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Abstract
Semi-supervised category learning is when participants make
classification judgements while receiving feedback about the
right answers on some trials (labeled stimuli) but not others
(unlabeled stimuli). Sporadic feedback is common outside the
laboratory, and it is important to understand how people learn
in this setting. While there are numerous recent studies, the
strength and robustness of semi-supervised learning effects re-
main unclear, particularly when labeled and unlabeled stimuli
are dispersed across learning. We designed an experiment, us-
ing simple unidimensional category learning, that allows us to
measure the relative contribution of labeled and unlabeled ex-
perience. Based on an analysis of this task, we find that an
unlabeled stimulus is worth more than 40% of a labeled stim-
ulus.
Keywords: categorization; semi-supervised learning

People organize perceptual knowledge into categories such
as types of cheese, types of cars, or types of animals. When
acquiring these categories from experience, people must learn
to associate stimuli with the appropriate category labels. Con-
sider this anecdote about acquiring cheese categories.

A man attending a food festival tries several samples of
cheese. After tasting the samples, he looks at the ac-
companying labels on each cheese, remarking that the
Gruyère is his favorite. Several days later at a party,
he enjoys several pieces of cheese from a platter with
no accompanying labels. Although uncertain, he thinks
he recognizes the taste of Gruyère he recently experi-
enced at the food festival. He suspects a certain cheese
is Gruyère but he is unsure.

Does the man use this unlabeled encounter at the party to
further refine his understanding of cheese categories? If so,
he is engaged in semi-supervised category learning, defined
as learning from both labeled (feedback) and unlabeled (no-
feedback) encounters with objects. This is in contrast to su-
pervised learning, which uses only labeled examples, and un-
supervised learning, which uses only unlabeled examples, to
learn categories.

Semi-supervised learning algorithms are studied in ma-
chine learning, largely because labeled data is often more
difficult and expensive to obtain than unlabeled data (Zhu,
2005; Chapelle, Scholköpf, & Zien, 2006). For example, if
one is classifying web pages into categories based on content,
labeled data would likely be collected by hand while unla-
beled data could be harvested from the internet automatically
(see Nigam, McCallum, and Mitchell (2006) for related appli-
cation). Humans face a similar problem when learning per-
ceptual categories, where the amount of unlabeled encounters

with objects often exceeds the amount of labeled encounters.
Despite the sparsity of labels, the human ability to learn new
concepts is remarkable, and perhaps this ability can be par-
tially explained by effective semi-supervised learning.

Recent work has investigated whether people perform
semi-supervised learning, but many studies are limited by
having separate supervised (feedback) and unsupervised (no-
feedback) phases of learning. In two studies, participants
were first shown a small number of labeled examples (typi-
cally one or two), followed by a large set of unlabeled exam-
ples (Zhu, Rogers, Qian, & Kalish, 2007; Zhu et al., 2010).
These studies showed that people are sensitive to both the dis-
tributional structure of the subsequent unlabeled experience
(Zhu et al., 2007) and the stimulus order (Zhu et al., 2010).
Other studies showed labeled and unlabeled data together in
a questionnaire format. Stromsten (2002) presented partici-
pants with a labeled example of a fish simultaneously with
either 0, 8, or 29 unlabeled fish examples, finding a over-
all difference in classification performance. Gibson, Zhu,
Rogers, Kalish, and Harrison (2010) presented participants
with a few labeled examples that reside within dense clusters
of unlabeled stimuli. People propagated the labeled informa-
tion along the cluster, but only if neighboring stimuli were
highlighted during categorization.

By using separate supervised and unsupervised phases, the
studies mentioned do not address semi-supervised learning
when feedback is dispersed across learning. People may be-
have differently when feedback is available on some trials and
not others, with the two types intermixed. If additional la-
beled information is anticipated, people might ignore or fail
to learn from the more ambiguous unlabeled information. A
recent study by Vandist, De Schryver, and Rosseel (2009) is
consistent with this position, finding no evidence for semi-
supervised learning when feedback was intermittent. Par-
ticipants engaged in an information-integration task, defined
as a task where participants have to combine perceptual in-
formation from two underlying stimulus dimensions simul-
taneously to obtain optimal performance (Ashby, Queller, &
Berretty, 1999). Unlabeled trials were drawn from the ex-
act same distribution as the labeled trials, and one group re-
ceived unlabeled stimuli while another group received un-
related filler events instead. Learning progressed at similar
rates, providing no evidence of semi-supervised learning. In
a similar design utilized in Rogers, Kalish, Gibson, Harrison,
and Zhu (2010), there was no evidence for semi-supervised
learning, which the authors suggest arose from selective at-



tention to an irrelevant stimulus dimension. When they im-
posed a response deadline to disrupt this attention, there was
an effect of the unlabeled stimuli.

We designed an experiment that allows us to measure
the relative contribution of labeled versus unlabeled experi-
ence during learning with intermittent feedback. In our task,
the unlabeled stimuli provide additional information, beyond
simply more samples from the stimulus distribution as in
Vandist et al. (2009) and Rogers et al. (2010), which allows
us to estimate the strength of the unlabeled impact. Zhu et
al. (2007) estimated this quantity and found that an unlabeled
stimulus was worth a surprisingly small fraction (about 5%)
of a labeled stimulus. In a statistical analysis of our data, we
find a much larger contribution of 40% to 100% based on the
95% posterior interval and discuss the implications for theo-
ries of categorization.

Experiment
Participants were assigned to one of two groups, where both
groups received exactly the same labeled items but differ-
ent unlabeled items. The labeled items suggest a particu-
lar category boundary, and the unlabeled distributions were
designed to shift this boundary in opposing directions (Zhu
et al., 2007). Consequently, a difference in classification
boundary between the two groups would demonstrate semi-
supervised learning.

Method: Semi-Supervised Learning

Participants 40 subjects from Stanford University and the
surrounding community participated in this experiment for a
payment of $6 to $8 depending on performance. Participants
were told that overall accuracy in the task would determine
payment.

Design Participants made a sequence of categorization
judgements. After each judgement, feedback was or was not
presented. Participants were randomly assigned to either a
“left shift” or “right shift” group. These groups received the
same distribution of feedback items but different distributions
of no-feedback items.

Stimuli Stimuli were horizontal lines that varied only in
length. Each line belonged to one of two categories, C
(shorter lines) or N (longer lines). The distribution of stimu-
lus items is shown in Figure 1. Feedback occurred for about
25% of the trials. Each training item was presented twice
per block (either twice unlabeled or once labeled and once
unlabeled) as illustrated in Figure 1. Both the left shift and
right shift groups saw the exact same feedback items once
per block (black bars). However, the groups differed in no-
feedback items (grey bars), which were shifted to be smaller
in length (left shift) or larger in length (right shift). If partici-
pants perform semi-supervised learning and integrate the no-
feedback trials into their category representations, their clas-
sification boundaries should likewise be shifted either to the
left or right.

Training consisted of 5 blocks of 48 trials each. In addi-
tion, 9 transfer items were added to the last two blocks, pre-
sented once per block without feedback. Hence there was no
separate testing period during the experiment. These trans-
fer items were designed to probe the region near the category
boundary to see if the two participant groups differed in their
category representations.

Procedure Participants were informed that they would see
lines, varying only in length, that belonged to one of two cat-
egories corresponding to the keys “C” vs. “N” on the key-
board. They were instructed that sometimes they would be
told whether their answer was correct or incorrect, and other
times they would be told nothing, regardless of whether their
answer was correct or incorrect. Participants were self-paced
during the task. Upon entering a response, feedback trials
displayed a “Correct!” or “Wrong!” message. The feedback
and the stimulus remained on the screen for 2 seconds. For
no-feedback trials, the stimulus stayed on the screen for 2 sec-
onds without any text. One participant was removed from the
analysis for near chance performance.

Method: Supervised Learning

For comparison, we ran a fully-supervised experiment that
was exactly analogous to the semi-supervised experiment.
The method was identical except where noted.

Participants and Design 21 subjects participated in this
experiment. Participants were assigned to either a “left shift”
or “right shift” group.

Stimuli The stimuli were identical to the semi-supervised
version, as illustrated in Figure 1, except that all training
items received feedback (there is no distinction between the
black and grey bars in the figure). The purpose of the experi-
ment was to see how much the boundary differed between the
left and right shift groups when there was full feedback. As
in the semi-supervised experiment, nine transfer items were
intermixed in the last two blocks, presented once per block
without feedback.

Procedure Instructions were the same, except participants
were told that “Most of the time you will be told by the com-
puter whether your answer was correct or incorrect” instead
of “Sometimes.” This was changed since only the transfer
items were without feedback in this experiment. One partici-
pant was removed for using an aid to help measure the lines.

Results

Performance reached high accuracy. For the third training
block, the semi-supervised group’s mean accuracy was 97%
correct (Figure 2a) and the supervised group’s was 99% cor-
rect (Figure 2b). Participants were clearly categorizing the
no-feedback items into the correct categories in most cases,
before the transfer items were introduced in the next block.

For participants assigned to the semi-supervised learning
condition, the no-feedback items produced a clear influence
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Figure 1: Frequency distribution for a block of learning. Participants were assigned to either the left shift group or the right
shift group. All training items were presented twice per block. Each item was either unlabeled twice (all grey bars) or once
unlabeled and once labeled (half grey and half black bars). Participants in both shift groups received the same feedback items,
but no-feedback items were either left shifted or right shifted. Transfer stimuli that were presented once per block in the last
two blocks are indicated by open circles.

on the categorization of novel transfer items. Figure 2c shows
the responses to transfer stimuli during the last two blocks of
the experiment, for the left shift and right shift groups. The
groups differed in how they categorized the transfer stimuli
(410 to 490 pixels) in the expected direction. The difference
between groups in overall number of “N” responses for trans-
fer items was significant (one-tailed t(37) = 5.7, p< .001, left
shift M = 14.6 of possible 18, SD = 2.0 and right shift M =
9.3 of 18, SD = 3.6).1

Participants assigned to the fully supervised task showed
an even larger shift, as expected (Figure 2d). The difference
between shift groups in overall number of “N” responses for
transfer items was significant (one-tailed t(18) = 7.8, p <
.001, left shift M = 15.0 of possible 18, SD = 2.5 and right
shift M = 5.9 of 18, SD = 2.7).

Bayesian estimate of unlabeled influence
To estimate the influence of the unlabeled data, we conduct a
Bayesian analysis of the psychometric function for the semi-
supervised experiment. This is a statistical analysis of the
data, not a model of category learning. The variable of pri-
mary interest is λ that modulates the contribution of the un-
labeled information, where λ = 0 denotes no influence and
λ= 1 denotes an equal weight of unlabeled and labeled influ-
ence. There are two other unknown variables, response bias
βN and perceptual noise φ which flattens the decision curve.
We assume uniform priors λ ∼ Unif(0,1), βN ∼ Unif(0,1),
and φ∼ Unif(0,100) measured in pixels.

1For any given participant, three transfer items were identical in
length with three no-feedback training items. Thus, during the last
two blocks when transfer items were shown, these items were pre-
sented three times each per block without feedback while the other
transfer items are presented only once. For the analysis, these items
were included only once, with one replication per block randomly
designated as the transfer trial.

We use the notation si to denote a transfer item with a cat-
egorization response yi ∈ {C,N} which denote the two re-
sponse keys “C” and “N.” We model the response probability
of a transfer item as

P (yi =N |si,λ,βN ,φ)

=
βN Normal(si|µN ,σ

2
N )

βN Normal(si|µN ,σ
2
N )+(1−βN )Normal(si|µC ,σ

2
C)
,

using Gaussians to model the category densities.
The parameters of these categories (µN , µC , σ

2
N , and σ2

C )
are defined as functions of the unlabeled contribution variable
λ. Essentially, these parameters are calculated as the mean
and variance of the stimuli assigned to each category dur-
ing training, where the labeled and unlabeled training stim-
uli have different contributions as determined by λ. More
formally, let ri denote a training item and let zi ∈ {C,N} de-
note its label as defined by the experimenter (which may or
may not be observed by participants). The set i ∈ L denote
labeled items ri with observed labels zi, and the set j ∈U de-
note unlabeled items rj with hidden labels zj . The category
parameters are then defined as

µN =
∑

i∈L δ(zi,N)ri +λ
∑

j∈U δ(zj ,N)rj∑
i∈L δ(zi,N)+λ

∑
j∈U δ(zj ,N)

where the delta function δ(zj ,N) = 1 when zj = N and
δ(zj ,N) = 0 otherwise, and the category variance is

σ2
N = φ2 +

∑
i∈L δ(zi,N)(ri−µN )2∑

i∈L δ(zi,N)+λ
∑

j∈U δ(zj ,N)

+
λ

∑
j∈U δ(zj ,N)(rj−µN )2∑

i∈L δ(zi,N)+λ
∑

j∈U δ(zj ,N) .
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Figure 2: Categorization of stimuli aggregated across participants. Part a) and b) show the responses during the third block of
learning (the block before the transfer items were introduced). Part c) and d) show the categorization of transfer items (lengths
410 through 490) during the last two blocks of training, which were intermixed with the training items (colored histograms).
Part a) and c) show semi-supervised participants, and b) and d) show supervised participants. The plots shows the probability
of responding “N” for each stimulus during these blocks, aggregated across participants. Participants in the left shift and right
shift groups showed different categorization profiles. For the semi-supervised condition, these two groups only differed in the
no-feedback stimuli they saw. This indicates that no-feedback stimuli influenced the learned category representations. The
dotted curves shows 10 posterior samples of psychometric functions, see “Bayesian estimate of unlabeled influence.”



The parameters µC and σ2
C are defined similarly. This anal-

ysis does assume that training stimuli ri are correctly catego-
rized by the participants, which leads to a conservative esti-
mate of λ.2

We aggregate the transfer stimuli across participants to
form vectors y of category responses (yi ∈ {C,N}) with the
corresponding stimulus vector s. The posterior of the param-
eters given the data is thus

p(λ,βN ,φ|y,s)∝ p(λ)p(βN )p(φ)
∏

i

P (yi|si,λ,βN ,φ).

From this joint posterior, we compute the marginal posterior
distributions p(λ|y,s), p(βN |y,s), and p(φ|y,s) which are
shown in Figure 3. This computation is done by approximat-
ing the continuous posterior with a discrete grid and summing
over the other variables. The distribution of λ is of primary
interest, since it signifies the contribution of the unlabeled
data. By simulation, the posterior mean for λ is 0.725 and
the 95% central interval is [0.413,1] (Gelman, Carlin, Stern,
& Rubin, 2004). Given the modeling assumptions, there is a
97.5% chance that an unlabeled example is worth more than
40% of a labeled example.

For an analogous analysis in the supervised case without λ,
we find a 95% central posterior interval for βN is [0.55, 0.68]
and for φ is [47.5, 61]

Discussion
We tested participants in a paradigm where two groups re-
ceived exactly the same labeled items but different unlabeled
distributions (see Zhu et al., 2007). Labeled and unlabeled tri-
als were randomly intermixed and presented in sequence. By
the end of learning, there was a difference in classification
boundary between the two groups, indicating that the partic-
ipants performed semi-supervised learning. The experiment
allowed us to measure the relative contribution of labeled and
unlabeled experience. Through a Bayesian analysis of the
psychometric function, we find that parameter λ, the ratio be-
tween the unlabeled and labeled contribution, has a posterior
mean of λ ≈ 0.725. The central posterior interval suggests
there is a 97.5% chance that an unlabeled example is worth
more than 40% of a labeled example.

This is in contrast to a past study by Zhu et al. (2007),
where a similar parameter was found to be λ ≈ 0.06, mean-
ing about 5% of a labeled example. Also Zhu et al. (2010) fit
a similar parameter in an exemplar model and found λ≈ 0.2.
There are several important factors that could underly this dif-
ference between past studies and our own. First, the Zhu et al.
studies showed participants the labeled stimuli first and then

2The assumption that the distribution parameters are derived
from the intended labeling of the training stimuli ri is supported
by the high overall accuracy in the third training block (97% cor-
rect). In a hypothetical case that a participant has not assigned a
particular unlabeled stimulus to the correct category but the model
has, parameter fitting to response data would underestimate rather
than overestimate the influence parameter λ, since this misassigned
stimulus is contributing to the decision curve shift in the model, but
not the subject.
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Figure 3: Posterior parameter estimates for semi-supervised
learning. Parameter λ controls the ratio of unlabeled to la-
beled influence, βN is the response bias, and φ is the percep-
tual noise in pixels.

the unlabeled stimuli afterwards. Second, the ratio of labeled
to unlabeled stimuli was much higher in our study. To bet-
ter understand the strength of semi-supervised learning, fu-
ture work should manipulate these factors systematically and
further explore the situations most representative of natural
learning settings.

Studying semi-supervised learning in scenarios that do not
support strictly unsupervised learning is another interesting
avenue for future work. For instance, the information inte-
gration task (Ashby et al., 1999) results in successful learn-
ing when supervised but unsuccessful learning when unsu-
pervised. Could semi-supervised learning lead to successful
learning in this task, above and beyond learning supported
by just feedback examples? Vandist et al. (2009), who tested
semi-supervised learning in the information integration task,
suggest the answer is no. But in their design, the unlabeled
stimuli provided no new information beyond simply more
samples from the stimulus distribution. Future work should
explore the information integration task when the unlabeled
distribution provides additional information, as in our exper-
iment, that results in large decision curve shifts. Given the
clear effect in our study, it would be interesting to see whether
unlabeled stimuli influences learning in the information inte-
gration task.

Future work should also investigate computational mod-
els that support semi-supervised category learning. There are
a variety of candidate models that do not make strong dis-



tinctions between supervised and unsupervised learning (e.g.,
Anderson, 1991; Love, Medin, & Gureckis, 2004; Vallabha,
McClelland, Pons, Werker, & Amano, 2007; Lake, Vallabha,
& McClelland, 2009; Zhu et al., 2010). Theories of catego-
rization must account for semi-supervised learning, given that
this type of learning has substantial impact.
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