgxuScqMwS1JmTG4JSkzBrckZcbglqTMGNySlBmDW5IyY3BLUmYMbknKjMEtSZkxuCUpMwa3JGXG4JakzBjckpQZg1uSMmNwS1JmDG5JyozBLUmZMbglKTNDyjx5RLwXuBIYBcxJKX02Ii4Avg6MBG5OKX2pzBokqdaUNuOOiKOA7wLvA04AZkTEhcDsythbgebKmCSpj8qccV9EMaNeDhAR7weOAZ5IKT1dGfse8AfA7TseGBH1QH3V+RpKrFWSslFmcB8NbI2IOcBk4KfAo8CqHfZZxa4D+TLgihJrk6RslRncQ4BzgFnAeuAnwMZd7Ne9i7FrgRurxhqAu/ZdeQND27LV3DL/N/zurKNpnj65v8uRtA+UGdyrgbkppRcAIuJWirZI1w77TAFWVh+YUloDrNlxLCLKq7SGfX/O4zy5fC2btnQa3FKNKDO4bwNuqvSr1wEXAv8J/GVEHA08DXyA4sNKlWTT5s6dfpeUv9KuKkkp3Qd8DbgbWAY8C3wH+DDwo8rY4xRhLknqo1Kv404pzab3jLoVOKnM15WkWuadk5KUGYNbkjJjcEtSZgxuScqMwS1JmTG4JSkzBrckZcbglqTMGNySlBmDW5IyY3BLUmYMbknKjMEtSZkxuCUpMwa3JGXG4JakzBjckpQZg1uSMmNwS1JmDG5JyozBLUmZMbglKTMGtyRlxuCWpMwY3JKUGYNbkjJjcEtSZgxuScqMwS1JmTG4JSkzBrckZcbglqTMGNySlJkhZZ48IuYBk4BtlaFPAucBHwG2ADenlP62zBokqdaUNuOOiDpgGnBSSunklNLJwBjgA0AzcApwekT8blk1SFItKnPGHUAPcHtETASuA0YCc1JKrwJExM+B3wFu2enAiHqgvup8DSXWKknZKDO4xwOtwKUUgT0f+B/ANRFxNbAR+G/setZ/GXBFibVJUrZKC+6U0kJgYeXLDRFxPfBbwI0UIf4yMBc4YxeHX1vZb0cNwF0llCpJWSktuCPiLGB4Sqm1MlRX+f2WlNLXK/v8OfBk9bEppTXAmqrzlVWqJGWlzFZJPfDliDgTGApcAnwGuDUiZgKjgI8BHy+xBkmqOaVdVZJSug34GbAUWAzMTiktAH4EPATcD/xjSumesmqQpFpU6nXcKaXLgcurxq4CrirzdSWplnnnpCRlxuCWpMwY3JKUGYNbkjJjcEtSZgxuScqMwS1JmTG4JSkzBrckZcbglqTMGNySlBmDW5IyY3BLUmYMbknKjMEt6U3r7u6hs7unv8sYMAxuSXutp6eH2xc+w8evnsvzL28E4PlXNnLPQyv7t7AaZ3BL2ms/nPtrvv2fD74W2gCdXT185aY25i3q6MfKapvBLWmvrFm3hX+/I+12+w0/fZRtnd37saKBw+CWtFfue3Q1nV2772uvWb+FR596cT9WNHAY3JL22DOrXmX+kjduhWza0rkfqhl4Sn1YsKTasXb9Fn65dAWti9p5cvnaN9y/rg6OPGzcfqhs4DG4Je1WZ1c3ix97jtZFHbQt690aGVQHu7sK8PTjJjP54FH7ocqBx+CW1MvTK9cyt62dBUuWs3b91p22DaqDU2IiLc1NHDFlDH8z+35Wvrhhp32Obarn0394yv4seUAxuCUBxVUiC5YuZ15bB0+t7N0KaZw0mguamzh3RgMHjxv52vg3/+I87nloFd/50YNs3NzJhLEj+Nqnz2HwoLr9Wf6AYnBLA9i2zm4WPfYcrW3tLHrsObqq+h6jRw7lnFOm0tLcxDGN9dTV9Q7joUMGM2tGAz+Y8zgbN3cyYthgQ7tkBrc0wPT09PDUirW0LupgwZLlvLqhqhUyqI4ZMZELmps47bhJDB0yuJ8q1e4Y3NIA8cq6zSxYspzWtg6eWfVqr+2HTx5DS3MTs2Y0MH7siH6oUH1lcEs1bFtnF/cvK1ohix9/nu6qVsiYg4Zy7owGWpqbeMvUcbtshejAY3BLNaanp4cnl6+lta2dBUuXs27jtp22DxpUx8xpk2hpbqR5uq2QHBncUo14+dXNzF+8nNZF7bSvXtdr+xFTxtLS3MS5M6YyfoytkJwZ3FLGtm7r4v5lq2lt62BJ6t0KGTtqGLMqrZCjpnoXY60wuKXM9PT08ETHGua2tXPX0hWs37RzK2TwoDqap0+ipbmJU6dNYugQlySqNaUGd0TMAyYB299ZnwSOAb5Q+fr2lNLnyqxBqhUvrd30Wiuk47n1vbYfNXUcLTMbOXdGA+NGD++HCrW/lBbcEVEHTAOaUkqdlbGDgNuBY4E1wD0RcUFKaW5ZdUg527qti/seWc3cRe08kJ7vtS5I/ejhlatCGl3QaQApc8YdQA9we0RMBK4DbqJYSnYUsAEYCmzqdWBEPVBfNdxQYq3SAaOnp4fU/gqtbR3ctXQ5GzbvvDTqkMF1NE+fzAXNTcyYNpEhg22FDDR7FNwRUZ9SWtPH3ccDrcClwEhgPpCAy4HHKQJ7PvCrXRx7GXDFntQm5e7FNZu4c3EHrW3trHhhQ6/tRzeMo6W5iXNOaWDsqGH9UKEOFH0K7ogI4BagPiJOA+YCF6WUHt/dMSmlhcDCypcbIuJ64L8DRwCHA2uB7wGfA66pOvxa4MaqsQbgrr7UK+Vi89ZO7n1kNfPa2nngiRfoqW6FjBnOeac20jKzkcOnjO2fInXA6euM+xsUs+CvpZRWRMQ3gH8GztndARFxFjA8pdRaGaoDfgf4+5TS85V9bqQI852CuzKr32lmX/zdIeWvp6eHx555mXmLOrjrgRVs7NUKGcTpx0+mZWYjM2Iig22FqEpfg/vglNId28MzpfTtiPjEGxxTD3w5Is6k6GVfAlwJXBQRo4CNwHuBtr0pXMrN869s5M7FHcxr6+i1fjXAMY31lVbIVMYcZCtEu9fX4O6JiBEUHzYSEZOB171PNqV0W0ScDiyt7PutlNL/iYjNwGKKSwTvB76yt8VLB7rNWztZ+PAqWtvaeeg3L/ZqhUwYW7RCzp/ZSNNkWyHqm74G97eBOcDEiLga+CPgq290UErpcooPI3cc+2pfjpVy1dPTw7KnX6a1rZ27H1zZ64G5Q4cM4ozjp3D+zEZOOfZQWyHaY30K7pTS7Ih4Eng3RdvjEymlX5RamZSZ51/eyLxKK2TVS71bIXH4eFpmNnL2yVMZbStEb0KfLwdMKS0AFpRYi5SdTVs6WfjwSlrbOnjoNy/22j5h7AjOn1m0QhonjemHClWLXje4I6KbSl97V1JKrgepAae7u4dHn36J1rZ27nlwJZu3du20fdiQQZxxwhRamps46ZhDfYyX9rk3mnEfSnEZ31XAs8A/AV3AhymuxZYGjNUvbWDeog7mLerguZc39tr+1iMm0NLcyFknTWXUyKH9UKEGitcN7pTSSwARMTOldOkOm/4xIhaVWpl0ANi4eRu/emglrYs6eOTJl3ptP2TcCM5vbuL8mY1MPXR0P1SogaivPe5REREppQQQEScALj+mmtTd3cPDT77IvEUd3PPQSrZUt0KGDubME6bQ0tzICUfbCtH+19fg/hJwb0Q8RLFI1HTgA6VVJfWDVS9uoHVRO/MWdfDCK73WPmP6kRNoaW7irJMO46ARtkLUf/p6OeAtEXE3cBbFh5V3pZR6f4QuZWbj5m3c/eBKWtvaWfb0y722Hzp+5GtXhRx2iK0QHRj6usjUMODtFMux1gHvjYijU0pfLLM4qQxd3T08/JsXaG3r4FcPr2Lrtp1bIcOHDebtJx5GS3Mjxx91CINshegA09dWyc3AUcAUilvYT6dYklXKxooX1tPa1s6di5fz4prerZDj33IwLTMbOfNEWyE6sPU1uE+meOTYd4CvU8y6v11WUdK+smHTNu5+cAWtbR089kzvVsjECQfRUmmFTD54VD9UKO25vgb3ypRSZ0T8Gjg+pfQflceQSQecru4eHnziBVrb2rn34VVs7ezeafuIYYN5+0mH0dLcxHFHHmwrRNnpa3BviIgPAA8CH4+Ix4GDyytL2nMdz61j3qIO7lzcwUtrN/fafuLRh9DS3MjbTjiMkcNLfU62VKq+vns/BXwc+J/ARynWLPmrsoqS+mr9xq3c9cAKWhd1kJ59pdf2yQcfREtzE+ed2sikCf4jUbWhr8H9xymlz1f+/P6yipH6oqu7hwd+/TytbR3c+8gqtlW1QkYOH8xZJ02lpbmJ6UdOoK7OVohqS1+D+7eBL5RZiPRG2le/+lor5OVXt+y0ra5ueyukibcdP4URtkJUw/r67n4qIn4B3A2s3z6YUvp6KVVJFes2buWXS1fQ2tbOEx1rem2fcsgoWpobOe/URiaOtxWigaGvwf0yxR2TR5RXilTo6upmSSpaIfc9uprOrp1bIQeNGMLZJ0+lZWYT044YbytEA05fg3sWRXBv/wnpBjZGxA+AP08prSqhNg0wz656ldZKK2TNut6tkJOPOZTzm5s44/jJjBhmK0QDV1/f/bcCY4BvUazH/VFgLPAQ8M8UT2uX9tirG7byy6XLaW1r5zfL1/baPvXQ0a+1Qg6pH9kPFUoHnr4G99kppZk7fP3ZiLg/pfSRiPhIGYWpdnV2dbPk8eeZ29ZO27LVdHbt/JClUSOGcPYpDbQ0NxJNtkKkan0N7rERMSaltA4gIsYC2z8J8qdKffL0yrW0tnWwYMly1qzfuRUyqA5OjolcMLOJ046fzPChPhVP2p2+Bvds4L6I+A+KoP494F8i4tPAY2UVp/ytXb+FBUuW07qog6dW9G6FNE4azfkzmzjv1AYOHmcrROqLvq7H/ZWIWApcCHQCf5pSujMiTgVuLLE+ZWhbZzeLHnuOeYvaaVv2HF3dVa2QkUM555SpXNDcxDGN9bZCpD3U54/mU0pzgDlVY4v3eUXK1lMr1tLa1s78Jct5dcPWnbYNqoMZ0ybR0tzIadMnM8xWiLTXvKZKb8qadVuYv6S4KuSZVa/22t40eQwtM5uYdWoDE8aO6IcKpdpjcGuPbevspm3ZauYt6mDRY71bIWMOGsq5pzRwfnMjRzfYCpH2NYNbfdLT08OTy9fSuqidBUtWsG5jVStkUB0zp03i/OZGTps+iaFDbIVIZTG49bpeeXXza62QZ1ev67X9iCljaWlu5NwZDYwfYytE2h8MbvWyrbOL+x99jrlt7SxJz9PdqxUyjFmnNtAys5Gjpo6zFSLtZwa3gKIV8kTHGlrb2vnl0hWs37Rtp+2DB9Ux862TaGluYuZbJzF0yKB+qlSSwV3Durp76O7ped19Xlq7ifmLixtkOp7r3Qo56rBxtDQ3cs4pDdSPGV5WqZL2QKnBHRHzgEnA9unbD4A/2mGXI4F/Syn9aZl1DDRbtnVx8x2JOfc++9r11K+s28JLazdx8LiRbN3WxX2PrKZ1UTtL0/NUdUIYN3oY585ooGVmE0dNHdcP/wWSXk9pwR0RdcA0oCml1LnDpq9Wth9HserglWXVMBB1dnVz1fX38uATL+40vmlLJ5f9wwJOOXYi9y9bzYaqVsiQwXU0T59My8xGTn3rJIYMthUiHajKnHEHxRret0fEROC6lNI3d9j+HeCvUkov9jowoh6orxpuKK3SGnL3Ayt6hfZ2a9Zt4c7FHTuNvaVhHC0zmzjnlKmMG20rRMpBmcE9HmgFLgVGAvMjIqWU7oiIC4CRKaX/2M2xlwFXlFhbzVqwdMUb7lM/ZjizZjTQ0tzEEVPG7oeqJO1LpQV3SmkhsLDy5YaIuB54N3AH8Eng9Z5XeS29F69qAO7ax2XWnOoWyK7M/tI7vEFGyliZPe6zgOEppdbKUB2wLSKGAecCH97dsSmlNcBOT4aNiJIqrS1Nk8fw2DMv73b7EVPGGtpS5sr8BKoeuCYiRkTEGOAS4MfAicCvU0obSnztAes9bz+S17sf5j1vP3L/FSOpFKUFd0rpNuBnwFJgMTC70j45Clhe1usOdEceNo5P/f5Juwzvd51xOO88/fD9X5SkfarU67hTSpcDl1eN/RD4YZmvO9C964wjOP4thzDn3me5/VdPs3lrF4eMG1EJdG9Pl3Lnxbo1auqho/nj9x732hrYw4YONrSlGmFwS1JmDG5JyozBLUmZMbglKTMGtyRlxuCWpMwY3JKUGYNbkjJjcEtSZgxuScqMwS1JmTG4JSkzBrckZcbglqTMGNySlBmDW5IyY3BLUmYMbknKjMEtSZkxuCUpMwa3JGXG4JakzBjckpQZg1uSMmNwS1JmDG5JyozBLUmZMbglKTMGtyRlxuCWpMwY3JKUGYNbkjIzpMyTR8Q8YBKwrTL0SWAicCUwCpiTUvpsmTVIUq0pbcYdEXXANOCklNLJKaWTgReA7wLvA04AZkTEhWXVIEm1qMwZdwA9wO0RMRG4DhgO3JxSWg4QEe8HNvc6MKIeqK8abiixVknKRpnBPR5oBS4FRgLzgcHALyJiDjAZ+Clw+S6OvQy4osTaJClbpQV3SmkhsLDy5YaIuB44EbgAmAWsB34CXALcWHX4tbsYawDuKqdaScpHacEdEWcBw1NKrZWhOuBFYG5K6YXKPrcCp1EV0imlNcCaqvOVVaokZaXMVkk98OWIOBMYSjGz/gzwT5Ue9jrgQuDWEmuQpJpT2lUlKaXbgJ8BS4HFwOyU0gLga8DdwDLgWeCGsmqQpFpU6nXcKaXLqfrwMaU0G5hd5utKUi3zzklJyozBLUmZMbglKTMGtyRlxuCWpMwY3JKUGYNbkjJjcEtSZgxuSfvEyBFDdvpd5TG4Je0TF79rGie85RAufte0/i6l5vlXo6R9onn6ZJqnT+7vMgYEZ9ySlBmDW5IyY3BLUmYMbknKjMEtSZkxuCUpMwa3JGXG4JakzBjckpQZg1uSMmNwS1JmDG5JyozBLUmZMbglKTMGtyRlxuCWpMwY3JKUGYNbkjJjcEtSZgxuScqMwS1JmSn1Ke8RMQ+YBGyrDH0SuLp6LKV0X5l1SFItKS24I6IOmAY0pZQ6dzcmSdozZc64A+gBbo+IicB1wNzqsZTSN3sdGFEP1FcNN5RYqyRlo8zgHg+0ApcCI4H5uxqLiJRSuqPq2MuAK0qsTZKyVVpwp5QWAgsrX26IiOspWiQfqhp7N1Ad3NcCN1aNNQB3lVSuJGWjzB73WcDwlFJrZagOOCkiWqrGtlUfm1JaA6ypOl9ZpUpSVspsldQDX46IM4GhwCXAfwLXVI39SYk1SFLNKe067pTSbcDPgKXAYmB2SumqXYwt3P1ZJEnVSr2OO6V0OXD5G41JkvrOOyclKTMGtyRlxuCWpMwY3JKUGYNbkjJjcEtSZgxuScqMwS1JmTG4JSkzBrckZcbglqTMGNySlBmDW5IyY3BLUmYMbknKjMEtSZkxuCUpMwa3JGXG4JakzBjckpQZg1uSMmNwS1JmDG5JyozBLUmZMbglKTMGd40bOWLITr9Lyp/BXeMuftc0TnjLIVz8rmn9XYqkfcRpWI1rnj6Z5umT+7sMSfuQM25JyozBLUmZMbglKTMGtyRlptQPJyNiHjAJ2FYZ+mRK6b7KtmuAQ1NKHy6zBkmqNaUFd0TUAdOAppRSZ9W2FuDDwM/Ken1JqlVlzrgD6AFuj4iJwHUppW9GxATgb4G/A07a5YER9UB91XBDibVKUjbKDO7xQCtwKTASmB8RCfgE8EWg8XWOvQy4osTaJClbpQV3SmkhsLDy5YaIuB74IXBDSqk1Ij78OodfC9xYNdYA3LWv65Sk3JTZ4z4LGJ5Saq0M1QGLgHdGxAPABGB0RPxDSunPdjw2pbQGWFN1vrJKlaSslNkqqQe+HBFnAkOBS4A/qczEqcy4Z1WH9usYDLB69eoSSpWk/tPS0nIEsLz6Qo7dKbNVcltEnA4spQjdb20P7b00BeDiiy/eF+VJ0oHkaeBI4Jm+7FzX09NTajX7SkQMB5qBVUBXP5eTk+2fDZwNLO/nWlTbfK+9OX2ecWcT3No7EXEElb/NU0rP9G81qmW+1/Yfb3mXpMwY3JKUGYNbkjJjcNe+NcBfU3VdvFQC32v7iR9OSlJmnHFLUmYMbknKjMEtSZkxuDMWETe+wSqLr3fsX0fE2Xtx3LiIuLVqbGhEtEbErL2pRQe+A+G9FhGfiIhHIuLhiLghIobtTT21wOAeuM6lsnDXHhoPnLz9iyiWbZwPnLlvylINetPvtYg4FvgLivfZiRTZ9al9VWBuSn3mpHYtIq4Gfh94kWLtlf8H/GXl683A7wLXU6z9cBjwS+BDlcP/HvhtYCXFD8P8yjk/RPEAikHAYuBTKaXNu3n9DwEzgX+JiIuATcB3gIOBjcCnU0pLI+IDwOcp1oZ5Gvgg8I/AYRHx45TSRcBHgWsqr60DTK281yqvd2lK6dXKeR8Gmt70NyhTzrj3s4h4L3AWcBzwbuCU7ZuAD6aULgDeAzyQUnobcAzwNmAG8HuV/Y8D/gA4unLO44CPA2emlE4Gngc+t7saUkr/SrE2+sdSSg8DNwGfTynNoHhC0b9Xdv0b4J0ppVOBxymeIfoZYGUltEkpfT6ldGv1a6j/1dJ7LaX0bEppbqWGQ4E/BX7y5r5D+XLGvf+9A/hhSmkrsHWHHt7z2xfmSSn9ICJOi4jLgLdSzE5GA7OAW1JK24AXIuK/KseeR/FDd2/lgRPDgCV9KSYiRlOsunjDDg+rGB0RBwM/Be6p1PijlNIDlYWElIeae69FxFTgduD6lNL8vn4jao3Bvf91set/6Wza/oeI+DTFP2//GZgLHE/xBKGeqmO3LwE5mOIH9DOV40fT9/+3g4HNldnT9tdvAF5OKX228si59wDfi4grgbv7eF71v5p6r0XENODnwDdSSn/fx9esSbZK9r87gN+LiGERMZaih3h41T7vAP4ppfR9ih+gkyne9HOBP4iI4RExHvityv7zgYsiYmJE1FH0EN+o59wJDEkprQWeiIgPAkTEOyj6nEMi4gngxZTS1cC/UvzTuRP/ws9FzbzXImIM8AvgSwM9tMHg3u9SSv9F8WZdCvyM4oOfTVW7XQtcERFLgG8Dv6JY4/gnFD84j1B8yLSscs4HKdaImAc8SvH/9StvUMrPge9WHi13MfCxiHgIuBp4f+WfyP8LmBsRi4BzgK8DzwHtEXHn3n4PtH/U2HvtY8Ak4HMR8UDl15f36htTA1yrZD+LiLcBx6aUboqIocBC4I9TSg/1c2mqMb7XapfBvZ9FxATg/1I8Q3MQcFNK6X+X9Fp3UlwLW+27KaXvlvGaOnD4XqtdBrckZcYetyRlxuCWpMwY3JKUGYNbWYqIX0TEIXt57HURceq+rmmH83+zcgOJVAqDW7l6x5s8tm5fFSLtb94Bp+xExA2VP94ZEb9NcRNJEzAU+PeU0t9FxBDgGxSLLG0FngI+AnyBYhW871dWrnsJmA1MoFg9rw74HsXNJ3cBjwFHUCxN+hHgd4ARwCjgcymlH1fuSvwX4KTKOTqp3K5dWVvjm9X1lfF90cDhjFvZSSl9pPLH84AbgNmVVeVOAy6IiD+kWOVuFnBiZdtTlT9/keIOwotTSvcB/wb8IKV0PMVqdG/b4aUagKtSSsdSLKZ0AXBuSulE4IvA9jv3/prijsRpFCvpxQ7n+Lfd1CftNWfcytkoipnwhIi4qjI2mmK9jV9QLLJ0X0TMoVhx7v4dD66swXEaxS3WpJQei4jWHXbppLjbkJTSsxFxCXBxRBwNnFF5LSgC/bKUUg/FSno/rpz/9er74T76HmgAcsatnPVQtDbOTCmdXFl17gzg71JKayhaF5+jCPCbI+LPqo7vqvxet4sxgC0ppU6AiJhBsY7HWIq/FL66w3E9VefYcSW9Xda3l/+9EmBwK19dwDbgXuDPASKiHrgHeF+l990K/CqldCXFinMnVY7tBIZWnqZyD0Xvmog4EmihCOJq5wCLUkpfBxZQ9Lq3P47r58BHI2JQZRb/PoDK+XdZ3775FmigMriVq1soPgD8BHBG5VFW91H0q79Psdj+o8AjlRXnzgSurBx7K8UM/J0Uj+n6w4h4EPgWxWOzNu7i9X4AHBIRyyge17WeogUypnLebRRPbvkp8PAOx31gN/VJe821SjSgRcQXKfrUtnmXAAAARklEQVTfj0fEOOAh4MKU0rJ+Lk3aLT+c1ED3a4rZdzfFz8NXDG0d6JxxS1Jm7HFLUmYMbknKjMEtSZkxuCUpMwa3JGXm/wOXE+euHVhDQgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "chico_tidy_df = chico_df.melt(id_vars='id', var_name=\"testgrade\", value_name='grade')\n", "fig=sns.catplot(x='testgrade',y='grade',kind='point',data=chico_tidy_df)\n", "glue(\"chicogrades_fig\",fig.fig,display=False)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "```{glue:figure} chicogrades_fig\n", ":figwidth: 650px\n", ":name: \"fig:chicogrades\"\n", "\n", "Mean grade for test 1 and test 2, with associated 95% confidence intervals.\n", "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Nevertheless, this impression is wrong. To see why, take a look at the scatterplot of the grades for test 1 against the grades for test 2 shown in {numref}`fig:chicogradesscatter`. " ] }, { "cell_type": "code", "execution_count": 78, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
idgrade_test1grade_test2
1student142.944.6
2student251.854.0
3student371.772.3
4student451.653.4
5student563.563.8
\n", "
" ], "text/plain": [ " id grade_test1 grade_test2\n", "1 student1 42.9 44.6\n", "2 student2 51.8 54.0\n", "3 student3 71.7 72.3\n", "4 student4 51.6 53.4\n", "5 student5 63.5 63.8" ] }, "execution_count": 78, "metadata": {}, "output_type": "execute_result" } ], "source": [ "chico_df.head()" ] }, { "cell_type": "code", "execution_count": 87, "metadata": { "tags": [ "hide_cell" ] }, "outputs": [ { "data": { "application/papermill.record/image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFuCAYAAAChovKPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xd81dX9x/FX2Fu2BMJGDwjIFkgc1FHr1qq14EJBAWutdqglDBGCrVrhZ6thKNWqIHXvIgYHJmFPRY7sGWQGSAghyb2/P743GELGTcg3d72fjwePBzn5fm8+vb2+OTnfM6K8Xi8iIhI6qgS6ABERKRsFt4hIiFFwi4iEGAW3iEiIUXCLiIQYBbeISIhRcIuIhBgFt4hIiFFwi4iEGAW3iEiIqRboAvxljKkGxAA7rbW5ga5HRCRQQia4cUJ7S1JSUqDrEBGpaFFluVhDJSIiIUbBLSISYhTcIiIhRsEtIhJiFNwiIiFGwS0iEmIU3CIiIUbBLSISYhTcIiIhRsEtIhJiFNwiIiFGwS0iEmIU3CIiFeDY8ZxK+1kKbhGRM/T1ip0MHvsZazbuq5Sfp+AWETkDC1fu4rnZyzmvfWPObdOoUn6mgltEpJwWrtrFs7OX06V9E8YPG0CtGpVzxIGCW0SkHJJX7+bZN5bTpV1jxg8fQK2alXcuTSidgCMiUmk8Hi9p+zM5eCSLxg1qE920LlWqOAfVJK/ZzdOvL6Nz20aMHz6A2pUY2qDgFhE5jcfjJXVtGlPmrCA7J4+a1avyyODeDOwezeLv03jmtWWYNoEJbVBwi4icJm1/5snQBsjOyWPKnBWkH+3KzA/Wck7rhjxx3wDq1KoekPo0xi0iUsjBI1knQztfdk4eMz5YS6eYhky4f2DAQhsU3CIip2ncoDY1q1c9rb3t2fUDHtqg4BYROU1007o8Mrj3KeEd3bQuCaPiqFs7sKENCm4RkdNUqRLFwO7RDL+hG1WrRNE2ugHPPnQx9evWCHRpgB5OiogUaYXdy/T31tK+ZQMmjoilXp3gCG1Qj1tE5DTL1//E5FeW0KZFfZ4MstAGBbeIyClW2L0k/HsJrZvXZ9LIWOoHWWiDgltE5KSVdi8JsxbTunl9JgZpaIOCW0QEgFU/7mXSrMW0bFaPJ0cMpEGQPIgsioJbRCLe6h/3MfFlJ7QnjYzlrHo1A11SiRTcIhLR1mzcx5OzFhPdtG5IhDYouEUkgq3duJ8JLy2mRZM6TBoZFxKhDQpuEYlQ323az4SXF3F24zokjIyjYf3QCG1QcItIBPp+8wEmvLSI5o1qkzAqNqRCGxTcIhJhvt98gCdmptLkrNokjIyjUf1agS6pzBTcIhIxfthykAkvOaE9+YE4GjUIvdAGF/cqMcYMBx4s0NQeeA14H3gOqA3MtdaOcasGEZF867ceZPzMVBo3qMXkB+JoHKKhDS72uK21L1lre1prewK3A3uBvwOzgBuALkA/Y8xVbtUgIgKwfttBxs1IpVH9miSMCu3QhsrbHTARGA10ADZYa7cAGGNeB24FPit4sTGmIdCw0GvEVEKdIhJm7LaDjJ+RSsP6NZn8QBxNzqod6JLOmOtj3MaYy4Ha1tq3gJZAWoFvp1F0ID8MbCn0Z6HLpYpImPlx+yHGzUilQd0aTB4VHqENldPjHoEzpg0QVcT3PUW0TQVeKdQWg8JbRPy0Ycchxk1P8YX2hTRtGB6hDS4HtzGmBnAJMNTXtAtoUeCSaGB34fustelAeqHXcqdIEQk7G3ekM3Z6KvXq1CBhVBzNGoVPaIP7Pe7zgR+ttZm+rxcDxhjTCWf4YwjOw0oRkQqxcWc6Y6enULd2dSY/EEfzRnUCXVKFc3uMuwOwM/8La+1xnN73O8A6YD3wtss1iEiE2LQznbHTUqhTqxqTR4VnaANEeb3eQNfgF2NMO2BLUlISMTGaYCIip9q86zBjpiVTq6YT2i2a1A10SWVR1PO/YmnlpIiEvC27ndCuWSMkQ7vMFNwiEtK27D5MfGIKNatX5akHwj+0QcEtIiFsa9oRxkxLoUb1Kkx+4MKICG1QcItIiNqWdoT4xGSqV6vC5AfiiG4aGaENCm4RCUHb9hwhfloy1apGMXlUHC2b1gt0SZVKwS0iIWX7niOMSUyhSlQUCaPiaNksskIbFNwiEkJ2/HSU+GkpEAUJo+KIaV4/0CUFhIJbRELCzr1HiU9MBmDyqDhanx2ZoQ0KbhEJAbv2ZRCfmIzXCwkjYyM6tEHBLSJBbve+DEa/mEyex8ukUbG0adEg0CUFnIJbRILW7v0ZjE5MJs/jIWFkHG0V2oCCW0SCVNr+TEa/mExOrodJI+NoG63QzqfgFpGg44T2t5zI8TBpZCztFNqnUHCLSFDZcyCT0YnJZOfkkTAqlvYtzwp0SUFHwS0iQeOng8cYnZjM8excJo2MU2gXQ8EtIkHhp4PHGP3it2Qdz2XSyFg6tFJoF6cyDgsWESnRXl9PO9MX2h1jGga6pKCmHreIBNTeQ77Qzsph0ohYOim0S6XgFpGA2Xcoi/jEZDKOneDJ+wfSqbVC2x8aKhGRgNif7oT2kcwTTBwRy7ltGgW6pJChHreIVLoDh7MYnZhMekY2T94/UKFdRgpuEalUBw5nMfrFZNKPOqFt2jYOdEkhR8EtIpXm4JHjxCcmc8gX2p3bKbTLQ8EtIpXi4JHjjH4xmYNHjjPhPoX2mVBwi4jrDvl62gcOZzF++EC6tFdonwkFt4i46tDR48RPS2Z/ehZP3DeQrh2aBLqkkKfgFhHXpB/NJj4xhb2Hshg3fIBCu4IouEXEFYczshkzLZmfDh5j/LABdO/YNNAlhQ0Ft4hUuMMZ2cQnJpN24Bjjh/eneyeFdkXSykkROY3H4yVtfyYHj2TRuEFtopvWpUqVKL/udXraKaTtz2Tc8AGc36mZy9VGHgW3iJzC4/GSujaNKXNWkJ2TR83qVXlkcG8Gdo8uNbyPZJ5gzLQUdu/LYOyw/vQ4R6HtBg2ViMgp0vZnngxtgOycPKbMWUHa/swS7zuSeYKx01LYtS+DMff2p+e5zSuj3Iik4BaRUxw8knUytPNl5+Rx8GhWsfccPXaCsdNT2LH3KGPu6U8vo9B2k4JbRE7RuEFtalavekpbzepVaVy/dpHX54f29j1Hib/nAnp3Vmi7zdUxbmPMdcATQF1gnrX2D8aYWcBFQP7vXROste+5WYeI+C+6aV0eGdz7tDHu6KZ1T7s249gJxk1PYVuaE9p9Op8dgIojj2vBbYzpAEwD+gM/AQuMMVcB/YCLrbVpbv1sESm/KlWiGNg9mnbRgzh4NIvG9YueVZKRlcPYGalsTTvC6KEX0LeLQruyuNnjvgmYa63dCWCMuQ2IAtoAM40xbYD3cHrcHhfrEJEyqlIlilbN69Gqeb0iv5+ZlcO46Sls3X2Yv959Af3Oa1HJFUY2N4O7E3DCGDMPaAF8BPwbWACMADKAj4FhwMyCNxpjGgKFzzCKcbFWEfFTZlYO42eksmX3YR6/qx8XdFVoVzY3g7sacDEwCCekPwA2Wmtvyr/AGPNP4C4KBTfwMDDexdpEpByOHc9h/MxUNu5M5/G7+9G/W3SgS4pIbs4q2QN8Ya3dZ63NAt4H7jbG3Fzgmiggp4h7pwLtC/25yMVaRaQUx47n8MTMRWzckc5jd/VlgEI7YNzscX8MvOob9jgKXIUT3lONMQtweuH3A68WvtFamw6kF2wzxrhYqoiUJD+07fZDPHZnXwZ2bxnokiKaa8FtrV1sjHka+BaoDswH/onTw072tb1jrZ3jVg0ike5M9hzJd+x4DhNeckL70Tv7Enu+QjvQorxeb6Br8Isxph2wJSkpiZgYPacUKc2Z7DmSLys7lwkvLeKHrQf5yx19uLBHK5erjlhl+tdUKydFwlR59xzJd7xAaP/5doV2MFFwi4Sp8uw5ku94di4TXl7ED1sO8Kchvbmop0I7mGhbV5Ewlb/nSMHwLrznSFFj4Cdy85g4azHrNh/gkSF9uLiXhiaDjYJbJEyVtudIUWPgD97ag/lLtrN2034eGdybQb0V2sFIwS0Spkrbc6SoMfDn5qwALzwypDe/6NM6kOVLCRTcImGspD1HihoD93rhlks7KbSDnB5OikSoovbdrlY1isv7tQ1QReIvBbdImPB4vOzam8HajfvYtTcDj6fkNRrRTevy+9/0JMo3g7ha1Sj+fHvfIvfdluCioRKRMFCexTZ5Hg9fLt+B1wu/HtSRX/ZvV66VlVL5FNwiYaC4xTbtogedMr6dP/1v76FM3krawNpNB3jw1h5cOaBdgCqX8lBwi4SBkhbb5Ad3fq/8udnLOZHrnF3yqwFtueICjWmHGo1xi4QBfw74TdufeUpoA3y5fKffS+AleCi4RcJA/mKb/PAu6oDfvYcyTwlt8H8JvAQXDZWIhIHSFtvk5Hp458tNp91XuFcuoUE9bpEwkb/YpnvHZrRqXu9kaOfmeXjm9WWs3rCPy/u1KbFXLqFBPW6RMJYf2qlr07jvhm5ce2EHbrn0nCJ75RI6FNwiYSovz8OzbywnZU0aw67vxvUXdwQodgm8hA4NlYiEobw8D/+YvYLk1bsZdn1XbrykY6BLkgqk4BYJM3l5Hp6bvYKFq3Zxz7VdufGSToEuSSqYglskjOR5vEyZs5JvVu3inmvP49e/UGiHIwW3SJjI83iZOmcFX6/cyV1Xd+HXvzgn0CWJSxTcImEgz+Nl6psr+GqFE9q3XnZuoEsSFym4RUJcnsfL83NX8tXyndxxVWeFdgRQcIuEsPzQXrBsB0Ou7Mxtl5tAlySVQMEtEqI8Hi//+u8qJ7R/aRj8S4V2pFBwi4Qgj8fLv95axRdLt/PbKwyDr+wc6JKkEim4RUKMx+PlhbdXM3/Jdm67/FyGXKmedqRRcIuEEI/Hy4vvrObzxdv4zeXncvuvOhMVpb1GIo32KhEJsPzjxA4eyaJxg+I3fvJ6vUx7bw3zFm3j1svO4Q6FdsRScIsEkL+H/Hq9Xqa9u4bPUrZy8y86cedVXRTaEUxDJSIVyOPxsmtvBms37mPX3gw8Hm+J1xd3yG/B48S8Xi8z3lvLp77Qvvua8xTaEU49bpEK4m/vuaDSDvn1er3M/OA7Pk7ewk2DFNriUI9bpIL403surKRDfr1eLy998B0fLdzMjZd05J5rFdriUHCLVJCSes/FKe6Q3xZN6vDSh9/x4cLNXH9xB+69rqtCW05ydajEGHMd8ARQF5hnrf2DMeZy4DmgNjDXWjvGzRpEKoI/Mz/ye8/54d20YS0u79eW7Ow8du3NKPKeog75bdGkDq98so4Pv9nMdRd1YPj13RTacooor7fkhyflZYzpACwE+gM/AQuAycB04BJgB/AJMNVa+5kfr9cO2JKUlERMTIwrNYsUxd+x64LX1a9bnWti2/Pm/B/9Hu8G50HkrI++5/2vN3FtXHvuv6m7QjsylOn/ZDeHSm7C6VHvtNbmALcBx4AN1tot1tpc4HXgVhdrEDlj/o5d5/ee/++Pg/jTkD4nQ7ukewryer288vE63v96E9cotKUEbg6VdAJOGGPmAS2Aj4DvgbQC16QBp3WfjTENgYaFmtXNloAobeZHQVWqRNGqeb0y3QNOaP/n0x9496uNXBXbjhEKbSmBm8FdDbgYGARkAB/g9LgL8xTR9jAw3rXKRMqg8Ng1/DzzoyLu8Xq9vPbZD7y9YANXDWzHyJvOV2hLiUocKjHGNDHGvGqM+dIYM6rQ994p5bX3AF9Ya/dZa7OA94ErcHrf+aKB3UXcOxVoX+jPRaX8PBFXFDfzI7pp3TO+x+v18sb/1vNW0gauHNCWkb8+v8QxcBEovcc9HdgEfAyMM8Z0s9b+zve9DqXc+zHwqm/Y4yhwFfA28LgxphOwBRgCzCp8o7U2HUgv2GaMdkCTwChq5kdx+4mU9Z7Z8yxzv/iRX/ZvywM391Boi19KC+5zrLW3ABhjvgC+NsY8Yq2dUtoLW2sXG2OeBr4FqgPzgURgPfAOUAv4FCfMRYJa/th1UePTxU0VLOkegNnz1vPmfMsVF7Thd7cotMV/pQV3VWNMNWttrrX2kDHmJiDFGPM9UOo8QmvtLE7vUScBPcpXrkhwKc8yd4A5n1vmfG65rF9rHry1p0JbyqS06YCfAp8ZY3oCWGs3Ab8F5uKMO4tEtPIsc39zvmX2vPVc2rc1v/9NL4W2lFlpwf0Y8CZQM7/BWvslcA2w1MW6REJCWZe5z/3C8sb/1vOLPjE8dFsvqiq0pRxKDG5rrdda+zLQu1B7Cs6Qh0hEK2mTqMLeSvqR1z9bz6A+Mfzht70V2lJuJY5xG2NGAnWAR4wxBT+J1YGHgL+7WJtI0Muf9ld4jLvwtL+3F2zgP5/+wCW9YnhYoS1nqLSHkzlAd5zw7l6gPRf4vVtFiYQKf6b9vfvlBl79ZB0X92rFI4M1PCJnrsTg9g2TvGyMudFa+34l1SQSUkqa9vfeVxv598fruLhnK/44uDdVq2onZTlz/i55X2+MGQ68DLwHnA8M8z2oFIkY/h7sC/D+1xuZ9dH3XNijJX8cotCWiuNvcE8HZgDXAk2Be4GngIEu1SUSdMoyZ/uDbzbx8offE9ejJX++vY9CWyqUv5+mWtbaN4BfAv+11n6F84BSJGL4O2f7o4WbeemD74g9P1qhLa7w9xNV0xhzNs787S98fy9+azSRMOTPnO2Pv93MjPfXMrB7NH+5oy/VFNriAn8/VdOBbcC31tp1OItvprpWlUgQKm3O9iffbmb6e2sZ0K0Fj96p0Bb3+PXJstYmAnWstXf5mnpZa2e6V5ZI8Clpq9ZPU7Yw7b219O/agkfv7KfQFlf59XDSGFMP+JsxpgvOUWOTjTF/stZmuFqdSBApbs72vEVbSXxnDf3OO5vH7upH9WoKbXGXv5+w54HDwNnAcaABziwTkYiSP2e7e8dmtGpej88Xb+PFd9bQt8vZ/PVuhbZUDn8/Zb2stfFAjrX2GHA70NO9skSC37xF23jh7dX07XI2o4f2o3q1qqXfJFIB/A3uvEJfV6XosyJFIsL8xdv411ur6N25ua+nrdCWyuNvcH9jjPk7UNsYcyXwLvCVa1WJBLEvlmzjn2+tordpTvzQC6hRXaEtlcvf4H4M56T2w0ACsAb4k1tFiRTk8XjZtTeDtRv3sWtvBh5PqYcvuSZp6Xae/+8qep7TjPh7FNoSGP4ueb/aWjsRmJjfYIy5E3jNlapEfMp7NJgbFizbzv/NXUmPc5oRf29/hbYETGn7cV+Hs7T9GWNMFSD/v5TqwGQU3OKy4paZt4seVOwhvG74cvkOpr65kh6dmjHm3v6nLcQRqUyl9bh7ApcCzXEOTsiXCzzjVlEi+UpaZl5Zwf3Vip1MnbOC7h2bEn/vBQptCbjS9uOeCEw0xjxgrX2xqGuMMYOttXNcqU4iXv4y84LhXdzRYG74esVOpsxeTtcOTRl7b39q1fB3dFHEPf4ueS8ytH3+UkG1iJympGXmblu4chfPzV7OeR2aMG5Yf2rVVGhLcKiIT6LOYRLX+HM0mBu+Xb2LZ2cvp0v7JowfNkChLUGlIj6NgZubJRGhpKPB3JC8ejfPvL6czm0bMX64QluCjzZWECkgec1unn59GaaNE9q1FdoShBTcIj4pa3bzzGvLOLd1Q564bwB1aumQJwlOFRHcGuOWkJe6No2nX1vGOa0bMuH+gQptCWplCm5jTMMimt+ooFpEAmLxd2n8/T9L6aTQlhDh70EKBmdjqYbGmAuAL4CbrLXrrbXPulmgiJuWfL+Hv/1nKR1jzmLCfQptCQ3+9rj/CTwM7LXW7vJ9rYMUJKQtWbeHp15dQodWZ/Hk/bHUra3QltDgb3A3sdbOz//CtyCngTslibhv6bo9PPXKUtq1PIsJCm0JMf4Gt9cYUwvfnG1jTAucwxREQs6yH35i8itLaRtdn4n3D6SeQltCjL/B/SIwD2hujHkKWORrEwkpy9f/xORXltA2uj6TRsRSr06NQJckUmZ+PZy01s4yxmwCrsbZ0vV+a+3nrlYmUsFW2L0k/HsJrZvXZ6JCW0KY38vCrLVfA1+X5cWNMQtwTobP8TWNAJ4q3GatXVyW1xUpq5V2LwmzFhPTvB4TR8ZSX6EtIay0gxQ8lLAXibW22HFuY0wU0BloY63NLa5NxG2rftzLpFmLadmsHhNHxNKgrkJbQltpPe5mOCsjJwLbgOk4J74PBdqWcq/BCf3PjDHNgZk4879PabPW/uu0G52FPoUX+8SU8vNETrN6wz4mzlpCy2b1mDQylrPq1Qx0SSJnrLSDFA4AGGP6WmtHFfjW88aYZaW8diMgCRgF1MY5Ff60NmOMLTjV0OdhYLy//yNEirJm4z6efHkx0U3qKLQlrPg7xl3X+BIWwBjTHSjxvwJrbSqQ6vsy0xjzMs4QyV2F2q4GCgf3VOCVQm0xwEI/65UIt3bjfia8tJgWTeowaWScQlvCir/BPQZYZIxZgzOF8DxgSEk3GGMuBGpaa5N8TVFAD2PMZYXacgrfa61NB9ILvZ6fpUqk+27Tfia8vIizG9chYWQcDesrtCW8+Dsd8F1jzLfAhThj1AuttftLua0h8KQxJhZnCuHdwNs4J8YXbBtZ3uJFCvt+8wEmvLSI5o1qkzAqVqEtYcmvBTjGmBpAHFAXqA9cZ4xJKOkea+3HwCfASmA5MMt3+HDhttTiX0XEf99vPsATM1Np2rA2CSPjaFS/VqBLEnGFv0Mlc4EOQDRO6PbHedhYImvtWGBsaW0SOTweL2n7Mzl4JIvGDSru/Mh1Ww4w4aVUmpxVm4RRcTRqoNCW8OVvcPcEzgESgedwxqa15F3KxOPxkro2jSlzVpCdk3fyxPaB3aPPKLx/2HKQJ2am0qh+LRJGxdJYoS1hzt+9Snb7Fsz8CHSz1q4D6rhXloSjtP2ZJ0MbIDsnjylzVpC2P7Pcr7l+20HGz0ylYf1aTH4gjiZn1a6ockWClr/BnWmMGQKsBn7jmw7YxL2yJBwdPJJ1MrTzZefkcfBoVrlez247yPgZqTSsV5PJoxTaEjn8De7f4QyXzAc8OHuWPONWURKeGjeoTc3qp+6SULN6VRrXL3vg/rj9EONmpNKgbg0SRsXRtKFCWyKHv2Pc91prH/X9/Ta3ipHwFt20Lo8M7n3aGHd007plep0NOw4xbnoKDerWYPKoC2nWSKEtkcXf4L4W+KubhUhkaNOiPo/f1ZdatarRuH4tWjQp26ySjTvSGTs9lXp1nJ62Qlsikb/BvdkY8znwLZCR32itfc6VqiTsFDejpEUT/3vbG3emM3Z6CnVrV2fyqDiaN9LzcYlM/gb3QZwVk+3cK0XCWXEzStpFD6JV83ql3r9pZzpjp6VQp1Y1J7QbK7Qlcvkb3INwgjv/d1oPcMwYMwf4o7U2zYXaJIyUNKOktODevOswY6enULtWNRJGxXG2QlsinL/B/T7OUvcXcPbjHoZzyvsaYAZwnSvVSdjIn1FSMLz9mVGyZfdhxkxLpmYNp6ddlqEVkXDl73TAi6y1w621K621a6y1fwC6WmunUPqBCiInZ5TkTwf0Z0bJlt2HiU9MoWb1qgptkQL87XE3MMbUt9YeBTDGNODnlZNnvtGEhL0qVaIY2D2adtGDOHg0i8b1S96nZGvaEcZMS6FG9SokPBBX5imDIuHM3+CeBSw2xryFE9Q3Ay8ZY34P/OBWcRJeqlSJolXzeqWOaW9LO0J8YjLVqlZh8qg4WjYt/eGlSCTxa6jEWvs34BHgLJye9oO+YZIUnPFukQqxfY/T065WNYrJD8TRsplCW6Qwf3vcWGvnAfMKtS2v8IokYm3fc4T4xBSioiBhVBytFNoiRfL34aSIq3b8dJT4xBQ8Xi93X9OFKKLweLyBLkskKPnd4xZxy869R4lPTCYnN48TuR6mvrmqwvbqFglH6nFLQO3al0F8YjK5eR5O5HrIyfUAFbNXt0i4UnDLGfF4vOzam8HajfvYtTejTMMbu/dlMPrFZPI8Xu69ruvJ0M53Jnt1i4QzDZVIuXg8Xnbty2Br2hG27znKF0u3cTQzx+/hjd37MxidmEyex0PCyDiqVa1SrpWVIpFIwS1lVtROf7ddcS6fpmxhypwVNGsUR/aJ3GIPA9693+lp5+R6SBgVR9voBng83grZq1skEii4pcyK2ulv7vwfueHijvw36UeWrtvDm/N/LPIB454DmcS/mMyJHA8Jo2JpF90AKPvKSpFIpjFuKbPidvojyhne8Hh+biv4gHHPgUz++mIy2Tl5JIyKpX3Ls055jfyVld07NqNV83oKbZFiqMctZVbcTn9VoqJODpnky3/AWLVqFKMTk8k+kcukkXGnhbaI+E89bimzonb6e+CW8+nfrQXzF29jf/rxk9fm98DjE5PJOp7LxBGxdGil0BY5E+pxS5kVNx4NcPc1XU95wHjvdV15fu4qMo/nMmlkLB1jGga4epHQp+CWcilup7+CgY43iv+bu5LM4zlMGhFLJ4W2SIXQUIlUqPxAb9G4Hs//dyUZx07w5P0D6dRaoS1SUdTjlgq3Pz2L+MRkjmSeYOKIWM5t0yjQJYmEFfW4pUIdOJzF6MRk0jOyefL+gQptERcouKXCHDicxegXk0k/ms2TIwZi2jYOdEkiYUnBLRXiwGFneOTQ0eNMuG8gnRXaIq5RcMsZO3jkOPGJKRw8cpwn7htIl/YKbRE3KbjljBw6cpz4xGQOHM5i/PCBnNe+SaBLEgl7rs4qMcYsAM4GcnxNI4COwBigBjDFWvuCmzWIew4dPU78tGT2pWfxxPABdO2g0BapDK4FtzEmCugMtLHW5vraWgFvAn2AbCDFGPOltXadW3WIO9KPZhOfmMLeQ1mMHz6Abh2bBrokkYjhZo/bAF7gM2NMc2AmcBRYYK09CGCMeRu4BXjylBuNaQgUXrER42KtUgaHM7KJn5bM3kPHGD9sAN0V2iKVys3gbgQkAaOA2sBXwFwgrcA1acAFRdz7MDDexdqknA5nZBOfmMyeA8cYP7w/3TsptEUqm2vBba1NBVJ9X2YaY14GngMSCl3q4XRTgVcKtcUACyuyRimbwxnZjJm6EPkUAAATIklEQVSWQtr+TMYNH8D5nZoFuiSRiOTmGPeFQE1rbZKvKQrYCrQocFk0sLvwvdbadCC90Ou5U6j45UjmCcZOT2H3vgzGDutPj3MU2iKB4uZQSUPgSWNMLFAduBu4A3jdGNMMyARuBu53sQapAEcyTzB2Wgo792Yw9t7+9Dy3eaBLEolors3jttZ+DHwCrASWA7OstclAPPAlsAqYba1d4lYNcuaOHnN62jv2HmXMPf3pZRTaIoEW5fV6A12DX4wx7YAtSUlJxMRogkllyA/t7XuOEn/PBfTpfHagSxIJV2U6YFUrJ6VIGcdOMG56CtvSjjJ6qEJbJJgouOU0GVk5jJ2RytY0p6fdt4tCWySYKLjlFJlZOYybnsLW3Yf569B+Cm2RIKTglpMys3IYPyOVLbsP8/hd/bjgvBal3yQilU7BLQAcO57D+JmpbNyZzmN39aN/t+hAlyQixVBwixPaM1LZuCOdx+7qywCFtkhQU3BHuGPHc3hi5iI27Ejn0Tv7MrB7y0CXJCKlUHBHsKzsXCa8tAi7/RB/ubMvsecrtEVCgYI7QuWH9vpth/jLHX2IU2iLhAwFdwQ67gvtH7Ye5M+39+HCHq0CXZKIlIGCO8Icz87lyZcX88OWA/xpSG8u6qnQFgk1Cu4IcvxELhNnLeb7zft5ZEgfLu6lPV9EQpGCO0IcP5HLxJcX892m/TwyuDeDeiu0RUKVgjsCZOfkkTBrCWs37efhwb0Z1Kd1oEsSkTOg4A5z2Tl5TJq1mNUb9/Hwb3vxC4W2SMhTcIexEzl5JMxazOoN+/jDbb24tG+bQJckIhVAwR2mTuTkkfDKElZt2MdDv+nJZf0U2iLhQsEdhnJy85j8yhJWrN/Lg7f25PIL2ga6JBGpQAruMOOE9lKWr9/Lg7f24Jf9Fdoi4UbBHUZycj089epSlv3wEw/c0oMrB7QLdEki4gIFd5jIyfXwt1eXsnSdE9pXDWwX6JJExCUK7jCQk+vh7/9ZypJ1exh18/kKbZEwp+AOcbl5Hp5+bSmLv9/DiJu6c3Vs+0CXJCIuU3CHMCe0l7HoOye0r72wQ6BLEpFKoOAOUbl5Hp55fRmpa9O478ZuCm2RCKLgDkG5eR6efWM5KWvSGH5DN66/qGOgSxKRSqTgDjF5eR7+8cZyklfvZtj13bjhYoW2SKRRcIeQvDwPz81ewberd3PvdV258RKFtkgkUnCHiLw8D8/NWcE3q3Yx9JrzuGlQp0CXJCIBouAOAXkeL1PmrOSblbu4+5rzuPnScwJdkogEkII7yOV5vEx9cwVfr9zJXVd34RaFtkjEU3AHsTyPl/97cwVfLd/JHb/qzK2XnRvokkQkCCi4g1Sex8vzc1fy5fKd3P6rztx2hQl0SSISJBTcQcjj8fLCW6tYsGwHQ35p+K1CW0QKqFYZP8QY8wzQzFo71BgzDhgGHPJ9e6a19oXKqCMUeDxe/vXWKuYv2c5vrzAMvrJzoEsSkSDjenAbYy4DhgKf+Jr6Ab+11qa6/bNDjcfj5YW3VzN/yXZuu+JchlypnraInM7V4DbGNAYSgMlAD19zX+AxY0wH4Bvgz9ba44Xuawg0LPRyMW7WGmgej5fEd9fw+eJt/Obyc7n9ys5ERUUFuiwRCUJuj3FPB+LxDYsYY+oBK4E/A71xwnlsEfc9DGwp9Gehy7WWi8fjZdfeDNZu3MeuvRl4PN4yv4bX62Xau2v4X+pWbr3sHO74lUJbRIrnWo/bGDMc2GGtTTLGDAWw1mYAVxe45h/ALJxwL2gq8EqhthiCLLw9Hi+pa9OYMmcF2Tl51KxelUcG92Zg92iqVPEvePND+7PUrdxy6TnceVUXhbaIlMjNoZLbgGhjzCqgMVDPGPNvYKG1dpbvmiggp/CN1tp0IL1gmzHBN96btj/zZGgDZOfkMWXOCtpFD6JV83ql3u/1epnx3lo+TdnKzb/oxF1XK7RFpHSuBbe19or8v/t63IOAR4EfjDFfAluB3wHvuVWD2w4eyToZ2vmyc/I4eDSr1OD2er3MeH8tHydv4aZBnbj7mvMU2iLil0qdx22t3QeMAD4CLE6P+x+VWUNFatygNjWrVz2lrWb1qjSuX7vE+7xeLzM/+I6Pv93CjZd05J5rFdoi4r8or7fsD9MCwRjTDtiSlJRETExwTDApzxi31+vlpQ+/48NvNnP9xR0Yfn03hbaIlCkEKmUBTriqUiWKgd2jaRc9iINHs2hcvzbRTeuWGNovf/g9H36zmesuUmiLSPkouM9QlSpRtGpez68x7Vkffc8H32zi2rj23HeDQltEykd7lVQCr9fLq5+s4/2vN3FNXHvuv6m7QltEyk3B7bL80H7ny41cFduOEQptETlDCm4Xeb1eXvvsBye0B7Zj5E3nK7RF5IwpuF3i9Xp5/X/reStpA1cOaMvIX5/v92pKEZGSKLhdMnue5b9f/MiVA9rywM09FNoiUmEU3C6YPW89b863XHFBG4W2iFQ4BXcFm/O5Zc7nlsv6tebBW3sqtEWkwim4K9Cb8y2z563n0r6t+f1veim0RcQVCu4KMvcLyxv/W88v+sTw0G29qKrQFhGXKLgrwFtJP/L6Z+sZ1DuGP/y2t0JbRFyl4D5Dby/YwH8+/YFLesXw8GCFtoi4T8F9Bt79cgOvfrKOi3u14pHBGh4Rkcqh4C6n977ayL8/XsdFPVvxx8G9qVpVb6WIVA6lTTm8//VGZn30PRf2aMmfhii0RaRyKXHK6INvNvHyh98T16Mlf769j0JbRCqdUqcMPly4iZc++I7Y86MV2iISMEoeP3387WZmvv8dA7tH85c7+lJNoS0iAaL08cMnyVuY/t5aBnRrodAWkYBTApXi05QtTHt3Df27tuDRO/tRvZreMhEJLKVQCT5L3UriO2u44LwWPHaXQltEgoOSqBj/S93Ki2+vpt95Z/P43X0V2iISNJRGRZi3aBsvvL2avl3O5q9396N6taqBLklE5CQFdyGfL97Gv95aRZ/OzRXaIhKUFNwFfLHECe3enZszeugF1Kiu0BaR4KPg9klaup3n/7uKnuc0I16hLSJBTMENLFi2g/+bu5Ie5zQj/t7+Cm0RCWoRH9xfLt/B1DdXcH6npoy5tz81FdoiEuQiOri/Wr6DqXNW0L2jQltEQkfEBvdXK3YyZc4KunVsythh/alVo1qgSxIR8UtEBvc3K3cyZfZyzuvQhLH3KrRFJLREXHAvXLmLf7yxnC7tmzB+2ABq1VRoi0hoiajg/nb1Lp6d7Qvt4QptEQlNrieXMeYZoJm1dqgxpicwEzgL+AYYaa3NdbsGgOQ1u3nm9eWYNo0YP3wAtRXaIhKiXO1xG2MuA4YWaHod+L219lwgCrjPzZ+fL2XNbp55bRmmTSOeuE+hLSKhzbUEM8Y0BhKAyUAPY0xboLa1dpHvkleACUBiEfc2BBoWao4pTx3rtx7k6deWcU7rhjxx3wDq1KpenpcREQkabnY9pwPxQGvf1y2BtALfT6P4MH4YGF8hVUTBpX1bM/yGbgptEQkLrgyVGGOGAzustUkFmqOKuNRTzEtMBdoX+nNReWrp3LYxD93WS6EtImHDrR73bUC0MWYV0BioB3iBFgWuiQZ2F3WztTYdSC/YZoxxp1IRkRDjSo/bWnuFtbabtbYnMA740Fp7D3DcGBPnu+wu4DM3fr6ISDir7OkVtwMzjTH1gZXA85X880VEQl6U1+sNdA1+Mca0A7YkJSURE1OuCSYiIsGqqGeAxYqolZMiIuFAwS0iEmIU3CIiIUbBLSISYhTcIiIhRsEtIhJiFNwiIiEmlPY3rQqwZ8+eQNchIlKhLrvssnbATn/PJwil4I4GuP322wNdh4hIRduCs5neVn8uDqXgXoqzQ2AakFeG+2KAhb57d7pQV0VSre4IlVpDpU5QrW7wu7aQCW5rbTbwbVnvK7Cr4E5r7daKrKmiqVZ3hEqtoVInqNZA08NJEZEQo+AWEQkxCm4RkRATCcGdjnMocXppFwYB1eqOUKk1VOoE1RpQIbMft4iIOCKhxy0iElYU3CIiIUbBLSISYkJmAU5ZGWOeAZpZa4caY3oCM4GzgG+Akf7uCVAZCtU6DhgGHPJ9e6a19oXAVecwxiwAzgZyfE0jgI7AGKAGMCUY6oRia32qcJu1dnEAyjuFMeY64AmgLjDPWvsHY8zlwHNAbWCutXZMAEs8qZhaZ+GsSMz0XTbBWvtegErEGDMceLBAU3vgNeB9gvA9La+wfDhpjLkMeBP4xBeG3wHDrbWLjDEvA8ustYmBrdJRRK0fAZOttakBLu0kY0wUsAtok/8PnjGmFc5K1j5ANpACDLbWrgtYoRRb62ltwcAY0wFnKXZ/4CdgATAZmA5cAuwAPgGmWms/C1SdUGKtTwO/tNamBbC8IhljuuIE9qVAMkH2np6JsBsqMcY0BhJwPlQYY9oCta21i3yXvALcGpjqTlW4Vp++wGPGmDXGmH8ZY2oFprpTGMALfGaMWW2MeRC4HFhgrT1orc0E3gZuCWSRPkXVWlRbMLgJp/e301qbA9wGHAM2WGu3+P6ReZ3g+LwWVesaoA0w0/d5nWCMCaZMSQRGAx0Izve03ILpTa4o04F4fh5qaImzMVW+NJxNZ4LBKbUaY+oBK4E/A72BhsDYgFX3s0ZAEnAjcBkwEuc/2GB8X4uq9dbCbcaYKwJW4c86AVWNMfOMMauBBwjez2tRtdbC6XnfCwzAGTIZFrgSf+YbbqptrX2L4H1Pyy2sxrh941s7rLVJxpihvuaoIi71VF5VRSuqVmttBnB1gWv+AczCCfeA8Q3b5A/dZPqGm57D+W2hoIC/r8XU2sZae1ehtquB+YGosYBqwMXAICAD+ACnx11YwN9Xiq51o7X2pvwLjDH/BO7CeZ4UaCNwPqMQpBlwJsIquHF+fYs2xqwCGgP1cH5FblHgmmhgdwBqK+y0Wo0x/wYWWmtn+a6J4ueHaQFjjLkQqGmtTfI1ReHsGxx072sxtfYwxlxWqC3g7yuwB/jCWrsPwBjzPs5vBwW3LQ6K95Wia73bGHPUWvuO75qgeF+NMTVwxrOH+pp2EYSf1TMRVsFtrT3566+vFzvIWnuPMeY7Y0yctTYZp0cQ8IcSRdUKPAr8YIz5EicYfwcE7Al9AQ2BJ40xsUB14G7gDuB1Y0wznBkFNwP3B67Ek4qq9W3gmUJtIwNX4kkfA68aYxoCR4GrcGp93BjTCWdz/SE4v3UFWlG1vg9M9c3iycD5///VwJV40vnAj75nLwCLAROE72m5heMYd1FuB6YYY37Amcr0fIDrKZKvNzMC+AiwOD2YfwS0KMBa+zHOk/iVwHJglu8fwXjgS2AVMNtauyRwVTqKqXViEW0Bn7Xjm474NM7snHXANpwHakOBd3xt63HCPKCKqfWfONMsk31tq6y1cwJW5M86UOBQAmvtcYLwPT0TYTkdUEQknEVKj1tEJGwouEVEQoyCW0QkxCi4RURCjIJbRCTEKLglYhhjmhpjzmgalTFmnDHmhjO4f7gx5oFCbQ19e330PZPaJHIouEXK5lKcRTzldSFQJ/8LY8zVwBKg8xnWJREkrFZOSvgxxjyOs3HRUZy91G8EvsLZJqAjzoq+l4EXcLY4aImzIOg2a+1xY8yvcfZUOQYsLfTaw3A2S6oCHAAetNauL6GW3+Hs3viMMSYPZ1HP33GWV1fFWeDzkLX2iDFmFM7qzBPAcZyFVQa4HrjCGJPl27/8IZyVnMGwcEVChHrcErSMMVfirHjrh7Pvd/0C365jre1qrX0MuA941Vo7EGcXu/bANcaYs3GWNt9sre2Ds9ov/7UvwQnMi6y1vXBWBb5bUj2+oF0G/MV3WMDjQC7Qx1rbA2f/i78ZY6oCU4FfWWv7ATOAC333fEiBQyestb8KhlWcEloU3BLMrgbestamW2u9OL3qfN8W+PtjwD5jzKM4S8Zb4vS+LwTWFjjcYXqBe67BCfkU30ZfTwONfXuk++ta4AZgpe81bgTOs9bmAW/5XvtfwGGc3wpEKoSGSiSY5XLqlpwFd83LKPD3OTif5f/iDF+08d3nLXR/wdNvqgKv+Xrs+A4AaMnP+7j7oyrwh/yTVHz7qdcCsNbeYYzphnPgxGM4wz3lfqgpUpB63BLMPgFuNsac5ft6GE4YF3Yl8KS1dq7v+/1xQnUh0NUY08N33dAC93wODDbGRPu+Holz2EJpcvn54eQ84EFjTA1f8M8EnvLNXtkBHLDWTsU5l7NHEfeLlIuCW4KWtXYBThimGmOW4Rz2XNRBA6OB93zXTAO+Bjr5dlscArxhjFmBM/ad/9rzcB4szjfGrPFd92vfkExJPgKeNcbcDUzE2X53Jc6uc1HAn6y1+4FJQJIxZjnwN2C47/7PgIeMMX8t05shUoB2B5Sg5ZvXHGutfd739R+B/tba2wJbmUhgaYxbgtmPOAcn348zBLIdlw9rMMb8BWf/9qI8Y619w82fL+IP9bhFREKMxrhFREKMgltEJMQouEVEQoyCW0QkxCi4RURCzP8D0JMWUjxcmeEAAAAASUVORK5CYII=\n", "application/papermill.record/text/plain": "
" }, "metadata": { "scrapbook": { "mime_prefix": "application/papermill.record/", "name": "chicogradesscatter_fig" } }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFuCAYAAAChovKPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xd81dX9x/FX2Fu2BMJGDwjIFkgc1FHr1qq14EJBAWutdqglDBGCrVrhZ6thKNWqIHXvIgYHJmFPRY7sGWQGSAghyb2/P743GELGTcg3d72fjwePBzn5fm8+vb2+OTnfM6K8Xi8iIhI6qgS6ABERKRsFt4hIiFFwi4iEGAW3iEiIUXCLiIQYBbeISIhRcIuIhBgFt4hIiFFwi4iEGAW3iEiIqRboAvxljKkGxAA7rbW5ga5HRCRQQia4cUJ7S1JSUqDrEBGpaFFluVhDJSIiIUbBLSISYhTcIiIhRsEtIhJiFNwiIiFGwS0iEmIU3CIiIUbBLSISYhTcIiIhRsEtIhJiFNwiIiFGwS0iEmIU3CIiFeDY8ZxK+1kKbhGRM/T1ip0MHvsZazbuq5Sfp+AWETkDC1fu4rnZyzmvfWPObdOoUn6mgltEpJwWrtrFs7OX06V9E8YPG0CtGpVzxIGCW0SkHJJX7+bZN5bTpV1jxg8fQK2alXcuTSidgCMiUmk8Hi9p+zM5eCSLxg1qE920LlWqOAfVJK/ZzdOvL6Nz20aMHz6A2pUY2qDgFhE5jcfjJXVtGlPmrCA7J4+a1avyyODeDOwezeLv03jmtWWYNoEJbVBwi4icJm1/5snQBsjOyWPKnBWkH+3KzA/Wck7rhjxx3wDq1KoekPo0xi0iUsjBI1knQztfdk4eMz5YS6eYhky4f2DAQhsU3CIip2ncoDY1q1c9rb3t2fUDHtqg4BYROU1007o8Mrj3KeEd3bQuCaPiqFs7sKENCm4RkdNUqRLFwO7RDL+hG1WrRNE2ugHPPnQx9evWCHRpgB5OiogUaYXdy/T31tK+ZQMmjoilXp3gCG1Qj1tE5DTL1//E5FeW0KZFfZ4MstAGBbeIyClW2L0k/HsJrZvXZ9LIWOoHWWiDgltE5KSVdi8JsxbTunl9JgZpaIOCW0QEgFU/7mXSrMW0bFaPJ0cMpEGQPIgsioJbRCLe6h/3MfFlJ7QnjYzlrHo1A11SiRTcIhLR1mzcx5OzFhPdtG5IhDYouEUkgq3duJ8JLy2mRZM6TBoZFxKhDQpuEYlQ323az4SXF3F24zokjIyjYf3QCG1QcItIBPp+8wEmvLSI5o1qkzAqNqRCGxTcIhJhvt98gCdmptLkrNokjIyjUf1agS6pzBTcIhIxfthykAkvOaE9+YE4GjUIvdAGF/cqMcYMBx4s0NQeeA14H3gOqA3MtdaOcasGEZF867ceZPzMVBo3qMXkB+JoHKKhDS72uK21L1lre1prewK3A3uBvwOzgBuALkA/Y8xVbtUgIgKwfttBxs1IpVH9miSMCu3QhsrbHTARGA10ADZYa7cAGGNeB24FPit4sTGmIdCw0GvEVEKdIhJm7LaDjJ+RSsP6NZn8QBxNzqod6JLOmOtj3MaYy4Ha1tq3gJZAWoFvp1F0ID8MbCn0Z6HLpYpImPlx+yHGzUilQd0aTB4VHqENldPjHoEzpg0QVcT3PUW0TQVeKdQWg8JbRPy0Ycchxk1P8YX2hTRtGB6hDS4HtzGmBnAJMNTXtAtoUeCSaGB34fustelAeqHXcqdIEQk7G3ekM3Z6KvXq1CBhVBzNGoVPaIP7Pe7zgR+ttZm+rxcDxhjTCWf4YwjOw0oRkQqxcWc6Y6enULd2dSY/EEfzRnUCXVKFc3uMuwOwM/8La+1xnN73O8A6YD3wtss1iEiE2LQznbHTUqhTqxqTR4VnaANEeb3eQNfgF2NMO2BLUlISMTGaYCIip9q86zBjpiVTq6YT2i2a1A10SWVR1PO/YmnlpIiEvC27ndCuWSMkQ7vMFNwiEtK27D5MfGIKNatX5akHwj+0QcEtIiFsa9oRxkxLoUb1Kkx+4MKICG1QcItIiNqWdoT4xGSqV6vC5AfiiG4aGaENCm4RCUHb9hwhfloy1apGMXlUHC2b1gt0SZVKwS0iIWX7niOMSUyhSlQUCaPiaNksskIbFNwiEkJ2/HSU+GkpEAUJo+KIaV4/0CUFhIJbRELCzr1HiU9MBmDyqDhanx2ZoQ0KbhEJAbv2ZRCfmIzXCwkjYyM6tEHBLSJBbve+DEa/mEyex8ukUbG0adEg0CUFnIJbRILW7v0ZjE5MJs/jIWFkHG0V2oCCW0SCVNr+TEa/mExOrodJI+NoG63QzqfgFpGg44T2t5zI8TBpZCztFNqnUHCLSFDZcyCT0YnJZOfkkTAqlvYtzwp0SUFHwS0iQeOng8cYnZjM8excJo2MU2gXQ8EtIkHhp4PHGP3it2Qdz2XSyFg6tFJoF6cyDgsWESnRXl9PO9MX2h1jGga6pKCmHreIBNTeQ77Qzsph0ohYOim0S6XgFpGA2Xcoi/jEZDKOneDJ+wfSqbVC2x8aKhGRgNif7oT2kcwTTBwRy7ltGgW6pJChHreIVLoDh7MYnZhMekY2T94/UKFdRgpuEalUBw5nMfrFZNKPOqFt2jYOdEkhR8EtIpXm4JHjxCcmc8gX2p3bKbTLQ8EtIpXi4JHjjH4xmYNHjjPhPoX2mVBwi4jrDvl62gcOZzF++EC6tFdonwkFt4i46tDR48RPS2Z/ehZP3DeQrh2aBLqkkKfgFhHXpB/NJj4xhb2Hshg3fIBCu4IouEXEFYczshkzLZmfDh5j/LABdO/YNNAlhQ0Ft4hUuMMZ2cQnJpN24Bjjh/eneyeFdkXSykkROY3H4yVtfyYHj2TRuEFtopvWpUqVKL/udXraKaTtz2Tc8AGc36mZy9VGHgW3iJzC4/GSujaNKXNWkJ2TR83qVXlkcG8Gdo8uNbyPZJ5gzLQUdu/LYOyw/vQ4R6HtBg2ViMgp0vZnngxtgOycPKbMWUHa/swS7zuSeYKx01LYtS+DMff2p+e5zSuj3Iik4BaRUxw8knUytPNl5+Rx8GhWsfccPXaCsdNT2LH3KGPu6U8vo9B2k4JbRE7RuEFtalavekpbzepVaVy/dpHX54f29j1Hib/nAnp3Vmi7zdUxbmPMdcATQF1gnrX2D8aYWcBFQP7vXROste+5WYeI+C+6aV0eGdz7tDHu6KZ1T7s249gJxk1PYVuaE9p9Op8dgIojj2vBbYzpAEwD+gM/AQuMMVcB/YCLrbVpbv1sESm/KlWiGNg9mnbRgzh4NIvG9YueVZKRlcPYGalsTTvC6KEX0LeLQruyuNnjvgmYa63dCWCMuQ2IAtoAM40xbYD3cHrcHhfrEJEyqlIlilbN69Gqeb0iv5+ZlcO46Sls3X2Yv959Af3Oa1HJFUY2N4O7E3DCGDMPaAF8BPwbWACMADKAj4FhwMyCNxpjGgKFzzCKcbFWEfFTZlYO42eksmX3YR6/qx8XdFVoVzY3g7sacDEwCCekPwA2Wmtvyr/AGPNP4C4KBTfwMDDexdpEpByOHc9h/MxUNu5M5/G7+9G/W3SgS4pIbs4q2QN8Ya3dZ63NAt4H7jbG3Fzgmiggp4h7pwLtC/25yMVaRaQUx47n8MTMRWzckc5jd/VlgEI7YNzscX8MvOob9jgKXIUT3lONMQtweuH3A68WvtFamw6kF2wzxrhYqoiUJD+07fZDPHZnXwZ2bxnokiKaa8FtrV1sjHka+BaoDswH/onTw072tb1jrZ3jVg0ike5M9hzJd+x4DhNeckL70Tv7Enu+QjvQorxeb6Br8Isxph2wJSkpiZgYPacUKc2Z7DmSLys7lwkvLeKHrQf5yx19uLBHK5erjlhl+tdUKydFwlR59xzJd7xAaP/5doV2MFFwi4Sp8uw5ku94di4TXl7ED1sO8Kchvbmop0I7mGhbV5Ewlb/nSMHwLrznSFFj4Cdy85g4azHrNh/gkSF9uLiXhiaDjYJbJEyVtudIUWPgD97ag/lLtrN2034eGdybQb0V2sFIwS0Spkrbc6SoMfDn5qwALzwypDe/6NM6kOVLCRTcImGspD1HihoD93rhlks7KbSDnB5OikSoovbdrlY1isv7tQ1QReIvBbdImPB4vOzam8HajfvYtTcDj6fkNRrRTevy+9/0JMo3g7ha1Sj+fHvfIvfdluCioRKRMFCexTZ5Hg9fLt+B1wu/HtSRX/ZvV66VlVL5FNwiYaC4xTbtogedMr6dP/1v76FM3krawNpNB3jw1h5cOaBdgCqX8lBwi4SBkhbb5Ad3fq/8udnLOZHrnF3yqwFtueICjWmHGo1xi4QBfw74TdufeUpoA3y5fKffS+AleCi4RcJA/mKb/PAu6oDfvYcyTwlt8H8JvAQXDZWIhIHSFtvk5Hp458tNp91XuFcuoUE9bpEwkb/YpnvHZrRqXu9kaOfmeXjm9WWs3rCPy/u1KbFXLqFBPW6RMJYf2qlr07jvhm5ce2EHbrn0nCJ75RI6FNwiYSovz8OzbywnZU0aw67vxvUXdwQodgm8hA4NlYiEobw8D/+YvYLk1bsZdn1XbrykY6BLkgqk4BYJM3l5Hp6bvYKFq3Zxz7VdufGSToEuSSqYglskjOR5vEyZs5JvVu3inmvP49e/UGiHIwW3SJjI83iZOmcFX6/cyV1Xd+HXvzgn0CWJSxTcImEgz+Nl6psr+GqFE9q3XnZuoEsSFym4RUJcnsfL83NX8tXyndxxVWeFdgRQcIuEsPzQXrBsB0Ou7Mxtl5tAlySVQMEtEqI8Hi//+u8qJ7R/aRj8S4V2pFBwi4Qgj8fLv95axRdLt/PbKwyDr+wc6JKkEim4RUKMx+PlhbdXM3/Jdm67/FyGXKmedqRRcIuEEI/Hy4vvrObzxdv4zeXncvuvOhMVpb1GIo32KhEJsPzjxA4eyaJxg+I3fvJ6vUx7bw3zFm3j1svO4Q6FdsRScIsEkL+H/Hq9Xqa9u4bPUrZy8y86cedVXRTaEUxDJSIVyOPxsmtvBms37mPX3gw8Hm+J1xd3yG/B48S8Xi8z3lvLp77Qvvua8xTaEU49bpEK4m/vuaDSDvn1er3M/OA7Pk7ewk2DFNriUI9bpIL403surKRDfr1eLy998B0fLdzMjZd05J5rFdriUHCLVJCSes/FKe6Q3xZN6vDSh9/x4cLNXH9xB+69rqtCW05ydajEGHMd8ARQF5hnrf2DMeZy4DmgNjDXWjvGzRpEKoI/Mz/ye8/54d20YS0u79eW7Ow8du3NKPKeog75bdGkDq98so4Pv9nMdRd1YPj13RTacooor7fkhyflZYzpACwE+gM/AQuAycB04BJgB/AJMNVa+5kfr9cO2JKUlERMTIwrNYsUxd+x64LX1a9bnWti2/Pm/B/9Hu8G50HkrI++5/2vN3FtXHvuv6m7QjsylOn/ZDeHSm7C6VHvtNbmALcBx4AN1tot1tpc4HXgVhdrEDlj/o5d5/ee/++Pg/jTkD4nQ7ukewryer288vE63v96E9cotKUEbg6VdAJOGGPmAS2Aj4DvgbQC16QBp3WfjTENgYaFmtXNloAobeZHQVWqRNGqeb0y3QNOaP/n0x9496uNXBXbjhEKbSmBm8FdDbgYGARkAB/g9LgL8xTR9jAw3rXKRMqg8Ng1/DzzoyLu8Xq9vPbZD7y9YANXDWzHyJvOV2hLiUocKjHGNDHGvGqM+dIYM6rQ994p5bX3AF9Ya/dZa7OA94ErcHrf+aKB3UXcOxVoX+jPRaX8PBFXFDfzI7pp3TO+x+v18sb/1vNW0gauHNCWkb8+v8QxcBEovcc9HdgEfAyMM8Z0s9b+zve9DqXc+zHwqm/Y4yhwFfA28LgxphOwBRgCzCp8o7U2HUgv2GaMdkCTwChq5kdx+4mU9Z7Z8yxzv/iRX/ZvywM391Boi19KC+5zrLW3ABhjvgC+NsY8Yq2dUtoLW2sXG2OeBr4FqgPzgURgPfAOUAv4FCfMRYJa/th1UePTxU0VLOkegNnz1vPmfMsVF7Thd7cotMV/pQV3VWNMNWttrrX2kDHmJiDFGPM9UOo8QmvtLE7vUScBPcpXrkhwKc8yd4A5n1vmfG65rF9rHry1p0JbyqS06YCfAp8ZY3oCWGs3Ab8F5uKMO4tEtPIsc39zvmX2vPVc2rc1v/9NL4W2lFlpwf0Y8CZQM7/BWvslcA2w1MW6REJCWZe5z/3C8sb/1vOLPjE8dFsvqiq0pRxKDG5rrdda+zLQu1B7Cs6Qh0hEK2mTqMLeSvqR1z9bz6A+Mfzht70V2lJuJY5xG2NGAnWAR4wxBT+J1YGHgL+7WJtI0Muf9ld4jLvwtL+3F2zgP5/+wCW9YnhYoS1nqLSHkzlAd5zw7l6gPRf4vVtFiYQKf6b9vfvlBl79ZB0X92rFI4M1PCJnrsTg9g2TvGyMudFa+34l1SQSUkqa9vfeVxv598fruLhnK/44uDdVq2onZTlz/i55X2+MGQ68DLwHnA8M8z2oFIkY/h7sC/D+1xuZ9dH3XNijJX8cotCWiuNvcE8HZgDXAk2Be4GngIEu1SUSdMoyZ/uDbzbx8offE9ejJX++vY9CWyqUv5+mWtbaN4BfAv+11n6F84BSJGL4O2f7o4WbeemD74g9P1qhLa7w9xNV0xhzNs787S98fy9+azSRMOTPnO2Pv93MjPfXMrB7NH+5oy/VFNriAn8/VdOBbcC31tp1OItvprpWlUgQKm3O9iffbmb6e2sZ0K0Fj96p0Bb3+PXJstYmAnWstXf5mnpZa2e6V5ZI8Clpq9ZPU7Yw7b219O/agkfv7KfQFlf59XDSGFMP+JsxpgvOUWOTjTF/stZmuFqdSBApbs72vEVbSXxnDf3OO5vH7upH9WoKbXGXv5+w54HDwNnAcaABziwTkYiSP2e7e8dmtGpej88Xb+PFd9bQt8vZ/PVuhbZUDn8/Zb2stfFAjrX2GHA70NO9skSC37xF23jh7dX07XI2o4f2o3q1qqXfJFIB/A3uvEJfV6XosyJFIsL8xdv411ur6N25ua+nrdCWyuNvcH9jjPk7UNsYcyXwLvCVa1WJBLEvlmzjn2+tordpTvzQC6hRXaEtlcvf4H4M56T2w0ACsAb4k1tFiRTk8XjZtTeDtRv3sWtvBh5PqYcvuSZp6Xae/+8qep7TjPh7FNoSGP4ueb/aWjsRmJjfYIy5E3jNlapEfMp7NJgbFizbzv/NXUmPc5oRf29/hbYETGn7cV+Hs7T9GWNMFSD/v5TqwGQU3OKy4paZt4seVOwhvG74cvkOpr65kh6dmjHm3v6nLcQRqUyl9bh7ApcCzXEOTsiXCzzjVlEi+UpaZl5Zwf3Vip1MnbOC7h2bEn/vBQptCbjS9uOeCEw0xjxgrX2xqGuMMYOttXNcqU4iXv4y84LhXdzRYG74esVOpsxeTtcOTRl7b39q1fB3dFHEPf4ueS8ytH3+UkG1iJympGXmblu4chfPzV7OeR2aMG5Yf2rVVGhLcKiIT6LOYRLX+HM0mBu+Xb2LZ2cvp0v7JowfNkChLUGlIj6NgZubJRGhpKPB3JC8ejfPvL6czm0bMX64QluCjzZWECkgec1unn59GaaNE9q1FdoShBTcIj4pa3bzzGvLOLd1Q564bwB1aumQJwlOFRHcGuOWkJe6No2nX1vGOa0bMuH+gQptCWplCm5jTMMimt+ooFpEAmLxd2n8/T9L6aTQlhDh70EKBmdjqYbGmAuAL4CbrLXrrbXPulmgiJuWfL+Hv/1nKR1jzmLCfQptCQ3+9rj/CTwM7LXW7vJ9rYMUJKQtWbeHp15dQodWZ/Hk/bHUra3QltDgb3A3sdbOz//CtyCngTslibhv6bo9PPXKUtq1PIsJCm0JMf4Gt9cYUwvfnG1jTAucwxREQs6yH35i8itLaRtdn4n3D6SeQltCjL/B/SIwD2hujHkKWORrEwkpy9f/xORXltA2uj6TRsRSr06NQJckUmZ+PZy01s4yxmwCrsbZ0vV+a+3nrlYmUsFW2L0k/HsJrZvXZ6JCW0KY38vCrLVfA1+X5cWNMQtwTobP8TWNAJ4q3GatXVyW1xUpq5V2LwmzFhPTvB4TR8ZSX6EtIay0gxQ8lLAXibW22HFuY0wU0BloY63NLa5NxG2rftzLpFmLadmsHhNHxNKgrkJbQltpPe5mOCsjJwLbgOk4J74PBdqWcq/BCf3PjDHNgZk4879PabPW/uu0G52FPoUX+8SU8vNETrN6wz4mzlpCy2b1mDQylrPq1Qx0SSJnrLSDFA4AGGP6WmtHFfjW88aYZaW8diMgCRgF1MY5Ff60NmOMLTjV0OdhYLy//yNEirJm4z6efHkx0U3qKLQlrPg7xl3X+BIWwBjTHSjxvwJrbSqQ6vsy0xjzMs4QyV2F2q4GCgf3VOCVQm0xwEI/65UIt3bjfia8tJgWTeowaWScQlvCir/BPQZYZIxZgzOF8DxgSEk3GGMuBGpaa5N8TVFAD2PMZYXacgrfa61NB9ILvZ6fpUqk+27Tfia8vIizG9chYWQcDesrtCW8+Dsd8F1jzLfAhThj1AuttftLua0h8KQxJhZnCuHdwNs4J8YXbBtZ3uJFCvt+8wEmvLSI5o1qkzAqVqEtYcmvBTjGmBpAHFAXqA9cZ4xJKOkea+3HwCfASmA5MMt3+HDhttTiX0XEf99vPsATM1Np2rA2CSPjaFS/VqBLEnGFv0Mlc4EOQDRO6PbHedhYImvtWGBsaW0SOTweL2n7Mzl4JIvGDSru/Mh1Ww4w4aVUmpxVm4RRcTRqoNCW8OVvcPcEzgESgedwxqa15F3KxOPxkro2jSlzVpCdk3fyxPaB3aPPKLx/2HKQJ2am0qh+LRJGxdJYoS1hzt+9Snb7Fsz8CHSz1q4D6rhXloSjtP2ZJ0MbIDsnjylzVpC2P7Pcr7l+20HGz0ylYf1aTH4gjiZn1a6ockWClr/BnWmMGQKsBn7jmw7YxL2yJBwdPJJ1MrTzZefkcfBoVrlez247yPgZqTSsV5PJoxTaEjn8De7f4QyXzAc8OHuWPONWURKeGjeoTc3qp+6SULN6VRrXL3vg/rj9EONmpNKgbg0SRsXRtKFCWyKHv2Pc91prH/X9/Ta3ipHwFt20Lo8M7n3aGHd007plep0NOw4xbnoKDerWYPKoC2nWSKEtkcXf4L4W+KubhUhkaNOiPo/f1ZdatarRuH4tWjQp26ySjTvSGTs9lXp1nJ62Qlsikb/BvdkY8znwLZCR32itfc6VqiTsFDejpEUT/3vbG3emM3Z6CnVrV2fyqDiaN9LzcYlM/gb3QZwVk+3cK0XCWXEzStpFD6JV83ql3r9pZzpjp6VQp1Y1J7QbK7Qlcvkb3INwgjv/d1oPcMwYMwf4o7U2zYXaJIyUNKOktODevOswY6enULtWNRJGxXG2QlsinL/B/T7OUvcXcPbjHoZzyvsaYAZwnSvVSdjIn1FSMLz9mVGyZfdhxkxLpmYNp6ddlqEVkXDl73TAi6y1w621K621a6y1fwC6WmunUPqBCiInZ5TkTwf0Z0bJlt2HiU9MoWb1qgptkQL87XE3MMbUt9YeBTDGNODnlZNnvtGEhL0qVaIY2D2adtGDOHg0i8b1S96nZGvaEcZMS6FG9SokPBBX5imDIuHM3+CeBSw2xryFE9Q3Ay8ZY34P/OBWcRJeqlSJolXzeqWOaW9LO0J8YjLVqlZh8qg4WjYt/eGlSCTxa6jEWvs34BHgLJye9oO+YZIUnPFukQqxfY/T065WNYrJD8TRsplCW6Qwf3vcWGvnAfMKtS2v8IokYm3fc4T4xBSioiBhVBytFNoiRfL34aSIq3b8dJT4xBQ8Xi93X9OFKKLweLyBLkskKPnd4xZxy869R4lPTCYnN48TuR6mvrmqwvbqFglH6nFLQO3al0F8YjK5eR5O5HrIyfUAFbNXt0i4UnDLGfF4vOzam8HajfvYtTejTMMbu/dlMPrFZPI8Xu69ruvJ0M53Jnt1i4QzDZVIuXg8Xnbty2Br2hG27znKF0u3cTQzx+/hjd37MxidmEyex0PCyDiqVa1SrpWVIpFIwS1lVtROf7ddcS6fpmxhypwVNGsUR/aJ3GIPA9693+lp5+R6SBgVR9voBng83grZq1skEii4pcyK2ulv7vwfueHijvw36UeWrtvDm/N/LPIB454DmcS/mMyJHA8Jo2JpF90AKPvKSpFIpjFuKbPidvojyhne8Hh+biv4gHHPgUz++mIy2Tl5JIyKpX3Ls055jfyVld07NqNV83oKbZFiqMctZVbcTn9VoqJODpnky3/AWLVqFKMTk8k+kcukkXGnhbaI+E89bimzonb6e+CW8+nfrQXzF29jf/rxk9fm98DjE5PJOp7LxBGxdGil0BY5E+pxS5kVNx4NcPc1XU95wHjvdV15fu4qMo/nMmlkLB1jGga4epHQp+CWcilup7+CgY43iv+bu5LM4zlMGhFLJ4W2SIXQUIlUqPxAb9G4Hs//dyUZx07w5P0D6dRaoS1SUdTjlgq3Pz2L+MRkjmSeYOKIWM5t0yjQJYmEFfW4pUIdOJzF6MRk0jOyefL+gQptERcouKXCHDicxegXk0k/ms2TIwZi2jYOdEkiYUnBLRXiwGFneOTQ0eNMuG8gnRXaIq5RcMsZO3jkOPGJKRw8cpwn7htIl/YKbRE3KbjljBw6cpz4xGQOHM5i/PCBnNe+SaBLEgl7rs4qMcYsAM4GcnxNI4COwBigBjDFWvuCmzWIew4dPU78tGT2pWfxxPABdO2g0BapDK4FtzEmCugMtLHW5vraWgFvAn2AbCDFGPOltXadW3WIO9KPZhOfmMLeQ1mMHz6Abh2bBrokkYjhZo/bAF7gM2NMc2AmcBRYYK09CGCMeRu4BXjylBuNaQgUXrER42KtUgaHM7KJn5bM3kPHGD9sAN0V2iKVys3gbgQkAaOA2sBXwFwgrcA1acAFRdz7MDDexdqknA5nZBOfmMyeA8cYP7w/3TsptEUqm2vBba1NBVJ9X2YaY14GngMSCl3q4XRTgVcKtcUACyuyRimbwxnZjJm6EPkUAAATIklEQVSWQtr+TMYNH8D5nZoFuiSRiOTmGPeFQE1rbZKvKQrYCrQocFk0sLvwvdbadCC90Ou5U6j45UjmCcZOT2H3vgzGDutPj3MU2iKB4uZQSUPgSWNMLFAduBu4A3jdGNMMyARuBu53sQapAEcyTzB2Wgo792Yw9t7+9Dy3eaBLEolors3jttZ+DHwCrASWA7OstclAPPAlsAqYba1d4lYNcuaOHnN62jv2HmXMPf3pZRTaIoEW5fV6A12DX4wx7YAtSUlJxMRogkllyA/t7XuOEn/PBfTpfHagSxIJV2U6YFUrJ6VIGcdOMG56CtvSjjJ6qEJbJJgouOU0GVk5jJ2RytY0p6fdt4tCWySYKLjlFJlZOYybnsLW3Yf569B+Cm2RIKTglpMys3IYPyOVLbsP8/hd/bjgvBal3yQilU7BLQAcO57D+JmpbNyZzmN39aN/t+hAlyQixVBwixPaM1LZuCOdx+7qywCFtkhQU3BHuGPHc3hi5iI27Ejn0Tv7MrB7y0CXJCKlUHBHsKzsXCa8tAi7/RB/ubMvsecrtEVCgYI7QuWH9vpth/jLHX2IU2iLhAwFdwQ67gvtH7Ye5M+39+HCHq0CXZKIlIGCO8Icz87lyZcX88OWA/xpSG8u6qnQFgk1Cu4IcvxELhNnLeb7zft5ZEgfLu6lPV9EQpGCO0IcP5HLxJcX892m/TwyuDeDeiu0RUKVgjsCZOfkkTBrCWs37efhwb0Z1Kd1oEsSkTOg4A5z2Tl5TJq1mNUb9/Hwb3vxC4W2SMhTcIexEzl5JMxazOoN+/jDbb24tG+bQJckIhVAwR2mTuTkkfDKElZt2MdDv+nJZf0U2iLhQsEdhnJy85j8yhJWrN/Lg7f25PIL2ga6JBGpQAruMOOE9lKWr9/Lg7f24Jf9Fdoi4UbBHUZycj089epSlv3wEw/c0oMrB7QLdEki4gIFd5jIyfXwt1eXsnSdE9pXDWwX6JJExCUK7jCQk+vh7/9ZypJ1exh18/kKbZEwp+AOcbl5Hp5+bSmLv9/DiJu6c3Vs+0CXJCIuU3CHMCe0l7HoOye0r72wQ6BLEpFKoOAOUbl5Hp55fRmpa9O478ZuCm2RCKLgDkG5eR6efWM5KWvSGH5DN66/qGOgSxKRSqTgDjF5eR7+8cZyklfvZtj13bjhYoW2SKRRcIeQvDwPz81ewberd3PvdV258RKFtkgkUnCHiLw8D8/NWcE3q3Yx9JrzuGlQp0CXJCIBouAOAXkeL1PmrOSblbu4+5rzuPnScwJdkogEkII7yOV5vEx9cwVfr9zJXVd34RaFtkjEU3AHsTyPl/97cwVfLd/JHb/qzK2XnRvokkQkCCi4g1Sex8vzc1fy5fKd3P6rztx2hQl0SSISJBTcQcjj8fLCW6tYsGwHQ35p+K1CW0QKqFYZP8QY8wzQzFo71BgzDhgGHPJ9e6a19oXKqCMUeDxe/vXWKuYv2c5vrzAMvrJzoEsSkSDjenAbYy4DhgKf+Jr6Ab+11qa6/bNDjcfj5YW3VzN/yXZuu+JchlypnraInM7V4DbGNAYSgMlAD19zX+AxY0wH4Bvgz9ba44Xuawg0LPRyMW7WGmgej5fEd9fw+eJt/Obyc7n9ys5ERUUFuiwRCUJuj3FPB+LxDYsYY+oBK4E/A71xwnlsEfc9DGwp9Gehy7WWi8fjZdfeDNZu3MeuvRl4PN4yv4bX62Xau2v4X+pWbr3sHO74lUJbRIrnWo/bGDMc2GGtTTLGDAWw1mYAVxe45h/ALJxwL2gq8EqhthiCLLw9Hi+pa9OYMmcF2Tl51KxelUcG92Zg92iqVPEvePND+7PUrdxy6TnceVUXhbaIlMjNoZLbgGhjzCqgMVDPGPNvYKG1dpbvmiggp/CN1tp0IL1gmzHBN96btj/zZGgDZOfkMWXOCtpFD6JV83ql3u/1epnx3lo+TdnKzb/oxF1XK7RFpHSuBbe19or8v/t63IOAR4EfjDFfAluB3wHvuVWD2w4eyToZ2vmyc/I4eDSr1OD2er3MeH8tHydv4aZBnbj7mvMU2iLil0qdx22t3QeMAD4CLE6P+x+VWUNFatygNjWrVz2lrWb1qjSuX7vE+7xeLzM/+I6Pv93CjZd05J5rFdoi4r8or7fsD9MCwRjTDtiSlJRETExwTDApzxi31+vlpQ+/48NvNnP9xR0Yfn03hbaIlCkEKmUBTriqUiWKgd2jaRc9iINHs2hcvzbRTeuWGNovf/g9H36zmesuUmiLSPkouM9QlSpRtGpez68x7Vkffc8H32zi2rj23HeDQltEykd7lVQCr9fLq5+s4/2vN3FNXHvuv6m7QltEyk3B7bL80H7ny41cFduOEQptETlDCm4Xeb1eXvvsBye0B7Zj5E3nK7RF5IwpuF3i9Xp5/X/reStpA1cOaMvIX5/v92pKEZGSKLhdMnue5b9f/MiVA9rywM09FNoiUmEU3C6YPW89b863XHFBG4W2iFQ4BXcFm/O5Zc7nlsv6tebBW3sqtEWkwim4K9Cb8y2z563n0r6t+f1veim0RcQVCu4KMvcLyxv/W88v+sTw0G29qKrQFhGXKLgrwFtJP/L6Z+sZ1DuGP/y2t0JbRFyl4D5Dby/YwH8+/YFLesXw8GCFtoi4T8F9Bt79cgOvfrKOi3u14pHBGh4Rkcqh4C6n977ayL8/XsdFPVvxx8G9qVpVb6WIVA6lTTm8//VGZn30PRf2aMmfhii0RaRyKXHK6INvNvHyh98T16Mlf769j0JbRCqdUqcMPly4iZc++I7Y86MV2iISMEoeP3387WZmvv8dA7tH85c7+lJNoS0iAaL08cMnyVuY/t5aBnRrodAWkYBTApXi05QtTHt3Df27tuDRO/tRvZreMhEJLKVQCT5L3UriO2u44LwWPHaXQltEgoOSqBj/S93Ki2+vpt95Z/P43X0V2iISNJRGRZi3aBsvvL2avl3O5q9396N6taqBLklE5CQFdyGfL97Gv95aRZ/OzRXaIhKUFNwFfLHECe3enZszeugF1Kiu0BaR4KPg9klaup3n/7uKnuc0I16hLSJBTMENLFi2g/+bu5Ie5zQj/t7+Cm0RCWoRH9xfLt/B1DdXcH6npoy5tz81FdoiEuQiOri/Wr6DqXNW0L2jQltEQkfEBvdXK3YyZc4KunVsythh/alVo1qgSxIR8UtEBvc3K3cyZfZyzuvQhLH3KrRFJLREXHAvXLmLf7yxnC7tmzB+2ABq1VRoi0hoiajg/nb1Lp6d7Qvt4QptEQlNrieXMeYZoJm1dqgxpicwEzgL+AYYaa3NdbsGgOQ1u3nm9eWYNo0YP3wAtRXaIhKiXO1xG2MuA4YWaHod+L219lwgCrjPzZ+fL2XNbp55bRmmTSOeuE+hLSKhzbUEM8Y0BhKAyUAPY0xboLa1dpHvkleACUBiEfc2BBoWao4pTx3rtx7k6deWcU7rhjxx3wDq1KpenpcREQkabnY9pwPxQGvf1y2BtALfT6P4MH4YGF8hVUTBpX1bM/yGbgptEQkLrgyVGGOGAzustUkFmqOKuNRTzEtMBdoX+nNReWrp3LYxD93WS6EtImHDrR73bUC0MWYV0BioB3iBFgWuiQZ2F3WztTYdSC/YZoxxp1IRkRDjSo/bWnuFtbabtbYnMA740Fp7D3DcGBPnu+wu4DM3fr6ISDir7OkVtwMzjTH1gZXA85X880VEQl6U1+sNdA1+Mca0A7YkJSURE1OuCSYiIsGqqGeAxYqolZMiIuFAwS0iEmIU3CIiIUbBLSISYhTcIiIhRsEtIhJiFNwiIiEmlPY3rQqwZ8+eQNchIlKhLrvssnbATn/PJwil4I4GuP322wNdh4hIRduCs5neVn8uDqXgXoqzQ2AakFeG+2KAhb57d7pQV0VSre4IlVpDpU5QrW7wu7aQCW5rbTbwbVnvK7Cr4E5r7daKrKmiqVZ3hEqtoVInqNZA08NJEZEQo+AWEQkxCm4RkRATCcGdjnMocXppFwYB1eqOUKk1VOoE1RpQIbMft4iIOCKhxy0iElYU3CIiIUbBLSISYkJmAU5ZGWOeAZpZa4caY3oCM4GzgG+Akf7uCVAZCtU6DhgGHPJ9e6a19oXAVecwxiwAzgZyfE0jgI7AGKAGMCUY6oRia32qcJu1dnEAyjuFMeY64AmgLjDPWvsHY8zlwHNAbWCutXZMAEs8qZhaZ+GsSMz0XTbBWvtegErEGDMceLBAU3vgNeB9gvA9La+wfDhpjLkMeBP4xBeG3wHDrbWLjDEvA8ustYmBrdJRRK0fAZOttakBLu0kY0wUsAtok/8PnjGmFc5K1j5ANpACDLbWrgtYoRRb62ltwcAY0wFnKXZ/4CdgATAZmA5cAuwAPgGmWms/C1SdUGKtTwO/tNamBbC8IhljuuIE9qVAMkH2np6JsBsqMcY0BhJwPlQYY9oCta21i3yXvALcGpjqTlW4Vp++wGPGmDXGmH8ZY2oFprpTGMALfGaMWW2MeRC4HFhgrT1orc0E3gZuCWSRPkXVWlRbMLgJp/e301qbA9wGHAM2WGu3+P6ReZ3g+LwWVesaoA0w0/d5nWCMCaZMSQRGAx0Izve03ILpTa4o04F4fh5qaImzMVW+NJxNZ4LBKbUaY+oBK4E/A72BhsDYgFX3s0ZAEnAjcBkwEuc/2GB8X4uq9dbCbcaYKwJW4c86AVWNMfOMMauBBwjez2tRtdbC6XnfCwzAGTIZFrgSf+YbbqptrX2L4H1Pyy2sxrh941s7rLVJxpihvuaoIi71VF5VRSuqVmttBnB1gWv+AczCCfeA8Q3b5A/dZPqGm57D+W2hoIC/r8XU2sZae1ehtquB+YGosYBqwMXAICAD+ACnx11YwN9Xiq51o7X2pvwLjDH/BO7CeZ4UaCNwPqMQpBlwJsIquHF+fYs2xqwCGgP1cH5FblHgmmhgdwBqK+y0Wo0x/wYWWmtn+a6J4ueHaQFjjLkQqGmtTfI1ReHsGxx072sxtfYwxlxWqC3g7yuwB/jCWrsPwBjzPs5vBwW3LQ6K95Wia73bGHPUWvuO75qgeF+NMTVwxrOH+pp2EYSf1TMRVsFtrT3566+vFzvIWnuPMeY7Y0yctTYZp0cQ8IcSRdUKPAr8YIz5EicYfwcE7Al9AQ2BJ40xsUB14G7gDuB1Y0wznBkFNwP3B67Ek4qq9W3gmUJtIwNX4kkfA68aYxoCR4GrcGp93BjTCWdz/SE4v3UFWlG1vg9M9c3iycD5///VwJV40vnAj75nLwCLAROE72m5heMYd1FuB6YYY37Amcr0fIDrKZKvNzMC+AiwOD2YfwS0KMBa+zHOk/iVwHJglu8fwXjgS2AVMNtauyRwVTqKqXViEW0Bn7Xjm474NM7snHXANpwHakOBd3xt63HCPKCKqfWfONMsk31tq6y1cwJW5M86UOBQAmvtcYLwPT0TYTkdUEQknEVKj1tEJGwouEVEQoyCW0QkxCi4RURCjIJbRCTEKLglYhhjmhpjzmgalTFmnDHmhjO4f7gx5oFCbQ19e330PZPaJHIouEXK5lKcRTzldSFQJ/8LY8zVwBKg8xnWJREkrFZOSvgxxjyOs3HRUZy91G8EvsLZJqAjzoq+l4EXcLY4aImzIOg2a+1xY8yvcfZUOQYsLfTaw3A2S6oCHAAetNauL6GW3+Hs3viMMSYPZ1HP33GWV1fFWeDzkLX2iDFmFM7qzBPAcZyFVQa4HrjCGJPl27/8IZyVnMGwcEVChHrcErSMMVfirHjrh7Pvd/0C365jre1qrX0MuA941Vo7EGcXu/bANcaYs3GWNt9sre2Ds9ov/7UvwQnMi6y1vXBWBb5bUj2+oF0G/MV3WMDjQC7Qx1rbA2f/i78ZY6oCU4FfWWv7ATOAC333fEiBQyestb8KhlWcEloU3BLMrgbestamW2u9OL3qfN8W+PtjwD5jzKM4S8Zb4vS+LwTWFjjcYXqBe67BCfkU30ZfTwONfXuk++ta4AZgpe81bgTOs9bmAW/5XvtfwGGc3wpEKoSGSiSY5XLqlpwFd83LKPD3OTif5f/iDF+08d3nLXR/wdNvqgKv+Xrs+A4AaMnP+7j7oyrwh/yTVHz7qdcCsNbeYYzphnPgxGM4wz3lfqgpUpB63BLMPgFuNsac5ft6GE4YF3Yl8KS1dq7v+/1xQnUh0NUY08N33dAC93wODDbGRPu+Holz2EJpcvn54eQ84EFjTA1f8M8EnvLNXtkBHLDWTsU5l7NHEfeLlIuCW4KWtXYBThimGmOW4Rz2XNRBA6OB93zXTAO+Bjr5dlscArxhjFmBM/ad/9rzcB4szjfGrPFd92vfkExJPgKeNcbcDUzE2X53Jc6uc1HAn6y1+4FJQJIxZjnwN2C47/7PgIeMMX8t05shUoB2B5Sg5ZvXHGutfd739R+B/tba2wJbmUhgaYxbgtmPOAcn348zBLIdlw9rMMb8BWf/9qI8Y619w82fL+IP9bhFREKMxrhFREKMgltEJMQouEVEQoyCW0QkxCi4RURCzP8D0JMWUjxcmeEAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig=sns.relplot(x=chico_df['grade_test1'],y=chico_df['grade_test2'])\n", "x=np.linspace(40,73,100)\n", "plt.plot(x,x)\n", "glue(\"chicogradesscatter_fig\",fig.fig,display=False)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "```{glue:figure} chicogradesscatter_fig\n", ":figwidth: 650px\n", ":name: \"fig:chicogradesscatter\"\n", "\n", "Scatterplot showing the individual grades for test 1 and test 2.\n", "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In this plot, each dot corresponds to the two grades for a given student: if their grade for test 1 ($x$ co-ordinate) equals their grade for test 2 ($y$ co-ordinate), then the dot falls on the line. Points falling above the line are the students that performed better on the second test. Critically, almost all of the data points fall above the diagonal line: almost all of the students *do* seem to have improved their grade, if only by a small amount. This suggests that we should be looking at the *improvement* made by each student from one test to the next, and treating that as our raw data. To do this, we'll need to create a new variable for the `improvement` that each student makes, and add it to the `chico` data frame. The easiest way to do this is as follows: " ] }, { "cell_type": "code", "execution_count": 90, "metadata": {}, "outputs": [], "source": [ "chico_df['improvement']=chico_df['grade_test2']-chico_df['grade_test1']" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Notice that I assigned the output to a variable called `chico$improvement`. That has the effect of creating a new variable called `improvement` inside the `chico` data frame. So now when I look at the `chico` data frame, I get an output that looks like this:" ] }, { "cell_type": "code", "execution_count": 91, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
idgrade_test1grade_test2improvement
1student142.944.61.7
2student251.854.02.2
3student371.772.30.6
4student451.653.41.8
5student563.563.80.3
\n", "
" ], "text/plain": [ " id grade_test1 grade_test2 improvement\n", "1 student1 42.9 44.6 1.7\n", "2 student2 51.8 54.0 2.2\n", "3 student3 71.7 72.3 0.6\n", "4 student4 51.6 53.4 1.8\n", "5 student5 63.5 63.8 0.3" ] }, "execution_count": 91, "metadata": {}, "output_type": "execute_result" } ], "source": [ "chico_df.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now that we've created and stored this `improvement` variable, we can draw a histogram showing the distribution of these improvement scores (using the `hist()` function), shown in Figure {numref}`fig:chicoimprove`. " ] }, { "cell_type": "code", "execution_count": 92, "metadata": { "tags": [ "hide_cell" ] }, "outputs": [ { "data": { "application/papermill.record/image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAFgCAYAAACFYaNMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAEw5JREFUeJzt3Xuw3GV9x/F3wglesM6RKVZqUKHq1ysXpVi5FBTUarFKtTK1TsEWkEGQOGa8oEyAjqlCB6JVxOFirC2iiMVBUNBQnUCsVgre/aodcAzCIK1nUEBIIP3jtwfWNZfNged8d7Pv18xOdn/7PPt82Qmf8+T5/X7PWbBhwwYkSfNvYXUBkjSpDGBJKmIAS1IRA1iSihjAklTEAJakIgawJBUxgCWpiAEsSUUMYEkqMlVdwKCImAIWA2szc311PZLUysgFMF343rhq1arqOiRpay3YmsYuQUhSEQNYkooYwJJUxACWpCIGsCQVMYAlqYgBLElFDGBJKmIAS1IRA1iSijS9FTki3gC8q/fyC5m5tOV4kjROms2AI+LRwAeBA4E9gAMi4pBW40nSuGm5BLFd7/N3ABb1Hnc3HE+SxkqzJYjM/FVEnAz8kC54vwKs6W8TEdPA9EDXxa1qkqRR0nIJYnfg74AnAzsD9wGDa8BLgBsHHqtb1aSNW7f+/uoSNmvU65PmquVJuJcBqzLzNoCIWAkcB5zR12YFsHKg32IM4Xm1aGohJ519bXUZm7T8uP2qS5CaaBnA3wJOj4gdgLuAVwL/1d8gM2eAmf5jEdGwJEkaHc2WIDLzKuCTwHXAt+lOwr2v1XiSNG6aXgecme8H3t9yDEkaV94JJ0lFDGBJKmIAS1IRA1iSihjAklTEAJakIgawJBUxgCWpiAEsSUUMYEkqYgBLUhEDWJKKGMCSVMQAlqQiBrAkFTGAJamIASxJRQxgSSpiAEtSEQNYkooYwJJUxACWpCIGsCQVMYAlqYgBLElFDGBJKmIAS1KRqVYfHBFHAcf3HdoV+ERmHr+JLpI0UZoFcGaeB5wHEBHPBi4FTmk1niSNm2YBPOAjwEmZeXv/wYiYBqYH2i6ep5okqVTzAI6IQ4BHZebFG3l7CbCsdQ2SNIrmYwb8JuDMTby3Alg5cGwxsLplQZI0CpoGcERsDxwIHLmx9zNzBpgZ6NOyJEkaGa0vQ9sd+FFm3tl4HEkaO60DeDdgbeMxJGksNV2CyMxPA59uOYYkjSvvhJOkIgawJBUxgCWpiAEsSUUMYEkqYgBLUhEDWJKKGMCSVMQAlqQiBrAkFTGAJamIASxJRQxgSSpiAEtSEQNYkooYwJJUxACWpCIGsCQVMYAlqYgBLElFDGBJKmIAS1IRA1iSihjAklTEAJakIgawJBUxgCWpyFTLD4+IVwKnADsAV2bmiS3Hk6Rx0mwGHBG7AecArwKeCzwvIl7eajxJGjctZ8CHAZ/KzLUAEXE48Jv+BhExDUwP9FvcsCZJGhktA/ipwL0RcSXwBOAy4OSBNkuAZQ1rkKSR1fIk3BRwCPAG4E+AfYAjBtqsAHYdeBzQsCZJGhktZ8C3Al/OzF8ARMSldCG8crZBZs4AM/2dIqJhSZI0OloG8OeBj/fWeX8FvBy4tOF4kjRWmi1BZObXgdOBa4DvAz8FPtZqPEkaN02vA87MC4ALWo4hSePKO+EkqYgBLElFDGBJKmIAS1IRA1iSihjAklTEAJakIgawJBUxgCWpiAEsSUUMYEkqYgBLUhEDWJKKGMCSVMQAlqQiBrAkFTGAJamIASxJRQxgSSpiAEtSEQNYkooYwJJUxACWpCIGsCQVMYAlqYgBLElFplp+eERcDfwBsK536E2Z+fWWY0rSuGgWwBGxAHgG8KTMXN9qHEkaVy1nwAFsAL4QEY8Hzs3MD/1Wg4hpYHqg3+KGNUnSyGi5Bvw4YBXwauBg4NiIeMlAmyXAjQOP1Q1rkqSR0WwGnJlfA77We3lnRJwPvAL4Ul+zFcDKga6LMYQlTYCWa8D7A4/IzFW9Qwt48GQcAJk5A8wM9GtVkiSNlJZrwNPAaRGxL7AIOAI4tuF4kjRWmq0BZ+bngcuB64HrgAt6yxKSJBpfB5yZJwMntxxDksaVd8JJUhEDWJKKGMCSVMQAlqQiBrAkFTGAJamIASxJRQxgSSpiAEtSEQNYkooMFcC9rSQHj13y8JcjSZNjs3tBRMRHgCcCB0TETn1vLaL7dUOSpDna0mY85wPPAfYA+me863lws3VJ0hxsNoAz85vANyPiy5m5dp5qkqSJMOx2lH8UEZ8AdqT7zRYAZObuTaqSpAkwbAB/GLgA+G+633QsSXqIhg3gezPzzKaVSNKEGfY64O9GxHObViJJE2bYGfBuwHUR8VPg7tmDrgFL0twNG8DvblqFJE2gYQP4O02rkKQJNGwA30539cMCHrwK4hZgcYuiJGkSDBXAmfnAybqIWAS8hu7uOEnSHG31bmiZuS4zLwJe0qAeSZoYQ82AI2LHvpcLgL2BxzWpSJImxFzWgAFuA97SpCJJmhBbvQYsSXp4DLsEsRBYCrycbi/gq4Dlmbl+iL5nADtl5pEPoU5J2uYMO7P9R+DFwAeAM4F9gTO21CkiDgaOnGtxkrQtG3YN+M+AvTNzHUBEXA58C3jrpjr0Tty9F1jOJi5Zi4hpYHrgsNcWS5oIw86AF86GL0Bm3gOs20x7gI/S3cL8y820WQLcOPBYPWRNmhDr1t9fXcImjXJtGn3DzoBviIizgA/1Xh8PfHtTjSPiKOBnmbkqIo7czOeuAFYOHFuMIaw+i6YWctLZ11aXsVHLj9uvugSNsWED+M3AB4E1dLPmLwInbKb94cDOEXED3W/ReExEnJWZv7VkkZkzwEz/sYgYsiRJGm9b+q3I2wPnAv8+exVDb/33PuCOTfXLzAfukuvNgA8aDF9JmnRbWgM+DXgs3cx31tF0J85OaVSTJE2ELQXwocDrM/O22QOZ+XPgb4HDhhkgM1d6DbAk/a4tBfC9mXn34MHMvAO4p01JkjQZthTA90XE7w0e7B1b1KYkSZoMWwrgTwLnRcQOswd6z88DLmlZmCRt67Z0GdoK4Bzg1oj4Hl1gPxP4N7oTdJKkOdpsAGfm/cAxEbEceB5wP/CN3ok4SdJDMOx2lDcBNzWtRJImjPv8SlIRA1iSihjAklTEAJakIgawJBUxgCWpiAEsSUUMYEkqYgBLUhEDWJKKGMCSVMQAlqQiBrAkFTGAJamIASxJRQxgSSpiAEtSEQNYkooYwJJUxACWpCJD/VLOuYqI04DXAhuA8zPzzJbjSdI4aTYDjogDgRcDuwN7AydERLQaT5LGTbMAzsyvAi/KzPXA4+lm23e2Gk+Sxk3TJYjMXBcRpwJLgYuBm/vfj4hpYHqg2+KWNUnSqGh+Ei4zlwE7AbsARw+8vQS4ceCxunVNkjQKWq4BPyMi9gTIzLuAz9KtB/dbAew68DigVU2SNEpaLkHsBpwaEfvTXQXxKuCC/gaZOQPM9B/zPJ2kSdHyJNwVwBXA9cB1wJrMvKjVeJI0blqfhFsGLGs5hiSNK++Ek6QiBrAkFTGAJamIASxJRQxgSSpiAEtSEQNYkooYwJJUxACWpCIGsCQVMYAlqYgBLElFDGBJKmIAS1IRA1iSihjAklTEAJakIgawJBUxgCWpiAEsSUUMYEkqYgBLUhEDWJKKGMCSVMQAlqQiBrAkFTGAJanIVMsPj4hlwOt6Ly/PzLe3HE+SxkmzGXBEHAK8FNgL2BN4fkQc1mo8SRo3LWfAtwBvy8x7ASLiB8CT+htExDQwPdBvccOaJGlkNAvgzPze7POIeBpwOLDvQLMlwLKHa8x16+9n0dRoLmuvW38fi6a2qy5DD7PR/js3urWp03QNGCAing1cDizNzB8PvL0CWDlwbDGwei5jLZpayElnXzuXrs0tP26/ka5NczPqf+c02lqfhNsPuARYkpkXDb6fmTPAzECfliVJ0shoFsARsQtwKXB4Zl7dahxJGlctZ8BLgUcCZ/bNas/JzHMajilJY6PlSbgTgRNbfb4kjTtPkUpSEQNYkooYwJJUxACWpCIGsCQVMYAlqYgBLElFDGBJKmIAS1IRA1iSihjAklTEAJakIgawJBUxgCWpiAEsSUUMYEkqYgBLUhEDWJKKGMCSVMQAlqQiBrAkFTGAJamIASxJRQxgSSpiAEtSEQNYkopMtR4gIh4LrAEOzcybWo8nSeOi6Qw4Il4AXAM8veU4kjSOWi9BHA28Gfh543Ekaew0XYLIzKMAImKj70fENDA9cHhxy5okaVQ0XwPegiXAsuIapG3SuvX3s2hqdM+zr1t/H4umtqsuY6Pm67urDuAVwMqBY4uB1fNfirRtWTS1kJPOvra6jE1aftx+I1vf8uP2m5dxSgM4M2eAmf5jm1qukKRtzej++0SStnHzMgPOzKfMxziSNE6cAUtSEQNYkooYwJJUxACWpCIGsCQVMYAlqYgBLElFDGBJKmIAS1IRA1iSihjAklTEAJakIgawJBUxgCWpiAEsSUUMYEkqYgBLUhEDWJKKGMCSVMQAlqQiBrAkFTGAJamIASxJRQxgSSpiAEtSEQNYkooYwJJUZKrlh0fE64H3ANsDZ2Xmh1uOJ0njpNkMOCKeCLwX2B/YAzgmIp7VajxJGjctZ8CHAFdn5v8BRMRngNcCp802iIhpYHqg35MBbr311jkNeucdt8+pX2tr1661tjka5fqsbe5Gub61a9fOqd/BBx/8FGBtZq4fpv2CDRs2zGmgLYmIdwE7ZOZ7eq+PAvbJzGP62pwCLGtSgCTV2DUzbxqmYcsZ8IKNHLt/4PUKYOXAse2B3YAfA/c9/GU9ZIuB1cABwNx+TI4/v4OO34Pfwaw5fQ8tA/hmumJm7Qz8vL9BZs4AMxvp+6OGdT0kETH7dO2wP+W2NX4HHb8Hv4NZA9/DUMsP0DaAvwycEhE7AXcCrwGO2XwXSZocza6CyMybgXcD/wHcAFyYmd9oNZ4kjZum1wFn5oXAhS3HkKRx5Z1wW28GOJWNr11PCr+Djt+D38GsOX0PzS5DkyRtnjNgSSpiAEtSEQNYkoo0vQpiW+Pubg+KiMcCa4BDJ/EC/IhYBryu9/LyzHx7ZT1VIuI0uj1eNgDnZ+aZxSWViYgzgJ0y88hh+zgDHpK7uz0oIl4AXAM8vbqWChFxCPBSYC9gT+D5EXFYbVXzLyIOBF4M7A7sDZwQfbeETZKIOBg4cmv7GcDDe2B3t8y8E5jd3W0SHQ28mYFbyyfILcDbMvPezFwH/AB4UnFN8y4zvwq8qHfr7ePp/kV9Z21V8y8idqSbnC3f2r4uQQzvD+n+x5t1C7BPUS2lMvMo+K373ydKZn5v9nlEPA04HNi3rqI6mbkuIk4FlgIX0+0BM2k+SnfX7y5b29EZ8PCG2d1NEyQing18CViamT+urqdKZi4DdqILoKOLy5lXvW12f5aZq+bS3wAe3s3AE/pe/87ubpocEbEfsAp4Z2Z+vLqeChHxjIjYEyAz7wI+S7cePEkOB14aETfQ/bKJv4iIs4bt7BLE8NzdTQBExC7ApcDhmXl1dT2FdgNOjYj96a6CeBVwQW1J8yszXzL7PCKOBA7KzLcO298Z8JDc3U19lgKPBM6MiBt6j2Ori5pvmXkFcAVwPXAdsCYzL6qtary4F4QkFXEGLElFDGBJKmIAS1IRA1iSihjAklTEANa8iIi9I+Iz1XVUi4irIuL3q+vQaPAyNGkeRcQGui0Lb6+uRfUMYM2LiDgI+BDwTeBu4I/pbu3+NPAL4JW910dl5tURsZLu7qpn0u0zcBXwlt7mL/cAn6PbFvRvgEcBZwCPBu4F3pOZX4yINcCZmfmZXg3vAxZk5jsi4u+B4+j+Ffi/wPGZ+cPeuMPUtz3wfuBAYDu6mxHekpl3RMRNwErgYLpd0j6VmW+PiI/RbVn4XeAVmfmzh+v71XhyCUIV9gJeSLeH7FuBX2fmvsAHgHf2tduDbhvQZ/Ueb+od3x64LDMDuJFua9ATM3N34AjgXyNiV+Bcenu0RsR2wBuA83r72B4BHJCZewGn0+1jsDX1vRNYDzw/M/eg2xfkfX2f8ZjMPIBul7QTImLXzHxj770XGb4CA1g1LsvMdZl5K92+Gl/sHf8fYMe+disz89eZeQ/wL8DL+t5b3fvzBcBPMvPr8MBWkdcCB9HNXl8YEU/o9f1Jb9eyPweeCqzpbaJyOrBjb1/XYes7lG7vg+t7n/Fquh8Ssz7Xq+dm4LaB/y4JcDMe1bhn4PW6TbRb3/d8IXBf3+tf9x0ftBBYlJl3RsTFwOvpZrTn9t7fDvhEZr4DICIW0u33/MutqG87uln3F3qf8Ri6/SFm3d33fAMb385UE84ZsEbZ4RHxiIh4JN2SwWUbafOfQETEPvDAHr1/Cnyl9/7sMsS+wCW9Y1cBfx0RO/deH0u3teTWuBI4PiK27wX4ucA/DtHvPmDRVo6lbZQBrFF2F91Sw3d6f35ssEHvaoK/Av45Ir4DXAi8MTN/1Hv/OrqZ9CWZ+ZvesSvpTqB9KSK+TTdD/svM3Joz0v8A3ER38u37dDPctw3R77PANRHxnK0YS9sor4LQSOpdjfDdzPyn6lqkVpwBS1IRZ8CSVMQZsCQVMYAlqYgBLElFDGBJKmIAS1KR/wfL8o+k/EgppgAAAABJRU5ErkJggg==\n", "application/papermill.record/text/plain": "
" }, "metadata": { "scrapbook": { "mime_prefix": "application/papermill.record/", "name": "chicoimprove_fig" } }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAFgCAYAAACFYaNMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAEw5JREFUeJzt3Xuw3GV9x/F3wglesM6RKVZqUKHq1ysXpVi5FBTUarFKtTK1TsEWkEGQOGa8oEyAjqlCB6JVxOFirC2iiMVBUNBQnUCsVgre/aodcAzCIK1nUEBIIP3jtwfWNZfNged8d7Pv18xOdn/7PPt82Qmf8+T5/X7PWbBhwwYkSfNvYXUBkjSpDGBJKmIAS1IRA1iSihjAklTEAJakIgawJBUxgCWpiAEsSUUMYEkqMlVdwKCImAIWA2szc311PZLUysgFMF343rhq1arqOiRpay3YmsYuQUhSEQNYkooYwJJUxACWpCIGsCQVMYAlqYgBLElFDGBJKmIAS1IRA1iSijS9FTki3gC8q/fyC5m5tOV4kjROms2AI+LRwAeBA4E9gAMi4pBW40nSuGm5BLFd7/N3ABb1Hnc3HE+SxkqzJYjM/FVEnAz8kC54vwKs6W8TEdPA9EDXxa1qkqRR0nIJYnfg74AnAzsD9wGDa8BLgBsHHqtb1aSNW7f+/uoSNmvU65PmquVJuJcBqzLzNoCIWAkcB5zR12YFsHKg32IM4Xm1aGohJ519bXUZm7T8uP2qS5CaaBnA3wJOj4gdgLuAVwL/1d8gM2eAmf5jEdGwJEkaHc2WIDLzKuCTwHXAt+lOwr2v1XiSNG6aXgecme8H3t9yDEkaV94JJ0lFDGBJKmIAS1IRA1iSihjAklTEAJakIgawJBUxgCWpiAEsSUUMYEkqYgBLUhEDWJKKGMCSVMQAlqQiBrAkFTGAJamIASxJRQxgSSpiAEtSEQNYkooYwJJUxACWpCIGsCQVMYAlqYgBLElFDGBJKmIAS1KRqVYfHBFHAcf3HdoV+ERmHr+JLpI0UZoFcGaeB5wHEBHPBi4FTmk1niSNm2YBPOAjwEmZeXv/wYiYBqYH2i6ep5okqVTzAI6IQ4BHZebFG3l7CbCsdQ2SNIrmYwb8JuDMTby3Alg5cGwxsLplQZI0CpoGcERsDxwIHLmx9zNzBpgZ6NOyJEkaGa0vQ9sd+FFm3tl4HEkaO60DeDdgbeMxJGksNV2CyMxPA59uOYYkjSvvhJOkIgawJBUxgCWpiAEsSUUMYEkqYgBLUhEDWJKKGMCSVMQAlqQiBrAkFTGAJamIASxJRQxgSSpiAEtSEQNYkooYwJJUxACWpCIGsCQVMYAlqYgBLElFDGBJKmIAS1IRA1iSihjAklTEAJakIgawJBUxgCWpyFTLD4+IVwKnADsAV2bmiS3Hk6Rx0mwGHBG7AecArwKeCzwvIl7eajxJGjctZ8CHAZ/KzLUAEXE48Jv+BhExDUwP9FvcsCZJGhktA/ipwL0RcSXwBOAy4OSBNkuAZQ1rkKSR1fIk3BRwCPAG4E+AfYAjBtqsAHYdeBzQsCZJGhktZ8C3Al/OzF8ARMSldCG8crZBZs4AM/2dIqJhSZI0OloG8OeBj/fWeX8FvBy4tOF4kjRWmi1BZObXgdOBa4DvAz8FPtZqPEkaN02vA87MC4ALWo4hSePKO+EkqYgBLElFDGBJKmIAS1IRA1iSihjAklTEAJakIgawJBUxgCWpiAEsSUUMYEkqYgBLUhEDWJKKGMCSVMQAlqQiBrAkFTGAJamIASxJRQxgSSpiAEtSEQNYkooYwJJUxACWpCIGsCQVMYAlqYgBLElFplp+eERcDfwBsK536E2Z+fWWY0rSuGgWwBGxAHgG8KTMXN9qHEkaVy1nwAFsAL4QEY8Hzs3MD/1Wg4hpYHqg3+KGNUnSyGi5Bvw4YBXwauBg4NiIeMlAmyXAjQOP1Q1rkqSR0WwGnJlfA77We3lnRJwPvAL4Ul+zFcDKga6LMYQlTYCWa8D7A4/IzFW9Qwt48GQcAJk5A8wM9GtVkiSNlJZrwNPAaRGxL7AIOAI4tuF4kjRWmq0BZ+bngcuB64HrgAt6yxKSJBpfB5yZJwMntxxDksaVd8JJUhEDWJKKGMCSVMQAlqQiBrAkFTGAJamIASxJRQxgSSpiAEtSEQNYkooMFcC9rSQHj13y8JcjSZNjs3tBRMRHgCcCB0TETn1vLaL7dUOSpDna0mY85wPPAfYA+me863lws3VJ0hxsNoAz85vANyPiy5m5dp5qkqSJMOx2lH8UEZ8AdqT7zRYAZObuTaqSpAkwbAB/GLgA+G+633QsSXqIhg3gezPzzKaVSNKEGfY64O9GxHObViJJE2bYGfBuwHUR8VPg7tmDrgFL0twNG8DvblqFJE2gYQP4O02rkKQJNGwA30539cMCHrwK4hZgcYuiJGkSDBXAmfnAybqIWAS8hu7uOEnSHG31bmiZuS4zLwJe0qAeSZoYQ82AI2LHvpcLgL2BxzWpSJImxFzWgAFuA97SpCJJmhBbvQYsSXp4DLsEsRBYCrycbi/gq4Dlmbl+iL5nADtl5pEPoU5J2uYMO7P9R+DFwAeAM4F9gTO21CkiDgaOnGtxkrQtG3YN+M+AvTNzHUBEXA58C3jrpjr0Tty9F1jOJi5Zi4hpYHrgsNcWS5oIw86AF86GL0Bm3gOs20x7gI/S3cL8y820WQLcOPBYPWRNmhDr1t9fXcImjXJtGn3DzoBviIizgA/1Xh8PfHtTjSPiKOBnmbkqIo7czOeuAFYOHFuMIaw+i6YWctLZ11aXsVHLj9uvugSNsWED+M3AB4E1dLPmLwInbKb94cDOEXED3W/ReExEnJWZv7VkkZkzwEz/sYgYsiRJGm9b+q3I2wPnAv8+exVDb/33PuCOTfXLzAfukuvNgA8aDF9JmnRbWgM+DXgs3cx31tF0J85OaVSTJE2ELQXwocDrM/O22QOZ+XPgb4HDhhkgM1d6DbAk/a4tBfC9mXn34MHMvAO4p01JkjQZthTA90XE7w0e7B1b1KYkSZoMWwrgTwLnRcQOswd6z88DLmlZmCRt67Z0GdoK4Bzg1oj4Hl1gPxP4N7oTdJKkOdpsAGfm/cAxEbEceB5wP/CN3ok4SdJDMOx2lDcBNzWtRJImjPv8SlIRA1iSihjAklTEAJakIgawJBUxgCWpiAEsSUUMYEkqYgBLUhEDWJKKGMCSVMQAlqQiBrAkFTGAJamIASxJRQxgSSpiAEtSEQNYkooYwJJUxACWpCJD/VLOuYqI04DXAhuA8zPzzJbjSdI4aTYDjogDgRcDuwN7AydERLQaT5LGTbMAzsyvAi/KzPXA4+lm23e2Gk+Sxk3TJYjMXBcRpwJLgYuBm/vfj4hpYHqg2+KWNUnSqGh+Ei4zlwE7AbsARw+8vQS4ceCxunVNkjQKWq4BPyMi9gTIzLuAz9KtB/dbAew68DigVU2SNEpaLkHsBpwaEfvTXQXxKuCC/gaZOQPM9B/zPJ2kSdHyJNwVwBXA9cB1wJrMvKjVeJI0blqfhFsGLGs5hiSNK++Ek6QiBrAkFTGAJamIASxJRQxgSSpiAEtSEQNYkooYwJJUxACWpCIGsCQVMYAlqYgBLElFDGBJKmIAS1IRA1iSihjAklTEAJakIgawJBUxgCWpiAEsSUUMYEkqYgBLUhEDWJKKGMCSVMQAlqQiBrAkFTGAJanIVMsPj4hlwOt6Ly/PzLe3HE+SxkmzGXBEHAK8FNgL2BN4fkQc1mo8SRo3LWfAtwBvy8x7ASLiB8CT+htExDQwPdBvccOaJGlkNAvgzPze7POIeBpwOLDvQLMlwLKHa8x16+9n0dRoLmuvW38fi6a2qy5DD7PR/js3urWp03QNGCAing1cDizNzB8PvL0CWDlwbDGwei5jLZpayElnXzuXrs0tP26/ka5NczPqf+c02lqfhNsPuARYkpkXDb6fmTPAzECfliVJ0shoFsARsQtwKXB4Zl7dahxJGlctZ8BLgUcCZ/bNas/JzHMajilJY6PlSbgTgRNbfb4kjTtPkUpSEQNYkooYwJJUxACWpCIGsCQVMYAlqYgBLElFDGBJKmIAS1IRA1iSihjAklTEAJakIgawJBUxgCWpiAEsSUUMYEkqYgBLUhEDWJKKGMCSVMQAlqQiBrAkFTGAJamIASxJRQxgSSpiAEtSEQNYkopMtR4gIh4LrAEOzcybWo8nSeOi6Qw4Il4AXAM8veU4kjSOWi9BHA28Gfh543Ekaew0XYLIzKMAImKj70fENDA9cHhxy5okaVQ0XwPegiXAsuIapG3SuvX3s2hqdM+zr1t/H4umtqsuY6Pm67urDuAVwMqBY4uB1fNfirRtWTS1kJPOvra6jE1aftx+I1vf8uP2m5dxSgM4M2eAmf5jm1qukKRtzej++0SStnHzMgPOzKfMxziSNE6cAUtSEQNYkooYwJJUxACWpCIGsCQVMYAlqYgBLElFDGBJKmIAS1IRA1iSihjAklTEAJakIgawJBUxgCWpiAEsSUUMYEkqYgBLUhEDWJKKGMCSVMQAlqQiBrAkFTGAJamIASxJRQxgSSpiAEtSEQNYkooYwJJUZKrlh0fE64H3ANsDZ2Xmh1uOJ0njpNkMOCKeCLwX2B/YAzgmIp7VajxJGjctZ8CHAFdn5v8BRMRngNcCp802iIhpYHqg35MBbr311jkNeucdt8+pX2tr1661tjka5fqsbe5Gub61a9fOqd/BBx/8FGBtZq4fpv2CDRs2zGmgLYmIdwE7ZOZ7eq+PAvbJzGP62pwCLGtSgCTV2DUzbxqmYcsZ8IKNHLt/4PUKYOXAse2B3YAfA/c9/GU9ZIuB1cABwNx+TI4/v4OO34Pfwaw5fQ8tA/hmumJm7Qz8vL9BZs4AMxvp+6OGdT0kETH7dO2wP+W2NX4HHb8Hv4NZA9/DUMsP0DaAvwycEhE7AXcCrwGO2XwXSZocza6CyMybgXcD/wHcAFyYmd9oNZ4kjZum1wFn5oXAhS3HkKRx5Z1wW28GOJWNr11PCr+Djt+D38GsOX0PzS5DkyRtnjNgSSpiAEtSEQNYkoo0vQpiW+Pubg+KiMcCa4BDJ/EC/IhYBryu9/LyzHx7ZT1VIuI0uj1eNgDnZ+aZxSWViYgzgJ0y88hh+zgDHpK7uz0oIl4AXAM8vbqWChFxCPBSYC9gT+D5EXFYbVXzLyIOBF4M7A7sDZwQfbeETZKIOBg4cmv7GcDDe2B3t8y8E5jd3W0SHQ28mYFbyyfILcDbMvPezFwH/AB4UnFN8y4zvwq8qHfr7ePp/kV9Z21V8y8idqSbnC3f2r4uQQzvD+n+x5t1C7BPUS2lMvMo+K373ydKZn5v9nlEPA04HNi3rqI6mbkuIk4FlgIX0+0BM2k+SnfX7y5b29EZ8PCG2d1NEyQing18CViamT+urqdKZi4DdqILoKOLy5lXvW12f5aZq+bS3wAe3s3AE/pe/87ubpocEbEfsAp4Z2Z+vLqeChHxjIjYEyAz7wI+S7cePEkOB14aETfQ/bKJv4iIs4bt7BLE8NzdTQBExC7ApcDhmXl1dT2FdgNOjYj96a6CeBVwQW1J8yszXzL7PCKOBA7KzLcO298Z8JDc3U19lgKPBM6MiBt6j2Ori5pvmXkFcAVwPXAdsCYzL6qtary4F4QkFXEGLElFDGBJKmIAS1IRA1iSihjAklTEANa8iIi9I+Iz1XVUi4irIuL3q+vQaPAyNGkeRcQGui0Lb6+uRfUMYM2LiDgI+BDwTeBu4I/pbu3+NPAL4JW910dl5tURsZLu7qpn0u0zcBXwlt7mL/cAn6PbFvRvgEcBZwCPBu4F3pOZX4yINcCZmfmZXg3vAxZk5jsi4u+B4+j+Ffi/wPGZ+cPeuMPUtz3wfuBAYDu6mxHekpl3RMRNwErgYLpd0j6VmW+PiI/RbVn4XeAVmfmzh+v71XhyCUIV9gJeSLeH7FuBX2fmvsAHgHf2tduDbhvQZ/Ueb+od3x64LDMDuJFua9ATM3N34AjgXyNiV+Bcenu0RsR2wBuA83r72B4BHJCZewGn0+1jsDX1vRNYDzw/M/eg2xfkfX2f8ZjMPIBul7QTImLXzHxj770XGb4CA1g1LsvMdZl5K92+Gl/sHf8fYMe+disz89eZeQ/wL8DL+t5b3fvzBcBPMvPr8MBWkdcCB9HNXl8YEU/o9f1Jb9eyPweeCqzpbaJyOrBjb1/XYes7lG7vg+t7n/Fquh8Ssz7Xq+dm4LaB/y4JcDMe1bhn4PW6TbRb3/d8IXBf3+tf9x0ftBBYlJl3RsTFwOvpZrTn9t7fDvhEZr4DICIW0u33/MutqG87uln3F3qf8Ri6/SFm3d33fAMb385UE84ZsEbZ4RHxiIh4JN2SwWUbafOfQETEPvDAHr1/Cnyl9/7sMsS+wCW9Y1cBfx0RO/deH0u3teTWuBI4PiK27wX4ucA/DtHvPmDRVo6lbZQBrFF2F91Sw3d6f35ssEHvaoK/Av45Ir4DXAi8MTN/1Hv/OrqZ9CWZ+ZvesSvpTqB9KSK+TTdD/svM3Joz0v8A3ER38u37dDPctw3R77PANRHxnK0YS9sor4LQSOpdjfDdzPyn6lqkVpwBS1IRZ8CSVMQZsCQVMYAlqYgBLElFDGBJKmIAS1KR/wfL8o+k/EgppgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig=sns.displot(chico_df.improvement,kde=False)\n", "glue(\"chicoimprove_fig\",fig.fig,display=False)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "```{glue:figure} chicoimprove_fig\n", ":figwidth: 650px\n", ":name: \"fig:chicoimprove\"\n", "\n", "Histogram of improvement variable.\n", "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "When we look at histogram, it's very clear that there *is* a real improvement here. The vast majority of the students scored higher on the test 2 than on test 1, reflected in the fact that almost the entire histogram is above zero. In fact, if we use `aggregate()` with a custom function (`mean_confidence_interval()`) to compute a confidence interval for the population mean of this new variable, " ] }, { "cell_type": "code", "execution_count": 67, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
meanlower 95CIupper 95CI
01.40.951.86
\n", "
" ], "text/plain": [ " mean lower 95CI upper 95CI\n", "0 1.4 0.95 1.86" ] }, "execution_count": 67, "metadata": {}, "output_type": "execute_result" } ], "source": [ "def mean_confidence_interval(data, confidence=0.95):\n", " a = data\n", " n = len(a)\n", " m, se = np.mean(a), stats.sem(a)\n", " h = se * stats.t.ppf((1 + confidence) / 2., n-1)\n", " return pd.DataFrame({\"mean\":[m], \"lower 95CI\": [m-h], \"upper 95CI\":[m+h]})\n", "\n", "chico_df.improvement.aggregate(mean_confidence_interval).round(2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "we see that it is 95\\% certain that the true (population-wide) average improvement would lie between 0.95\\% and 1.86\\%. So you can see, qualitatively, what's going on: there is a real \"within student\" improvement (everyone improves by about 1\\%), but it is very small when set against the quite large \"between student\" differences (student grades vary by about 20\\% or so). " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### What is the paired samples $t$-test?\n", "\n", "In light of the previous exploration, let's think about how to construct an appropriate $t$ test. One possibility would be to try to run an independent samples $t$-test using `grade_test1` and `grade_test2` as the variables of interest. However, this is clearly the wrong thing to do: the independent samples $t$-test assumes that there is no particular relationship between the two samples. Yet clearly that's not true in this case, because of the repeated measures structure to the data. To use the language that I introduced in the last section, if we were to try to do an independent samples $t$-test, we would be conflating the **_within subject_** differences (which is what we're interested in testing) with the **_between subject_** variability (which we are not). \n", "\n", "The solution to the problem is obvious, I hope, since we already did all the hard work in the previous section. Instead of running an independent samples $t$-test on `grade_test1` and `grade_test2`, we run a *one-sample* $t$-test on the within-subject difference variable, `improvement`. To formalise this slightly, if $X_{i1}$ is the score that the $i$-th participant obtained on the first variable, and $X_{i2}$ is the score that the same person obtained on the second one, then the difference score is:\n", "$\n", "D_{i} = X_{i1} - X_{i2} \n", "$\n", "Notice that the difference scores is *variable 1 minus variable 2* and not the other way around, so if we want improvement to correspond to a positive valued difference, we actually want \"test 2\" to be our \"variable 1\". Equally, we would say that $\\mu_D = \\mu_1 - \\mu_2$ is the population mean for this difference variable. So, to convert this to a hypothesis test, our null hypothesis is that this mean difference is zero; the alternative hypothesis is that it is not:\n", "\n", "$\n", "\\begin{array}{ll}\n", "H_0: & \\mu_D = 0 \\\\\n", "H_1: & \\mu_D \\neq 0\n", "\\end{array}\n", "$\n", "\n", "(this is assuming we're talking about a two-sided test here). This is more or less identical to the way we described the hypotheses for the one-sample $t$-test: the only difference is that the specific value that the null hypothesis predicts is 0. And so our $t$-statistic is defined in more or less the same way too. If we let $\\bar{D}$ denote the mean of the difference scores, then \n", "\n", "$\n", "t = \\frac{\\bar{D}}{\\mbox{SE}({\\bar{D}})}\n", "$\n", "\n", "which is \n", "\n", "$\n", "t = \\frac{\\bar{D}}{\\hat\\sigma_D / \\sqrt{N}}\n", "$\n", "\n", "where $\\hat\\sigma_D$ is the standard deviation of the difference scores. Since this is just an ordinary, one-sample $t$-test, with nothing special about it, the degrees of freedom are still $N-1$. And that's it: the paired samples $t$-test really isn't a new test at all: it's a one-sample $t$-test, but applied to the difference between two variables. It's actually very simple; the only reason it merits a discussion as long as the one we've just gone through is that you need to be able to recognize *when* a paired samples test is appropriate, and to understand *why* it's better than an independent samples $t$ test." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Doing the test in Python\n", "\n", "\n", "How do you do a paired samples $t$-test in python. One possibility is to follow the process I outlined above: create a \"difference\" variable and then run a one sample $t$-test on that. Since we've already created a variable called `chico_df['improvement']`, let's do that:" ] }, { "cell_type": "code", "execution_count": 93, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Tdoftailp-valCI95%cohen-dBF10power
T-test6.4819two-sided0.0[0.95, 1.86]1.455991.5771.0
\n", "
" ], "text/plain": [ " T dof tail p-val CI95% cohen-d BF10 power\n", "T-test 6.48 19 two-sided 0.0 [0.95, 1.86] 1.45 5991.577 1.0" ] }, "execution_count": 93, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pg.ttest(x=chico_df['improvement'], y=0).round(2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The output here is (obviously) formatted exactly the same was as it was the last time we used the `ttest()` function, and it confirms our intuition. There's an average improvement of 1.4\\% from test 1 to test 2, and this is significantly different from 0 ($t(19)=6.48, p<.001$). \n", "\n", "However, suppose you're lazy and you don't want to go to all the effort of creating a new variable. Or perhaps you just want to keep the difference between one-sample and paired-samples tests clear in your head. If so, you can still use the `ttest()` function. Let's assume that your data organised like they are in the `chico` data frame, where there are two separate variables, one for each measurement. You can still provide each column as group 1 and group 2 as before but just indicate they are paried with the argument `paired=True`:" ] }, { "cell_type": "code", "execution_count": 72, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Tdoftailp-valCI95%cohen-dBF10power
T-test-6.4819two-sided0.0[-1.86, -0.95]0.225991.5770.15
\n", "
" ], "text/plain": [ " T dof tail p-val CI95% cohen-d BF10 power\n", "T-test -6.48 19 two-sided 0.0 [-1.86, -0.95] 0.22 5991.577 0.15" ] }, "execution_count": 72, "metadata": {}, "output_type": "execute_result" } ], "source": [ "group1 = chico_df.grade_test1\n", "group2 = chico_df.grade_test2\n", "pg.ttest(x=group1, y=group2, paired=True).round(2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The numbers are identical to those that come from the one sample test on the improvment column, which of course they have to be given that the paired samples $t$-test is just a one sample test under the hood." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## One sided tests\n", "\n", "When introducing the theory of null hypothesis tests, I mentioned that there are some situations when it's appropriate to specify a *one-sided* test (see above). So far, all of the $t$-tests have been two-sided tests. For instance, when we specified a one sample $t$-test for the grades in Dr Zeppo's class, the null hypothesis was that the true mean was 67.5\\%. The alternative hypothesis was that the true mean was greater than *or* less than 67.5\\%. Suppose we were only interested in finding out if the true mean is greater than 67.5\\%, and have no interest whatsoever in testing to find out if the true mean is lower than 67.5\\%. If so, our null hypothesis would be that the true mean is 67.5\\% or less, and the alternative hypothesis would be that the true mean is greater than 67.5\\%. The pingouin `ttest()` function lets you do this, by specifying the `tail` argument. If you set `tail=\"greater\"`, it means that you're testing to see if the true mean is larger than `mu`. If you set `tail=\"less\"`, then you're testing to see if the true mean is smaller than `mu`. Here's how it would work for Dr Zeppo's class:" ] }, { "cell_type": "code", "execution_count": 109, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Tdoftailp-valCI95%cohen-dBF10power
T-test2.25519two-sided0.036145[0.34, 9.26]0.5041.7950.571
\n", "
" ], "text/plain": [ " T dof tail p-val CI95% cohen-d BF10 power\n", "T-test 2.255 19 two-sided 0.036145 [0.34, 9.26] 0.504 1.795 0.571" ] }, "execution_count": 109, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# old version\n", "pg.ttest(x=zeppo_df.grades,y=67.5)" ] }, { "cell_type": "code", "execution_count": 110, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Tdoftailp-valCI95%cohen-dBF10power
T-test2.25519greater0.018073[1.12, inf]0.5043.590.701
\n", "
" ], "text/plain": [ " T dof tail p-val CI95% cohen-d BF10 power\n", "T-test 2.255 19 greater 0.018073 [1.12, inf] 0.504 3.59 0.701" ] }, "execution_count": 110, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pg.ttest(x=zeppo_df.grades,y=67.5,tail='greater')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Notice that there are a few changes from the output that we saw last time. Most important is the fact that the tail output has changed predictably. The second thing to note is that, although the $t$-statistic and degrees of freedom have not changed, the $p$-value has. This is because the one-sided test has a different rejection region from the two-sided test. If you've forgotten why this is and what it means, you may find it helpful to read back over Chapter on hypothesis testing, and Section on one-sided tests in particular. The third thing to note is that the confidence interval is different too: it now reports a \"one-sided\" confidence interval rather than a two-sided one. In a two-sided confidence interval, we're trying to find numbers $a$ and $b$ such that we're 95\\% confident that the true mean lies *between* $a$ and $b$. In a one-sided confidence interval, we're trying to find a single number $a$ such that we're 95\\% confident that the true mean is *greater than* $a$ (or less than $a$ if you set `tail=\"less\"`).\n", "\n", "So that's how to do a one-sided one sample $t$-test. However, all versions of the $t$-test can be one-sided. For an independent samples $t$ test, you could have a one-sided test if you're only interestd in testing to see if group A has *higher* scores than group B, but have no interest in finding out if group B has higher scores than group A. Let's suppose that, for Dr Harpo's class, you wanted to see if Anastasia's students had higher grades than Bernadette's. The `ttest()` function lets you do this, again by specifying the `tail` argument." ] }, { "cell_type": "code", "execution_count": 78, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Tdoftailp-valCI95%cohen-dBF10power
T-test-2.1231less0.02[-inf, -1.09]0.743.510.66
\n", "
" ], "text/plain": [ " T dof tail p-val CI95% cohen-d BF10 power\n", "T-test -2.12 31 less 0.02 [-inf, -1.09] 0.74 3.51 0.66" ] }, "execution_count": 78, "metadata": {}, "output_type": "execute_result" } ], "source": [ "group1 = harpo_df[harpo_df['tutor']==\"Bernadette\"].grade\n", "group2 = harpo_df[harpo_df['tutor']==\"Anastasia\"].grade\n", "\n", "pg.ttest(x=group1, y=group2, correction=False, tail='one-sided').round(2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Again, the output changes in a predictable way. The definition of the null and alternative hypotheses has changed, the $p$-value has changed, and it now reports a one-sided confidence interval rather than a two-sided one. You might be surprised that although we specified `tail=\"one-sided\"` in the code, the output says `tail=less`. This is because pinguoin's `ttest()` function automatically infers which side the one tail should appear on. Since the t-value is negative here it chose `less` but if you swap the groups arguments it will flip to `greater`:" ] }, { "cell_type": "code", "execution_count": 80, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Tdoftailp-valCI95%cohen-dBF10power
T-test2.1231greater0.02[1.09, inf]0.743.510.66
\n", "
" ], "text/plain": [ " T dof tail p-val CI95% cohen-d BF10 power\n", "T-test 2.12 31 greater 0.02 [1.09, inf] 0.74 3.51 0.66" ] }, "execution_count": 80, "metadata": {}, "output_type": "execute_result" } ], "source": [ "group1 = harpo_df[harpo_df['tutor']==\"Bernadette\"].grade\n", "group2 = harpo_df[harpo_df['tutor']==\"Anastasia\"].grade\n", "\n", "pg.ttest(x=group2, y=group1, correction=False, tail='one-sided').round(2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For this reason as long as you specify the `tail` correct you don't need to worry about it!\n", "\n", "What about the paired samples $t$-test? Suppose we wanted to test the hypothesis that grades go *up* from test 1 to test 2 in Dr Zeppo's class, and are not prepared to consider the idea that the grades go down. Again, we can use the `tail` argument to specify the one-sided test, and it works the same way it does for the independent samples $t$-test. If your data are in wide form, as they are in the `chico` data frame, you'd use this command:" ] }, { "cell_type": "code", "execution_count": 79, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Tdoftailp-valCI95%cohen-dBF10power
T-test-6.4819less0.0[-inf, -1.03]0.221.198e+040.24
\n", "
" ], "text/plain": [ " T dof tail p-val CI95% cohen-d BF10 power\n", "T-test -6.48 19 less 0.0 [-inf, -1.03] 0.22 1.198e+04 0.24" ] }, "execution_count": 79, "metadata": {}, "output_type": "execute_result" } ], "source": [ "group1 = chico_df.grade_test1\n", "group2 = chico_df.grade_test2\n", "pg.ttest(x=group1, y=group2, paired=True, tail='one-sided').round(2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Yet again, the output changes in a predictable way. The hypotheses have changed, the $p$-value has changed, and the confidence interval is now one-sided. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Effect size\n", "\n", "The most commonly used measure of effect size for a $t$-test is **_Cohen's $d$_** {cite}`Cohen1988`. It's a very simple measure in principle, with quite a few wrinkles when you start digging into the details. Cohen himself defined it primarily in the context of an independent samples $t$-test, specifically the Student test. [^dprime] In that context, a natural way of defining the effect size is to divide the difference between the means by an estimate of the standard deviation. In other words, we're looking to calculate *something* along the lines of this:\n", "$\n", "d = \\frac{\\mbox{(mean 1)} - \\mbox{(mean 2)}}{\\mbox{std dev}}\n", "$\n", "and he suggested a rough guide for interpreting $d$ in {numref}`tab:effect_size`. You'd think that this would be pretty unambiguous, but it's not; largely because Cohen wasn't too specific on what he thought should be used as the measure of the standard deviation (in his defence, he was trying to make a broader point in his book, not nitpick about tiny details). As discussed by {cite}`McGrath2006`, there are several different version in common usage, and each author tends to adopt slightly different notation. For the sake of simplicity (as opposed to accuracy) I'll use $d$ to refer to any statistic that you calculate from the sample, and use $\\delta$ to refer to a theoretical population effect. Obviously, that does mean that there are several different things all called $d$. pingouin has a number of different functions for computing [effect sizes](https://pingouin-stats.org/api.html#effect-sizes). \n", "\n", "My suspicion is that the only time that you would want Cohen's $d$ is when you're running a $t$-test, and the good news is that the pingouin `ttest()` function we saw already output the cohen's d for the given test!\n", "\n", "[^dprime]: It is no accident that cohen's d measure looks and sounds a lot like d' which we will cover in the next chapter! They measure roughly the same thing!" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "tags": [ "hide_cell" ] }, "outputs": [ { "data": { "application/papermill.record/text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
rough interpretation
d-value
about 0.2small effect
about 0.5moderate effect
about 0.8large effect
\n
", "application/papermill.record/text/plain": " rough interpretation\nd-value \nabout 0.2 small effect\nabout 0.5 moderate effect\nabout 0.8 large effect" }, "metadata": { "scrapbook": { "mime_prefix": "application/papermill.record/", "name": "effect_size_tab" } }, "output_type": "display_data" } ], "source": [ "effect_size_df=pd.DataFrame({\"d-value\": ['about 0.2', 'about 0.5', 'about 0.8'], \"rough interpretation\": ['small effect', 'moderate effect', 'large effect']}).set_index(\"d-value\")\n", "glue(\"effect_size_tab\", effect_size_df, display=False)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "```{glue:figure} effect_size_tab\n", ":figwidth: 550px\n", ":name: \"tab:effect_size\"\n", "\n", "A (very) rough guide to interpreting Cohen's $d$. My personal recommendation is to not use these blindly. The $d$ statistic has a natural interpretation in and of itself: it redescribes the different in means as the number of standard deviations that separates those means. So it's generally a good idea to think about what that means in practical terms. In some contexts a \\\"small\\\" effect could be of big practical importance. In other situations a \\\"large\\\" effect may not be all that interesting.\n", "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Cohen's $d$ from one sample\n", "\n", "The simplest situation to consider is the one corresponding to a one-sample $t$-test. In this case, the one sample mean $\\bar{X}$ and one (hypothesised) population mean $\\mu_o$ to compare it to. Not only that, there's really only one sensible way to estimate the population standard deviation: we just use our usual estimate $\\hat{\\sigma}$. Therefore, we end up with the following as the only way to calculate $d$, \n", "$\n", "d = \\frac{\\bar{X} - \\mu_0}{\\hat{\\sigma}}\n", "$\n", "\n", "First lets check the output of the t-test again for Dr. Zeppo's class (the one sample t-test):" ] }, { "cell_type": "code", "execution_count": 93, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Tdoftailp-valCI95%cohen-dBF10power
T-test2.25519two-sided0.036145[0.34, 9.26]0.5041.7950.571
\n", "
" ], "text/plain": [ " T dof tail p-val CI95% cohen-d BF10 power\n", "T-test 2.255 19 two-sided 0.036145 [0.34, 9.26] 0.504 1.795 0.571" ] }, "execution_count": 93, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pg.ttest(x=zeppo_df.grades,y=67.5)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "And here is how to use the pingouin effect size function:" ] }, { "cell_type": "code", "execution_count": 92, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.5041691240370938" ] }, "execution_count": 92, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pg.compute_effsize(x=zeppo_df.grades,y=67.5, eftype='cohen')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Yep, same number. Overall, then, the psychology students in Dr Zeppo's class are achieving grades (mean = 72.3\\%) that are about .5 standard deviations higher than the level that you'd expect (67.5\\%) if they were performing at the same level as other students. Judged against Cohen's rough guide, this is a moderate effect size." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Cohen's $d$ from a Student $t$ test\n", "\n", "The majority of discussions of Cohen's $d$ focus on a situation that is analogous to Student's independent samples $t$ test, and it's in this context that the story becomes messier, since there are several different versions of $d$ that you might want to use in this situation, and you can use the `eftype` argument to the `compute_effsize()` function to pick the one you want (see the options [here](https://pingouin-stats.org/generated/pingouin.compute_effsize.html#pingouin.compute_effsize)). To understand why there are multiple versions of $d$, it helps to take the time to write down a formula that corresponds to the true population effect size $\\delta$. It's pretty straightforward, \n", "$\n", "\\delta = \\frac{\\mu_1 - \\mu_2}{\\sigma}\n", "$\n", "where, as usual, $\\mu_1$ and $\\mu_2$ are the population means corresponding to group 1 and group 2 respectively, and $\\sigma$ is the standard deviation (the same for both populations). The obvious way to estimate $\\delta$ is to do exactly the same thing that we did in the $t$-test itself: use the sample means as the top line, and a pooled standard deviation estimate for the bottom line:\n", "$\n", "d = \\frac{\\bar{X}_1 - \\bar{X}_2}{\\hat{\\sigma}_p}\n", "$\n", "where $\\hat\\sigma_p$ is the exact same pooled standard deviation measure that appears in the $t$-test. This is the most commonly used version of Cohen's $d$ when applied to the outcome of a Student $t$-test ,and is sometimes referred to as Hedges' $g$ statistic {cite}`Hedges1981`. It corresponds to `eftype = \"hedges\"` in the `compute_effsize()` function, and it's the default. \n", "\n", "However, there are other possibilities, which I'll briefly describe. Firstly, you may have reason to want to use only one of the two groups as the basis for calculating the standard deviation. This approach (often called Glass' $\\Delta$) only makes most sense when you have good reason to treat one of the two groups as a purer reflection of \"natural variation\" than the other. This can happen if, for instance, one of the two groups is a control group. If that's what you want, then use `method = \"glass\"` when using `compute_effsize()`. Note that the pingouin version of this function uses the group with the lowest variance for this calculation rather than letting you choose. \n", "\n", "In any case, ignoring all those variations that you could make use of if you wanted, let's have a look at how to calculate the default version." ] }, { "cell_type": "code", "execution_count": 94, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Tdoftailp-valCI95%cohen-dBF10power
T-test-2.1231two-sided0.04[-10.76, -0.2]0.741.7550.54
\n", "
" ], "text/plain": [ " T dof tail p-val CI95% cohen-d BF10 power\n", "T-test -2.12 31 two-sided 0.04 [-10.76, -0.2] 0.74 1.755 0.54" ] }, "execution_count": 94, "metadata": {}, "output_type": "execute_result" } ], "source": [ "group1 = harpo_df[harpo_df['tutor']==\"Bernadette\"].grade\n", "group2 = harpo_df[harpo_df['tutor']==\"Anastasia\"].grade\n", "\n", "pg.ttest(x=group1, y=group2, correction=False).round(2)" ] }, { "cell_type": "code", "execution_count": 107, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Different versions\n", "----\n", "Cohens: -0.7395614040382655\n", "Hedges: -0.7215233210129419\n", "Glass (using minimum variance group): -0.9485464839690173\n" ] } ], "source": [ "group1 = harpo_df[harpo_df['tutor']==\"Bernadette\"].grade\n", "group2 = harpo_df[harpo_df['tutor']==\"Anastasia\"].grade\n", "\n", "print(\"Different versions\")\n", "print(\"----\")\n", "print(\"Cohens:\",pg.compute_effsize(x=group1,y=group2, eftype='cohen'))\n", "print(\"Hedges:\",pg.compute_effsize(x=group1,y=group2, eftype='hedges'))\n", "print(\"Glass (using minimum variance group):\",pg.compute_effsize(x=group1,y=group2, eftype='glass'))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Cohen's $d$ from a Welch test\n", "\n", "Suppose the situation you're in is more like the Welch test: you still have two independent samples, but you no longer believe that the corresponding populations have equal variances. When this happens, we have to redefine what we mean by the population effect size. I'll refer to this new measure as $\\delta^\\prime$, so as to keep it distinct from the measure $\\delta$ which we defined previously. What {cite}`Cohen1988` suggests is that we could define our new population effect size by averaging the two population variances. What this means is that we get:\n", "$\n", "\\delta^\\prime = \\frac{\\mu_1 - \\mu_2}{\\sigma^\\prime}\n", "$\n", "where \n", "$\n", "\\sigma^\\prime = \\sqrt{\\displaystyle{\\frac{ {\\sigma_1}^2 + {\\sigma_2}^2}{2}}}\n", "$\n", "This seems quite reasonable, but notice that none of the measures that we've discussed so far are attempting to estimate this new quantity. It might just be my own ignorance of the topic, but I'm only aware of one version of Cohen's $d$ that actually estimates the unequal-variance effect size $\\delta^\\prime$ rather than the equal-variance effect size $\\delta$.\n", "All we do to calculate $d$ for this version (`method = \"unequal\"`) is substitute the sample means $\\bar{X}_1$ and $\\bar{X}_2$ and the corrected sample standard deviations $\\hat{\\sigma}_1$ and $\\hat{\\sigma}_2$ into the equation for $\\delta^\\prime$. This gives us the following equation for $d$, \n", "$\n", "d = \\frac{\\bar{X}_1 - \\bar{X}_2}{\\sqrt{\\displaystyle{\\frac{ {\\hat\\sigma_1}^2 + {\\hat\\sigma_2}^2}{2}}}}\n", "$\n", "as our estimate of the effect size. This version is not computed by the current version of pingouin so you'll have to implement it by hand if you want to use it." ] }, { "cell_type": "code", "execution_count": 108, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Tdoftailp-valCI95%cohen-dBF10power
T-test-2.03423.02two-sided0.05361[-11.05, 0.09]0.741.5560.536
\n", "
" ], "text/plain": [ " T dof tail p-val CI95% cohen-d BF10 \\\n", "T-test -2.034 23.02 two-sided 0.05361 [-11.05, 0.09] 0.74 1.556 \n", "\n", " power \n", "T-test 0.536 " ] }, "execution_count": 108, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pg.ttest(x=group1,y=group2, correction=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Cohen's $d$ from a paired-samples test\n", "\n", "\n", "Finally, what should we do for a paired samples $t$-test? In this case, the answer depends on what it is you're trying to do. *If* you want to measure your effect sizes relative to the distribution of difference scores, the measure of $d$ that you calculate is just (`method = \"paired\"`)\n", "$\n", "d = \\frac{\\bar{D}}{\\hat{\\sigma}_D}\n", "$\n", "where $\\hat{\\sigma}_D$ is the estimate of the standard deviation of the differences. The calculation here is pretty straightforward. What we see is that the overall effect of the differences size is quite large ($d$>1.0)." ] }, { "cell_type": "code", "execution_count": 120, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "1.4479515277482184" ] }, "execution_count": 120, "metadata": {}, "output_type": "execute_result" } ], "source": [ "chico_df.improvement.mean()/chico_df.improvement.std()" ] }, { "cell_type": "code", "execution_count": 117, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Tdoftailp-valCI95%cohen-dBF10power
T-test6.4819two-sided0.0[0.95, 1.86]1.455991.5771.0
\n", "
" ], "text/plain": [ " T dof tail p-val CI95% cohen-d BF10 power\n", "T-test 6.48 19 two-sided 0.0 [0.95, 1.86] 1.45 5991.577 1.0" ] }, "execution_count": 117, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pg.ttest(x=chico_df.improvement, y=0).round(2)" ] }, { "cell_type": "code", "execution_count": 116, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Different versions\n", "----\n", "Cohens: 1.4479515277482184\n", "Hedges: 1.4479515277482184\n", "Glass (using minimum variance group): 1.4479515277482184\n" ] } ], "source": [ "print(\"Different versions\")\n", "print(\"----\")\n", "print(\"Cohens:\",pg.compute_effsize(x=chico_df.improvement,y=0, eftype='cohen'))\n", "print(\"Hedges:\",pg.compute_effsize(x=chico_df.improvement,y=0, eftype='hedges'))\n", "print(\"Glass (using minimum variance group):\",pg.compute_effsize(x=chico_df.improvement,y=0, eftype='glass'))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The only wrinkle is figuring out whether this is the measure you want or not. To the extent that you care about the practical consequences of your research, you often want to measure the effect size relative to the *original* variables, not the *difference* scores (e.g., the 1\\% improvement in Dr Chico's class is pretty small when measured against the amount of between-student variation in grades), in which case you use the same versions of Cohen's $d$ that you would use for a Student or Welch test. For instance, when we do that for Dr Chico's class, \n", "\n" ] }, { "cell_type": "code", "execution_count": 128, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.21579282752456122" ] }, "execution_count": 128, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pg.compute_effsize(x=chico_df.grade_test2, y=chico_df.grade_test1, paired=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "What we see is that the overall effect size is quite small, when assessed on the scale of the original variables." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Checking the normality of a sample\n", "\n", "All of the tests that we have discussed so far in this chapter have assumed that the data are normally distributed. This assumption is often quite reasonable, because the central limit theorem does tend to ensure that many real world quantities are normally distributed: any time that you suspect that your variable is *actually* an average of lots of different things, there's a pretty good chance that it will be normally distributed; or at least close enough to normal that you can get away with using $t$-tests. However, life doesn't come with guarantees; and besides, there are lots of ways in which you can end up with variables that are highly non-normal. For example, any time you think that your variable is actually the minimum of lots of different things, there's a very good chance it will end up quite skewed. In psychology, response time (RT) data is a good example of this. If you suppose that there are lots of things that could trigger a response from a human participant, then the actual response will occur the first time one of these trigger events occurs. (This is a massive oversimplification.) This means that RT data are systematically non-normal. Okay, so if normality is assumed by all the tests, and is mostly but not always satisfied (at least approximately) by real world data, how can we check the normality of a sample? In this section I discuss two methods: QQ plots, and the Shapiro-Wilk test." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### QQ plots" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "One way to check whether a sample violates the normality assumption is to draw a **_\"quantile-quantile\" plot_** (QQ plot). This allows you to visually check whether you're seeing any systematic violations. In a QQ plot, each observation is plotted as a single dot. The x co-ordinate is the theoretical quantile that the observation should fall in, if the data were normally distributed (with mean and variance estimated from the sample) and on the y co-ordinate is the actual quantile of the data within the sample. If the data are normal, the dots should form a straight line. For instance, lets see what happens if we generate data by sampling from a normal distribution, and then drawing a QQ plot using the python function `qqplot()` from the statsmodels package ([documentation here](https://www.statsmodels.org/stable/generated/statsmodels.graphics.gofplots.qqplot.html)). The `qqplot()` function has a few arguments, but the only one we really need to care about here is `data`, a vector specifying the data whose normality we're interested in checking. Here's the Python commands:" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "tags": [ "hide_cell" ] }, "outputs": [ { "data": { "application/papermill.record/image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAFgCAYAAACFYaNMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAD+BJREFUeJzt3V+MXPV1wPHvWl4CSks3UdOEZHFpGnxCKQWaABKGtCoOKhESRSlY5SFFBUwEbXGFhVRCZECqeahq3PxxkQDLBAJEwQJVuFRt7D44hhIlDaUFckpVE8lgFKXVCsVKYY3dh5lxhunaO7vsnTO78/1Ilnbuzp17Bslf/7gzc2fs8OHDSJIGb1n1AJI0qgywJBUxwJJUxABLUhEDLElFDLAkFTHAklTEAEtSEQMsSUUMsCQVWV49QL8iYjkwCezLzIPV80jSu7VoAkwrvnt37txZPYckHc3YXO7sKQhJKmKAJamIAZakIgZYkooYYEkqYoAlqYgBlqQiBliSihhgSSpigCWpiAGWpCIGWJKKGGBJKmKAJamIAdbImj54qHoEYHjm0OAtpusBSwtqfPkybt2yp3oMNt6wqnoEFXEFLElFDLAkFTHAklTEAEtSEQMsSUUMsCQVMcCSVMQAS1IRAyxJRQywJBUxwJJUxABLUhEDLElFDLAkFTHAklTEAEtSEQMsSUUMsCQVMcCSVMQAS1IRAyxJRQywJBUxwJJUxABLUhEDLElFDLAkFTHAklRkeZMPHhEbgCvbN3dk5i0RsRW4EDjQ3n5HZj7e5BySNIwaC3BErAYuBs4GDgN/HxGXA+cAn8rM/U0dW5IWgyZXwPuBmzPzLYCIeAlY0f5zb0SsAB6ntQI+1L1jREwAEz2PN9ngrJI0cI0FODNf6PwcEacCa4ALgN8Grgd+AjwJXAPc27P7OmBDU7NJ0jBo9BwwQEScDuwA1mdmApd3/e7LwOf4/wHeDGzr2TYJ7G5uUkkarKZfhFsFbAfWZeajEXEGsDIzt7fvMgZM9+6XmVPAVM9jNTmqJA1cky/CnQw8AazJzF3tzWPA5ojYResUxFrggaZmkKRh1uQKeD1wPLCpa/V6D3AXsAcYB7Zn5iMNziBJQ6vJF+FuAm46yq+3NHVcSVos/CScJBUxwJJUxABLUhEDLElFDLAkFTHAklTEAEtSEQMsSUUMsCQVMcCSVMQAS1IRAyxJRQywJBUxwJJUxABLUhEDLElFDLAkFTHAklTEAEtSEQMsSUUMsCQVMcCSVMQAS1IRAyxJRQywJBUxwJJUxABLUhEDLElFDLAkFTHAklTEAEtSEQMsSUUMsCQVMcCSVMQAS1IRAyxJRQywJBUxwJJUxABLUhEDLElFDLAkFTHAklTEAEtSEQMsSUWWN/ngEbEBuLJ9c0dm3hIRq4FNwAnANzLztiZnkKRh1dgKuB3ai4GzgbOAT0TEHwBbgcuA04BzIuKSpmaQpGHW5Ap4P3BzZr4FEBEvASuBlzNzb3vbQ8AVwFPdO0bEBDDR83iTDc4qSQPXWIAz84XOzxFxKrAG+BKtMHfsZ+awrgM2NDWb6k0fPMT4cl+C0Ghr9BwwQEScDuwA1gPTQPTc5dAMu20GtvVsmwR2L/R8qjG+fBm3btlTOsPGG1aVHl9q+kW4VcB2YF1mPhoRvwV8qOsuJwGv9e6XmVPAVM9jNTmqJA1cYwGOiJOBJ4A1mbmrvfnZ1q/iY8Be4CpaL8pJ0shpcgW8Hjge2NS1er0HuJrWqvh44O+AxxqcQZKGVpMvwt0E3HSUX5/Z1HElabHwZWhJKmKAJamIAZakIgZYkooYYEkqYoClYtMHZ/ow6OANyxyjpPGPIks6tmH4WDb40ewKroAlqYgBlqQiBliSihhgSSpigCWpiAGWpCIGWJKKGGBJKmKAJamIAZakIgZYkooYYEkqYoAlqYgBlqQiBliSihhgSSpigCWpiAGWpCIGWJKKGGBJKmKAJamIAZakIgZYkooYYEkqYoAlqYgBlqQiBliSihhgSSpigCWpiAGWpCIGWJKK9BXgiLh/hm3bF34cSRody4/1y4j4G+AjwIUR8YGuX40DH29yMEla6o4ZYOB+4NeBM4HuFe9B4JmmhpKkUXDMAGfmd4HvRsS3MnPfgGaSpJEw2wq441cj4kHg/cBYZ2Nm/kYjU0nSCOg3wF8FtgL/AhxubhxJGh39BvitzNw0nwNExInA08ClmflKRGwFLgQOtO9yR2Y+Pp/HlqTFrN8A/3tEnJGZ/zaXB4+I84B7gZVdm88BPpWZ++fyWJK01PQb4I8C34uIHwI/7Wzs4xzwdcCNwIMAEfFeYAVwb0SsAB6ntQI+NNfBJWmx6zfAX5jPg2fmtQAR0dn0QWAXcD3wE+BJ4Bpaq+QjImICmOh5uMn5zCBJw6rfAM/p1MPRZOZ/AZd3bkfEl4HP0RNgYB2wYSGOKUnDqt8A/5jWux/G+Nm7IPYzx1VpRJwBrMzMzoc6xoDpGe66GdjWs20S2D2X40nSMOsrwJl55JoRETEOfJbWp+PmagzYHBG7aJ2CWAs8MMPxpoCp7m1dpzEkaUmY89XQMnM6Mx8FPj2PfZ8H7gL2AC8Cz2XmI3N9HElaCvpaAUfE+7tujgGfBN7X70Ey85Sun7cAW/rdV5KWqvmcAwb4EfCnjUwkSSNizueAJUkLo99TEMuA9cAltK4F/A/Axsw82OBskrSk9buyvQv4HeCvgU3A+cBfNjWUJI2Cfs8B/y7wycycBoiIHcC/An/W1GCStNT1uwJe1okvQGa+ycwfoNCQmz7oZTekYdHvCvi5iLgb+Er79h8Dzzczkpo0vnwZt27ZUz0GG29YVT2CVK7fFfCNtN73+zTwz8AvAn/S1FCSNApm+1bk42hdKOfxzLy6vW0H8DbwRuPTSdISNtsK+E6g840WHdfRulTk7Q3NJEkjYbYAXwpclZk/6mzIzNdoXULy8qPuJUma1WwBfiszf9q7MTPfAN5sZiRJGg2zBfjtiPj53o3tbePNjCRJo2G2AD8C3Nf+LjfgyPe63QdsP+pekqRZzfY+4M3APcDrEfECrWCfBnyd1gt0kqR5OmaA299WvDYiNgK/CRwCvtN+IU6S9C70eznKV4BXGp1EkkaM1/mVpCIGWJKKGGBJKmKAJamIAZakIgZYkooYYEkqYoAlqYgBlqQiBliSihhgScBwfGP2MMwwSP1+K7KkJW4YvjF71L4t2xWwJBUxwJJUxABLUhEDLElFDLAkFTHAklTEAEtSEQMsSUUMsCQVMcCSVMQAS1IRAyxJRQywJBUxwJJUxABLUhEDLElFGr0ge0ScCDwNXJqZr0TEamATcALwjcy8rcnjS9Iwa2wFHBHnAd8GVrZvnwBsBS4DTgPOiYhLmjq+JA27JlfA1wE3Ag+2b58LvJyZewEi4iHgCuCp3h0jYgKY6Nk82dyokjR4jQU4M68FiIjOpg8D+7vusp+jR3UdsKGp2SRpGAzySznHZth2tK9A3Qxs69k2CexeyIEkqdIgA/wq8KGu2ycBr810x8ycAqa6t3WtpCVpSRhkgJ8FIiI+BuwFrqL1opwkjaSBvQ84M/8XuBrYDrwI/AB4bFDHl6Rh0/gKODNP6fp5J3Bm08eUpMXAT8JJUhEDLElFDLAkFTHAklTEAEtSEQMsSUUMsCQVMcCSVMQAS1IRAyxJRQywJBUxwJJUxABLUhEDLElFDLAkFTHAklTEAEtSEQMsSUUMsCQVMcCSVMQAS1IRAyxJRQywJBUxwJJUxABLUhEDLElFDLAkFTHAklTEAEtSEQMsSUUMsCQVMcCSVMQAS1IRAyxJRQywJBUxwJJUxABLUhEDLElFDLAkFTHAklTEAEtSEQMsSUUMsCQVMcCSVGR5xUEjYhfwQWC6ven6zHy2YhZJqjLwAEfEGPBxYEVmHhz08SVpWFSsgAM4DDwVEb8E3JuZX3nHHSImgIme/SYHNJ8kDUTFOeD3ATuB3wMuAj4fEZ/uuc86YG/Pn92DHFKSmjbwFXBmPgM80755ICLuBz4D/GPX3TYD23p2ncQIS1pCKs4BXwC8JzN3tjeN8bMX4wDIzClgqme/wQwoSQNScQ54ArgzIs4HxoE/BD5fMIcklRr4OeDMfBLYAXwf+B6wtX1aQpJGSsn7gDPzi8AXK44tScPCT8JJUhEDLElFDLAkFTHAklTEAEtSEQMsSUUMsCQVMcCSVMQAS1IRAyxJRQywJBUxwJJUxABLUhEDLElFDLAkFVnyAZ4+eKh6BGB45pCG2bD8PRnUHCUXZB+k8eXLuHXLnuox2HjDquoRpKE3an9fl/wKWJKGlQGWpCIGWJKKGGBJKmKAJamIAZakIgZYkooYYEkqYoAlqYgBlqQiBliSihhgSSpigCWpiAGWpCIGWJKKGGBJKmKAJamIAZakIgZYkooYYEkqYoAHZFi+7VXS8Fjy34o8LEbt214lzc4VsCQVMcCSVMQAS1IRAyxJRQywJBUpeRdERFwF3AYcB9ydmV+tmEOSKg18BRwRHwH+ArgAOBNYGxG/Nug5JKlaxQp4NbArM/8HICIeA34fuLNzh4iYACZ69vtlgNdff33OBzzwxo/nO+uC2bdvn3MM2RzDMINzDN8MnTnm46KLLjoF2JeZB/u5/9jhw4fndaD5iog/B96bmbe1b18LnJuZa7vuczuwYaCDSdLC+JXMfKWfO1asgMdm2Nb7Od3NwLaebccBHwVeBt5e+LEGYhLYDVwIzO+f2OHk81pcfF7N6vvYFQF+ldZ/oI6TgNe675CZU8DUDPv+R4NzNS4iOj/u6/dfyMXA57W4+LyGR0WAvwXcHhEfAA4AnwXWHnsXSVp6Bv4uiMx8FfgC8E/Ac8DDmfmdQc8hSdVK3gecmQ8DD1ccW5KGhZ+EG6wp4A5mPr+9mPm8Fhef15AY+NvQJEktroAlqYgBlqQiBliSividcAMWEatofdJvHPhv4I8y84e1Uy2ciLgTOJSZt1fP8m4s5Sv2RcSJwNPApYvlAwuziYgNwJXtmzsy85bKefrlCnjwvg5ck5lntX/+UvE8CyIifiEi7gfWV8/ybi3lK/ZFxHnAt4GV1bMslIhYDVwMnA2cBXwiIi6vnao/BniAIuI9wG2Z+Xx70/PAisKRFtJltK7T8VfVgyyAI1fsy8wDQOeKfUvBdcCN9Hz8f5HbD9ycmW9l5jTwEovk75WnIAYoM98EHgKIiGXA7cATlTMtlMz8Ghy5kt1i92Faf6k79gPnFs2yoDLzWnjHdRMWvcx8ofNzRJwKrAHOr5uofwa4IRFxBXB3z+YfZObqiDgOeIDWf/+NAx/uXTjW86qYpyH9XLFPQyYiTgd2AOsz8+XqefphgBuSmd8Evtm7PSJ+DvhbWi/AXdb+X6ZF42jPa4mZ9Yp9Gi7tF7e3A+sy89HqefplgAfvIeA/gesz048hDiev2LeIRMTJtE7lrcnMXdXzzIUBHqCIOJvWi1UvAt9vn4d7LTM/UzqY3iEzX42IzhX7jgPu84p9Q209cDywqevc9j2ZeU/dSP3xWhCSVMS3oUlSEQMsSUUMsCQVMcCSVMQAS1IRAyxJRQywJBX5P9wBcggjR9aFAAAAAElFTkSuQmCC\n", "application/papermill.record/text/plain": "
" }, "metadata": { "scrapbook": { "mime_prefix": "application/papermill.record/", "name": "normaldata_fig" } }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAFgCAYAAACFYaNMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAD+BJREFUeJzt3V+MXPV1wPHvWl4CSks3UdOEZHFpGnxCKQWaABKGtCoOKhESRSlY5SFFBUwEbXGFhVRCZECqeahq3PxxkQDLBAJEwQJVuFRt7D44hhIlDaUFckpVE8lgFKXVCsVKYY3dh5lxhunaO7vsnTO78/1Ilnbuzp17Bslf/7gzc2fs8OHDSJIGb1n1AJI0qgywJBUxwJJUxABLUhEDLElFDLAkFTHAklTEAEtSEQMsSUUMsCQVWV49QL8iYjkwCezLzIPV80jSu7VoAkwrvnt37txZPYckHc3YXO7sKQhJKmKAJamIAZakIgZYkooYYEkqYoAlqYgBlqQiBliSihhgSSpigCWpiAGWpCIGWJKKGGBJKmKAJamIAdbImj54qHoEYHjm0OAtpusBSwtqfPkybt2yp3oMNt6wqnoEFXEFLElFDLAkFTHAklTEAEtSEQMsSUUMsCQVMcCSVMQAS1IRAyxJRQywJBUxwJJUxABLUhEDLElFDLAkFTHAklTEAEtSEQMsSUUMsCQVMcCSVMQAS1IRAyxJRQywJBUxwJJUxABLUhEDLElFDLAkFTHAklRkeZMPHhEbgCvbN3dk5i0RsRW4EDjQ3n5HZj7e5BySNIwaC3BErAYuBs4GDgN/HxGXA+cAn8rM/U0dW5IWgyZXwPuBmzPzLYCIeAlY0f5zb0SsAB6ntQI+1L1jREwAEz2PN9ngrJI0cI0FODNf6PwcEacCa4ALgN8Grgd+AjwJXAPc27P7OmBDU7NJ0jBo9BwwQEScDuwA1mdmApd3/e7LwOf4/wHeDGzr2TYJ7G5uUkkarKZfhFsFbAfWZeajEXEGsDIzt7fvMgZM9+6XmVPAVM9jNTmqJA1cky/CnQw8AazJzF3tzWPA5ojYResUxFrggaZmkKRh1uQKeD1wPLCpa/V6D3AXsAcYB7Zn5iMNziBJQ6vJF+FuAm46yq+3NHVcSVos/CScJBUxwJJUxABLUhEDLElFDLAkFTHAklTEAEtSEQMsSUUMsCQVMcCSVMQAS1IRAyxJRQywJBUxwJJUxABLUhEDLElFDLAkFTHAklTEAEtSEQMsSUUMsCQVMcCSVMQAS1IRAyxJRQywJBUxwJJUxABLUhEDLElFDLAkFTHAklTEAEtSEQMsSUUMsCQVMcCSVMQAS1IRAyxJRQywJBUxwJJUxABLUhEDLElFDLAkFTHAklTEAEtSEQMsSUWWN/ngEbEBuLJ9c0dm3hIRq4FNwAnANzLztiZnkKRh1dgKuB3ai4GzgbOAT0TEHwBbgcuA04BzIuKSpmaQpGHW5Ap4P3BzZr4FEBEvASuBlzNzb3vbQ8AVwFPdO0bEBDDR83iTDc4qSQPXWIAz84XOzxFxKrAG+BKtMHfsZ+awrgM2NDWb6k0fPMT4cl+C0Ghr9BwwQEScDuwA1gPTQPTc5dAMu20GtvVsmwR2L/R8qjG+fBm3btlTOsPGG1aVHl9q+kW4VcB2YF1mPhoRvwV8qOsuJwGv9e6XmVPAVM9jNTmqJA1cYwGOiJOBJ4A1mbmrvfnZ1q/iY8Be4CpaL8pJ0shpcgW8Hjge2NS1er0HuJrWqvh44O+AxxqcQZKGVpMvwt0E3HSUX5/Z1HElabHwZWhJKmKAJamIAZakIgZYkooYYEkqYoClYtMHZ/ow6OANyxyjpPGPIks6tmH4WDb40ewKroAlqYgBlqQiBliSihhgSSpigCWpiAGWpCIGWJKKGGBJKmKAJamIAZakIgZYkooYYEkqYoAlqYgBlqQiBliSihhgSSpigCWpiAGWpCIGWJKKGGBJKmKAJamIAZakIgZYkooYYEkqYoAlqYgBlqQiBliSihhgSSpigCWpiAGWpCIGWJKK9BXgiLh/hm3bF34cSRody4/1y4j4G+AjwIUR8YGuX40DH29yMEla6o4ZYOB+4NeBM4HuFe9B4JmmhpKkUXDMAGfmd4HvRsS3MnPfgGaSpJEw2wq441cj4kHg/cBYZ2Nm/kYjU0nSCOg3wF8FtgL/AhxubhxJGh39BvitzNw0nwNExInA08ClmflKRGwFLgQOtO9yR2Y+Pp/HlqTFrN8A/3tEnJGZ/zaXB4+I84B7gZVdm88BPpWZ++fyWJK01PQb4I8C34uIHwI/7Wzs4xzwdcCNwIMAEfFeYAVwb0SsAB6ntQI+NNfBJWmx6zfAX5jPg2fmtQAR0dn0QWAXcD3wE+BJ4Bpaq+QjImICmOh5uMn5zCBJw6rfAM/p1MPRZOZ/AZd3bkfEl4HP0RNgYB2wYSGOKUnDqt8A/5jWux/G+Nm7IPYzx1VpRJwBrMzMzoc6xoDpGe66GdjWs20S2D2X40nSMOsrwJl55JoRETEOfJbWp+PmagzYHBG7aJ2CWAs8MMPxpoCp7m1dpzEkaUmY89XQMnM6Mx8FPj2PfZ8H7gL2AC8Cz2XmI3N9HElaCvpaAUfE+7tujgGfBN7X70Ey85Sun7cAW/rdV5KWqvmcAwb4EfCnjUwkSSNizueAJUkLo99TEMuA9cAltK4F/A/Axsw82OBskrSk9buyvQv4HeCvgU3A+cBfNjWUJI2Cfs8B/y7wycycBoiIHcC/An/W1GCStNT1uwJe1okvQGa+ycwfoNCQmz7oZTekYdHvCvi5iLgb+Er79h8Dzzczkpo0vnwZt27ZUz0GG29YVT2CVK7fFfCNtN73+zTwz8AvAn/S1FCSNApm+1bk42hdKOfxzLy6vW0H8DbwRuPTSdISNtsK+E6g840WHdfRulTk7Q3NJEkjYbYAXwpclZk/6mzIzNdoXULy8qPuJUma1WwBfiszf9q7MTPfAN5sZiRJGg2zBfjtiPj53o3tbePNjCRJo2G2AD8C3Nf+LjfgyPe63QdsP+pekqRZzfY+4M3APcDrEfECrWCfBnyd1gt0kqR5OmaA299WvDYiNgK/CRwCvtN+IU6S9C70eznKV4BXGp1EkkaM1/mVpCIGWJKKGGBJKmKAJamIAZakIgZYkooYYEkqYoAlqYgBlqQiBliSihhgScBwfGP2MMwwSP1+K7KkJW4YvjF71L4t2xWwJBUxwJJUxABLUhEDLElFDLAkFTHAklTEAEtSEQMsSUUMsCQVMcCSVMQAS1IRAyxJRQywJBUxwJJUxABLUhEDLElFGr0ge0ScCDwNXJqZr0TEamATcALwjcy8rcnjS9Iwa2wFHBHnAd8GVrZvnwBsBS4DTgPOiYhLmjq+JA27JlfA1wE3Ag+2b58LvJyZewEi4iHgCuCp3h0jYgKY6Nk82dyokjR4jQU4M68FiIjOpg8D+7vusp+jR3UdsKGp2SRpGAzySznHZth2tK9A3Qxs69k2CexeyIEkqdIgA/wq8KGu2ycBr810x8ycAqa6t3WtpCVpSRhkgJ8FIiI+BuwFrqL1opwkjaSBvQ84M/8XuBrYDrwI/AB4bFDHl6Rh0/gKODNP6fp5J3Bm08eUpMXAT8JJUhEDLElFDLAkFTHAklTEAEtSEQMsSUUMsCQVMcCSVMQAS1IRAyxJRQywJBUxwJJUxABLUhEDLElFDLAkFTHAklTEAEtSEQMsSUUMsCQVMcCSVMQAS1IRAyxJRQywJBUxwJJUxABLUhEDLElFDLAkFTHAklTEAEtSEQMsSUUMsCQVMcCSVMQAS1IRAyxJRQywJBUxwJJUxABLUhEDLElFDLAkFTHAklTEAEtSEQMsSUUMsCQVMcCSVGR5xUEjYhfwQWC6ven6zHy2YhZJqjLwAEfEGPBxYEVmHhz08SVpWFSsgAM4DDwVEb8E3JuZX3nHHSImgIme/SYHNJ8kDUTFOeD3ATuB3wMuAj4fEZ/uuc86YG/Pn92DHFKSmjbwFXBmPgM80755ICLuBz4D/GPX3TYD23p2ncQIS1pCKs4BXwC8JzN3tjeN8bMX4wDIzClgqme/wQwoSQNScQ54ArgzIs4HxoE/BD5fMIcklRr4OeDMfBLYAXwf+B6wtX1aQpJGSsn7gDPzi8AXK44tScPCT8JJUhEDLElFDLAkFTHAklTEAEtSEQMsSUUMsCQVMcCSVMQAS1IRAyxJRQywJBUxwJJUxABLUhEDLElFDLAkFVnyAZ4+eKh6BGB45pCG2bD8PRnUHCUXZB+k8eXLuHXLnuox2HjDquoRpKE3an9fl/wKWJKGlQGWpCIGWJKKGGBJKmKAJamIAZakIgZYkooYYEkqYoAlqYgBlqQiBliSihhgSSpigCWpiAGWpCIGWJKKGGBJKmKAJamIAZakIgZYkooYYEkqYoAHZFi+7VXS8Fjy34o8LEbt214lzc4VsCQVMcCSVMQAS1IRAyxJRQywJBUpeRdERFwF3AYcB9ydmV+tmEOSKg18BRwRHwH+ArgAOBNYGxG/Nug5JKlaxQp4NbArM/8HICIeA34fuLNzh4iYACZ69vtlgNdff33OBzzwxo/nO+uC2bdvn3MM2RzDMINzDN8MnTnm46KLLjoF2JeZB/u5/9jhw4fndaD5iog/B96bmbe1b18LnJuZa7vuczuwYaCDSdLC+JXMfKWfO1asgMdm2Nb7Od3NwLaebccBHwVeBt5e+LEGYhLYDVwIzO+f2OHk81pcfF7N6vvYFQF+ldZ/oI6TgNe675CZU8DUDPv+R4NzNS4iOj/u6/dfyMXA57W4+LyGR0WAvwXcHhEfAA4AnwXWHnsXSVp6Bv4uiMx8FfgC8E/Ac8DDmfmdQc8hSdVK3gecmQ8DD1ccW5KGhZ+EG6wp4A5mPr+9mPm8Fhef15AY+NvQJEktroAlqYgBlqQiBliSividcAMWEatofdJvHPhv4I8y84e1Uy2ciLgTOJSZt1fP8m4s5Sv2RcSJwNPApYvlAwuziYgNwJXtmzsy85bKefrlCnjwvg5ck5lntX/+UvE8CyIifiEi7gfWV8/ybi3lK/ZFxHnAt4GV1bMslIhYDVwMnA2cBXwiIi6vnao/BniAIuI9wG2Z+Xx70/PAisKRFtJltK7T8VfVgyyAI1fsy8wDQOeKfUvBdcCN9Hz8f5HbD9ycmW9l5jTwEovk75WnIAYoM98EHgKIiGXA7cATlTMtlMz8Ghy5kt1i92Faf6k79gPnFs2yoDLzWnjHdRMWvcx8ofNzRJwKrAHOr5uofwa4IRFxBXB3z+YfZObqiDgOeIDWf/+NAx/uXTjW86qYpyH9XLFPQyYiTgd2AOsz8+XqefphgBuSmd8Evtm7PSJ+DvhbWi/AXdb+X6ZF42jPa4mZ9Yp9Gi7tF7e3A+sy89HqefplgAfvIeA/gesz048hDiev2LeIRMTJtE7lrcnMXdXzzIUBHqCIOJvWi1UvAt9vn4d7LTM/UzqY3iEzX42IzhX7jgPu84p9Q209cDywqevc9j2ZeU/dSP3xWhCSVMS3oUlSEQMsSUUMsCQVMcCSVMQAS1IRAyxJRQywJBX5P9wBcggjR9aFAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "normal_data = np.random.normal(0,1,100)\n", "fig=sns.displot(normal_data,kde=False)\n", "glue(\"normaldata_fig\",fig.fig,display=False)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "```{glue:figure} normaldata_fig\n", ":figwidth: 550px\n", ":name: \"fig:normal_data\"\n", "\n", "Histogram of `normal_data`, a normally distributed sample with 100 observations.\n", "```" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "tags": [ "hide_cell" ] }, "outputs": [ { "data": { "application/papermill.record/image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAFgCAYAAACFYaNMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAD+BJREFUeJzt3V+MXPV1wPHvWl4CSks3UdOEZHFpGnxCKQWaABKGtCoOKhESRSlY5SFFBUwEbXGFhVRCZECqeahq3PxxkQDLBAJEwQJVuFRt7D44hhIlDaUFckpVE8lgFKXVCsVKYY3dh5lxhunaO7vsnTO78/1Ilnbuzp17Bslf/7gzc2fs8OHDSJIGb1n1AJI0qgywJBUxwJJUxABLUhEDLElFDLAkFTHAklTEAEtSEQMsSUUMsCQVWV49QL8iYjkwCezLzIPV80jSu7VoAkwrvnt37txZPYckHc3YXO7sKQhJKmKAJamIAZakIgZYkooYYEkqYoAlqYgBlqQiBliSihhgSSpigCWpiAGWpCIGWJKKGGBJKmKAJamIAdbImj54qHoEYHjm0OAtpusBSwtqfPkybt2yp3oMNt6wqnoEFXEFLElFDLAkFTHAklTEAEtSEQMsSUUMsCQVMcCSVMQAS1IRAyxJRQywJBUxwJJUxABLUhEDLElFDLAkFTHAklTEAEtSEQMsSUUMsCQVMcCSVMQAS1IRAyxJRQywJBUxwJJUxABLUhEDLElFDLAkFTHAklRkeZMPHhEbgCvbN3dk5i0RsRW4EDjQ3n5HZj7e5BySNIwaC3BErAYuBs4GDgN/HxGXA+cAn8rM/U0dW5IWgyZXwPuBmzPzLYCIeAlY0f5zb0SsAB6ntQI+1L1jREwAEz2PN9ngrJI0cI0FODNf6PwcEacCa4ALgN8Grgd+AjwJXAPc27P7OmBDU7NJ0jBo9BwwQEScDuwA1mdmApd3/e7LwOf4/wHeDGzr2TYJ7G5uUkkarKZfhFsFbAfWZeajEXEGsDIzt7fvMgZM9+6XmVPAVM9jNTmqJA1cky/CnQw8AazJzF3tzWPA5ojYResUxFrggaZmkKRh1uQKeD1wPLCpa/V6D3AXsAcYB7Zn5iMNziBJQ6vJF+FuAm46yq+3NHVcSVos/CScJBUxwJJUxABLUhEDLElFDLAkFTHAklTEAEtSEQMsSUUMsCQVMcCSVMQAS1IRAyxJRQywJBUxwJJUxABLUhEDLElFDLAkFTHAklTEAEtSEQMsSUUMsCQVMcCSVMQAS1IRAyxJRQywJBUxwJJUxABLUhEDLElFDLAkFTHAklTEAEtSEQMsSUUMsCQVMcCSVMQAS1IRAyxJRQywJBUxwJJUxABLUhEDLElFDLAkFTHAklTEAEtSEQMsSUWWN/ngEbEBuLJ9c0dm3hIRq4FNwAnANzLztiZnkKRh1dgKuB3ai4GzgbOAT0TEHwBbgcuA04BzIuKSpmaQpGHW5Ap4P3BzZr4FEBEvASuBlzNzb3vbQ8AVwFPdO0bEBDDR83iTDc4qSQPXWIAz84XOzxFxKrAG+BKtMHfsZ+awrgM2NDWb6k0fPMT4cl+C0Ghr9BwwQEScDuwA1gPTQPTc5dAMu20GtvVsmwR2L/R8qjG+fBm3btlTOsPGG1aVHl9q+kW4VcB2YF1mPhoRvwV8qOsuJwGv9e6XmVPAVM9jNTmqJA1cYwGOiJOBJ4A1mbmrvfnZ1q/iY8Be4CpaL8pJ0shpcgW8Hjge2NS1er0HuJrWqvh44O+AxxqcQZKGVpMvwt0E3HSUX5/Z1HElabHwZWhJKmKAJamIAZakIgZYkooYYEkqYoClYtMHZ/ow6OANyxyjpPGPIks6tmH4WDb40ewKroAlqYgBlqQiBliSihhgSSpigCWpiAGWpCIGWJKKGGBJKmKAJamIAZakIgZYkooYYEkqYoAlqYgBlqQiBliSihhgSSpigCWpiAGWpCIGWJKKGGBJKmKAJamIAZakIgZYkooYYEkqYoAlqYgBlqQiBliSihhgSSpigCWpiAGWpCIGWJKK9BXgiLh/hm3bF34cSRody4/1y4j4G+AjwIUR8YGuX40DH29yMEla6o4ZYOB+4NeBM4HuFe9B4JmmhpKkUXDMAGfmd4HvRsS3MnPfgGaSpJEw2wq441cj4kHg/cBYZ2Nm/kYjU0nSCOg3wF8FtgL/AhxubhxJGh39BvitzNw0nwNExInA08ClmflKRGwFLgQOtO9yR2Y+Pp/HlqTFrN8A/3tEnJGZ/zaXB4+I84B7gZVdm88BPpWZ++fyWJK01PQb4I8C34uIHwI/7Wzs4xzwdcCNwIMAEfFeYAVwb0SsAB6ntQI+NNfBJWmx6zfAX5jPg2fmtQAR0dn0QWAXcD3wE+BJ4Bpaq+QjImICmOh5uMn5zCBJw6rfAM/p1MPRZOZ/AZd3bkfEl4HP0RNgYB2wYSGOKUnDqt8A/5jWux/G+Nm7IPYzx1VpRJwBrMzMzoc6xoDpGe66GdjWs20S2D2X40nSMOsrwJl55JoRETEOfJbWp+PmagzYHBG7aJ2CWAs8MMPxpoCp7m1dpzEkaUmY89XQMnM6Mx8FPj2PfZ8H7gL2AC8Cz2XmI3N9HElaCvpaAUfE+7tujgGfBN7X70Ey85Sun7cAW/rdV5KWqvmcAwb4EfCnjUwkSSNizueAJUkLo99TEMuA9cAltK4F/A/Axsw82OBskrSk9buyvQv4HeCvgU3A+cBfNjWUJI2Cfs8B/y7wycycBoiIHcC/An/W1GCStNT1uwJe1okvQGa+ycwfoNCQmz7oZTekYdHvCvi5iLgb+Er79h8Dzzczkpo0vnwZt27ZUz0GG29YVT2CVK7fFfCNtN73+zTwz8AvAn/S1FCSNApm+1bk42hdKOfxzLy6vW0H8DbwRuPTSdISNtsK+E6g840WHdfRulTk7Q3NJEkjYbYAXwpclZk/6mzIzNdoXULy8qPuJUma1WwBfiszf9q7MTPfAN5sZiRJGg2zBfjtiPj53o3tbePNjCRJo2G2AD8C3Nf+LjfgyPe63QdsP+pekqRZzfY+4M3APcDrEfECrWCfBnyd1gt0kqR5OmaA299WvDYiNgK/CRwCvtN+IU6S9C70eznKV4BXGp1EkkaM1/mVpCIGWJKKGGBJKmKAJamIAZakIgZYkooYYEkqYoAlqYgBlqQiBliSihhgScBwfGP2MMwwSP1+K7KkJW4YvjF71L4t2xWwJBUxwJJUxABLUhEDLElFDLAkFTHAklTEAEtSEQMsSUUMsCQVMcCSVMQAS1IRAyxJRQywJBUxwJJUxABLUhEDLElFGr0ge0ScCDwNXJqZr0TEamATcALwjcy8rcnjS9Iwa2wFHBHnAd8GVrZvnwBsBS4DTgPOiYhLmjq+JA27JlfA1wE3Ag+2b58LvJyZewEi4iHgCuCp3h0jYgKY6Nk82dyokjR4jQU4M68FiIjOpg8D+7vusp+jR3UdsKGp2SRpGAzySznHZth2tK9A3Qxs69k2CexeyIEkqdIgA/wq8KGu2ycBr810x8ycAqa6t3WtpCVpSRhkgJ8FIiI+BuwFrqL1opwkjaSBvQ84M/8XuBrYDrwI/AB4bFDHl6Rh0/gKODNP6fp5J3Bm08eUpMXAT8JJUhEDLElFDLAkFTHAklTEAEtSEQMsSUUMsCQVMcCSVMQAS1IRAyxJRQywJBUxwJJUxABLUhEDLElFDLAkFTHAklTEAEtSEQMsSUUMsCQVMcCSVMQAS1IRAyxJRQywJBUxwJJUxABLUhEDLElFDLAkFTHAklTEAEtSEQMsSUUMsCQVMcCSVMQAS1IRAyxJRQywJBUxwJJUxABLUhEDLElFDLAkFTHAklTEAEtSEQMsSUUMsCQVMcCSVGR5xUEjYhfwQWC6ven6zHy2YhZJqjLwAEfEGPBxYEVmHhz08SVpWFSsgAM4DDwVEb8E3JuZX3nHHSImgIme/SYHNJ8kDUTFOeD3ATuB3wMuAj4fEZ/uuc86YG/Pn92DHFKSmjbwFXBmPgM80755ICLuBz4D/GPX3TYD23p2ncQIS1pCKs4BXwC8JzN3tjeN8bMX4wDIzClgqme/wQwoSQNScQ54ArgzIs4HxoE/BD5fMIcklRr4OeDMfBLYAXwf+B6wtX1aQpJGSsn7gDPzi8AXK44tScPCT8JJUhEDLElFDLAkFTHAklTEAEtSEQMsSUUMsCQVMcCSVMQAS1IRAyxJRQywJBUxwJJUxABLUhEDLElFDLAkFVnyAZ4+eKh6BGB45pCG2bD8PRnUHCUXZB+k8eXLuHXLnuox2HjDquoRpKE3an9fl/wKWJKGlQGWpCIGWJKKGGBJKmKAJamIAZakIgZYkooYYEkqYoAlqYgBlqQiBliSihhgSSpigCWpiAGWpCIGWJKKGGBJKmKAJamIAZakIgZYkooYYEkqYoAHZFi+7VXS8Fjy34o8LEbt214lzc4VsCQVMcCSVMQAS1IRAyxJRQywJBUpeRdERFwF3AYcB9ydmV+tmEOSKg18BRwRHwH+ArgAOBNYGxG/Nug5JKlaxQp4NbArM/8HICIeA34fuLNzh4iYACZ69vtlgNdff33OBzzwxo/nO+uC2bdvn3MM2RzDMINzDN8MnTnm46KLLjoF2JeZB/u5/9jhw4fndaD5iog/B96bmbe1b18LnJuZa7vuczuwYaCDSdLC+JXMfKWfO1asgMdm2Nb7Od3NwLaebccBHwVeBt5e+LEGYhLYDVwIzO+f2OHk81pcfF7N6vvYFQF+ldZ/oI6TgNe675CZU8DUDPv+R4NzNS4iOj/u6/dfyMXA57W4+LyGR0WAvwXcHhEfAA4AnwXWHnsXSVp6Bv4uiMx8FfgC8E/Ac8DDmfmdQc8hSdVK3gecmQ8DD1ccW5KGhZ+EG6wp4A5mPr+9mPm8Fhef15AY+NvQJEktroAlqYgBlqQiBliSividcAMWEatofdJvHPhv4I8y84e1Uy2ciLgTOJSZt1fP8m4s5Sv2RcSJwNPApYvlAwuziYgNwJXtmzsy85bKefrlCnjwvg5ck5lntX/+UvE8CyIifiEi7gfWV8/ybi3lK/ZFxHnAt4GV1bMslIhYDVwMnA2cBXwiIi6vnao/BniAIuI9wG2Z+Xx70/PAisKRFtJltK7T8VfVgyyAI1fsy8wDQOeKfUvBdcCN9Hz8f5HbD9ycmW9l5jTwEovk75WnIAYoM98EHgKIiGXA7cATlTMtlMz8Ghy5kt1i92Faf6k79gPnFs2yoDLzWnjHdRMWvcx8ofNzRJwKrAHOr5uofwa4IRFxBXB3z+YfZObqiDgOeIDWf/+NAx/uXTjW86qYpyH9XLFPQyYiTgd2AOsz8+XqefphgBuSmd8Evtm7PSJ+DvhbWi/AXdb+X6ZF42jPa4mZ9Yp9Gi7tF7e3A+sy89HqefplgAfvIeA/gesz048hDiev2LeIRMTJtE7lrcnMXdXzzIUBHqCIOJvWi1UvAt9vn4d7LTM/UzqY3iEzX42IzhX7jgPu84p9Q209cDywqevc9j2ZeU/dSP3xWhCSVMS3oUlSEQMsSUUMsCQVMcCSVMQAS1IRAyxJRQywJBX5P9wBcggjR9aFAAAAAElFTkSuQmCC\n", "application/papermill.record/text/plain": "
" }, "metadata": { "scrapbook": { "mime_prefix": "application/papermill.record/", "name": "qqplot_fig" } }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEPCAYAAACp/QjLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3X98nGWZ7/FPmqahaQttQrE0LUcUclmgEAilFOSXFFbrLqlHEAXcakFUVGC3gO7KHhDXHygKskdEj/ZUBHc9iK8WDnX5XUUppZTGVihXiyvYhhZK2kpMME2T7B/PM+mTmclk8mPmmZl836+XryRPJvNcM7vM1fu+7vu6y3p6ehAREYkaE3cAIiJSeJQcREQkhZKDiIikUHIQEZEUSg4iIpJCyUFERFIoOYiISAolBxERSaHkICIiKZQcREQkhZKDiIikGBt3ANkys0pgDrAd6Io5HBGRYlEOHAqsdfeObP+oaJIDQWJ4Mu4gRESK1GnAb7J9cDElh+0A99xzD9OmTYs7FhGRorBjxw4uvvhiCD9Ds1VMyaELYNq0acyYMSPuWEREis2gpuNVkBYRkRRKDiIikkLJQUREUig5iIhIimIqSIuISBqr1m1j6YrN7G5rZcqESSxurOPMhuEt3FFyEBEpYqvWbeNbP97E6uX17Gquobq2hd17mgCGlSA0rSQiUsSWrtjM6uX1tGydSk/3GFq2TmX18nqWrtg8rOdVchARKWK721rZ1VzT59qu5hp2t7UO63k1rSQiEoORqhNMmTCJ6toWWrZO7b1WXdvClAmThhWfkoOISJ6NZJ1gcWMdu/c09XmueQubWNw4a1gxKjmIiORZtE4A7K8TTN446OSQePzSyRsjo5BZWq0kIlJsRrpOcGbDjGEng2QqSIuI5FmiThA1EnWCkaTkICKSZ4sb65i3sImamTspG9NNzcydYZ2gLu7QemlaSUQkz3JVJxhJSg4iIjHIRZ1gJMWSHMzsBuBD4Y8Puvt1ccQhIiLp5b3mYGbzgXOB44F6oMHMPpDvOEREpH9xjBy2A0vcfS+AmW0CDoshDhER6Ufek4O7P5/43syOBC4ETok+xswmA5OT/rRwJ+dEREpMbAVpMzsaeBC4xt23JP36auCG/EclIiIQX0H6VOA+4Gp3/480D7kNWJZ0bQbwZI5DExERYkgOZjYTWA5c6O6Pp3uMu+8B9iT9XR6iExERiGfkcA1wAPDtyAf+ne5+ZwyxiIhIGnEUpK8Crsr3fUVEJHvqrSQiIimUHEREJIV6K4mIjICROvazUCg5iIgM00ge+1koNK0kIjJM0WM/e7rH7D/2c8XmuEMbMo0cRETIPC000JTRSB/7WQiUHERk1OjvQz7TtBAw4JRR4tjPlq1Te/+m0I79HCwlBxEZFTIlgOi0ELB/WmjyRoB+f5dIDosb69i9p6nPcwfHfs6K4ZWODCUHERkVMiWAgaaFBpoyKoZjPwdLyUFERoVMCWCgaaFspowK/djPwVJyEJFRIVMCGGhaqNSmjLKh5CAio0KmBJDNtFApTRllQ8lBREaFgRJApmmhUpsyyoaSg4iMGqPxQ36otENaRERSaOQgIiWp1Brh5ZuSg4gUveREcPKxB/PLX79WUo3w8k3JQUSKTjQZVI07gNbWMp65//jeRLDzvLWsvX9Oxl3NkpmSg4gUvEzJ4MxFj7Hh0b47n8srOkuuEV6+KTmISMEZTDKoOqg9JRG07iq9Rnj5ptVKIlJQEg3yVi6bzYO3/R07XxvDM/cf33tWQnIySCSCqB1bpnHCgnXUzNxJ2ZhuambuDDe81eX75RQtjRxEJHbRkUJ3ZwVrls/pd2SQPCp4aU0dx527nt89vL/mUHdiM+87fTrTDhldu5pHkpKDiMQquZX2gisfGFQy6GivZPyELs6+qIn2zvY+ieCK8+N6VcVPyUFEYpXcSntoyWC2RgUjTMlBRGKV3Er7pTV1HHtOExseqVcyiJGSg4jEKrmV9qs+g4nVbzJ34VrGVHQqGcREyUFEYpWulXbdic0sWXSsEkKMlBxEJBZ99jJMOCBtQVnio+QgIjmVvKGNnjG07W1nb3slz61s6HPwzpJFDUoKBUKb4EQkZ6Ib2p5beQJv7CzjsZ/W09oyiedWNvRubOvtfbRic9whS0gjBxEZcYnRws7d7axdMZeWrVM5/e8f53cPBzudJ1W3qvdRgYtt5GBmB5rZ783s7XHFICIjLzpaKB/b1ZsEogkhXcsL9T4qLLEkBzObC/wGUKMTkRKxat02/v5/Pc7Ny5p6N7VFk0D0+8ReBvU+KlxxTSt9AvgM8JOY7i8iw5CYNtr1l1Z69lVQVt7J3reCAvPJH3yqd4QQ3dD20jNH9u503r5lOhOr32TOeWsZO66TKRO1QqnQDCo5mNnhwEx3//Vwburul4XP1999JgOTky7r/2tECkBi2mjzs7XUzupiwyP1HH3WRp5/Ynaf0ULL1qm86sF/tsfOb6JqcjsTKpOXrGovQ6EaMDmY2aeB04ArgdXAn83sF+7+TzmM62rghhw+v4gMUnKR+eizNrLhkfqUAnO69hcTJsKSi7VMtZhkM3K4FHg/cAGwgmA66Gkgl8nhNmBZ0rUZwJM5vKeIpLFq3Ta+9/Pn2bW7h/WRaaN0BeZ0o4VqTRkVpWySQ4+7v2Zm84Gfufs+MyvPZVDuvgfYE73W3xSUiIyc/moJ+/aW956+lkgE0YSg0ULpySY5dJjZdcAZwGXhNFNbbsMSkXzokwy6ytnbMZY/bTgspZaQrsjcvKm2NyGowFx6sp1WuhZY5O67zezdwGUjcXN3f/tIPI+IDE50qiiRDOiBDY/Wp60lpJs2slM2Mf7A9qB76thEQlCBuVQMmBzc3c3sc8ARZlYGXObub+U+NBHJhcRqo7a/jOmTDDLVEvqdNrpE00alasBNcGZ2MvAH4EGgFthmZqfkOjARGXmr1m3jmz/ewOrl9b1nMyePDtJtVutor8SfehfHzm9iwVUPcPZFTSxZpGmjUpbNtNI3gfnAPe6+zcw+CnwHmJPTyERkRETrCnvbKxk3vjNtMsi+lqDRwmiQTXKocvcXEquF3H2lmX0lt2GJyEhITCGtXr6/uHz0WRv7TQb+1LuweS8y/sB2TmpcS3mFagmjVTbJodPMpgA9AKY1pSJFITGFtGb5nD7F5Wj9oP9koNHBaJdNcvgK8Ctgmpn9O3AucHlOoxKRIUmsQnqzrYN9e8dRGU4hwf7icmK10dFnbWRSdSs9XRVcq8KyJMlmtdIDZrYJOAcoB77s7i/kPDIRyVoiKex5cx/7Oiro6R7fuxIp3Ua17Vum09FeybyFTVyjwrKk0W9yMLMTki6tCb8eYGYnuPtzuQtLRLIVXZoK49jw6P5lqckJQRvVJFuZRg73ZfhdD/COEY5FRIZg6YrNrF4eJASgz0qktFNIi1RcloH1mxzc/fB8BiIiQ7O7bf8+hfLyrpRNa5pCkqHINK10nbt/w8xuT/d7d78yd2GJSLamTNi/T+GoMzb2HqiT2LRWNbmdCeOq+PQFSgySvUzTSn8Ov7ak+V1PDmIRkSFY3FjH7j3B0Zwv/PoYjjr998xpXEN5RVeYFLQSSQYv07TS98NvX3f370V/Z2afz2lUIpKVxO7nnrHJDfDqlBBkWDJNK30KqAL+wczGR35VQXAq3M05jk1EQunOWejpDlpsr1/ZwK7mGqprW5i3sEmJQUZEpmmlTmA2QYKYHbm+D/hcLoMSkUC61trNm2qpndXc22K7ZetUAFq2TmX18nqWTt6o5CDDlmla6UfAj8xsobsvz2NMIqNa8i7nrvAUtkRr7eQW21G7mmvY3dYaU+RSSrJpn/G0md0AVANliYtarSQysvrb5Zx8zkK6A3gSqmtbmDJhUoyvQkpFNsnhZwTnOa9Hq5RERlx06qhrbznJu5yTW2v3dwDP/prDrLhfkpSAbJLDIe5+Rs4jERmFkk9lS7fLObm1dnKLbe1lkFzIJjm8YmYT3L0t59GIjCLRltrRUUK6Xc7R1trvbHiZMWM7k5auai+DjKxsksN2oMnMVgG9Z0er5iAydHf8fAPLH3015VS2gXc5KwlIfmSTHF4O/yciQ9Rnn0JXOV37ynhu5Ukpp7JteES7nKUwZHOew5eSr5nZhNyEI1Ja0u1ToAeqDmpPeypb31HCbCUEic2AycHMGoGbgIkES1nLCZa1ar2cSAaJqaN9SfsUTv7gUxlbal9zsUYJEr8xWTzmFuCrwJ+AK4D/BO7MZVAixWzVum1c+E8Pcf8TW3luZUPvKCG6P2HHlmkce04TNTN3sn3LdJ5/YjZ736rUWQtSMLKpObS5+8/MrB74K/Bp4NnchiVS2PrrddTd0927q7nqoH1p9ym8tKYOO3UTzZtqe0cMXZ0V/N2ZM5QYpGBkkxw6zKwSeAmod/dV4c8io0pyW4tor6PDZr9Cd1c5Pd1lvfsV+tunEF2a2ltfuET7E6SwZJMcVgAPAh8DnjKz00h/xoNIyVq1bhu33LWRt9rKe9taRHsddXWOTdnVnJg6St6ncFLjWsortD9BCls2q5W+amZ3u/u2sDh9OvDvuQ9NpHAsXbGZ9tax/fY6gtRdzemmjt5/6uFccf6xMb8akYFls1rphPDrweGlJ4EZwOs5jEskdtG6AkDVQfTb6yjTrmZNHUkxymZa6b7I9+OAacA64KScRCQSs/72JgD99jo6bPYr2tUsJSWbaaXDoz+b2cnApcO5qZldBFxPkGxudffvDuf5RIYrMUpoaW1l71uVKWcoVFZ1pLS1SO511NNdrl3NUjKyGTn04e5Pm9kdQ72hmdUCXwEagA6CIvcT7v7CUJ9TZDgSnVE3P1vL24//K+tXNqTUFXq6gy1B7zrteSUAGRWyrjmEyoATgfH9PDwb84HH3X1X+Pw/B84n2IWduOdkYHLS3+m/QBlx0c6oR5+1kYpxnWnrCi1bp/Kqz+BVn0HNzJ0s+NhG7rrpPXGHL5Izg6059BAUoj89jHtOJ+j0mrCd1PrF1cANw7iHyIASI4ay8s7eUUKmvQk6UEdGk0HXHEZAWZpr3Uk/3wYsS7o2g2CllMiIWLpiM6uX1/d2Rs1+b4JWHUnpy5gczGwi8CngVIKGe08BdwCNQLO7Pz6EezYDp0V+PhR4NfoAd99DcDRpNJYh3EokvVXrtrHrL619OqM2b6qldlaz9iaIkCE5mFk1sBrYBDwSXn4PQV+lVuCsId7zUeBGM5sKtAEfBC4f4nOJDNr+bqlVfTqjHjF3M+MPbOfwE/5Ixbh94SihTqMEGZUyjRy+BPzQ3b8ZufbdsIDc6e5vDuWG7t5sZl8EniBYyvpDd39mKM8lMlir1m3jgVXbeG7lHCqrOnqnkLZvmU5HeyXzFjZx7cc1bSSSKTmcCdRHL4SjiVlAxXBu6u4/BX46nOcQGazEyqTyis4+y1N7p5D2lbNkUb0SgwiZk0O3u3clXWslmAb6f7kLSWRkRXc8V47vzLg8VYlBJJDxsB8zOzD6s7t3AjvobSYgUtgSy1V3vjaG9SsbUg7aKRvTTc3MnZywYB2LG+viDlekYGRKDj8FfhA9u8HMDiA4Be6eXAcmMlyJaaTVy+v7nNkcXZG04MoHmHPeWhbOn65Rg0hEpmmlWwiSwH+ZWeLktzkEheRbch2YyGD0OZmta/+JbJXj++54jq5MSpzZ/PmP62hOkWT9Joew3vBhMzsReHd4+V/dfW1eIhPJQnIH1cNmd/Q5kS2xwS3aSju6MumaRVqZJJJONjukn0VnRksBStQT2v4ypjcRJJ/Ilny+Qt9W2koMIv0ZdFdWkUIQbZgX7aAKpJ1GSixX7emq4JqL1UlVZCBKDlJUkpelJndQTXcim6aRRAYv41LWqLCNtkhs0i1LjSaCHVumUV6xj+POXU9He2XvNNKCqx7g7IuaWKLEIJK1bM5zMOAXwGQzO4mgN9IH3P3FXAcnEpXootpfPcHmvci4qr30dOlENpHhymZa6d8Izlf4RtgX6d+AHwCn5zQykYhoF9VM9YRrL1EiEBkJ2Uwr1bh7oisr7n4HcGCGx4uMqMR0Uvueqj7TSDUzd7J9y3Sef2I2ZV1VXLtI+xVERko2I4eecGd0D4CZTSM420EkLxLTSdEuqlqWKpJb2SSHO4CHgEPM7GvAR4CbcxqVSCg6nZSui6qWpYrkRjab4Jaa2UvA+wladV/u7g/nPDIZ1aJLVrvCQ3nURVUkfwY6CS7h9+H/en/n7rtyGZiMXsk7n6PTSbuaa6iubWHewiYWN86KO1SRkpVp5PAGQZ2hLHIt8XMPqjvICIo2ztu3dyzP3n9S75JVHcojkn+ZGu9lvUFOZCiiCWFveyWvbDiM2lldVB3Y3mfJqqaTRPIvm01w5cAngb8BuoD73X1ZjuOSEhatJ6xf2cDRZ23k+Sdmc/RZG9nwSPpOqppOEsmvbDfBHQXcRbAv4lIzO8Ldr89pZFKSkusJLVunMqm6tbdxnjqpihSGbJLDOcBR4RGhmNndwO8AJQcZlHSdVIE+jfPUSVWkMGSTHN4IH9cZ/twN7MlZRFLU+pzItq+CsvJOerqCr3vfqmRcUifVlq1Te0cKzZtq1UlVpEBkkxw2AU+a2TJgH3Ah8IaZ/SOAu387d+FJMUlMGW1+tpbaWV00b6qldlZzbx0hUVdI11J7YvWbvOOElymv6GTuwrWMGdvJlImTWNyoxCASh2ySQxmwEWgIf345/DqbsKWGCOxvcxEtLG94pG9dIXM9Qb2RRApFNjukP56PQKR4RaeSooXlxFdA9QSRIpPNUtYzgS8A0R3TuPtJOYpJikhiKikxYogWltPVFVRPECkO2Uwr/RC4HfhDjmORIpIYLezc3c7aFXPTFpaTC8wTq99kznlrGTtO9QSRQpdNcnjN3W/PeSRSsNKtQNr7ViXPrWzosyQ1MWV0xNzNjD+wnSNOfJmy8uQCs+oKIsUgm+TwgJldQdC2O7GcFXf/U86ikrxLJIDdba1MmTCJk489mKc3vJHS2iK68qhl69Q+U0cQJIiO9koWfGwjd930nphflYgMVTbJYSrwVaAtcq0HnQZX9JJ7Gz23soFdzTUcOfdFtr/+p7StLaIrjwC1uBApUdkkhwuAQ939tZG8sZndBHS7+40j+bySWbqEEB0JAEw7cgfrVzakbW0BpDTEA3qXpFarliBSErKqOQA7R+qGZnYQ8G2CE+W+MVLPKwNLXlmUSAjRD34gbSLob+XRruYaOtormTARlmhJqkjJyCY5rAV+Y2YPAB2Ji8PYGd0IbAG+NcS/lyFKbFJLTgjJdYNsWlto5ZFIacsmOYwHHKgbiRu6+10AZnZjf48xs8nA5KTL+uQZgmihuaeHtAkheSSwY8s0jl+wjvUrGwZobaGVRyKlKmc7pM3sAuDWpMsvuvv8LP78auCGodx3tIsmg6pxB9DaWsYz9x/PruYazlz0WL+b0pJHAicfO51DD9nYu3pJiUBkdMlmh/Q8gh3SEwn6LJUDh7v7YZn+zt3vBe4dYly3AcuSrs0Anhzi8xWV5GWlixuDQdtA104+9mB++evXWL28vjcZJM5MAPCnZnHcuev53cPH9zM11DcBXHF+/l+7iBSGbHdI3wWcD9wJLATuy2VQ7r6HpLbgZpbLWxaMaNE4sTR015+fpburvHcE0N+1neetZe39c3qTQdVB7X0Kza/6DCjrYU7jGsaO69KIQET6lU1y6HH3m83sYOBFgqWtv81tWKNXtGgM0LJ1Ku2tY/uMAPq7Vl7R2ScZJBeaATraDmDqlCptUBORjMZk8ZjW8OsfgGPc/a8EU0vD4u43ao9Dqt1tfZeVQuoIoL9riWSQ8NKaOo47dz01M3dSNqabmpk7ww1qI7K2QERKWDYjhzVm9jPgX4AHzawO6MptWKPXlAmp/9pv/3NVVtd2bJnGCQvW9e507mivZPyELs6+qIn2zvZwGklLTkVkYNkkh38A5rr7ZjO7iuBM6YtyG9bokK7wvLixjt17mvrUHKom7eOk89b3qS+ku1Z3YjPvO3060/qsMpqtZCAig5YxOZhZGVDu7k+b2STgAOAOd9+Sl+hKWLrC8+49TSxZNIsli2axdHLfD3iApdUDXQtGBVplJCLD1W9yMLOjgJXAZ83sMeAZgoZ7VWb2CXd/JE8xlqR0hefVy+tZOjnoZpruX/vZXhMRGa5MBelvAl909/8PfDi8dgxwGnBjjuMqeekKz7uaa9jd1trPX4iI5E+m5HCYu98Tfn8WsMLdu919K3BQ7kMrbYnCc1R1bQtTJkyKKSIRkf0yJYfoiqRTgF9Hfj4gN+GMHosb65i3sEnLTEWkIGUqSO8ys+OAScChwK8AzOwUoDkPsZW0RK2gb+FZy0xFpDBkSg7/DDxKMIV0nbu3mdk1wBcJWmjIMJ3ZMEPJQEQKUr/JIVy+WgtUhb2OAJ4CTtJSVhGR0pZxn4O77wX2Rn5+KucRiYhI7LLprSQiIqOMkoOIiKRQchARkRRKDiIikkLJQUREUig5iIhICiUHERFJoeQgIiIplBxERCSFkoOIiKRQchARkRRKDiIikkLJQUREUig5iIhICiUHERFJoeQgIiIpMh72I8Ozat02lq7YHDkjuk7HgopIUVByyJFV67bxrR9vYvXyenY111Bd28LuPU0AShAiUvA0rZQjS1dsZvXyelq2TqWnewwtW6eyenk9S1dsjjs0EZEBKTnkyO62VnY11/S5tqu5ht1trTFFJCKSvbxPK5nZqcBtQAXQAix291fyHUeuTZkwieraFlq2Tu29Vl3bwpQJk2KMSkQkO3GMHO4BLnX3+vD722OIIecWN9Yxb2ETNTN3Ujamm5qZO5m3sInFjXVxhyYiMqC8jhzMrBK43t03hJc2AJ9L87jJwOSky0VVxU0UnZdO3hhZrTRLxWgRKQp5TQ7u3gHcDWBmY4AbgeVpHno1cEP+IsuNMxtmKBmISFHKWXIwswuAW5Muv+ju881sHPDj8P5fTfPntwHLkq7NAJ4c6ThFRCRVzpKDu98L3Jt83cwmAvcTFKMb3b0zzd/uAfYk/V2OIhURkWRxFKTvBl4CPhROM4mISIHJd0H6eKAReAFYH44GXnX3BfmMQ0REMst3QXo9UJbPe4qIyOBph7SIiKRQchARkRTqyjpEasctIqVMyWEI1I5bREqdppWGQO24RaTUKTkMgdpxi0ipU3IYgkQ77ii14xaRUqLkMARqxy0ipU4F6SFQO24RKXVKDkOkdtwiUso0rSQiIimUHEREJIWmlULa8Swisp+SA9rxLCKSTNNKaMeziEgyJQe041lEJJmSA9rxLCKSrOhrDiNRSF7cWMfuPU19ag7BjudZOYpaRKSwFXVyGKlCsnY8i4j0VdTJIVpIBvYXkidvHPQHu3Y8i4jsV9Q1BxWSRURyo6iTgwrJIiK5UdTJQa2zRURyo6hrDioki4jkRlEnB1AhWUQkF4p6WklERHJDyUFERFIoOYiISAolBxERSVFMBelygB07dsQdh4hI0Yh8ZpYP5u+KKTkcCnDxxRfHHYeISDE6FPhDtg8upuSwFjgN2A505emeM4Anw/tuy9M9i4Hel1R6T1LpPUkVx3tSTpAY1g7mj4omObh7B/CbfN7TzBLfbnP3l/N570Km9yWV3pNUek9SxfieZD1iSFBBWkREUig5iIhICiUHERFJoeSQ2R7gS+FX2U/vSyq9J6n0nqQqmvekrKenJ+4YRESkwGjkICIiKZQcREQkRdHsc4iTmZ0K3AZUAC3AYnd/Jd6oCoOZ3QR0u/uNcccSFzO7CLgeGAfc6u7fjTmkgmBmBwJPAX+rfQ5gZjcAHwp/fNDdr4sznoFo5JCde4BL3b0+/P72mOOJnZkdZGY/Aq6JO5Y4mVkt8BXg3cBxwOVmdlS8UcXPzOYSbFrVmb2Amc0HzgWOB+qBBjP7QLxRZabkMAAzqwSud/cN4aUNwGExhlQoGoEtwLfiDiRm84HH3X2Xu7cBPwfOjzmmQvAJ4DPAq3EHUiC2A0vcfa+7dwKbKPDPEU0rDSBs23E3gJmNAW4ElscZUyFw97sAzOzGmEOJ23SC//ATtgMnxRRLwXD3y6BPu4hRzd2fT3xvZkcCFwKnxBfRwJQcIszsAuDWpMsvuvt8MxsH/JjgPftq3oOLSab3JI54ClBZmmvdeY9CioKZHQ08CFzj7lvijicTJYcId78XuDf5uplNBO4nKEY3hsPCUaG/90R6NRN02Ew4FE2lSBrhwpb7gKvd/T/ijmcgSg7ZuRt4Cfiku2vXoEQ9CtxoZlOBNuCDwOXxhiSFxsxmEkxHX+juj8cdTzaUHAZgZscTFF9fANaHc6ivuvuCWAOTguDuzWb2ReAJgqWsP3T3Z2IOSwrPNcABwLcjdZg73f3O+ELKTO0zREQkhZayiohICiUHERFJoeQgIiIplBxERCSFkoOIiKRQchARkRTa5yB5YWa3A6eHPx4F/BF4K/x5HtAOTHX3N2KI7WHgInd/w8xWErQ2eGEIz7MM+L2735Lmd28HvgzMJXjdHcD33f1Hw4l9gHhSXhdwCPC/3f2YXN1XSoOSg+SFu1+Z+N7MXgYudvdnI9diiKrXOYlvcrG5Mdwduxr4J3f/aHitFrjHzOrc/fMjfc9Qyusys0NydC8pMUoOUki+ZGYnAzXANxOH5pjZpcAVBNOgLcBn3f1FMzsI+C5Bf/we4JfAP7v7PjPrAFYQnLFwMUFri++Ez10O3O7uS83s/4b3fsLMFgBPAue7+7NmthhYAnQBbwCLCHop3QqcDEwiaLx3mbv/NsPr+gJwr7svS1wId1ZfCPzRzL5DcO5B77/ozezMxM9m9jbg+8DbgGnAK8CH3P31MNEuA84maAH9M3e/rr/XFQ0qbCZ5M3BG+J6sB6509zfN7NPAp4C9wF8JWscMejQlxUs1Bykk/+XuDcAHgG+ZWYWZnUHwoXyaux8PfAP4Rfj42wmSxWzgRIJEkDh8aBzwgLsb0ERwzsIXwuc/A7jGzE5294+Hjz/L3bcmAjGz4wg+ON/r7scSNF78IsG00HRgnrsfRdCp9wsDvK53A79KvujurxG0ZZk7wN9/GFjt7vN4AcEvAAAC20lEQVSAdxBMwX008vuJ7n4aQQvoz5nZ4f29riRfAPYBDe5+HEHDwK+bWTnByYfvdfc5wA/C1yCjiEYOUkh+Gn5tAiqBA4H3A0cAT0WmnqrNrBp4H3Bq2Ayxw8zuBK4Gvh4+7snwax3wTmBp5DnGE5zK9XQ/sZwNPJT4YHX32xK/MLPrgU+a2TuBM4HWIb7ehPJMv3T375jZaWb2j8CRwDHAmshDVoSPazaz14FqgprOQP4WmAycE74v44DX3b3LzO4leM8fBB5m//9tZJRQcpBC0gng7j3hh1UZwQfnTxLz8uGBS9OB3aSOfMcQnPOd8JfwazmwJzzmlfB53gb8OUMs+wimqhKPHw/8D4Ik8x2CE/BWAC8Clwzwun5LkETuC5/rEIIRTzVBcX4NwYggejbEuMi9byY4QGgpQYO/iqTHvhX5vof0Z0ykUw5c5e6/DO8zkaA5HO5+iZkdQ3DS3eeBSwkaUMoooWklKXQPAx8xs0PDnz8FPBZ+/xDwGTMrC49zvRx4JM1zOPBXM7sEegvEvwcawt930TepQPAhPD9y308STGmdQzBd9T1gLbCQAf7lD3wN+KCZLQp//giwkaCF853h6GQncJiZHWJmZeHzJvwNcJu7/wR4PYxhoHv297qiHgI+a2bjwqT7f4CvmdnBZrYVaAlHTNcTTNnJKKLkIAXN3R8imPt/xMw2ABcB/zOcSrqSYGnmxvB/DnwlzXPsJfhX72XhczwM/EukiPwL4Dfhv5QTf7MRuBb4TzP7HfBegsR0J3BG+DyrgT8Ah4cfrv29hq0Ey3XPMbPNBEmsk+CD/l1mdnRY7P0+8CzBVFf06NGbgFvMbF0iVoKptoGkvK4kXwZeJihEv0Aw4lgSLif+V+Cx8J5fBy7L4n5SQtSyWyRGZnYs8Fd33xx3LCJRSg4iIpJC00oiIpJCyUFERFIoOYiISAolBxERSaHkICIiKZQcREQkxX8Dy9PvoJiYUScAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "import statsmodels.api as sm\n", "sm.qqplot(normal_data)\n", "glue(\"qqplot_fig\",fig.fig,display=False)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "```{glue:figure} qqplot_fig\n", ":figwidth: 550px\n", ":name: \"fig:qqplot\"\n", "\n", "Normal QQ plot of `normal_data`, a normally distributed sample with 100 observations.\n", "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As we can see the QQ plot of random normal data is approximately linear and so we can be lead to believe that this is mostly normal data." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Shapiro-Wilk tests\n", "\n", "Although QQ plots provide a nice way to informally check the normality of your data, sometimes you'll want to do something a bit more formal. And when that moment comes, the **_Shapiro-Wilk test_** {cite}`Shapiro1965` is probably what you're looking for. (Either that, or the Kolmogorov-Smirnov test, which is probably more traditional than the Shapiro-Wilk, though most things I've read seem to suggest Shapiro-Wilk is the better test of normality; although Kolomogorov-Smirnov is a general purpose test of distributional equivalence, so it can be adapted to handle other kinds of distribution tests). As you'd expect, the null hypothesis being tested is that a set of $N$ observations is normally distributed. The test statistic that it calculates is conventionally denoted as $W$, and it's calculated as follows. First, we sort the observations in order of increasing size, and let $X_1$ be the smallest value in the sample, $X_2$ be the second smallest and so on. Then the value of $W$ is given by\n", "$\n", "W = \\frac{ \\left( \\sum_{i = 1}^N a_i X_i \\right)^2 }{ \\sum_{i = 1}^N (X_i - \\bar{X})^2}\n", "$\n", "where $\\bar{X}$ is the mean of the observations, and the $a_i$ values are ... mumble, mumble ... something complicated that is a bit beyond the scope of an introductory text. \n", "\n", "Because it's a little hard to explain the maths behind the $W$ statistic, a better idea is to give a broad brush description of how it behaves. Unlike most of the test statistics that we'll encounter in this book, it's actually *small* values of $W$ that indicated departure from normality. The $W$ statistic has a maximum value of 1, which arises when the data look \"perfectly normal\". The smaller the value of $W$, the less normal the data are. However, the sampling distribution for $W$ -- which is not one of the standard ones that I discussed in Chapter on probability and is in fact a complete pain in the arse to work with -- does depend on the sample size $N$. To give you a feel for what these sampling distributions look like, I've plotted three of them in {numref}`shapiro-wilk`. Notice that, as the sample size starts to get large, the sampling distribution becomes very tightly clumped up near $W=1$, and as a consequence, for larger samples $W$ doesn't have to be very much smaller than 1 in order for the test to be significant. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "```{figure} ../../images/navarro_img/ttest2/shapirowilkdist-eps-converted-to.pdf\n", "---\n", "width: 600px\n", "name: shapiro-wilk\n", "---\n", "Sampling distribution of the Shapiro-Wilk $W$ statistic, under the null hypothesis that the data are normally distributed, for samples of size 10, 20 and 50. Note that *small* values of $W$ indicate departure from normality.\n", "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To run the test in Python, we use the [scipy shapiro()](https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.shapiro.html) function ( `stats.shapiro()`). It has only a single argument `x`, which is a numeric vector containing the data whose normality needs to be tested. For example, when we apply this function to our `normal.data`, we get the following:" ] }, { "cell_type": "code", "execution_count": 157, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The value of W is 0.9836190342903137, p=0.25148776173591614\n" ] } ], "source": [ "W, p=stats.shapiro(x=normal_data)\n", "\n", "print(f\"The value of W is {W}, p={p}\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "So, not surprisingly, we have no evidence that these data depart from normality, the p value is high and the value of W is close to 1.0. When reporting the results for a Shapiro-Wilk test, you should (as usual) make sure to include the test statistic $W$ and the $p$ value (the return values of the scipy function), though given that the sampling distribution depends so heavily on $N$ it would probably be a politeness to include $N$ as well." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Examples\n", "\n", "Let's step through a couple examples of this test for a few different simulated data sets." ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "tags": [ "hide_cell" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The value of W is 0.9843708872795105, p=0.285838782787323\n" ] }, { "data": { "application/papermill.record/image/png": "iVBORw0KGgoAAAANSUhEUgAABJ0AAAF8CAYAAABlkMrHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3X10nGd57/uv5NdIFtELghDZOYVDdMekdmRMXkw2IQlJ9iFlI7OA0ibnJKkIUAKFtMmhPbw3+zTdQAPZbQmcDWglKZTSwkIOjelOQnCbYsVOHMvWDua23QK1ZYeakUQUqbFlS+ePmZFH47Et2zPzaEbfz1panrnneWYurQV4+Pm6r7tmcnISSZIkSZIkqZhqky5AkiRJkiRJ1cfQSZIkSZIkSUVn6CRJkiRJkqSiM3SSJEmSJElS0Rk6SZIkSZIkqegMnSRJkiRJklR0hk6SJEmSJEkqOkMnSZIkSZIkFZ2hkyRJkiRJkorO0EmSJEmSJElFZ+gkSZIkSZKkopufdAHFFEJYBFwM7AeOJFyOJEkqvnnAK4CnYowHky5GaX4HkySp6p3Wd7CqCp1If9l5IukiJElSyb0B+Oeki9AUv4NJkjQ3nNJ3sGoLnfYDfOMb3+Ccc85JuhZJklRkzz33HDfeeCNk/s7XrOF3MEmSqtjpfgerttDpCMA555zD0qVLk65FkiSVjlu4Zhe/g0mSNDec0ncwB4lLkiRJkiSp6AydJEmSJEmSVHSGTpIkSZIkSSo6QydJkiRJkiQVnaGTJEmSJEmSis7QSZIkSZIkSUVn6CRJkiRJkqSiM3SSJEmSJElS0Rk6SZIkSZIkqejml/LNQwifAn4z8/ThGONHQgjXAJ8HzgK+FWP8eIH7zgO+DrwMiMCNMcYXSlmrJEmSJElSUjZs2Uv3up0MjY7QVN9AV2c7V65eWtGfV7LQKRMuXQesAiaBfwgh/DbwGeCNwB7g4RDCm2OM38+7/T7gvhjj34QQPgF8AvjDUtUqSZIkSZKUlA1b9nLPAzvo7elgcKCF5rYUQ8N9ACUJnsr1eaXcXrcfuCPGeCjGOA7sANqBXTHGn8YYD5PuZnpn7k0hhAXAFcC3M0v3518jSZIkSZJULbrX7aS3p4PUnlYmJ2pJ7Wmlt6eD7nU7K/rzStbpFGN8Nvs4hHA+8C7gz0mHUVn7gfwI7aXA85lQ6njXEEJoBBrzlkvXdyZJkiRJklQCQ6MjDA60TFsbHGhhaHSkoj+v5IPEQwgXAo8CdwL/UuCSibznNTO4BuB24Kd5P0+cfqWaa8YPF/qPVXWZC7+jJEmSJFW6pvoGmttS09aa21I01TdU9OeVepD45cB3gNsz85neCJyTc8krgH15tx0AXhJCmBdjPHKcawDuJb31LtdSDJ40Qwvm1/LR+36UdBkldfdtlyddgiRJkiTpJLo62xka7ps2Y2nN2j66OpdX9OeVcpD4MqAHeFeM8fHM8qb0S+HVpDuTbgC6c++LMY6HEJ4gvR3vr4GbgPxB48QYh4HhvM8s9q8hSZIkSZJUUtnh3d2N/TmnyS0v2el15fq8UnY63QksBj6fEwZ9GbiFdPfTYmA9mYHhIYSvAg/FGB8CbgMeCCF8HPg34LdLWKckSZIkSVKirly9tGQhU1KfV8pB4h8GPnycly8qcP2tOY9/DlxZmsokSZJ0PCGETwG/mXn6cIzxI0nWI0mSKldJZzpJkiSpcoQQrgGuA1YBk8A/hBDeFmP8brKVSZI0e23YspfudTtztqm1l7VjaTYzdJIkSVLWfuCOGOMhgBDCDuC8ZEuSJGn22rBlL/c8sGPaQO6h4T4AgycMnSRJkpQRY3w2+ziEcD7pg11en3tNCKERaMy71W/VkqQ5qXvdTnp7OkjtaQUgtaeV3p4Ouhv7DZ0wdJIkSVKeEMKFwMPAnTHGXXkv3w58qvxVSZI0+wyNjjA40DJtbXCghaHRkYQqml1qky5AkiRJs0cI4XLgB8AfxRgfKHDJvcAr837eUL4KJUmaPZrqG2huS01ba25L0VTfkFBFs4udTpIkSQIghLAM6AHeFWN8vNA1McZhYDjvvjJUJ0nS7NPV2c7QcN+0mU5r1vbR1bk86dJmBUMnSZIkZd0JLAY+nxMkfTnG+OXkSpIkafbKzm3qbuzPOb1uufOcMgydJEmSBECM8cPAh5OuQ5KkSnLl6qWGTMfhTCdJkiRJkiQVnaGTJEmSJEmSis7QSZIqwPjhiaRLKIu58ntKkiRJc4EznSSpAiyYX8tH7/tR0mWU3N23XZ50CZIkSZKKxNBJkiRJkiTNeRu27KV73c6cU+jaHRB+hgydJEmSJEnSnLZhy17ueWAHvT0dDA600NyWYmi4D8Dg6Qw400mSJEmSJM1p3et20tvTQWpPK5MTtaT2tNLb00H3up1Jl1bRDJ0kSZIkSdKcNjQ6wuBAy7S1wYEWhkZHEqqoOhg6SZIkSZKkOa2pvoHmttS0tea2FE31DQlVVB0MnSRJkiRJ0pzW1dnOmrV9tCw7QE3tBC3LDrBmbR9dne1Jl1bRHCQuSZIkSZLmtOyw8O7G/pzT65Y7RPwMGTpJkiRJkqQ578rVSw2ZisztdZIkSZIkSSo6QydJkiRJkiQVnaGTJEmSJEmSis7QSZIkSZIkSUVn6CRJkiRJkqSiM3SSJEmSJElS0Rk6SZIkSZIkqegMnSRJkiRJklR085MuQJIkSZIkqRQ2bNlL97qdDI2O0FTfQFdnO1euXpp0WXOGoZMkSZIkSao6G7bs5Z4HdtDb08HgQAvNbSmGhvsADJ7KpOShUwjhJcBG4C3Aa4C7c15uAzbFGN+Sd89NwGeAX2SWHo4xfqzUtUqSJEmSpMpwsi6m7nU76e3pILWnFYDUnlZ6ezrobuw3dCqTkoZOIYRLga8A7QAxxvXA+sxr5wA/An6/wK0XA38QY/xmKeuTJEmSJEmVZyZdTEOjIwwOtEy7b3CghaHRkbLXO1eVepD4e4APAPsKvPY54Msxxl0FXrsYuCmEsC2E8PUQQlMpi5QkSZIkSZUjt4tpcqL2aBfTup1T1zTVN9Dclpp2X3Nbiqb6hnKXO2eVtNMpxngrQAhh2noI4XzgSuDW49y6H/hvwGbS2/H+Ergx7z0agca8++yPkyRJkiSpCpxo+9xMupi6OtsZGu6b1g21Zm0fXZ3Ly/p7zGVJDRJ/L3BfjPFgoRdjjG/LPg4hfBb41wKX3Q58qjTlSZIkSZKkpJxs+1y2iyk7rwmO7WLKBlTdjf05wdVy5zmVUVKh01rgukIvhBDOBrpijF/ILNUA4wUuvRe4P29tKfBEkWqUJEmSJEkJONkQ8Jl2MV25eqkhU4LKHjqFEF4KnBVj/OlxLnkB+EgIYWOMcRPwQeC7+RfFGIeB4bz3Lna5kiRJkiSpzE62fc4upsqQRKfTq4C9+YshhK8CD8UYHwoh/CbwpRDCWcBO4KYy1yhJkiRJkkroRDObZrp9zpBpditL6BRj/LWcx5uBywpcc2vO4yeA15ajNkmSJEmSVBrHC5ZONrPJIeDVIamZTpIkSZIkqYqdKFg62cwmt89VB0MnSZIkSZJUdCcKlk42swncPlcNapMuQJIkSZIkVZ8TBUvZmU258mc2qfIZOkmSJEmSpKI7UbDU1dnOmrV9tCw7QE3tBC3LDmRmNrUnVK1Kwe11kiRJkiSp6E40DNyZTXODoZMkSZIkSTojxzulDo4fLDmzqfoZOkmSJEmSpNN2olPqDJbmNmc6SZIkSZKk05Z7St3kRO3RU+rW7Uy6NCXM0EmSJEmSJJ22E51Sp7nN7XWSJEmSJGnG8uc31S2oo7ktRWpP69Q12VPqNLcZOkmSJEmSpGMUGg4OHDO/6bK3Pc0lb93K5odWHXNKneY2QydJkiRJkjTN8YaD19UxNb8JILWnlSe/+zredOMzXH9L4VPqNHcZOkmSJEmSpGlyh4MDU8PBL3vHxoLzm8YOvci3/vQ/J1GqZjEHiUuSJEmSpGmONxz8yPg8mttS09ad36TjMXSSJEmSJEnTNNU3FAyXXrJkAWvW9tGy7AA1tRO0LDuQmd/UnlClms3cXidJkiRJkqbp6mxnaLhv2kynNWv7eP87LgSgu9H5TTo5QydJkiRJkjRNNkQ6XrhkyKSZMHSSJEmSJEnHuHL1UsMlnRFDJ6mKjR+eYMH86h/dNld+T0mSJKkYNmzZS/e6nTkdTOl5TPlrBk46U4ZOUhVbML+Wj973o6TLKLm7b7s86RIkSZKkWSs3ZKpbuJiRkRo2P7RqalbT4K+eZuLIvGlrQ8N9gNvodGYMnSRJkiRJqlIbtuzlngd2TA0Ev/LmH7D9sQ5Se1oBSO1pZWxk/jFrvT0ddDf2GzrpjBg6SZIkSZJUpbrX7aS352igVHf2GIMDLdOuKbQ2ONDC0OhI2epUdTJ0kiRJkiSpSuTPaxp6YWRaoDQy2EBzW2oqhAIY+1XdMWvNbSma6hvKWruqj5N3JUmSJEmqAtmtdOvvX8HD9/4X1t+/gsOHFtDclpq6Zvemdi66bistyw5QUztBy7ID1DUc5pK3Tl9bs7ZvasC4dLrsdJIkSZIkqQrkb6VL7WnlX5/5NV57/RaeWb+awYEWDo4t4qz6I7zphj7GxscyJ9WtSN/f3J9zet1y5znpjBk6SZIkSZJUoXK3001Ocsxspl2bLuD8y3Zx/S25gdKKgoGSIZOKzdBJkiRJkqQKkRsy1S1czMhIDZsfWjV1Ml2h2UzNSxp48K6rE6xac5UznSRJkiRJqgD5M5sO/KKWzQ+tIrWnlcmJWuLG5cfMa3I2k5Jkp5MkSZIkSRUgf2ZT3dlj07bT7YtLoWaSizs3MX/hEWczKXElD51CCC8BNgJviTH+LITQDbwBGM1c8scxxu/m3dMBfAU4G/gn4HdjjIdLXaskSdJcl//dLeFyJEk5hkZHpoVMI4MNx2ynOzi6mNamOrfTaVYo6fa6EMKlwD8Dub18FwNXxBg7Mj/fLXDr14HfizG2AzXAe0pZpyRJko773U2SNEs01adDpqzdm9rdTqdZrdSdTu8BPgD8FUAIoR44D/hKCOE84LukO50msjeEEP434KwY45OZpfuBPwa+VOJaJUmS5rpp390kSbNLV2c7Q8N99PZ0MDjQwsGxRZxVf4Q33dDH2PiY2+k065Q0dIox3goQQsguvRx4HHgf8ALw98C7SW+lyzoX2J/zfD9wzH9jQgiNQGPesv/NkiRJOk0Fvrsdw+9gklReuafVNdU38OYrXk5TY//U867OFYZMmrXKOkg8xvivwNuyz0MIfwHcxPTQqabArRMF1m4HPlXUAiVJknQyfgeTpCLLDZbqFi6GyVrGxseoW7iYkZEaNj+0isGBFprbUgyt7eOOm+1mUmUoa+gUQlgBtMcYv5NZqgHG8y4bAM7Jef4KYF+Bt7uX9Na7XEuBJ868UkmSJB2H38Ek6Qzlh0zZYGlR/YtccPkOtj2S3j535c0/YPtjR0+rS+1ppbeng+7GfkMnVYSyhk6kQ6Z7QwiPk95e917ggdwLYow/DyG8GEK4PMb4I9KdUN/Pf6MY4zAwnLt2olZwSZIknTm/g0nSmdmwZS/3PLBjai5TbrB0xU2Ps+2RVVMhU93ZY9NOqwMYHGhhaHQkidKlU1bS0+vyxRi3A38K/Aj4MdAXY/wmQAhhfQjhdZlLbwS+EELYAdQDf17OOiVJkiRJKoXudTvp7UmHTJMTtdOCpYbmkWkh08jg9NPqAJrbUjTVN5S1Zul0laXTKcb4azmP7wPuK3DN9TmPtwGXlKM2SZIkTZf73U2SVFxDo4WDpdSe1mmPAXZvauei67ay7ZGjM53WrO2jq3N5UuVLp6Tc2+skSZIkSZqzmuqPHyzt3nz+tJDp4Ngizqo/wptu6GNsfCxzWp1DxFU5DJ0kSZIkSSqTrs52hob7pmY65QdLdQsX54VMKwyZVLEMnSRJkiRJKpNsgNTd2M/Q6IjBkqqaoZMkSZIkSSW2YcteutftzAma2g2aVPUMnSRJkiRJKrLckKlu4WJGRmrY/NDRgeBDw30ABk+qarVJFyBJkiRJUjXZsGUv9zywg/X3r+Dhe/8LB35Ry+aHVpHa08rkRC2pPa309nTQvW5n0qVKJWWnkyRJkiRJpym/o4nJWp4fPchT6y6dOqGu7uwxBgdapt03ONDC0OhIEiVLZWPoJEmSJEnSCeTPY7ps5Ut5cvsvGXxhhENji3hm/WoW1b/IBZfvYNsjHVz29o3TQqaRwQaa21JTIRRAc1uKpvqGJH4dqWwMnSRJkiRJypMNmnKDpcGBFs6/9Cfs//d/Y+v61Vx4VT/P/nAFqT2tXHHT42x7JL2FLj9k2r2pnYuu28q2R47OdFqzto+uzuUJ/5ZSaRk6SZIkSZLmrELb40YPjU0FTbnBEsA55z/H1vWrSe1ppaF5ZKqjKffx7k3trLy2j+2PdjA40MLBsUWcVX+EN93Qx9j4WOb0uuUOEVfVM3SSJEmSJM1J2YHfvT0d07bH5QZNuWESTA+Xcjuach/vi+kwaeU1fdQ1jtG8pIGuzhWGTJpzPL1OUsUbPzyRdAmSJEmqQN3rdtLb00FqTyuvvmTX1Pa4QsFSVu7zbEdTy7ID7N58Phddt5WWZQeoqZ3g4Ngi6pfAnTeu5sG7rjZw0pxkp5Okirdgfi0fve9HSZdRUnffdnnSJUiSJFWdodHC2+Nyu5byt8o9t+scVl2/ha3rV7N/17ksaX6ei9/6FPMXjlO3aLFb6KQchk6SJEmSpDmpqb7w9rjcoCk/WGpa0sBlK8/lFS/rnzrNrqtzpeGSVIChkyRJkiRpTurqbGdouI/eno6p7XHbHllVMGjKD5Zue0eChUsVwtBJkiRJkjQnZE+qG3xhhMnDC6idP05d/dEtcXUL87fH2cEknQlDJ0mSJElS1cueVLfz6Tbalh+ZmtHU3JZizdo+7rh5tQGTVGSGTpIkSZKkqpXtbjowNMZT6y7lwqv62f5o+sQ6gNSeVnp7Ouhu7Dd0korM0EmSJEmSVFVyt9EdGlvEM+tXc9nbNzI40DLtlLqswYEWhkZHEqpWql6GTpIkSVUghPBKYFmM8Z+SrkWSklAoaLrwqn6e/eGKaafT5Z5Sl9XclqKpviHB6qXqVJt0AZIkSTo9IYT3hxD+OoTwUqAX+EoI4U+TrkuSyi07r2n9/SsYSTXwzPrVpPa0Tutq2r2pnZXX9vHcrnNYeW0fLcsOUFM7QcuyA6xZ20dXZ3vCv4VUfex0kiRJqlzvBn4DeCewDvgA8CTw/yRZlCSVW/e6nfT2dBwTNOV2Ne2L6XlN4fU7OOslY1y69ilq54/TtKSBrs7lznOSSsDQSZIkqXJNxhh/EUK4BvhWjPFwCGFe0kVJUrnkbqkrFDRlu5uyJ9UdHFtE/RK44//0pDqpHAydJEmSKtfBEMJHgDcCt4YQ3g+MJlyTJJVFdktdb08HF17VXzBo2r/rXJY0P8/Fb32K+QvtapLKzdBJkiSpcr0b+L+Bm2OMQyGE/wTcmnBNklQWuVvqTh40rTRokhJg6CRJklShYowxhPB7wKtDCDXArTHG/0i6Lkkqh6HRo1vqsvOaLryqn4aWEZoNmqRZwdPrJEmzxvjhiaRLKIu58nuq9EIIlwH/AjwMtAF7QwivT7YqSSqPpvr07KasfXEpz/5wBc1LGnjwrqsNnKRZwE4nSdKssWB+LR+970dJl1Fyd992edIlqHp8DrgG+EaMcW8I4f8C/jtwcbJlSVLpdXW2MzTcR29Pekh4c1uKNWv76OpcnnRpkjIMnSRJkipXXYzxxyEEAGKM60MIf5JwTZJUFtlOpu7GfoZGR2iqd0i4NNsYOkmSJFWu8RBCEzAJELLpkyTNEVeuXmrIJM1iJQ+dQggvATYCb4kx/iyE8F7gQ6S/HD0NvC/GeCjvnpuAzwC/yCw9HGP8WKlrlSRJqjB/AvwjcE4I4ZvAdcB7ky1Jkkpvw5a9dK/bmdPh1G74JM1CJQ2dQgiXAl8B2jPP20kf67saGAHuBz4AfCHv1ouBP4gxfrOU9UmSJFWyGOP3Qgg7gGuBecB/jTH+OOGyJKmkNmzZyz0P7Jg2y2louA/A4EmaZUrd6fQe0qHSX2WeHwTeH2N8HiCE0A+cV+C+i0kf/ftHQD/wezHGoRLXKkmSVBFCCK/NW9qU+XNxCOG1McZnyl2TJJVL97qd9PZ0kNrTCkBqTyu9PR10N/YbOkmzTElDpxjjrQA5wy1/Dvw8s9YKfBC4pcCt+4H/BmwG7gb+Ergx94IQQiPQmHef/wsjSZLmgu+c4LVJ4FXlKkSSyiW7pW7whREGB1qmvTY40MLQ6EhClUk6nkQGiYcQ2oDvA1+LMW7Ifz3G+Lacaz8L/GuBt7kd+FSpapQkSZqtYoyvTLoGSSqn3C11F17VT3NbaqrTCaC5LUVTfUOCFUoqpOyhUwjhAuAfgL+IMd5T4PWzga4YY3bOUw0wXuCt7iU9EyrXUuCJ4lUrSZI0+4QQPhJj/GwI4c8LvR5j/FC5a5KkUsh2Nx0YGuOpdZeS2tPK7k3trLy2j+2PHp3ptGZtH12dy5MuV1KesoZOIYQG4BHgozHGrx/nsheAj4QQNsYYN5Hegvfd/ItijMPAcN77F7liSZKkWelXmT9TBV6bLGchklQqud1Nl71949SWun0xPVXlwqv6aWgZoXlJA12dy53nJM1C5e50uhV4OXBnCOHOzNpDMcZPhhC+mnn8UAjhN4EvhRDOAnYCN5W5TkmSpFkrxvj/ZR7+e4zxS7mvhRD+MIGSJOmM5c5smjy8gInJianuppHBhmlb6vbFpRwcW8T1t/Tz4F1XJ1y5pOMpS+gUY/y1zMMvZH4KXXNrzuMngPxTWSRJkgSEEH4XqAN+P/OPdFkLgA8Bn0mkMEk6Tdmupp1Pt9G2/AjbH53e3eSWOqkyJTJIXJIkSWdkHFhBOnhakbN+GPi9RCqSpDPQvW7n1JDw7Y92HNPdlN1St/KaPuoax9xSJ1UIQydJkqQKE2P8GvC1EMLaGGNP0vVI0pkaGh1hcKCFhuaR43Y3HRxbRP0SuOPG1YZNUoUwdJIkSapcT4YQPgU0kz7xF/D0OkmVp6k+3dVkd5NUXQydJEmSKte3SJ/muxVPrZNUQfKHhtfMG+e112/h59vPs7tJqiKGTpIkSZXrZTHGNyZdhCSdikJDwwcHWjj/0p/wqtf+jHkLxrl07VPUzh+nye4mqaIZOkmSJFWun4cQ6mOMo0kXIkkzVWhoOMDO3teQ2tvK9bf08+BdVydcpaRiMHSSJEmqXPuBvhDCBuA/sovOdJI0mxUaGp41ONDC0OhIQpVJKjZDJ0mSpMr1s8yPJFWMQkPDs5rbUjTVNyRYnaRiMnSSJEmqUDHGP85fCyHUJ1GLJJ1M7vDwQkPDm9tSrFnbR1fn8qRLlVQkhk6SJEkVKoTQCdwFLAFqgHlAM2CbgKRZJTs8vLfHoeHSXGLoJEmSVLn+DPg48LvAZ4C3Ac8nWpEkFZAdHu7QcGluqU26AEmSJJ220Rjjt4AngReB9wNvSrYkSTpWdnh4LoeGS9VvRqFTCOFrBda+U/xyJEmSdAoOhhAWAbuBjhjjBLAo4ZokacqGLXu56ZOPc/jQPJrbUtNec2i4VP1OuL0uhPAloA14QwihNeelBcAFpSxMkiRJJ7UOeBi4BdgYQngDkDrhHZJUBhu27OVL336WwaFJtq5fzaL6F7nouq1se2SVQ8OlOeRkM52+Bvw6cBGQ29l0GOgtVVGSJEk6uRjj3SGEr8cY92aGil8BfDPpuiTNbdmh4aMv1LL9saNznJisYeU1fdQ1jtHs0HBpTjhh6BRjfBp4OoTwWIxxb5lqkiRJ0gyEEF6b+fOlmaUngKXAvydWlKQ5Lzs0/LK3b5w2x2lfXMr+XefyG7d/z+Hh0hwx09Pr/vcQwl+RPoK3JrsYY1xZkqokSZI0E7md6AuBc4AtwCXJlCNJR4eGjww20NyWOtrphHOcpLlmpqHTF4Fu4BlgsnTlSJIkaaZijK/MfR5CuAx4d0LlSJrjNmzZS/e6nVNDw3dvamfltX1sf7TDOU7SHDXT0OlQjPHzJa1EkiRJZyTG+GQI4b6k65A092TnOPX2dEwbGh43XjA1x6l+YR3vf6dznKS5ZKah0/8KIayIMfaXtBpJkiTNWHamU0YN8DrgrITKkTSHZec4HX9o+GrDJmkOmmno9CpgSwjh58B/ZBed6SRJkpSo3JlOk6QHiL8/oVokzWHZOU5ZDg2XBDMPnT5W0iokSZJ0yvJnOhVDCOEG4OOkB5N/Icb4xWJ/hqTq01Tv0HBJx5pp6OS2OkmSpFkkhLAE+F3gcmAesBG4D+gEBmKMj5/Ge7YBfwKsBg4CG0MIP4wx/rhohUuqSl2d7QwN99Hb49BwSUfNNHT6JemW7RqOnl63H3BTriRJUpmFEJqBXmAH8Ghm+WrgaWAEuOo03/oa4PEY42Dmc74NvAO464wKllQVsqfTDY2OULdwMUzWMnpojMnDC6idP05d/WLedEMfY+NjNNU30NXp0HBprptR6BRjrM0+DiEsAN4OXFSqoiRJknRCfwx8Ncb4uZy1L2ZCovEY4/On+b7nkv6Hxaz9wCW5F4QQGoHGvPv8f5VSlcs/ne6Cy3ew98dttC0fYPuj07ub7rjZoeGS0mpPfsl0McbxGOPfANeWoB5JkiSd3JXA53MXMt1Py0lvjTtdNQXWJvKe3w78NO/niTP4TEmz3IYte/ncA9unTqd79SW72PbIKs45/zm2P5pem5yoJbWnld6eDrrX7Uy6ZEmzxIw6nTJfYrKyx/E2laQiSZIkncxEjPFI3toI6W70vz2D9x0A3pDz/BXAvrxr7gXuz1tbisGTVJWyHU4188anTqdraE6fVJf9M9fgQAtDoyNJlCppFjqdmU6QPo73QyWpSJIkSScVQnhJ7ja6GON4COE5js7fPB2PAZ8OIbQCo6RDrPfmXhBjHAaG82o5g4+UNJt1r9tJb08HF17VP3U63chg+qS67J+eWCfpeE55ppMkSZIS99fA/wgh3BxjPAgQQlgMfBn4xum+aYxxIITwMeCHwELSc6MVRhd0AAAgAElEQVQ2F6NgSZVpaDTdzbR7Uzsrr+1j+6Md7N58Phddt5W9P146teaJdZIKmen2ulrgTuDNwALgEeDuGOPhEtYmSZKkwv6MdLj0ryGEpzNrF5MOi/7sTN44xvjXpEMtSaKpPt3NtC+mB4NfeFU/Dc0jTE7Mo+OKAUYPjXHp2qeonT9O0xJPrJM03Uy31/0p6dPq/jvp4ePvBT4H/P6JbgohvATYCLwlxvizEMI1pIdengV8K8b48QL3nAd8HXgZEIEbY4wvzLBOSZKkqpeZ5/RbIYTXAf8ps/z/xhifSrAsSVWoq7OdoeE+ens62L/rXA6OLWLN2j7uvNlwSdLJzTR0+j+A18UYxwFCCA8D2zhB6BRCuBT4CtCeeX4W0A28EdgDPBxCeHOM8ft5t94H3Bdj/JsQwieATwB/OPNfSZIkaW6IMT4NPH3SCyXpFG3YspfudTsZGh2hrn4xb7qhj7HxMZrq7WaSNHMzDZ1qs4ETQIzxYAhh/EQ3AO8BPgD8Veb5JcCuGONPAUIIXwfeCUyFTiGEBcAVwNrM0v3AP2LoJEmSJEllkT2xrrdn+qymO25ebdgk6ZTMNHTqCyF8AfjLzPMPAttPdEOM8VaYdprJucD+nEv2kz5eN9dLgedzZkUVuobM+zYCjXnL/i+gJEmSJJ2CbFfT4AsjTB5ewMTkBE+tu3TqVLrUnlZ6ezrobuw3dJJ0SmZ6Kt0HgCbS85meJB0O/d4pflZNgbWJ07gm63bgp3k/T5xiTZIkSRUv849xknTKsl1Nmx47h7Ff1bGp52LmzT/C4EDLtOsGB1oYGh1JqEpJleqEoVMIYWEI4QHg6hjjLTHGlwObgSPA86f4WQPAOTnPXwHsy7vmAPCSEMK8E1yTdS/wyryfN5xiTZIkSRUrpD0LPBtCaAsh7AghXJB0XZIqR/e6nfT2dHDO+c+x/dEOUntaGRlMn1iXq7ktRVN9Q0JVSqpUJ+t0ugvInkCX9R7S29o+fYqftYn0d6NXZ0KlG8iZ5wSQmRv1BPCuzNJN+dfkXDscY/xZ7g+w9xRrkiRJqmR/Qbr7+99jjAOZ5/8j2ZIkVYINW/Zy0ycfZ/CFEQYHWmhoHpnqbtq9qZ2V1/bRsuwANbUTtCw7wJq1fXR1tidctaRKc7KZTm8BLo4x/kd2Ica4L4RwE9ALfHymHxRjfDGEcAvwHWAxsB74NkAI4avAQzHGh4DbgAdCCB8H/g347Zn/OpIkSXNKS4zx0ewMzRjjfSGE9yZck6RZZtpJdAsXM354gpGRGrauX82FV/XT3Jaa6m5K7WllX0zPbVp5TR91jWM0L/HEOkmn52Sh06HcwCkrxvh8COHgTD4gxvhrOY9/AFxU4Jpbcx7/HLhyJu8tSZI0x02GEBYDkwAhhHOAeSe+RdJcknsS3aL6F7ng8h1MTsxn+2PprXTZrqaBHW2svLaP7Y+mT6w7OLaI+iVwx42eWCfp9J0sdDoSQmiIMU6bGBdCaAAWlK4sSZIkzcB9wP8EXhZC+FPSHeKfSbYkSbNBtrvpwNDY1El0V9z0ONseWcVlb984tZUu29X06kt3ctZLxrh07VPUzh+nye4mSUVwstDpm8BXQwhdMcZRgBBCPfBV0tvkJEmSlJAYY3cIYTfwG6T/QfC9McZHEi5LUsJyu5tyA6bs3KbcrXSQDp4Oji3i+lv6efCuq5MsXVKVOVnodC/wZeC5zMkotcBy4Bukh4xLkiSpzEIIzTlP/1fmZ+q1GONg+auSNFtkT6TLPYku93F2S112K11zWyozKHx50qVLqjInDJ1ijBPAe0MIdwOvBSaAzTHGfeUoTpIkSQX9kvQcp5qctezzSZzrJM1pQ6PHnkS3/dEOdm8+n4uu28q2R1YRN14wNSi8fmEd73+nW+kkFd/JOp0AiDH+DPhZSSuRJEnSjMQYa5OuQdLs1VR//JPo6hct5k039DE2PkZTfQNdnQ4Kl1Q6MwqdJEmSNPuEEOYB7wP+M3AEeCjGeH+iRUlK1IYtezk4Ps6q67ewdf1qT6KTlChDJ0mSpMr1F8BrgAdJz958dwjh1THGjydblqRyyp5UN/jCCIfGFvHM+tUsqn/R7XOSEmfoJEmSVLmuBV4TYxwHCCF8HdgGGDpJVa5Q0HThVf08+8MVR0+l+8kyWpYd4Ppb+g2cJCXC0EmSJKly/ZL097nxzPMJYDi5ciSV2oYte/nSt59lcGiSrXlBU0Pz0QHiWYMDLQyNjiRUraS5ztBJkiSpcu0Anggh3A8cBt4F/DKE8AcAMcbPJ1ibpCLbsGUv9zywg9EXatn+WMcxQdPI4NEB4lnNbSma6huSKlnSHGfoJEmSVLlqgH5gdeb5zzJ/rgAmkyhIUvFlt9IdGBrjqXWXctnbNxYMmnZvamfltX1sf7SDwYEWmttSrFnbR1fn8oR/A0lzlaGTJElShYox/k7SNUgqrWx3U29Px1TYdLygaf+uc1nS/DwXv/Up5i8cp2lJA12dDhCXlBxDJ0mSpAoVQrgS+COgOXc9xnhJIgVJKpr87qbUntapsOnkQdNKgyZJs4KhkyRJUuX6KvDnwL8kXYik4inU3QRMC5vixgtYeU0fdY1j1C+s4/3vNGiSNPsYOkmSJFWuX8QY/zzpIiQVV/e6nfT2dEzrbkrtaWVfTIdK2bCpeUkDXZ2rDZskzVqGTpIkSZXreyGE24D/CYxnF2OM/5ZcSZJOV3ZL3eALIwW7mwYHWjg4toj6JXDHjYZNkmY/QydJkqTK1QrcDYzmrE0CL0mmHEmnK3dL3YVX9Z+ku8nh4JIqg6GTJElS5Xon8IoY4y+SLkTSmcndUmd3k6RqYegkSZJUuX4BHEi6CElnbmj06Ja6bHfThVf109AyYneTpIpl6CRJklS5ngL+OYTwPeBgdjHG+PnkSpJ0KrJznA4fmje1pQ7SwdPBsUVcf0s/D951dcJVStLpMXSSJEmqXGcBEWhPuhBJpy53jtOi+he56LqtbHtkFYMDLTS3pVizto+uzuVJlylJp83QSZIkqULFGH8n6Roknb7cOU4ATNY4MFxSVTF0kiRJqlAhhDXAHwFLgBpgHvDKGON5iRYm6aQ2bNnL4AtH5zhBekvd/l3n8hu3f88tdZKqgqGTJElS5foq8CDwDuDLwFrgO4lWJOm4svObBl8Y4dDYIg4fqps2xwmguS1FU31DglVKUvHUJl2AJEmSTttkjPEzwAbgJ8A7gSsSrUhSQdn5TevvX8FIqoFn1q8mblzOymv7aFl2gJraCVqWHcjMcXJMm6TqYKeTJElS5RrJ/PkvwK/HGH8UQpiXZEGSCsud39TQnN5WNzmR7gG48Kp+GppHOHJ4Hnfc3OEcJ0lVw9BJxxg/PMGC+TbBSZJUATaFEL4FfAJ4OITQDhxJuCZJBQyNHp3fNDLYMLWtbl9cyr64lJZlB7j+ln4DJ0lVxdBJx1gwv5aP3vejpMsoubtvuzzpEiRJOlO/D1waY9wZQvgwcC1wQ8I1SSqgqf5o0LR7Uzsrr+1j+6MdDA600NyWymyrW550mZJUVIZOkiRJFSiEUAPMizE+GUJoABYD98UYdyVcmqQcucPDX3v9Fp5Zv5r9u85lSfPzXPzWp5i/cJymJQ10dS63y0lS1TF0kiRJqjAhhNcA64EPhhB+AGwGJoG6EMJ7YoyPJlqgNAdlw6Wh0RHqFi6GyVpGD41xaGwRz6xfzeBAC+df+pO8oGmlQZOkqlb20CmEcCvwwZylVwJ/FWP8YM41nwTeDQxllr4SY/xi+aqUJEma1T4HfCzG+PchhN/JrP060Ab8DWDoJJVBbhdTNlxaVP8iF1y+g22PdHDhVf08+8MVpPa0ArCz9zWk9rZy/S39PHjX1QlXL0mlV/bQKcb4VeCrACGEC4Ee4NN5l10M/FaMsbe81UmSJFWE82KM38g8vgpYF2OcAPaEEM5OsC6p6hUKmnLDpStuepxtj6yadkpdrsGBFoZGR47z7pJUXZLeXvcl4KMxxl/mrb8O+MMQwquAfwLujDG+WPbqJEmSZqfcE+peD3wo5/niMtciVbX8bXMjIzVsfmjVtKApN1zKfZx7Sl1Wc1uKpvqGRH4XSSq3xEKnEMI1wFkxxr/LW18CbAXuBH4G3E/6GOCP5V3XCDTmva0boiVJ0lwwGEK4CGgAXgH8I0AI4fXAQJKFSdVkw5a93PPADnp70qfMXXnzD9j+WMcxQVNuuJT72FPqJM11SXY6vQ/4fP5ijPEF4Prs8xDCPUA3eaETcDvwqVIWKEmSNEt9FHgMOBv4SIxxNIRwJ+nvS2sTrUyqIt3rdtLb0zHVqVR39ljBoCk3XNq9+Xwuum4r2x5Z5Sl1kua8REKnEMJC4I3ALQVeOw+4JsbYnVmqAcYLvM29pLugci0FnihaoZIkSbNQjPHJEEIbUBdjHM4sbwQuiTHuSrA0qSrkzm3Kncl0vKApP1yqW7SYN93Qx9j4GE31nlInae5KqtNpJbAzxjha4LX/AD4bQvgh6e11HwC+m39R5gvWcO5aCKH4lUqSJM1CMcZDwKGc5xsTLEeqGrlb6i68qn/aTKbdm9pP0sVkuCRJuZIKnV4F7M1dCCGsBz4ZY3w6hPA+4HvAQuCfgXvKX6IkSZKkapU7ILypvoHLVr6UJ7f/kgNDYzy17tKCM5kOji3irPojdjFJ0gwlEjrFGP8W+Nu8tetzHn8H+E6565IkSZJUvXK3zR0aW8Qz61czONDC+Zf+hP3//m9sXb+ay96+cWpL3b6YDpMuvKqfhpYRmpc00NW5wpBJkmaoNukCJEmSJKnUstvm1t+/gpFUA8+sX01qTyuTE7Wcc/5zbM08z85tytoXl/LsD1fQvKSBB++62sBJkk6BoZMkSZKkqpd7El1D8/QB4bnPs1vqWpYdoKZ2gpZlB1izto+uzvakSpekipXUTCdJkiRJKrrcWU11CxfDZC1j42NMTjIVLOWeQpf/PLulbuU1fdQ1jmW21C23w0mSToOhkyRJkqSqkHvy3KL6F7ng8h1seyQ9BPzKm38wFSzlDwh/btc5rLp+C1szM54Oji2ifgncceNqwyZJOgOGTpIkSZKqQu4Wuituepxtj6ya6maKG5dz0XVb2fbIKvbvOpclzc9z8VufYv7CcZqWNHDZynN5xcv6p06zs7tJks6coZMkSZKkipW7nS53C13+3KZ9cSnUTHJx5ybmLzySCZZWTguWbntH2cuXpKpm6CRJkiSpIuVup8vfQpc/twng4OhiWpvqePCuqxOsWpLmDkMnSZIkSRUjt7NpYnwBm3ouLriFbvfm86ceDw600NyWypxCtzzh30CS5g5DJ0mSJEmzVv5pdCMjNWx+KB0kXf+h751wC13dwsW86YY+xsbHnNMkSQkwdJIkSZI0KxXaPrf9sY6pzia30EnS7GboJEmSJGnWONH2ubqzx6Z1Nu3e1M7Ka/vY/miHW+gkaRYydJIkSZI0K+R3NuVvn8vvbNoXl7Kk+XkuXfsUtQvG3UInSbOMoZMkSZKmCSHcBUzEGD+ddC2aW7rX7aS35/jb53Zvaj9mOHj76wa44+aVBk2SNAsZOkmSJAmAEMLZwOeB3wY+m3A5moOGRkdOuH3u4Ngizqo/4nBwSaoQhk6SJEnK6gR2AfckXYjmpqb6mWyfW2HIJEkVwtBJkiRJAMQYHwQIIXz6eNeEEBqBxrxlEwAVRVdnO0PDfVMzndw+J0mVzdBJkiRpjgkhvBP4Qt7yT2KM18zg9tuBTxW/Ks1FuSfVpbuY2rnj5uV0N/bnrLl9TpIqlaGTJEnSHBNj/Dvg707z9nuB+/PWlgJPnElNmnvyT6prbksxNNzHHTcv58G7rk66PElSERg6SZIkacZijMPAcO5aCCGhalTJ8k+qS+1ppbeng+7GfjubJKlKGDpJkiRJKovc7XSTk0w7qQ7Sz4dGRxKqTpJUbIZOkiRJmibG+Omka1D1yd9Od+XNP5h2Uh1Ac1uKpvqGBKuUJBVTbdIFSJIkSap+udvpJidqiRuXc9F1W2lZdoCa2glalh1gzdo+ujrbky5VklQkdjpJkiRJKrmh0ZFp2+n2xaVQM8nFnZuYv/CIJ9VJUhUydJIkSZJUck31Dcdspzs4upjWpjpPq5OkKmXoJEmSJGnGcoeBp7uT0tvhTrZ22cqXMrS2b2qmU3NbKrOdbnmSv44kqYQMnSRJkiTNSP4w8Oa2FIO/epqJI/PY/NCqE64Nre3jzVe8nKbG/pxwyu10klTNDJ0kSZIkzUjuMHCA1J5Wxkbms/2xk6/19nTQ1NjvVjpJmkM8vU6SJEnSjOQPAweoO3tsRmuDAy0MjY6UvEZJ0uxhp5MkSZKkYxSa3VRoGPjYr+pmtNbclqKpvqGsv4MkKVmGTpIkSZKmKTS7aWg4PZMpfxh4XcNhLnnr1mnzmwqtOTRckuaeREKnEMLjwMuB8czS+2KMm3Jevwb4PHAW8K0Y48fLX6UkSZI0NxWa3ZSdyXTHzcvpnjYMfEX6nuaTrTk0XJLmmrKHTiGEGuAC4LwY4+ECr58FdANvBPYAD4cQ3hxj/H55K5UkSZLmpkKzm7Izma5cvbRgeDTTNUnS3JHEIPEATALfDyFsCyF8MO/1S4BdMcafZkKprwPvLHeRkiRJ0lyVnd2Uy5lMkqRTlcT2uibgB8D7SW+f2xBCiDHGRzOvnwvsz7l+P3DMP5GEEBqBxrxl/ylFkiRJOkNdne0MDU+f3eRMJknSqSp76BRj7AV6M09HQwhfA64HsqFTTYHbJgqs3Q58qvgVHt/44QkWzE+iOUySVE3mwt8nc+F3lKpFoVPqstvips9uciaTJOnUJDHT6T8Bi2KMP8gs1XB0oDjAAHBOzvNXAPsKvNW9wP15a0uBJ4pT6bEWzK/lo/f9qFRvP2vcfdvlSZcgSVVtLvx94t8lUmU43il1wHFnN0mSNFNJbK9rBO4KIbweWADcDPxuzuubgBBCeDXwU+AG0oPFp4kxDgPDuWshhFLVLEmSJFWs43UzHe+Uuu7GfgMnSdIZS2J73d+HEC4FtgLzgC/GGHtDCH3A9THGfSGEW4DvAIuB9cC3y12nJEmSVA1O1M10olPqJEk6U0l0OhFj/ATwiby1jpzHPwAuKnddkiRJUrU5UTdT9pS67GvgKXWSpOJxwqckSZJUxU7UzdTV2c6atX20LDtATe0ELcsOZE6pa0+oWklSNUmk00mSJElSeZyom8lT6iRJpWToJEmSJFWxrs52hob7ps10SnczLQc8pU6SVDqGTpIkSVIVs5tJkpQUQydJkiSpytnNJElKgoPEJUmSJEmSVHSGTpIkSZIkSSo6QydJkiRJkiQVnaGTJEmSJEmSis5B4pIkSVIV2LBlL93rduacUNfu8HBJUqIMnSRJkqQKt2HLXu55YAe9PR0MDrTQ3JZiaLgPwOBJkpQYt9dJkiRJFa573U56ezpI7WllcqKW1J5Wens66F63M+nSJElzmKGTJEmSVOGGRkcYHGiZtjY40MLQ6EhCFUmSZOgkSZIkVbym+gaa21LT1prbUjTVNyRUkSRJznSSJEmSZr2TDQnv6mxnaLhv2kynNWv76OpcnmDVkqS5ztBJkiRJmsVmMiQ8+2d3Y39OMLXcIeKSpEQZOkmSJEmzWO6QcODokPDG/mmh0pWrlxoySZJmFWc6SZIkSbOYQ8IlSZXK0EmSJEmaxRwSLkmqVIZOkiRJ0izW1dnOmrV9tCw7QE3tBC3LDmSGhLcnXZokSSfkTCdJkiRpFnNIuCSpUhk6SZIkSbOcQ8IlSZXI7XWSJEmSJEkqOkMnSZIkSZIkFZ2hkyRJkiRJkorO0EmSJEmSJElFZ+gkSZIkSZKkojN0kiRJkiRJUtEZOkmSJEmSJKnoDJ0kSZIkSZJUdPOT+NAQwqeA38w8fTjG+JG81z8JvBsYyix9Jcb4xTKWKEmSJEmSpDNQ9tAphHANcB2wCpgE/iGE8LYY43dzLrsY+K0YY2+565MkSZLKacOWvXSv28nQ6AhN9Q10dbZz5eqlSZclSdIZS6LTaT9wR4zxEEAIYQdwXt41rwP+MITwKuCfgDtjjC/mXhBCaAQa8+7zb2dJkiRVjA1b9nLPAzvo7elgcKCF5rYUQ8N9AAZPkqSKV/aZTjHGZ2OMTwKEEM4H3gWsz74eQlgCbAXuBF5LOlj6RIG3uh34ad7PEyUtXpIkSSqi7nU76e3pILWnlcmJWlJ7Wunt6aB73c6kS5Mk6YwlMtMJIIRwIfAw6S6mXdn1GOMLwPU5190DdAMfy3uLe4H789aWYvAkSZKkCjE0OsLgQMu0tcGBFoZGRxKqSJKk4klqkPjlwHeA22OMf5P32nnANTHG7sxSDTCe/x4xxmFgOO/e0hQsSZIklUBTfQPNbSlSe1qn1prbUjTVNyRYlSRJxZHEIPFlQA/wrhjj4wUu+Q/gsyGEHwI/Az4AfLfAdZIkSVJF6+psZ2i4b9pMpzVr++jqXJ50aZIknbEkOp3uBBYDn8/pTPoy8FbgkzHGp0MI7wO+BywE/hm4J4E6JUmSpJLKDgvvbuzPOb1uuUPEJUlVoeyhU4zxw/z/7d1/kJ1VecDx7yYSZAANSYNCEqha9ylIJUwsEoFCx9Ba6kywgFSCdRoQaBVkSqq0pEPUothKEzJlGmpdoQLTTsBJ6CCCCrSAUYEhEgs8QStMsoQCm6TSVMKPbP9434t3l/0Rdu/d9969388/e+953z3vc/bsZJ95cs658KkhLq2uu+dmiu13kiRJUtu5+8Et9KzbVFdI6h62kHTi/DkWmSRJk1JlB4lLkiRJk9HdD27hyuseHbBlbvuODQAWlyRJHWVK1QFIkiRJk0nPuk2sXzuPvs2z6N89hb7Ns1i/dh496zZVHZokSRPKopMkSZLUQNt3Ps+23pkD2rb1zmT7zucrikiSpGq4vU6SJEkARMSxwEpgL6APWJKZT1YbVfs5YN/9mTG7j77Ns15tmzG7jwP23b/CqCRJmniudJIkSVLNDcDZmTmvfL2q4nja0pJF3Sw4ZQMz5z5L15TdzJz7LAtO2cCSRd1VhyZJ0oRypZMkSZKIiL2BZZn5cNn0MHBBhSG1rdph4T3TN9Z9et1hHiIuSeo4Fp0kSZJEZu4CrgeIiCnAcmDt4PsiYjowfVCz1ZRBTpw/xyKTJKnjWXSSJEnqMBFxOrBiUPNjmbkwIqYB11HkiV8Y4tsvAi5rcoiSJGkSsOgkSZLUYTJzDbBmcHtE7AfcQnGI+KLMfGmIb18JXDuobQ5wT4PDlCRJbc6ikyRJkmquB34CnJeZ/UPdkJk7gB31bRExAaFV4+4Ht9CzblPd2UzdbpuTJGkPWXSSJEkSEXEUsAh4BHioLCQ9lZknVxpYhe5+cAtXXvco69fOY1vvTGbM7mP7jg0AFp4kSdoDFp0kSZJEZj4EdFUdRyvpWbeJ9Wvn0bd5FgB9m2exfu08eqZvtOgkSdIemFJ1AJIkSVIr2r7zebb1zhzQtq13Jtt3Pl9RRJIktRdXOkmSJGnSacRZTAfsuz8zZve9utIJYMbsPg7Yd/9GhytJ0qRk0UmSJEmTSqPOYlqyqJvtOzYM6GfBKRtYsuiwZoUuSdKkYtFJkiRJTTeRnwLXqLOYavf2TN9YF/dhnuckSdIesugkSZKkpproT4Fr5FlMJ86fY5FJkqQx8iBxSZIkNVX9yqP+3VN+ufJo3aamPK92FlM9z2KSJGniWXSSJElSU030p8AtWdTNglM2MHPus3RN2c3Muc+WZzF1N+V5kiRpaG6vkyRJUlNN9KfAeRaTJEmtwaKTJEmSmqqKT4HzLCZJkqpn0UmSJElN5cojSZI6k0UnSZIkNZ0rjyRJ6jweJC5JkiRJkqSGs+gkSZIkSZKkhrPoJEmSJEmSpIaz6CRJkiRJkqSGs+gkSZIkSZKkhrPoJEmSJEmSpIZ7QxUPjYgzgWXANGBFZl496Po84CvAm4H/AM7PzJcnPFBJkiRJkiSNyYSvdIqI2cDlwHHAkcC5EXH4oNuuBy7IzG6gC/j4xEYpSZIkSZKk8ahie91C4M7M3JaZO4GbgNNqFyPiUGCfzPx+2XQtcPqERylJkiRJkqQxq2J73cHA1rr3W4GjR7k+Z3AnETEdmD6o+VCAp59+uiGBDmXnz59rWt+tYsuWLY5zkuiEMUJnjLMTxgiOczLZsmVLU/qt+xs/tSkP0FhNhebmYJIkqTpjzcGqKDp1DdG2+3Vcr7kIuGyoByxevHgMYanmW1+rOoKJ0Qnj7IQxQmeMsxPGCI5zMpmAMR4E/LTpT9GeOgjMwSRJ6gCvKweroujUCxxf9/4g4KlB1986wvWalRRb7+pNA94OPA68Mt5Am2gOcA/Fz6E5/xWsRnGu2odz1T6cq/bRinM1lSI3uL/qQDTA/RS/J1tp7RysphV/tzWQc9T6nKPW5vy0vnabozHlYFUUnb4DLI+IWcBO4FTg3NrFzHwyIl6IiGMz8z7gj4DbBneSmTuAHUP0v6k5YTdORNRebsnMJyoMRaNwrtqHc9U+nKv20cJz5QqnFpOZu4B7q45jT7Xw77ZKzlHrc45am/PT+tp0jl53DjbhB4lnZi9wKXAXsAG4MTN/GBHfjIj3lLctBlZExKPAvsCqiY5TkiRJkiRJY1fFSicy80bgxkFtJ9e9/hEDDxeXJEmSJElSG5nwlU6SJEmSJEma/Cw6VWMH8FmGPpNKrcW5ah/OVftwrtqHc6XJyt/t1ucctT7nqLU5P62vI+aoq7+/v+oYJEmSJEmSNMm40kmSJEmSJEkNZ9FJkiRJkiRJDVfJp9cJIuJYYCWwF9AHLMnMJ6uNSiOJiM8BuzNzedWxaKCIOBNYBkwDVmTm1RWHpBFExJuA7wEfzMwnKg5Hw4iIy4APl29vzcxPVxmP1AzmY+3BHKz1mHu1PvOt1tZJeZYrnapzA3B2Zp/b8g8AAAdvSURBVM4rX6+qOB4NIyLeHBFfBZZWHYteKyJmA5cDxwFHAudGxOHVRqXhRMR7gXuB7qpj0fAiYiHwO8BRwDxgfkR8qNqopKYwH2th5mCtydyr9ZlvtbZOy7MsOlUgIvYGlmXmw2XTw8AhFYakkS0CHgeurDoQDWkhcGdmbsvMncBNwGkVx6ThfRz4BPBU1YFoRFuBizPzxcx8CXgU/05pkjEfawvmYK3J3Kv1mW+1to7Ks9xeV4HM3AVcDxARU4DlwNoqY9LwMvOfASJiecWhaGgHU/zDXbMVOLqiWDSKzDwHICKqDkUjyMz/rL2OiHcCZwDvqy4iqfHMx1qfOVjLMvdqceZbra3T8iyLTk0WEacDKwY1P5aZCyNiGnAdxTx8YcKD0wAjzVUV8WiPdQ3RtnvCo5AmoYh4F3ArsDQzH686HmmszMdamzlY2zH3khqgU/Isi05NlplrgDWD2yNiP+AWikMrF5XL6lSh4eZKLa8XOL7u/UG4lFgat/KA5ZuBizLzX6qORxoP87HWZg7Wdsy9pHHqpDzLolN1rgd+ApyXmf1VByO1se8AyyNiFrATOBU4t9qQpPYWEXMpthmdkZl3Vh2P1ETmY9LrZ+4ljUOn5VkWnSoQEUdRHIz4CPBQudf2qcw8udLApDaUmb0RcSlwF8XH9v5TZv6w4rCkdrcUeCPwd3XnQazOzNXVhSQ1lvmYNDbmXtK4dVSe1dXf73/qSJIkSZIkqbGmVB2AJEmSJEmSJh+LTpIkSZIkSWo4i06SJEmSJElqOItOkiRJkiRJajiLTpIkSZIkSWq4N1QdgCRJkiRNNhGxCvit8u3hwM+AX5TvFwD/B8zKzOcqiO0O4MzMfC4ivgkszcxHxtDPtcCPM/PLQ1z7VeDzwHspxr0LuCYzvzqe2EeJ5zXjAg4E/j4zj2jWcyUNz6KTJEmSJDVYZl5Yex0RTwCLM/OBurYKonrVSbUXmXlyozuPiLnAeuAvMvOjZdts4IaI6M7MzzT6maXXjCsiDmzSsyTtAYtOkiRJklSNz0bEMcBM4G8z82qAiDgb+FOK41D6gE9m5mMR8WbgamAe0A/cBvxlZr4cEbuAdcCRwGJgJ3BV2fdUYFVm9kTE18pn3xURJwP3AKdl5gMRsQS4GHgFeA74GNALrACOAfYHuoBzMvO+EcZ1CbAmM6+tNWRmb0ScAfwsIq4CuqlbgRQRJ9beR8RbgGuAtwBvBZ4EPpyZz5QFvGuB9wOHAP+amZ8eblz1QUXENOBLwAnlz+Qh4MLM/HlE/AlwPvAi8AJw3lhWf0kayDOdJEmSJKka/5WZ84EPAVdGxF4RcQJFsef4zDwK+BvgG+X9qyiKUL8BvIeiwLS0vDYN+LfMDGADcBNwSdn/CcDSiDgmM/+4vP+3M3NzLZCIOJKiIPOBzHw3cAtwKcX2uIOBBZl5OHAdRVFpJMcB/z64MTP/G3ik7HMkfwisz8wFwNsptiJ+tO76fpl5PPA+4IKIeNtw4xrkEuBlYH5mHgk8BVwREVOBlRRj/03gH8sxSBonVzpJkiRJUjVuLL9uAPYG3gT8PvBrwPfqtuDNiIgZwO8Bx2ZmP7ArIlYDFwFXlPfdU37tBt4B9NT1sQ9wFPD9YWJ5P3B7rWCTmStrFyJiGXBeRLwDOBF4fozjrZk60sXMvCoijo+IPwPeCRwB/KDulnXlfb0R8Qwwg+LMrNF8EJgOnFT+XKYBz2TmKxGxhuJnfitwB7+cG0njYNFJkiRJkqrxEkBm9pdFkC6KgszXa+ceRcQUipVG23ntTpUpwF517/+3/DoV2JGZ82oXyi1r/zNCLC9TbNmr3b8PcChF8eoq4EqKYs9jwFmjjOs+iuLUzWVfB1Ks0JpBcaj6DyhWMHXVfc+0umd/CTga6AHuKsdYf+8v6l73D7o2kqnApzLztvI5+wFvBMjMsyLiCGAh8BngbGDRHvYraRhur5MkSZKk1nEH8JGIOKh8fz7w3fL17cAnIqIrIvYGzgW+PUQfCbwQEWfBqwd7/xiYX15/hYHFKiiKOwvrnnsexda+kyi27f0DcD9wCqOsVAK+CJwaER8r338E2AisBVaXq6meBQ6JiAMjoqvst+Z3gZWZ+XXgmTKG0Z453Ljq3Q58MiKmlcW8rwBfjIhfiYjNQF+5wmsZxdZFSeNk0UmSJEmSWkRm3k5xttK3I+Jh4EzgD8otdRcCB1IUcDZSFJcuH6KPFylW6ZxT9nEH8Fd1h39/A7i3XNlT+56NwJ8D34qIHwEfoCh4rQZOKPtZD/wUeFtZtBluDJuBBRTb2DZRFMdeoigg/XpEvKs8pPsa4AGKLX9b67r4HPDliHiwFivFlsPRvGZcg3weeILiAPFHKFZIXZyZzwF/DXy3fOYVwDl78DxJo+jq7+8f/S5JkiRJksYpIt4NvJCZm6qORVLzWXSSJEmSJElSw7m9TpIkSZIkSQ1n0UmSJEmSJEkNZ9FJkiRJkiRJDWfRSZIkSZIkSQ1n0UmSJEmSJEkNZ9FJkiRJkiRJDWfRSZIkSZIkSQ33/zMITFXsW30dAAAAAElFTkSuQmCC\n", "application/papermill.record/text/plain": "
" }, "metadata": { "scrapbook": { "mime_prefix": "application/papermill.record/", "name": "exp1_fig" } }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABJ0AAAF8CAYAAABlkMrHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3X10nGd57/uv5NdIFtELghDZOYVDdMekdmRMXkw2IQlJ9iFlI7OA0ibnJKkIUAKFtMmhPbw3+zTdQAPZbQmcDWglKZTSwkIOjelOQnCbYsVOHMvWDua23QK1ZYeakUQUqbFlS+ePmZFH47Et2zPzaEbfz1panrnneWYurQV4+Pm6r7tmcnISSZIkSZIkqZhqky5AkiRJkiRJ1cfQSZIkSZIkSUVn6CRJkiRJkqSiM3SSJEmSJElS0Rk6SZIkSZIkqegMnSRJkiRJklR0hk6SJEmSJEkqOkMnSZIkSZIkFZ2hkyRJkiRJkorO0EmSJEmSJElFZ+gkSZIkSZKkopufdAHFFEJYBFwM7AeOJFyOJEkqvnnAK4CnYowHky5GaX4HkySp6p3Wd7CqCp1If9l5IukiJElSyb0B+Oeki9AUv4NJkjQ3nNJ3sGoLnfYDfOMb3+Ccc85JuhZJklRkzz33HDfeeCNk/s7XrOF3MEmSqtjpfgerttDpCMA555zD0qVLk65FkiSVjlu4Zhe/g0mSNDec0ncwB4lLkiRJkiSp6AydJEmSJEmSVHSGTpIkSZIkSSo6QydJkiRJkiQVnaGTJEmSJEmSis7QSZIkSZIkSUVn6CRJkiRJkqSiM3SSJEmSJElS0Rk6SZIkSZIkqejml/LNQwifAn4z8/ThGONHQgjXAJ8HzgK+FWP8eIH7zgO+DrwMiMCNMcYXSlmrJEmSJElSUjZs2Uv3up0MjY7QVN9AV2c7V65eWtGfV7LQKRMuXQesAiaBfwgh/DbwGeCNwB7g4RDCm2OM38+7/T7gvhjj34QQPgF8AvjDUtUqSZIkSZKUlA1b9nLPAzvo7elgcKCF5rYUQ8N9ACUJnsr1eaXcXrcfuCPGeCjGOA7sANqBXTHGn8YYD5PuZnpn7k0hhAXAFcC3M0v3518jSZIkSZJULbrX7aS3p4PUnlYmJ2pJ7Wmlt6eD7nU7K/rzStbpFGN8Nvs4hHA+8C7gz0mHUVn7gfwI7aXA85lQ6njXEEJoBBrzlkvXdyZJkiRJklQCQ6MjDA60TFsbHGhhaHSkoj+v5IPEQwgXAo8CdwL/UuCSibznNTO4BuB24Kd5P0+cfqWaa8YPF/qPVXWZC7+jJEmSJFW6pvoGmttS09aa21I01TdU9OeVepD45cB3gNsz85neCJyTc8krgH15tx0AXhJCmBdjPHKcawDuJb31LtdSDJ40Qwvm1/LR+36UdBkldfdtlyddgiRJkiTpJLo62xka7ps2Y2nN2j66OpdX9OeVcpD4MqAHeFeM8fHM8qb0S+HVpDuTbgC6c++LMY6HEJ4gvR3vr4GbgPxB48QYh4HhvM8s9q8hSZIkSZJUUtnh3d2N/TmnyS0v2el15fq8UnY63QksBj6fEwZ9GbiFdPfTYmA9mYHhIYSvAg/FGB8CbgMeCCF8HPg34LdLWKckSZIkSVKirly9tGQhU1KfV8pB4h8GPnycly8qcP2tOY9/DlxZmsokSZJ0PCGETwG/mXn6cIzxI0nWI0mSKldJZzpJkiSpcoQQrgGuA1YBk8A/hBDeFmP8brKVSZI0e23YspfudTtztqm1l7VjaTYzdJIkSVLWfuCOGOMhgBDCDuC8ZEuSJGn22rBlL/c8sGPaQO6h4T4AgycMnSRJkpQRY3w2+ziEcD7pg11en3tNCKERaMy71W/VkqQ5qXvdTnp7OkjtaQUgtaeV3p4Ouhv7DZ0wdJIkSVKeEMKFwMPAnTHGXXkv3w58qvxVSZI0+wyNjjA40DJtbXCghaHRkYQqml1qky5AkiRJs0cI4XLgB8AfxRgfKHDJvcAr837eUL4KJUmaPZrqG2huS01ba25L0VTfkFBFs4udTpIkSQIghLAM6AHeFWN8vNA1McZhYDjvvjJUJ0nS7NPV2c7QcN+0mU5r1vbR1bk86dJmBUMnSZIkZd0JLAY+nxMkfTnG+OXkSpIkafbKzm3qbuzPOb1uufOcMgydJEmSBECM8cPAh5OuQ5KkSnLl6qWGTMfhTCdJkiRJkiQVnaGTJEmSJEmSis7QSZIqwPjhiaRLKIu58ntKkiRJc4EznSSpAiyYX8tH7/tR0mWU3N23XZ50CZIkSZKKxNBJkiRJkiTNeRu27KV73c6cU+jaHRB+hgydJEmSJEnSnLZhy17ueWAHvT0dDA600NyWYmi4D8Dg6Qw400mSJEmSJM1p3et20tvTQWpPK5MTtaT2tNLb00H3up1Jl1bRDJ0kSZIkSdKcNjQ6wuBAy7S1wYEWhkZHEqqoOhg6SZIkSZKkOa2pvoHmttS0tea2FE31DQlVVB0MnSRJkiRJ0pzW1dnOmrV9tCw7QE3tBC3LDrBmbR9dne1Jl1bRHCQuSZIkSZLmtOyw8O7G/pzT65Y7RPwMGTpJkiRJkqQ578rVSw2ZisztdZIkSZIkSSo6QydJkiRJkiQVnaGTJEmSJEmSis7QSZIkSZIkSUVn6CRJkiRJkqSiM3SSJEmSJElS0Rk6SZIkSZIkqegMnSRJkiRJklR085MuQJIkSZIkqRQ2bNlL97qdDI2O0FTfQFdnO1euXpp0WXOGoZMkSZIkSao6G7bs5Z4HdtDb08HgQAvNbSmGhvsADJ7KpOShUwjhJcBG4C3Aa4C7c15uAzbFGN+Sd89NwGeAX2SWHo4xfqzUtUqSJEmSpMpwsi6m7nU76e3pILWnFYDUnlZ6ezrobuw3dCqTkoZOIYRLga8A7QAxxvXA+sxr5wA/An6/wK0XA38QY/xmKeuTJEmSJEmVZyZdTEOjIwwOtEy7b3CghaHRkbLXO1eVepD4e4APAPsKvPY54Msxxl0FXrsYuCmEsC2E8PUQQlMpi5QkSZIkSZUjt4tpcqL2aBfTup1T1zTVN9Dclpp2X3Nbiqb6hnKXO2eVtNMpxngrQAhh2noI4XzgSuDW49y6H/hvwGbS2/H+Ergx7z0agca8++yPkyRJkiSpCpxo+9xMupi6OtsZGu6b1g21Zm0fXZ3Ly/p7zGVJDRJ/L3BfjPFgoRdjjG/LPg4hfBb41wKX3Q58qjTlSZIkSZKkpJxs+1y2iyk7rwmO7WLKBlTdjf05wdVy5zmVUVKh01rgukIvhBDOBrpijF/ILNUA4wUuvRe4P29tKfBEkWqUJEmSJEkJONkQ8Jl2MV25eqkhU4LKHjqFEF4KnBVj/OlxLnkB+EgIYWOMcRPwQeC7+RfFGIeB4bz3Lna5kiRJkiSpzE62fc4upsqQRKfTq4C9+YshhK8CD8UYHwoh/CbwpRDCWcBO4KYy1yhJkiRJkkroRDObZrp9zpBpditL6BRj/LWcx5uBywpcc2vO4yeA15ajNkmSJEmSVBrHC5ZONrPJIeDVIamZTpIkSZIkqYqdKFg62cwmt89VB0MnSZIkSZJUdCcKlk42swncPlcNapMuQJIkSZIkVZ8TBUvZmU258mc2qfIZOkmSJEmSpKI7UbDU1dnOmrV9tCw7QE3tBC3LDmRmNrUnVK1Kwe11kiRJkiSp6E40DNyZTXODoZMkSZIkSTojxzulDo4fLDmzqfoZOkmSJEmSpNN2olPqDJbmNmc6SZIkSZKk05Z7St3kRO3RU+rW7Uy6NCXM0EmSJEmSJJ22E51Sp7nN7XWSJEmSJGnG8uc31S2oo7ktRWpP69Q12VPqNLcZOkmSJEmSpGMUGg4OHDO/6bK3Pc0lb93K5odWHXNKneY2QydJkiRJkjTN8YaD19UxNb8JILWnlSe/+zredOMzXH9L4VPqNHcZOkmSJEmSpGlyh4MDU8PBL3vHxoLzm8YOvci3/vQ/J1GqZjEHiUuSJEmSpGmONxz8yPg8mttS09ad36TjMXSSJEmSJEnTNNU3FAyXXrJkAWvW9tGy7AA1tRO0LDuQmd/UnlClms3cXidJkiRJkqbp6mxnaLhv2kynNWv7eP87LgSgu9H5TTo5QydJkiRJkjRNNkQ6XrhkyKSZMHSSJEmSJEnHuHL1UsMlnRFDJ6mKjR+eYMH86h/dNld+T0mSJKkYNmzZS/e6nTkdTOl5TPlrBk46U4ZOUhVbML+Wj973o6TLKLm7b7s86RIkSZKkWSs3ZKpbuJiRkRo2P7RqalbT4K+eZuLIvGlrQ8N9gNvodGYMnSRJkiRJqlIbtuzlngd2TA0Ev/LmH7D9sQ5Se1oBSO1pZWxk/jFrvT0ddDf2GzrpjBg6SZIkSZJUpbrX7aS352igVHf2GIMDLdOuKbQ2ONDC0OhI2epUdTJ0kiRJkiSpSuTPaxp6YWRaoDQy2EBzW2oqhAIY+1XdMWvNbSma6hvKWruqj5N3JUmSJEmqAtmtdOvvX8HD9/4X1t+/gsOHFtDclpq6Zvemdi66bistyw5QUztBy7ID1DUc5pK3Tl9bs7ZvasC4dLrsdJIkSZIkqQrkb6VL7WnlX5/5NV57/RaeWb+awYEWDo4t4qz6I7zphj7GxscyJ9WtSN/f3J9zet1y5znpjBk6SZIkSZJUoXK3001Ocsxspl2bLuD8y3Zx/S25gdKKgoGSIZOKzdBJkiRJkqQKkRsy1S1czMhIDZsfWjV1Ml2h2UzNSxp48K6rE6xac5UznSRJkiRJqgD5M5sO/KKWzQ+tIrWnlcmJWuLG5cfMa3I2k5Jkp5MkSZIkSRUgf2ZT3dlj07bT7YtLoWaSizs3MX/hEWczKXElD51CCC8BNgJviTH+LITQDbwBGM1c8scxxu/m3dMBfAU4G/gn4HdjjIdLXaskSdJcl//dLeFyJEk5hkZHpoVMI4MNx2ynOzi6mNamOrfTaVYo6fa6EMKlwD8Dub18FwNXxBg7Mj/fLXDr14HfizG2AzXAe0pZpyRJko773U2SNEs01adDpqzdm9rdTqdZrdSdTu8BPgD8FUAIoR44D/hKCOE84LukO50msjeEEP434KwY45OZpfuBPwa+VOJaJUmS5rpp390kSbNLV2c7Q8N99PZ0MDjQwsGxRZxVf4Q33dDH2PiY2+k065Q0dIox3goQQsguvRx4HHgf8ALw98C7SW+lyzoX2J/zfD9wzH9jQgiNQGPesv/NkiRJOk0Fvrsdw+9gklReuafVNdU38OYrXk5TY//U867OFYZMmrXKOkg8xvivwNuyz0MIfwHcxPTQqabArRMF1m4HPlXUAiVJknQyfgeTpCLLDZbqFi6GyVrGxseoW7iYkZEaNj+0isGBFprbUgyt7eOOm+1mUmUoa+gUQlgBtMcYv5NZqgHG8y4bAM7Jef4KYF+Bt7uX9Na7XEuBJ868UkmSJB2H38Ek6Qzlh0zZYGlR/YtccPkOtj2S3j535c0/YPtjR0+rS+1ppbeng+7GfkMnVYSyhk6kQ6Z7QwiPk95e917ggdwLYow/DyG8GEK4PMb4I9KdUN/Pf6MY4zAwnLt2olZwSZIknTm/g0nSmdmwZS/3PLBjai5TbrB0xU2Ps+2RVVMhU93ZY9NOqwMYHGhhaHQkidKlU1bS0+vyxRi3A38K/Aj4MdAXY/wmQAhhfQjhdZlLbwS+EELYAdQDf17OOiVJkiRJKoXudTvp7UmHTJMTtdOCpYbmkWkh08jg9NPqAJrbUjTVN5S1Zul0laXTKcb4azmP7wPuK3DN9TmPtwGXlKM2SZIkTZf73U2SVFxDo4WDpdSe1mmPAXZvauei67ay7ZGjM53WrO2jq3N5UuVLp6Tc2+skSZIkSZqzmuqPHyzt3nz+tJDp4Ngizqo/wptu6GNsfCxzWp1DxFU5DJ0kSZIkSSqTrs52hob7pmY65QdLdQsX54VMKwyZVLEMnSRJkiRJKpNsgNTd2M/Q6IjBkqqaoZMkSZIkSSW2YcteutftzAma2g2aVPUMnSRJkiRJKrLckKlu4WJGRmrY/NDRgeBDw30ABk+qarVJFyBJkiRJUjXZsGUv9zywg/X3r+Dhe/8LB35Ry+aHVpHa08rkRC2pPa309nTQvW5n0qVKJWWnkyRJkiRJpym/o4nJWp4fPchT6y6dOqGu7uwxBgdapt03ONDC0OhIEiVLZWPoJEmSJEnSCeTPY7ps5Ut5cvsvGXxhhENji3hm/WoW1b/IBZfvYNsjHVz29o3TQqaRwQaa21JTIRRAc1uKpvqGJH4dqWwMnSRJkiRJypMNmnKDpcGBFs6/9Cfs//d/Y+v61Vx4VT/P/nAFqT2tXHHT42x7JL2FLj9k2r2pnYuu28q2R47OdFqzto+uzuUJ/5ZSaRk6SZIkSZLmrELb40YPjU0FTbnBEsA55z/H1vWrSe1ppaF5ZKqjKffx7k3trLy2j+2PdjA40MLBsUWcVX+EN93Qx9j4WOb0uuUOEVfVM3SSJEmSJM1J2YHfvT0d07bH5QZNuWESTA+Xcjuach/vi+kwaeU1fdQ1jtG8pIGuzhWGTJpzPL1OUsUbPzyRdAmSJEmqQN3rdtLb00FqTyuvvmTX1Pa4QsFSVu7zbEdTy7ID7N58Phddt5WWZQeoqZ3g4Ngi6pfAnTeu5sG7rjZw0pxkp5Okirdgfi0fve9HSZdRUnffdnnSJUiSJFWdodHC2+Nyu5byt8o9t+scVl2/ha3rV7N/17ksaX6ei9/6FPMXjlO3aLFb6KQchk6SJEmSpDmpqb7w9rjcoCk/WGpa0sBlK8/lFS/rnzrNrqtzpeGSVIChkyRJkiRpTurqbGdouI/eno6p7XHbHllVMGjKD5Zue0eChUsVwtBJkiRJkjQnZE+qG3xhhMnDC6idP05d/dEtcXUL87fH2cEknQlDJ0mSJElS1cueVLfz6Tbalh+ZmtHU3JZizdo+7rh5tQGTVGSGTpIkSZKkqpXtbjowNMZT6y7lwqv62f5o+sQ6gNSeVnp7Ouhu7Dd0korM0EmSJEmSVFVyt9EdGlvEM+tXc9nbNzI40DLtlLqswYEWhkZHEqpWql6GTpIkSVUghPBKYFmM8Z+SrkWSklAoaLrwqn6e/eGKaafT5Z5Sl9XclqKpviHB6qXqVJt0AZIkSTo9IYT3hxD+OoTwUqAX+EoI4U+TrkuSyi07r2n9/SsYSTXwzPrVpPa0Tutq2r2pnZXX9vHcrnNYeW0fLcsOUFM7QcuyA6xZ20dXZ3vCv4VUfex0kiRJqlzvBn4DeCewDvgA8CTw/yRZlCSVW/e6nfT2dBwTNOV2Ne2L6XlN4fU7OOslY1y69ilq54/TtKSBrs7lznOSSsDQSZIkqXJNxhh/EUK4BvhWjPFwCGFe0kVJUrnkbqkrFDRlu5uyJ9UdHFtE/RK44//0pDqpHAydJEmSKtfBEMJHgDcCt4YQ3g+MJlyTJJVFdktdb08HF17VXzBo2r/rXJY0P8/Fb32K+QvtapLKzdBJkiSpcr0b+L+Bm2OMQyGE/wTcmnBNklQWuVvqTh40rTRokhJg6CRJklShYowxhPB7wKtDCDXArTHG/0i6Lkkqh6HRo1vqsvOaLryqn4aWEZoNmqRZwdPrJEmzxvjhiaRLKIu58nuq9EIIlwH/AjwMtAF7QwivT7YqSSqPpvr07KasfXEpz/5wBc1LGnjwrqsNnKRZwE4nSdKssWB+LR+970dJl1Fyd992edIlqHp8DrgG+EaMcW8I4f8C/jtwcbJlSVLpdXW2MzTcR29Pekh4c1uKNWv76OpcnnRpkjIMnSRJkipXXYzxxyEEAGKM60MIf5JwTZJUFtlOpu7GfoZGR2iqd0i4NNsYOkmSJFWu8RBCEzAJELLpkyTNEVeuXmrIJM1iJQ+dQggvATYCb4kx/iyE8F7gQ6S/HD0NvC/GeCjvnpuAzwC/yCw9HGP8WKlrlSRJqjB/AvwjcE4I4ZvAdcB7ky1Jkkpvw5a9dK/bmdPh1G74JM1CJQ2dQgiXAl8B2jPP20kf67saGAHuBz4AfCHv1ouBP4gxfrOU9UmSJFWyGOP3Qgg7gGuBecB/jTH+OOGyJKmkNmzZyz0P7Jg2y2louA/A4EmaZUrd6fQe0qHSX2WeHwTeH2N8HiCE0A+cV+C+i0kf/ftHQD/wezHGoRLXKkmSVBFCCK/NW9qU+XNxCOG1McZnyl2TJJVL97qd9PZ0kNrTCkBqTyu9PR10N/YbOkmzTElDpxjjrQA5wy1/Dvw8s9YKfBC4pcCt+4H/BmwG7gb+Ergx94IQQiPQmHef/wsjSZLmgu+c4LVJ4FXlKkSSyiW7pW7whREGB1qmvTY40MLQ6EhClUk6nkQGiYcQ2oDvA1+LMW7Ifz3G+Lacaz8L/GuBt7kd+FSpapQkSZqtYoyvTLoGSSqn3C11F17VT3NbaqrTCaC5LUVTfUOCFUoqpOyhUwjhAuAfgL+IMd5T4PWzga4YY3bOUw0wXuCt7iU9EyrXUuCJ4lUrSZI0+4QQPhJj/GwI4c8LvR5j/FC5a5KkUsh2Nx0YGuOpdZeS2tPK7k3trLy2j+2PHp3ptGZtH12dy5MuV1KesoZOIYQG4BHgozHGrx/nsheAj4QQNsYYN5Hegvfd/ItijMPAcN77F7liSZKkWelXmT9TBV6bLGchklQqud1Nl71949SWun0xPVXlwqv6aWgZoXlJA12dy53nJM1C5e50uhV4OXBnCOHOzNpDMcZPhhC+mnn8UAjhN4EvhRDOAnYCN5W5TkmSpFkrxvj/ZR7+e4zxS7mvhRD+MIGSJOmM5c5smjy8gInJianuppHBhmlb6vbFpRwcW8T1t/Tz4F1XJ1y5pOMpS+gUY/y1zMMvZH4KXXNrzuMngPxTWSRJkgSEEH4XqAN+P/OPdFkLgA8Bn0mkMEk6Tdmupp1Pt9G2/AjbH53e3eSWOqkyJTJIXJIkSWdkHFhBOnhakbN+GPi9RCqSpDPQvW7n1JDw7Y92HNPdlN1St/KaPuoax9xSJ1UIQydJkqQKE2P8GvC1EMLaGGNP0vVI0pkaGh1hcKCFhuaR43Y3HRxbRP0SuOPG1YZNUoUwdJIkSapcT4YQPgU0kz7xF/D0OkmVp6k+3dVkd5NUXQydJEmSKte3SJ/muxVPrZNUQfKHhtfMG+e112/h59vPs7tJqiKGTpIkSZXrZTHGNyZdhCSdikJDwwcHWjj/0p/wqtf+jHkLxrl07VPUzh+nye4mqaIZOkmSJFWun4cQ6mOMo0kXIkkzVWhoOMDO3teQ2tvK9bf08+BdVydcpaRiMHSSJEmqXPuBvhDCBuA/sovOdJI0mxUaGp41ONDC0OhIQpVJKjZDJ0mSpMr1s8yPJFWMQkPDs5rbUjTVNyRYnaRiMnSSJEmqUDHGP85fCyHUJ1GLJJ1M7vDwQkPDm9tSrFnbR1fn8qRLlVQkhk6SJEkVKoTQCdwFLAFqgHlAM2CbgKRZJTs8vLfHoeHSXGLoJEmSVLn+DPg48LvAZ4C3Ac8nWpEkFZAdHu7QcGluqU26AEmSJJ220Rjjt4AngReB9wNvSrYkSTpWdnh4LoeGS9VvRqFTCOFrBda+U/xyJEmSdAoOhhAWAbuBjhjjBLAo4ZokacqGLXu56ZOPc/jQPJrbUtNec2i4VP1OuL0uhPAloA14QwihNeelBcAFpSxMkiRJJ7UOeBi4BdgYQngDkDrhHZJUBhu27OVL336WwaFJtq5fzaL6F7nouq1se2SVQ8OlOeRkM52+Bvw6cBGQ29l0GOgtVVGSJEk6uRjj3SGEr8cY92aGil8BfDPpuiTNbdmh4aMv1LL9saNznJisYeU1fdQ1jtHs0HBpTjhh6BRjfBp4OoTwWIxxb5lqkiRJ0gyEEF6b+fOlmaUngKXAvydWlKQ5Lzs0/LK3b5w2x2lfXMr+XefyG7d/z+Hh0hwx09Pr/vcQwl+RPoK3JrsYY1xZkqokSZI0E7md6AuBc4AtwCXJlCNJR4eGjww20NyWOtrphHOcpLlmpqHTF4Fu4BlgsnTlSJIkaaZijK/MfR5CuAx4d0LlSJrjNmzZS/e6nVNDw3dvamfltX1sf7TDOU7SHDXT0OlQjPHzJa1EkiRJZyTG+GQI4b6k65A092TnOPX2dEwbGh43XjA1x6l+YR3vf6dznKS5ZKah0/8KIayIMfaXtBpJkiTNWHamU0YN8DrgrITKkTSHZec4HX9o+GrDJmkOmmno9CpgSwjh58B/ZBed6SRJkpSo3JlOk6QHiL8/oVokzWHZOU5ZDg2XBDMPnT5W0iokSZJ0yvJnOhVDCOEG4OOkB5N/Icb4xWJ/hqTq01Tv0HBJx5pp6OS2OkmSpFkkhLAE+F3gcmAesBG4D+gEBmKMj5/Ge7YBfwKsBg4CG0MIP4wx/rhohUuqSl2d7QwN99Hb49BwSUfNNHT6JemW7RqOnl63H3BTriRJUpmFEJqBXmAH8Ghm+WrgaWAEuOo03/oa4PEY42Dmc74NvAO464wKllQVsqfTDY2OULdwMUzWMnpojMnDC6idP05d/WLedEMfY+NjNNU30NXp0HBprptR6BRjrM0+DiEsAN4OXFSqoiRJknRCfwx8Ncb4uZy1L2ZCovEY4/On+b7nkv6Hxaz9wCW5F4QQGoHGvPv8f5VSlcs/ne6Cy3ew98dttC0fYPuj07ub7rjZoeGS0mpPfsl0McbxGOPfANeWoB5JkiSd3JXA53MXMt1Py0lvjTtdNQXWJvKe3w78NO/niTP4TEmz3IYte/ncA9unTqd79SW72PbIKs45/zm2P5pem5yoJbWnld6eDrrX7Uy6ZEmzxIw6nTJfYrKyx/E2laQiSZIkncxEjPFI3toI6W70vz2D9x0A3pDz/BXAvrxr7gXuz1tbisGTVJWyHU4188anTqdraE6fVJf9M9fgQAtDoyNJlCppFjqdmU6QPo73QyWpSJIkSScVQnhJ7ja6GON4COE5js7fPB2PAZ8OIbQCo6RDrPfmXhBjHAaG82o5g4+UNJt1r9tJb08HF17VP3U63chg+qS67J+eWCfpeE55ppMkSZIS99fA/wgh3BxjPAgQQlgMfBn4xum+aYxxIITwMeCHwELSc6MVRhd0AAAgAElEQVQ2F6NgSZVpaDTdzbR7Uzsrr+1j+6Md7N58Phddt5W9P146teaJdZIKmen2ulrgTuDNwALgEeDuGOPhEtYmSZKkwv6MdLj0ryGEpzNrF5MOi/7sTN44xvjXpEMtSaKpPt3NtC+mB4NfeFU/Dc0jTE7Mo+OKAUYPjXHp2qeonT9O0xJPrJM03Uy31/0p6dPq/jvp4ePvBT4H/P6JbgohvATYCLwlxvizEMI1pIdengV8K8b48QL3nAd8HXgZEIEbY4wvzLBOSZKkqpeZ5/RbIYTXAf8ps/z/xhifSrAsSVWoq7OdoeE+ens62L/rXA6OLWLN2j7uvNlwSdLJzTR0+j+A18UYxwFCCA8D2zhB6BRCuBT4CtCeeX4W0A28EdgDPBxCeHOM8ft5t94H3Bdj/JsQwieATwB/OPNfSZIkaW6IMT4NPH3SCyXpFG3YspfudTsZGh2hrn4xb7qhj7HxMZrq7WaSNHMzDZ1qs4ETQIzxYAhh/EQ3AO8BPgD8Veb5JcCuGONPAUIIXwfeCUyFTiGEBcAVwNrM0v3AP2LoJEmSJEllkT2xrrdn+qymO25ebdgk6ZTMNHTqCyF8AfjLzPMPAttPdEOM8VaYdprJucD+nEv2kz5eN9dLgedzZkUVuobM+zYCjXnL/i+gJEmSJJ2CbFfT4AsjTB5ewMTkBE+tu3TqVLrUnlZ6ezrobuw3dJJ0SmZ6Kt0HgCbS85meJB0O/d4pflZNgbWJ07gm63bgp3k/T5xiTZIkSRUv849xknTKsl1Nmx47h7Ff1bGp52LmzT/C4EDLtOsGB1oYGh1JqEpJleqEoVMIYWEI4QHg6hjjLTHGlwObgSPA86f4WQPAOTnPXwHsy7vmAPCSEMK8E1yTdS/wyryfN5xiTZIkSRUrpD0LPBtCaAsh7AghXJB0XZIqR/e6nfT2dHDO+c+x/dEOUntaGRlMn1iXq7ktRVN9Q0JVSqpUJ+t0ugvInkCX9R7S29o+fYqftYn0d6NXZ0KlG8iZ5wSQmRv1BPCuzNJN+dfkXDscY/xZ7g+w9xRrkiRJqmR/Qbr7+99jjAOZ5/8j2ZIkVYINW/Zy0ycfZ/CFEQYHWmhoHpnqbtq9qZ2V1/bRsuwANbUTtCw7wJq1fXR1tidctaRKc7KZTm8BLo4x/kd2Ica4L4RwE9ALfHymHxRjfDGEcAvwHWAxsB74NkAI4avAQzHGh4DbgAdCCB8H/g347Zn/OpIkSXNKS4zx0ewMzRjjfSGE9yZck6RZZtpJdAsXM354gpGRGrauX82FV/XT3Jaa6m5K7WllX0zPbVp5TR91jWM0L/HEOkmn52Sh06HcwCkrxvh8COHgTD4gxvhrOY9/AFxU4Jpbcx7/HLhyJu8tSZI0x02GEBYDkwAhhHOAeSe+RdJcknsS3aL6F7ng8h1MTsxn+2PprXTZrqaBHW2svLaP7Y+mT6w7OLaI+iVwx42eWCfp9J0sdDoSQmiIMU6bGBdCaAAWlK4sSZIkzcB9wP8EXhZC+FPSHeKfSbYkSbNBtrvpwNDY1El0V9z0ONseWcVlb984tZUu29X06kt3ctZLxrh07VPUzh+nye4mSUVwstDpm8BXQwhdMcZRgBBCPfBV0tvkJEmSlJAYY3cIYTfwG6T/QfC9McZHEi5LUsJyu5tyA6bs3KbcrXSQDp4Oji3i+lv6efCuq5MsXVKVOVnodC/wZeC5zMkotcBy4Bukh4xLkiSpzEIIzTlP/1fmZ+q1GONg+auSNFtkT6TLPYku93F2S112K11zWyozKHx50qVLqjInDJ1ijBPAe0MIdwOvBSaAzTHGfeUoTpIkSQX9kvQcp5qctezzSZzrJM1pQ6PHnkS3/dEOdm8+n4uu28q2R1YRN14wNSi8fmEd73+nW+kkFd/JOp0AiDH+DPhZSSuRJEnSjMQYa5OuQdLs1VR//JPo6hct5k039DE2PkZTfQNdnQ4Kl1Q6MwqdJEmSNPuEEOYB7wP+M3AEeCjGeH+iRUlK1IYtezk4Ps6q67ewdf1qT6KTlChDJ0mSpMr1F8BrgAdJz958dwjh1THGjydblqRyyp5UN/jCCIfGFvHM+tUsqn/R7XOSEmfoJEmSVLmuBV4TYxwHCCF8HdgGGDpJVa5Q0HThVf08+8MVR0+l+8kyWpYd4Ppb+g2cJCXC0EmSJKly/ZL097nxzPMJYDi5ciSV2oYte/nSt59lcGiSrXlBU0Pz0QHiWYMDLQyNjiRUraS5ztBJkiSpcu0Anggh3A8cBt4F/DKE8AcAMcbPJ1ibpCLbsGUv9zywg9EXatn+WMcxQdPI4NEB4lnNbSma6huSKlnSHGfoJEmSVLlqgH5gdeb5zzJ/rgAmkyhIUvFlt9IdGBrjqXWXctnbNxYMmnZvamfltX1sf7SDwYEWmttSrFnbR1fn8oR/A0lzlaGTJElShYox/k7SNUgqrWx3U29Px1TYdLygaf+uc1nS/DwXv/Up5i8cp2lJA12dDhCXlBxDJ0mSpAoVQrgS+COgOXc9xnhJIgVJKpr87qbUntapsOnkQdNKgyZJs4KhkyRJUuX6KvDnwL8kXYik4inU3QRMC5vixgtYeU0fdY1j1C+s4/3vNGiSNPsYOkmSJFWuX8QY/zzpIiQVV/e6nfT2dEzrbkrtaWVfTIdK2bCpeUkDXZ2rDZskzVqGTpIkSZXreyGE24D/CYxnF2OM/5ZcSZJOV3ZL3eALIwW7mwYHWjg4toj6JXDHjYZNkmY/QydJkqTK1QrcDYzmrE0CL0mmHEmnK3dL3YVX9Z+ku8nh4JIqg6GTJElS5Xon8IoY4y+SLkTSmcndUmd3k6RqYegkSZJUuX4BHEi6CElnbmj06Ja6bHfThVf109AyYneTpIpl6CRJklS5ngL+OYTwPeBgdjHG+PnkSpJ0KrJznA4fmje1pQ7SwdPBsUVcf0s/D951dcJVStLpMXSSJEmqXGcBEWhPuhBJpy53jtOi+he56LqtbHtkFYMDLTS3pVizto+uzuVJlylJp83QSZIkqULFGH8n6Roknb7cOU4ATNY4MFxSVTF0kiRJqlAhhDXAHwFLgBpgHvDKGON5iRYm6aQ2bNnL4AtH5zhBekvd/l3n8hu3f88tdZKqgqGTJElS5foq8CDwDuDLwFrgO4lWJOm4svObBl8Y4dDYIg4fqps2xwmguS1FU31DglVKUvHUJl2AJEmSTttkjPEzwAbgJ8A7gSsSrUhSQdn5TevvX8FIqoFn1q8mblzOymv7aFl2gJraCVqWHcjMcXJMm6TqYKeTJElS5RrJ/PkvwK/HGH8UQpiXZEGSCsud39TQnN5WNzmR7gG48Kp+GppHOHJ4Hnfc3OEcJ0lVw9BJxxg/PMGC+TbBSZJUATaFEL4FfAJ4OITQDhxJuCZJBQyNHp3fNDLYMLWtbl9cyr64lJZlB7j+ln4DJ0lVxdBJx1gwv5aP3vejpMsoubtvuzzpEiRJOlO/D1waY9wZQvgwcC1wQ8I1SSqgqf5o0LR7Uzsrr+1j+6MdDA600NyWymyrW550mZJUVIZOkiRJFSiEUAPMizE+GUJoABYD98UYdyVcmqQcucPDX3v9Fp5Zv5r9u85lSfPzXPzWp5i/cJymJQ10dS63y0lS1TF0kiRJqjAhhNcA64EPhhB+AGwGJoG6EMJ7YoyPJlqgNAdlw6Wh0RHqFi6GyVpGD41xaGwRz6xfzeBAC+df+pO8oGmlQZOkqlb20CmEcCvwwZylVwJ/FWP8YM41nwTeDQxllr4SY/xi+aqUJEma1T4HfCzG+PchhN/JrP060Ab8DWDoJJVBbhdTNlxaVP8iF1y+g22PdHDhVf08+8MVpPa0ArCz9zWk9rZy/S39PHjX1QlXL0mlV/bQKcb4VeCrACGEC4Ee4NN5l10M/FaMsbe81UmSJFWE82KM38g8vgpYF2OcAPaEEM5OsC6p6hUKmnLDpStuepxtj6yadkpdrsGBFoZGR47z7pJUXZLeXvcl4KMxxl/mrb8O+MMQwquAfwLujDG+WPbqJEmSZqfcE+peD3wo5/niMtciVbX8bXMjIzVsfmjVtKApN1zKfZx7Sl1Wc1uKpvqGRH4XSSq3xEKnEMI1wFkxxr/LW18CbAXuBH4G3E/6GOCP5V3XCDTmva0boiVJ0lwwGEK4CGgAXgH8I0AI4fXAQJKFSdVkw5a93PPADnp70qfMXXnzD9j+WMcxQVNuuJT72FPqJM11SXY6vQ/4fP5ijPEF4Prs8xDCPUA3eaETcDvwqVIWKEmSNEt9FHgMOBv4SIxxNIRwJ+nvS2sTrUyqIt3rdtLb0zHVqVR39ljBoCk3XNq9+Xwuum4r2x5Z5Sl1kua8REKnEMJC4I3ALQVeOw+4JsbYnVmqAcYLvM29pLugci0FnihaoZIkSbNQjPHJEEIbUBdjHM4sbwQuiTHuSrA0qSrkzm3Kncl0vKApP1yqW7SYN93Qx9j4GE31nlInae5KqtNpJbAzxjha4LX/AD4bQvgh6e11HwC+m39R5gvWcO5aCKH4lUqSJM1CMcZDwKGc5xsTLEeqGrlb6i68qn/aTKbdm9pP0sVkuCRJuZIKnV4F7M1dCCGsBz4ZY3w6hPA+4HvAQuCfgXvKX6IkSZKkapU7ILypvoHLVr6UJ7f/kgNDYzy17tKCM5kOji3irPojdjFJ0gwlEjrFGP8W+Nu8tetzHn8H+E6565IkSZJUvXK3zR0aW8Qz61czONDC+Zf+hP3//m9sXb+ay96+cWpL3b6YDpMuvKqfhpYRmpc00NW5wpBJkmaoNukCJEmSJKnUstvm1t+/gpFUA8+sX01qTyuTE7Wcc/5zbM08z85tytoXl/LsD1fQvKSBB++62sBJkk6BoZMkSZKkqpd7El1D8/QB4bnPs1vqWpYdoKZ2gpZlB1izto+uzvakSpekipXUTCdJkiRJKrrcWU11CxfDZC1j42NMTjIVLOWeQpf/PLulbuU1fdQ1jmW21C23w0mSToOhkyRJkqSqkHvy3KL6F7ng8h1seyQ9BPzKm38wFSzlDwh/btc5rLp+C1szM54Oji2ifgncceNqwyZJOgOGTpIkSZKqQu4Wuituepxtj6ya6maKG5dz0XVb2fbIKvbvOpclzc9z8VufYv7CcZqWNHDZynN5xcv6p06zs7tJks6coZMkSZKkipW7nS53C13+3KZ9cSnUTHJx5ybmLzySCZZWTguWbntH2cuXpKpm6CRJkiSpIuVup8vfQpc/twng4OhiWpvqePCuqxOsWpLmDkMnSZIkSRUjt7NpYnwBm3ouLriFbvfm86ceDw600NyWypxCtzzh30CS5g5DJ0mSJEmzVv5pdCMjNWx+KB0kXf+h751wC13dwsW86YY+xsbHnNMkSQkwdJIkSZI0KxXaPrf9sY6pzia30EnS7GboJEmSJGnWONH2ubqzx6Z1Nu3e1M7Ka/vY/miHW+gkaRYydJIkSZI0K+R3NuVvn8vvbNoXl7Kk+XkuXfsUtQvG3UInSbOMoZMkSZKmCSHcBUzEGD+ddC2aW7rX7aS35/jb53Zvaj9mOHj76wa44+aVBk2SNAsZOkmSJAmAEMLZwOeB3wY+m3A5moOGRkdOuH3u4Ngizqo/4nBwSaoQhk6SJEnK6gR2AfckXYjmpqb6mWyfW2HIJEkVwtBJkiRJAMQYHwQIIXz6eNeEEBqBxrxlEwAVRVdnO0PDfVMzndw+J0mVzdBJkiRpjgkhvBP4Qt7yT2KM18zg9tuBTxW/Ks1FuSfVpbuY2rnj5uV0N/bnrLl9TpIqlaGTJEnSHBNj/Dvg707z9nuB+/PWlgJPnElNmnvyT6prbksxNNzHHTcv58G7rk66PElSERg6SZIkacZijMPAcO5aCCGhalTJ8k+qS+1ppbeng+7GfjubJKlKGDpJkiRJKovc7XSTk0w7qQ7Sz4dGRxKqTpJUbIZOkiRJmibG+Omka1D1yd9Od+XNP5h2Uh1Ac1uKpvqGBKuUJBVTbdIFSJIkSap+udvpJidqiRuXc9F1W2lZdoCa2glalh1gzdo+ujrbky5VklQkdjpJkiRJKrmh0ZFp2+n2xaVQM8nFnZuYv/CIJ9VJUhUydJIkSZJUck31Dcdspzs4upjWpjpPq5OkKmXoJEmSJGnGcoeBp7uT0tvhTrZ22cqXMrS2b2qmU3NbKrOdbnmSv44kqYQMnSRJkiTNSP4w8Oa2FIO/epqJI/PY/NCqE64Nre3jzVe8nKbG/pxwyu10klTNDJ0kSZIkzUjuMHCA1J5Wxkbms/2xk6/19nTQ1NjvVjpJmkM8vU6SJEnSjOQPAweoO3tsRmuDAy0MjY6UvEZJ0uxhp5MkSZKkYxSa3VRoGPjYr+pmtNbclqKpvqGsv4MkKVmGTpIkSZKmKTS7aWg4PZMpfxh4XcNhLnnr1mnzmwqtOTRckuaeREKnEMLjwMuB8czS+2KMm3Jevwb4PHAW8K0Y48fLX6UkSZI0NxWa3ZSdyXTHzcvpnjYMfEX6nuaTrTk0XJLmmrKHTiGEGuAC4LwY4+ECr58FdANvBPYAD4cQ3hxj/H55K5UkSZLmpkKzm7Izma5cvbRgeDTTNUnS3JHEIPEATALfDyFsCyF8MO/1S4BdMcafZkKprwPvLHeRkiRJ0lyVnd2Uy5lMkqRTlcT2uibgB8D7SW+f2xBCiDHGRzOvnwvsz7l+P3DMP5GEEBqBxrxl/ylFkiRJOkNdne0MDU+f3eRMJknSqSp76BRj7AV6M09HQwhfA64HsqFTTYHbJgqs3Q58qvgVHt/44QkWzE+iOUySVE3mwt8nc+F3lKpFoVPqstvips9uciaTJOnUJDHT6T8Bi2KMP8gs1XB0oDjAAHBOzvNXAPsKvNW9wP15a0uBJ4pT6bEWzK/lo/f9qFRvP2vcfdvlSZcgSVVtLvx94t8lUmU43il1wHFnN0mSNFNJbK9rBO4KIbweWADcDPxuzuubgBBCeDXwU+AG0oPFp4kxDgPDuWshhFLVLEmSJFWs43UzHe+Uuu7GfgMnSdIZS2J73d+HEC4FtgLzgC/GGHtDCH3A9THGfSGEW4DvAIuB9cC3y12nJEmSVA1O1M10olPqJEk6U0l0OhFj/ATwiby1jpzHPwAuKnddkiRJUrU5UTdT9pS67GvgKXWSpOJxwqckSZJUxU7UzdTV2c6atX20LDtATe0ELcsOZE6pa0+oWklSNUmk00mSJElSeZyom8lT6iRJpWToJEmSJFWxrs52hob7ps10SnczLQc8pU6SVDqGTpIkSVIVs5tJkpQUQydJkiSpytnNJElKgoPEJUmSJEmSVHSGTpIkSZIkSSo6QydJkiRJkiQVnaGTJEmSJEmSis5B4pIkSVIV2LBlL93rduacUNfu8HBJUqIMnSRJkqQKt2HLXu55YAe9PR0MDrTQ3JZiaLgPwOBJkpQYt9dJkiRJFa573U56ezpI7WllcqKW1J5Wens66F63M+nSJElzmKGTJEmSVOGGRkcYHGiZtjY40MLQ6EhCFUmSZOgkSZIkVbym+gaa21LT1prbUjTVNyRUkSRJznSSJEmSZr2TDQnv6mxnaLhv2kynNWv76OpcnmDVkqS5ztBJkiRJmsVmMiQ8+2d3Y39OMLXcIeKSpEQZOkmSJEmzWO6QcODokPDG/mmh0pWrlxoySZJmFWc6SZIkSbOYQ8IlSZXK0EmSJEmaxRwSLkmqVIZOkiRJ0izW1dnOmrV9tCw7QE3tBC3LDmSGhLcnXZokSSfkTCdJkiRpFnNIuCSpUhk6SZIkSbOcQ8IlSZXI7XWSJEmSJEkqOkMnSZIkSZIkFZ2hkyRJkiRJkorO0EmSJEmSJElFZ+gkSZIkSZKkojN0kiRJkiRJUtEZOkmSJEmSJKnoDJ0kSZIkSZJUdPOT+NAQwqeA38w8fTjG+JG81z8JvBsYyix9Jcb4xTKWKEmSJEmSpDNQ9tAphHANcB2wCpgE/iGE8LYY43dzLrsY+K0YY2+565MkSZLKacOWvXSv28nQ6AhN9Q10dbZz5eqlSZclSdIZS6LTaT9wR4zxEEAIYQdwXt41rwP+MITwKuCfgDtjjC/mXhBCaAQa8+7zb2dJkiRVjA1b9nLPAzvo7elgcKCF5rYUQ8N9AAZPkqSKV/aZTjHGZ2OMTwKEEM4H3gWsz74eQlgCbAXuBF5LOlj6RIG3uh34ad7PEyUtXpIkSSqi7nU76e3pILWnlcmJWlJ7Wunt6aB73c6kS5Mk6YwlMtMJIIRwIfAw6S6mXdn1GOMLwPU5190DdAMfy3uLe4H789aWYvAkSZKkCjE0OsLgQMu0tcGBFoZGRxKqSJKk4klqkPjlwHeA22OMf5P32nnANTHG7sxSDTCe/x4xxmFgOO/e0hQsSZIklUBTfQPNbSlSe1qn1prbUjTVNyRYlSRJxZHEIPFlQA/wrhjj4wUu+Q/gsyGEHwI/Az4AfLfAdZIkSVJF6+psZ2i4b9pMpzVr++jqXJ50aZIknbEkOp3uBBYDn8/pTPoy8FbgkzHGp0MI7wO+BywE/hm4J4E6JUmSpJLKDgvvbuzPOb1uuUPEJUlVoeyhU4zxw/z/7d1/kJ1VecDx7yYSZAANSYNCEqha9ylIJUwsEoFCx9Ba6kywgFSCdRoQaBVkSqq0pEPUothKEzJlGmpdoQLTTsBJ6CCCCrSAUYEhEgs8QStMsoQCm6TSVMKPbP9434t3l/0Rdu/d9969388/e+953z3vc/bsZJ95cs658KkhLq2uu+dmiu13kiRJUtu5+8Et9KzbVFdI6h62kHTi/DkWmSRJk1JlB4lLkiRJk9HdD27hyuseHbBlbvuODQAWlyRJHWVK1QFIkiRJk0nPuk2sXzuPvs2z6N89hb7Ns1i/dh496zZVHZokSRPKopMkSZLUQNt3Ps+23pkD2rb1zmT7zucrikiSpGq4vU6SJEkARMSxwEpgL6APWJKZT1YbVfs5YN/9mTG7j77Ns15tmzG7jwP23b/CqCRJmniudJIkSVLNDcDZmTmvfL2q4nja0pJF3Sw4ZQMz5z5L15TdzJz7LAtO2cCSRd1VhyZJ0oRypZMkSZKIiL2BZZn5cNn0MHBBhSG1rdph4T3TN9Z9et1hHiIuSeo4Fp0kSZJEZu4CrgeIiCnAcmDt4PsiYjowfVCz1ZRBTpw/xyKTJKnjWXSSJEnqMBFxOrBiUPNjmbkwIqYB11HkiV8Y4tsvAi5rcoiSJGkSsOgkSZLUYTJzDbBmcHtE7AfcQnGI+KLMfGmIb18JXDuobQ5wT4PDlCRJbc6ikyRJkmquB34CnJeZ/UPdkJk7gB31bRExAaFV4+4Ht9CzblPd2UzdbpuTJGkPWXSSJEkSEXEUsAh4BHioLCQ9lZknVxpYhe5+cAtXXvco69fOY1vvTGbM7mP7jg0AFp4kSdoDFp0kSZJEZj4EdFUdRyvpWbeJ9Wvn0bd5FgB9m2exfu08eqZvtOgkSdIemFJ1AJIkSVIr2r7zebb1zhzQtq13Jtt3Pl9RRJIktRdXOkmSJGnSacRZTAfsuz8zZve9utIJYMbsPg7Yd/9GhytJ0qRk0UmSJEmTSqPOYlqyqJvtOzYM6GfBKRtYsuiwZoUuSdKkYtFJkiRJTTeRnwLXqLOYavf2TN9YF/dhnuckSdIesugkSZKkpproT4Fr5FlMJ86fY5FJkqQx8iBxSZIkNVX9yqP+3VN+ufJo3aamPK92FlM9z2KSJGniWXSSJElSU030p8AtWdTNglM2MHPus3RN2c3Muc+WZzF1N+V5kiRpaG6vkyRJUlNN9KfAeRaTJEmtwaKTJEmSmqqKT4HzLCZJkqpn0UmSJElN5cojSZI6k0UnSZIkNZ0rjyRJ6jweJC5JkiRJkqSGs+gkSZIkSZKkhrPoJEmSJEmSpIaz6CRJkiRJkqSGs+gkSZIkSZKkhrPoJEmSJEmSpIZ7QxUPjYgzgWXANGBFZl496Po84CvAm4H/AM7PzJcnPFBJkiRJkiSNyYSvdIqI2cDlwHHAkcC5EXH4oNuuBy7IzG6gC/j4xEYpSZIkSZKk8ahie91C4M7M3JaZO4GbgNNqFyPiUGCfzPx+2XQtcPqERylJkiRJkqQxq2J73cHA1rr3W4GjR7k+Z3AnETEdmD6o+VCAp59+uiGBDmXnz59rWt+tYsuWLY5zkuiEMUJnjLMTxgiOczLZsmVLU/qt+xs/tSkP0FhNhebmYJIkqTpjzcGqKDp1DdG2+3Vcr7kIuGyoByxevHgMYanmW1+rOoKJ0Qnj7IQxQmeMsxPGCI5zMpmAMR4E/LTpT9GeOgjMwSRJ6gCvKweroujUCxxf9/4g4KlB1986wvWalRRb7+pNA94OPA68Mt5Am2gOcA/Fz6E5/xWsRnGu2odz1T6cq/bRinM1lSI3uL/qQDTA/RS/J1tp7RysphV/tzWQc9T6nKPW5vy0vnabozHlYFUUnb4DLI+IWcBO4FTg3NrFzHwyIl6IiGMz8z7gj4DbBneSmTuAHUP0v6k5YTdORNRebsnMJyoMRaNwrtqHc9U+nKv20cJz5QqnFpOZu4B7q45jT7Xw77ZKzlHrc45am/PT+tp0jl53DjbhB4lnZi9wKXAXsAG4MTN/GBHfjIj3lLctBlZExKPAvsCqiY5TkiRJkiRJY1fFSicy80bgxkFtJ9e9/hEDDxeXJEmSJElSG5nwlU6SJEmSJEma/Cw6VWMH8FmGPpNKrcW5ah/OVftwrtqHc6XJyt/t1ucctT7nqLU5P62vI+aoq7+/v+oYJEmSJEmSNMm40kmSJEmSJEkNZ9FJkiRJkiRJDVfJp9cJIuJYYCWwF9AHLMnMJ6uNSiOJiM8BuzNzedWxaKCIOBNYBkwDVmTm1RWHpBFExJuA7wEfzMwnKg5Hw4iIy4APl29vzcxPVxmP1AzmY+3BHKz1mHu1PvOt1tZJeZYrnapzA3B2Zp/b8g8AAAdvSURBVM4rX6+qOB4NIyLeHBFfBZZWHYteKyJmA5cDxwFHAudGxOHVRqXhRMR7gXuB7qpj0fAiYiHwO8BRwDxgfkR8qNqopKYwH2th5mCtydyr9ZlvtbZOy7MsOlUgIvYGlmXmw2XTw8AhFYakkS0CHgeurDoQDWkhcGdmbsvMncBNwGkVx6ThfRz4BPBU1YFoRFuBizPzxcx8CXgU/05pkjEfawvmYK3J3Kv1mW+1to7Ks9xeV4HM3AVcDxARU4DlwNoqY9LwMvOfASJiecWhaGgHU/zDXbMVOLqiWDSKzDwHICKqDkUjyMz/rL2OiHcCZwDvqy4iqfHMx1qfOVjLMvdqceZbra3T8iyLTk0WEacDKwY1P5aZCyNiGnAdxTx8YcKD0wAjzVUV8WiPdQ3RtnvCo5AmoYh4F3ArsDQzH686HmmszMdamzlY2zH3khqgU/Isi05NlplrgDWD2yNiP+AWikMrF5XL6lSh4eZKLa8XOL7u/UG4lFgat/KA5ZuBizLzX6qORxoP87HWZg7Wdsy9pHHqpDzLolN1rgd+ApyXmf1VByO1se8AyyNiFrATOBU4t9qQpPYWEXMpthmdkZl3Vh2P1ETmY9LrZ+4ljUOn5VkWnSoQEUdRHIz4CPBQudf2qcw8udLApDaUmb0RcSlwF8XH9v5TZv6w4rCkdrcUeCPwd3XnQazOzNXVhSQ1lvmYNDbmXtK4dVSe1dXf73/qSJIkSZIkqbGmVB2AJEmSJEmSJh+LTpIkSZIkSWo4i06SJEmSJElqOItOkiRJkiRJajiLTpIkSZIkSWq4N1QdgCRJkiRNNhGxCvit8u3hwM+AX5TvFwD/B8zKzOcqiO0O4MzMfC4ivgkszcxHxtDPtcCPM/PLQ1z7VeDzwHspxr0LuCYzvzqe2EeJ5zXjAg4E/j4zj2jWcyUNz6KTJEmSJDVYZl5Yex0RTwCLM/OBurYKonrVSbUXmXlyozuPiLnAeuAvMvOjZdts4IaI6M7MzzT6maXXjCsiDmzSsyTtAYtOkiRJklSNz0bEMcBM4G8z82qAiDgb+FOK41D6gE9m5mMR8WbgamAe0A/cBvxlZr4cEbuAdcCRwGJgJ3BV2fdUYFVm9kTE18pn3xURJwP3AKdl5gMRsQS4GHgFeA74GNALrACOAfYHuoBzMvO+EcZ1CbAmM6+tNWRmb0ScAfwsIq4CuqlbgRQRJ9beR8RbgGuAtwBvBZ4EPpyZz5QFvGuB9wOHAP+amZ8eblz1QUXENOBLwAnlz+Qh4MLM/HlE/AlwPvAi8AJw3lhWf0kayDOdJEmSJKka/5WZ84EPAVdGxF4RcQJFsef4zDwK+BvgG+X9qyiKUL8BvIeiwLS0vDYN+LfMDGADcBNwSdn/CcDSiDgmM/+4vP+3M3NzLZCIOJKiIPOBzHw3cAtwKcX2uIOBBZl5OHAdRVFpJMcB/z64MTP/G3ik7HMkfwisz8wFwNsptiJ+tO76fpl5PPA+4IKIeNtw4xrkEuBlYH5mHgk8BVwREVOBlRRj/03gH8sxSBonVzpJkiRJUjVuLL9uAPYG3gT8PvBrwPfqtuDNiIgZwO8Bx2ZmP7ArIlYDFwFXlPfdU37tBt4B9NT1sQ9wFPD9YWJ5P3B7rWCTmStrFyJiGXBeRLwDOBF4fozjrZk60sXMvCoijo+IPwPeCRwB/KDulnXlfb0R8Qwwg+LMrNF8EJgOnFT+XKYBz2TmKxGxhuJnfitwB7+cG0njYNFJkiRJkqrxEkBm9pdFkC6KgszXa+ceRcQUipVG23ntTpUpwF517/+3/DoV2JGZ82oXyi1r/zNCLC9TbNmr3b8PcChF8eoq4EqKYs9jwFmjjOs+iuLUzWVfB1Ks0JpBcaj6DyhWMHXVfc+0umd/CTga6AHuKsdYf+8v6l73D7o2kqnApzLztvI5+wFvBMjMsyLiCGAh8BngbGDRHvYraRhur5MkSZKk1nEH8JGIOKh8fz7w3fL17cAnIqIrIvYGzgW+PUQfCbwQEWfBqwd7/xiYX15/hYHFKiiKOwvrnnsexda+kyi27f0DcD9wCqOsVAK+CJwaER8r338E2AisBVaXq6meBQ6JiAMjoqvst+Z3gZWZ+XXgmTKG0Z453Ljq3Q58MiKmlcW8rwBfjIhfiYjNQF+5wmsZxdZFSeNk0UmSJEmSWkRm3k5xttK3I+Jh4EzgD8otdRcCB1IUcDZSFJcuH6KPFylW6ZxT9nEH8Fd1h39/A7i3XNlT+56NwJ8D34qIHwEfoCh4rQZOKPtZD/wUeFtZtBluDJuBBRTb2DZRFMdeoigg/XpEvKs8pPsa4AGKLX9b67r4HPDliHiwFivFlsPRvGZcg3weeILiAPFHKFZIXZyZzwF/DXy3fOYVwDl78DxJo+jq7+8f/S5JkiRJksYpIt4NvJCZm6qORVLzWXSSJEmSJElSw7m9TpIkSZIkSQ1n0UmSJEmSJEkNZ9FJkiRJkiRJDWfRSZIkSZIkSQ1n0UmSJEmSJEkNZ9FJkiRJkiRJDWfRSZIkSZIkSQ33/zMITFXsW30dAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots(1,2, figsize=(20,6))\n", "ax = ax.ravel()\n", "\n", "normal_data = np.random.normal(0,1,100)\n", "sns.histplot(normal_data,kde=False,ax=ax[0])\n", "\n", "sm.qqplot(normal_data, ax=ax[1])\n", "\n", "W, p=stats.shapiro(x=normal_data)\n", "\n", "print(f\"The value of W is {W}, p={p}\")\n", "\n", "glue(\"exp1_fig\",fig,display=False)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "```{glue:figure} exp1_fig\n", ":figwidth: 650px\n", ":name: \"fig:exp1\"\n", "\n", "Normal QQ plot of `normal_data`, a normally distributed sample with 100 observations. A normal QQ plot of the same data.\n", "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As you can see from the code block above, the Shapiro-Wilk statistic associated with the data in Figure 18 is $W ~= 1.0$, indicating that no significant departures from normality were detected. The p-value is also quite high. As you can see, these data form a pretty straight line; which is no surprise given that we sampled them from a normal distribution! \n", "\n", "In contrast, have a look at the two data sets shown in Figure 19 and 20. Figure 19 shows the histogram and a QQ plot for a data set that is highly skewed: the QQ plot curves downward. As a consequence, the Shapiro-Wilk statistic is $W~=.80$, reflecting a significant departure from normality ($p<.001$). Figure 20 show the same plots for a heavy tailed (i.e., high kurtosis) data set: in this case, the QQ plot flattens in the middle and curves sharply at either end. The resulting Shapiro-Wilk statistic is $W ~ .80$, again reflecting significant non-normality ($p < .001$)." ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "tags": [ "hide_cell" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The value of W is 0.8032301664352417, p=3.115032953804331e-10\n" ] }, { "data": { "application/papermill.record/image/png": "iVBORw0KGgoAAAANSUhEUgAABJ0AAAF8CAYAAABlkMrHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3X10nGd57/uv5NdIFtELghDZOYVDdMekdmRMXkw2IQlJ9iFlI7OA0ibnJKkIUAKFtMmhPbw3+zTdQAPZbQmcDWglKZTSwkIOjelOQnCbYsVOHMvWDua23QK1ZYeakUQUqbFlS+ePmZFH47Et2zPzaEbfz1panrnneWYurQV4+Pm6r7tmcnISSZIkSZIkqZhqky5AkiRJkiRJ1cfQSZIkSZIkSUVn6CRJkiRJkqSiM3SSJEmSJElS0Rk6SZIkSZIkqegMnSRJkiRJklR0hk6SJEmSJEkqOkMnSZIkSZIkFZ2hkyRJkiRJkorO0EmSJEmSJElFZ+gkSZIkSZKkopufdAHFFEJYBFwM7AeOJFyOJEkqvnnAK4CnYowHky5GaX4HkySp6p3Wd7CqCp1If9l5IukiJElSyb0B+Oeki9AUv4NJkjQ3nNJ3sGoLnfYDfOMb3+Ccc85JuhZJklRkzz33HDfeeCNk/s7XrOF3MEmSqtjpfgerttDpCMA555zD0qVLk65FkiSVjlu4Zhe/g0mSNDec0ncwB4lLkiRJkiSp6AydJEmSJEmSVHSGTpIkSZIkSSo6QydJkiRJkiQVnaGTJEmSJEmSis7QSZIkSZIkSUVn6CRJkiRJkqSiM3SSJEmSJElS0Rk6SZIkSZIkqejml/LNQwifAn4z8/ThGONHQgjXAJ8HzgK+FWP8eIH7zgO+DrwMiMCNMcYXSlmrJEmSJElSUjZs2Uv3up0MjY7QVN9AV2c7V65eWtGfV7LQKRMuXQesAiaBfwgh/DbwGeCNwB7g4RDCm2OM38+7/T7gvhjj34QQPgF8AvjDUtUqSZIkSZKUlA1b9nLPAzvo7elgcKCF5rYUQ8N9ACUJnsr1eaXcXrcfuCPGeCjGOA7sANqBXTHGn8YYD5PuZnpn7k0hhAXAFcC3M0v3518jSZIkSZJULbrX7aS3p4PUnlYmJ2pJ7Wmlt6eD7nU7K/rzStbpFGN8Nvs4hHA+8C7gz0mHUVn7gfwI7aXA85lQ6njXEEJoBBrzlkvXdyZJkiRJklQCQ6MjDA60TFsbHGhhaHSkoj+v5IPEQwgXAo8CdwL/UuCSibznNTO4BuB24Kd5P0+cfqWaa8YPF/qPVXWZC7+jJEmSJFW6pvoGmttS09aa21I01TdU9OeVepD45cB3gNsz85neCJyTc8krgH15tx0AXhJCmBdjPHKcawDuJb31LtdSDJ40Qwvm1/LR+36UdBkldfdtlyddgiRJkiTpJLo62xka7ps2Y2nN2j66OpdX9OeVcpD4MqAHeFeM8fHM8qb0S+HVpDuTbgC6c++LMY6HEJ4gvR3vr4GbgPxB48QYh4HhvM8s9q8hSZIkSZJUUtnh3d2N/TmnyS0v2el15fq8UnY63QksBj6fEwZ9GbiFdPfTYmA9mYHhIYSvAg/FGB8CbgMeCCF8HPg34LdLWKckSZIkSVKirly9tGQhU1KfV8pB4h8GPnycly8qcP2tOY9/DlxZmsokSZJ0PCGETwG/mXn6cIzxI0nWI0mSKldJZzpJkiSpcoQQrgGuA1YBk8A/hBDeFmP8brKVSZI0e23YspfudTtztqm1l7VjaTYzdJIkSVLWfuCOGOMhgBDCDuC8ZEuSJGn22rBlL/c8sGPaQO6h4T4AgycMnSRJkpQRY3w2+ziEcD7pg11en3tNCKERaMy71W/VkqQ5qXvdTnp7OkjtaQUgtaeV3p4Ouhv7DZ0wdJIkSVKeEMKFwMPAnTHGXXkv3w58qvxVSZI0+wyNjjA40DJtbXCghaHRkYQqml1qky5AkiRJs0cI4XLgB8AfxRgfKHDJvcAr837eUL4KJUmaPZrqG2huS01ba25L0VTfkFBFs4udTpIkSQIghLAM6AHeFWN8vNA1McZhYDjvvjJUJ0nS7NPV2c7QcN+0mU5r1vbR1bk86dJmBUMnSZIkZd0JLAY+nxMkfTnG+OXkSpIkafbKzm3qbuzPOb1uufOcMgydJEmSBECM8cPAh5OuQ5KkSnLl6qWGTMfhTCdJkiRJkiQVnaGTJEmSJEmSis7QSZIqwPjhiaRLKIu58ntKkiRJc4EznSSpAiyYX8tH7/tR0mWU3N23XZ50CZIkSZKKxNBJkiRJkiTNeRu27KV73c6cU+jaHRB+hgydJEmSJEnSnLZhy17ueWAHvT0dDA600NyWYmi4D8Dg6Qw400mSJEmSJM1p3et20tvTQWpPK5MTtaT2tNLb00H3up1Jl1bRDJ0kSZIkSdKcNjQ6wuBAy7S1wYEWhkZHEqqoOhg6SZIkSZKkOa2pvoHmttS0tea2FE31DQlVVB0MnSRJkiRJ0pzW1dnOmrV9tCw7QE3tBC3LDrBmbR9dne1Jl1bRHCQuSZIkSZLmtOyw8O7G/pzT65Y7RPwMGTpJkiRJkqQ578rVSw2ZisztdZIkSZIkSSo6QydJkiRJkiQVnaGTJEmSJEmSis7QSZIkSZIkSUVn6CRJkiRJkqSiM3SSJEmSJElS0Rk6SZIkSZIkqegMnSRJkiRJklR085MuQJIkSZIkqRQ2bNlL97qdDI2O0FTfQFdnO1euXpp0WXOGoZMkSZIkSao6G7bs5Z4HdtDb08HgQAvNbSmGhvsADJ7KpOShUwjhJcBG4C3Aa4C7c15uAzbFGN+Sd89NwGeAX2SWHo4xfqzUtUqSJEmSpMpwsi6m7nU76e3pILWnFYDUnlZ6ezrobuw3dCqTkoZOIYRLga8A7QAxxvXA+sxr5wA/An6/wK0XA38QY/xmKeuTJEmSJEmVZyZdTEOjIwwOtEy7b3CghaHRkbLXO1eVepD4e4APAPsKvPY54Msxxl0FXrsYuCmEsC2E8PUQQlMpi5QkSZIkSZUjt4tpcqL2aBfTup1T1zTVN9Dclpp2X3Nbiqb6hnKXO2eVtNMpxngrQAhh2noI4XzgSuDW49y6H/hvwGbS2/H+Ergx7z0agca8++yPkyRJkiSpCpxo+9xMupi6OtsZGu6b1g21Zm0fXZ3Ly/p7zGVJDRJ/L3BfjPFgoRdjjG/LPg4hfBb41wKX3Q58qjTlSZIkSZKkpJxs+1y2iyk7rwmO7WLKBlTdjf05wdVy5zmVUVKh01rgukIvhBDOBrpijF/ILNUA4wUuvRe4P29tKfBEkWqUJEmSJEkJONkQ8Jl2MV25eqkhU4LKHjqFEF4KnBVj/OlxLnkB+EgIYWOMcRPwQeC7+RfFGIeB4bz3Lna5kiRJkiSpzE62fc4upsqQRKfTq4C9+YshhK8CD8UYHwoh/CbwpRDCWcBO4KYy1yhJkiRJkkroRDObZrp9zpBpditL6BRj/LWcx5uBywpcc2vO4yeA15ajNkmSJEmSVBrHC5ZONrPJIeDVIamZTpIkSZIkqYqdKFg62cwmt89VB0MnSZIkSZJUdCcKlk42swncPlcNapMuQJIkSZIkVZ8TBUvZmU258mc2qfIZOkmSJEmSpKI7UbDU1dnOmrV9tCw7QE3tBC3LDmRmNrUnVK1Kwe11kiRJkiSp6E40DNyZTXODoZMkSZIkSTojxzulDo4fLDmzqfoZOkmSJEmSpNN2olPqDJbmNmc6SZIkSZKk05Z7St3kRO3RU+rW7Uy6NCXM0EmSJEmSJJ22E51Sp7nN7XWSJEmSJGnG8uc31S2oo7ktRWpP69Q12VPqNLcZOkmSJEmSpGMUGg4OHDO/6bK3Pc0lb93K5odWHXNKneY2QydJkiRJkjTN8YaD19UxNb8JILWnlSe/+zredOMzXH9L4VPqNHcZOkmSJEmSpGlyh4MDU8PBL3vHxoLzm8YOvci3/vQ/J1GqZjEHiUuSJEmSpGmONxz8yPg8mttS09ad36TjMXSSJEmSJEnTNNU3FAyXXrJkAWvW9tGy7AA1tRO0LDuQmd/UnlClms3cXidJkiRJkqbp6mxnaLhv2kynNWv7eP87LgSgu9H5TTo5QydJkiRJkjRNNkQ6XrhkyKSZMHSSJEmSJEnHuHL1UsMlnRFDJ6mKjR+eYMH86h/dNld+T0mSJKkYNmzZS/e6nTkdTOl5TPlrBk46U4ZOUhVbML+Wj973o6TLKLm7b7s86RIkSZKkWSs3ZKpbuJiRkRo2P7RqalbT4K+eZuLIvGlrQ8N9gNvodGYMnSRJkiRJqlIbtuzlngd2TA0Ev/LmH7D9sQ5Se1oBSO1pZWxk/jFrvT0ddDf2GzrpjBg6SZIkSZJUpbrX7aS352igVHf2GIMDLdOuKbQ2ONDC0OhI2epUdTJ0kiRJkiSpSuTPaxp6YWRaoDQy2EBzW2oqhAIY+1XdMWvNbSma6hvKWruqj5N3JUmSJEmqAtmtdOvvX8HD9/4X1t+/gsOHFtDclpq6Zvemdi66bistyw5QUztBy7ID1DUc5pK3Tl9bs7ZvasC4dLrsdJIkSZIkqQrkb6VL7WnlX5/5NV57/RaeWb+awYEWDo4t4qz6I7zphj7GxscyJ9WtSN/f3J9zet1y5znpjBk6SZIkSZJUoXK3001Ocsxspl2bLuD8y3Zx/S25gdKKgoGSIZOKzdBJkiRJkqQKkRsy1S1czMhIDZsfWjV1Ml2h2UzNSxp48K6rE6xac5UznSRJkiRJqgD5M5sO/KKWzQ+tIrWnlcmJWuLG5cfMa3I2k5Jkp5MkSZIkSRUgf2ZT3dlj07bT7YtLoWaSizs3MX/hEWczKXElD51CCC8BNgJviTH+LITQDbwBGM1c8scxxu/m3dMBfAU4G/gn4HdjjIdLXaskSdJcl//dLeFyJEk5hkZHpoVMI4MNx2ynOzi6mNamOrfTaVYo6fa6EMKlwD8Dub18FwNXxBg7Mj/fLXDr14HfizG2AzXAe0pZpyRJko773U2SNEs01adDpqzdm9rdTqdZrdSdTu8BPgD8FUAIoR44D/hKCOE84LukO50msjeEEP434KwY45OZpfuBPwa+VOJaJUmS5rpp390kSbNLV2c7Q8N99PZ0MDjQwsGxRZxVf4Q33dDH2PiY2+k065Q0dIox3goQQsguvRx4HHgf8ALw98C7SW+lyzoX2J/zfD9wzH9jQgiNQGPesv/NkiRJOk0Fvrsdw+9gklReuafVNdU38OYrXk5TY//U867OFYZMmrXKOkg8xvivwNuyz0MIfwHcxPTQqabArRMF1m4HPlXUAiVJknQyfgeTpCLLDZbqFi6GyVrGxseoW7iYkZEaNj+0isGBFprbUgyt7eOOm+1mUmUoa+gUQlgBtMcYv5NZqgHG8y4bAM7Jef4KYF+Bt7uX9Na7XEuBJ868UkmSJB2H38Ek6Qzlh0zZYGlR/YtccPkOtj2S3j535c0/YPtjR0+rS+1ppbeng+7GfkMnVYSyhk6kQ6Z7QwiPk95e917ggdwLYow/DyG8GEK4PMb4I9KdUN/Pf6MY4zAwnLt2olZwSZIknTm/g0nSmdmwZS/3PLBjai5TbrB0xU2Ps+2RVVMhU93ZY9NOqwMYHGhhaHQkidKlU1bS0+vyxRi3A38K/Aj4MdAXY/wmQAhhfQjhdZlLbwS+EELYAdQDf17OOiVJkiRJKoXudTvp7UmHTJMTtdOCpYbmkWkh08jg9NPqAJrbUjTVN5S1Zul0laXTKcb4azmP7wPuK3DN9TmPtwGXlKM2SZIkTZf73U2SVFxDo4WDpdSe1mmPAXZvauei67ay7ZGjM53WrO2jq3N5UuVLp6Tc2+skSZIkSZqzmuqPHyzt3nz+tJDp4Ngizqo/wptu6GNsfCxzWp1DxFU5DJ0kSZIkSSqTrs52hob7pmY65QdLdQsX54VMKwyZVLEMnSRJkiRJKpNsgNTd2M/Q6IjBkqqaoZMkSZIkSSW2YcteutftzAma2g2aVPUMnSRJkiRJKrLckKlu4WJGRmrY/NDRgeBDw30ABk+qarVJFyBJkiRJUjXZsGUv9zywg/X3r+Dhe/8LB35Ry+aHVpHa08rkRC2pPa309nTQvW5n0qVKJWWnkyRJkiRJpym/o4nJWp4fPchT6y6dOqGu7uwxBgdapt03ONDC0OhIEiVLZWPoJEmSJEnSCeTPY7ps5Ut5cvsvGXxhhENji3hm/WoW1b/IBZfvYNsjHVz29o3TQqaRwQaa21JTIRRAc1uKpvqGJH4dqWwMnSRJkiRJypMNmnKDpcGBFs6/9Cfs//d/Y+v61Vx4VT/P/nAFqT2tXHHT42x7JL2FLj9k2r2pnYuu28q2R47OdFqzto+uzuUJ/5ZSaRk6SZIkSZLmrELb40YPjU0FTbnBEsA55z/H1vWrSe1ppaF5ZKqjKffx7k3trLy2j+2PdjA40MLBsUWcVX+EN93Qx9j4WOb0uuUOEVfVM3SSJEmSJM1J2YHfvT0d07bH5QZNuWESTA+Xcjuach/vi+kwaeU1fdQ1jtG8pIGuzhWGTJpzPL1OUsUbPzyRdAmSJEmqQN3rdtLb00FqTyuvvmTX1Pa4QsFSVu7zbEdTy7ID7N58Phddt5WWZQeoqZ3g4Ngi6pfAnTeu5sG7rjZw0pxkp5Okirdgfi0fve9HSZdRUnffdnnSJUiSJFWdodHC2+Nyu5byt8o9t+scVl2/ha3rV7N/17ksaX6ei9/6FPMXjlO3aLFb6KQchk6SJEmSpDmpqb7w9rjcoCk/WGpa0sBlK8/lFS/rnzrNrqtzpeGSVIChkyRJkiRpTurqbGdouI/eno6p7XHbHllVMGjKD5Zue0eChUsVwtBJkiRJkjQnZE+qG3xhhMnDC6idP05d/dEtcXUL87fH2cEknQlDJ0mSJElS1cueVLfz6Tbalh+ZmtHU3JZizdo+7rh5tQGTVGSGTpIkSZKkqpXtbjowNMZT6y7lwqv62f5o+sQ6gNSeVnp7Ouhu7Dd0korM0EmSJEmSVFVyt9EdGlvEM+tXc9nbNzI40DLtlLqswYEWhkZHEqpWql6GTpIkSVUghPBKYFmM8Z+SrkWSklAoaLrwqn6e/eGKaafT5Z5Sl9XclqKpviHB6qXqVJt0AZIkSTo9IYT3hxD+OoTwUqAX+EoI4U+TrkuSyi07r2n9/SsYSTXwzPrVpPa0Tutq2r2pnZXX9vHcrnNYeW0fLcsOUFM7QcuyA6xZ20dXZ3vCv4VUfex0kiRJqlzvBn4DeCewDvgA8CTw/yRZlCSVW/e6nfT2dBwTNOV2Ne2L6XlN4fU7OOslY1y69ilq54/TtKSBrs7lznOSSsDQSZIkqXJNxhh/EUK4BvhWjPFwCGFe0kVJUrnkbqkrFDRlu5uyJ9UdHFtE/RK44//0pDqpHAydJEmSKtfBEMJHgDcCt4YQ3g+MJlyTJJVFdktdb08HF17VXzBo2r/rXJY0P8/Fb32K+QvtapLKzdBJkiSpcr0b+L+Bm2OMQyGE/wTcmnBNklQWuVvqTh40rTRokhJg6CRJklShYowxhPB7wKtDCDXArTHG/0i6Lkkqh6HRo1vqsvOaLryqn4aWEZoNmqRZwdPrJEmzxvjhiaRLKIu58nuq9EIIlwH/AjwMtAF7QwivT7YqSSqPpvr07KasfXEpz/5wBc1LGnjwrqsNnKRZwE4nSdKssWB+LR+970dJl1Fyd992edIlqHp8DrgG+EaMcW8I4f8C/jtwcbJlSVLpdXW2MzTcR29Pekh4c1uKNWv76OpcnnRpkjIMnSRJkipXXYzxxyEEAGKM60MIf5JwTZJUFtlOpu7GfoZGR2iqd0i4NNsYOkmSJFWu8RBCEzAJELLpkyTNEVeuXmrIJM1iJQ+dQggvATYCb4kx/iyE8F7gQ6S/HD0NvC/GeCjvnpuAzwC/yCw9HGP8WKlrlSRJqjB/AvwjcE4I4ZvAdcB7ky1Jkkpvw5a9dK/bmdPh1G74JM1CJQ2dQgiXAl8B2jPP20kf67saGAHuBz4AfCHv1ouBP4gxfrOU9UmSJFWyGOP3Qgg7gGuBecB/jTH+OOGyJKmkNmzZyz0P7Jg2y2louA/A4EmaZUrd6fQe0qHSX2WeHwTeH2N8HiCE0A+cV+C+i0kf/ftHQD/wezHGoRLXKkmSVBFCCK/NW9qU+XNxCOG1McZnyl2TJJVL97qd9PZ0kNrTCkBqTyu9PR10N/YbOkmzTElDpxjjrQA5wy1/Dvw8s9YKfBC4pcCt+4H/BmwG7gb+Ergx94IQQiPQmHef/wsjSZLmgu+c4LVJ4FXlKkSSyiW7pW7whREGB1qmvTY40MLQ6EhClUk6nkQGiYcQ2oDvA1+LMW7Ifz3G+Lacaz8L/GuBt7kd+FSpapQkSZqtYoyvTLoGSSqn3C11F17VT3NbaqrTCaC5LUVTfUOCFUoqpOyhUwjhAuAfgL+IMd5T4PWzga4YY3bOUw0wXuCt7iU9EyrXUuCJ4lUrSZI0+4QQPhJj/GwI4c8LvR5j/FC5a5KkUsh2Nx0YGuOpdZeS2tPK7k3trLy2j+2PHp3ptGZtH12dy5MuV1KesoZOIYQG4BHgozHGrx/nsheAj4QQNsYYN5Hegvfd/ItijMPAcN77F7liSZKkWelXmT9TBV6bLGchklQqud1Nl71949SWun0xPVXlwqv6aWgZoXlJA12dy53nJM1C5e50uhV4OXBnCOHOzNpDMcZPhhC+mnn8UAjhN4EvhRDOAnYCN5W5TkmSpFkrxvj/ZR7+e4zxS7mvhRD+MIGSJOmM5c5smjy8gInJianuppHBhmlb6vbFpRwcW8T1t/Tz4F1XJ1y5pOMpS+gUY/y1zMMvZH4KXXNrzuMngPxTWSRJkgSEEH4XqAN+P/OPdFkLgA8Bn0mkMEk6Tdmupp1Pt9G2/AjbH53e3eSWOqkyJTJIXJIkSWdkHFhBOnhakbN+GPi9RCqSpDPQvW7n1JDw7Y92HNPdlN1St/KaPuoax9xSJ1UIQydJkqQKE2P8GvC1EMLaGGNP0vVI0pkaGh1hcKCFhuaR43Y3HRxbRP0SuOPG1YZNUoUwdJIkSapcT4YQPgU0kz7xF/D0OkmVp6k+3dVkd5NUXQydJEmSKte3SJ/muxVPrZNUQfKHhtfMG+e112/h59vPs7tJqiKGTpIkSZXrZTHGNyZdhCSdikJDwwcHWjj/0p/wqtf+jHkLxrl07VPUzh+nye4mqaIZOkmSJFWun4cQ6mOMo0kXIkkzVWhoOMDO3teQ2tvK9bf08+BdVydcpaRiMHSSJEmqXPuBvhDCBuA/sovOdJI0mxUaGp41ONDC0OhIQpVJKjZDJ0mSpMr1s8yPJFWMQkPDs5rbUjTVNyRYnaRiMnSSJEmqUDHGP85fCyHUJ1GLJJ1M7vDwQkPDm9tSrFnbR1fn8qRLlVQkhk6SJEkVKoTQCdwFLAFqgHlAM2CbgKRZJTs8vLfHoeHSXGLoJEmSVLn+DPg48LvAZ4C3Ac8nWpEkFZAdHu7QcGluqU26AEmSJJ220Rjjt4AngReB9wNvSrYkSTpWdnh4LoeGS9VvRqFTCOFrBda+U/xyJEmSdAoOhhAWAbuBjhjjBLAo4ZokacqGLXu56ZOPc/jQPJrbUtNec2i4VP1OuL0uhPAloA14QwihNeelBcAFpSxMkiRJJ7UOeBi4BdgYQngDkDrhHZJUBhu27OVL336WwaFJtq5fzaL6F7nouq1se2SVQ8OlOeRkM52+Bvw6cBGQ29l0GOgtVVGSJEk6uRjj3SGEr8cY92aGil8BfDPpuiTNbdmh4aMv1LL9saNznJisYeU1fdQ1jtHs0HBpTjhh6BRjfBp4OoTwWIxxb5lqkiRJ0gyEEF6b+fOlmaUngKXAvydWlKQ5Lzs0/LK3b5w2x2lfXMr+XefyG7d/z+Hh0hwx09Pr/vcQwl+RPoK3JrsYY1xZkqokSZI0E7md6AuBc4AtwCXJlCNJR4eGjww20NyWOtrphHOcpLlmpqHTF4Fu4BlgsnTlSJIkaaZijK/MfR5CuAx4d0LlSJrjNmzZS/e6nVNDw3dvamfltX1sf7TDOU7SHDXT0OlQjPHzJa1EkiRJZyTG+GQI4b6k65A092TnOPX2dEwbGh43XjA1x6l+YR3vf6dznKS5ZKah0/8KIayIMfaXtBpJkiTNWHamU0YN8DrgrITKkTSHZec4HX9o+GrDJmkOmmno9CpgSwjh58B/ZBed6SRJkpSo3JlOk6QHiL8/oVokzWHZOU5ZDg2XBDMPnT5W0iokSZJ0yvJnOhVDCOEG4OOkB5N/Icb4xWJ/hqTq01Tv0HBJx5pp6OS2OkmSpFkkhLAE+F3gcmAesBG4D+gEBmKMj5/Ge7YBfwKsBg4CG0MIP4wx/rhohUuqSl2d7QwN99Hb49BwSUfNNHT6JemW7RqOnl63H3BTriRJUpmFEJqBXmAH8Ghm+WrgaWAEuOo03/oa4PEY42Dmc74NvAO464wKllQVsqfTDY2OULdwMUzWMnpojMnDC6idP05d/WLedEMfY+NjNNU30NXp0HBprptR6BRjrM0+DiEsAN4OXFSqoiRJknRCfwx8Ncb4uZy1L2ZCovEY4/On+b7nkv6Hxaz9wCW5F4QQGoHGvPv8f5VSlcs/ne6Cy3ew98dttC0fYPuj07ub7rjZoeGS0mpPfsl0McbxGOPfANeWoB5JkiSd3JXA53MXMt1Py0lvjTtdNQXWJvKe3w78NO/niTP4TEmz3IYte/ncA9unTqd79SW72PbIKs45/zm2P5pem5yoJbWnld6eDrrX7Uy6ZEmzxIw6nTJfYrKyx/E2laQiSZIkncxEjPFI3toI6W70vz2D9x0A3pDz/BXAvrxr7gXuz1tbisGTVJWyHU4188anTqdraE6fVJf9M9fgQAtDoyNJlCppFjqdmU6QPo73QyWpSJIkSScVQnhJ7ja6GON4COE5js7fPB2PAZ8OIbQCo6RDrPfmXhBjHAaG82o5g4+UNJt1r9tJb08HF17VP3U63chg+qS67J+eWCfpeE55ppMkSZIS99fA/wgh3BxjPAgQQlgMfBn4xum+aYxxIITwMeCHwELSc6MVRhd0AAAgAElEQVQ2F6NgSZVpaDTdzbR7Uzsrr+1j+6Md7N58Phddt5W9P146teaJdZIKmen2ulrgTuDNwALgEeDuGOPhEtYmSZKkwv6MdLj0ryGEpzNrF5MOi/7sTN44xvjXpEMtSaKpPt3NtC+mB4NfeFU/Dc0jTE7Mo+OKAUYPjXHp2qeonT9O0xJPrJM03Uy31/0p6dPq/jvp4ePvBT4H/P6JbgohvATYCLwlxvizEMI1pIdengV8K8b48QL3nAd8HXgZEIEbY4wvzLBOSZKkqpeZ5/RbIYTXAf8ps/z/xhifSrAsSVWoq7OdoeE+ens62L/rXA6OLWLN2j7uvNlwSdLJzTR0+j+A18UYxwFCCA8D2zhB6BRCuBT4CtCeeX4W0A28EdgDPBxCeHOM8ft5t94H3Bdj/JsQwieATwB/OPNfSZIkaW6IMT4NPH3SCyXpFG3YspfudTsZGh2hrn4xb7qhj7HxMZrq7WaSNHMzDZ1qs4ETQIzxYAhh/EQ3AO8BPgD8Veb5JcCuGONPAUIIXwfeCUyFTiGEBcAVwNrM0v3AP2LoJEmSJEllkT2xrrdn+qymO25ebdgk6ZTMNHTqCyF8AfjLzPMPAttPdEOM8VaYdprJucD+nEv2kz5eN9dLgedzZkUVuobM+zYCjXnL/i+gJEmSJJ2CbFfT4AsjTB5ewMTkBE+tu3TqVLrUnlZ6ezrobuw3dJJ0SmZ6Kt0HgCbS85meJB0O/d4pflZNgbWJ07gm63bgp3k/T5xiTZIkSRUv849xknTKsl1Nmx47h7Ff1bGp52LmzT/C4EDLtOsGB1oYGh1JqEpJleqEoVMIYWEI4QHg6hjjLTHGlwObgSPA86f4WQPAOTnPXwHsy7vmAPCSEMK8E1yTdS/wyryfN5xiTZIkSRUrpD0LPBtCaAsh7AghXJB0XZIqR/e6nfT2dHDO+c+x/dEOUntaGRlMn1iXq7ktRVN9Q0JVSqpUJ+t0ugvInkCX9R7S29o+fYqftYn0d6NXZ0KlG8iZ5wSQmRv1BPCuzNJN+dfkXDscY/xZ7g+w9xRrkiRJqmR/Qbr7+99jjAOZ5/8j2ZIkVYINW/Zy0ycfZ/CFEQYHWmhoHpnqbtq9qZ2V1/bRsuwANbUTtCw7wJq1fXR1tidctaRKc7KZTm8BLo4x/kd2Ica4L4RwE9ALfHymHxRjfDGEcAvwHWAxsB74NkAI4avAQzHGh4DbgAdCCB8H/g347Zn/OpIkSXNKS4zx0ewMzRjjfSGE9yZck6RZZtpJdAsXM354gpGRGrauX82FV/XT3Jaa6m5K7WllX0zPbVp5TR91jWM0L/HEOkmn52Sh06HcwCkrxvh8COHgTD4gxvhrOY9/AFxU4Jpbcx7/HLhyJu8tSZI0x02GEBYDkwAhhHOAeSe+RdJcknsS3aL6F7ng8h1MTsxn+2PprXTZrqaBHW2svLaP7Y+mT6w7OLaI+iVwx42eWCfp9J0sdDoSQmiIMU6bGBdCaAAWlK4sSZIkzcB9wP8EXhZC+FPSHeKfSbYkSbNBtrvpwNDY1El0V9z0ONseWcVlb984tZUu29X06kt3ctZLxrh07VPUzh+nye4mSUVwstDpm8BXQwhdMcZRgBBCPfBV0tvkJEmSlJAYY3cIYTfwG6T/QfC9McZHEi5LUsJyu5tyA6bs3KbcrXSQDp4Oji3i+lv6efCuq5MsXVKVOVnodC/wZeC5zMkotcBy4Bukh4xLkiSpzEIIzTlP/1fmZ+q1GONg+auSNFtkT6TLPYku93F2S112K11zWyozKHx50qVLqjInDJ1ijBPAe0MIdwOvBSaAzTHGfeUoTpIkSQX9kvQcp5qctezzSZzrJM1pQ6PHnkS3/dEOdm8+n4uu28q2R1YRN14wNSi8fmEd73+nW+kkFd/JOp0AiDH+DPhZSSuRJEnSjMQYa5OuQdLs1VR//JPo6hct5k039DE2PkZTfQNdnQ4Kl1Q6MwqdJEmSNPuEEOYB7wP+M3AEeCjGeH+iRUlK1IYtezk4Ps6q67ewdf1qT6KTlChDJ0mSpMr1F8BrgAdJz958dwjh1THGjydblqRyyp5UN/jCCIfGFvHM+tUsqn/R7XOSEmfoJEmSVLmuBV4TYxwHCCF8HdgGGDpJVa5Q0HThVf08+8MVR0+l+8kyWpYd4Ppb+g2cJCXC0EmSJKly/ZL097nxzPMJYDi5ciSV2oYte/nSt59lcGiSrXlBU0Pz0QHiWYMDLQyNjiRUraS5ztBJkiSpcu0Anggh3A8cBt4F/DKE8AcAMcbPJ1ibpCLbsGUv9zywg9EXatn+WMcxQdPI4NEB4lnNbSma6huSKlnSHGfoJEmSVLlqgH5gdeb5zzJ/rgAmkyhIUvFlt9IdGBrjqXWXctnbNxYMmnZvamfltX1sf7SDwYEWmttSrFnbR1fn8oR/A0lzlaGTJElShYox/k7SNUgqrWx3U29Px1TYdLygaf+uc1nS/DwXv/Up5i8cp2lJA12dDhCXlBxDJ0mSpAoVQrgS+COgOXc9xnhJIgVJKpr87qbUntapsOnkQdNKgyZJs4KhkyRJUuX6KvDnwL8kXYik4inU3QRMC5vixgtYeU0fdY1j1C+s4/3vNGiSNPsYOkmSJFWuX8QY/zzpIiQVV/e6nfT2dEzrbkrtaWVfTIdK2bCpeUkDXZ2rDZskzVqGTpIkSZXreyGE24D/CYxnF2OM/5ZcSZJOV3ZL3eALIwW7mwYHWjg4toj6JXDHjYZNkmY/QydJkqTK1QrcDYzmrE0CL0mmHEmnK3dL3YVX9Z+ku8nh4JIqg6GTJElS5Xon8IoY4y+SLkTSmcndUmd3k6RqYegkSZJUuX4BHEi6CElnbmj06Ja6bHfThVf109AyYneTpIpl6CRJklS5ngL+OYTwPeBgdjHG+PnkSpJ0KrJznA4fmje1pQ7SwdPBsUVcf0s/D951dcJVStLpMXSSJEmqXGcBEWhPuhBJpy53jtOi+he56LqtbHtkFYMDLTS3pVizto+uzuVJlylJp83QSZIkqULFGH8n6Roknb7cOU4ATNY4MFxSVTF0kiRJqlAhhDXAHwFLgBpgHvDKGON5iRYm6aQ2bNnL4AtH5zhBekvd/l3n8hu3f88tdZKqgqGTJElS5foq8CDwDuDLwFrgO4lWJOm4svObBl8Y4dDYIg4fqps2xwmguS1FU31DglVKUvHUJl2AJEmSTttkjPEzwAbgJ8A7gSsSrUhSQdn5TevvX8FIqoFn1q8mblzOymv7aFl2gJraCVqWHcjMcXJMm6TqYKeTJElS5RrJ/PkvwK/HGH8UQpiXZEGSCsud39TQnN5WNzmR7gG48Kp+GppHOHJ4Hnfc3OEcJ0lVw9BJxxg/PMGC+TbBSZJUATaFEL4FfAJ4OITQDhxJuCZJBQyNHp3fNDLYMLWtbl9cyr64lJZlB7j+ln4DJ0lVxdBJx1gwv5aP3vejpMsoubtvuzzpEiRJOlO/D1waY9wZQvgwcC1wQ8I1SSqgqf5o0LR7Uzsrr+1j+6MdDA600NyWymyrW550mZJUVIZOkiRJFSiEUAPMizE+GUJoABYD98UYdyVcmqQcucPDX3v9Fp5Zv5r9u85lSfPzXPzWp5i/cJymJQ10dS63y0lS1TF0kiRJqjAhhNcA64EPhhB+AGwGJoG6EMJ7YoyPJlqgNAdlw6Wh0RHqFi6GyVpGD41xaGwRz6xfzeBAC+df+pO8oGmlQZOkqlb20CmEcCvwwZylVwJ/FWP8YM41nwTeDQxllr4SY/xi+aqUJEma1T4HfCzG+PchhN/JrP060Ab8DWDoJJVBbhdTNlxaVP8iF1y+g22PdHDhVf08+8MVpPa0ArCz9zWk9rZy/S39PHjX1QlXL0mlV/bQKcb4VeCrACGEC4Ee4NN5l10M/FaMsbe81UmSJFWE82KM38g8vgpYF2OcAPaEEM5OsC6p6hUKmnLDpStuepxtj6yadkpdrsGBFoZGR47z7pJUXZLeXvcl4KMxxl/mrb8O+MMQwquAfwLujDG+WPbqJEmSZqfcE+peD3wo5/niMtciVbX8bXMjIzVsfmjVtKApN1zKfZx7Sl1Wc1uKpvqGRH4XSSq3xEKnEMI1wFkxxr/LW18CbAXuBH4G3E/6GOCP5V3XCDTmva0boiVJ0lwwGEK4CGgAXgH8I0AI4fXAQJKFSdVkw5a93PPADnp70qfMXXnzD9j+WMcxQVNuuJT72FPqJM11SXY6vQ/4fP5ijPEF4Prs8xDCPUA3eaETcDvwqVIWKEmSNEt9FHgMOBv4SIxxNIRwJ+nvS2sTrUyqIt3rdtLb0zHVqVR39ljBoCk3XNq9+Xwuum4r2x5Z5Sl1kua8REKnEMJC4I3ALQVeOw+4JsbYnVmqAcYLvM29pLugci0FnihaoZIkSbNQjPHJEEIbUBdjHM4sbwQuiTHuSrA0qSrkzm3Kncl0vKApP1yqW7SYN93Qx9j4GE31nlInae5KqtNpJbAzxjha4LX/AD4bQvgh6e11HwC+m39R5gvWcO5aCKH4lUqSJM1CMcZDwKGc5xsTLEeqGrlb6i68qn/aTKbdm9pP0sVkuCRJuZIKnV4F7M1dCCGsBz4ZY3w6hPA+4HvAQuCfgXvKX6IkSZKkapU7ILypvoHLVr6UJ7f/kgNDYzy17tKCM5kOji3irPojdjFJ0gwlEjrFGP8W+Nu8tetzHn8H+E6565IkSZJUvXK3zR0aW8Qz61czONDC+Zf+hP3//m9sXb+ay96+cWpL3b6YDpMuvKqfhpYRmpc00NW5wpBJkmaoNukCJEmSJKnUstvm1t+/gpFUA8+sX01qTyuTE7Wcc/5zbM08z85tytoXl/LsD1fQvKSBB++62sBJkk6BoZMkSZKkqpd7El1D8/QB4bnPs1vqWpYdoKZ2gpZlB1izto+uzvakSpekipXUTCdJkiRJKrrcWU11CxfDZC1j42NMTjIVLOWeQpf/PLulbuU1fdQ1jmW21C23w0mSToOhkyRJkqSqkHvy3KL6F7ng8h1seyQ9BPzKm38wFSzlDwh/btc5rLp+C1szM54Oji2ifgncceNqwyZJOgOGTpIkSZKqQu4Wuituepxtj6ya6maKG5dz0XVb2fbIKvbvOpclzc9z8VufYv7CcZqWNHDZynN5xcv6p06zs7tJks6coZMkSZKkipW7nS53C13+3KZ9cSnUTHJx5ybmLzySCZZWTguWbntH2cuXpKpm6CRJkiSpIuVup8vfQpc/twng4OhiWpvqePCuqxOsWpLmDkMnSZIkSRUjt7NpYnwBm3ouLriFbvfm86ceDw600NyWypxCtzzh30CS5g5DJ0mSJEmzVv5pdCMjNWx+KB0kXf+h751wC13dwsW86YY+xsbHnNMkSQkwdJIkSZI0KxXaPrf9sY6pzia30EnS7GboJEmSJGnWONH2ubqzx6Z1Nu3e1M7Ka/vY/miHW+gkaRYydJIkSZI0K+R3NuVvn8vvbNoXl7Kk+XkuXfsUtQvG3UInSbOMoZMkSZKmCSHcBUzEGD+ddC2aW7rX7aS35/jb53Zvaj9mOHj76wa44+aVBk2SNAsZOkmSJAmAEMLZwOeB3wY+m3A5moOGRkdOuH3u4Ngizqo/4nBwSaoQhk6SJEnK6gR2AfckXYjmpqb6mWyfW2HIJEkVwtBJkiRJAMQYHwQIIXz6eNeEEBqBxrxlEwAVRVdnO0PDfVMzndw+J0mVzdBJkiRpjgkhvBP4Qt7yT2KM18zg9tuBTxW/Ks1FuSfVpbuY2rnj5uV0N/bnrLl9TpIqlaGTJEnSHBNj/Dvg707z9nuB+/PWlgJPnElNmnvyT6prbksxNNzHHTcv58G7rk66PElSERg6SZIkacZijMPAcO5aCCGhalTJ8k+qS+1ppbeng+7GfjubJKlKGDpJkiRJKovc7XSTk0w7qQ7Sz4dGRxKqTpJUbIZOkiRJmibG+Omka1D1yd9Od+XNP5h2Uh1Ac1uKpvqGBKuUJBVTbdIFSJIkSap+udvpJidqiRuXc9F1W2lZdoCa2glalh1gzdo+ujrbky5VklQkdjpJkiRJKrmh0ZFp2+n2xaVQM8nFnZuYv/CIJ9VJUhUydJIkSZJUck31Dcdspzs4upjWpjpPq5OkKmXoJEmSJGnGcoeBp7uT0tvhTrZ22cqXMrS2b2qmU3NbKrOdbnmSv44kqYQMnSRJkiTNSP4w8Oa2FIO/epqJI/PY/NCqE64Nre3jzVe8nKbG/pxwyu10klTNDJ0kSZIkzUjuMHCA1J5Wxkbms/2xk6/19nTQ1NjvVjpJmkM8vU6SJEnSjOQPAweoO3tsRmuDAy0MjY6UvEZJ0uxhp5MkSZKkYxSa3VRoGPjYr+pmtNbclqKpvqGsv4MkKVmGTpIkSZKmKTS7aWg4PZMpfxh4XcNhLnnr1mnzmwqtOTRckuaeREKnEMLjwMuB8czS+2KMm3Jevwb4PHAW8K0Y48fLX6UkSZI0NxWa3ZSdyXTHzcvpnjYMfEX6nuaTrTk0XJLmmrKHTiGEGuAC4LwY4+ECr58FdANvBPYAD4cQ3hxj/H55K5UkSZLmpkKzm7Izma5cvbRgeDTTNUnS3JHEIPEATALfDyFsCyF8MO/1S4BdMcafZkKprwPvLHeRkiRJ0lyVnd2Uy5lMkqRTlcT2uibgB8D7SW+f2xBCiDHGRzOvnwvsz7l+P3DMP5GEEBqBxrxl/ylFkiRJOkNdne0MDU+f3eRMJknSqSp76BRj7AV6M09HQwhfA64HsqFTTYHbJgqs3Q58qvgVHt/44QkWzE+iOUySVE3mwt8nc+F3lKpFoVPqstvips9uciaTJOnUJDHT6T8Bi2KMP8gs1XB0oDjAAHBOzvNXAPsKvNW9wP15a0uBJ4pT6bEWzK/lo/f9qFRvP2vcfdvlSZcgSVVtLvx94t8lUmU43il1wHFnN0mSNFNJbK9rBO4KIbweWADcDPxuzuubgBBCeDXwU+AG0oPFp4kxDgPDuWshhFLVLEmSJFWs43UzHe+Uuu7GfgMnSdIZS2J73d+HEC4FtgLzgC/GGHtDCH3A9THGfSGEW4DvAIuB9cC3y12nJEmSVA1O1M10olPqJEk6U0l0OhFj/ATwiby1jpzHPwAuKnddkiRJUrU5UTdT9pS67GvgKXWSpOJxwqckSZJUxU7UzdTV2c6atX20LDtATe0ELcsOZE6pa0+oWklSNUmk00mSJElSeZyom8lT6iRJpWToJEmSJFWxrs52hob7ps10SnczLQc8pU6SVDqGTpIkSVIVs5tJkpQUQydJkiSpytnNJElKgoPEJUmSJEmSVHSGTpIkSZIkSSo6QydJkiRJkiQVnaGTJEmSJEmSis5B4pIkSVIV2LBlL93rduacUNfu8HBJUqIMnSRJkqQKt2HLXu55YAe9PR0MDrTQ3JZiaLgPwOBJkpQYt9dJkiRJFa573U56ezpI7WllcqKW1J5Wens66F63M+nSJElzmKGTJEmSVOGGRkcYHGiZtjY40MLQ6EhCFUmSZOgkSZIkVbym+gaa21LT1prbUjTVNyRUkSRJznSSJEmSZr2TDQnv6mxnaLhv2kynNWv76OpcnmDVkqS5ztBJkiRJmsVmMiQ8+2d3Y39OMLXcIeKSpEQZOkmSJEmzWO6QcODokPDG/mmh0pWrlxoySZJmFWc6SZIkSbOYQ8IlSZXK0EmSJEmaxRwSLkmqVIZOkiRJ0izW1dnOmrV9tCw7QE3tBC3LDmSGhLcnXZokSSfkTCdJkiRpFnNIuCSpUhk6SZIkSbOcQ8IlSZXI7XWSJEmSJEkqOkMnSZIkSZIkFZ2hkyRJkiRJkorO0EmSJEmSJElFZ+gkSZIkSZKkojN0kiRJkiRJUtEZOkmSJEmSJKnoDJ0kSZIkSZJUdPOT+NAQwqeA38w8fTjG+JG81z8JvBsYyix9Jcb4xTKWKEmSJEmSpDNQ9tAphHANcB2wCpgE/iGE8LYY43dzLrsY+K0YY2+565MkSZLKacOWvXSv28nQ6AhN9Q10dbZz5eqlSZclSdIZS6LTaT9wR4zxEEAIYQdwXt41rwP+MITwKuCfgDtjjC/mXhBCaAQa8+7zb2dJkiRVjA1b9nLPAzvo7elgcKCF5rYUQ8N9AAZPkqSKV/aZTjHGZ2OMTwKEEM4H3gWsz74eQlgCbAXuBF5LOlj6RIG3uh34ad7PEyUtXpIkSSqi7nU76e3pILWnlcmJWlJ7Wunt6aB73c6kS5Mk6YwlMtMJIIRwIfAw6S6mXdn1GOMLwPU5190DdAMfy3uLe4H789aWYvAkSZKkCjE0OsLgQMu0tcGBFoZGRxKqSJKk4klqkPjlwHeA22OMf5P32nnANTHG7sxSDTCe/x4xxmFgOO/e0hQsSZIklUBTfQPNbSlSe1qn1prbUjTVNyRYlSRJxZHEIPFlQA/wrhjj4wUu+Q/gsyGEHwI/Az4AfLfAdZIkSVJF6+psZ2i4b9pMpzVr++jqXJ50aZIknbEkOp3uBBYDn8/pTPoy8FbgkzHGp0MI7wO+BywE/hm4J4E6JUmSpJLKDgvvbuzPOb1uuUPEJUlVoeyhU4zxw/z/7d1/kJ1VecDx7yYSZAANSYNCEqha9ylIJUwsEoFCx9Ba6kywgFSCdRoQaBVkSqq0pEPUothKEzJlGmpdoQLTTsBJ6CCCCrSAUYEhEgs8QStMsoQCm6TSVMKPbP9434t3l/0Rdu/d9969388/e+953z3vc/bsZJ95cs658KkhLq2uu+dmiu13kiRJUtu5+8Et9KzbVFdI6h62kHTi/DkWmSRJk1JlB4lLkiRJk9HdD27hyuseHbBlbvuODQAWlyRJHWVK1QFIkiRJk0nPuk2sXzuPvs2z6N89hb7Ns1i/dh496zZVHZokSRPKopMkSZLUQNt3Ps+23pkD2rb1zmT7zucrikiSpGq4vU6SJEkARMSxwEpgL6APWJKZT1YbVfs5YN/9mTG7j77Ns15tmzG7jwP23b/CqCRJmniudJIkSVLNDcDZmTmvfL2q4nja0pJF3Sw4ZQMz5z5L15TdzJz7LAtO2cCSRd1VhyZJ0oRypZMkSZKIiL2BZZn5cNn0MHBBhSG1rdph4T3TN9Z9et1hHiIuSeo4Fp0kSZJEZu4CrgeIiCnAcmDt4PsiYjowfVCz1ZRBTpw/xyKTJKnjWXSSJEnqMBFxOrBiUPNjmbkwIqYB11HkiV8Y4tsvAi5rcoiSJGkSsOgkSZLUYTJzDbBmcHtE7AfcQnGI+KLMfGmIb18JXDuobQ5wT4PDlCRJbc6ikyRJkmquB34CnJeZ/UPdkJk7gB31bRExAaFV4+4Ht9CzblPd2UzdbpuTJGkPWXSSJEkSEXEUsAh4BHioLCQ9lZknVxpYhe5+cAtXXvco69fOY1vvTGbM7mP7jg0AFp4kSdoDFp0kSZJEZj4EdFUdRyvpWbeJ9Wvn0bd5FgB9m2exfu08eqZvtOgkSdIemFJ1AJIkSVIr2r7zebb1zhzQtq13Jtt3Pl9RRJIktRdXOkmSJGnSacRZTAfsuz8zZve9utIJYMbsPg7Yd/9GhytJ0qRk0UmSJEmTSqPOYlqyqJvtOzYM6GfBKRtYsuiwZoUuSdKkYtFJkiRJTTeRnwLXqLOYavf2TN9YF/dhnuckSdIesugkSZKkpproT4Fr5FlMJ86fY5FJkqQx8iBxSZIkNVX9yqP+3VN+ufJo3aamPK92FlM9z2KSJGniWXSSJElSU030p8AtWdTNglM2MHPus3RN2c3Muc+WZzF1N+V5kiRpaG6vkyRJUlNN9KfAeRaTJEmtwaKTJEmSmqqKT4HzLCZJkqpn0UmSJElN5cojSZI6k0UnSZIkNZ0rjyRJ6jweJC5JkiRJkqSGs+gkSZIkSZKkhrPoJEmSJEmSpIaz6CRJkiRJkqSGs+gkSZIkSZKkhrPoJEmSJEmSpIZ7QxUPjYgzgWXANGBFZl496Po84CvAm4H/AM7PzJcnPFBJkiRJkiSNyYSvdIqI2cDlwHHAkcC5EXH4oNuuBy7IzG6gC/j4xEYpSZIkSZKk8ahie91C4M7M3JaZO4GbgNNqFyPiUGCfzPx+2XQtcPqERylJkiRJkqQxq2J73cHA1rr3W4GjR7k+Z3AnETEdmD6o+VCAp59+uiGBDmXnz59rWt+tYsuWLY5zkuiEMUJnjLMTxgiOczLZsmVLU/qt+xs/tSkP0FhNhebmYJIkqTpjzcGqKDp1DdG2+3Vcr7kIuGyoByxevHgMYanmW1+rOoKJ0Qnj7IQxQmeMsxPGCI5zMpmAMR4E/LTpT9GeOgjMwSRJ6gCvKweroujUCxxf9/4g4KlB1986wvWalRRb7+pNA94OPA68Mt5Am2gOcA/Fz6E5/xWsRnGu2odz1T6cq/bRinM1lSI3uL/qQDTA/RS/J1tp7RysphV/tzWQc9T6nKPW5vy0vnabozHlYFUUnb4DLI+IWcBO4FTg3NrFzHwyIl6IiGMz8z7gj4DbBneSmTuAHUP0v6k5YTdORNRebsnMJyoMRaNwrtqHc9U+nKv20cJz5QqnFpOZu4B7q45jT7Xw77ZKzlHrc45am/PT+tp0jl53DjbhB4lnZi9wKXAXsAG4MTN/GBHfjIj3lLctBlZExKPAvsCqiY5TkiRJkiRJY1fFSicy80bgxkFtJ9e9/hEDDxeXJEmSJElSG5nwlU6SJEmSJEma/Cw6VWMH8FmGPpNKrcW5ah/OVftwrtqHc6XJyt/t1ucctT7nqLU5P62vI+aoq7+/v+oYJEmSJEmSNMm40kmSJEmSJEkNZ9FJkiRJkiRJDVfJp9cJIuJYYCWwF9AHLMnMJ6uNSiOJiM8BuzNzedWxaKCIOBNYBkwDVmTm1RWHpBFExJuA7wEfzMwnKg5Hw4iIy4APl29vzcxPVxmP1AzmY+3BHKz1mHu1PvOt1tZJeZYrnapzA3B2Zp/b8g8AAAdvSURBVM4rX6+qOB4NIyLeHBFfBZZWHYteKyJmA5cDxwFHAudGxOHVRqXhRMR7gXuB7qpj0fAiYiHwO8BRwDxgfkR8qNqopKYwH2th5mCtydyr9ZlvtbZOy7MsOlUgIvYGlmXmw2XTw8AhFYakkS0CHgeurDoQDWkhcGdmbsvMncBNwGkVx6ThfRz4BPBU1YFoRFuBizPzxcx8CXgU/05pkjEfawvmYK3J3Kv1mW+1to7Ks9xeV4HM3AVcDxARU4DlwNoqY9LwMvOfASJiecWhaGgHU/zDXbMVOLqiWDSKzDwHICKqDkUjyMz/rL2OiHcCZwDvqy4iqfHMx1qfOVjLMvdqceZbra3T8iyLTk0WEacDKwY1P5aZCyNiGnAdxTx8YcKD0wAjzVUV8WiPdQ3RtnvCo5AmoYh4F3ArsDQzH686HmmszMdamzlY2zH3khqgU/Isi05NlplrgDWD2yNiP+AWikMrF5XL6lSh4eZKLa8XOL7u/UG4lFgat/KA5ZuBizLzX6qORxoP87HWZg7Wdsy9pHHqpDzLolN1rgd+ApyXmf1VByO1se8AyyNiFrATOBU4t9qQpPYWEXMpthmdkZl3Vh2P1ETmY9LrZ+4ljUOn5VkWnSoQEUdRHIz4CPBQudf2qcw8udLApDaUmb0RcSlwF8XH9v5TZv6w4rCkdrcUeCPwd3XnQazOzNXVhSQ1lvmYNDbmXtK4dVSe1dXf73/qSJIkSZIkqbGmVB2AJEmSJEmSJh+LTpIkSZIkSWo4i06SJEmSJElqOItOkiRJkiRJajiLTpIkSZIkSWq4N1QdgCRJkiRNNhGxCvit8u3hwM+AX5TvFwD/B8zKzOcqiO0O4MzMfC4ivgkszcxHxtDPtcCPM/PLQ1z7VeDzwHspxr0LuCYzvzqe2EeJ5zXjAg4E/j4zj2jWcyUNz6KTJEmSJDVYZl5Yex0RTwCLM/OBurYKonrVSbUXmXlyozuPiLnAeuAvMvOjZdts4IaI6M7MzzT6maXXjCsiDmzSsyTtAYtOkiRJklSNz0bEMcBM4G8z82qAiDgb+FOK41D6gE9m5mMR8WbgamAe0A/cBvxlZr4cEbuAdcCRwGJgJ3BV2fdUYFVm9kTE18pn3xURJwP3AKdl5gMRsQS4GHgFeA74GNALrACOAfYHuoBzMvO+EcZ1CbAmM6+tNWRmb0ScAfwsIq4CuqlbgRQRJ9beR8RbgGuAtwBvBZ4EPpyZz5QFvGuB9wOHAP+amZ8eblz1QUXENOBLwAnlz+Qh4MLM/HlE/AlwPvAi8AJw3lhWf0kayDOdJEmSJKka/5WZ84EPAVdGxF4RcQJFsef4zDwK+BvgG+X9qyiKUL8BvIeiwLS0vDYN+LfMDGADcBNwSdn/CcDSiDgmM/+4vP+3M3NzLZCIOJKiIPOBzHw3cAtwKcX2uIOBBZl5OHAdRVFpJMcB/z64MTP/G3ik7HMkfwisz8wFwNsptiJ+tO76fpl5PPA+4IKIeNtw4xrkEuBlYH5mHgk8BVwREVOBlRRj/03gH8sxSBonVzpJkiRJUjVuLL9uAPYG3gT8PvBrwPfqtuDNiIgZwO8Bx2ZmP7ArIlYDFwFXlPfdU37tBt4B9NT1sQ9wFPD9YWJ5P3B7rWCTmStrFyJiGXBeRLwDOBF4fozjrZk60sXMvCoijo+IPwPeCRwB/KDulnXlfb0R8Qwwg+LMrNF8EJgOnFT+XKYBz2TmKxGxhuJnfitwB7+cG0njYNFJkiRJkqrxEkBm9pdFkC6KgszXa+ceRcQUipVG23ntTpUpwF517/+3/DoV2JGZ82oXyi1r/zNCLC9TbNmr3b8PcChF8eoq4EqKYs9jwFmjjOs+iuLUzWVfB1Ks0JpBcaj6DyhWMHXVfc+0umd/CTga6AHuKsdYf+8v6l73D7o2kqnApzLztvI5+wFvBMjMsyLiCGAh8BngbGDRHvYraRhur5MkSZKk1nEH8JGIOKh8fz7w3fL17cAnIqIrIvYGzgW+PUQfCbwQEWfBqwd7/xiYX15/hYHFKiiKOwvrnnsexda+kyi27f0DcD9wCqOsVAK+CJwaER8r338E2AisBVaXq6meBQ6JiAMjoqvst+Z3gZWZ+XXgmTKG0Z453Ljq3Q58MiKmlcW8rwBfjIhfiYjNQF+5wmsZxdZFSeNk0UmSJEmSWkRm3k5xttK3I+Jh4EzgD8otdRcCB1IUcDZSFJcuH6KPFylW6ZxT9nEH8Fd1h39/A7i3XNlT+56NwJ8D34qIHwEfoCh4rQZOKPtZD/wUeFtZtBluDJuBBRTb2DZRFMdeoigg/XpEvKs8pPsa4AGKLX9b67r4HPDliHiwFivFlsPRvGZcg3weeILiAPFHKFZIXZyZzwF/DXy3fOYVwDl78DxJo+jq7+8f/S5JkiRJksYpIt4NvJCZm6qORVLzWXSSJEmSJElSw7m9TpIkSZIkSQ1n0UmSJEmSJEkNZ9FJkiRJkiRJDWfRSZIkSZIkSQ1n0UmSJEmSJEkNZ9FJkiRJkiRJDWfRSZIkSZIkSQ33/zMITFXsW30dAAAAAElFTkSuQmCC\n", "application/papermill.record/text/plain": "
" }, "metadata": { "scrapbook": { "mime_prefix": "application/papermill.record/", "name": "exp2_fig" } }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABJQAAAF8CAYAAACZheENAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3X2Y3WV97/t3nkOGsfNgLDDBVo/kS6TAYOQhRTAI0iPbmniJ5RzcR2hUqnS30gNXz67aIpwtbuuGsu2W2q3OAevjOVInWuIuT6abQuQhZiAb4x3o1jYZguI8yDhTyITM+WOtNaxZWZOZNbPW/Naaeb+ua66s371+6/f7zpokLD657++9aGxsDEmSJEmSJGm6FmddgCRJkiRJkhqLgZIkSZIkSZIqYqAkSZIkSZKkihgoSZIkSZIkqSIGSpIkSZIkSaqIgZIkSZIkSZIqYqAkSZIkSZKkihgoSZIkSZIkqSIGSpIkSZIkSaqIgZIkSZIkSZIqYqAkSZIkSZKkiizNuoDpiogVwJnAAeCljMuRJEnVtwQ4Hng0pfRi1sUox89gkiTNezP6DNYwgRK5DzIPZF2EJEmqufOAf8y6CI3zM5gkSQtDRZ/BGilQOgDwla98heOOOy7rWiRJUpU9++yzvOc974H8f/NVN/wMJknSPDbTz2CNFCi9BHDcccexZs2arGuRJEm147Kq+uJnMEmSFoaKPoPZlFuSJEmSJEkVMVCSJEmSJElSRQyUJEmSJEmSVBEDJUmSJEmSJFXEQEmSJEmSJEkVMVCSJEmSJElSRQyUJEmSJEmSVBEDJUmSJEmSJFXEQEmSJEmSJEkVWZp1AZIkSZIkSaqe7Tv307V1LwPDQ7Q2NbNl01o2rl9T1XsYKEmSJEmSJM0T23fu5+Y79rCju5P+3nbaOvoYGOwBqGqo5JI3SZIkSZKkeaJr6152dHfSt281Y4cX07dvNTu6O+naureq9zFQkiRJkiRJmicGhofo722fMNbf287A8FBV72OglDd66HDWJUyqnmuTJEmSJEn1o7WpmbaOvgljbR19tDY1V/U+9lDKW7Z0MR+57cGsyyjrpqvPzboESZIkSZLUALZsWsvAYM+EHkobNvewZdO6qt7HQEmSJEmSJGmeKDTe7mrZXbTL2zp3eZMkSZIkSdLkNq5fU/UAqZQ9lCRJkiRJklQRAyVJkiRJkiRVxEBJkiRJkiRJFTFQkiRJkiRJUkUMlCRJkiRJklQRAyVJkiRJkiRVxEBJkiRJkiRJFVla6xtExKeB1SmlKyOiE/g88CvAfwc+mFI6VOsaJEmSJEmSVD01naEUERcCVxYNfRn4g5TSWmAR8IFa3l+SJEmSJEnVV7MZShHRBnwCuAk4PSJ+DTgmpfT9/Cm3AzcAf1XmtS1AS8nwmlrVKkmSJEmSpOmr5ZK3vwY+CpyYPz4BOFD0/AEmD4muAa6vXWmSJEmSJEmaqZoseYuI9wP7Ukr3FQ0vKnPq4UkucSvwmpKv86papCRJkiRJkmakVjOULgOOj4geoA04FhgDjis653jgmXIvTikNAoPFYxFRm0olSZIkSZJUkZrMUEopvTWl9BsppU7gz4Bvp5R+F3ghIs7Nn/Ze4Lu1uL8kSZIkSZJqp5Y9lMp5D/D5iGgGdgGfmeP7S5IkSZIkaZZqHiillG4nt6MbKaXHgbNqfU9JkiRJkiTVTk2WvEmSJEmSJGn+muslb5IkSaqxiHgF8BDw9pTSTyLiIuAW4BjgGymlj2VaoCRJanjOUJIkSZpHIuJs4B+BtfnjY4AuYBOwDjgzIt6WXYWSJGk+MFCSJEmaXz4A/D7wTP74LOCplNKPU0qHgC8D786qOEmSND+45E2SJGkeSSm9HyAiCkMnAAeKTjkArCn32ohoAVpKhsueK0mSFjYDJUmSpPltUZmxw5Ocew1wfQ1rkSRJ84SBkiRJ0vzWCxxXdHw8Ly+HK3UrcHvJ2BrggeqXJUmSGpmBkiRJ0vz2MBAR8Trgx8Dl5Jp0HyGlNAgMFo8VLZ2TJEkaZ1NuSZKkeSyl9AJwJXAn8EPgR8A3s6xJkiQ1PmcoSZIkzUMppV8venwfcHp21UiSpPnGGUqSJEmSJEmqiIGSJEmSJEmSKmKgJEmSJEmSpIoYKEmSJEmSJKkiBkqSJEmSJEmqiIGSJEmSJEmSKmKgJEmSJEmSpIoYKEmSJEmSJKkiBkqSJEmSJEmqiIGSJEmSJEmSKmKgJEmSJEmSpIoYKEmSJEmSJKkiBkqSJEmSJEmqiIGSJEmSJEmSKmKgJEmSJEmSpIoYKEmSJEmSJKkiBkqSJEmSJEmqiIGSJEmSJEmSKrK0lhePiBuBS4Ex4IsppVsiogs4DxjOn3ZDSulbtaxDkiRJkiRJ1VOzQCki3gy8BTgNWAb8MCLuAs4Ezk8pHajVvSVJkiRJklQ7NQuUUkr/EBEXpJQORURH/l4vAK8GPh8Rrwa+RW6G0uHi10ZEC9BScsk1tapVkiRJkiRJ01fTHkoppdGIuAH4IXAfuVDpfmALcA65pW/vK/PSa4Afl3w9UMtaJUmSJEmSND01b8qdUroeWA2cCFyYUnpnSulnKaUR4C+BS8q87FbgNSVf59W6VkmSJEmSJE2tlj2UTgZWppR6UkojEfG3wGUR0ZdSujN/2iJgtPS1KaVBYLDkerUqVZIkSZIkSRWo5S5vrwVuiIg3kdvlbRPwD8CtEXE/8EvgKuCOGtYgSZIkSZKkKqvZkreU0jZgG7AL2Ak8lFK6Efgk8CC5vko9KaWv1aoGSZIkSZIkVV8tZygV+iddXzJ2G3BbLe8rSZIkSZKk2ql5U25JkiRJkiTNLwZKkiRJkiRJqoiBkiRJkiRJkipioCRJkiRJkqSKGChJkiRJkiSpIgZKkiRJkiRJqoiBkiRJkiRJkipioCRJkiRJkqSKGChJkiRJkiSpIkuzLkCSJEmSJGk+275zP11b9zIwPERrUzNbNq1l4/o1WZc1KwZKkiRJkiRJNbJ9535uvmMPO7o76e9tp62jj4HBHoCGDpVc8iZJkiRJklQjXVv3sqO7k759qxk7vJi+favZ0d1J19a9WZc2KwZKkiRJkiRJNTIwPER/b/uEsf7edgaGhzKqqDoMlCRJkiRJkmqktamZto6+CWNtHX20NjVnVFF1GChJkiRJkiTVyJZNa9mwuYf2E59j0eLDtJ/4HBs297Bl09qsS5sVm3JLkiRJkiTVSKHxdlfL7qJd3tY1dENuMFCSJEmSJEmqqY3r1zR8gFTKJW+SJEmSJEmqiDOUJEmSFoiI+LfAn+QPv5tSui7LeiRJUuNyhpIkSdICEBGrgM8AbwZOB86LiIuyrUqSJDUqAyVJkqSFYQm5z35NwLL8179mWpEkSWpYLnmTJElaAFJKQxHxp8CPyAVJ24GHis+JiBagpeSl86uDqCRJqgpnKEmSJC0AEXEasAX4NeB44CWgtIfSNcCPS74emMMyJUlSgzBQkiRJWhh+C7gvpfSzlNKLwO3AxpJzbgVeU/J13hzWKEmSGoRL3iRJkhaGx4E/j4gmYAT4beDR4hNSSoPAYPFYRMxZgZIkqXE4Q0mSJGkBSCndDXwN2Ak8Qa4p93/MtChJktSwnKEkSZK0QKSUPgV8Kus6JElS46tpoBQRNwKXAmPAF1NKt0TERcAtwDHAN1JKH6tlDZIkSZIkSaqumi15i4g3A28BTgPeCPxBRJwOdAGbgHXAmRHxtlrVIEmSJEmSpOqrWaCUUvoH4IKU0iHgVeRmQ7UAT6WUfpwf/zLw7lrVIEmSJEmSpOqr6ZK3lNJoRNwAXAf8f8AJwIGiUw4Aa0pfFxEt5MKnYkecJ0mSJEmSpLlX813eUkrXA6uBE4GTypxyuMzYNcCPS74eqFWNkiRJkiRJmr5a9lA6OSI6AVJKI8DfAhcAxxWddjzwTJmX3wq8puTrvFrVKkmSJEmSpOmr5ZK31wI3RMSbyO3ytgn4a+DTEfE6crOOLifXpHuClNIgMFg8FhE1LFWSJEmSJEnTVcum3NuAbcAuYCfwUErp68CVwJ3AD4EfAd+sVQ2SJEmSJEmqvlo35b4euL5k7D7g9FreV5IkSZIkSbVT86bckiRJkiRJml8MlCRJkiRJklQRAyVJkiRJkiRVxEBJkiRJkiRJFTFQkiRJkiRJUkUMlCRJkiRJklQRAyVJkiRJkiRVxEBJkiRJkiRJFTFQkiRJqnMR8ZqIOD/rOiRJkgqWZl2AJEmSjhQRHwLOA/4Q2AH8IiL+NqX0J9lWJkmS5AwlSZKkevU+4I+AdwNbgVOAt2ZakSRJUp6BkiRJUn0aSyn9FLgIuC+ldAhYknFNkiRJgIGSJElSvXoxIv4YeDNwT34J3HDGNUmSJAEGSpIkSfXqfcBa4IqU0gDwJuD92ZYkSZKUY6AkSZJUh1JKCfgD4F8iYhHw/pTSjzIuS5IkCTBQkiRJqksRcQ7wT8BdQAewPyJ+M9uqJEmScgyUJEmS6tOnyTXk7ksp7Qf+D+A/Z1uSJElSjoGSJElSfVqVUvph4SCltA1YmmE9kiRJ4wyUJEmS6tNoRLQCYwARERnXI0mSNM5/5ZIkSapPnwD+ATguIr4GXAxclW1JkiRJOQZKkiRJdSil9J2I2AO8FVgC/N/FS+AkSZKyZKAkSZJURyLiDSVDD+d/XRkRb0gp/WCua5IkSSploCRJklRf7jzKc2PAa+eqEEmSpMkYKEmSJNWRlNJrsq5BkiRpKgZKkiRJdSQi/jil9OcR8Zlyz6eU/nCua5IkSSploCRJklRffpH/ta/Mc2NzWYgkSdJkDJQkSZLqSErpr/MPf5ZS+qvi5yLi/8qgJEmSpCMYKEmSJNWRiPggsAr4o4g4puipZcAfAp/KpDBJkqQiNQ2UIuJ64Hfyh3ellP44IrqA84Dh/PgNKaVv1bIOSZKkBjIKnEouVDq1aPwQ8AeZVCRJklSiZoFSRFwEXAycQW69/3+LiHcCZwLnp5QO1OrekiRJjSql9EXgixGxOaXUnXU9kiRJ5dRyhtIB4NqU0kGAiNgDvDr/9fmIeDXwLXIzlA7XsA5JkqRG9P38bO82YFFh0F3eJElSPahZoJRSerLwOCJOAi4D3gRsBH4P+CXwd8D7gM8XvzYiWoCWkkuuqVWtkiRJdegbwCCwC3d3kyRJdabmTbkj4hTgLuC6lFIC3ln03F8C76UkUAKuAa6vdW2SJEl17FUppTdnXYQkSQvZ9p376dq6l4HhIVqbmtmyaS0b1zvfBWrflPtc4E7gmpTS1yPiVGBtSunO/CmLyDWeLHUrcHvJ2BrggVrVKkmSVGf+OSKaUkrDU58qSZKOZibB0Pad+7n5jj3s6O6kv7edto4+BgZ7AAyVqG1T7hOBbuCylNL9+eFFwK0RcT+5JW9XAXeUvjalNEhuinfx9WpVqiRJUj06APRExHbgXwuD9lCSJKkyMw2GurbuZUd3J337VgPQt281O7o76WrZbaBEbWcoXQesBG4pCoM+B3wSeBBYBtyZUvpaDWuQJElqVD/Jf0mSpFmYaTA0MDxEf2/7hLH+3nYGhodqWm+jqGVT7g8DH57k6dtqdV9JkqT5IKV0Q+lYRDTN5poR8dvAx4Em4O/zn9ckSZrXZhoMtTY109bRNx5EAbR19NHa1FyTOhtNzZtyS5IkqXIRsQm4ETiWXNuAJUAbMKNPsRHxWnKzxc8GfgrcHxFvSyl9tzoVS5JUn2YaDG3ZtJaBwZ4JS+U2bO5hy6Z1tS65IRgoSZIk1af/BHwM+CDwKXI75T4/i+u9E/hGSmk/QERcBrww2yIlSap3Mw2GCsvhulp2FzXzXmf/pDwDJUmSpPo0nFL6RkR0kgt+PgQ8NovrvQ44GBF/DxwHfAf40+ITIqIFaCl5nZ+aJUkNbTbB0Mb1awyQJjGtQCkivphSel/J2J0ppXfVpiwVGz10mGVLF2ddxhHqtS5JkuaJFyNiBfA00JlS2p4/nqmlwPnARnK77W4FrgBuLzrnGuD6WdxDkqQ5s33nfrq27i0KidZOGv4YDFXfUQOliPgroAM4LyJWFz21DDi5loXpZcuWLuYjtz2YdRlHuOnqc7MuQZKk+WwrcBdwJfBQRJwH9M3ies8C96aUngOIiG7gLCYGSreWHENuhtIDs7ivJElVt33nfm6+Y8+EZWwDgz0ABkdzZKoZSl8EfgM4HbizaPwQsKNWRUmSJC10KaWbIuLLKaX9+Qbd5wNfm8Ul/w64I7+sbQh4G9Bdcs9BYLB4LCJmcUtJkmqja+tednR3jjfa7tu3mh3dnXS17DZQmiNHDZRSSo8Bj0XEvYUGjpIkSaq9iHhD/tdX5oceIDdb6GczuV5K6eGI+HPgH8nNNr8H+H+qUKokSXNuYHiI/t72CWP9ve0MDA9lVNHCM92m3P9LRPwNua1qFxUGU0qn1aQqSZIkFc8OX06ukfZOcsvUZiSl1AV0zbIuSZIy19rUTFtH3/gMJYC2jj5am5ozrGphmW6g9FlyHz5+AIzVrhxJkiQBpJReU3wcEecA75vkdEmSFpQtm9YyMNgzoYfShs09bNm0LuvSFozpBkoHU0q31LQSSZIkTSql9P2IuC3rOiRJmgtT7eBWeNzVsrvonHX2T5pD0w2U/kdEnJpS2l3TaiRJkgS83EMpbxHwRuCYjMqRJGnOTHcHt43r1xggZWi6gdJrgZ0R8c/AvxYG7aEkSZJUM8U9lMbINeP+UEa1SJI0Z9zBrTFMN1D6aE2rkCRJ0gSlPZQkSVoo3MGtMUw3UHKpmyRJ0hyJiGOBDwLnAkuAh4DbgE1Ab0rp/gzLkySpptzBrTFMN1D6Obmp1ot4eZe3A4BzzSRJkqooItqAHcAe4J788FuAx4Ah4IKMSpMkaU64g1tjmFaglFJaXHgcEcuAdwGn16ooSZKkBewG4AsppU8XjX02Ir4JjKaUns+oLkmS5oQ7uDWG6c5QGpdSGgW+HhHXAX9S/ZIkSZIWtI1AZ/FAftbSOmBZFgVJkjTX3MGt/k0rUMp/iCkobFvbWpOKJEmSFrbDKaWXSsaGyM0Q/38zqEeSJOkIi6c+Bcj1UHqu6Nc7cHaSJElSTUTEK4qP8zPEn+XlXpaSJEmZqriHkiRJkmrqq8B/jYgrUkovAkTESuBzwFcyrUySJClvukveFgPXAW8jt3b/buCmlNKhGtYmSZK0EP0ncsHR/4yIx/JjZwLfyz8nSZKUuek25f4kuV3d/jO5ZXJXAZ8G/qhGdUmSJC1I+f5J/1tEvBF4U374P6SUHs2wLEmSpAmmGyj9r8Ab8+v3iYi7gMcxUJIkSaqJlNJjwGNTnihJkpSB6QZKiwthEkBK6cWIGD3aCyRJkiRJkkpt37mfrq17GRgeorWpmS2b1rJx/Zqsy1KFphso9UTEXwD/JX/874AnalOSJEmSJEmaj7bv3M/Nd+xhR3cn/b3ttHX0MTDYA2Co1GCmu3vb7wOtwEPA94FXAn9Qq6IkSZKUExEtWdcgSVK1dG3dy47uTvr2rWbs8GL69q1mR3cnXVv3Zl2aKnTUGUoRsRz4PPCtlNKV+bG7gJeA52tenSRJ0gIVEQH8LdASEWcB9wLvTCn9KNvKJEmauYHhIfp72yeM9fe2MzA8lFFFmqmpZijdCLyC3Mykgg8ALcDHa1STJEmS4C+Ba4CfpZR688f/NduSJEmandamZto6+iaMtXX00drUnFFFmqmpAqW3A5enlH5WGEgpPQO8F3jnVBePiOsj4sn815/nxy6KiCci4qmI+A+zKV6SJGkea08p3VM4SCndRu4f+iRJalhbNq1lw+Ye2k98jkWLD9N+4nNs2NzDlk1rsy5NFZqqKffBlNK/lg6mlJ6PiBeP9sKIuAi4GDgDGAP+W0T878CngDcD+4C7IuJtKaXvzqh6SZKk+WssIlaS+xxFRBwHLMm2JEmSZqfQeLurZXfRLm/rbMjdgKYKlF6KiOaU0oTFjBHRDCyb4rUHgGtTSgfzr9kDrAWeSin9OD/2ZeDdgIGSJEnSRLcBfw+8KiI+CRT+YU6SpIa2cf0aA6R5YKpA6WvAFyJiS0ppGCAimoAvAHce7YUppScLjyPiJOAy4DPkgqaCA8ARv4vyu5mU7mji7zZJkrRgpJS6IuJp4N+Q+4e8q1JKd2dcliRJEjB1oHQr8Dng2Yh4klzPpXXAV8g17J5SRJwC3AVcB4wCUXLK4TIvuwa4fjrXlyRJmk8ioq3o8H/kv8afSyn1z31VkiQdafvO/XRt3Vu0dG3t+Myjoz2n+eGogVJK6TBwVUTcBLyBXPjzSL4x95Qi4lxyM5muSSl9PSLeDBxXdMrxQLlr3QrcXjK2BnhgOveVJElqYD8n1zdpUdFY4XgM+yhJkurA9p37ufmOPezo7qS/t522jj4GBnvGn5/sOUOl+WOqGUoApJR+AvykkgtHxIlAN3BZSun+/PDDuafidcCPgcuBrjL3GwQGS65Xye0lSZIaUkppql14JUnKXNfWvezo7qRv32oA+vatZkd3J10tuwEmfc5Aaf6YVqA0Q9cBK4FbisKgzwFXkpu1tBLYBnyzhjVIkiQ1pIhYAvwe8FvAS8C3U0q3Z1qUJEl5A8ND9Pe2Txjr721nYHho/PFkz2l+qFmglFL6MPDhSZ4+vVb3lSRJmif+Eng98CVyfSzfFxGvSyl9LNuyJEmC1qZm2jr6xmchAbR19NHa1Dz+eLLnND/UcoaSJEmSZu6twOtTSqMAEfFl4HHAQEmSlLktm9YyMNgzoU/Shs09bNm0DuCoz2l+MFCSJEmqTz8n91ltNH98mJIek5IkZaXQC6mrZXfRTm7rJvRIOtpzanwGSpIkSfVpD/BARNwOHAIuA34eEf8nQErplgxrkySJjevXTBoSHe05zQ8GSpIkSfVpEbAbWJ8//kn+11OBsSwKkiRJKjBQkiRJqkMppd/NugZJkqTJGChJkiTVoYjYCPx7oK14PKV0ViYFSZIkFTFQkiRJqk9fAD4D/FPWhUiSJJUyUJIkSapPP00pfSbrIiRJksoxUJIkSapP34mIq4G/B0YLgymlf8muJEmSpBwDJUmSpPq0GrgJGC4aGwNekU05kiRJLzNQkiRJqk/vBo5PKf0060IkSZJKLc66AEmSJJX1U+C5rIuQJEkqxxlKkiRJ9elR4B8j4jvAi4XBlNIt2ZUkSZKUY6AkSZJUn44BErA260IkSZJKGShJkiTVoZTS72ZdgyRJANt37qdr614GhodobWpmy6a1bFy/JuuylDEDJUmSpDoUERuAfw8cCywClgCvSSm9OtPCJEkLyvad+7n5jj3s6O6kv7edto4+BgZ7AAyVFjibckuSJNWnLwAPAa8AvgI8D9yZaUWSpAWna+tednR30rdvNWOHF9O3bzU7ujvp2ro369KUMQMlSZKk+jSWUvoUsB34EfBu4PzZXjQiPh0Rt8/2OpKkhWFgeIj+3vYJY/297QwMD2VUkeqFS94kSZLqU+GT+j8Bv5FSejAilszmghFxIXAlcNcsa5MkzUPleiW1NjXT1tFH377V4+e1dfTR2tScYaWqBwZKkiRJ9enhiPgG8KfAXRGxFnhppheLiDbgE8BNwOmTnNMCtJQM2yBDkhaAyXolve38X2Vgc8+E8Q2be9iyaV3WJStjBkqSJEn16Y+As1NKeyPiw8Bbgctncb2/Bj4KnHiUc64Brp/FPSRJDaq4VxIw3iuptWU3116xjq6W3UUzl9bZkFsGSpIkSfUmIhYBS1JK34+IZmAlcFtK6akZXu/9wL6U0n0RceVRTr0VuL1kbA3wwEzuK0lqHEfrlbRx/RoDJB3BQEmSJKmORMTrgW3Av4uI+4BHgDFgVUR8IKV0zwwuexlwfET0AG3AsRHxFymlPyo+KaU0CAyW1DOTb0OS1GDslaRKGShJkiTVl08DH00p/V1E/G5+7DeADuDrQMWBUkrprYXH+RlKG0vDJEnSwlLagPuc015pryRVxEBJkiSpvrw6pfSV/OMLgK0ppcPAvoj4lQzrkiQ1gHI7tQFHhEff/e8/ndiAe3OuAXervZI0TQZKkiRJ9aV4J7ffBP6w6HjlbC+eUrqdI/skSZLmgXI7tfX/4jEOv7SER759xvjYc+94lEe/fWbZBtxfuvEtGX8XahQGSpIkSfWlPyJOB5qB44F/AIiI3wR6syxMklTfyu3UNjK0lCfunTi2ZNnopA24pelanHUBkiRJmuAjwL3A/eR6KQ1HxHXAXcCfZVqZJKmuldupbdWvjBwxNtSfa8BdzAbcqlTNZyhFxCuAh4C3p5R+EhFdwHnAcP6UG1JK36p1HZIkSY0gpfT9iOgAVuV3XYPcZ6mzUkpPZViaJKnOldupbeQXq44Ye/ap43jDJTv5wbb1NuDWjNU0UIqIs4HPA2uLhs8Ezk8pHajlvSVJkhpVSukgcLDo+KEMy5Ek1bHiJtyrlq/krHfsmtAvaVXzoSPG1r6xl7edfwLHvcoG3Jq5Ws9Q+gDw+8DfAEREE/Bq4PMR8WrgW+RmKB2ucR2SJEmSJM0r5Zpwn/POx7jw8h5GRkfyQdGpAHS1HRkeXX1pxt+AGlpNA6WU0vsBIqIw9Kvk+gH8HvBL4O+A95GbxTQuIlqAlpLLGZVKkiRJkhas4tlIrU3NvHjwpSOacH//W2/kkit3843/uGnCa519pGqb013eUkr/E3hn4Tgi/hJ4LyWBEnANcP0cliZJkiRJUt0qOxvp0ofcrU2ZmdNd3iLi1Ih4V9HQImC0zKm3Aq8p+Tqv9hVKkiRJklR/urbuHZ+NNHZ4MX37VjMyuMrd2pSZOZ2hRC5AujUi7ie35O0q4I7Sk/I7mgwWjxUtm5MkSZIkaUEZGB46YjZS2nEyZ1yyk13u1qYMzPWStyci4pPAg8Ay4M6U0tfmsgZJkiRJkhpNa1MzbR194/2SAF4cXklb6yIuudLd2jT35iRQSin9etHj24Db5uK+kiRJkiTNB1s2rWVgsGdCD6UNm3v40KWnGCApE3O95E2SJEmSJFWoEBp1tTgbSfXBQEmSJEmSpDq0fed+urbuLQqQ1vKlG9+SdVkSYKAkSZIkSVLd2b5zPzffsWfCEreBwR4AZyWpLhgoSZIy9LxbAAAfzklEQVQkSZJUB4pnJB0eXcbD3WeON+Hu27eaHd2ddLXsNlBSXVicdQGSJEmSJC10hRlJ224/lbtu/W0WLRmlv7d9wjn9ve0MDA9lVKE0kTOUJEmSJEnKwNFmJA31N9PW0Td+DNDW0UdrU3NW5UoTGChJkiRJkjQHigOkVctXMjS0iEe+fQb9ve1c8offmTAj6emH13LaW3t44p6Xeyht2NzDlk3rMvwOpJcZKEmSJEmSVCOFEKn/l0McHFnBD7atp7+3nY1X3McT93ZOOiPpmbSGY9ue5+zNj7J42Wh+l7d19k9S3TBQkiRJkiSpBop3ajvlgt08+b1TxwOjVb8yMuWMpLVv7OXaK04zRFJdMlCSJEmSJKkGurbuZUd3bhZSc9vQhADJGUlqdAZKkiRJkiRVSXGfpLExxkOk0gDp6YfXcvrFu3j87jOckaSGZKAkSZIkSVIVFC9xK/RJKoRIpUvaXhxZwTFNL3Hh5T2MjI44I0kNx0BJkiRJkqQqKF7iBpAeWjc+C+nAUydwbNvznPmOR1m6fJTWY5vZsulUAyQ1LAMlSZIkSZKqYGB4Yp+kZ9IaWDTGmZseZunyl/KzkFzSpvnBQEmSJEmSpCpobZrYJwngxeGVrG5dxZdufEuGlUnVtzjrAiRJkiRJmg+2bFrLhs09tJ/4HIsWH6b9xOfYsLmHLZvWZl2aVHXOUJIkSZIkqQLFO7m1NjVzzmmv5PtP/JyB4SFWNa200bYWBAMlSZIkSZKmUAiR+n85xMGRFfxg23r6e9s56ewfceBn/8Ku/HFbRx8bNvdw7RXrDZI0rxkoacZGDx1m2dL6WzVZr3VJkiRJaizlQqRTLtjNk987dbxP0nEnPcuubevHj/v2rWZHdyddLbsNlDSvGShpxpYtXcxHbnsw6zKOcNPV52ZdgiRJkqQGt33nfm6+Yw87ujsnhEjNbRN3cis9BujvbWdgeGiuS5bmlNM4JEmSJEkq0bV1Lzu6O48IkYb6czu5FZQeA7R19NHa1Dyn9UpzzUBJkiRJkqQSA8PlQ6SnH17LaW99eSe3Z586jjMu2enOblpwXPImSZIkSVpQindpW7V8JYwtZmR0ZMLjw6PLaOvoo2/f6vEQ6Yl7Ojnw1Akc2/Y8Z77jUZYuH6X12GbOOe0Ejn/V7vFd39zZTQuBgZIkSZIkacEo7o20oukFTj53D4/fPfFxYfe2My7Zya5t68uGSFs2nTYhNLr60gy/KSkDBkqSJEmSpAWjuDfS+e+9n8fvPuOIxwB7d7wegLM3P8riZaP5mUenOfNIyjNQkiRJkiQtGMW9kYqbbZfbre2ph09m7Yan+M7Nm+a8Tqne2ZRbkiRJkjTvbd+5n/f+2f0cOrhkvMF2cbNtd2uTKmOgJEmSJEma1wp9k7bdfipP3Hs6p1+8i/YTn+PpR04q+9jd2qSp1XzJW0S8AngIeHtK6ScRcRFwC3AM8I2U0sdqXYMkSZIkaeEq7psEwNgiTruoh1UtIzStWMmFl/eM7/JWeOxubdLR1TRQioizgc8Da/PHxwBdwJuBfcBdEfG2lNJ3a1mHJEmSJGnhKu6bBPBMWsOBp07g31zzHb7xyd/KsDKpcdV6htIHgN8H/iZ/fBbwVErpxwAR8WXg3YCBkiRJkiRp1rbv3E/X1r0MDA+xavlKGFs83jdpfIYS9keSZqumgVJK6f0AEVEYOgE4UHTKAeCI+YMR0QK0lAw7z1CSJEmSNKlCr6Qd3Z2saHqBk8/dw+N35x6ffvEuHr/7DPp722nr6Mv3R1qXdclSw6p5D6USi8qMHS4zdg1wfY1rkSRJkiTNA4VZSc8NjPDo1rPp27ea8997P4/ffUbZvkltx9ofSZqtud7lrRc4ruj4eOCZMufdCrym5Ou8mlcnSZIkSWooxTu4LVn60nivpOa2I/smbb/jQhYtgi/d+BbDJGmW5nqG0sNARMTrgB8Dl5Nr0j1BSmkQGCweK1o2J0mSpApFxPXA7+QP70op/XGW9UhStRTv4DbU3zzeK6n4cYF9k6TqmdMZSimlF4ArgTuBHwI/Ar45lzVIkiQtNBFxEXAxcAbQCayPiHdmW5UkVUfxDm5PP7yW097aQ/uJz/H0Iydx+sW7aD/xORYtPkz7ic/l+yatzbhiaX6YkxlKKaVfL3p8H3D6XNxXkiRJQG4jlGtTSgcBImIP8OpsS5Kk6mhtenkm0jMpt4yt0CupacVKLry8h5HREVqb7JskVdNcL3mTJEnSHEspPVl4HBEnAZcBv1l6njvtSmpEWzatZWCwhx3dnfT3tvPiyAqajoVr37Pe8EiqIQMlSZKkBSIiTgHuAq5LKT1V5hR32pXUUAq7u40tHeHszY+yeOkore7gJs0JAyVJkqQFICLOJdfH8pqU0tcnOe1W4PaSsTXAAzUsTZIqUgiR+n85xMGRFfxg23r6e9tp6+gb75FkmCTVnoGSJEnSPBcRJwLdwGUppfsnO8+ddiXVk0JwNDA8xKrlK2FsMcMHR8ZDpFMu2M2T3zt1fBe3vn2r2dHdSVfLbgMlaQ4YKEmSJM1/1wErgVuKAqLPpZQ+l11JkjS57Tv3c/Mde9jR3cmKphc4+dw9PH5354QQqbnt5d3dCvp72xkYHsqoamlhMVCSJEma51JKHwY+nHUdkjSVwqyk5wZGeHTr2fTtW835772fx+8+44gQaaj/5d3dCto6+mhtas6qfGlBMVCSJEmSJM250iVto4cOMzS0iF3b1nPOux4aD44mC5Gefngtp721hyfu6SzpobQuy29LWjAMlCRJkiRJc6JcQ+3Ckraxw0t54t5O+vatnhAcTRYiHXjqBI5te54z3/EoS5e7u5s01wyUJEmSJEk1tX3nfv7qm0/SPzDGrpKG2oUlbcWzkoqDo6cfOYnTL97F43efMUmIdJohkpQBAyVJkiRJUtWVzkY6dHDJ+Ayk4mVshcfFM5GeSbmA6LSLeljVMkLTipVceHkPI6MjtDYZIkn1wEBJ887oocMsW7o46zLKqufaJEmSpGop3qWtMBupeAZSuSVtpT2RXhxZQdOxcO171hseSXXIQEnzzrKli/nIbQ9mXUZZN119btYlSJIkSVVXPBtp7NAyDo8dHt+lrdwMpMmWtKWHTn55VtLyVXzo3fZEkuqVgZIkSZIkacYKs5H2PtZBx7qXeOKezrKzkY7WUHvVEUvanJUk1TsDJUmSJEnSjHVt3Tu+tO2Je47cpa04SDpyBpK9kKRGZaAkSZIkSapY8TK3/t72CY22jzYbKbczmzOQpEZnoCRJkiRJqkhp0+22jr6j7tLWdqw7s0nzjYGSJEmSJGnatu/cz6fveIKHu8+csKStd0+Hu7RJC4iBkiRJkiTpCIUlbQPDQ6xavhLGFjN8cISDIytYfszo+PK2wmyk1529l2NeMcLZmx9l8dLC0jZ3aZPmKwMlSZIkSdIExUvaVjS9wMnn7uHxu3PL25783qnjy9z69q0GcqHSiyMruOTK3XzpxrdkXL2kuWCgJEmSJEkLXOlspKFfvsQjW3NL2s5/7/08fvcZ9O1bPd54u7jpdn9vO20dfWzY3MOWTeuy/lYkzREDJUmSJElawMrNRjqm+eUlbcW7txUabxeWuZ1ywW6a24YYe2kZ115h021pITFQkiRJkqR5rlw/pJHRkUlnIxUvaSveva14ZtKBp07gxZEVbNjcw3VX2CtJWmgMlCRJkiRpntq+cz9/9c0n6R8YY9e29RP6IR1tNlJxcPT0Iydx+sW7ePzuMzjw1Akc2/Y8Z77jUZYut/G2tJAZKEmSJEnSPFKYjdT/yyEOjqzg0MElPHFv5xH9kI42G+mIJW2Hl3Dh5T2MjI7Q2tTMlk0ub5MWOgMlSZIkSWpwpSHSD7atH9+R7Zx3PVS2H9J0ZiO5pE3SZAyUJEmSJKlBlS5pK4RIxTuyFfdAKvd46tlIhkmSjmSgJEmSJEkNqLA72/AvF48vaSu3I9tkM5CcjSRpNgyUJEmSJKmBFJa3PTcwwqNbz56wpG2yHdnSQydz2kU9rGoZYfmS5eMzkFYtX+lsJEkzkkmgFBH3A78KjOaHfi+l9HAWtUiSJElSoyjMStrR3TkeJE0WIpXfkW29gZGkqpjzQCkiFgEnA69OKR2a6/tLkiRJUiPavnM/n77jCR7uPnNCD6SpQyR3ZJNUfVnMUApgDPhuRLwK+HxK6b9kUIckSZIk1Z3CkraB4SFWLV8JY4sZPjjCwZEVLD9mdHx522RL2pqWr+JD7zZEklRbWQRKrcB9wIeAY4DtEZFSSvcUToiIFqCl5HX+bShJkiRpXiqESP2/HOLgyAp+sG09K5pe4ORz9/D43Z3ju7edcsHu8eVthd3ZCkFSm0vaJM2hOQ+UUko7gB35w+GI+CJwCXBP0WnXANfPdW1SrY0eOsyypYuzLuMI9VqXJEnSfFQ6A2n00GGGhhaxa9v68eCob99qzn/v/Tx+9xkTdm8rnpXU39vOiyMraDoWrn2PQZKkuZVFD6U3AStSSvflhxbxcnPugluB20vG1gAP1LY6qbaWLV3MR257MOsyjnDT1edmXYIkSdKCUNxUuzADaezwUp64t3NCcARMeFzol1SYlXTKBbtpbhti7KVlXHuFy9skzb0slry1ADdGxG8Cy4ArgA8Wn5BSGgQGi8ciYs4KlCRJkqRqKsxKem5ghEe3nj1hBlJhtzZgwo5tR9u97cWRFWzY3MN1V6wzTJKUiSyWvP1dRJwN7AKWAJ/NL4OTJEmSpIZ2tIbaP9i2fkJ4VJiBNFlw9PQjJ3H6xbt4/O4zJtm9zTBJUnaymKFESulPgT/N4t6SJEmSVA1H64VUrqF26ayjwuPS2UfFwdGqFSu58PIeRkZHaG1qZssml7dJqg+ZBEqSJEmS1IiOthtbcS+kcg21gUlnIKWHTh7fra1p+So+9G6DI0n1zUBJkiRJkkpMtXSt3G5s5ZazwcS+SIWm2uPh0REzkNytTVJjMFCSJEmSNK+VC4dGRkeO+nhoaBGPfPuMSZeulduNbToNtft723lxZAVNx8K17zE8ktS4DJQk1bXRQ4dZtnRx1mUcoV7rkiRpoTpaaFQuHJrscX9vOxuvuG/KpWtT9UKyobak+c5ASVJdW7Z0MR+57cGsyzjCTVefm3UJkiQtaKUBUrnQ6Gjh0GSPAVb9ysiUS9em0wtp+ZLlNtSWNG8ZKEmSJEmqS8WhUWtTM+ec9kq+/8TPJzTEPlpoBJOHQ5M9hvKzj0pDpKl3Y3M5m6T5zUBJkiRJUtWVhkFbNq0FKBsQlTsunnXU39vOSWf/iAM/+xd2lTTEhslDI5g8HJrsMeR2YivMOJp66ZqzjiQtTAZKkiRJkiY1nWCodKw0DGrr6KP/F49x+KUlZQOicsfFs44AjjvpWXZtW39ELyOYPDSCycOhyR4XmmYf0/TS+IyjVctLZx8ZIkmSgZIkSZKksrbv3M/Nd+xhR3fnpMFQubHSMKhv32pGhpZOGhCVOy6edQST9zKCyUOjqcKhyR7nQqNTDY0k6SgMlCRJkiSV1bV1Lzu6jx4MlRsrDYPKjZXOMjrarKPS4+JeRtObUWQ4JEnVZqAkidFDh1m2dHHWZUiSpDky3WVsA8NDUwZD5cZKwyCAkV+smjQgKndcPOuov7edZ586jjMu2cmubesn6WVkaCRJc8lASRLLli7mI7c9mHUZZd109blZlyBJUsOaLDiazjK2gcEeVq1aNWUwVG6sNAxq6+hjVfMhznrHrvF7FAdE5Y5LZx3lmnafwPGv2l30/djLSJKyYqAkSZIk1Ui5QKc0AJnqnJk+X67/US4kYlrL2HZ0d3Lhe37Ahs09E65RGgyVGysXBm3ZdCoAXW27i3Z1mxgQHRkYHTnr6OpLa/KjkiRVyEBJkiRJqsB0QqLCeeUCHWD8/KnOmc3z5fof7eju5JxLH5rWMrb+3nZGDr7AtVesp6tlYsgDE4OhycbKvS9TBUQGRpLUGAyUJEmSFoiIuBz4GLAc+IuU0mercd3pBizVUq37zeQ60wmJCiYLdLpado+fO9U5s3m+XP+j/t52XhpdMq1lbG0dfbQ2NbNx/ZppBUOTjUmS5icDJUmSpAUgIjqATwDrgReBhyLieymlH87mupUELNVQrfvN9DrTCYkKJgt0BoaHpn3ObJ5vbTqyMXZbRx+vOHbZtJaxbdjcw5ZN6yZ/EyVJC5qBkiRJ0sJwEXB/SqkfICK+CVwK3Dibi1YSsFRDte430+tMJyQqmCzQaW1qnvY5s3l+y6a1DAxODI42bO7hQ5eeknsPplzGts4ZR5KkSRkoSZIkLQwnAAeKjg8AZxWfEBEtQEvJ646aKFQSsFRDte430+tMJyQqmCzQKZ71M9U5s3l+fFldS/mQyCVrkqTZMFCSJElaGBaVGTtccnwNcH0lF60kYKmGat1vpteZTkhUMFWgM51zqvG8IZEkqRYMlCRJkhaGXuC8ouPjgWdKzrkVuL1kbA3wwGQXrSRgqYZq3W+m15lOSFR6/lSBzlTnzPZ5SZJqwUBJkiRpYbgX+HhErAaGgXcBVxWfkFIaBAaLxyLiqBetNGCZrWrdbzbXMcCRJMlASZIkaUFIKfVGxEeB7wHLgS+klB6pxrXnOmCp1v0MhiRJmjkDJUmSpAUipfRV4KtZ1yFJkhrf4qwLkCRJkiRJUmMxUJIkSZIkSVJFDJQkSXNi9FDp7uT1oV7rgvqtrV7rkiRJ0tyxh5IkaU4sW7qYj9z2YNZlHOGmq8/NuoRJ+Z5JkiSpXjlDSZIkSZIkSRXJZIZSRFwOfIzclrV/kVL6bBZ1SJIkSZIkqXJzPkMpIjqATwBvAk4HroqI1891HZIkSZIkSZqZLJa8XQTcn1LqTykNA98ELs2gDkmSJEmSJM1AFkveTgAOFB0fAM4qPiEiWoCWktf9GsCzzz5bs8KGn/95za49G/v376/L2qyrcvVaW73WBfVb2/79+7MuoSH5s6zcQnrPiv4bv6QmN9BMLYHafgaTJEnZmelnsEVjY2PVr+YoIuIjwKqU0sfyx+8H3phS+mDROR8Hrp/TwiRJUr04L6X0j1kXoZyIeBPwQNZ1SJKkmqvoM1gWM5R6gfOKjo8Hnik551bg9pKx5cBrgaeAl6pc0xpyH5TOA+r7n6obg+9ndfl+VpfvZ/X5nlbXQn4/l5D7XPBo1oVogkfJ/X48QPU/g9XCQv4z1Cj8GdU3fz71z59R/Wu0n9GMPoNlESjdC3w8IlYDw8C7gKuKT0gpDQKDZV67txYFRUTh4f6U0k9qcY+FxPezunw/q8v3s/p8T6vL95N/yroATZRSehFomBlj/hmqf/6M6ps/n/rnz6j+NejPqOLPYHPelDul1At8FPge0AN8NaX0yFzXIUmSJEmSpJnJYoYSKaWvAl/N4t6SJEmSJEmanTmfoSRJkiRJkqTGZqCUMwjcQPm+Taqc72d1+X5Wl+9n9fmeVpfvpzQ7/hmqf/6M6ps/n/rnz6j+LYif0aKxsbGsa5AkSZIkSVIDcYaSJEmSJEmSKmKgJEmSJEmSpIpksstbPYmIy4GPAcuBv0gpfTbjkhpaRFwP/E7+8K6U0h9nWc98ERGfBlanlK7MupZGFxG/DXwcaAL+PqX04WwramwR8W+BP8kffjeldF2W9TSqiHgF8BDw9pTSTyLiIuAW4BjgGymlj2VaoNRgIuJc4FZgGdAHbEkp/XO2VamciLgROJxS+njWtSjH/z+qf6WfGzIuRyUW0v8TL+gZShHRAXwCeBNwOnBVRLw+26oaV/5/gC4GzgA6gfUR8c5sq2p8EXEhcGXWdcwHEfFa4HPAJuBU4A0R8bZsq2pcEbEK+AzwZnJ/h56X/3tAFYj4/9u792ArqzqM419EUEdKhxIvpWYqT6l5GfOChtgI46UaMzXyNpaSmJpZUlrqjGUXvKUwOUmNiHmpBnW8pAaK1qgZqSNeIh6t0CG0ECvzBoid/ljvts2Bw+FwkPfsc57PDLPf21nrt87ew/uu315rHe0FPAAMrfY3ACZTPqcfBvbI5zSiy64HTrS9a7U9seZ4oh1JG0m6CsgXET1I+kc9X/vnhuhZ+lqfuE8nlICRwL22/2n7NeBG4IiaY2plLwBn2l5i+03gT8BWNcfU0iQNptzUv193LL3EYZTRHn+rPqOjgZk1x9TK+lPuIxtSRgEMAN6oNaLW9EXgVOD5an9P4Bnbc20vBa4DjqwruIhWI2k94FzbT1SHniDPIz3RocAzwKV1BxLLSP+o52v/3BA9S5/qE/f1KW9bUN7whhcoD/KxGmz/sbEtaXtKZ32f+iLqFSYB5wBb1h1IL7EdsETSNGAz4HbgvHpDal22X5F0HjCHkkj6DWX4dXSB7TEAkhqHVnRvev9aDiuiZdleTEnEImkdyjTnW+qMKZZn+2cAks6vOZRYVvpHPdwKnhuiB+lrfeK+nlDqt4Jj/13rUfQyknYE7gDG2X6m7nhalaQxwDzbMyR9vu54eol1gf2A/YFXgVuB44Ep9YXUuiTtDJwAbA28TOnAjQMurjOuXiD3pohVJOlI4LJ2h+fYHilpIHAN5f/+jPStycreozriiU7lHhSxBvSVPnFfTyjNB4Y37W9Ohg52S7UI5k3AGbZ/UXc8LW40sLmkWcBgYJCky2x/tea4WtnfgXtsvwgg6RbKt25T6gyqhR0IzLC9AEDSFOAUklDqrvmUEXQNuTdFdMD2VGBq++OSBgG3URbkPrSadhA16Og9ih4r/aOIbupLfeK+nlC6Bzhf0ibAa8DhwEn1htS6JG1JGVI+2va9dcfT6myPamxXI5T2TzKp234FXCNpY+AV4GAyDaI7HgcukrQh8DrwKeDhekPqFWYCkrQdMBc4mrJId0SsuuuAPwNjbbfVHUxEC0n/KKIb+lqfuE8vym17PmV9mvuAWcANtv9Qb1QtbRywPvBDSbOqfyfXHVREg+2ZwEWUv4wxG3gOuLrWoFqY7enAz4FHKYveDgDG1xpUL2B7EeUvO95E+ZzOoSyKGhGrQNJulAWf9wUeq55H7qw5rIiWkP5RRLf1qT5xv7a2fGkTERERERERERGrrk+PUIqIiIiIiIiIiK5LQikiIiIiIiIiIrokCaWIiIiIiIiIiOiSJJQiIiIiIiIiIqJLklCKiIiIiIiIiIguWbfuACIiIiIiIlqJpInAftXuDsBc4I1qfxjwOrCJ7YU1xDYdONr2Qkl3AuNsz16NcqYAT9m+ZAXnPgBcAOxFafdiYJLtq7oTeyfxLNcuYAjwI9s7vVP1RkTHklCKiIiIiIjoAtunN7YlPQscY/uRpmM1RPW2UY0N24es6cIlbQk8BHzT9nHVsfcB10saavusNV1nZbl2SRryDtUVEasgCaWIiIiIiIg179uS9gbeA1xs+woASScCp1CWH3kJOM32HEkbAVcAuwJtwF3At2wvlbQYuBXYBTgGeA2YUJXdH5hoe7Kkq6u675N0CHA/cITtRySdAJwJvAUsBI4H5gOXAXsD7wL6AWNsP7iSdp0NTLU9pXHA9nxJo4G5kiYAQ2kaOSRp/8a+pE2BScCmwGbAc8BnbS+oknNTgAOArYBf2v5GR+1qDkrSQOBCYET1O3kMON32fyR9CTgZWAIsAsauzqitiFhW1lCKiIiIiIhY8/5qe3fgMOBSSQMkjaAkcobb3g24CLi5un4iJcH0EeCjlOTRuOrcQOB22wJmATcCZ1fljwDGSdrb9heq6z9ue14jEEm7UJItB9neGbgNOIcyZW0LYJjtHYBrKAmjlfkY8Nv2B23/A5hdlbkynwMesj0M+CBleuBxTecH2R4O7AN8WdI2HbWrnbOBpcDutncBngfGS+oPXE5p+x7AT6o2REQ3ZYRSRERERETEmndD9ToLWA94N/AJYDvgd03T4gZLGgwcDOxruw1YLOlK4AxgfHXd/dXrUGBbYHJTGRsAuwG/7yCWA4BpjWSM7csbJySdC4yVtC2wP/DKara3of/KTtqeIGm4pK8B2wM7ATObLrm1um6+pAXAYMoaVZ35JLAxMKr6vQwEFth+S9JUyu/8DmA6/39vIqIbklCKiIiIiIhY894EsN1WJTj6UZIt1zbWGZK0DmWE0L9YfvbIOsCApv1Xq9f+wL9t79o4UU0je3klsSylTKNrXL8BsDUlMTUBuJSSyJkDHNtJux6kJJ5uqsoaQhlZNZiyQPlMysijfk0/M7Cp7guBPYHJwH1VG5uvfaNpu63duZXpD3zF9l1VPYOA9QFsHytpJ2AkcBZwInDoKpYbER3IlLeIiIiIiIi1YzpwlKTNq/2TgRnV9jTgVEn9JK0HnATcvYIyDCySdCy8vUj2U8Du1fm3WDYRBSVxM7Kp3rGU6XajKFPpfgw8DHyaTkYYAT8ADpd0fLV/FPAkcAtwZTUK6kVgK0lDJPWrym04ELjc9rXAgiqGzursqF3NpgGnSRpYJep+CvxA0nslzQNeqkZmnUuZThgR3ZSEUkRERERExFpgexplLaO7JT0BHA18pprmdjowhJKceZKSOPreCspYQhldM6YqYzpwXtNC2jcDD1Qjcho/8yTwdeDXkh4HDqIks64ERlTlPAT8BdimSsh01IZ5wDDK1LKnKYmvNynJoQ9J2rFa8HoS8AhlGt4LTUV8B7hE0qONWCnTADuzXLvauQB4lrIY92zKyKYzbS8EvgvMqOocD4xZhfoiohP92traOr8qIiIiIiIiYiUk7Qwssv103bFExDsvCaWIiIiIiIiIiOiSTHmLiIiIiIiIiIguSUIpIiIiIiIiIiK6JAmliIiIiIiIiIjokiSUIiIiIiIiIiKiS5JQioiIiIiIiIiILklCKSIiIiIiIiIiuiQJpYiIiIiIiIiI6JL/AXtmeP4wta9JAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fi6, ax = plt.subplots(1,2, figsize=(20,6))\n", "ax = ax.ravel()\n", "\n", "skewed_data = np.random.gamma(1,2,100)\n", "sns.histplot(skewed_data,kde=False,ax=ax[0])\n", "\n", "sm.qqplot(skewed_data, ax=ax[1])\n", "\n", "W, p=stats.shapiro(x=skewed_data)\n", "\n", "print(f\"The value of W is {W}, p={p}\")\n", "glue(\"exp2_fig\",fig,display=False)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "```{glue:figure} exp2_fig\n", ":figwidth: 650px\n", ":name: \"fig:exp2\"\n", "\n", "Histogram of `skewed_data`, a Gamma(1,2) distributed sample with 100 observations. A normal QQ plot of the same data.\n", "```" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "tags": [ "hide_cell" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The value of W is 0.8543360233306885, p=1.7206295055416376e-08\n" ] }, { "data": { "application/papermill.record/image/png": "iVBORw0KGgoAAAANSUhEUgAABJQAAAF8CAYAAACZheENAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3XuY3XV57/13TpyG0clMY5EJ7Mquc5tadTCiRETTPthW9GHi5YFWr6qNBxRPdMtjuxUFeVp81KLUVnRvdC6w4qGWOtGC3R4wFWFEiAykGu+gLTYZweIcyjgoJCTPH2tNXLOyJjMrWYdZa96v68rFWt/fb/1+95ohsvys7/f+Ltu/fz+SJEmSJEnSQi1vdgGSJEmSJElqLQZKkiRJkiRJqoqBkiRJkiRJkqpioCRJkiRJkqSqGChJkiRJkiSpKgZKkiRJkiRJqoqBkiRJkiRJkqpioCRJkiRJkqSqGChJkiRJkiSpKgZKkiRJkiRJqoqBkiRJkiRJkqqystkFLFREHA2cBtwLPNLkciRJUu2tAB4L3JaZDzW7GBX4GUySpLZ3WJ/BWiZQovBB5qZmFyFJkuruTOBbzS5CB/gZTJKkpaGqz2CtFCjdC3DttddywgknNLsWSZJUY/fddx8vf/nLofjffC0afgaTJKmNHe5nsFYKlB4BOOGEE1i7dm2za5EkSfXjsqrFxc9gkiQtDVV9BrMptyRJkiRJkqpioCRJkiRJkqSqGChJkiRJkiSpKgZKkiRJkiRJqoqBkiRJkiRJkqpioCRJkiRJkqSqGChJkiRJkiSpKgZKkiRJkiRJqoqBkiRJkiRJkqqysp4Xj4iLgZcWn16fmW+PiEHgTGC6OP6ezPxCPeuQJEmSJElaKrZu283glp1MTE+xuqOTzQN9bFy/tqb3qFugFBFnAb8HnArsB/45Il4InAY8OzPvrde9JUmSJEmSlqKt23Zz+TU7GB7qZ3y0h+7eMSYmRwBqGirVc8nbvcDbMvPhzNwD7ABOLv65KiLuioj3RITL7iRJkiRJkmpgcMtOhof6Gdu1hv37ljO2aw3DQ/0MbtlZ0/vUbYZSZn5v5nFEPB44F3gWsBE4D/g58E/Aq4GrSl8bEV1AV9klazs3S5IkSZIkqc1MTE8xPtoza2x8tIeJ6ama3qeuPZQAIuKJwPXAhZmZwAtLjv0N8ArKAiXgAuDietcmqXn27N3HqpW1maBYy2tJkiRJUitb3dFJd+8YY7vWHBjr7h1jdUdnTe9T76bcZwDXARdk5mcj4klAX2ZeVzxlGbCnwkuvAK4uG1sL3FSvWiU11qqVy3nHlTfX5FqXnX9GTa4jSZIkSa1u80AfE5Mjs3oobdg0wuaBdTW9Tz2bcp8EDAHnZuaNxeFlwBURcSOFJW+vA64pf21mTgKTZderV6mSJEmSJEltYabx9mDX9pJd3ta1zi5vwIXAMcAHS8KgjwHvBW4GVgHXZeZn6liDJEmSJEnSkrJx/dqaB0jl6tmU+63AW+c4fGW97itJkiRJkqT6soutJEmSJEmSqmKgJEmSJEmSpKoYKEmSJEmSJKkqBkqSJEmSJEmqioGSJEmSJEmSqmKgJEmSJEmSpKoYKEmSJEmSJKkqBkqSJEmSJEmqioGSJEmSJEmSqmKgJEmSJEmSpKqsbHYBkiRJOnwR8RrgTSVDjwP+LjPfVHLOu4FXAxPFoasy8yONq1KSJLUbAyVJkqQWlpkfBz4OEBFPBIaAS8pOOw34w8wcbmx1kiSpXRkoSZIktY+PAu/IzJ+VjT8N+LOIOAX4JnBhZv6y4dVJkqS2YaAkSZLUBiLiLODYzPx82fjxwB3AhcA9wNXAu4B3VrhGF9BVNry2DuVKkqQWZ6AkSZLUHs4DPlg+mJk/B86eeR4RlwODVAiUgAuAi+tVoCRJah/u8iZJktTiIuIo4DnAFyscOzkiNpcMLQP2zHGpKyg09S79c2Ztq5UkSe3AGUqSJEmt78nAzsycrnDsF8D7I+IbFJa8vRH4QqWLZOYkMFk6FhG1rVSSpCVo67bdDG7ZycT0FKs7Otk80MfG9a29qtxASZIkqfWdAuwuHYiIG4B3Z+btEXEe8CXgKOBbwOWNL1GSpKVp67bdXH7NDoaH+hkf7aG7d4yJyRGAlg6VDJQkSZJaXGb+PfD3ZWNnlzy+Driu0XVJkiQY3LKT4aF+xnatAWBs1xqGh/oZ7Nre0oGSPZQkSZIkSZLqZGJ6ivHRnllj46M9TExPNami2jBQkiRJkiRJqpPVHZ10947NGuvuHWN1R2eTKqoNAyVJkiRJkqQ62TzQx4ZNI/ScdD/Llu+j56T72bBphM0Dfc0u7YjYQ0mSJEmSJKlOZvokDXZtL9nlbV1L908CAyVJkiRJkqS62rh+bcsHSOVc8iZJkiRJkqSqGChJkiRJkiSpKi55kyRJkiRJqmDrtt0MbtlZ0vuor+2Wrh0uAyVJkiRJkqQyW7ft5vJrdjA81M/4aA/dvWNMTI4AGCrhkjdJkiRJkqSDDG7ZyfBQP2O71rB/33LGdq1heKifwS07m13aomCgJEmSJEmSVGZieorx0Z5ZY+OjPUxMTzWposXFQEmSJEmSJKnM6o5OunvHZo11946xuqOzSRUtLgZKkiRJkiRJZTYP9LFh0wg9J93PsuX76DnpfjZsGmHzQF+zS1sUbMotSZIkSZJUZqbx9mDX9pJd3tbZkLvIQEmSJEmSJKmCjevXGiDNwSVvkiRJkiRJqoqBkiRJkiRJkqpioCRJkiRJkqSqGChJkiRJkiSpKgZKkiRJkiRJqoq7vEmSJEmSpLa2ddtuBrfsZGJ6itUdnWwe6HP3tiNkoCRJkiRJktrW1m27ufyaHQwP9TM+2kN37xgTkyMAhkpHwCVvkiRJkiSpbQ1u2cnwUD9ju9awf99yxnatYXion8EtO5tdWkszUJIkSZIkSW1rYnqK8dGeWWPjoz1MTE81qaL2YKAkSZIkSZLa1uqOTrp7x2aNdfeOsbqjs0kVtQcDJUmSJEmS1LY2D/SxYdMIPSfdz7Ll++g56X42bBph80Bfs0traTblliRJkiRJbWum8fZg1/aSXd7W2ZD7CBkoSZIkSZKktrZx/VoDpBpzyZskSZIkSZKqYqAkSZIkSZKkqhgoSZIkSZIkqSoGSpIkSZIkSaqKTbklSZJaXETcCPw6sKc4dF5m3lpy/Czgg8CxwOcy86LGVylJktqJgZIkSVILi4hlwBOAkzNzb4XjxwKDwHOAXcD1EfG8zPxyYyuVJEntpK6BUkRcDLy0+PT6zHy735BJkiTVVAD7gS9HxGOAqzLzb0uOPx24OzP/HSAiPgW8BDBQkiRJh61ugVIxOPo94FQKH3L+OSL+CHgffkMmSZJUK6uBrwNvoPCF3daIyMz8avH4icC9JeffC6ytdKGI6AK6yoYrnitJkpa2es5Quhd4W2Y+DBARO4A+/IZMkiSpZjJzGBguPp2OiE8AZwMzgdKyCi/bN8flLgAurm2FkiSpHdUtUMrM7808jojHA+cCH2YB35D57ZgkSdLCRMSzgKMz8+vFoWX8qjk3wChwQsnzxwI/meNyVwBXl42tBW468kolSVI7qXtT7oh4InA9cCGFDzdRdkqlb8j8dkySJGlhuoBLI+KZwCrglcDrS47fCkRE/Cbw78DLKDTpPkhmTgKTpWMR5R/dJEmSYHk9Lx4RZ1BY0//nmXkNC/+G7ArgcWV/zqxnrZIkSa0oM/+Jwpd3dwDbgMHMHI6IkYg4MTN/CbwKuA74PvAD4B+aVa8kSWoP9WzKfRIwBJybmTcWhxf0DZnfjkmSJC1cZr4LeFfZWH/J468DT2l0XZIkqX3Vc8nbhcAxwAdLwqCP8atvyI4BbsBvyCRJkiRJklpKPZtyvxV46xyH/YZMkiRJkiSpRdW1h5IkSZIkSZLaj4GSJEmSJEmSqmKgJEmSJEmSpKoYKEmSJEmSJKkqBkqSJEmSJEmqioGSJEmSJEmSqmKgJEmSJEmSpKoYKEmSJEmSJKkqBkqSJEmSJEmqioGSJEmSJEmSqmKgJEmSJEmSpKoYKEmSJEmSJKkqBkqSJEmSJEmqyspmFyBJkiRJklStrdt2M7hlJxPTU6zu6GTzQB8b169tdllLhoGSJEmSJElqKVu37ebya3YwPNTP+GgP3b1jTEyOABgqNYhL3iRJkiRJUksZ3LKT4aF+xnatYf++5YztWsPwUD+DW3Y2u7Qlw0BJkiRJkiS1lInpKcZHe2aNjY/2MDE91aSKlh4DJUmSJEmS1FJWd3TS3Ts2a6y7d4zVHZ1NqmjpMVCSJEmSJEktZfNAHxs2jdBz0v0sW76PnpPuZ8OmETYP9DW7tCXDptySJEmSJGlRmW8Ht5nHg13bS85ZZ0PuBjJQkiRJkiRJi8ZCd3DbuH6tAVITueRNkiRJkiQtGu7g1hoMlCRJkiRJ0qLhDm6twUBJkiRJkiQtGu7g1hoMlCRJkiRJ0qLhDm6twabckiRJkiRp0XAHt9ZgoCRJkiRJkhYVd3Bb/FzyJkmSJEmSpKoYKEmSJEmSJKkqLnmTJEmSJEkNs3Xbbga37Czpj9Tn8rYWZKAkSZLU4iLiYuClxafXZ+bby46/G3g1MFEcuiozP9LAEiVJAgph0uXX7GB4qJ/x0R66e8eYmBwBMFRqMQZKkiRJLSwizgJ+DzgV2A/8c0S8MDO/UHLaacAfZuZwM2qUJC09c81CGtyyk+GhfsZ2rQFgbNcahof6GezabqDUYgyUJFVlz959rFpp+zVJWkTuBd6WmQ8DRMQO4OSyc54G/FlEnAJ8E7gwM3/Z2DIlSUvFoWYhTUxPMT7aM+v88dEeJqanmlGqjoCBkqSqrFq5nHdcefMRX+ey88+oQTWSpMz83szjiHg8cC7wzJKx44E7gAuBe4CrgXcB7yy/VkR0AV1lw35dLEmq6HBmIa3u6KS7d+zAMYDu3jFWd3Q2623oMBkoSZIk1VlEPA44KTO/Wcd7PBG4nsLso7tnxjPz58DZJeddDgxSIVACLgAurleNkqT2cbizkN72svVMTI7Met2GTSNsHljXjLehI2CgJEmSVAcR8QbgTOAtwDDwXxHxj5n5P+twrzOA64ALMvOzZcdOBs7KzMHi0DJgzxyXuoLCDKZSa4GbaletJKkdHO4spJk+SYNd20tmNq2zf1ILMlCSJEmqj1cDzwdeAmwB3gh8G6hpoBQRJwFDwLmZeWOFU34BvD8ivkFhydsbgS9UOI/MnAQmy65fy3IlSW3iSGYhbVy/1gCpDRgoSZIk1cf+zPxpcRe2z2Xm3ohYUYf7XAgcA3ywJPz5GHAO8O7MvD0izgO+BBwFfAu4vA51SJLaVKVeSc5CkoGSJElSfTwUEW8HngO8prgEbrrWN8nMtwJvrXDoYyXnXEdhSZwkSVWZq1fS857960xschbSUmagJEmSVB+vBv4f4JWZORERzwJe0+SaJEmqyly9klZ3bedtr1znLKQlzEBJkiSpDjIzI+LNwG9GxDLgNZn5i2bXJUlSNQ7VK8lZSEubgZIkSVIdRMTpwD8Ce4FnAndGxP+dmbc0tzJJkiqrtleSljYDJUmSpPr4AHAWcG1m7o6IPwb+GjituWVJknSww+2VpKXLQEmSJKk+jsvM78/svJaZN0TEXza5JkmSKrJXkqploCRJklQfeyJiNbAfIGaSJUmSFoHy5W0TP7dXkqpjoCRJklQffwn8C3BCRHwG+D3gdc0tSZKkysvbTjvnNnslqSoGSpIkSXWQmV+KiB3Ac4EVwP+bmd9vclmSpCWofDbSQw8/ctDytn/77m/w1LO38d0b1tsrSQtioCRJklRDEfHUsqFbi/88JiKempnfbXRNkqSlozw8Ov3Jv8aXv/nTWbORTn/xLQctb7v71ifw+NPv5uxX2StJC2OgJEmSVFvXHeLYfuCURhUiSWpvCwmP7j/nNm774mmzZiM9OHlcxeVt3cd38slLf7dZb0ctxkBJkiSphjLzcc2uQZLUnkoDpOOOOoapqWV854unHjI8WrFqz0GzkXL4CZx69jbucHmbjoCBkiRJUg1FxNsz8/0R8eFKxzPzLY2uSZLU+sobaW985de562v984ZHU+OdB81Gemj6GLpXL3N5m46IgZIkSVJt/Vfxn2MVju1vZCGSpPYxuGXnrEbaxz36wQWFR/fdfULFZttvePETDZB0RAyUJEmSaigz/1fx4X9m5kdLj0XEnzWhJElSG5iYnpoVIC00POp72ijPe/aJnPAYZyOptuoeKEXEo4BbgBdk5j0RMQicCUwXT3lPZn6h3nVIkiQ1QkS8HjgO+NOIOLbk0CrgLcD7mlKYJKnllPZM2rdn1awA6Ye39vGU37uDO79y6oLCo/Nf3OQ3o7ZT10ApIp4BXAX0lQyfBjw7M++t570lSZKaZA/wJAqh0pNKxvcCb25KRZKkRanSLm3fvutnFZtuP/4ZP5jVSPuhB4/m2I5H+L9eNsKDex40PFLD1XuG0muBNwJ/BxARHcDJwFURcTLwBQozlPbVuQ5JkqSGyMxPAJ+IiE2ZOdTseiRJjVW+Exv7lx8IfOYLjO79z/84EBiVN93eOfxbADxj020sX7WnGCA9yaVrapq6BkqZ+RqAiJgZ+nXgRuA84OfAPwGvpjCL6YCI6AK6yi7n3xJJktRKvh0RFwPdwLKZQXd5k6TWMN/soZmgqPzxTEh0dMcvecIZO7jzK/0LCoxOePx93HHD+kM23b771ifQt+FuvnT5QMN/HlK5hjblzsx/A1448zwi/gZ4BWWBEnABcHEDS5PUwvbs3ceqlctrcJ1HWLVyRQ0qql1Nklra54BJ4A7c3U2SWsrWbbu5/JodDA8dHAaVBkXloVFpSPTsV9zInV85dcGBUWf3/E23u3vHWN3R2aCfgnRoDQ2UIuJJQF9mXlccWkahz0C5K4Cry8bWAjfVrzpJrWrVyuW848qbj/g6l51/Rk2uM3MtSUveYzLzOc0uQpJ0aJWWqD0w/RC3bXlGxTCoNCgqD41KQ6LygGi+wKj8eaWm2xs2jbB5YF1Dfi7SfBoaKFEIkK6IiBspLHl7HXBN+UmZOUnhG70DSpbNSZIktYIfR0RHZk7Pf6okqZFmQqTxn0/x8INH892ymUenv+iWOcOguR7D7FCo2sDovrtPWHDTbWkxaPSSt7si4r3AzRS2zr0uMz/TyBokSZIa5F5gJCK2Ar+YGbSHkiQ1TqXZR9MPP3ggRHri72zne9940kGzjQ4VBh0qNCoNiX74ncdXHRid/uQTeexjth/o22TTbS1mDQmUMvM3Sh5fCVzZiPtKkiQ10T3FP5KkBppv9lFpiDTXbKMf3trHk587wl1f7T8oDCoNispDo/KQ6Lijjqk6MDr/xQ3/kUmHpdFL3iRJkpaEzHxP+VhEdDSjFklaKkqbac81+6g0OJprttFPshDyPPmsEY7repDu42eHQaVBUXloNN+sIgMjtQsDJUmSpDqIiAHgUuB4Cn0kVwDdgNvzSFKNzcxKun/iwQPNtOeafVQaHJXORKo026jjeHjby9cfCIgMg6RfMVCSJEmqj78CLgJeD7wPeCHwQFMrkqQ2UmlpW2kz7blmH5WGSPfefSLHdz/Aaefcxsqj9nDc0eWzjWyCLc3FQEmSJKk+pjPzcxHRD/wSeANwe5NrkqSWt3Xbbj76D99jfGI/d5Q11l7I7KPyEGn18Z1sHniywZFUpQUFShHxicx8ddnYdZn5ovqUJUmS1PIeioijgR8C/Zm5tfhckrQAh9qhbe/DK7jra/0HLW2rbvaRIZJ0JA4ZKEXER4Fe4MyIWFNyaBXwhHoWJkmS1OK2ANcDrwJuiYgzgbGmViRJi9xCd2iba2lbpWbaBkdSfcw3Q+kTwG8DTwGuKxnfCwzXqyhJkqRWl5mXRcSnMnN3sUH3s4HPNLsuSWqmSrOOZnZK27N3H1NTyw5axlZph7a5lrbN1UxbUu0dMlDKzNuB2yPia5m5u0E1SZIktbyIeGrxn79WHLoJWAv8Z9OKkqQmKe97VDrraObx/n0rKy5jq7RD26GWthV6ItlMW6q3hTbl/u8R8XcUtrpdNjOYmU+uS1WSJEmtr3R291HACcA24OnNKUeSGqt8+Vpp36PSWUczj6vdoS1vecKBpW0dRx3HG17i0japkRYaKH0EGAS+C+yvXzmSJEntITMfV/o8Ik4HXj3H6UckIl4GXEQhuPpQZn6k7Hg/cBXwaOCbwOszc289apG0NJWGR/v3rmLZij08/ItCD6RKfY8qzUA6/B3aXNomNcNCA6WHM/ODda1EkiSpjWXmtyPiylpfNyJ6gb8E1gMPUWgA/o3M/H7JaZ8CXlOs4RPAa4GP1roWSe3vUDuv/fiuk+ld9wh3fbV/Vg+kSoFRpcfu0Ca1loUGSv8aEU/KzO11rUaSJKlNzPRQKloGPA04tg63Ogu4MTPHi/f9B+DFwKXF5/8NODYzv108/2rgPRgoSZpHeXhU2jS70s5rT/yd7dz11YN7IFUKjEpnHZU+dhmb1DoWGiidAmyLiB8Dv5gZtIeSJEnSnEp7KO2n0Iz7DXW4z4nAvSXP72V2n6ZKxyv+v7OI6AK6yob9f3LSEjNXA+3SptmVdl6rFCIdqu/RUSuOOjDr6LijymcguYxNWuwWGii9s65VSJIktZnyHkp1tKzC2L4qjpe6ALj4iCuS1BIOtXytUgPtuXogzYRHc4VI9j2S2tNCAyWXukmSJC1QRBwPvB44A1gB3AJcCQwAo5l5Yw1vNwqcWfL8scBPyo6fcIjjpa6gsCSu1FrgpiMrUdJiMtcMpNLla5XCo/l2Xhvd0TtPiOTyNamdLDRQ+hmFqdrL+NUub3NOl5YkSVqqIqIbGAZ2AF8tDv8ucDswBfxOjW/5NeCSiFgDTAMvAl43czAzfxwRv4yIMzLzZuAVwJcrXSgzJ4HJ0rGIqHG5kuptrplHpbuvVZqBNF8D7fl2XjvlqfewYtUenrHpNpavNESS2t2CAqXMXD7zOCJWUfig8pR6FSVJktTC3gN8PDM/UDL2kWKz7D2Z+UAtb5aZoxHxTuAbwFHFe38nIm4A3p2ZtwMvB66KiE7gDuDDtaxBUvPMhEfjP5+aFRh9t2Tm0e7v99K7bnTW7mvzLV+bKzyaqweSO69JS89CZygdkJl7gM9GxIXA/6x9SZIkSS1tI9BfOlCctbQOWFWPG2bmp4FPl42dXfL4TmY36pbUIsoDo+Ur93Dc0bP7Hf34rpPpXffIrMCodOZRpd3X5lu+dqgG2jbNlgQLDJSKH4JmzGx7u7ouFUmSJLW2fZn5SNnYFIUZ3n/fhHokLWLVBkaV+h1VCoyAQ+6+Nt/yNRtoS5rP4fRQgsK2t2+pS0WSJEktLiIeVbq0LTP3RMR9/KoXpaQloFIvowf3PHjQjmrVBEaV+h1VCoxKZx4d3gwkl69JOrSqeyhJkiTpkD4N/O+IeGVmPgQQEccAHwOubWplkuqudMbRww/O7mV051eOPDCqFB7NFRjNzDza/f218+y+5gwkSdVb6JK35cCFwPMorP3/CnBZZu6tY22SJEmt6K8oBEf/FhG3F8dOo9A0+6+aVpWkmljIDmrfvWF9xV5GtQiMKoVHozt65wyMjjv6GH7t2aNMP/ygu69JqqmFLnl7L4Vd3f4aWE5hK9oPAH9ap7okSZJaUrF/0h9GxNOAZxWH/yIzb2tiWZKOwKFmHVXaQW2uXkbljw8nMKrU7+iUp97DilV7DIwkNdRCA6U/AJ5W3OGNiLgeuBMDJUmSpIoy83bg9nlPlFR38/Uymu/x1NQyvvPFUxe8gxpU7mVUq8DouKOPsd+RpKZbaKC0fCZMAsjMhyJiz6FeIEmSJEnNtnXbbi6/ZgfDQ/1z9jKa6/H4aA8bX/l17vpadTuozdXL6M6vnGpgJKltLDRQGomIDwF/W3z+JuCu+pQkSZIkSYevdEbSvj2ruHXotEP2MprrMcBxj37wsHZQq9TLaCYkOu4oAyNJrW+hgdIbgQ8Dt1DoofTPwJvrVZQkSVK7iIiuzJxsdh1SuykNjVZ3dHL6k3+Nb9/1s1l9jsZHezj7LV+at5fRXI9h/llH8++gZlgkqT0dMlCKiKOAq4AvZOarimPXA48AD9S9OkmSpBYVEQH8I9AVEU8Hvga8MDN/0NzKpNZU3gdppq/R+GgPj3/GD7j3P/+DO8p2V4OF9TKa6zHAD2/tO2iJmjuoSdL8M5QuBR5FYWbSjNcCVwKXABfVpyxJkqSW9zfABcD7M3M0Iv4G+N/As5tblrR4LXTWUWlfI4ATHn8fd9yw/qA+R8CCehnN9Xh8tIeHHjyaYzsecYmaJJWZL1B6AXBaZv5iZiAzfxIRrwCGMVCSJEmaS09mfrUwUQky88qIeF2Ta5IWlcOddVTa1wiYszE2wE9yLcd3P1CYQbRqz6z+RQt5XAiQnmSAJEll5guUHi4Nk2Zk5gMR8VCdapIkSWoH+yPiGGA/QEScAKxobknS4lG6+1q1s47KQ6O5+hyNj/bQ3TtG39NGedsrnVUkSbU0X6D0SER0ZuZU6WBEdAKr6leWJElSy7sS+D/AYyLivcAfAe9rbklSc821+xpUN+uotK/R+GgP9919AqeevY07blg/R2PsdYZJklRj8wVKnwE+HhGbM3MaICI6gI8D19W7OEmSpFaVmYMR8UPg+RS+iHtdZn6lyWVJDVOpH9KXv/nTAzOSSndfg+pmHVXqa3T6k0/ksY/ZfuB+9jmSpPqaL1C6AvgYcF9EfA9YDqwDrqXQsFuSJEklIqK75Om/Fv8cOJaZ442vSqqt8rBo80AfwJz9kLp7x7j/nNu47YunVQyM4HBmHR3c1+j8Fzf25yBJS9khA6XM3Ae8LiIuA54K7AO+k5k/aURxkiRJLehnFPomLSsZm3m+H/soqcXMN9Oou3eM8f+6nX2PrDgQIJX3QxrbtYYVq/bMufuas44kqfXMN0MJgMy8B7inrpVIkiS1gcxc3uwapMMx16yj0sbZlWYaje1aw4NTK2cFSOX9kGD+3dfm2k3NWUeStDgtKFCSJElSdSJiBXAe8PvAI8AXM/PqphYlzaF8x7Xu3jEmJkc47jg53v7HAAAgAElEQVQYHjr0TCM4OEAqD48A7rv7BJ569ja+e8N6d1+TpDZgoCRJklQffwP8FvBJCn0oXx0Rv5mZFzW3LOlgg1t2HhQcDQ/1c/qLb5l3phHAg/913CH7Ic2ER8979omcMGsJm7uvSVKrMlCSJEmqj+cCv5WZewAi4lPAnYCBkhqi0hK2mfCm/NjEz6cOCo7GR3t4ZM+KBc00Oq5zL08/544DPZQq9UOaCY9cwiZJ7cFASZIkqT5+RuGz1p7i833AZPPK0VIy1xK2GeXHTjvntoOCo+7eMR51/Co2bBqZdW7lmUZPAmCwe/aYs48kqX0ZKEmSJNXHDuCmiLga2AucC/wsIv4HQGZ+sIm1qY1Umok01xK2wa7twMF9kf7tu79x0KyjDZtGeMOLnwjAYNfBy9QqzTQyQJKkpcNASZIkqT6WAduB9cXn9xT/+SRgfzMKUvuZcybSyoN3WRsf7WFieurA41J33/oEHn/63Zz9qsr9jQyKJEnlDJQkSZLqIDP/pNk1qP3NNRPpGZsqL2Fb3dF54HH5se7jO/nkpb/b2DcgSWpZBkqSJEl1EBEbgT8HukvHM/PpTSlIbWliunIz7WUr9xzU+2jDphE2D6wrvG5y7mOSJC2EgZIkSVJ9fBz4MPCjZhei9rW6o3PO2UabB/oq9j6acahjkiTNx0BJkiSpPn6amR9udhFqb5sH+uacbbRx/do5Q6JDHZMkaSEMlCRJkurjSxFxPvB/gD0zg5n5H80rSe1mJhRytpEkqdEMlCRJkupjDXAZMF0yth94VHPKUbtytpEkqRkMlCRJkurjJcBjM/OnzS5EkiSp1pY3uwBJkqQ29VPg/mYXIUmSVA/OUJIkSaqP24BvRcSXgIdmBjPzg80rSZIkqTYMlCRJkurjWCCBvnreJCLOAK4AVgFjwObM/HHZOScD3wN+VBz6aWb+fj3rkiRJ7c1ASZIkqQ4y808adKtrgXMy866I2Ax8GBgoO+c04NOZeV6DapIkSW2uroFSRDwKuAV4QWbeExFnAR+k8I3d5zLzonreX5IkqVkiYgPw58DxwDJgBfC4zDy5hvc4GrgoM+8qDt0FvLnCqacBvx0RtwMPAG/NzO0VrtcFdJUNu32YJEk6SN2ackfEM4BvUZzmHRHHAoMUvjFbB5wWEc+r1/0lSZKa7OMUvlh7FIVZRA8A19XyBpn5UGZ+CiAilgOXAEMVTv0l8MnMfBrwV8BQRBxV4bwLgH8v+3NTLWuWJEntoZ4zlF4LvBH4u+LzpwN3Z+a/A0TEpyhsp/vlOtYgSZLULPsz830R8WvADyh87rn5cC8WES8BPlQ2/IPMPKsYDl1D4bPdZeWvzcxLSh7fEBHvpfAF351lp14BXF02thZDJUmSVKZugVJmvgYgImaGTgTuLTnlXuaYQu10a0mS1Aamiv/8EfDbmXlzRKw43Itl5ueBz5ePR8TxwBcpNOQeyMw9Fc55M4UeSmPFoWXAQedl5iQwWfbawy1ZkiS1sUY25V5WYWzfHOdeAFxcx1okSZLq7daI+BzwLuD6iOgDHqnDfT4F/BA4LzP3z3HOcyj0sHx/RDyHQj+nH9ShFkmStETUrYdSBaPACSXPHwv8ZI5zrwAeV/bnzLpWJ0mSVFt/CnwoM3cCb6XwuetltbxBRJxKoT/lGcAdETESETcUj70+Ii4tnvpW4LkR8a8Ueij9UWbO9cWeJEnSvBo5Q+lWICLiNyk0eHwZhSbdB3G6tSRJamURsQxYkZnfjohO4Bjgysy8u5b3ycw7qDwLnMz8WMnjUeC5tby3JEla2ho2Qykzfwm8isLuJt+nMM36Hxp1f0mSpEaIiN+i8OXZHxR3uf0O8BfAVyPCUEeSJLWFus9QyszfKHn8deAp9b6nJElSE30AeGdm/lNE/Elx7LeBXuCzwFebVpla0tZtuxncspOJ6SlWd3SyeaCPjevdr0aS1FyNXPImSZK0FJycmdcWH/8OsKXYr2hXRDy6iXVpkTpUYLR1224uv2YHw0P9jI/20N07xsTkCIChkiSpqQyUJEmSaqt0J7dnAm8peX5Mg2vRIjdfYDS4ZSfDQ/2M7VoDwNiuNQwP9TPYtd1ASZLUVAZKkiRJtTUeEU8BOinsavsvABHxTAq73koHzBcYTUxPMT7aM+s146M9TExPNaNcSZIOaFhTbkmSpCXiHcDXgBsp9FKajogLgeuBdze1Mi068wVGqzs66e4dm3W8u3eM1R2dDatRkqRKDJQkSZJqKDO/TaEB92My84ri8C3A0zPzX5pXmRaj+QKjzQN9bNg0Qs9J97Ns+T56TrqfDZtG2DzQ14xyJUk6wCVvkiRJNZaZDwMPlzy/pYnlaBHbPNDHxOTIrB5KhcBoHfCrxtuDXdtLmnavs3+SJKnpDJQkSZKkJllIYLRx/VoDJEnSomOgJEmSJDWRgZEkqRXZQ0mSJEmSJElVMVCSJEmSJElSVQyUJEmSJEmSVBUDJUmSJEmSJFXFQEmSJEmSJElVMVCSJEmSJElSVQyUJEmSJEmSVBUDJUmSJEmSJFVlZbMLkCRJktrV1m27Gdyyk4npKVZ3dLJ5oI+N69c2uyxJko6YgZIkSZJUB1u37ebya3YwPNTP+GgP3b1jTEyOABgqSZJankveJEmSpDoY3LKT4aF+xnatYf++5YztWsPwUD+DW3Y2uzRJko6YgZIkSZJUBxPTU4yP9swaGx/tYWJ6qkkVSZJUOwZKkiRJUh2s7uiku3ds1lh37xirOzqbVJEkSbVjoCRJkiTVweaBPjZsGqHnpPtZtnwfPSfdz4ZNI2we6Gt2aZIkHTGbckuSJEl1MNN4e7Bre8kub+tsyC1JagsGSpIkSVKdbFy/1gBJktSWXPImSZIkSZKkqjhDSZIkSarC1m27Gdyys2QZW5+zkCRJS46BkiRJkrRAW7ft5vJrdjA81M/4aA/dvWNMTI4AGCpJkpYUl7xJkiRJCzS4ZSfDQ/2M7VrD/n3LGdu1huGhfga37Gx2aZIkNZSBkiRJkrRAE9NTjI/2zBobH+1hYnqqSRVJktQcBkqSJEnSAq3u6KS7d2zWWHfvGKs7OptUkSRJzWEPJUmSpBYWEa8A3gf8tDh0fWa+s+ycLuBa4BTgfuClmXlfQwttE5sH+piYHJnVQ2nDphE2D6xrdmmSJDWUgZIkSVJrOw34H5n5mUOc8xfATZn5/Ij4Y+CvgXMbUl2bmWm8Pdi1vWSXt3U25JYkLTkGStISsGfvPlatdIWrJLWp04DfjIg/B7YDb87MibJzng88u/j4M8BHImJVZu5pYJ1tY+P6tQZIkqQlz0BJWgJWrVzOO668uSbXuuz8M2pyHUlSzdwL/H/Ad4DLgL8FXl52zonF88jMvRHxALAG+EnpScWlcV1lrzU5kSRJBzFQkiRJagER8RLgQ2XDP8jMs0rOeT/wbxVevqzC2L4KYxcAFx92kZIkackwUJIkSWoBmfl54POlYxHx6Ij408ycCZqWAZWWsY0CJwC7I2Il8ChgrMJ5VwBXl42tBW46gtIlSVIbMlCSJElqXT8H3h4Rt2TmrcCbgC9UOO8G4BUUlsSdS6FB90HBU2ZOApOlYxFR86IlSVLrs0uvJElSi8rMR4CXAh+NiB3AeuDtABFxaUS8vnjqu4DTI+J7wPnAG5tRryRJah/OUJIkSWphmXkT8NQK4+8ueTwOnNPIuiRJUntzhpIkSZIkSZKqYqAkSZIkSZKkqhgoSZIkSZIkqSoGSpIkSZIkSaqKgZIkSZIkSZKqYqAkSZIkSZKkqhgoSZIkSZIkqSoGSpIkSZIkSaqKgZIkSZIkSZKqYqAkSZIkSZKkqhgoSZIkSZIkqSoGSpIkSZIkSarKymYXIEmSJDXD1m27Gdyyk4npKVZ3dLJ5oI+N69c2uyxJklqCgZIkSZKWnK3bdnP5NTsYHupnfLSH7t4xJiZHAAyVJElagKYEShFxI/DrwJ7i0HmZeWszapEkSdLSM7hlJ8ND/YztWgPA2K41DA/1M9i13UBJkqQFaHigFBHLgCcAJ2fm3kbfX5IkSZqYnmJ8tGfW2PhoDxPTU02qSJKk1tKMptwB7Ae+HBF3RsSbmlCDJEmSlrDVHZ10947NGuvuHWN1R2eTKpIkqbU0Y8nbauDrwBuAY4GtEZGZ+dWZEyKiC+gqe51zjyVJklQTmwf6mJgcmdVDacOmETYPrGt2aZIktYSGB0qZOQwMF59OR8QngLOBr5acdgFwcaNrk6Ra2bN3H6tWHvkk0FpdR5I020yfpMGu7SW7vK2zf5IkSQvUjB5KzwKOzsyvF4eW8avm3DOuAK4uG1sL3FTf6iSpNlatXM47rrz5iK9z2fln1KAaSVIlG9evNUCSJOkwNWPJWxdwaUQ8E1gFvBJ4fekJmTkJTJaORUTDCpQkSZIkSdLcGr6OIjP/CbgeuAPYBgwWl8FJkiRJkiSpBTRjhhKZ+S7gXc24tyRJkiRJko6MnV4lSZIkSZJUFQMlSZIkSZIkVcVASZIkSZIkSVUxUJIkSZIkSVJVDJQkSZIkSZJUFQMlSZIkSZIkVcVASZIkSZIkSVUxUJIkSZIkSVJVVja7AEmSJKkaW7ftZnDLTiamp1jd0cnmgT42rl/b7LIkSVpSDJQkSZJaVEQ8BvhKydCjgTWZeXzZeScD3wN+VBz6aWb+fmOqrK2t23Zz+TU7GB7qZ3y0h+7eMSYmRwAMlSRJaiADJUmSpBaVmf8J9ANExHLg68A7K5x6GvDpzDyvgeXVxeCWnQwP9TO2aw0AY7vWMDzUz2DXdgMlSZIayEBJkiSpPfwJ8GBmfrrCsdOA346I24EHgLdm5vaGVlcjE9NTjI/2zBobH+1hYnqqSRVJkrQ0GShJkiS1uIhYAVwEnDPHKb8EPpmZ/ysizgaGImJdZj5cdp0uoKvstYtq2s/qjk66e8cOzFAC6O4dY3VHZxOrkiRp6TFQkiRJagER8RLgQ2XDP8jMs4A/AHbONesoMy8peXxDRLwXWAfcWXbqBcDFNSu6DjYP9DExOTKrh9KGTSNsHljX7NIkSVpSDJQkSZJaQGZ+Hvj8HIc3AZ+d67UR8WYKPZTGikPLgD0VTr0CuLpsbC1wU1XF1tFMn6TBru0lu7yts3+SJEkNZqAkSZLU+jYA7zvE8ecAxwLvj4jnACuAH5SflJmTwGTpWETUsMza2Lh+rQGSJElNZqAkSZLU+k4BdpcORMTrgRMz893AW4GrI+IVwC+AP8rMfY0vU5IktQsDJUmSpBaXmcdVGPtYyeNR4LkNLUqSJLW15c0uQJIkSZIkSa3FQEmSJEmSJElVMVCSpEVsz97atTip5bUkSZIkLW32UJKkRWzVyuW848qba3Kty84/oybXkSRJkiRnKEmSJEmSJKkqBkqSJEmSJEmqioGSJEmSJEmSqmKgJEmSJEmSpKoYKEmSJEmSJKkqBkqSJEmSJEmqioGSJEmSJEmSqmKgJEmSJEmSpKoYKEmSJEmSJKkqBkqSJEmSJEmqioGSVAd79u5bVNeRwH8vG82ftyRJktrZymYXILWjVSuX844rbz7i61x2/hk1qEYq8N/LxvLnLUmSpHbmDCVJkiRJkiRVxUBJkiRJkiRJVTFQkiRJkiRJUlUMlCRJkiRJklQVAyVJkiRJkiRVxV3eJEmSdNi2btvN4JadTExPsbqjk80DfWxcv7bZZUmSpDozUJIkSdJh2bptN5dfs4PhoX7GR3vo7h1jYnIEwFBJkqQ255I3SZIkHZbBLTsZHupnbNca9u9bztiuNQwP9TO4ZWezS5MkSXVmoCRJkqTDMjE9xfhoz6yx8dEeJqanmlSRJElqFAMlSZIkHZbVHZ10947NGuvuHWN1R2eTKpIkSY1ioCRJkqTDsnmgjw2bRug56X6WLd9Hz0n3s2HTCJsH+ppdmiRJqjObchft2buPVSuPPF+r1XVqeS1rWuh1HmHVyhU1qEhSoy3G/21ajPw5qdZmGm8Pdm0v2eVtnQ25JUlaAgyUilatXM47rrz5iK9z2fln1KCaAmtamFrWVIvrzFxLUuMsxv9tWoz8OakeNq5fa4AkSdIS5NeLkiRJkiRJqoqBkiRJkiRJkqpioCRJkiRJkqSq2ENJkiSphUTEpcC+zLyk+LwLuBY4BbgfeGlm3lf2mmXAB4AXAPuA12ZmbRoHSpKkJckZSpIkSS0gIh4dEZ8ALiw79BfATZm5DrgK+OsKL38RsA74LWATcE1E+MWiJEk6bAZKkiRJrWEAuBu4vGz8+RRmKAF8BnheRKyqcM5nM3NfZu4Efgw8s57FSpKk9taUb6Yi4mXARcBRwIcy8yPNqEOSJKlVZOYnASLikrJDJwL3Fs/ZGxEPAGuAn1Q6p+heYG35PYrL57rKhg86T5IkqeGBUkT0An8JrAceAm6JiG9k5vcbXYskSdJiExEvAT5UNvyDzDxrjpcsqzC27zDOAbgAuPjQFUqSJDVnhtJZwI2ZOQ4QEf8AvBi4tAm1SJIkLSqZ+Xng81W8ZBQ4Adhd7Iv0KGBsjnNmPJbZM5hmXAFcXTa2FripinokSdIS0IxAqdKU66eXnjDHdOv/BnDfffdRL9MP/OyIr7F79+4aVPIr1rQwtaqpFtep5bVq+XNajO/Nmhp3nVpeq9Z/f2tlMb43a6pOyX/jV9TlBu3rBuAVwGXAuRQadO+pcM7miPgM8DigD7it/EKZOQlMlo5FxAqo72cwSZLUPIf7GWzZ/v37a1/NIUTEO4DjMvOi4vPXAE/LzNeXnHMJTreWJGmpOjMzv9XsIharmR5KmXlJ8Xk3hVlF/51CGPTyzLwnIs4BzsnM10TEMuADwPOKl/nTzPzKAu/3LJyhJEnSUlDVZ7BmzFAaBc4seV5pynWl6dZHAadQ2N3kkeLYzBTsM4HF+ZV5ffn+ff++f9+/739pvn9oz5/BCgqfCw6aOaNfmQmSSp6PA+dUOO+LwBeLj/cDFxb/VOs2Cv+e3cuvPoMtZu34d6Pd+Dta3Pz9LH7+jha/VvsdHdZnsGYESl8DLomINcA08CLgdaUnVJpuXbSz9ElEzDzcnZn31LzSRc737/sv8v37/u9pYilNsdTfP7T1z+BHzS5As2XmQ0DLzBhr478bbcPf0eLm72fx83e0+LXo76jqz2DL61HFoWTmKPBO4BvACPDpzPxOo+uQJEmSJEnS4WnGDCUy89PAp5txb0mSJEmSJB2Zhs9QkiRJkiRJUmtr9UBpEngPlfstLQW+f9+/79/37/tfuvwZSJX5d2Px83e0uPn7Wfz8HS1+S+J3tGz//v3NrkGSJEmSJEktpNVnKEmSJEmSJKnBDJQkSZIkSZJUlabs8na4IuJSYF9mXlJ83gVcC5wC3A+8NDPvK3vNMuADwAuAfcBrM/PmRtZdKxHxGOArJUOPBtZk5vFl550MfA/4UXHop5n5+42psr4i4hXA+4CfFoeuz8x3lp0z778XrSoizgCuAFYBY8DmzPxx2Tlt9/uPiJcBFwFHAR/KzI+UHe8HrqLwd+KbwOszc2/DC62TiLgYeGnx6fWZ+fay4+8GXg1MFIeuKv8ZtbKIuBH4dWBPcei8zLy15PhZwAeBY4HPZeZFja+yPiLiNcCbSoYeB/xdZr6p5Jy2/v1Lh2Mh/73U4lD++V7NN9/nLjVfRDwKuAV4QWbe0+RyVGa+z+7tpCUCpYh4NIX/s/BHwPtLDv0FcFNmPj8i/hj4a+Dcspe/CP7/9u4/WM6qvuP4+xIJSQcVaYmKNRZFPhSRH4UIsdLYIbQQO4Ctv/ghqMSGFkQrqVABx1YtiFCBgSFUTKNGpANa1BJ+FZkOaqCmEwia8gmt6GBgmsbWWpAEiLd/nLOw2ezu/ZF772aXz+ufu/ucs89zznN273P2u+ech98E9gP2BlZI2rcfv2za3gAcBCBpJ+BO4Lw2WecA19leNIXFmypzgA/b/kqXPKN5X/SrLwPH2l4j6X3AFcBxLXkGqv0lvQL4FHAIsBn4rqS7bK9tyrYcWGj7HkmfB94PXD31pZ14NVjye8DBwDBwq6S32v6HpmxzgHfZXtmLMk6m+qPAvsDsdv+3Jc0ElgLzgEeAmyUdY/uWqS3p5LB9LXAtgKTXATcBH2/JNrDtH7EdRnO9jB7q0r+PHhplvyt6SNJhlB9S9+l1WWJbo+y7D4x+mfJ2HPAQcGnL9rdQOgwAXwGOkbRzmzzX2/6l7XXAj4E3TmZhp8h7gV/Yvq5N2hxgf0mrJH1L0uunuGyTaQ5wiqT7JS2X9JI2eUbzvug7knYBzre9pm5aA8xuk3XQ2n8+8C3b/237CeBG4G2NREmvAmbavqduWga8fcpLOXkeA862/ZTtp4F/Y9t2PxQ4R9IaSVdKmjHlpZw8olyMb6mf+zNb0t8APGT74RpwWs5gtX+zq4GP2t7Ysn2Q2z9izMZwvYze6tS/j97q2u+KHcL7gTOAR3tdkGhrNH33gdEXASXbX7R9EbClJWlPSoNRv0j8HNijU57qMeDXJ6moU0LSNMow1HM7ZNkEfNH2ocAlwE2Spk9V+SbZY5Rf5w+ijEa4sk2e0bwv+o7tzbaXw7Mj1D5OGa3QatDaf6TP8MB9xpvZ/kEjWCbptZTRdisa6ZJ2BVYDi4HfAnYDLuhBUSfLSyijMY8HjgROl3RUU/pAt39D/bVrpu0bWrYPevtHjNkYrpfRQ13699Fbz4vraj+zvdD23b0uR7Q3Ut990OxQU94kvR34bMvmB23P7/CSoTbbfjmOPDucEc7F0cA62w+0e23zHHTbKyRdSJn2d/8kFXfCjea9IOli4IdtXt6Xbd6sW/1rcOgLlM/vX7e+dhDav8VI7dn37T0adbrTzcBi2w81ttt+HFjQlO9SyhSwdtNh+06dxtWYyvVEndK4ALijbntetD+wiDI1ZCuD3v4RI9me62VMjXH076O3ni/X1YhJ1anvPmh2qIBS/eX1hhEzPmc98DLgJ5JeALyIsvBiuzwNL6cPhgeOcC6OB67v9FpJH6CsodM4F0M8t5htX2hXf0kvlvRnthudkk71Gs37YofWqf3raIRvUOpzXB1G2Zqn79u/xXrgiKbnrZ/hvvyMj0VdXParwIdsX9+SNhuYb3tp3dTv7b0VSW8CdrF9Z93UWr/nQ/tPp6wR9Z42aQPd/hEj2Z7rZUyNcfTvo7dG6ndFxAi69d0HTV9MeetiBXBKffxOykLMrR2GFcBJkqZJ2puyeNn3prCMk2Eu0G2Y4zzKHX+QNA+YBjw4BeWabI8DH6kL0UG581G7xc1G877oV8uBf6fcuW5zhzyD1v7/BBwpaQ9Jv0JZaP/WRmK9a8+m+o8bStsPxILMAJJeSZmqcWKHC9KTwMWS9qoLWJ9B+89Fv9oN+IykGZJeCJzK1vW7F5Ckvet04BMZoPavDqCMSn2iTdqgt3/EeI3mehkR2+ra74qI7kbRdx8oO9QIpXG4AFgm6QfAz4CTACQdS7mzx0LKQnKHURZkBDjN9pO9KOwEejXwk+YNkk4H9rT9MeCDlPNyCuXLxgm2+36oqu0tkt4BXF3v7LSOGjiqt5x91PYSOrwv+p2kgykLWK4FVkuCUucFg9z+ttdLOg+4i3L72mtt/4ukFcDHbK+itPHnasBhNeVuPoNiMTAD+Jva5gBLgGOp9Ze0CPgm5fx8mwFa4NT2P9Yg8mpKcPQq2ysl3QcssP2opPdQfgWaQQko39izAk+Odv/zn33/D3L7R4xHt+tlTwsW0Qc69bt6XKyIftK2716/pw6coeHh4V6XISIiIiIiIiIi+ki/T3mLiIiIiIiIiIgploBSRERERERERESMSQJKERERERERERExJgkoRURERERERETEmCSgFBERERERERERY/KCXhcgIiIiIiKin0i6Avid+nQ/4GHgyfp8LvALYA/bG3tQttuBE21vlLQCWGx77Tj2swz4vu1L2qT9BvAJ4DBKvTcD19j+/PaUfYTybFMvYBZwpe39J+u4EdFZAkoRERERERFjYPusxmNJPwJOsr2qaVsPSvWsoxoPbC+Y6J1LeiWwEvgL2++u214BfFnSPrbPmehjVtvUS9KsSTpWRIxCAkoRERERERET7y8lHQ78KvAZ21cBSDoN+FPK8iM/Bc60/aCkFwNXAQcBw8AtwEdtPyNpM/B14EDgJOAJ4PK672nAFbaXSvq7euy7JC0A7gbeZnuVpPcBZwNbgI3AqcB64LPA4cALgSFgoe3vdKnXucANtpc1NtheL+mdwMOSLgf2oWnkkKQ3N55LeilwDfBS4GXAj4F32N5Qg3PLgCOB2cDf2/5Ip3o1F0rSdODTwLx6TlYDZ9n+uaQ/AU4HngI2AYvGM2orIraWNZQiIiIiIiIm3g9tHwK8FbhU0s6S5lECOUfYPhi4GPhazX8FJcD0euBQSvBocU2bDnzTtoD7gBuBc+v+5wGLJR1u+701/+/afqRREEkHUoItR9s+APgGcB5lytqewFzb+wFfoASMunkT8M+tG23/J7C27rObdwErbc8FXk2ZHvjupvRdbR8BvBH4gKS9OtWrxbnAM8Ahtg8EHgUukjQNuIxS9znA39Y6RMR2ygiliIiIiIiIiXdd/XsfsAvwIuAtwN7Ad5umxe0uaXfgGOC3bQ8DmyUtAT4EXFTz3V3/7gO8BljatI+ZwMHAPR3KciRwWyMYY/uyRoKk84FFkl4DvBn4v3HWt2Fat0Tbl0s6QtKHgdcC+wP3NmX5es23XtIGYHfKGlUj+QNgN+Coel6mAxtsb5F0A+Wc3wzcznNtExHbIQGliIiIiIiIifc0gO3hGuAYogRbvtRYZ0jSTpQRQv/DtrNHdgJ2bnr+eP07DfiZ7YMaCXUa2f92KcszlGl0jfwzgVdRAlOXA5dSAjkPAiePUK/vUAJPX637mkUZWbU7ZYHyeykjj4aaXjO96difBt4ALAXuqnVszvtk08iKNDYAAAHlSURBVOPhlrRupgEftH1LPc6uwAwA2ydL2h+YD5wDnAYcN8r9RkQHmfIWERERERExNW4HTpD08vr8dODO+vg24AxJQ5J2Af4YuKPNPgxsknQyPLtI9veBQ2r6FrYOREEJ3MxvOu4iynS7oyhT6a4GvgcczwgjjIALgT+SdGp9fgLwAHATsKSOgvovYLakWZKG6n4bfh+4zPaXgA21DCMds1O9mt0GnClpeg3UfQ64UNKvSXoE+GkdmXU+ZTphRGynBJQiIiIiIiKmgO3bKGsZ3SFpDXAi8Id1mttZwCxKcOYBSuDoU2328RRldM3Cuo/bgQuaFtL+GvDtOiKn8ZoHgD8HbpV0P3A0JZi1BJhX97MS+A9grxqQ6VSHR4C5lKll6yiBr6cpwaF9Jb2uLnh9DbCKMg3vsaZd/BVwiaR/bZSVMg1wJNvUq8UngB9RFuNeSxnZdLbtjcAngTvrMS8CFo7ieBExgqHh4eGRc0VERERERER0IekAYJPtdb0uS0RMvgSUIiIiIiIiIiJiTDLlLSIiIiIiIiIixiQBpYiIiIiIiIiIGJMElCIiIiIiIiIiYkwSUIqIiIiIiIiIiDFJQCkiIiIiIiIiIsYkAaWIiIiIiIiIiBiTBJQiIiIiIiIiImJM/h+VE+ZixOkw7QAAAABJRU5ErkJggg==\n", "application/papermill.record/text/plain": "
" }, "metadata": { "scrapbook": { "mime_prefix": "application/papermill.record/", "name": "exp3_fig" } }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABJQAAAF8CAYAAACZheENAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3XuY3XV57/13TpyG0clMY5EJ7Mquc5tadTCiRETTPthW9GHi5YFWr6qNBxRPdMtjuxUFeVp81KLUVnRvdC6w4qGWOtGC3R4wFWFEiAykGu+gLTYZweIcyjgoJCTPH2tNXLOyJjMrWYdZa96v68rFWt/fb/1+95ohsvys7/f+Ltu/fz+SJEmSJEnSQi1vdgGSJEmSJElqLQZKkiRJkiRJqoqBkiRJkiRJkqpioCRJkiRJkqSqGChJkiRJkiSpKgZKkiRJkiRJqoqBkiRJkiRJkqpioCRJkiRJkqSqGChJkiRJkiSpKgZKkiRJkiRJqoqBkiRJkiRJkqqystkFLFREHA2cBtwLPNLkciRJUu2tAB4L3JaZDzW7GBX4GUySpLZ3WJ/BWiZQovBB5qZmFyFJkuruTOBbzS5CB/gZTJKkpaGqz2CtFCjdC3DttddywgknNLsWSZJUY/fddx8vf/nLofjffC0afgaTJKmNHe5nsFYKlB4BOOGEE1i7dm2za5EkSfXjsqrFxc9gkiQtDVV9BrMptyRJkiRJkqpioCRJkiRJkqSqGChJkiRJkiSpKgZKkiRJkiRJqoqBkiRJkiRJkqpioCRJkiRJkqSqGChJkiRJkiSpKgZKkiRJkiRJqoqBkiRJkiRJkqqysp4Xj4iLgZcWn16fmW+PiEHgTGC6OP6ezPxCPeuQJEmSJElaKrZu283glp1MTE+xuqOTzQN9bFy/tqb3qFugFBFnAb8HnArsB/45Il4InAY8OzPvrde9JUmSJEmSlqKt23Zz+TU7GB7qZ3y0h+7eMSYmRwBqGirVc8nbvcDbMvPhzNwD7ABOLv65KiLuioj3RITL7iRJkiRJkmpgcMtOhof6Gdu1hv37ljO2aw3DQ/0MbtlZ0/vUbYZSZn5v5nFEPB44F3gWsBE4D/g58E/Aq4GrSl8bEV1AV9klazs3S5IkSZIkqc1MTE8xPtoza2x8tIeJ6ama3qeuPZQAIuKJwPXAhZmZwAtLjv0N8ArKAiXgAuDietcmqXn27N3HqpW1maBYy2tJkiRJUitb3dFJd+8YY7vWHBjr7h1jdUdnTe9T76bcZwDXARdk5mcj4klAX2ZeVzxlGbCnwkuvAK4uG1sL3FSvWiU11qqVy3nHlTfX5FqXnX9GTa4jSZIkSa1u80AfE5Mjs3oobdg0wuaBdTW9Tz2bcp8EDAHnZuaNxeFlwBURcSOFJW+vA64pf21mTgKTZderV6mSJEmSJEltYabx9mDX9pJd3ta1zi5vwIXAMcAHS8KgjwHvBW4GVgHXZeZn6liDJEmSJEnSkrJx/dqaB0jl6tmU+63AW+c4fGW97itJkiRJkqT6soutJEmSJEmSqmKgJEmSJEmSpKoYKEmSJEmSJKkqBkqSJEmSJEmqioGSJEmSJEmSqmKgJEmSJEmSpKoYKEmSJEmSJKkqBkqSJEmSJEmqioGSJEmSJEmSqmKgJEmSJEmSpKqsbHYBkiRJOnwR8RrgTSVDjwP+LjPfVHLOu4FXAxPFoasy8yONq1KSJLUbAyVJkqQWlpkfBz4OEBFPBIaAS8pOOw34w8wcbmx1kiSpXRkoSZIktY+PAu/IzJ+VjT8N+LOIOAX4JnBhZv6y4dVJkqS2YaAkSZLUBiLiLODYzPx82fjxwB3AhcA9wNXAu4B3VrhGF9BVNry2DuVKkqQWZ6AkSZLUHs4DPlg+mJk/B86eeR4RlwODVAiUgAuAi+tVoCRJah/u8iZJktTiIuIo4DnAFyscOzkiNpcMLQP2zHGpKyg09S79c2Ztq5UkSe3AGUqSJEmt78nAzsycrnDsF8D7I+IbFJa8vRH4QqWLZOYkMFk6FhG1rVSSpCVo67bdDG7ZycT0FKs7Otk80MfG9a29qtxASZIkqfWdAuwuHYiIG4B3Z+btEXEe8CXgKOBbwOWNL1GSpKVp67bdXH7NDoaH+hkf7aG7d4yJyRGAlg6VDJQkSZJaXGb+PfD3ZWNnlzy+Driu0XVJkiQY3LKT4aF+xnatAWBs1xqGh/oZ7Nre0oGSPZQkSZIkSZLqZGJ6ivHRnllj46M9TExPNami2jBQkiRJkiRJqpPVHZ10947NGuvuHWN1R2eTKqoNAyVJkiRJkqQ62TzQx4ZNI/ScdD/Llu+j56T72bBphM0Dfc0u7YjYQ0mSJEmSJKlOZvokDXZtL9nlbV1L908CAyVJkiRJkqS62rh+bcsHSOVc8iZJkiRJkqSqGChJkiRJkiSpKi55kyRJkiRJqmDrtt0MbtlZ0vuor+2Wrh0uAyVJkiRJkqQyW7ft5vJrdjA81M/4aA/dvWNMTI4AGCrhkjdJkiRJkqSDDG7ZyfBQP2O71rB/33LGdq1heKifwS07m13aomCgJEmSJEmSVGZieorx0Z5ZY+OjPUxMTzWposXFQEmSJEmSJKnM6o5OunvHZo11946xuqOzSRUtLgZKkiRJkiRJZTYP9LFh0wg9J93PsuX76DnpfjZsGmHzQF+zS1sUbMotSZIkSZJUZqbx9mDX9pJd3tbZkLvIQEmSJEmSJKmCjevXGiDNwSVvkiRJkiRJqoqBkiRJkiRJkqpioCRJkiRJkqSqGChJkiRJkiSpKgZKkiRJkiRJqoq7vEmSJEmSpLa2ddtuBrfsZGJ6itUdnWwe6HP3tiNkoCRJkiRJktrW1m27ufyaHQwP9TM+2kN37xgTkyMAhkpHwCVvkiRJkiSpbQ1u2cnwUD9ju9awf99yxnatYXion8EtO5tdWkszUJIkSZIkSW1rYnqK8dGeWWPjoz1MTE81qaL2YKAkSZIkSZLa1uqOTrp7x2aNdfeOsbqjs0kVtQcDJUmSJEmS1LY2D/SxYdMIPSfdz7Ll++g56X42bBph80Bfs0traTblliRJkiRJbWum8fZg1/aSXd7W2ZD7CBkoSZIkSZKktrZx/VoDpBpzyZskSZIkSZKqYqAkSZIkSZKkqhgoSZIkSZIkqSoGSpIkSZIkSaqKTbklSZJaXETcCPw6sKc4dF5m3lpy/Czgg8CxwOcy86LGVylJktqJgZIkSVILi4hlwBOAkzNzb4XjxwKDwHOAXcD1EfG8zPxyYyuVJEntpK6BUkRcDLy0+PT6zHy735BJkiTVVAD7gS9HxGOAqzLzb0uOPx24OzP/HSAiPgW8BDBQkiRJh61ugVIxOPo94FQKH3L+OSL+CHgffkMmSZJUK6uBrwNvoPCF3daIyMz8avH4icC9JeffC6ytdKGI6AK6yoYrnitJkpa2es5Quhd4W2Y+DBARO4A+/IZMkiSpZjJzGBguPp2OiE8AZwMzgdKyCi/bN8flLgAurm2FkiSpHdUtUMrM7808jojHA+cCH2YB35D57ZgkSdLCRMSzgKMz8+vFoWX8qjk3wChwQsnzxwI/meNyVwBXl42tBW468kolSVI7qXtT7oh4InA9cCGFDzdRdkqlb8j8dkySJGlhuoBLI+KZwCrglcDrS47fCkRE/Cbw78DLKDTpPkhmTgKTpWMR5R/dJEmSYHk9Lx4RZ1BY0//nmXkNC/+G7ArgcWV/zqxnrZIkSa0oM/+Jwpd3dwDbgMHMHI6IkYg4MTN/CbwKuA74PvAD4B+aVa8kSWoP9WzKfRIwBJybmTcWhxf0DZnfjkmSJC1cZr4LeFfZWH/J468DT2l0XZIkqX3Vc8nbhcAxwAdLwqCP8atvyI4BbsBvyCRJkiRJklpKPZtyvxV46xyH/YZMkiRJkiSpRdW1h5IkSZIkSZLaj4GSJEmSJEmSqmKgJEmSJEmSpKoYKEmSJEmSJKkqBkqSJEmSJEmqioGSJEmSJEmSqmKgJEmSJEmSpKoYKEmSJEmSJKkqBkqSJEmSJEmqioGSJEmSJEmSqmKgJEmSJEmSpKoYKEmSJEmSJKkqBkqSJEmSJEmqyspmFyBJkiRJklStrdt2M7hlJxPTU6zu6GTzQB8b169tdllLhoGSJEmSJElqKVu37ebya3YwPNTP+GgP3b1jTEyOABgqNYhL3iRJkiRJUksZ3LKT4aF+xnatYf++5YztWsPwUD+DW3Y2u7Qlw0BJkiRJkiS1lInpKcZHe2aNjY/2MDE91aSKlh4DJUmSJEmS1FJWd3TS3Ts2a6y7d4zVHZ1NqmjpMVCSJEmSJEktZfNAHxs2jdBz0v0sW76PnpPuZ8OmETYP9DW7tCXDptySJEmSJGlRmW8Ht5nHg13bS85ZZ0PuBjJQkiRJkiRJi8ZCd3DbuH6tAVITueRNkiRJkiQtGu7g1hoMlCRJkiRJ0qLhDm6twUBJkiRJkiQtGu7g1hoMlCRJkiRJ0qLhDm6twabckiRJkiRp0XAHt9ZgoCRJkiRJkhYVd3Bb/FzyJkmSJEmSpKoYKEmSJEmSJKkqLnmTJEmSJEkNs3Xbbga37Czpj9Tn8rYWZKAkSZLU4iLiYuClxafXZ+bby46/G3g1MFEcuiozP9LAEiVJAgph0uXX7GB4qJ/x0R66e8eYmBwBMFRqMQZKkiRJLSwizgJ+DzgV2A/8c0S8MDO/UHLaacAfZuZwM2qUJC09c81CGtyyk+GhfsZ2rQFgbNcahof6GezabqDUYgyUJFVlz959rFpp+zVJWkTuBd6WmQ8DRMQO4OSyc54G/FlEnAJ8E7gwM3/Z2DIlSUvFoWYhTUxPMT7aM+v88dEeJqanmlGqjoCBkqSqrFq5nHdcefMRX+ey88+oQTWSpMz83szjiHg8cC7wzJKx44E7gAuBe4CrgXcB7yy/VkR0AV1lw35dLEmq6HBmIa3u6KS7d+zAMYDu3jFWd3Q2623oMBkoSZIk1VlEPA44KTO/Wcd7PBG4nsLso7tnxjPz58DZJeddDgxSIVACLgAurleNkqT2cbizkN72svVMTI7Met2GTSNsHljXjLehI2CgJEmSVAcR8QbgTOAtwDDwXxHxj5n5P+twrzOA64ALMvOzZcdOBs7KzMHi0DJgzxyXuoLCDKZSa4GbaletJKkdHO4spJk+SYNd20tmNq2zf1ILMlCSJEmqj1cDzwdeAmwB3gh8G6hpoBQRJwFDwLmZeWOFU34BvD8ivkFhydsbgS9UOI/MnAQmy65fy3IlSW3iSGYhbVy/1gCpDRgoSZIk1cf+zPxpcRe2z2Xm3ohYUYf7XAgcA3ywJPz5GHAO8O7MvD0izgO+BBwFfAu4vA51SJLaVKVeSc5CkoGSJElSfTwUEW8HngO8prgEbrrWN8nMtwJvrXDoYyXnXEdhSZwkSVWZq1fS857960xschbSUmagJEmSVB+vBv4f4JWZORERzwJe0+SaJEmqyly9klZ3bedtr1znLKQlzEBJkiSpDjIzI+LNwG9GxDLgNZn5i2bXJUlSNQ7VK8lZSEubgZIkSVIdRMTpwD8Ce4FnAndGxP+dmbc0tzJJkiqrtleSljYDJUmSpPr4AHAWcG1m7o6IPwb+GjituWVJknSww+2VpKXLQEmSJKk+jsvM78/svJaZN0TEXza5JkmSKrJXkqploCRJklQfeyJiNbAfIGaSJUmSFoHy5W0TP7dXkqpjoCRJklQffwn8C3BCRHwG+D3gdc0tSZKkysvbTjvnNnslqSoGSpIkSXWQmV+KiB3Ac4EVwP+bmd9vclmSpCWofDbSQw8/ctDytn/77m/w1LO38d0b1tsrSQtioCRJklRDEfHUsqFbi/88JiKempnfbXRNkqSlozw8Ov3Jv8aXv/nTWbORTn/xLQctb7v71ifw+NPv5uxX2StJC2OgJEmSVFvXHeLYfuCURhUiSWpvCwmP7j/nNm774mmzZiM9OHlcxeVt3cd38slLf7dZb0ctxkBJkiSphjLzcc2uQZLUnkoDpOOOOoapqWV854unHjI8WrFqz0GzkXL4CZx69jbucHmbjoCBkiRJUg1FxNsz8/0R8eFKxzPzLY2uSZLU+sobaW985de562v984ZHU+OdB81Gemj6GLpXL3N5m46IgZIkSVJt/Vfxn2MVju1vZCGSpPYxuGXnrEbaxz36wQWFR/fdfULFZttvePETDZB0RAyUJEmSaigz/1fx4X9m5kdLj0XEnzWhJElSG5iYnpoVIC00POp72ijPe/aJnPAYZyOptuoeKEXEo4BbgBdk5j0RMQicCUwXT3lPZn6h3nVIkiQ1QkS8HjgO+NOIOLbk0CrgLcD7mlKYJKnllPZM2rdn1awA6Ye39vGU37uDO79y6oLCo/Nf3OQ3o7ZT10ApIp4BXAX0lQyfBjw7M++t570lSZKaZA/wJAqh0pNKxvcCb25KRZKkRanSLm3fvutnFZtuP/4ZP5jVSPuhB4/m2I5H+L9eNsKDex40PFLD1XuG0muBNwJ/BxARHcDJwFURcTLwBQozlPbVuQ5JkqSGyMxPAJ+IiE2ZOdTseiRJjVW+Exv7lx8IfOYLjO79z/84EBiVN93eOfxbADxj020sX7WnGCA9yaVrapq6BkqZ+RqAiJgZ+nXgRuA84OfAPwGvpjCL6YCI6AK6yi7n3xJJktRKvh0RFwPdwLKZQXd5k6TWMN/soZmgqPzxTEh0dMcvecIZO7jzK/0LCoxOePx93HHD+kM23b771ifQt+FuvnT5QMN/HlK5hjblzsx/A1448zwi/gZ4BWWBEnABcHEDS5PUwvbs3ceqlctrcJ1HWLVyRQ0qql1Nklra54BJ4A7c3U2SWsrWbbu5/JodDA8dHAaVBkXloVFpSPTsV9zInV85dcGBUWf3/E23u3vHWN3R2aCfgnRoDQ2UIuJJQF9mXlccWkahz0C5K4Cry8bWAjfVrzpJrWrVyuW848qbj/g6l51/Rk2uM3MtSUveYzLzOc0uQpJ0aJWWqD0w/RC3bXlGxTCoNCgqD41KQ6LygGi+wKj8eaWm2xs2jbB5YF1Dfi7SfBoaKFEIkK6IiBspLHl7HXBN+UmZOUnhG70DSpbNSZIktYIfR0RHZk7Pf6okqZFmQqTxn0/x8INH892ymUenv+iWOcOguR7D7FCo2sDovrtPWHDTbWkxaPSSt7si4r3AzRS2zr0uMz/TyBokSZIa5F5gJCK2Ar+YGbSHkiQ1TqXZR9MPP3ggRHri72zne9940kGzjQ4VBh0qNCoNiX74ncdXHRid/uQTeexjth/o22TTbS1mDQmUMvM3Sh5fCVzZiPtKkiQ10T3FP5KkBppv9lFpiDTXbKMf3trHk587wl1f7T8oDCoNispDo/KQ6Lijjqk6MDr/xQ3/kUmHpdFL3iRJkpaEzHxP+VhEdDSjFklaKkqbac81+6g0OJprttFPshDyPPmsEY7repDu42eHQaVBUXloNN+sIgMjtQsDJUmSpDqIiAHgUuB4Cn0kVwDdgNvzSFKNzcxKun/iwQPNtOeafVQaHJXORKo026jjeHjby9cfCIgMg6RfMVCSJEmqj78CLgJeD7wPeCHwQFMrkqQ2UmlpW2kz7blmH5WGSPfefSLHdz/Aaefcxsqj9nDc0eWzjWyCLc3FQEmSJKk+pjPzcxHRD/wSeANwe5NrkqSWt3Xbbj76D99jfGI/d5Q11l7I7KPyEGn18Z1sHniywZFUpQUFShHxicx8ddnYdZn5ovqUJUmS1PIeioijgR8C/Zm5tfhckrQAh9qhbe/DK7jra/0HLW2rbvaRIZJ0JA4ZKEXER4Fe4MyIWFNyaBXwhHoWJkmS1OK2ANcDrwJuiYgzgbGmViRJi9xCd2iba2lbpWbaBkdSfcw3Q+kTwG8DTwGuKxnfCwzXqyhJkqRWl5mXRcSnMnN3sUH3s4HPNLsuSWqmSrOOZnZK27N3H1NTyw5axlZph7a5lrbN1UxbUu0dMlDKzNuB2yPia5m5u0E1SZIktbyIeGrxn79WHLoJWAv8Z9OKkqQmKe97VDrraObx/n0rKy5jq7RD26GWthV6ItlMW6q3hTbl/u8R8XcUtrpdNjOYmU+uS1WSJEmtr3R291HACcA24OnNKUeSGqt8+Vpp36PSWUczj6vdoS1vecKBpW0dRx3HG17i0japkRYaKH0EGAS+C+yvXzmSJEntITMfV/o8Ik4HXj3H6UckIl4GXEQhuPpQZn6k7Hg/cBXwaOCbwOszc289apG0NJWGR/v3rmLZij08/ItCD6RKfY8qzUA6/B3aXNomNcNCA6WHM/ODda1EkiSpjWXmtyPiylpfNyJ6gb8E1gMPUWgA/o3M/H7JaZ8CXlOs4RPAa4GP1roWSe3vUDuv/fiuk+ld9wh3fbV/Vg+kSoFRpcfu0Ca1loUGSv8aEU/KzO11rUaSJKlNzPRQKloGPA04tg63Ogu4MTPHi/f9B+DFwKXF5/8NODYzv108/2rgPRgoSZpHeXhU2jS70s5rT/yd7dz11YN7IFUKjEpnHZU+dhmb1DoWGiidAmyLiB8Dv5gZtIeSJEnSnEp7KO2n0Iz7DXW4z4nAvSXP72V2n6ZKxyv+v7OI6AK6yob9f3LSEjNXA+3SptmVdl6rFCIdqu/RUSuOOjDr6LijymcguYxNWuwWGii9s65VSJIktZnyHkp1tKzC2L4qjpe6ALj4iCuS1BIOtXytUgPtuXogzYRHc4VI9j2S2tNCAyWXukmSJC1QRBwPvB44A1gB3AJcCQwAo5l5Yw1vNwqcWfL8scBPyo6fcIjjpa6gsCSu1FrgpiMrUdJiMtcMpNLla5XCo/l2Xhvd0TtPiOTyNamdLDRQ+hmFqdrL+NUub3NOl5YkSVqqIqIbGAZ2AF8tDv8ucDswBfxOjW/5NeCSiFgDTAMvAl43czAzfxwRv4yIMzLzZuAVwJcrXSgzJ4HJ0rGIqHG5kuptrplHpbuvVZqBNF8D7fl2XjvlqfewYtUenrHpNpavNESS2t2CAqXMXD7zOCJWUfig8pR6FSVJktTC3gN8PDM/UDL2kWKz7D2Z+UAtb5aZoxHxTuAbwFHFe38nIm4A3p2ZtwMvB66KiE7gDuDDtaxBUvPMhEfjP5+aFRh9t2Tm0e7v99K7bnTW7mvzLV+bKzyaqweSO69JS89CZygdkJl7gM9GxIXA/6x9SZIkSS1tI9BfOlCctbQOWFWPG2bmp4FPl42dXfL4TmY36pbUIsoDo+Ur93Dc0bP7Hf34rpPpXffIrMCodOZRpd3X5lu+dqgG2jbNlgQLDJSKH4JmzGx7u7ouFUmSJLW2fZn5SNnYFIUZ3n/fhHokLWLVBkaV+h1VCoyAQ+6+Nt/yNRtoS5rP4fRQgsK2t2+pS0WSJEktLiIeVbq0LTP3RMR9/KoXpaQloFIvowf3PHjQjmrVBEaV+h1VCoxKZx4d3gwkl69JOrSqeyhJkiTpkD4N/O+IeGVmPgQQEccAHwOubWplkuqudMbRww/O7mV051eOPDCqFB7NFRjNzDza/f218+y+5gwkSdVb6JK35cCFwPMorP3/CnBZZu6tY22SJEmt6K8oBEf/FhG3F8dOo9A0+6+aVpWkmljIDmrfvWF9xV5GtQiMKoVHozt65wyMjjv6GH7t2aNMP/ygu69JqqmFLnl7L4Vd3f4aWE5hK9oPAH9ap7okSZJaUrF/0h9GxNOAZxWH/yIzb2tiWZKOwKFmHVXaQW2uXkbljw8nMKrU7+iUp97DilV7DIwkNdRCA6U/AJ5W3OGNiLgeuBMDJUmSpIoy83bg9nlPlFR38/Uymu/x1NQyvvPFUxe8gxpU7mVUq8DouKOPsd+RpKZbaKC0fCZMAsjMhyJiz6FeIEmSJEnNtnXbbi6/ZgfDQ/1z9jKa6/H4aA8bX/l17vpadTuozdXL6M6vnGpgJKltLDRQGomIDwF/W3z+JuCu+pQkSZIkSYevdEbSvj2ruHXotEP2MprrMcBxj37wsHZQq9TLaCYkOu4oAyNJrW+hgdIbgQ8Dt1DoofTPwJvrVZQkSVK7iIiuzJxsdh1SuykNjVZ3dHL6k3+Nb9/1s1l9jsZHezj7LV+at5fRXI9h/llH8++gZlgkqT0dMlCKiKOAq4AvZOarimPXA48AD9S9OkmSpBYVEQH8I9AVEU8Hvga8MDN/0NzKpNZU3gdppq/R+GgPj3/GD7j3P/+DO8p2V4OF9TKa6zHAD2/tO2iJmjuoSdL8M5QuBR5FYWbSjNcCVwKXABfVpyxJkqSW9zfABcD7M3M0Iv4G+N/As5tblrR4LXTWUWlfI4ATHn8fd9yw/qA+R8CCehnN9Xh8tIeHHjyaYzsecYmaJJWZL1B6AXBaZv5iZiAzfxIRrwCGMVCSJEmaS09mfrUwUQky88qIeF2Ta5IWlcOddVTa1wiYszE2wE9yLcd3P1CYQbRqz6z+RQt5XAiQnmSAJEll5guUHi4Nk2Zk5gMR8VCdapIkSWoH+yPiGGA/QEScAKxobknS4lG6+1q1s47KQ6O5+hyNj/bQ3TtG39NGedsrnVUkSbU0X6D0SER0ZuZU6WBEdAKr6leWJElSy7sS+D/AYyLivcAfAe9rbklSc821+xpUN+uotK/R+GgP9919AqeevY07blg/R2PsdYZJklRj8wVKnwE+HhGbM3MaICI6gI8D19W7OEmSpFaVmYMR8UPg+RS+iHtdZn6lyWVJDVOpH9KXv/nTAzOSSndfg+pmHVXqa3T6k0/ksY/ZfuB+9jmSpPqaL1C6AvgYcF9EfA9YDqwDrqXQsFuSJEklIqK75Om/Fv8cOJaZ442vSqqt8rBo80AfwJz9kLp7x7j/nNu47YunVQyM4HBmHR3c1+j8Fzf25yBJS9khA6XM3Ae8LiIuA54K7AO+k5k/aURxkiRJLehnFPomLSsZm3m+H/soqcXMN9Oou3eM8f+6nX2PrDgQIJX3QxrbtYYVq/bMufuas44kqfXMN0MJgMy8B7inrpVIkiS1gcxc3uwapMMx16yj0sbZlWYaje1aw4NTK2cFSOX9kGD+3dfm2k3NWUeStDgtKFCSJElSdSJiBXAe8PvAI8AXM/PqphYlzaF8x7Xu3jEmJkc47jg53v7HAAAgAElEQVQYHjr0TCM4OEAqD48A7rv7BJ569ja+e8N6d1+TpDZgoCRJklQffwP8FvBJCn0oXx0Rv5mZFzW3LOlgg1t2HhQcDQ/1c/qLb5l3phHAg/913CH7Ic2ER8979omcMGsJm7uvSVKrMlCSJEmqj+cCv5WZewAi4lPAnYCBkhqi0hK2mfCm/NjEz6cOCo7GR3t4ZM+KBc00Oq5zL08/544DPZQq9UOaCY9cwiZJ7cFASZIkqT5+RuGz1p7i833AZPPK0VIy1xK2GeXHTjvntoOCo+7eMR51/Co2bBqZdW7lmUZPAmCwe/aYs48kqX0ZKEmSJNXHDuCmiLga2AucC/wsIv4HQGZ+sIm1qY1Umok01xK2wa7twMF9kf7tu79x0KyjDZtGeMOLnwjAYNfBy9QqzTQyQJKkpcNASZIkqT6WAduB9cXn9xT/+SRgfzMKUvuZcybSyoN3WRsf7WFieurA41J33/oEHn/63Zz9qsr9jQyKJEnlDJQkSZLqIDP/pNk1qP3NNRPpGZsqL2Fb3dF54HH5se7jO/nkpb/b2DcgSWpZBkqSJEl1EBEbgT8HukvHM/PpTSlIbWliunIz7WUr9xzU+2jDphE2D6wrvG5y7mOSJC2EgZIkSVJ9fBz4MPCjZhei9rW6o3PO2UabB/oq9j6acahjkiTNx0BJkiSpPn6amR9udhFqb5sH+uacbbRx/do5Q6JDHZMkaSEMlCRJkurjSxFxPvB/gD0zg5n5H80rSe1mJhRytpEkqdEMlCRJkupjDXAZMF0yth94VHPKUbtytpEkqRkMlCRJkurjJcBjM/OnzS5EkiSp1pY3uwBJkqQ29VPg/mYXIUmSVA/OUJIkSaqP24BvRcSXgIdmBjPzg80rSZIkqTYMlCRJkurjWCCBvnreJCLOAK4AVgFjwObM/HHZOScD3wN+VBz6aWb+fj3rkiRJ7c1ASZIkqQ4y808adKtrgXMy866I2Ax8GBgoO+c04NOZeV6DapIkSW2uroFSRDwKuAV4QWbeExFnAR+k8I3d5zLzonreX5IkqVkiYgPw58DxwDJgBfC4zDy5hvc4GrgoM+8qDt0FvLnCqacBvx0RtwMPAG/NzO0VrtcFdJUNu32YJEk6SN2ackfEM4BvUZzmHRHHAoMUvjFbB5wWEc+r1/0lSZKa7OMUvlh7FIVZRA8A19XyBpn5UGZ+CiAilgOXAEMVTv0l8MnMfBrwV8BQRBxV4bwLgH8v+3NTLWuWJEntoZ4zlF4LvBH4u+LzpwN3Z+a/A0TEpyhsp/vlOtYgSZLULPsz830R8WvADyh87rn5cC8WES8BPlQ2/IPMPKsYDl1D4bPdZeWvzcxLSh7fEBHvpfAF351lp14BXF02thZDJUmSVKZugVJmvgYgImaGTgTuLTnlXuaYQu10a0mS1Aamiv/8EfDbmXlzRKw43Itl5ueBz5ePR8TxwBcpNOQeyMw9Fc55M4UeSmPFoWXAQedl5iQwWfbawy1ZkiS1sUY25V5WYWzfHOdeAFxcx1okSZLq7daI+BzwLuD6iOgDHqnDfT4F/BA4LzP3z3HOcyj0sHx/RDyHQj+nH9ShFkmStETUrYdSBaPACSXPHwv8ZI5zrwAeV/bnzLpWJ0mSVFt/CnwoM3cCb6XwuetltbxBRJxKoT/lGcAdETESETcUj70+Ii4tnvpW4LkR8a8Ueij9UWbO9cWeJEnSvBo5Q+lWICLiNyk0eHwZhSbdB3G6tSRJamURsQxYkZnfjohO4Bjgysy8u5b3ycw7qDwLnMz8WMnjUeC5tby3JEla2ho2Qykzfwm8isLuJt+nMM36Hxp1f0mSpEaIiN+i8OXZHxR3uf0O8BfAVyPCUEeSJLWFus9QyszfKHn8deAp9b6nJElSE30AeGdm/lNE/Elx7LeBXuCzwFebVpla0tZtuxncspOJ6SlWd3SyeaCPjevdr0aS1FyNXPImSZK0FJycmdcWH/8OsKXYr2hXRDy6iXVpkTpUYLR1224uv2YHw0P9jI/20N07xsTkCIChkiSpqQyUJEmSaqt0J7dnAm8peX5Mg2vRIjdfYDS4ZSfDQ/2M7VoDwNiuNQwP9TPYtd1ASZLUVAZKkiRJtTUeEU8BOinsavsvABHxTAq73koHzBcYTUxPMT7aM+s146M9TExPNaNcSZIOaFhTbkmSpCXiHcDXgBsp9FKajogLgeuBdze1Mi068wVGqzs66e4dm3W8u3eM1R2dDatRkqRKDJQkSZJqKDO/TaEB92My84ri8C3A0zPzX5pXmRaj+QKjzQN9bNg0Qs9J97Ns+T56TrqfDZtG2DzQ14xyJUk6wCVvkiRJNZaZDwMPlzy/pYnlaBHbPNDHxOTIrB5KhcBoHfCrxtuDXdtLmnavs3+SJKnpDJQkSZKkJllIYLRx/VoDJEnSomOgJEmSJDWRgZEkqRXZQ0mSJEmSJElVMVCSJEmSJElSVQyUJEmSJEmSVBUDJUmSJEmSJFXFQEmSJEmSJElVMVCSJEmSJElSVQyUJEmSJEmSVBUDJUmSJEmSJFVlZbMLkCRJktrV1m27Gdyyk4npKVZ3dLJ5oI+N69c2uyxJko6YgZIkSZJUB1u37ebya3YwPNTP+GgP3b1jTEyOABgqSZJankveJEmSpDoY3LKT4aF+xnatYf++5YztWsPwUD+DW3Y2uzRJko6YgZIkSZJUBxPTU4yP9swaGx/tYWJ6qkkVSZJUOwZKkiRJUh2s7uiku3ds1lh37xirOzqbVJEkSbVjoCRJkiTVweaBPjZsGqHnpPtZtnwfPSfdz4ZNI2we6Gt2aZIkHTGbckuSJEl1MNN4e7Bre8kub+tsyC1JagsGSpIkSVKdbFy/1gBJktSWXPImSZIkSZKkqjhDSZIkSarC1m27Gdyys2QZW5+zkCRJS46BkiRJkrRAW7ft5vJrdjA81M/4aA/dvWNMTI4AGCpJkpYUl7xJkiRJCzS4ZSfDQ/2M7VrD/n3LGdu1huGhfga37Gx2aZIkNZSBkiRJkrRAE9NTjI/2zBobH+1hYnqqSRVJktQcBkqSJEnSAq3u6KS7d2zWWHfvGKs7OptUkSRJzWEPJUmSpBYWEa8A3gf8tDh0fWa+s+ycLuBa4BTgfuClmXlfQwttE5sH+piYHJnVQ2nDphE2D6xrdmmSJDWUgZIkSVJrOw34H5n5mUOc8xfATZn5/Ij4Y+CvgXMbUl2bmWm8Pdi1vWSXt3U25JYkLTkGStISsGfvPlatdIWrJLWp04DfjIg/B7YDb87MibJzng88u/j4M8BHImJVZu5pYJ1tY+P6tQZIkqQlz0BJWgJWrVzOO668uSbXuuz8M2pyHUlSzdwL/H/Ad4DLgL8FXl52zonF88jMvRHxALAG+EnpScWlcV1lrzU5kSRJBzFQkiRJagER8RLgQ2XDP8jMs0rOeT/wbxVevqzC2L4KYxcAFx92kZIkackwUJIkSWoBmfl54POlYxHx6Ij408ycCZqWAZWWsY0CJwC7I2Il8ChgrMJ5VwBXl42tBW46gtIlSVIbMlCSJElqXT8H3h4Rt2TmrcCbgC9UOO8G4BUUlsSdS6FB90HBU2ZOApOlYxFR86IlSVLrs0uvJElSi8rMR4CXAh+NiB3AeuDtABFxaUS8vnjqu4DTI+J7wPnAG5tRryRJah/OUJIkSWphmXkT8NQK4+8ueTwOnNPIuiRJUntzhpIkSZIkSZKqYqAkSZIkSZKkqhgoSZIkSZIkqSoGSpIkSZIkSaqKgZIkSZIkSZKqYqAkSZIkSZKkqhgoSZIkSZIkqSoGSpIkSZIkSaqKgZIkSZIkSZKqYqAkSZIkSZKkqhgoSZIkSZIkqSoGSpIkSZIkSarKymYXIEmSJDXD1m27Gdyyk4npKVZ3dLJ5oI+N69c2uyxJklqCgZIkSZKWnK3bdnP5NTsYHupnfLSH7t4xJiZHAAyVJElagKYEShFxI/DrwJ7i0HmZeWszapEkSdLSM7hlJ8ND/YztWgPA2K41DA/1M9i13UBJkqQFaHigFBHLgCcAJ2fm3kbfX5IkSZqYnmJ8tGfW2PhoDxPTU02qSJKk1tKMptwB7Ae+HBF3RsSbmlCDJEmSlrDVHZ10947NGuvuHWN1R2eTKpIkqbU0Y8nbauDrwBuAY4GtEZGZ+dWZEyKiC+gqe51zjyVJklQTmwf6mJgcmdVDacOmETYPrGt2aZIktYSGB0qZOQwMF59OR8QngLOBr5acdgFwcaNrk6Ra2bN3H6tWHvkk0FpdR5I020yfpMGu7SW7vK2zf5IkSQvUjB5KzwKOzsyvF4eW8avm3DOuAK4uG1sL3FTf6iSpNlatXM47rrz5iK9z2fln1KAaSVIlG9evNUCSJOkwNWPJWxdwaUQ8E1gFvBJ4fekJmTkJTJaORUTDCpQkSZIkSdLcGr6OIjP/CbgeuAPYBgwWl8FJkiRJkiSpBTRjhhKZ+S7gXc24tyRJkiRJko6MnV4lSZIkSZJUFQMlSZIkSZIkVcVASZIkSZIkSVUxUJIkSZIkSVJVDJQkSZIkSZJUFQMlSZIkSZIkVcVASZIkSZIkSVUxUJIkSZIkSVJVVja7AEmSJKkaW7ftZnDLTiamp1jd0cnmgT42rl/b7LIkSVpSDJQkSZJaVEQ8BvhKydCjgTWZeXzZeScD3wN+VBz6aWb+fmOqrK2t23Zz+TU7GB7qZ3y0h+7eMSYmRwAMlSRJaiADJUmSpBaVmf8J9ANExHLg68A7K5x6GvDpzDyvgeXVxeCWnQwP9TO2aw0AY7vWMDzUz2DXdgMlSZIayEBJkiSpPfwJ8GBmfrrCsdOA346I24EHgLdm5vaGVlcjE9NTjI/2zBobH+1hYnqqSRVJkrQ0GShJkiS1uIhYAVwEnDPHKb8EPpmZ/ysizgaGImJdZj5cdp0uoKvstYtq2s/qjk66e8cOzFAC6O4dY3VHZxOrkiRp6TFQkiRJagER8RLgQ2XDP8jMs4A/AHbONesoMy8peXxDRLwXWAfcWXbqBcDFNSu6DjYP9DExOTKrh9KGTSNsHljX7NIkSVpSDJQkSZJaQGZ+Hvj8HIc3AZ+d67UR8WYKPZTGikPLgD0VTr0CuLpsbC1wU1XF1tFMn6TBru0lu7yts3+SJEkNZqAkSZLU+jYA7zvE8ecAxwLvj4jnACuAH5SflJmTwGTpWETUsMza2Lh+rQGSJElNZqAkSZLU+k4BdpcORMTrgRMz893AW4GrI+IVwC+AP8rMfY0vU5IktQsDJUmSpBaXmcdVGPtYyeNR4LkNLUqSJLW15c0uQJIkSZIkSa3FQEmSJEmSJElVMVCSpEVsz97atTip5bUkSZIkLW32UJKkRWzVyuW848qba3Kty84/oybXkSRJkiRnKEmSJEmSJKkqBkqSJEmSJEmqioGSJEmSJEmSqmKgJEmSJEmSpKoYKEmSJEmSJKkqBkqSJEmSJEmqioGSJEmSJEmSqmKgJEmSJEmSpKoYKEmSJEmSJKkqBkqSJEmSJEmqioGSVAd79u5bVNeRwH8vG82ftyRJktrZymYXILWjVSuX844rbz7i61x2/hk1qEYq8N/LxvLnLUmSpHbmDCVJkiRJkiRVxUBJkiRJkiRJVTFQkiRJkiRJUlUMlCRJkiRJklQVAyVJkiRJkiRVxV3eJEmSdNi2btvN4JadTExPsbqjk80DfWxcv7bZZUmSpDozUJIkSdJh2bptN5dfs4PhoX7GR3vo7h1jYnIEwFBJkqQ255I3SZIkHZbBLTsZHupnbNca9u9bztiuNQwP9TO4ZWezS5MkSXVmoCRJkqTDMjE9xfhoz6yx8dEeJqanmlSRJElqFAMlSZIkHZbVHZ10947NGuvuHWN1R2eTKpIkSY1ioCRJkqTDsnmgjw2bRug56X6WLd9Hz0n3s2HTCJsH+ppdmiRJqjObchft2buPVSuPPF+r1XVqeS1rWuh1HmHVyhU1qEhSoy3G/21ajPw5qdZmGm8Pdm0v2eVtnQ25JUlaAgyUilatXM47rrz5iK9z2fln1KCaAmtamFrWVIvrzFxLUuMsxv9tWoz8OakeNq5fa4AkSdIS5NeLkiRJkiRJqoqBkiRJkiRJkqpioCRJkiRJkqSq2ENJkiSphUTEpcC+zLyk+LwLuBY4BbgfeGlm3lf2mmXAB4AXAPuA12ZmbRoHSpKkJckZSpIkSS0gIh4dEZ8ALiw79BfATZm5DrgK+OsKL38RsA74LWATcE1E+MWiJEk6bAZKkiRJrWEAuBu4vGz8+RRmKAF8BnheRKyqcM5nM3NfZu4Efgw8s57FSpKk9taUb6Yi4mXARcBRwIcy8yPNqEOSJKlVZOYnASLikrJDJwL3Fs/ZGxEPAGuAn1Q6p+heYG35PYrL57rKhg86T5IkqeGBUkT0An8JrAceAm6JiG9k5vcbXYskSdJiExEvAT5UNvyDzDxrjpcsqzC27zDOAbgAuPjQFUqSJDVnhtJZwI2ZOQ4QEf8AvBi4tAm1SJIkLSqZ+Xng81W8ZBQ4Adhd7Iv0KGBsjnNmPJbZM5hmXAFcXTa2FripinokSdIS0IxAqdKU66eXnjDHdOv/BnDfffdRL9MP/OyIr7F79+4aVPIr1rQwtaqpFtep5bVq+XNajO/Nmhp3nVpeq9Z/f2tlMb43a6pOyX/jV9TlBu3rBuAVwGXAuRQadO+pcM7miPgM8DigD7it/EKZOQlMlo5FxAqo72cwSZLUPIf7GWzZ/v37a1/NIUTEO4DjMvOi4vPXAE/LzNeXnHMJTreWJGmpOjMzv9XsIharmR5KmXlJ8Xk3hVlF/51CGPTyzLwnIs4BzsnM10TEMuADwPOKl/nTzPzKAu/3LJyhJEnSUlDVZ7BmzFAaBc4seV5pynWl6dZHAadQ2N3kkeLYzBTsM4HF+ZV5ffn+ff++f9+/739pvn9oz5/BCgqfCw6aOaNfmQmSSp6PA+dUOO+LwBeLj/cDFxb/VOs2Cv+e3cuvPoMtZu34d6Pd+Dta3Pz9LH7+jha/VvsdHdZnsGYESl8DLomINcA08CLgdaUnVJpuXbSz9ElEzDzcnZn31LzSRc737/sv8v37/u9pYilNsdTfP7T1z+BHzS5As2XmQ0DLzBhr478bbcPf0eLm72fx83e0+LXo76jqz2DL61HFoWTmKPBO4BvACPDpzPxOo+uQJEmSJEnS4WnGDCUy89PAp5txb0mSJEmSJB2Zhs9QkiRJkiRJUmtr9UBpEngPlfstLQW+f9+/79/37/tfuvwZSJX5d2Px83e0uPn7Wfz8HS1+S+J3tGz//v3NrkGSJEmSJEktpNVnKEmSJEmSJKnBDJQkSZIkSZJUlabs8na4IuJSYF9mXlJ83gVcC5wC3A+8NDPvK3vNMuADwAuAfcBrM/PmRtZdKxHxGOArJUOPBtZk5vFl550MfA/4UXHop5n5+42psr4i4hXA+4CfFoeuz8x3lp0z778XrSoizgCuAFYBY8DmzPxx2Tlt9/uPiJcBFwFHAR/KzI+UHe8HrqLwd+KbwOszc2/DC62TiLgYeGnx6fWZ+fay4+8GXg1MFIeuKv8ZtbKIuBH4dWBPcei8zLy15PhZwAeBY4HPZeZFja+yPiLiNcCbSoYeB/xdZr6p5Jy2/v1Lh2Mh/73U4lD++V7NN9/nLjVfRDwKuAV4QWbe0+RyVGa+z+7tpCUCpYh4NIX/s/BHwPtLDv0FcFNmPj8i/hj4a+Dcspe/CP7/9u4/WM6qvuP4+xIJSQcVaYmKNRZFPhSRH4UIsdLYIbQQO4Ctv/ghqMSGFkQrqVABx1YtiFCBgSFUTKNGpANa1BJ+FZkOaqCmEwia8gmt6GBgmsbWWpAEiLd/nLOw2ezu/ZF772aXz+ufu/ucs89zznN273P2u+ech98E9gP2BlZI2rcfv2za3gAcBCBpJ+BO4Lw2WecA19leNIXFmypzgA/b/kqXPKN5X/SrLwPH2l4j6X3AFcBxLXkGqv0lvQL4FHAIsBn4rqS7bK9tyrYcWGj7HkmfB94PXD31pZ14NVjye8DBwDBwq6S32v6HpmxzgHfZXtmLMk6m+qPAvsDsdv+3Jc0ElgLzgEeAmyUdY/uWqS3p5LB9LXAtgKTXATcBH2/JNrDtH7EdRnO9jB7q0r+PHhplvyt6SNJhlB9S9+l1WWJbo+y7D4x+mfJ2HPAQcGnL9rdQOgwAXwGOkbRzmzzX2/6l7XXAj4E3TmZhp8h7gV/Yvq5N2hxgf0mrJH1L0uunuGyTaQ5wiqT7JS2X9JI2eUbzvug7knYBzre9pm5aA8xuk3XQ2n8+8C3b/237CeBG4G2NREmvAmbavqduWga8fcpLOXkeA862/ZTtp4F/Y9t2PxQ4R9IaSVdKmjHlpZw8olyMb6mf+zNb0t8APGT74RpwWs5gtX+zq4GP2t7Ysn2Q2z9izMZwvYze6tS/j97q2u+KHcL7gTOAR3tdkGhrNH33gdEXASXbX7R9EbClJWlPSoNRv0j8HNijU57qMeDXJ6moU0LSNMow1HM7ZNkEfNH2ocAlwE2Spk9V+SbZY5Rf5w+ijEa4sk2e0bwv+o7tzbaXw7Mj1D5OGa3QatDaf6TP8MB9xpvZ/kEjWCbptZTRdisa6ZJ2BVYDi4HfAnYDLuhBUSfLSyijMY8HjgROl3RUU/pAt39D/bVrpu0bWrYPevtHjNkYrpfRQ13699Fbz4vraj+zvdD23b0uR7Q3Ut990OxQU94kvR34bMvmB23P7/CSoTbbfjmOPDucEc7F0cA62w+0e23zHHTbKyRdSJn2d/8kFXfCjea9IOli4IdtXt6Xbd6sW/1rcOgLlM/vX7e+dhDav8VI7dn37T0adbrTzcBi2w81ttt+HFjQlO9SyhSwdtNh+06dxtWYyvVEndK4ALijbntetD+wiDI1ZCuD3v4RI9me62VMjXH076O3ni/X1YhJ1anvPmh2qIBS/eX1hhEzPmc98DLgJ5JeALyIsvBiuzwNL6cPhgeOcC6OB67v9FpJH6CsodM4F0M8t5htX2hXf0kvlvRnthudkk71Gs37YofWqf3raIRvUOpzXB1G2Zqn79u/xXrgiKbnrZ/hvvyMj0VdXParwIdsX9+SNhuYb3tp3dTv7b0VSW8CdrF9Z93UWr/nQ/tPp6wR9Z42aQPd/hEj2Z7rZUyNcfTvo7dG6ndFxAi69d0HTV9MeetiBXBKffxOykLMrR2GFcBJkqZJ2puyeNn3prCMk2Eu0G2Y4zzKHX+QNA+YBjw4BeWabI8DH6kL0UG581G7xc1G877oV8uBf6fcuW5zhzyD1v7/BBwpaQ9Jv0JZaP/WRmK9a8+m+o8bStsPxILMAJJeSZmqcWKHC9KTwMWS9qoLWJ9B+89Fv9oN+IykGZJeCJzK1vW7F5Ckvet04BMZoPavDqCMSn2iTdqgt3/EeI3mehkR2+ra74qI7kbRdx8oO9QIpXG4AFgm6QfAz4CTACQdS7mzx0LKQnKHURZkBDjN9pO9KOwEejXwk+YNkk4H9rT9MeCDlPNyCuXLxgm2+36oqu0tkt4BXF3v7LSOGjiqt5x91PYSOrwv+p2kgykLWK4FVkuCUucFg9z+ttdLOg+4i3L72mtt/4ukFcDHbK+itPHnasBhNeVuPoNiMTAD+Jva5gBLgGOp9Ze0CPgm5fx8mwFa4NT2P9Yg8mpKcPQq2ysl3QcssP2opPdQfgWaQQko39izAk+Odv/zn33/D3L7R4xHt+tlTwsW0Qc69bt6XKyIftK2716/pw6coeHh4V6XISIiIiIiIiIi+ki/T3mLiIiIiIiIiIgploBSRERERERERESMSQJKERERERERERExJgkoRURERERERETEmCSgFBERERERERERY/KCXhcgIiIiIiKin0i6Avid+nQ/4GHgyfp8LvALYA/bG3tQttuBE21vlLQCWGx77Tj2swz4vu1L2qT9BvAJ4DBKvTcD19j+/PaUfYTybFMvYBZwpe39J+u4EdFZAkoRERERERFjYPusxmNJPwJOsr2qaVsPSvWsoxoPbC+Y6J1LeiWwEvgL2++u214BfFnSPrbPmehjVtvUS9KsSTpWRIxCAkoRERERERET7y8lHQ78KvAZ21cBSDoN+FPK8iM/Bc60/aCkFwNXAQcBw8AtwEdtPyNpM/B14EDgJOAJ4PK672nAFbaXSvq7euy7JC0A7gbeZnuVpPcBZwNbgI3AqcB64LPA4cALgSFgoe3vdKnXucANtpc1NtheL+mdwMOSLgf2oWnkkKQ3N55LeilwDfBS4GXAj4F32N5Qg3PLgCOB2cDf2/5Ip3o1F0rSdODTwLx6TlYDZ9n+uaQ/AU4HngI2AYvGM2orIraWNZQiIiIiIiIm3g9tHwK8FbhU0s6S5lECOUfYPhi4GPhazX8FJcD0euBQSvBocU2bDnzTtoD7gBuBc+v+5wGLJR1u+701/+/afqRREEkHUoItR9s+APgGcB5lytqewFzb+wFfoASMunkT8M+tG23/J7C27rObdwErbc8FXk2ZHvjupvRdbR8BvBH4gKS9OtWrxbnAM8Ahtg8EHgUukjQNuIxS9znA39Y6RMR2ygiliIiIiIiIiXdd/XsfsAvwIuAtwN7Ad5umxe0uaXfgGOC3bQ8DmyUtAT4EXFTz3V3/7gO8BljatI+ZwMHAPR3KciRwWyMYY/uyRoKk84FFkl4DvBn4v3HWt2Fat0Tbl0s6QtKHgdcC+wP3NmX5es23XtIGYHfKGlUj+QNgN+Coel6mAxtsb5F0A+Wc3wzcznNtExHbIQGliIiIiIiIifc0gO3hGuAYogRbvtRYZ0jSTpQRQv/DtrNHdgJ2bnr+eP07DfiZ7YMaCXUa2f92KcszlGl0jfwzgVdRAlOXA5dSAjkPAiePUK/vUAJPX637mkUZWbU7ZYHyeykjj4aaXjO96difBt4ALAXuqnVszvtk08iKNDYAAAHlSURBVOPhlrRupgEftH1LPc6uwAwA2ydL2h+YD5wDnAYcN8r9RkQHmfIWERERERExNW4HTpD08vr8dODO+vg24AxJQ5J2Af4YuKPNPgxsknQyPLtI9veBQ2r6FrYOREEJ3MxvOu4iynS7oyhT6a4GvgcczwgjjIALgT+SdGp9fgLwAHATsKSOgvovYLakWZKG6n4bfh+4zPaXgA21DCMds1O9mt0GnClpeg3UfQ64UNKvSXoE+GkdmXU+ZTphRGynBJQiIiIiIiKmgO3bKGsZ3SFpDXAi8Id1mttZwCxKcOYBSuDoU2328RRldM3Cuo/bgQuaFtL+GvDtOiKn8ZoHgD8HbpV0P3A0JZi1BJhX97MS+A9grxqQ6VSHR4C5lKll6yiBr6cpwaF9Jb2uLnh9DbCKMg3vsaZd/BVwiaR/bZSVMg1wJNvUq8UngB9RFuNeSxnZdLbtjcAngTvrMS8CFo7ieBExgqHh4eGRc0VERERERER0IekAYJPtdb0uS0RMvgSUIiIiIiIiIiJiTDLlLSIiIiIiIiIixiQBpYiIiIiIiIiIGJMElCIiIiIiIiIiYkwSUIqIiIiIiIiIiDFJQCkiIiIiIiIiIsYkAaWIiIiIiIiIiBiTBJQiIiIiIiIiImJM/h+VE+ZixOkw7QAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots(1,2, figsize=(20,6))\n", "ax = ax.ravel()\n", "\n", "heavy_tailed_data = np.concatenate((np.random.normal(0,1,80), np.random.normal(1,5,20)))\n", "sns.histplot(heavy_tailed_data,kde=False,ax=ax[0])\n", "\n", "sm.qqplot(heavy_tailed_data, ax=ax[1])\n", "\n", "W, p=stats.shapiro(x=heavy_tailed_data)\n", "\n", "print(f\"The value of W is {W}, p={p}\")\n", "glue(\"exp3_fig\",fig,display=False)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "```{glue:figure} exp3_fig\n", ":figwidth: 650px\n", ":name: \"fig:exp3\"\n", "\n", "Histogram of `heavy_tailed_data`, a normal (0,1) distributed sample with 80 observations mixed with 20 samples from N(1,5). A normal QQ plot of the same data.\n", "```\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "## Testing non-normal data with Wilcoxon tests\n", "\n", "Okay, suppose your data turn out to be pretty substantially non-normal, but you still want to run something like a $t$-test? This situation occurs a lot in real life. And this is the situation where you want to use Wilcoxon tests. \n", "\n", "Like the $t$-test, the Wilcoxon test comes in two forms, one-sample and two-sample, and they're used in more or less the exact same situations as the corresponding $t$-tests. Unlike the $t$-test, the Wilcoxon test doesn't assume normality, which is nice. In fact, they don't make any assumptions about what kind of distribution is involved: in statistical jargon, this makes them **_nonparametric tests_**. While avoiding the normality assumption is nice, there's a drawback: the Wilcoxon test is usually less powerful than the $t$-test (i.e., higher Type II error rate). I won't discuss the Wilcoxon tests in as much detail as the $t$-tests, but I'll give you a brief overview." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Two sample Wilcoxon test\n", "\n", "I'll start by describing the **_two sample Wilcoxon test_** (also known as the Mann-Whitney test), since it's actually simpler than the one sample version. Suppose we're looking at the scores of 10 people on some test. Since my imagination has now failed me completely, let's pretend it's a \"test of awesomeness\", and there are two groups of people, \"A\" and \"B\". I'm curious to know which group is more awesome. The data are included in the file `awesome.csv`, and like many of the data sets I've been using, it contains only a single data frame, in this case called `awesome`. Here's the data:" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
scoresgroup
16.4A
210.7A
311.9A
47.3A
510.0A
614.5B
710.4B
812.9B
911.7B
1013.0B
\n", "
" ], "text/plain": [ " scores group\n", "1 6.4 A\n", "2 10.7 A\n", "3 11.9 A\n", "4 7.3 A\n", "5 10.0 A\n", "6 14.5 B\n", "7 10.4 B\n", "8 12.9 B\n", "9 11.7 B\n", "10 13.0 B" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "awesome_df=pd.read_csv('http://gureckislab.org/courses/fall19/labincp/data/awesome.csv',index_col=0)\n", "awesome_df" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As long as there are no ties (i.e., people with the exact same awesomeness score), then the test that we want to do is surprisingly simple. All we have to do is construct a table that compares every observation in group $A$ against every observation in group $B$. Whenever the group $A$ datum is larger, we place a check mark in the table.\n", "\n", "We then count up the number of checkmarks. This is our test statistic, $W$. (Actually, there are two different versions of the test statistic; they differ from each other by a constant value. The version that I've described is the one that Python calculates.) The actual sampling distribution for $W$ is somewhat complicated, and I'll skip the details. For our purposes, it's sufficient to note that the interpretation of $W$ is qualitatively the same as the interpretation of $t$ or $z$. That is, if we want a two-sided test, then we reject the null hypothesis when $W$ is very large or very small; but if we have a directional (i.e., one-sided) hypothesis, then we only use one or the other. \n", "\n", "The test to do this in pingouin is named for the Mann-Whitney version of the test (`mwu()`). This it the non-parametric version of the independent t-test:" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
U-valtailp-valRBCCLES
MWU3.0two-sided0.0601030.760.88
\n", "
" ], "text/plain": [ " U-val tail p-val RBC CLES\n", "MWU 3.0 two-sided 0.060103 0.76 0.88" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "group1=awesome_df.groupby('group').get_group('A').scores\n", "group2=awesome_df.groupby('group').get_group('B').scores\n", "pg.mwu(x=group1, y=group2, tail='two-sided')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The structure of the `mwu()` function should feel very familiar to you by now and is exactly like the pingouin `ttest()`. Just like we saw with the `ttest()` function, there is an `tail` argument that you can use to switch between two-sided tests and one-sided tests.\n", "\n", "The paired version of the test is called the Wilcoxon test and is provided by the `wilcoxon()` function in pinouin. It is otherwise called the same way." ] }, { "cell_type": "code", "execution_count": 206, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/Users/gureckis/.virtualenvs/science/lib/python3.7/site-packages/scipy/stats/morestats.py:2863: UserWarning: Sample size too small for normal approximation.\n", " warnings.warn(\"Sample size too small for normal approximation.\")\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
W-valtailp-valRBCCLES
Wilcoxon1.0two-sided0.105645-0.8670.88
\n", "
" ], "text/plain": [ " W-val tail p-val RBC CLES\n", "Wilcoxon 1.0 two-sided 0.105645 -0.867 0.88" ] }, "execution_count": 206, "metadata": {}, "output_type": "execute_result" } ], "source": [ "group1=awesome_df.groupby('group').get_group('A').scores\n", "group2=awesome_df.groupby('group').get_group('B').scores\n", "pg.wilcoxon(x=group1, y=group2, tail='two-sided')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Notice that the paired and unpaired versions of the test are slightly different in terms of what p-values you get." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Summary\n", "\n", "- A one sample $t$-test is used to compare a single sample mean against a hypothesised value for the population mean. \n", "- An independent samples $t$-test is used to compare the means of two groups, and tests the null hypothesis that they have the same mean. It comes in two forms: the Student test assumes that the groups have the same standard deviation, the Welch test does not.\n", "- A paired samples $t$-test is used when you have two scores from each person, and you want to test the null hypothesis that the two scores have the same mean. It is equivalent to taking the difference between the two scores for each person, and then running a one sample $t$-test on the difference scores.\n", "- Effect size calculations for the difference between means can be calculated via the Cohen's $d$ statistic. \n", "- You can check the normality of a sample using QQ plots and the Shapiro-Wilk test. \n", "- If your data are non-normal, you can use Wilcoxon tests instead of $t$-tests. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## References\n", "\n", "```{bibliography} ../../references.bib\n", ":filter: docname in docnames\n", "```" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "celltoolbar": "Tags", "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "toc": { "base_numbering": 1, "nav_menu": {}, "number_sections": false, "sideBar": true, "skip_h1_title": false, "title_cell": "Table of Contents", "title_sidebar": "Contents", "toc_cell": false, "toc_position": {}, "toc_section_display": true, "toc_window_display": false } }, "nbformat": 4, "nbformat_minor": 2 }