Generalization without Systematicity:
Supplementary materials

SCAN grammar and interpretation function
The phrase-structure grammar generating all SCAN commands is presented in Figure 1. The corresponding interpretation functions is in Figure 2.

Standard Encoder-Decoder RNN
We describe the encoder-decoder framework, borrowing from the description in Bahdanau et al. (2015). The encoder receives a natural language command as a sequence of T words. The words are transformed into a sequence of vectors, $\{w_1, \ldots, w_T\}$, which are learned embeddings with the same number of dimensions as the hidden layer. A recurrent neural network (RNN) processes each word

$$h_t = f_E(h_{t-1}, w_t),$$

where h_t is the encoder hidden state. The final hidden state h_T (which may include multiple layers for multi-layer RNNs) is passed to the RNN decoder as hidden state g_0 (see seq2seq diagram in the main article). Then, the RNN decoder must generate a sequence of output actions a_1, \ldots, a_R. To do so, it computes

$$g_t = f_D(g_{t-1}, a_{t-1}),$$

where g_t is the decoder hidden state and a_{t-1} is the (embedded) output action from the previous time step. Last, the hidden state g_t is mapped to a softmax to select the next action a_t from all possible actions.
Attention Encoder-Decoder RNN

For the encoder-decoder with attention, the encoder is identical to the one described above. Unlike the standard decoder that can only see h_T, the attention decoder can access all of the encoder hidden states, h_1, \ldots, h_T (in this case, only the last layer if multi-layer). At each step i, a context vector c_i is computed as a weighted sum of the encoder hidden states

$$c_i = \sum_{t=1}^{T} \alpha_{it} h_t.$$

The weights α_{it} are computed using a softmax function

$$\alpha_{it} = \exp(e_{it}) / \sum_{j=1}^{T} \exp(e_{ij}),$$

where $e_{it} = v_a^\top \tanh(W_a g_{i-1} + U_a h_t)$ is an alignment model that computes the similarity between the previous decoder hidden state g_{i-1} and an encoder hidden state h_t (for the other variables, v_a, W_a, and U_a are learnable parameters) (Bahdanau et al., 2015). This context vector c_i is then passed as input to the decoder RNN at each step with the function

$$g_i = f_D(g_{i-1}, a_{i-1}, c_i),$$

which also starts with hidden state $g_0 = h_T$, as in the standard decoder. Last, the hidden state g_i is concatenated with c_i and mapped to a softmax to select new action a_i.

C → S V → D U → walk
S → V twice V → U U → look
S → V thrice D → U left U → run
S → V D → U right U → jump

Figure 1: Phrase-structure grammar generating SCAN commands. We use indexing notation to allow infixing: D[i] is to be read as the i-th element directly dominated by category D.
Figure 2: Double brackets ([]) denote the interpretation function translating SCAN’s linguistic commands into sequences of actions (denoted by uppercase strings). Symbols \(x \) and \(u \) denote variables, the latter limited to words in the set \{walk, look, run, jump\}. The linear order of actions denotes their temporal sequence.

References