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Abstract
We give simple criteria to identify the exponential order of magnitude of the absolute value of the determinant

for wide classes of random matrix models, not requiring the assumption of invariance. These include Gaussian
matrices with covariance profiles, Wigner matrices and covariance matrices with subexponential tails, Erdős-Rényi
and d-regular graphs for any polynomial sparsity parameter, and non-mean-field random matrix models, such as
random band matrices for any polynomial bandwidth. The proof builds on recent tools, including the theory of
the Matrix Dyson Equation as developed in [AEK19].

We use these asymptotics as an important input to identify the complexity of classes of Gaussian random
landscapes in our companion papers [BABM21, McK21].
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1 Introduction

1.1 Overview. In this paper, our goal is to study the expected absolute values of the determinants of general
N ×N real symmetric random matrices HN , specifically at exponential scale in the large-N limit:

lim
N→∞

1
N

logE[|det(HN )|]. (1.1)

We identify two sets of simple criteria that lead to asymptotics of this type (Theorems 1.1 and 1.2), and apply them
to a wide variety of matrix models.

Initiated in the 1930s, and developed early on by Turán, Fortet, Tukey, Nyquist, Rice, Riordan, Prékopa, and
others, the study of random determinants has focused on three distinct questions: the singularity probability (that
the determinant of a discrete random matrix vanishes), Gaussian fluctuations, and asymptotics of the type (1.1).
We will describe this history below in greater detail. The third direction is useful for the topological “landscape
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complexity” program, which studies the geometry of high-dimensional random functions via the Kac-Rice formula,
and which motivates our present work.

Most studies in this direction have focused on the invariant Gaussian ensembles. We study random determinants in
contexts where the distribution of the matrixHN is not necessarily invariant by orthogonal conjugacy, evaluating (1.1)
for matrix models including Gaussian matrices with variance profiles, large zero blocks, or even correlations; Wigner
matrices and sample covariance matrices whose entries have subexponential tails; Erdős-Rényi graphs with parameter
p > Nε/N ; uniform d-regular graphs with parameter Nε 6 d 6 N2/3−ε; band matrices with any bandwidthW > Nε;
and the classical free-convolution model A+OBOT with O uniform on the orthogonal group. For example, denoting
ρsc the semicircle density on [−2, 2], for any E we prove that

lim
N→∞

1
N

logE[|det(WN − E)|] =
∫

log|λ− E|ρsc(λ) dλ,

whenever WN is a Wigner matrix (Corollary 1.3) or a random band matrix (Corollary 1.7), under the above decay
and bandwidth assumptions.

In the companion papers [BABM21, McK21], we use these results to study the landscape complexity of non-
invariant random functions. There, we prove formulas of Fyodorov and Le Doussal [FLD20] on the classical “elastic
manifold” from statistical physics, which models a point configuration with local self-interactions in a disordered
environment. We also find a new phase transition, with universal near-critical behavior, for a certain anisotropic
signal-plus-noise model.

In fact, for these geometric applications we need to understand asymptotics like (1.1) when the matrix HN has
long-range correlations, for example when all the diagonal entries are correlated with each other. In the last section
of this paper, we show how to give exact variational formulas for asymptotics of this type, based on the (simpler)
formulas for matrices with short-range correlations.

Theorem 1.1 and 1.2 below prove that we can obtain the asymptotics 1.1 under three general conditions which
do not use invariance, stated informally as follows.

(1) We can discard the contribution of extremely large and small eigenvalues (at scales eNε and e−Nε).

(2) Some form of concentration of the empirical spectral measure µ̂HN about its mean E[µ̂HN ] holds.

(3) There exists a deterministic sequence (µN )∞N=1 of probability measures, sufficiently regular, that are mildly
good approximations for the mean spectral measure E[µ̂HN ].

Overall, our proof strategy is to write the determinant as an almost-continuous test function integrated against µ̂HN ,
regularize the logarithm using (1), prove concentration of this test statistic about its mean using (2), and relate this
mean to something more recognizable using (3). Checking condition (1) is typically model-specific, but conditions
(2) and (3) can be discussed in general.

To prove condition (2) on concentration of µ̂HN , we identify two distinct criteria, corresponding to our general
theorems:

– Either (the convexity-preserving functional case, Theorem 1.1) HN is built in a convexity-preserving and Lip-
schitz way from arbitrary independent random variables,

– or (the concentrated input case, Theorem 1.2) linear statistics of HN are already known to concentrate. This
is meant to be applied if, e.g., HN satisfies log-Sobolev, or Gromov-Milman concentration on compact groups.

To prove condition (3) regarding convergence of E[µ̂HN ], in the case of classical randommatrices the approximating
sequence (µN )∞N=1 is well-known (and in fact constant): For example, one should choose the semicircle law for Wigner
matrices, or the Marčenko-Pastur law for sample covariance models. But the good choice of µN for non-invariant
Gaussian ensembles, which are the most important matrices for applications to complexity, has only been understood
recently, a consequence of the theory of the Matrix Dyson Equation (MDE) as developed in [AEK19, AEKN19]. Given
nice HN , the MDE produces a probability measure µN found by solving a constrained problem over matrices. The
existence, uniqueness, and regularity theory of the MDE is an important input for our work.

The organization of the paper is as follows: In the rest of this section, we give some history on determinants of
random matrices, then state our main results. We prove our general results, Theorems 1.1 and 1.2, in Section 2,
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then prove our applications to matrix models in Section 3. In Section 4, we discuss determinants in the presence of
long-range correlations. In Appendix A we extend our results to product of determinants, showing

lim
N→∞

1
N

logE
[∏̀
i=1
|det(H(i)

N )|
]

=
∑̀
i=1

(
lim
N→∞

1
N

logE[|det(H(i)
N )|]

)
(1.2)

for any fixed ` and random matrices H(1)
N , . . . ,H

(`)
N which may be correlated with each other. This asymptotic

factoring holds regardless of the correlation structure between the H(i)
N ’s. Finally, in Appendix B we find a transition

for the exponential order of determinants of Wigner matrices WN , showing that, for any p > 1, the quantity
lim supN→∞ 1

N logE[|det(WN − E)p|] is finite if and only if the entries have finite (2p)-th moment.

1.2 History. The earliest research on random-matrix determinants covered non-Hermitian matrices with i.i.d.
entries, discussing an extremal problem on the determinant of Bernoulli matrices [ST37] (extended in [Tur55]) and
exact formulas at finite N for small moments of determinants [For51, FT52, NRR54, Pré67] (see also Girko’s book
[Gir90]). Later in the literature, we identify three main strands of research on determinants.

First, one can ask for the probability that an N × N discrete matrix (Bernoulli, say) is singular, i.e., that its
determinant is zero, for large N . In the non-Hermitian case, Komlós showed that this probability is o(1) [Kom67,
Kom68]. Recently K. Tikhomirov established the long-standing conjecture that this probability is ( 1

2 +o(1))N [Tik20];
earlier exponential estimates in this direction include [KKS95, TV06, TV07, BVW10].

Second, one can show that the determinant, appropriately normalized, has Gaussian fluctuations. In the non-
Hermitian case, if the entries are Gaussian this follows from work of Goodman [Goo63]. Gaussianity was replaced
by an exponential-tails assumption in [NV14] and a fourth-moment assumption in [BPZ15]. In the Hermitian case,
Gaussian matrices were studied in [DLC00]. Gaussianity was relaxed to a four-moment-matching assumption in
[TV12], then to a two-moment-matching assumption in [BM19, BMP22]. Some other ensembles were treated in
[CLZ15, Rou07], and more about determinants for Gaussian ensembles was discussed in [BLC15, ELC15].

Third, one can study the same question we do here, namely the asymptotics of E[|det(HN )|], usually in the same
context of studying complexity for high-dimensional random fields. Here we just discuss the types of random matrices
that have appeared; for a discussion of what these prior results mean for complexity, we refer to the companion
paper [BABM21]. Fyodorov [Fyo04] studied Gaussian matrices of type GOE +N (0, 1/N) Id using supersymmetry,
and a similar model was addressed in Auffinger et al. [ABAČ13] using known large-deviations principles (LDPs)
[BAG97, BADG01]. Rank-one perturbations of GOE appeared in [BAMMN19], using an LDP of Maïda [Maï07].
An upper bound for full-rank perturbations of GOE appeared in [FMM21], based on free probability and large
deviations. Upper and lower bounds for Gaussian matrices with a certain covariance structure were given in [AC14].
The (Gaussian) real elliptic ensemble was discussed in [BAFK21], based on a new result on large deviations for its
spectral measure. Baskerville et al. cover finite-rank perturbations of GOE in [BKMN21] and a specific ensemble
of Gaussian matrices with a variance profile, inspired by a two-layer spin-glass model, in [BKMN22]. In both cases
the determinant analysis is performed through supersymmetry, for the asymptotic spectral density and for Wegner
estimates. Our corollaries 1.9.A, 1.9.B, and 1.10 about general Gaussian ensembles provide alternative derivations for
all these results about Hermitian matrices. These corollaries also make rigorous the analysis of random determinants
by Fyodorov and Le Doussal [FLD20] (see [BABM21] for corresponding complexity results).

Finally, asymptotics for a pair of determinants, in the style of (1.2) with ` = 2, appeared for a particular pair of
random matrices from spin glasses, closely related to correlated GOE matrices, in [Sub17, AG20, BASZ20]. These
arguments were based on known LDPs for Gaussian ensembles.

Notations. We write ‖ · ‖ for the operator norm on elements of CN×N induced by the L2 distance on CN . We let
‖f‖Lip = supx 6=y

|f(x)−f(y)|L2
|x−y|L2

for functions f : Rm → Rn, and consider the following three distances on probability
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measures on the real line (called bounded-Lipschitz, Wasserstein-1, and Kolmogorov-Smirnov, respectively):

dBL(µ, ν) = sup
{∣∣∣∣∫

R
f(x)(µ− ν)(dx)

∣∣∣∣ : ‖f‖Lip + ‖f‖L∞ 6 1
}
,

W1(µ, ν) = sup
{∣∣∣∣∫

R
f(x)(µ− ν)(dx)

∣∣∣∣ : ‖f‖Lip 6 1
}
,

dKS(µ, ν) = sup{|µ((−∞, x])− ν((−∞, x])| : x ∈ R}.

We normalize the semicircle law as ρsc(dx) =
√

4−x2

2π 1x∈[−2,2] dx. We write l(µ) for the left edge (respectively,
r(µ) for the right edge) of a compactly supported measure µ. For an N × N Hermitian matrix M , we write
λmin (M) = λ1(M) 6 · · · 6 λN (M) = λmax (M) for its eigenvalues and µ̂M = 1

N

∑N
i=1 δλi(M) for its empirical

measure. We write SN for the set of all N × N real symmetric matrices, which we often identify with the space
R
N(N+1)

2 , and on which we therefore put the norm

‖T‖2
F̃

=
∑

16i6j6N
T 2
ij (1.3)

(slightly different from the Frobenius norm since we only sum on and above the diagonal; but we will also use the
Frobenius norm ‖T‖2F =

∑
16i,j6N T

2
ij). We also write � for the free (additive) convolution of probability measures.

We write BR for the ball of radius R around 0 in the relevant Euclidean space. We use (·)T for the matrix
transpose, which is distinguished both from the matrix conjugate transpose (·)∗, and from the matrix trace Tr(·).

1.3 General theorem for convexity-preserving functional. The following Theorem 1.1 is our first general
result. It applies to random matrices without any a priori concentration hypothesis, but requires the tools of convex
analysis, in particular results of Talagrand.

To state the hypotheses, we denote κ > 0 an arbitrarily small control parameter which does not depend on N .
Let M = MN > 1. Consider X = (X1, . . . , XM ) a random vector. We now consider the following set of assumptions.

(I) The Xi’s are independent and real-valued.

(M) Matrix model. Let H = HN = Φ(X) where Φ : RM → SN is deterministic and Lipschitz (with respect to the
norm (1.3)), and Φ−1(A) is convex for any convex set A.

(E) Expectation. A sequence of probability measures µN exists satisfying the following properties. First,

dBL(Eµ̂Φ(X), µN ) 6 N−κ. (1.4)

Moreover, the µN ’s are supported in a common compact set, and each has a density µN (·) in the same
neighborhood (−κ, κ) around 0, which satisfies µN (x) < κ−1|x|−1+κ for all |x| < κ and all N .

(C) Coarse bounds. Write (λi)Ni=1 for the eigenvalues of Φ(X). For every ε > 0,

lim
N→∞

1
N

logE
[
N∏
i=1

(1 + |λi|1|λi|>eNε )
]

= 0, (1.5)

lim
N→∞

P(Φ(X) has no eigenvalues in [−e−N
ε

, e−N
ε

]) = 1. (1.6)

In addition, there exists δ > 0 such that

lim sup
N→∞

1
N logN logE[|det(HN )|1+δ] <∞. (1.7)

(S) Spectral stability. Let (Xcut)i = Xi1|Xi|<N−κ/‖Φ‖Lip (recalling again the norm (1.3)). We have

lim
N→∞

1
N logN logP

(
dKS(µ̂Φ(X), µ̂Φ(Xcut)) > N−κ

)
= −∞. (1.8)
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Theorem 1.1. (Convexity-preserving functional) Under the assumptions (I), (M), (E), (C), (S), we have

lim
N→∞

(
1
N

logE[|det(HN )|]−
∫
R

log |λ|µN (dλ)
)

= 0. (1.9)

Comments on the result. (i) A polynomial rate in (1.5) is enough to give a polynomial rate of convergence∣∣∣∣ 1
N

logE[|det(HN )|]−
∫
R

log|λ|µN (dλ)
∣∣∣∣ 6 N−ε

for some ε > 0 and N > N0(ε). Indeed, an examination of the proof shows that ε depends only on κ and the
polynomial rate in (1.5), but N0(ε) also depends on the rates of convergence in (1.6) and (1.8), and on the permissible
values of δ and the value of the lim sup in (1.7).

(ii) The matrix HN does not need to be centered. As an elementary example, we can choose HN = WN − E for
WN a Wigner matrix and obtain concentration around

∫
R log|λ− E|ρsc(λ) dλ; see Corollary 1.3 below.

(iii) The proof uses Talagrand’s classic concentration inequality for product measures. We want to recognize the
determinant almost as a Lipschitz, convex function of independent, bounded random variables. Ideally these would
be the Xi’s, but they are not bounded; however, we truncate them using assumption (S). The functional H = Φ(X)
gives the Lipschitz, convex condition, after regularizing the logarithm using assumption (C).

Comments on the assumptions. We discuss briefly why our assumptions are reasonable and close to optimal. In our
applications, Φ is linear so assumption (M) is trivially satisfied, but Φ is also allowed to create correlations between
the entries in a nonlinear fashion. Equation (1.6) avoids a non-trivial kernel, an obviously necessary condition
for (1.9). Equation (1.7) asks for slightly more integrability than finiteness of lim supN−1 logE[|detHN |] which is
implied by the result and assumption (E). In Section 3.11 we show the importance (1.5) (which is a constraint on
large eigenvalues) and assumption (S) (which essentially states that the spectrum should not depend too much on
a small number of Xi’s): for each of these, we give an example of a distribution on matrices satisfying every other
assumption but not this one, for which the result of the theorem fails.

1.4 General theorem for concentrated input. Here we consider the problem of exponential growth for random
matrices HN that already satisfy some concentration property directly, without having to cut the tails and apply
a result of Talagrand as in (the proof of) Theorem 1.1. For example, in applications we will take matrices whose
upper triangles satisfy a log-Sobolev inequality (even if correlated), or Gromov-Milman-type concentration. We
remark that the dichotomy in Theorems 1.1 and 1.2 – namely, proving the similar results, once under product-
measure assumptions and once under log-Sobolev-style assumptions – first appeared in the classic concentration
paper of Guionnet-Zeitouni [GZ00]. We have termed these models “concentrated input,” to contrast with the
previous section’s “convexity-preserving functional” where HN is written as Φ(X) and concentration is provided
by convexity-preserving properties of Φ (and tail bounds). In this section, we will therefore consider HN directly.
We will also replace some of the assumptions above with the following.

(W) Wasserstein-1. A sequence of probability measures µN exists satisfying the following properties. First,

W1(Eµ̂HN , µN ) 6 N−κ. (1.10)

Moreover, the µN ’s are supported in a common compact set, and each has a density µN (·) in the same
neighborhood (−κ, κ) around 0, which satisfies µN (x) < κ−1|x|−1+κ for all |x| < κ and all N .

(L) Concentration for Lipschitz traces. There exists ε0 > 0 with the following property: For every ζ > 0, there
exists cζ > 0 such that, whenever f : R→ R is Lipschitz, we have for every δ > 0

P
(∣∣∣∣ 1
N

Tr(f(HN ))− 1
N

E[Tr(f(HN ))]
∣∣∣∣ > δ

)
6 exp

(
− cζ
Nζ

min
{(

Nδ

‖f‖Lip

)2
,

(
Nδ

‖f‖Lip

)1+ε0
})

. (1.11)

On a first pass readers can drop the N−ζ factor in (1.11). It is included because, for Gaussian matrices as in
Section 1.10, our assumption on the correlation structure implies (1.11) for every ζ > 0 but not necessarily for ζ = 0.
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Theorem 1.2. (Concentrated input) Under the assumptions (W), (L), and the gap assumption (1.6), we have

lim
N→∞

(
1
N

logE[|det(HN )|]−
∫
R

log|λ|µN (dλ)
)

= 0.

As in Theorem 1.1, by examining the proof one can find a small polynomial rate N−ε in Theorem 1.2.
Compared to [GZ00], we do not require bounded entries in Theorem 1.1, our matrix models are more general,

and we consider logarithmic singularities. On the other hand, [GZ00] identifies the correct scale of fluctuations,
analogous to a rate of convergence of order N−1 in (1.9), for test functions without singularities.

1.5 Wigner matrices. We now discuss determinant asymptotics for Wigner matrices WN whose entries have
subexponential tails. (In Appendix B below, we consider what can be said when the entries only have finite second
moment.)

Let µ be a centered probability measure with unit variance that has subexponential tails, in the sense that there
exist constants α, β > 0 such that, if X ∼ µ, then

P(|X| > tα) 6 βe−t (1.12)

for all t > 0. Let WN be a real symmetric N × N Wigner matrix associated with µ, by which we mean that the
entries of

√
NWN are independent up to symmetry and each distributed according to µ. The following corollary uses

Theorem 1.1.
Corollary 1.3. (Wigner matrices with exponential tails) For every E ∈ R we have

lim
N→∞

1
N

logE[|det(WN − E)|] =
∫
R

log|λ− E|ρsc(λ) dλ.

An examination of the proof shows local uniformity in E, meaning that for every compact K ⊂ R we have

lim
N→∞

sup
E∈K

(
1
N

logE[|det(WN − E)|]−
∫
R

log|λ− E|ρsc(λ) dλ
)

= 0.

Remark 1.4. One would also be interested in results of the form

lim
N→∞

1
N

logE[|det(WN +DN )|] =
∫
R

log|λ|(ρsc � µD)(dλ), (1.13)

where (DN )∞N=1 is a sequence of deterministic matrices whose empirical measures tend to some compactly-supported
µD (at some polynomial speed and without outliers, say). Our techniques could likely be extended to prove such a
result under the assumption of subexponential tails on the Wigner matrices. We do not pursue this direction further
here; however, in the companion paper [BABM21], we prove (1.13) with a different approach when WN is a GOE
matrix. For a related problem, see the free-addition model below, in Corollary 1.11.

1.6 Erdős-Rényi matrices. We now consider Erdős-Rényi matrices with near-optimal sparsity parameter p >
Nε/N , i.e., when each vertex has expected degree Nε. It is classical that the limiting spectral distribution of such
matrices is semicircular as long as p = ω(1/N) (see, e.g., [TVW13]), but not semicircular anymore if p = α/N for α
fixed (see, e.g., [BG01]).

Fix some ε > 0, and let HN be an N ×N Erdős-Rényi random matrix with parameter 1− ε > pN > Nε

N . scaled
so that the bulk eigenvalues are order one. This means that the entries are independent up to symmetry and

(HN )ij = 1√
NpN (1− pN )

{
1 with probability pN ,
0 with probability 1− pN .

The following corollary uses Theorem 1.1.
Corollary 1.5. (Erdős-Rényi matrices with p > Nε/N) For any E ∈ R with |E| 6= 2 we have

lim
N→∞

1
N

logE[|det(HN − E)|] =
∫
R

log|λ− E|ρsc(λ) dλ.

This result is locally uniform for E away from the edges, meaning E in any compact subset of R \ {−2, 2}.
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1.7 d-regular matrices. We now consider d-regular random graphs for Nε 6 d 6 N2/3−ε, i.e., we fix once and
for all an ε > 0 and let H ′N be the adjacency matrix of a (uniformly) random, simple d-regular graph on N vertices
for some sequence d = dN satisfying

Nε 6 dN 6 N
2
3−ε.

Then we consider the normalization
HN = 1√

d(1− d
N )

H ′N . (1.14)

Tran, Vu, and Wang [TVW13] showed that the limiting empirical spectral measure of HN is semicircular as long as
dN →∞.

Proposition 1.6. (d-regular matrices with Nε 6 d 6 N2/3−ε) For any E ∈ R with |E| 6= 2 we have

lim
N→∞

1
N

logE[|det(HN − E)|] =
∫
R

log|λ− E|ρsc(λ) dλ.

We call this a “proposition” rather than a “corollary” because it is not a direct consequence of our theorems, but
rather can be proved in a similar way. We give details in Section 3.5.

We note that the assumption dN 6 N
2
3−ε is only to verify Assumption (W) and the Wegner estimate (1.6)

using (much stronger) local laws of Bauerschmidt-Knowles-Yau and Bauerschmidt-Huang-Knowles-Yau [BKY17,
BHKY20]. It is likely the result holds up to dN 6 N1−ε (of course, if dN = N , the determinant is zero).

1.8 Band matrices. In this section we consider random band matrices HN , i.e., matrices whose (i, j)th entry is
zero unless i and j are less than some W apart. Many statistics of HN are believed to undergo a phase transition at
W ∼ N1/2. For example, the eigenvectors are supposed to be localized on o(N) sites for W � N1/2 and delocalized
for W � N1/2. However, we establish that the determinant asymptotics do not see this phase transition: They are
the same as long as W → +∞ polynomially in N . For a full discussion, we direct the reader to [Bou18].

Let µ be a centered probability measure with unit variance that has subexponential tails in the sense of (1.12).
Suppose also that µ has a bounded density µ(·). Fix any ε > 0. Let HN be an N ×N band matrix with bandwidth
W = WN > Nε corresponding to µ. This means that HN has independent entries up to symmetry with

(HN )ij

{
= 0 if ‖i− j‖ > W,

∼ X√
2W+1 if ‖i− j‖ 6W.

(Here we take periodic distance ‖i− j‖ = min(|i− j|, N − |i− j|).) The following corollary uses Theorem 1.1.

Corollary 1.7. (One-dimensional band matrices with bandwidth W > Nε) Under the above assumptions,

lim
N→∞

1
N

logE[|det(HN − E)|] =
∫
R

log|λ− E|ρsc(λ) dλ.

This result is locally uniform in E.
We now comment on the significance of this result. In the companion paper [BABM21], we solve a problem

of Fyodorov-Le Doussal [FLD20] on a model called the “elastic manifold.” They consider a mean-field version of
this model, corresponding to block-banded random matrices with bandwidth order N , and find the “Larkin mass”
separating ordered and disordered phases. An important open problem is the behavior of the elastic manifold beyond
mean field, when the corresponding random matrix is block-banded with sublinear bandwidth. It does not seem to
be clear in which regimes this Larkin transition should persist, but Corollary 1.7 may suggest that the transition
remains for any polynomial bandwidth.

1.9 Sample covariance matrices. Let µ be a centered probability measure on R with unit variance and subex-
ponential tails in the sense of (1.12). We assume µ has density f = e−g with f smooth enough in the sense that, for
any a > 1, there exists Ca > 0 such that for any s ∈ R

|f̂(s)|+ |f̂g′′(s)| 6 Ca
(1 + s2)a . (1.15)

7



Let Yp,N be a p×N = pN ×N matrix whose entries are independent copies of µ. Suppose that

γ = lim
N→∞

pN
N
∈ (0, 1].

If γ < 1, we require a mild speed-of-convergence assumption∣∣∣γ − pN
N

∣∣∣ 6 N−ε (1.16)

for some ε > 0; if γ = 1, then for technical reasons we require pN = N , i.e., we require the matrices to be exactly
square rather than asymptotically square. Write µMP,γ for the Marčenko-Pastur distribution

µMP,γ(dx) =
√

(bγ − x)(x− aγ)
2πγx 1[aγ ,bγ ] dx (1.17)

where aγ = (1−√γ)2, bγ = (1 +√γ)2.

Proposition 1.8. (Sample covariance matrices with subexponential tails) Under the above assumptions, for
every E ∈ R, we have

lim
N→∞

1
pN

logE
[∣∣∣∣det

(
1
N
Yp,N (Yp,N )T − E

)∣∣∣∣] =
∫

log|λ− E|µMP,γ(λ) dλ.

As for d-regular matrices, this is called a “proposition” rather than a “corollary” because it is proved along the
same lines as our theorems, rather than following from them in a strict sense. The details are in Section 3.7. The
proof also shows, as usual, that the limit holds uniformly in E.

Proposition 1.8 complements a 1989 result of Dembo [Dem89], who gave an exact formula at finite N for the
averaged determinant in the special case E = 0, without requiring the assumption of a bounded density. In our
normalization, he showed by a combinatorial method that

E
[∣∣∣∣det

(
1
N
Yp,N (Yp,N )T

)∣∣∣∣] = E
[
det
(

1
N
Yp,N (Yp,N )T

)]
= N !
Np(N − p)! ,

and one can check from the known log-potential of the Marčenko-Pastur law that limN→∞
1
N log

(
N !

Np(N−p)!

)
is the

same as given by our proposition.

1.10 Gaussian matrices with a (co)variance profile. Let HN be an N ×N real symmetric Gaussian matrix,
possibly with a mean, a variance profile, and/or correlated entries, satisfying the technical assumptions below. These
are essentially the assumptions needed for the local law of Erdős et al. [EKS19] which we will use in the proof. We
first give an easier statement for matrices with independent entries up to symmetry (Corollary 1.9.A), then a more
involved statement for matrices with correlations (Corollary 1.9.B). In the statement, we decompose HN = AN +WN

where AN = E[HN ]. These corollaries use Theorem 1.2.
In the following mean-field conditions, the arbitrary parameter p > 0 is fixed.

(B) Bounded mean. We have supN ‖AN‖ <∞.

(F) Flatness. For each N ,

T ∈ CN×N , T positive semi-definite =⇒ 1
p

Tr(T )
N

6 E[WNTWN ] 6 pTr(T )
N

.

Let µN be the measure from the size-N Matrix Dyson Equation, that is, the measure with density µN (·) whose
Stieltjes transform at z ∈ H is 1

N Tr(MN (z)), where MN (z) is the (unique, deterministic) solution to the following
constrained equation over CN×N :

IdN×N +(z IdN×N −AN + E[WNMN (z)WN ])MN (z) = 0

subject to ImMN (z) = MN (z)−MN (z)∗

2i > 0 in the sense of quadratic forms.
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Corollary 1.9.A. (Gaussian matrices with a variance profile) If HN has independent entries up to symmetry,
then under assumptions (B) and (F) we have

lim
N→∞

(
1
N

logE[|det(HN )|]−
∫
R

log|λ|µN (λ) dλ
)

= 0.

The following assumptions are needed if HN has correlations among its entries beyond the symmetry constraints.

(wF) Weak fullness. Whenever T ∈ RN×N is real symmetric,

E
[
(Tr(BW ))2] > N−1−p Tr(B2).

(The p = 0 case is called “fullness” in [AEK19].)

(D) Decay of correlations. Write κ for multivariate cumulants (for any number of arguments), and consider the
distance on subsets of J1, NK2 given by d(A,B) = min{min{|α− β|, |αt − β|} : α ∈ A, β ∈ B} where (·)t
switches the elements of an ordered pair. For the order-two cumulants we assume

|κ(f1(WN ), f2(WN ))| 6 C

1 + d(supp f1, supp f2)s ‖f1‖2‖f2‖2

for some s > 12 and all L2 functions f1, f2 onN×N matrices. For order-k cumulants, k > 3, we consider, for any
L2 functions f1, . . . , fk, the complete graph on {1, . . . , k} with the edge-weights d({i, j}) = d(supp fi, supp fj).
Writing Tmin for the minimal spanning tree on this graph (i.e., smallest sum of edge weights) and lifting
covariance to edges as κ({i, j}) = κ(fi, fj), we assume

|κ(f1(WN ), . . . , fk(WN ))| 6 Ck
∏

e∈E(Tmin)

|κ(e)|.

(In fact, our results hold under some weaker correlation-decay conditions that are longer to state; see [EKS19,
Example 2.12].)

Corollary 1.9.B. (Gaussian matrices with a (co)variance profile) Under assumptions (B), (F), (wF), and
(D), we have

lim
N→∞

(
1
N

logE[|det(HN )|]−
∫
R

log|λ|µN (λ) dλ
)

= 0.

Corollary 1.9.A is an immediate consequence of Corollary 1.9.B, because it is easy to check that (F) implies both
(wF) and (D) if HN has independent entries up to symmetry. In Section 3.8 we therefore only prove Corollary 1.9.B.

In some cases one can show that the sequence (µN )∞N=1 has a limit µ∞, and obtain limN→∞
1
N logE[|det(HN )|] =∫

log|λ|µ∞(dλ). Notice this does not follow from our assumptions, because we do not assume any consistency in
N . For example, this corollary applies to the contrived example HN = GOE + (−1)N Id. In the companion paper
[BABM21], we show how to use the (well-established) stability theory of the Matrix Dyson Equation to find a limit
µ∞ when it exists.

1.11 Block-diagonal Gaussian matrices. In this section, we are interested in Gaussian random matrices with
large zero blocks. These are not covered by Corollary 1.9.B, since the “flatness” assumption there implies that all
entries have variance in some [ cN ,

C
N ]. In the landscape complexity program, such block-diagonal matrices describe

random functions whose components in certain directions are independent of those in other directions. In the
companion paper [BABM21], we study one such random function from statistical physics, called the “elastic manifold.”

Consider matrices HN = AN +WN , with AN = E[HN ], that have the following special form. Fix once and for all
some K ∈ N (the number of blocks), and consider matrices in RK×K ⊗RN×N , i.e., matrices with K2 blocks each of
size N ×N . Write Eii for the matrix with a one in the (i, i)th entry and zeros otherwise; depending on the context
this will be either an N ×N matrix or a K ×K matrix.
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(MS) Bounded mean structure. Consider a deterministic triangular array (ai)Ni=1 = (ai,N )Ni=1 with each ai ∈ RK×K ,
and define

AN =
N∑
i=1

ai ⊗ Eii.

In particular AN can only have nonzero entries on the diagonals of each block. Assume

sup
N
‖AN‖ <∞.

(MF) Mean-field randomness in diagonal blocks. The Gaussian random matrix WN has the form

WN =
K∑
i=1

Eii ⊗Xi =


X1 0 · · · 0
0 X2 · · · 0
...

...
. . .

...
0 0 · · · XK

,
where the Xi’s are independent N × N Gaussian random matrices, each of which has centered independent
entries up to symmetry. Write x(i)

jk for the (j, k)th entry of Xi and s(i)
jk for its variance. For some parameter p,

each i ∈ J1,KK, and each j, k ∈ J1, NK, we have

s
(i)
jk 6

p

N
, s

(i)
jj >

1
pN

.

Notice the lower bound is only along the diagonal.

(R) Regularity of MDE solution. Given r = (r1, . . . , rN ) ∈ (CK×K)N , define

Si[r] =
N∑
k=1

K∑
j=1

s
(j)
ik EjjrkEjj ∈ CK×K (1.18)

for each i ∈ J1, NK. The MDE in this context is a system of N coupled equations over K × K matrices; we
seek the unique solution m(z) = m(N)(z) = (m1(z), . . . ,mN (z)) = (m(N)

1 (z), . . . ,m(N)
N (z)) ∈ (CK×K)N to

IdK×K +(z IdK×K −ai + Si[m(z)])mi(z) = 0
subject to Immi(z) > 0 as a quadratic form.

(1.19)

Consider the probability measure µN on R whose Stieltjes transform at the point z is 1
NK

∑N
j=1 Trmj(z).

Assume that each µN admits a density with respect to Lebesgue measure, and that these densities are bounded
in L∞, uniformly over N .

The following corollary uses Theorem 1.2.

Corollary 1.10. (Block-diagonal Gaussian matrices) Under assumptions (MS), (MF), and (R), we have

lim
N→∞

(
1

NK
logE[|det(HN )|]−

∫
R

log|λ|µN (λ) dλ
)

= 0.

(The normalization is 1
NK because HN is an NK ×NK matrix.)

In applications to landscape complexity, the description of these measures µN via the MDE is very important
to prove properties of the limit measures µ∞. For example, in our companion paper [BABM21], we use this MDE
description to identify a crucial convexity property in a variational problem.
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1.12 Free addition. Let (AN )∞N=1, (BN )∞N=1 be a sequence of deterministic, N×N , real diagonal matrices, whose
empirical measures tend to some µA, µB respectively. We will be interested in the random matrix AN +ONBNO

T
N ,

where ON is sampled from Haar measure on the orthogonal group ON .
We require the following assumptions.

– The measures µA and µB admit densities ρA and ρB , respectively. These densities have single nonempty
interval supports [EA− , EA+ ] and [EB− , EB+ ], and each density is strictly positive on the interior of its support.

– Each measure µA and µB has a power-law behavior with exponent in (−1, 1) at each of its edges; that is, there
exist δ > 0 and exponents −1 < tA−, t

B
−, t

A
+, t

B
+ < 1 such that, for some C > 1,

C−1 6
ρA(x)

(x− EA−)tA−
6 C for all x ∈ [EA− , EA− + δ], C−1 6

ρB(x)
(x− EB− )tB−

6 C for all x ∈ [EB− , EB− + δ],

C−1 6
ρA(x)

(EA+ − x)tA+
6 C for all x ∈ [EA+ − δ, EA+ ], C−1 6

ρB(x)
(EB+ − x)tB+

6 C for all x ∈ [EB+ − δ, EB+ ].

– One of the measures µA and µB has a bounded Stieltjes transform.

– The eigenvalues (ai)Ni=1 = (a(N)
i )Ni=1 of AN , ordered increasingly, are close to the classical particle locations a∗i

defined by

a∗i = inf
{
s :
∫ s

−∞
µA(dy) = i/N

}
in the sense that for any c > 0, sup16i6N |ai − a∗i | 6 N−1+c for N sufficiently large. The analogous condition
also holds for the eigenvalues of BN .

For example, all of these assumptions are satisfied if µA is the semicircle law and µB is either a uniform measure,
the Marčenko-Pastur law, or the semicircle law; and if AN and BN store the relevant 1

N -quantiles.
The following corollary uses Theorem 1.2.

Corollary 1.11. (Free addition) If ON is chosen randomly from the Haar measure on the orthogonal group ON ,
then whenever E is not an edge of µA � µB, we have

lim
N→∞

1
N

logE[
∣∣det(AN +ONBNO

T
N − E)

∣∣] =
∫
R

log|λ− E|(µA � µB)(λ) dλ.

This result is locally uniform in E away from the edge, meaning in any compact subset of R\{l(µA�µB), r(µA�µB)}.

Comment on the assumptions. For the proof, we check the assumptions of the concentrated-input Theorem 1.2
using the local law of Bao-Erdős-Schnelli [BES20] and the fixed-energy universality of Che-Landon [CL19]. For concise
writing, the assumptions we state here are a bit stronger than “the union of the assumptions of these two papers,”
but in fact this union suffices for Corollary 1.11. In fact, our result likely holds under even weaker assumptions than
required in these papers, which handle more fine-grained questions.

Acknowledgements. We wish to thank Nick Cook, Amir Dembo, László Erdős, Yan Fyodorov, Torben Krüger,
Pierre Le Doussal, Krishnan Mody, and Ofer Zeitouni for helpful discussions. We are also grateful to a referee for
pointing out an error in an earlier version of the paper. GBA acknowledges support by the Simons Foundation
collaboration Cracking the Glass Problem, PB was supported by NSF grant DMS-1812114 and a Poincaré chair, and
BM was supported by NSF grant DMS-1812114.

2 Proofs of determinant asymptotics

2.1 Proof of Theorem 1.1. The proof depends on a careful tuning of many N -dependent parameters; in the
next section we define these parameters and prove some estimates that are common to both the upper and lower
bounds. In the following subsections we then prove these upper and lower bounds in order.
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2.1.1 Definitions and common estimates. Let κ be as in the assumptions (i.e., given to us), and write
K, η, t, wb, pb for some N -dependent parameters. In fact we will choose

K = eN
ε for some ε small enough (ε = κ2/16 suffices),

η = N−κ/2,

t = N−κ/4,

wb = N−κ/4,

pb = N−κ
2/8,

(2.1)

but we find it more transparent to work with the names K, η, and so on for the bulk of the proof, checking only at
the end that these specific choices make the error estimates useful. We will work with the following regularizations
of the logarithm:

logη(λ) = log|λ+ iη|,
logKη (λ) = min(logη(λ), logη(K)).

Let b = bN : R→ R be some smooth, even, nonnegative function that is identically one on [−wb, wb], vanishes outside
of [−2wb, 2wb], and is 1

wb
-Lipschitz. Consider the following events:

Egap = {Φ(X) has no eigenvalues in [−e−N
ε

, e−N
ε

]},
Ess = {dKS(µ̂Φ(X), µ̂Φ(Xcut)) 6 N−κ},

Econc =
{∣∣∣∣∫ logKη (λ)(µ̂Φ(Xcut) − E[µ̂Φ(Xcut)])(dλ)

∣∣∣∣ 6 t},
Eb =

{∫
b(λ)µ̂Φ(X)(dλ) 6 pb

}
.

(2.2)

It turns out that all of these events are likely. For Egap and Ess this is by assumption; we will prove that Econc and
Eb are likely below.

Now we collect some estimates which will be useful for both the upper and lower bounds.

Lemma 2.1. We have ∣∣∣∣∫ logKη (λ)(µ̂Φ(X) − µ̂Φ(Xcut))(dλ)
∣∣∣∣1Ess 6 N

−κ log
(

1 + K2

η2

)
.

Proof. The proof of [BCC11, Lemma C.2] shows that, if µ̂A and µ̂B are empirical measures of matrices A and B
(which have the same size as each other) and if f is a test function of bounded variation, then∣∣∣∣∫ f(λ)µ̂A(dλ)−

∫
f(λ)µ̂B(dλ)

∣∣∣∣ 6 ‖f‖TV · dKS(µ̂A, µ̂B).

Then the result follows from the computation ‖ logKη ‖TV = log
(

1 + K2

η2

)
and the definition of Ess.

Lemma 2.2. With

ε1(N) := N−κ log
(

1 + K2

η2

)
+ 2‖ logKη ‖∞P((Ess)c) +

(
1
2η + ‖ logKη ‖∞

)
N−κ,

we have ∣∣∣∣∫ logKη (λ)(E[µ̂Φ(Xcut)]− µN )(dλ)
∣∣∣∣ 6 ε1(N).
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Proof. First, by inserting 1Ess and using Lemma 2.1, we find∣∣∣∣∫ logKη (λ)(E[µ̂Φ(Xcut)]− E[µ̂Φ(X)])(dλ)
∣∣∣∣ 6 N−κ log

(
1 + K2

η2

)
+ 2‖ logKη ‖∞P((Ess)c).

Next, since logKη is 1
2η -Lipschitz, (1.4) yields∣∣∣∣∫ logKη (λ)(E[µ̂Φ(X)]− µN )(dλ)

∣∣∣∣ 6 ( 1
2η + ‖ logKη ‖∞

)
dBL(E[µ̂Φ(X)], µN ) 6

(
1
2η + ‖ logKη ‖∞

)
N−κ.

Both equations above conclude the proof.

Lemma 2.3. Let t0(N) = 24
√

2π/(ηN 1
2 +κ). If t > t0(N), then

P((Econc)c) 6 12 exp
(
− (t− t0(N))2η2N1+2κ

288

)
.

Proof. The function logKη is not convex (it is convex on [−η, η] and concave outside this interval). But it is a linear
combination of three convex functions. Indeed, for i = 1, 2, 3, consider logi = logi,η,K : R→ R given by

log1(x) =


− x

2η −
1
2 + logη(η) if x 6 −η,

logη(x) if − η 6 x 6 η,
x
2η −

1
2 + logη(η) if x > η,

log2(x) =
{

x
2η x 6 η,

logKη (x) + 1
2 − logη(η) if x > η,

log3(x) =
{
− x

2η if x > −η,
logKη (x) + 1

2 − logη(η) if x 6 −η.

Notice that logKη =
∑3
i=1 logi, that log1 is convex while log2 and log3 are concave, and that each logi is 1

2η -Lipschitz.
For each i, consider the function fi : [− N−κ

‖Φ‖Lip
, N−κ

‖Φ‖Lip
]M → R given by

fi(Xcut) = (−1)1i6=1
1
N

tr(logi(Φ(Xcut))) = (−1)1i6=1

∫
R

logi(λ)µ̂Φ(Xcut)(dλ).

The factors of −1 are for convenience, so that each fi will be convex. Notice that

P((Econc)c) = P

(∣∣∣∣∣
3∑
i=1

(−1)1i6=1(fi(Xcut)− E[fi(Xcut)])

∣∣∣∣∣ > t

)
6

3∑
i=1

P
(
|fi(Xcut)− E[fi(Xcut)]| >

t

3

)
. (2.3)

Each fi is a Lipschitz, convex function of the many independent compactly supported variables (Xcut)1, . . . , (Xcut)M .
Thus we can apply concentration-of-measure results of Talagrand. It will be useful to factor fi = gi ◦ Φ, where
gi : SN → R is given by gi(T ) = (−1)1i6=1 1

N tr(logi(T )).
Indeed, since logi is (2η)−1-Lipschitz, we know that gi is (η

√
2N)−1-Lipschitz (see, e.g., [AGZ10, Lemma 2.3.1],

recalling our norm (1.3)), and thus fi is ‖Φ‖Lip/(η
√

2N)-Lipschitz. Furthermore, since (−1)1i6=1 logi is convex, by
Klein’s lemma (see, e.g., [GZ00, Lemma 1.2]) gi is also convex; since we assumed that Φ pulls back convex sets to
convex sets, we conclude that {Xcut : fi(Xcut) 6 a} is a convex set of [− N−κ

‖Φ‖Lip
, N−κ

‖Φ‖Lip
]M for every a ∈ R. Then

[Tal96, Theorem 6.6] implies that

P(|fi(Xcut)−Mfi | > t) 6 4 exp
(
− t

2η2N1+2κ

32

)
where Mfi is a median of fi(Xcut). We conclude using (2.3) and the estimate

|E(fi(Xcut))−Mfi | 6 E|fi(Xcut)−Mfi | 6 4
∫ ∞

0
exp
(
− t

2η2N1+2κ

32

)
dt = 8

√
2π

ηN
1
2 +κ = 1

3 t0(N)

to substitute the median with the mean.
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2.1.2 Upper bound. After establishing one more estimate, we prove the upper bound of Theorem 1.1.
Lemma 2.4. With the parameter choices (2.1), we have

lim
N→∞

1
N

logE[|det(HN )|(1− 1Ess1Econc)] = −∞.

Proof. Writing E = Ess ∩ Econc, for any δ > 0 Hölder’s inequality gives
1
N

logE[|det(HN )|1Ec ] 6
1

(1 + δ)N logE[|det(HN )|1+δ] + δ

(1 + δ)N logP(Ec).

For δ satisfying (1.7), the first term is O(logN). Concerning the second term, we have
1
N

logP(Ec) 6 1
N

log[P((Econc)c) + P((Ess)c)] 6 −C logN,

for any C > 0 and N > N0(C), where the last inequality follows from Lemma 2.3, our parameter choices (2.1), and
our assumption (1.8).

Proof of upper bound. From our assumptions on µN we have lim infN→∞
∫

log|λ|µN (dλ) > −∞. Thus, by Lemma
2.4, it suffices to prove

lim sup
N→∞

(
1
N

logE[|det(HN )|1Ess1Econc ]−
∫

log|λ|µN (dλ)
)
6 0. (2.4)

On the events Ess and Econc, Lemmas 2.1 and 2.2 give us∫
logKη (λ)µ̂Φ(X)(dλ)

=
∫

logKη (λ)(µ̂Φ(X) − µ̂Φ(Xcut))(dλ) +
∫

logKη (λ)(µ̂Φ(Xcut) − E[µ̂Φ(Xcut)])(dλ) +
∫

logKη (λ)E[µ̂Φ(Xcut)](dλ)

6 N−κ log
(

1 + K2

η2

)
+ t+

∫
logKη (λ)E[µ̂Φ(Xcut)](dλ) 6 2ε1(N) + t+

∫
logKη (λ)µN (dλ).

We use this estimate to obtain

1
N

logE[|det(HN )|1Ess1Econc ] = 1
N

logE

 ∏
i:|λi|6K

|λi|

 ∏
i:|λi|>K

|λi|

1Ess1Econc


6

1
N

logE
[
eN
∫

logKη dµ̂Φ(X)

(
N∏
i=1

(1 + |λi|1|λi|>K)
)
1Ess1Econc

]

6 2ε1(N) + t+ 1
N

logE
[
N∏
i=1

(1 + |λi|1|λi|>K)
]

+
∫

logKη (λ)µN (dλ).

From our choice of parameters (2.1) and the assumption (1.5), this last term is
∫

logKη (λ)µN (dλ)+o(1). Furthermore,
since the µN ’s are supported on a common compact set and K increases with N , we have

∫
logKη (λ)µN (dλ) =∫

logη(λ)µN (dλ) for N large enough. Thus to prove (2.4) we need only show

lim sup
N→∞

∫
(logη(λ)− log|λ|)µN (dλ) 6 0. (2.5)

To show this, we use ∫ ∞
κ

(logη(λ)− log|λ|)µN (dλ) 6 1
2 log

(
1 + η2

κ2

)
which tends to zero since η does, and∣∣∣∣∫ κ

−κ
(logη(λ)− log|λ|)µN (dλ)

∣∣∣∣ 6 κ−1
∫ κ

−κ
(log|λ| − logη(λ))|λ|−1+κ dλ,

which tends to zero by dominated convergence. This completes the proof of (2.5) and thus of the upper bound.
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2.1.3 Lower bound. We first collect some estimates.

Lemma 2.5. We have
1
N

logE[eN
∫

(log|λ|−logη(λ))µ̂Φ(X)(dλ)
1Egap1Ess1Econc1Eb ] > −ε2(N),

where
ε2(N) = pb

2 log(1 + e2Nεη2) + η2

2w2
b

− 1
N

logP(Egap, Ess, Econc, Eb).

Proof. On Egap, for any eigenvalue λ of Φ(X) we have

log|λ| − logη(λ) = −1
2 log

(
1 + η2

λ2

)
> −1

2 log(1 + e2Nεη2).

Similarly, since 1− b(λ) 6 1|λ|>wb and log(1 + x) 6 x for x > 0, we have∫
(log|λ| − logη(λ))(1− b(λ))µ̂Φ(X)(dλ) > −1

2 log
(

1 + η2

w2
b

)
> − η2

2w2
b

.

Thus

E[eN
∫

(log|λ|−logη(λ))µ̂Φ(X)(dλ)
1Egap1Ess1Econc1Eb ]

> e−
Npb

2 log(1+e2N
ε
η2)E[eN

∫
(log|λ|−logη(λ))(1−b)(λ)µ̂Φ(X)(dλ)

1Egap1Ess1Econc1Eb ]

> e−
Npb

2 log(1+e2N
ε
η2)e

−Nη
2

2w2
b P(Egap, Ess, Econc, Eb),

which concludes the proof.

Lemma 2.6. For N large enough we have

P((Eb)c) 6
2
pb

(
N−κ

wb
+ (2wb)κ

κ2

)
.

Proof. By our choice (2.1) of wb tending to zero, µN admits a density on [−2wb, 2wb] for N large enough. Since b(λ)
is 1

wb
-Lipschitz and bounded above by 1|λ|62wb , we use (1.4) to find

E
[∫

b(λ)µ̂Φ(X)(dλ)
]
6

(
1
wb

+ 1
)
dBL(E[µ̂Φ(X)], µN ) + µN ([−2wb, 2wb]) 6

2N−κ

wb
+ 1
κ

∫ 2wb

−2wb
|x|−1+κ dx.

The conclusion follows by evaluating this integral and applying Markov’s inequality.

Proof of lower bound. Lemmas 2.1, 2.2, and 2.5 show that N−1 logE[|det(HN )|] is larger than

1
N

logE
[
e
N
(∫

(log|λ|−logη(λ))µ̂Φ(X)(dλ)+
∫

logKη (λ)(µ̂Φ(X)−µ̂Φ(Xcut)+µ̂Φ(Xcut)−E[µ̂Φ(Xcut)])(dλ)
)
1Egap1Ess1Econc

]
+
∫

logKη (λ)E[µ̂Φ(Xcut)](dλ)

>
1
N

logE[eN
∫

(log|λ|−logη(λ))µ̂Φ(X)(dλ)
1Egap1Ess1Econc ]−N−κ log

(
1 + K2

η2

)
− t+

∫
logKη (λ)E[µ̂Φ(Xcut)](dλ)

>
∫

log|λ|µN (dλ)− ε(N), (2.6)

where ε(N) = ε1(N) + ε2(N) +N−κ log
(

1 + K2

η2

)
+ t and we have used∫

logKη (λ)µN (dλ) >
∫

log(min(|λ|,K))µN (dλ) =
∫

log|λ|µN (dλ) (2.7)

15



for N large enough in the last inequality (2.6), as the µN ’s are supported on a common compact set and K grows
with N . It remains to check that ε(N) → 0. This follows immediately from our parameter choices (2.1), except
possibly for the term ε2(N). For this term, we note that P(Ess)→ 1 and P(Egap)→ 1 by assumption ((1.8) and (1.6),
respectively), then use Lemmas 2.3 and 2.6 to show that P(Econc)→ 1 and P(Eb)→ 1. This shows that ε2(N)→ 0,
which concludes the proof of the lower bound and thus of (1.9).

2.2 Proof of Theorem 1.2. In this subsection we prove Theorem 1.2. The proof is largely similar to that of
Theorem 1.1, so we will omit some steps.

We make the same parameter choices as in (2.1). We also work with the events Egap and Eb from (2.2), but Ess
is no longer relevant, and Econc is replaced by

ELip =
{∣∣∣∣∫ logη(λ)(µ̂HN − E[µ̂HN ])(dλ)

∣∣∣∣ 6 t}.
Proof of upper bound of Theorem 1.2. From (1.11) and some elementary estimates, there exists a universal constant
cε0 such that, for N large enough, we have

E[eN
∫

logη(λ)(µ̂HN−E[µ̂HN ])(dλ)] 6 cε0 exp
[(

2Nζ

cζ

)1/ε0( 1
2η

)2
]
.

Hence

1
N

logE[|det(HN )|] 6 1
N

logE[eN
∫

logη(λ)µ̂HN (dλ)] 6
(

2
4ε0cζ

)1/ε0 Nζ/ε0−1

η2 +
∫

logη(λ)E[µ̂HN ](dλ)

6

(
2

4ε0cζ

)1/ε0 Nζ/ε0−1

η2 + 1
2ηW1(E[µ̂HN ], µN ) +

∫
logη(λ)µN (dλ).

For ζ small enough, the first term decays with N . We complete the proof by applying (1.10) and (2.5).

Proof of lower bound of Theorem (1.2). Arguing as in (2.6), N−1 logE[|det(HN )|] is larger than

1
N

logE[eN
(∫

(log|λ|−logη(λ))µ̂HN (dλ)+
∫

logη(λ)(µ̂HN−E[µ̂HN ])(dλ)
)
1ELip1Egap ] +

∫
logη(λ)E[µ̂HN ](dλ)

>
1
N

logE
[
eN
∫

(log|λ|−logη(λ))µ̂HN (dλ)
1ELip1Egap

]
− t− 1

2ηW1(E[µ̂HN ], µN ) +
∫

log|λ|µN (dλ).

As in Lemma 2.5, we have

1
N

logE
[
eN
∫

(log|λ|−logη(λ))µ̂HN (dλ)
1ELip1Egap1Eb

]
> −pb2 log(1 + e2Nεη2)− η2

2w2
b

+ 1
N

logP(ELip, Egap, Eb),

so by our parameter choices (2.1) it suffices to show P(ELip, Egap, Eb)→ 1. The event Egap is handled by assumption
(1.6); the event Eb is handled by Lemma 2.6 (replacing dBL there with W1 here); and the event ELip is handled by
assumption (L), since (1.11) gives P(EcLip) 6 exp

(
− cζ
Nζ

min{(2Ntη)2, (2Ntη)1+ε0}
)
.

3 Applications to matrix models

In this section, we check the assumptions of our general theorems, 1.1 and 1.2, for our different matrix models. First
we present two general and classical techniques that will help us check these assumptions. Informally speaking, the
first technique shows how local laws for the Stieltjes transform along lines of the form {E + iN−ε : E ∈ [−C,C]}
give polynomial convergence rates of the averaged empirical spectral measure, corresponding to assumptions (E) and
(W). The second technique proves Wegner estimates of the form (1.6) using the Schur complement formula.

In the last Section 3.11, we prove the claims made just after Theorem 1.1 about the necessity of its assumptions.
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3.1 General technique: Convergence rates via local laws. In this subsection, we summarize the general
technique for using local laws to derive estimates like (1.4) and (1.10). We will use this technique repeatedly for
specific matrix models. This idea is classical; see for instance [Bai93] for the specific estimates we need.

Write sN (z) =
∫
µ̂HN (dλ)/(λ − z) for the Stieltjes transform of µ̂HN , and mN (z) =

∫
µN (dλ)/(λ − z) for the

Stieltjes transform of µN . Define the distribution functions FEµ̂(x) = E[µ̂HN ]((−∞, x]), FµN (x) = µN ((−∞, x]).

Proposition 3.1. Suppose the measures µN have densities µN (·) on all of R, not just near the origin, and
supN ‖µN (·)‖L∞ <∞. Assume also that there exist fixed (N -independent) constants A, ε1, ε2 > 0 such that∫ 3A

−3A

∣∣E[sN (E + iN−ε1)]−mN (E + iN−ε1)
∣∣dE 6 N−ε2 , (3.1)∫

|x|>A

∣∣FE[µ̂](x)− FµN (x)
∣∣ dx 6 N−ε1−ε2 . (3.2)

Then there exists γ > 0 with dKS(E[µ̂HN ], µN ) = O(N−γ). If in addition supp(µN ) ⊂ (−A,A) for each N , and

∣∣FE[µ̂](x)− FµN (x)
∣∣ = o|x|→∞

(
1
|x|

)
, (3.3)

then there exists γ′ > 0 with dBL(E[µ̂HN ], µN ) 6W1(E[µ̂HN ], µN ) = O(N−γ′).

Proof. From [Bai93, Theorem 2.2], we have

dKS(E[µ̂HN ], µN ) 6 η−1 sup
x

∫
|y|610η

|FµN (x+ y)− FµN (x)|dy + 2πη−1
∫
|x|>A

∣∣FE[µ̂](x)− FµN (x)
∣∣ dx

+
∫ 3A

−3A
|E[sN (E + iη)]−mN (E + iη)|dE.

Since the measures µN have densities bounded by S, say, the function FµN is S-Lipschitz; hence the first term is at
most 100Sη. With the choice η = N−ε1 , the second and third terms are handled by assumption.

For the Wasserstein distance, let f be a test function with ‖f‖Lip 6 1. We integrate by parts (notice (3.3) gives
us the decay at infinity necessary to do this) to find∣∣∣∣∫ ∞

2A
f(x)(E[µ̂HN ]− µN )(dx)

∣∣∣∣ =
∣∣∣∣∫ ∞

2A
f(x)E[µ̂HN ](dx)

∣∣∣∣ 6 ∫ ∞
2A

(x− (2A− 1))E[µ̂HN ](dx)

6 dKS(E[µ̂HN ], µN ) +
∫ ∞

2A

∣∣FE[µ̂](x)− FµN (x)
∣∣dx 6 N−γ +N−ε1−ε2

and similarly for the left tail. For the bulk, we approximate f on [−2A, 2A] with test functions smooth enough to
integrate by parts on f directly, which gives∣∣∣∣∣

∫ 2A

−2A
f(x)(E[µ̂HN ]− µN )(dx)

∣∣∣∣∣ 6 (8A+ 4)dKS(E[µ̂HN ], µN ).

This completes the proof.

3.2 General technique: Wegner estimates via Schur complements. In this subsection, we summarize the
classical idea of using the Schur-complement formula to derive Wegner estimates on the probability that there are
no eigenvalues in a small gap around energy level E. These will be used to check (1.6) for a wide variety of models.

For compactness, we temporarily drop the N -dependence from the notation HN . For any j in J1, NK, write H(j)

for the matrix obtained by erasing the jth column and row from H, write hj for the (N − 1)-vector consisting of the
jth column of H with the entry Hjj removed, and write H

ĵj
for the collection of every entry of H except for Hjj .
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Proposition 3.2. Fix E ∈ R and suppose there exists a sequence η = ηN tending to zero such that

sup
j∈J1,NK

E

[
E

[
Im
(

1
Hjj − (E + iη + hTj (H(j) − (E + iη))−1hj)

)∣∣∣∣∣Hĵj

]]
= o

(
1
Nη

)
. (3.4)

Then
lim
N→∞

P(HN has no eigenvalues in [E − η,E + η]) = 1.

Proof. We have

P(HN has an eigenvalue in [E − η,E + η]) 6 E[#{j : |λj − E| 6 η}] 6 E

2
N∑
j=1

η2

η2 + (λj − E)2


= 2ηE

Im

 N∑
j=1

1
λj − E − iη

 = 2ηE
[
Im
(

Tr 1
H − (E + iη)

)]
6 2Nη sup

j∈J1,NK
E[Im(((H − (E + iη))−1)jj)].

Moreover, the Schur complement formula gives

((H − (E + iη))−1)jj = 1
Hjj − (E + iη + hTj (H(j) − (E + iη))−1hj)

,

which concludes the proof by the assumption (3.4).

Lemma 3.3. Write H̃jj for the law of Hjj conditioned on H
ĵj
. Suppose that there exists a single probability measure

µ on R (independent of N and j) with a bounded density µ(·), and constants σ̃jj = σ̃
(N)
jj and m̃jj = m̃

(N)
jj such that

H̃jj − m̃jj

σ̃jj
∼ µ

for every N and j ∈ J1, NK. If there exist α,C > 0 with

inf
j∈J1,NK

σ̃jj >
1
C
N−α,

then (3.4) holds with η = o(N−1−α) for every E ∈ R.

Proof. For any deterministic z = E + iη, and with the notation S := ‖µ(·)‖L∞ , we have

E
H̃jj

[
Im
(

1
H̃jj − z

)]
=
∫
R

η

(σ̃jjx+ m̃jj − E)2 + η2µ(x) dx 6 S 1
σ̃jj

∫
R

η

x2 + η2 dx 6 πSCNα.

Define zj = E + iη + hTj (H(j) − (E + iη))−1hj , and z̃j = zj − E[H̃jj ], and notice that z̃j is measurable with respect
to H

ĵj
with Im(z̃j) > η deterministically; thus

sup
j∈J1,NK

E
[
E
[

Im
(

1
Hjj − zj

)∣∣∣∣Hĵj

]]
= sup
j∈J1,NK

E
z̃j

[
E
H̃jj

[
Im
(

1
H̃jj − z̃j

)]]
6 πSCNα

which is o(1/(Nη)) for our choice of η.
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3.3 Wigner matrices. We will use Theorem 1.1 (convexity-preserving functional) and model a Wigner matrix
WN −E as WN −E = Φ(X1, . . . , XM ), where M = N(N+1)

2 , the Xi’s are independent random variables distributed
according to µ, and Φ is 1√

N
times the identity map which places these entries in the upper triangle of an N × N

matrix, minus E Id. This Φ is trivially convex and satisfies ‖Φ‖Lip = 1√
N
.

Our assumption (1.12) that the underlying measure µ has subexponential tails is only used to check assumption
(S). To check the remaining conditions of Theorem 1.1, we need only assume that µ has 2 + ε finite moments for
some ε > 0. In the interest of generality, in the following we give these minimal-assumptions proofs.

Now we check assumption (E) on expectations, with all µN ’s equal to the semicircle law ρsc. A. Tikhomirov
[Tik09a, Theorem 1.1] showed that for every ε in the assumption of 2 + ε finite moments, there exists η = η(ε) > 0
with

dKS(E[µ̂WN
], ρsc) 6 N−η. (3.5)

Now we transfer this inequality from dKS to dBL: If M > 2 and ‖f‖∞ 6 1, then∣∣∣∣∣
∫ −M
−∞

f(x)(E[µ̂WN
]− ρsc)(dx)

∣∣∣∣∣ =

∣∣∣∣∣
∫ −M
−∞

f(x)E[µ̂WN
](dx)

∣∣∣∣∣ 6
∫ −M
−∞

E[µ̂WN
](dx) 6 N−η

from (3.5), and similarly for
∫∞
M

; on [−M,M ] we proceed exactly as in the proof of Proposition 3.1, to obtain (E)1.
Now we check the three estimates comprising assumption (C) on coarse bounds.

(1.5) Fix ε > 0 and writeW = WN = A+B = AN +BN , where A is defined entrywise by Aij = (Wij)1|Wij |6 1
10N e

Nε .

Notice that all eigenvalues of A have absolute value at most 1
10e

Nε . The Weyl inequalities give us

λi(W ) = λi(A+B) 6 λmax(A) + λi(B) 6 1
10e

Nε + λi(B)

and similarly λi(W ) > λi(B)− 1
10e

Nε , so that for fixed E, for large enough N we have, for any i,

1 + |λi(W − E)|1|λi(W−E)|>eNε 6 1 + 2|λi(W )|1|λi(W )|> 1
2 e
Nε 6 1 + 2|λi(W )|1|λi(B)|> 1

4 e
Nε

6 1 + (|λmax(A)|+ |λi(B)|)1|λi(B)|> 1
4 e
Nε 6 1 + 2|λi(B)|1|λi(B)|> 1

4 e
Nε .

For x > 1 we have (1 + 2x) < (1 + 100x2)1/2, so
N∏
i=1

(1 + 2|λi(B)|1|λi(B)|> 1
4 e
Nε ) 6

N∏
i=1

(1 + 100λi(B)2)1/2 = det(Id +100B2)1/2.

By Fischer’s inequality this can be bounded above by the product of its diagonal entries; that is,

det(Id +100B2)1/2 6
N∏
i=1

1 + 100
N∑
j=1

B2
ij

1/2

6
N∏
i=1

1 + 10
N∑
j=1
|Bij |

,
where for the last inequality we used

∑
a2
i 6 (

∑
ai)2 for positive numbers ai. Now, for some constant C we

have E[|Bij |],E[|Bij |2] 6 CNe−Nε 6 e− 1
2N

ε

, and notice that we can calculate E
[∏N

i=1

(
1 + 10

∑N
j=1|Bij |

)]
by

expansion and factorization again. All matrix elements appear with a power at most two, and for any set I of
couples (i, j) which can appear in the expansion, we have E

[∏
α∈I |Bα|

]
6 (e− 1

2N
ε)|I| so that

1
N

logE

 N∏
i=1

1 + 10
N∑
j=1
|Bij |

 6 1
N

log
N∏
i=1

1 + 10
N∑
j=1

e−
1
2N

ε

→ 0.

1We also briefly sketch another possible proof of assumption (E). First, by following the usual Hoffman-Wielandt-based proof that
two moments suffice for the Wigner semicircle law (see, e.g., [AGZ10, Theorem 2.1.21]), we can assume that the entries Wij are replaced
with Wij1|Wij |6N10ε , if the 2 + ε moment is finite. Second, for this new matrix, one can apply the usual Stieltjes-transform-based proof
of the Wigner semicircle law using Schur complements (see, e.g., [AGZ10, Section 2.4.2]); the fourth moments of the new matrix are
O(N40ε), which is more than compensated by 1/N prefactors in the error terms.
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(1.6) The existence of gaps near zero with high probability (indeed, gaps of polynomial size) was established by
Nguyen [Ngu12, Theorem 1.4], including the case of general energy levels E.

(1.7) Fix δ so small that µ has finite 2 + 2δ moment. Let SN be the symmetric group on N letters, and for any
permutation σ ∈ SN define Xσ =

∣∣(W − E)1,σ(1) · . . . · (W − E)N,σ(N)
∣∣. Then |det(WN − E)| 6

∑
σXσ, and

by convexity of x 7→ x1+δ we have

|det(WN − E)|1+δ 6

( ∑
σ∈SN

Xσ

)1+δ

6 (N !)1+δ
∑
σX

1+δ
σ

N ! .

If
√
NY is distributed according to µ, then for each E ∈ R there exists cE = cE(µ, δ) such that

max(E[|Y − E|1+δ],E[|Y − E|2+2δ],E[|Y |1+δ],E[|Y |2+2δ]) 6 cE <∞.

Thus supσ E[X1+δ
σ ] 6 (cE)N . Since N ! 6 NN , this gives E[|det(WN − E)|1+δ] 6 cNEN

(1+δ)N up to factors of
lower order, which suffices.

To prove assumption (S) on spectral stability, we follow Bordenave, Caputo and Chafaï, see [BCC11, Lemma C.2]
and [BC14, Lemma 2.2]. Write W cut

N = Φ(Xcut) for the matrix WN with entries truncated at level N−κ for some
κ < 1

2(2α+1) , where α is from (1.12). From interlacing (see, e.g., [BS10, Theorem A.43]) we find

dKS(µ̂WN
, µ̂W cut

N
) 6 1

N
rank(WN −W cut

N ) 6 2
N

∑
i6j

1|Wij |>N−κ ,

where the last inequality follows since the rank of a matrix is at most the number of its nonzero entries. The N(N+1)
2

random variables (1|Wij |>N−κ)16i6j6N are i.i.d. Bernoulli variables with parameter

pN = P(|Wij | > N−κ) 6 β exp(−N ( 1
2−κ) 1

α ),

from (1.12). Writing h(x) = (x+ 1) log(x+ 1)− x, Bennett’s inequality [Ben65] gives

P

∑
i6j

1|Wij |>N−κ −
N(N + 1)

2 pN > t

 6 exp
(
−σ2h

(
t

σ2

))

with
σ2 = N(N + 1)

2 pN (1− pN ) 6 N(N + 1)
2 pN 6 β exp(−N ( 1

2−κ) 1
2α ),

for N large enough. With the choice t = N1−κ − N(N+1)
2 pN > 1

2N
1−κ (for κ small enough) we have t

σ2 → +∞, and
using h(x) ∼ x log x as x→ +∞ (more precisely, h(x) > 1

2x log x for x large enough, say), we obtain

logP(dKS(µ̂WN
, µ̂W cut

N
) > N−κ) 6 −σ2h

(
N1−κ

2σ2

)
6 −CN1−κ log

(
N1−κ

2σ2

)
6 −CN1−κ+( 1

2−κ) 1
2α

for some constant C and N large enough. From our choice of κ, the last exponent is larger than one, which completes
the proof of (1.8).

3.4 Erdős-Rényi matrices. We will use Theorem 1.1 (convexity-preserving functional) and model an Erdős-
Rényi matrix HN −E as HN −E = Φ(X1, . . . , XM ), whereM = N(N+1)

2 , the Xi’s are independent Bernoulli random
variables with parameter pN , and Φ is 1√

NpN (1−pN )
times the identity map which places these entries in the upper

triangle of an N ×N matrix, minus E Id. This clearly satisfies assumptions (I) and (M) with ‖Φ‖Lip = 1√
NpN (1−pN )

.
Now we verify assumption (E) with all µN ’s equal to the semicircle law ρsc. In the proof, we control the extreme

eigenvalues (more precisely the smallest and second-largest) with results of Vu [Vu07], improving on earlier results
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of Füredi-Komlós [FK81]; and we control the bulk eigenvalues using the local law of Erdős et al. [EKYY13]. Often
we use much weaker consequences of the results, replacing logN factors by polynomial factors and so on.

More precisely, consider H̃N = HN − E[HN ]. This matrix has centered entries of variance σ2 = 1
N , supported in

[−K,K] with K = 1√
εNε

. Thus the proof of [Vu07, Theorem 1.3, Theorem 1.4] shows that there exist C, γ > 0 with

P
(
‖H̃N‖ > 2 + C

logN
(εNε)1/4

)
6 N−γ (3.6)

for N large enough. Recall we order eigenvalues as λ1 6 · · · 6 λN ; since E[HN ] is rank-one and positive semidefinite,
interlacing tells us that max(|λ1(HN )|, |λN−1(HN )|) 6 ‖H̃N‖, and thus we have the very coarse bound

P(max(|λ1(HN )|, |λN−1(HN )|) > 3) 6 N−γ

for N large enough. In particular, whenever f is a test function with ‖f‖∞ 6 1, we have∣∣∣∣∫ ∞
3

f(x)(E[µ̂HN ]− ρsc)(dx)
∣∣∣∣ 6 1

N

N∑
i=1

P(λi(HN ) > 3) 6 1
N

+N−γ ,

and similarly for the left tail, which is even easier because we do not need to separate out the smallest eigenvalue.
Now we handle the bulk eigenvalues. Let Fρsc , Fµ̂, and FE[µ̂] be the distribution functions for ρsc, µ̂HN , and

E[µ̂HN ], respectively. Then [EKYY13, Theorem 2.12] shows that there exists ν > 0 such that, for N large enough,

P

(
sup

x∈[−3,3]
|Fρsc(x)− Fµ̂(x)| 6 N−1+ε

)
> 1− exp(−ν(logN)5 log logN ).

Since supx|Fρsc(x)− Fµ̂(x)| 6 2 deterministically, this gives

sup
x∈[−3,3]

∣∣Fρsc(x)− FE[µ̂](x)
∣∣ 6 Nε

N
+ 2 exp(−ν(logN)5 log logN ).

The proof of (E) is then easily completed as in the case of Wigner matrices.
Now we check the three estimates comprising assumption (C) on coarse bounds.

(1.5) We have
‖HN‖2 6

∑
i,j

|Hij |2 6
N

pN (1− pN ) 6
1
ε
N2−ε (3.7)

almost surely, so (1.5) is trivially satisfied.

(1.6) For bulk energy levels, meaning E ∈ (−2, 2), one can show

P
(
HN has no eigenvalues in

(
E − 1

N2 , E + 1
N2

))
= 1− o(1)

using the bulk fixed-energy universality results of Landon-Sosoe-Yau [LSY19, Section 1.1.1]; the argument is
given in our discussion below of the free-addition model. For |E| > 2, eigenvalues other than λN are handled
with the result of Vu above (3.6). For λN (only a concern for positive E values), the Weyl inequalities give

λN (HN ) > λN (E[HN ]) + λ1(HN − E[HN ]) =

√
NpN

1− pN
+ λ1(HN − E[HN ]) > 1√

ε
Nε/2 + λ1(HN − E[HN ]).

By (3.6), the last term is at least −3 with probability 1− o(1); thus λN cannot stick to any fixed E > 2.

(1.7) This follows from (3.7), using |det(HN − E)| 6 ‖HN − E‖N .
For assumption (S) on spectral stability, we note that the threshold for cutting is

N−κ

‖Φ‖Lip
= N

1
2−κ

√
pN (1− pN ) >

√
εN

ε
2−κ > 1

for κ < ε
2 and large enough N . Since the Xi = 0 or 1, this means that X = Xcut, and hence (1.8) is trivially satisfied.
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3.5 d-regular matrices. We will prove Proposition (1.6) by mimicking the proof of Theorem 1.2, but we will,
informally speaking, prove (1.11) only for special test functions that we need to approximate the logarithm, rather
than in full generality. Precisely, a careful reading of the proof of Theorem 1.2 finds that it suffices to verify the
following:

– Assumption (W) for some κ > 0, with all measures µN equal to the semicircle law ρsc (this is translation-
invariant, so it suffices to check it at E = 0)

– the Wegner estimate (1.6) around energy level E,

– for the same κ, with the parameters

η = N−κ/2,

t = N−κ/4,

that (for the lower bound)

P
(∣∣∣∣∫

R
logη(λ− E)(µ̂HN − E[µ̂HN ])(dλ)

∣∣∣∣ 6 t)→ 1, (3.8)

– and that (for the upper bound)

lim sup
N→∞

1
N

logE[eN
∫

logη(λ−E)(µ̂HN−E[µ̂HN ])(dλ)] 6 0. (3.9)

We now verify these four conditions.

– We will use Proposition 3.1 and the local laws of Bauerschmidt-Knowles-Yau and Bauerschmidt-Huang-
Knowles-Yau [BKY17, BHKY20]. The former paper scales the d-regular adjacency matrix slightly differently
from us; recalling that H ′N is the adjacency matrix with entries in {0, 1}, it considers

H̃N = 1√
d− 1

(
H ′N −

d

N
J

)
where J is the N × N matrix of all ones. This normalization is close enough to ours (which was HN =

1√
d(1− d

N )
H ′N ), in the sense that whenever f : R→ R is 1-Lipschitz, from Hoffman-Wielandt we have

∣∣∣∣∫ f(x)(E[µ̂
H̃N

]− E[µ̂HN ])(dx)
∣∣∣∣ 6 E

[
1
N

N∑
i=1

∣∣∣f(λi(H̃N ))− f(λi(HN ))
∣∣∣]

6 E

 1√
N

(
N∑
i=1

∣∣∣λi(H̃N )− λi(HN )
∣∣∣2)1/2 6 E

[
1√
N
‖H̃N −HN‖F

]
but deterministically we have

‖H̃N −HN‖F 6

∥∥∥∥∥∥
 1√

d− 1
− 1√

d(1− d
N )

H ′N
∥∥∥∥∥∥
F

+
∥∥∥∥ d

N
√
d− 1

J

∥∥∥∥
F

= O(N 1
2−ε)

by our choice of d. Thus
W1(E[µ̂

H̃N
],E[µ̂HN ]) = O(N−ε),

and we can use Proposition 3.1 to estimate W1(E[µ̂
H̃N

], ρsc). Writing s̃N (z) for the Stieltjes transform of µ̂
H̃N

and m(z) for the Stieltjes transform of the semicircle law, a weaker consequence of [BKY17] shows that, for
some absolute constant C,

P

(
there exists z ∈ C with η > (logN)9

N
such that |sN (z)−m(z)| > C

√
(logN)3

(
1√
Nη

+ 1
Nε/2

))
6 e−(logN)3

.
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This suffices to check (3.1). Since µ̂
H̃N

is deterministically supported in [−3
√
d, 3
√
d], (3.3) is trivial. For (3.2),

with say A = 10, by separating out the largest eigenvalue we find∫ ∞
10

∣∣∣∣FE[µ̂
H̃N

](x)− Fρsc(x)
∣∣∣∣ dx =

∫ 3
√
d

10
E[µ̂

H̃N
((x,∞))] dx 6 4

√
d

N
+ 4
√
dP(λN−1(H̃N ) > 10).

Now, with the same ε from Nε 6 d 6 N2/3−ε, (a weak consequence of) the edge-rigidity result of Bauerschmidt,
Huang, Knowles, and Yau [BHKY20, Theorem 1.1] gives

P
(

max
{∣∣∣λN−1((d− 1)−1/2H ′N )− 2

∣∣∣, ∣∣∣λ1((d− 1)−1/2H ′N ) + 2
∣∣∣} > 10N−ε

)
6 N−1/ε. (3.10)

(This is still stronger than what we need, both in where it localizes the eigenvalues – in a shrinking region around
±2 – and in its right-hand side, which we only need to be O(N−ε′d−1/2) for some ε′.) Since λN−1(H̃N ) 6
λN−1((d − 1)−1/2H ′N ) by interlacing, this suffices (along with analogous estimates at the left edge) to check
(3.2).

– As in the Erdős-Rényi case, for E ∈ (−2, 2) one can show

P
(
HN has no eigenvalues in

(
E − 1

N2 , E + 1
N2

))
= 1− o(1)

using the bulk fixed-energy universality results of Landon, Sosoe, and Yau [LSY19], with details given in the
free-addition section below. For |E| > 2, eigenvalues other than the largest one are handled with (3.10) (even
with the slightly different normalization); the largest eigenvalue is deterministically

√
d

1− d
N

>
√
d > Nε/2, i.e.,

cannot stick to any finite E.

– We study HN by thinking of it as the adjacency matrix of an Erdős-Rényi random graph, conditioned to be
d-regular. Notice that the resulting law is indeed uniform on d-regular matrices, since all graphs on N vertices
with a given number of edges are equiprobable under the Erdős-Rényi measure. Precisely, write Pd for the law
(and Ed associated expectation) of HN with the d-regular law (1.14). Let A′N be the adjacency matrix of an
Erdős-Rényi random graph G(N, dN ), and consider the normalization

AN = 1√
d
(
1− d

N

)A′N
whose law we denote as PER with corresponding expectation EER. It will be convenient to use the notation

ELip(MN , δ) =
{∣∣∣∣∫

R
logη(λ− E)(µ̂MN

− E[µ̂MN
])(dλ)

∣∣∣∣ 6 δ}
for MN = AN or MN = HN , and for δ > 0 (possibly depending on N).
Now [TVW13, Lemma 2.1] shows that, if d→∞, then there exists a constant C with

PER(AN is d-regular) > exp(−CN
√
d). (3.11)

Thus
Pd((ELip(HN , δ))c) = PER((ELip(AN , δ))c | AN is d-regular) 6 eCN

√
dPER((ELip(AN , δ))c).

In the proof of Lemma 2.3 above, we wrote a decomposition logη =
∑3
i=1 logi, where each logi = logi,η was

1
2η -Lipschitz and either convex or concave. Now

PER((ELip(AN , δ))c) = PER

(∣∣∣∣∣
3∑
i=1

∫
R

logi(λ− E)(µ̂AN − E[µ̂AN ])(dλ)

∣∣∣∣∣ > δ

)

6
3∑
i=1

PER
(∣∣∣∣∫

R
logi(λ− E)(µ̂AN − E[µ̂AN ])(dλ)

∣∣∣∣ > δ

3

)
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Since logi(·−E) is Lipschitz and convex (or concave), and since
√
NAN has entries compactly supported in, say,

[−
√

2N
d ,
√

2N
d ], we can use concentration results of Guionnet and Zeitouni, namely [GZ00, Theorem 1.1(a)],

which gives, for any (possibly N -dependent) δ > δ0(N) = 100N− 1+κ−ε
2 , the estimate

PER
(∣∣∣∣∫

R
logi(λ− E)(µ̂AN − E[µ̂AN ])(dλ)

∣∣∣∣ > δ

)
6 4 exp

(
−dNη

2(δ − δ0(N))2

32

)
.

With the choice δ = t
3 = 1

3N
−κ/4, this gives

Pd((ELip(HN , t))c) 6 12 exp
(
CN
√
d− dN1− 3κ

2

1000

)
. (3.12)

Since we can take κ arbitrarily small, this tends to zero.

– Since µ̂HN is deterministically supported on [− d√
d(1−d/N)

, d√
d(1−d/N)

] ⊂ [−
√

2d,
√

2d], we have

∣∣∣∣∫
R

logη(λ− E)(µ̂HN − E[µ̂HN ])(dλ)
∣∣∣∣ 6 2 max

|x|6
√

2d

∣∣logη(x− E)
∣∣ 6 10 log(N),

almost surely, for N > N0(E). Thus

E[eN
∫

logη(λ−E)(µ̂HN−E[µ̂HN ])(dλ)]

= E[eN
∫

logη(λ−E)(µ̂HN−E[µ̂HN ])(dλ)
1ELip(HN ,t)] + E[eN

∫
logη(λ−E)(µ̂HN−E[µ̂HN ])(dλ)

1(ELip(HN ,t))c ]
6 eNt + e10N log(N)P((ELip(HN , t))c)

From (3.12), this is enough.

3.6 Band matrices. We will use Theorem 1.1 (convexity-preserving functional) and model a band matrix HN

as HN = Φ(X1, . . . , XM ), where M = (W + 1)N , the Xi’s are independent random variable distributed according
to µ, and Φ is 1√

2W+1 times the identity map which arranges these entries into a band matrix. This Φ is trivially
convex and satisfies ‖Φ‖Lip = 1√

2W+1 . Throughout this section, the constant ε will be the same as in the assumption
W > Nε.

To check assumption (E) with µN ≡ ρsc, we will use Proposition 3.1 with A = 3. (By translation invariance, it
suffices to check (E) at E = 0.) The bulk estimate (3.1) follows from the stronger local law of Erdős et al. [EYY12];
the tail estimate (3.2) uses the tail estimates of Benaych-Georges/Péché [BGP14].

Write sN (z) for the Stieltjes transform of µ̂HN and msc(z) for the Stieltjes transform of the semicircle law. The
local law [EYY12, Theorem 2.1] gives constants C and c such that, if z = E + iη with E 6 3, κ := ||E| − 2| > N−δ

for δ = 3ε/20, and η = N6δ−ε, then

P(|sN (z)−msc(z)| > N−δ) 6 CN−c(log logN).

Together with the trivial bound |E[sN (E + iη)]−msc(E + iη)| 6 2
η , this gives

|E[sN (z)]−msc(z)| 6 N−δ + 2CNε−6δ−c(log logN) . N−δ

for such z values. Writing ε1 = ε− 6δ > 0 and using again the trivial bound for κ < N−δ, we obtain∫ 3

−3

∣∣E[sN (E + iN−ε1)]−msc(E + iN−ε1)
∣∣dE . 6N−δ + 8Nε1−δ.

By our choice of δ we have ε1 − δ < 0; this suffices to check (3.1).
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For the tail estimate (3.2), we note that
∣∣FE[µ̂](x)− Fρsc(x)

∣∣ 6 P(‖HN‖ > x) for, say, x > 3. The proof of
[BGP14, Theorem 1.4] gives, for any k > 1,

P(‖HN‖ > x) 6 Nx−2k4k
(

1− (12α/e)6k12

W

)−1

.

Choosing k = kN = Nε/20, we verify (3.3) and find, for N large enough,

∫ ∞
3

P(‖HN‖ > x) dx 6 6N1− ε
20

(
4
9

)Nε/20

,

which is much faster than we need. The left tail is estimated similarly, and this verifies (3.2) and thus (1.4).
Now we check assumption (C) on coarse bounds.

(1.5) The proof for Wigner matrices works verbatim here (in particular, 2 + ε finite moments is enough).

(1.6) Since we assumed our entries have a bounded density, this follows from Proposition 3.2 and Lemma 3.3.

(1.7) The proof for Wigner matrices works verbatim here (in particular, 2 + ε finite moments is enough).

The proof of assumption (S) is similar to the case of Wigner matrices; in particular it holds assuming only that
µ has 2 + ε finite moments.

3.7 Sample covariance matrices. As noted above, this model is not covered by either of our theorems directly.
But it can be proved by mimicking the proof of Theorem 1.1 (convexity-preserving functional) with the following
changes. We let M = pN , let X1, . . . , XM be independent copies of µ, and consider the map Φ = ΦE : RM → Sp

that places its arguments in the entries of the p × N matrix Y = Yp,N and returns 1
N Y Y

T − E. There are two
problems with applying Theorem 1.1 as written, but we will implement the following workarounds:

1. Φ is not convex (but we will use the standard Hermitization trick that compares eigenvalues of Y Y T with
eigenvalues of the (p+N)× (p+N) block matrix ( 0 Y

Y T 0 ), which is a convex function of the entries of Y ).

2. Φ is not Lipschitz, since it grows too quickly at infinity (but the Hermitization is Lipschitz).

As in the Wigner case, the assumption of subexponential tails is only used to check assumption (S), and we will
give the remainder of the proofs only assuming that µ has 2 + ε finite moments.

Below, we will verify assumption (E) with some value of κ. For now, we redefine Xcut (for this model only), using
this same κ, as

(Xcut)i = Xi1|Xi|6N−κ+ 1
2
. (3.13)

We choose this scaling so that each 1
N Y

2
ij is at most N−2κ, similar to what happens in the Wigner and Erdős-Rényi

cases. Later we will check assumption (S) with this new definition, as well as assumption (C). First we show that all
of these assumptions yield determinant concentration.

Much of the proof of Theorem 1.1 works verbatim in this new setting, since for example it never uses the old
definition of Xcut directly, using instead the stability estimate (1.8) which will still be true for us under the new
definition. The biggest change is in the proof of Lemma 2.3, where we applied results of Talagrand using the convexity
and Lipschitz properties which no longer hold. The replacement for Lemma 2.3 is as follows.

Lemma 3.4. For every E ∈ R, there exist cE , CE > 0 with the following properties: If we let t̃0(N) = CE

η2N
1
2 +κ , then

whenever t > t̃0(N) we have
P((Econc)c) 6 20 exp

(
−cE(t− t̃0(N))2η4N1+2κ).

Proof. We use the classical trick of considering the (p+N)× (p+N) matrix

HN = HN (X) = 1√
N

(
0p×p Yp,N
Y Tp,N 0N×N

)
.
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For any test function f , we have

tr(f(H2
N )) = 2 tr(f(Y Y T /N)) + (N − p)f(0). (3.14)

We show in Lemma 3.5 below that for every fixed E ∈ R, there exists CE > 0 such that the function x 7→ logKη (x2−E)
can be decomposed as a sum of five functions

logKη (x2 − E) =
5∑
i=1

l̃ogi(x) =
5∑
i=1

l̃ogi,E,η,K(x),

where each l̃ogi is CE
η2 -Lipschitz and either convex or concave (in fact, if E 6 0 we only need three terms, and the

last two will be set to zero). For simplicity, we choose powers pi ∈ {0, 1} such that each (−1)pi l̃ogi is convex. From
these we define functions f̃i : [−N−κ+1/2, N−κ+1/2]M → R given by

f̃i(Xcut) = (−1)pi 1
N

tr(l̃ogi(HN (Xcut))).

Using (3.14) and mimicking the proof of Lemma 2.3, we find

P(Ecconc) = P
(∣∣∣∣ 1

2N tr(logKη (H2
N ))− 1

2N E[tr(logKη (H2
N ))]

∣∣∣∣ > t

)
6

N∑
i=1

P
(∣∣∣f̃i(Xcut)− E[f̃i(Xcut)]

∣∣∣ > 2
5 t
)
.

As in the original proof, each f̃i is
√

2(p+N) 1
N
CE
η2

1√
N
6 CE

Nη2 -Lipschitz (for a new CE), and since the mapXcut 7→ HN

is convex (this is the point of the Hermitization) we know that each f̃i is convex as well. Then Talagrand’s inequality
gives

P
(∣∣∣f̃i −M

f̃i

∣∣∣ > t) 6 4 exp
(
− t

2η4N1+2κ

16(CE)2

)
and we conclude as before.

Lemma 3.5. For every E ∈ R, there exists CE > 0 with the following property: For every η 6 η0(E) and every
K > K0(E), there exist functions l̃ogi = l̃ogi,E,η,K : R → R for i = 1, 2, 3, 4, 5 that are CE

η2 -Lipschitz and either
convex or concave, and such that

logKη (x2 − E) =
5∑
i=1

l̃ogi(x).

Proof. The proof has two cases, according to whether E 6 0 or E > 0.

– Case E 6 0: Here we only need three functions (i.e., we set l̃og4 = l̃og5 = 0). One can check that there exists
0 6
√
−E < b = b(E,η) such that the function x 7→ logKη (x2 − E) is concave on (−∞,−b) ∪ (b,∞) and convex

on (−b, b). (Explicitly, it is given as the largest positive solution of the degree-six equation 2b6−2Eb4−2(E2 +
3η2)b2 + 2E(E2 + η2) = 0, but the exact form does not matter so much as its stability for small η: As η ↓ 0,
b ↓
√
−E.) We want to pick our three functions (which we will actually call l̃og1 and l̃og2,±) in the form

l̃og1(x) =


−c(x+ b) + logη(b2 − E) if x 6 −b
logη(x2 − E) if − b 6 x 6 b
c(x− b) + logη(b2 − E) if x > b

l̃og2,+(x) =
{
cx if x 6 b
logKη (x2 − E) + cb− logη(b2 − E) if x > b

l̃og2,−(x) = l̃og2,+(−x)
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for some c = cE,η > 0. It is easy to check that these functions sum to logKη (x2 − E), and they are all concave
or convex as long as

c > ∂x logη(x2 − E)|x=b = 2b(b2 − E)
η2 + (b2 − E)2 ,

in which case each function is c-Lipschitz; but since 2b(b2−E)
η2+(b2−E)2 6

2b(b2−E)
η2 6 CE

η2 for small η, we are done.

– Case E > 0: This is similar to the case E 6 0, except since the function is more complicated one needs five
summands: One can check that there exist 0 < bn = b

(E,η)
n <

√
E < bf = b

(E,η)
f (for “near boundary” and

“far boundary”) such that the function x 7→ logKη (x2 − E) is concave on (−∞,−bf ) ∪ (−bn, bn) ∪ (bf ,+∞)
and convex on (−bf ,−bn) ∪ (bn, bf ). (As before, they are given as the two positive solutions of the degree-six
equation 2x6 − 2Ex4 − 2(E2 + 3η2)x2 + 2E(E2 + η2) = 0, and they are stable for small η in the sense that as
η ↓ 0, bn ↑

√
E, and bf ↓

√
E.) We want to pick our five functions (which we will actually call l̃og1, l̃og2,±, and

l̃og3,±) in the form

l̃og1(x) =


c1(x+ bn) + logη(b2n − E) if x 6 −bn
logη(x2 − E) if − bn 6 x 6 bn
−c1(x− bn) + logη(b2n − E) if x > bn

l̃og2,+(x) =


−c1(x− bn) + logη(b2n − E) if x 6 bn
logη(x2 − E) if bn 6 x 6 bf
c3(x− bf ) + logη(b2f − E) if x > bf

l̃og2,−(x) = l̃og2,+(−x)

l̃og3,+(x) =
{
c3(x− bf ) + logη(b2f − E) if x 6 bf
logKη (x2 − E) if bf 6 x

l̃og3,−(x) = l̃og3,+(−x)

for some c1, c3 = c1,E,η, c3,E,η > 0. What are the constraints on these constants? To guarantee that all these
functions are concave or convex, we need

c1 > ∂x logη(x2 − E)|x=−bn = −2bn(b2n − E)
η2 + (b2n − E)2 , (3.15)

c3 > ∂x logη(x2 − E)|x=bf =
2bf (b2f − E)
η2 + (b2f − E)2 , (3.16)

in which case each function is max(c1, c3)-Lipschitz. Furthermore, the sum of these five functions is equal to
logKη (x2 − E) as long as the constants satisfy the constraint

c1bn + logη(b2n − E)− c3bf + logη(b2f − E) = 0, (3.17)

through which c1 and c3 determine each other: c3 = c1bn+logη(b2n−E)+logη(b2f−E)
bf

. If we take c1 very large to
satisfy (3.15), then through (3.17) we find that c3 must be very large, hence satisfies (3.16); thus it is possible
to find some pair (c1, c3) satisfying all the constraints. Now we want pairs with small value, i.e., such that
max(c1, c3) 6 CE

η2 : For small η one can show that the lower bounds on the right-hand sides of (3.15) and (3.16)
are upper-bounded by 100E2

η2 ; and if we choose c1 = 100E2

η2 , then through (3.17) we find that c3 . 1
η2 as well,

which finishes the proof.

It remains to check assumptions (E), (C), and (S) (the latter under the new definition (3.13)). The only assumption
that is not translation-invariant (i.e., that depends on the energy level E) is assumption (C).
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For assumption (E), [Tik09b] proved that if µ has 2 + ε moments then there exists (explicit) κ(ε) > 0 such that

dKS(E[µ̂ 1
N Y Y

T ], µMP, pNN
) . N−κ(γ).

From this Kolmogorov-Smirnov distance information we evaluate dBL in the same way as for Wigner matrices with
2 + ε moments. It remains only to understand dBL(µMP,

pN
N
, µMP,γ), and this is only necessary in the case γ < 1

(since when γ = 1 we assumed pN = N). If γ1, γ2 ∈ [ε, 1− ε], then the difference between the densities gives

dBL(µMP,γ1 , µMP,γ2) = Oε

(√
|γ1 − γ2|

)
.

Since we assumed in (1.16) that
∣∣pN
N − γ

∣∣ is polynomially small, this suffices to prove (1.4).
We check the three estimates of assumption (C) as follows:

(1.5) This follows the proof of the Wigner case, but using the Weyl inequalities for singular values instead of those
for eigenvalues. We write out the beginning of the argument because some of the powers change. For some
ε > 0, write Y/

√
N = A+B, where A is defined entrywise by

Aij = 1√
N
Yij1 1√

N
|Yij |6 1

10N e
1
2N

ε .

Then A has singular values at most 1
10e

1
2N

ε , and the Weyl inequalities give

σi(Y/
√
N) 6 σmax(A) + σi(B) 6 1

10e
1
2N

ε

+ σi(B)

and similarly σi(Y/
√
N) > σi(B)− 1

10e
1
2N

ε , so that for each i we have

1 +
∣∣λi(Y Y T /N − E)

∣∣1|λi(Y Y T /N−E)|>eNε 6 1 + 2λi(Y Y T /N)1λi(Y Y T /N)> 1
2 e
Nε

= 1 + 2σ2
i (Y/

√
N)1

σi(Y/
√
N)> 1√

2
e

1
2N

ε 6 1 + 8σ2
i (B)1

σi(B)> 1
2 e

1
2N

ε .

Then from Fischer’s inequality we have

p∏
i=1

(1 + 8σ2
i (B)1

σi(B)> 1
2 e

1
2N

ε ) 6 det(Id +8BBT ) 6
p∏
i=1

1 + 8
N∑
j=1

B2
ij

.
Since B is non-Hermitian with independent entries, the same argument as in the Wigner case goes through
here: when we expand and factor, each matrix entry appears at a power at most two.

(1.6) We mimic the proofs from Section 3.2, making the following changes. We closely follow the proof of someWegner
estimates for complex Wigner matrices from [ESY10, Theorem 3.4], as adapted in [BEYY16, Proposition B.1]
to the symmetric case. Our estimates below will be coarser as we can afford any polynomial error, contrary
to the optimal estimates from these references. Let E, η > 0, η = ε/N , I = [E − η,E + η], z = E + iη and
NI = |{µi ∈ I}|. In the covariance matrix setting, the Schur complement formula gives, for any 1 6 j 6 N
and defining X = Y/

√
N and H = Y Y ∗/N (see e.g. [BEK+14, Equation (3.8)])

((H − z)−1)ii =
(
− z − zX∗i Ri(z)Xi

)−1

where we define Xi = (Xij)j , X(i)
jk = Xjk1j 6=i and Ri(z) = ((X(i))∗X(i) − z)−1. This implies, by the Cauchy-

Schwarz inequality,

E[N 2
I 1A] 6 C(Nη)2E

[(
Im 1
−z − z

N

∑N
α=1

ξα
λα−z

)2
1A

]
6 Cε2E

[(
(
N∑
α=1

cαξα)2 + (E −
N∑
α=1

dαξα)2)−1
1A

]
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for any event A, where

dα = − 1
N
− Nλα(E − λα)
N2(λα − E)2 + ε2 , cα = λαε

N2(λα − E)2 + ε2 ,

with (λα)16α6N−1 the eigenvalues of (X(1))∗X(1), with corresponding L2-normalized eigenvectors uα’s, and
ξα = |uα · Y1|2.
Let (γk)16k6N be implicitly defined through

∫ γk
0 µMP,γ(dx) = k/N , with µMP,γ from (1.17). If E < γbN/2c,

we define m = b3N/4c. If E > γbN/2c, let m = bN/4c. Convergence of N−1∑N
k=1 δµk (µ1, . . . , µN are the

eigenvalues ofH) to µMP,γ under the minimal assumption of finite second moment of the entries [Wac78] has the
following elementary consequence: For any c > 0, P(AN ) = 1− o(1) where AN = ∩N/7<k<8N/7{|µk − γk| < c}.
By interlacing, on AN the (dm+`)06`63 all have the same sign and absolute value greater than N−2, and
cm, cm+1 > cε/N2. Hence we can apply [BEYY16, Equation (B.4)]2 with τ = 0, r = p = 2 (and either E or
−E depending on the sign of the dm+`’s) to obtain, on AN ,

EY1

[(
(
N∑
α=1

cαξα)2 + (E −
N−1∑
α=1

dαξα)2)−1
]
6

C
√
cmcm+1 min(dm+1, dm+2, dm+3) 6 C

N10

ε
,

so that E[N 2
I 1AN ] 6 N10ε and in particular P(NI > 1)→ 0 for ε = e−N

ε .

(1.7) This proof has the same idea as the one for Wigner matrices; the only difference is that the product of entries
associated to one permutation is estimated as follows. Fix δ so small that µ has finite 2 + 2δ moment. For any
permutation σ ∈ Sp define Xσ =

∣∣(Y Y T /N − E)1,σ(1) · . . . · (Y Y T /N − E)p,σ(p)
∣∣. Let

cδ = max(E[|Y1,1|1+δ],E[|Y1,1|2+2δ]) <∞.

Then from convexity of x 7→ x1+δ we have 1
Np

N∑
j1,...,jp=1

p∏
i=1

∣∣Yi,jiYσ(i),ji − Eδi,σ(i)
∣∣1+δ

6
1
Np

N∑
j1,...,jp=1

(
p∏
i=1

∣∣Yi,jiYσ(i),ji − Eδi,σ(i)
∣∣)1+δ

,

and thus

E[X1+δ
σ ] = E


 p∏
i=1

∣∣∣∣∣∣ 1
N

N∑
j=1

(Yi,jYσ(i),j − Eδi,σ(i))

∣∣∣∣∣∣
1+δ

 6 1
Np

N∑
j1,...,jp=1

E

( p∏
i=1

(
∣∣Yi,jiYσ(i),ji

∣∣+ |E|)
)1+δ


=: 1

Np

N∑
j1,...,jp=1

E[(Zj1,...,jp)1+δ].

Now each Zj1,...,jp is the sum of 2p terms, each of the form |E|p−k
∏k
`=1 |Yi`,ji`Yσ(i`),ji` | for some k ∈ J1, pK

and some collection of distinct integers i1, . . . , ik ∈ J1, pK. Since they are distinct, each entry of the matrix Y
appears with power at most two in such a term; since these entries are independent, we have

E

(|E|p−k k∏
`=1
|Yi`,ji`Yσ(i`),ji` |

)1+δ 6 |E|(p−k)(1+δ)
c2kδ 6 max(|E|, cδ, 1)2p(1+δ) =: c2p(1+δ)

δ,E

Then Minkowski’s inequality in L1+δ gives

E[X1+δ
σ ] 6 sup

j1,...,jp

E[(Zj1,...,jp)1+δ] 6 (2c2δ,E)p(1+δ).

The rest of the proof is similar to the Wigner case.
2The assumption (1.15) is exactly the needed input for [BEYY16, Lemma B.4]. Note that although this Lemma assumes µ has finite

moments of all orders, this is actually not used in its proof.
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Finally we check assumption (S) with the new definition (3.13). Write Ycut = Φ(Xcut) for the p × N matrix Y
with entries truncated at level N−κ+1/2; then it is classical that

dKS(µ̂Y Y T /N , µ̂YcutY Tcut/N
) 6 1

p
rank(Y − Ycut)

(this follows from interlacing of singular values; see, e.g., [BS10, Theorem A.44]). The rest of the argument with
Bennett’s inequality goes through from here; note that P(|Wij | > N−κ) and P (|Yij | > N−κ+1/2) are of similar order
because Y has order-one entries but the Wigner matrix W has order- 1√

N
entries.

3.8 Gaussian matrices with a (co)variance profile. We will use Theorem 1.2 (concentrated input) to prove
Corollary 1.9.B. First we need the following sequence of lemmas establishing consequences of our model assumptions
(such as the log-Sobolev inequality and tail decay estimates).

Lemma 3.6. Let C = CN be the covariance matrix of the upper triangle of HN considered as a Gaussian vector, i.e.,
C is an N(N+1)

2 × N(N+1)
2 matrix with entries

C(i,j),(k,`) = Cov(Hij , Hk`) = Cov(Wij ,Wk`).

Let p be as in the weak-fullness assumption (wF). Then, in the sense of quadratic forms,

C > N−1−p Id .

Proof. We claim that
W

(d)= N−
p
2W (GOE) +W ′ (3.18)

whereWGOE is distributed as a GOE matrix (i.e., independent Gaussian entries up to symmetry with E[(W (GOE)
ij )2] =

1+δij
N ) and where W ′ is some real symmetric Gaussian matrix independent of W (GOE).
Indeed, consider the N2 ×N2 covariance matrix CW of the full matrix W (not just the upper triangle). We will

index this by matrix locations, i.e., CW has entries (CW )(i,j),(k,`). Write CGOE for the covariance matrix for GOE.
We index a vector B ∈ RN2 similarly, writing B(i,j), and associate with it the matrix B̃ ∈ RN×N defined by

B̃ij = B(i,j).

Notice that the matrix B̃ need not be symmetric. Whenever B has unit norm, we have

〈B,CGOEB〉 = 1
N

∑
i,j,k,`

B(i,j)(δikδj` + δi`δjk)B(k,`) = 1
N

Tr(B̃B̃T + B̃2) = 1
N

Tr
((

B̃ + B̃T

2

)2)
.

Thus by the weak-fullness assumption (wF) we have

〈B,CWB〉 = E
[
(Tr(B̃W ))2] = E

[(
Tr
((

B̃ + B̃T

2

)
W

))2]
> N−1−p Tr

((
B̃ + B̃T

2

)2)
=
〈
B,N−pCGOEB

〉
.

To complete the proof of (3.18), we write

CW = N−pCGOE + (CW −N−pCGOE)

and interpret the matrix in parentheses on the right-hand side, which we just showed is positive semi-definite, as the
covariance matrix for W ′.

Now we consider the N(N+1)
2 × N(N+1)

2 covariance matrix C = CW of the upper triangle of W , and define CGOE

and CW ′ similarly. Then whenever v ∈ R
N(N+1)

2 is indexed with upper-triangular entries we have

〈v, CW v〉 =
〈
v,N−pCGOEv

〉
+ 〈v, CW ′v〉 > N−p〈v, CGOEv〉 = N−1−p

∑
i6j

v2
(i,j) +

∑
i

v2
(i,i)

 > N−1−p‖v‖22

which concludes the proof.
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Lemma 3.7. For every ζ > 0, there exists cζ > 0 such that the law of the upper triangle of HN , considered as a
vector, satisfies the logarithmic-Sobolev inequality with constant cζ N

ζ

N .

Proof. Since the logarithmic-Sobolev inequality is preserved under translations, it suffices to prove the statement
with HN = WN + E[HN ] replaced by WN . This is essentially an exercise in spelling out our model assumptions,
which come from [EKS19].

The upper triangle of WN is a Gaussian vector with covariance matrix C. Define the matrix |C| by |C|(i,j),(k,`) =∣∣C(i,j),(k,`)∣∣, and whenever u ∈ R
N(N+1)

2 is a unit vector, define the unit vector |u| by |u|(i,j) =
∣∣u(i,j)

∣∣. Then
〈u, Cu〉 6 〈|u|, |C||u|〉 6 ‖|C|‖.

But our assumptions (D) on correlation decay imply that ‖|C|‖ 6ζ Nζ

N ; see [EKS19, (6b), Assumption (C)], specifically
noting that |||κ|||av

2 in their notation is the same as N‖|C|‖ in ours (the factor N appears since their normalization is
HN = AN + 1√

N
WN to our HN = AN +WN ).

Since C is invertible by Lemma 3.6, this implies the log-Sobolev inequality via the Bakry-Émery criterion.

Lemma 3.8. The flatness assumption (F) implies, for each i, j,N ,
1
pN
6 Var((WN )ij) 6

p

N
.

Proof. By writing ej for the jth canonical basis vector, understood as a column, and writing (·)T for transposition,
we have E[W 2

ij ] = E[WijWji] = E[Wej(ej)TW ]ii = (ei)TE[Wej(ej)TW ]ei, but by the flatness assumption (F) we
have 1

pN = 1
pN Tr(ej(ej)T ) 6 (ei)TE[Wej(ej)TW ]ei 6 p

N Tr(ej(ej)T ) = p
N .

Lemma 3.9. We have supN E[‖HN‖] <∞.

Proof. Since we assumed supN ‖AN‖ <∞, we need only check supN E[‖WN‖] <∞ whereW = WN = HN −E(HN ).
We apply the relevant local law from [EKS19]. This local law provides a sequence of measures µ̃N which well-
approximate the empirical measure of W . The exact form of µ̃N does not matter for our purpose; what does matter
is [AEK19, Proposition 2.1, Equation (4.2)], which we combine to obtain supp(µ̃N ) ⊂ [−2

√
2p, 2
√

2p] uniformly in
N . Then the local law [EKS19, Corollary 2.3] implies that eigenvalues of W stick to supp(µ̃N ) in the sense that, for
some constant C, we have

P(‖W‖ > 2
√

2p+ 1) 6 CN−100.

Thus

E[‖W‖2] 6 (2
√

2p+ 1)2 + E[‖W‖21‖W‖>2
√

2p+1] 6 (2
√

2p+ 1)2 +
√
E[‖W‖4]P(‖W‖ > 2

√
2p+ 1)

and the last term is o(1) provided E[‖W‖4] satisfies some weak bound: Since the entries Wij are centered Gaussian
with variance at most p

N by Lemma 3.8, Hölder’s inequality gives

E[‖W‖4] 6 E[Tr(W 4)] 6
∑
i,j,k,`

E[WijWjkWk`W`i] 6
∑
i,j,k,`

(E[W 4
ij ]E[W 4

jk]E[W 4
k`]E[W 4

`i])1/4 6 3p2N2,

which is sufficient.

Lemma 3.10. There exists C such that, for every t > 0, we have

P(‖HN‖ > t) 6 e−
√
N max(t−C,0).

Proof. For definiteness, we consider the logarithmic Sobolev inequality from Lemma 3.7 with constant cN−1/2,
c = c1/2. We apply Herbst’s lemma with the map HN 7→ ‖HN‖, which is Lipschitz with constant

√
2 (by the

Hoffman-Wielandt inequality), to obtain for any α > 0

E[eα‖HN‖] 6 eα supN E[‖HN‖]+ c
2N
−1/2α2

.

To finish, we bound E‖HN‖ with Lemma 3.9, choose α =
√
N , and apply Markov’s inequality, so that the result

applies for any C > supN E[‖HN‖] + c/2.
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Proof of Corollary 1.9.B. By the Herbst argument, Lemma 3.7 implies assumption (L) on Lipschitz concentration.
We now check assumption (W), with the measures µN given as the solutions of the Matrix Dyson Equation.

Most of this argument consists of importing results of Ajanki et al. and Erdős et al. Indeed, combining [AEK19,
Proposition 2.1, Equation (4.2)], we find that the supports of the measures µN satisfy

supp(µN ) ⊆ (−(‖AN‖+ 2
√

2p), ‖AN‖+ 2
√

2p). (3.19)

Since the right-hand side is uniformly bounded in N , so is the left-hand side. Furthermore, [AEK19, Proposition 2.2]
shows that each µN admits a density µN with respect to Lebesgue measure (on all of R), and that these densities
are c-Hölder continuous for some universal c; hence they are bounded, uniformly in N .

To check (1.10), we use Proposition 3.1. Write sN for the (random) Stieltjes transform of µ̂HN . For the Stieltjes-
transform estimate (3.1), we use the local law [EKS19, Theorem 2.1(4b)], which implies that there exists a universal
constant c such that, for every sufficiently small ε > 0, there exists Cε > 0 with

P
(∣∣sN (E + iN−cε)−mN (E + iN−cε)

∣∣ > Nε(1+2c)−1 for some |E| 6 N100
)
6 CεN

−100.

Using the trivial bound 1
η for a Stieltjes transform evaluated at E + iη, we obtain∣∣E[sN (E + iN−cε)]−mN (E + iN−cε)

∣∣ 6 Nε(1+2c)−1 + 2CεN cε−100

for all |E| 6 N100, which suffices to check (3.1). Moreover, if x > max supp(µN ) we have∣∣FE[µ̂](x)− FµN (x)
∣∣ = 1− FE[µ̂](x) 6 P(‖HN‖ > x) 6 e−

√
N max(x−C,0)

from Lemma 3.10, and similarly for the left edge, which gives (3.2) and (3.3). This verifies assumption (W).
Finally we check the Wegner estimate, with the general Schur-complement strategy. Recall we wrote C for the

covariance matrix of the upper triangle of H = HN (we will drop the subscript N for the remainder of this proof).
Now we will write C

ĵj
for its minor obtained by erasing the column and row corresponding to Hjj . Since C is invertible

by Lemma 3.6 (and positive semidefinite), so is its minor C
ĵj

by interlacing. Conditioned on H
ĵj
, we have that Hjj

is a Gaussian random variable with (an explicit mean that does not matter now and) variance

(σ̃jj)2 := Var(Hjj)−
∑

k6`,k′6`′

(k,`)6=(j,j) 6=(k′,`′)

C(j,j),(k,`)((Cĵj)
−1)(k,`),(k′,`′)C(k′,`′),(j,j) = 1

(C−1)jj
> λmin (C) > N−1−p,

where we used Lemma 3.6 in the last step. By Lemma 3.3 and Proposition 3.2, this proves (1.6).

3.9 Block-diagonal Gaussian matrices. As in subsection 3.8, we will use Theorem 1.2 (concentrated input).
Considered as a vector, the upper triangle ofHN satisfies log-Sobolev with constant p

N , since it consists of independent
(possibly degenerate) Gaussians with variance at most p

N . This implies the Lipschitz-concentration assumption (L).
Now we check assumption (W). We assumed in (R) that the MDE measures µN have a bounded density; they

lie in a common compact set by the estimate [AEKN19, (3.32a)] and arguments like those around (3.19), so it
remains only to check (1.10), through Proposition 3.1. If sN denotes the Stieltjes transform of HN , then the local
law [AEKN19, (B.5)] implies that there exist universal constants δ > 0 and P ∈ N such that, for every 0 < γ < δ,
there exists Cγ with

P
(∣∣sN (E + iN−γ)−mN (E + iN−γ)

∣∣ > NγP

N
for some E ∈ R

)
6 CγN

−100.

For the tail estimate (3.2), we essentially mimic the proof in the case of Gaussian matrices with a (co)variance profile,
with the following differences: Here the estimate supN E[‖WN‖2] <∞ is easier, since (recall thatWN is block-diagonal
with blocks X1, . . . , XK) we have E[‖WN‖2]1/2 6

∑K
i=1 E[‖Xi‖2]1/2, and it is classical that supN E[‖Xi‖2] <∞ since

Xi is a Gaussian matrix whose entries all have variance order 1
N , by assumption (MF). Since the log-Sobolev constant

is now at most p/N , we obtain P(‖HN‖ > t) 6 e−cN max(0,t−C) for some constants c, C > 0, which verifies (3.2) and
(3.3). This completes the proof of (1.10).

Finally we check the Wegner estimate (1.6) with Proposition 3.2. Here Lemma 3.3 applies immediately, since the
conditioning is trivial, and we assumed in (MF) that the variances on the diagonal are all at least of order 1

N .
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3.10 Free addition.We will use Theorem 1.2 (concentrated input). Write HN = E+AN+ONBNOTN . Concentra-
tion for Lipschitz test functions follows from classical results of Gromov-Milman: If S = E+ supN>1(‖AN‖+ ‖BN‖)
and f : R→ R is Lipschitz, then (see, e.g., [AGZ10, Corollary 4.4.30])

P
(∣∣∣∣ 1
N

Tr(f(HN ))− 1
N

E[Tr(f(HN ))]
∣∣∣∣ > δ) 6 2 exp

(
− δ2N2

128S2‖f‖2Lip

)
,

which suffices to check (1.11) and thus assumption (L).
For assumption (E) with the reference measure µN ≡ µA � µB , we will use the local law of Bao et al, [BES20,

Corollary 2.8]: for every ε > 0 and all N > N0(ε), we have

P
(
dKS(µ̂HN , µA � µB) > N−1+ε) 6 N−100.

This implies dKS(E[µ̂HN ], µA�µB) . N−1+ε. We obtain the same estimate for W1 as in the proof of Proposition 3.1
(there are no tail estimates because all the measures µ̂HN and µA � µB are supported on a common compact set).

It remains only to check the Wegner estimate (1.6). The argument is different depending if E is in the bulk of
µA � µB (meaning in the interior of the single-interval support), or if E is outside the support. In the first case, we
prove the Wegner estimate with the much stronger fixed-energy universality results of Che-Landon [CL19, Theorem
2.1]. This result implies

lim
N→∞

P
(
HN has no eigenvalues in

(
E − ε

N(µA � µB)(E) , E + ε

N(µA � µB)(E)

))
= 1− F (ε),

where F (ε) is a special function found by solving the Painlevé V equation satisfying limε↓0 F (ε) = 0. Thus

lim inf
N→∞

P
(
HN has no eigenvalues in

(
E − 1

N2 , E + 1
N2

))
> 1− lim sup

ε↓0
F (ε) = 1.

In the second case (if E is outside the support of µA � µB), the Wegner estimate is much easier, since indeed
P(no eigenvalues in (E − δ, E + δ))→ 1 for small enough δ. This follows, e.g., from the large-deviations principle for
the extremal eigenvalues of this model established by Guionnet and Maïda [GM20], or from the edge rigidity of Bao
et al. [BES20].

3.11 Proofs of examples showing necessity of assumptions. In this subsection we show the importance of
two of the trickier assumptions of Theorem 1.1. Precisely, for each of (1.5) and assumption (S), we give an explicit
example satisfying all the assumptions of that theorem except for the one in question, for which the conclusion fails.
All notations refer back to that section.

Our example where (1.5) fails and determinant concentration fails is the following: Let (Xij)16i6j6N be centered,
i.i.d. with variance 1 and a compactly supported and bounded density; choose some θ ∈ (0, 1) (e.g. θ = 1/8 works)
and let A be deterministic, diagonal, and defined through Aii = eN

θ

1i<N1−θ with all other entries zero; and define
symmetric H = Φ(X) as Hij = Φ(X)ij = Xij√

N
+Aij for i 6 j. In this example, µN = ρsc.

Our example where assumption (S) fails and determinant concentration fails is the following: Let (Xij)16i6j6N
be as above, include the additional random variable X0 with P(X0 = N) = N−1 = 1 − P(X0 = 0), and define
A = X0 IdN ; then we let H = Φ(X) be symmetric defined by Hij = Φ(X)ij = Xij√

N
+Aij for i 6 j. In this example,

µN = ρsc.
In the remainder of this subsection, we prove that these examples have the claimed properties.

3.11.1 Necessity of bounds on large eigenvalues.
Write the compact support of the Xi’s as [−T, T ]. This proof is essentially an application of the Weyl inequalities.

Note that ‖Φ‖Lip = N−1/2; since the Xi’s are compactly supported, this means Xcut = X for κ < 1/2 and N large
enough, and hence (S) is trivially satisfied. Equation (1.6) holds by Lemma 3.3. If κ < θ, then (E) holds with
µN = ρsc by interlacing; indeed, defining the matrix G by Gij = Xij√

N
, we have dKS(µ̂G, µ̂H) 6 1

N rank(A) = N−θ.
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Since G is a Wigner matrix with all moments finite, [Bai93, Theorem 4.1] shows dKS(E[µ̂G], ρsc) 6 N−1/4, and thus
if θ < 1/4 we have

dKS(E[µ̂H ], ρsc) . N−θ.
We transfer this from dKS to dBL in the same way as for Wigner matrices, above. For (1.7), the Weyl inequalities
give deterministically

|det(HN )| =
N∏
i=1
|λi(HN )| 6

N∏
i=1

(λi(A) + T
√
N) = (eN

θ

+ T
√
N)N

1−θ
(T
√
N)N−N

1−θ
6 (2eN

θ

)N
1−θ

(T
√
N)N

which suffices to check (1.7) (with any δ > 0).
On the other hand, (1.5) fails. Indeed, by the Weyl inequalities the N1−θ large eigenvalues of H satisfy

λi > e
Nθ − T

√
N >

1
2e

Nθ , (3.20)

so for ε < θ the failure of (1.5) follows from the deterministic estimate
N∏
i=1

(1 + |λi|1|λi|>eNε ) >
N∏

i=N−N1−θ+1

|λi|1|λi|>eNε >
(

1
2e

Nθ
)N1−θ

= 2−N
1−θ

eN .

The proof that determinant concentration fails is somewhat involved, but mimics the proof of the lower bound
of Theorem 1.1. The idea is that the largest N1−θ eigenvalues contribute a factor of size eN , as above, and the
rest of the eigenvalues behave as if semicircular (this is the difficulty), so we get a lower bound for the determinant
asymptotics that is order-one above what the semicircle would predict. We now sketch how to prove this rigorously.
Since X = Xcut, we simplify our notation and write µ̂ = µ̂Φ(X). Recall our eigenvalues are ordered λ1 6 · · · 6 λN ;
we decompose this measure as

µ̂ = µ̂trunc + µ̂r. tail, µ̂trunc = 1
N

N−N1−θ∑
i=1

δλi , µ̂r. tail = 1
N

N∑
i=N−N1−θ+1

δλi .

Notice that µ̂trunc has mass 1 − N−θ and µ̂r. tail has mass N−θ. Compared to (2.2), the event Ess is no longer
necessary; the events Egap and Eb remain the same (since they clearly imply the analogues for µ̂trunc), and each still
has probability 1− o(1); the event Econc is replaced with

Etrunc
conc =

{∣∣∣∣∫ logKη (λ)(µ̂trunc − E[µ̂trunc])(dλ)
∣∣∣∣ 6 t}.

This is a likely event, since∣∣∣∣∫ logKη (λ)(µ̂r. tail − E[µ̂r. tail])(dλ)
∣∣∣∣ 6 2 logη(K)µ̂r. tail(R) . Nε−θ <

t

2 (3.21)

(here it matters that θ not be too small), and thus if ε < θ

1− P(Etrunc
conc ) 6 P

(∣∣∣∣∫ logKη (λ)(µ̂− E[µ̂])(dλ)
∣∣∣∣ > t

2

)
,

but the right-hand probability is o(1) by arguments as in the proof of Lemma 2.3. By mimicking (2.6) but handling
the large eigenvalues instead with (3.20), 1

N logE[|det(HN )|] is larger than

1− log 2
Nθ

+ 1
N

E
[
eN
∫

(log|λ|−logη(λ))µ̂trunc(dλ)
1Egap1Etrunc

conc

]
− t+

∫
logKη (λ)E[µ̂trunc](dλ)

= 1 +
∫

logKη (λ)E[µ̂trunc](dλ)− o(1),

where the last equality follows by mimicking Lemma 2.5. Now E[µ̂trunc] = E[µ̂]−E[µ̂r. tail], and by (2.7) and arguments
as in the proof of Lemma 2.2, we have

∫
logKη (λ)E[µ̂](dλ) >

∫
log|λ|ρsc(λ) dλ+o(1). The term

∫
logKη (λ)E[µ̂r. tail](dλ)

is handled as in (3.21). Overall, this gives lim infN→∞ 1
N logE[|det(HN )|] > 1 +

∫
log|λ|ρsc(λ) dλ which contradicts

(1.9).
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3.11.2 Necessity of spectral stability. With T as above, the eigenvalues of H are at most N +T
√
N determin-

istically; this implies (1.5) and (1.7). For (1.6), we note that on the event {X0 = N}, the eigenvalues are at least
N − T

√
N > 0, so there are clearly no eigenvalues near zero; on the event {X0 = 0}, the matrix H is just a Wigner

matrix, for which we proved (1.6) above. Now we claim that assumption (E) holds with µN = ρsc. Indeed, for test
functions f with ‖f‖Lip + ‖f‖L∞ 6 1 we have

E
[∣∣∣∣∫ f(x)(µ̂H − ρsc)(dx)

∣∣∣∣1X0=N

]
6 2P(X0 = N) = 2

N
,

and on the event 1X0=0 we revert to the Wigner case studied above.
On the other hand, notice that (Xcut)0 is always zero, so on the event {X0 = N} the measure µ̂Φ(Xcut) is supported

on [−T
√
N,T

√
N ] while µ̂Φ(X) is supported on [N −T

√
N,N +T

√
N ]. For large enough N these are disjoint, so the

measures are one apart in KS distance, and thus P(dKS(µ̂Φ(X), µ̂Φ(Xcut)) > N−κ) > 1
N , which shows that (S) fails.

Finally, since E[|det(H)|] > E[|det(H)|1X0=N ] > (N − T
√
N)NP(X0 = N), we have 1

N logE[|det(H)|] → +∞
and determinant concentration fails.

4 Variational principles and long-range correlations

4.1 General scheme. In this section, we study expected determinants in the presence of long-range matrix
correlations. The prototypical example to keep in mind is

HN = WN + ξ Id,

where WN is drawn from the Gaussian Orthogonal Ensemble (GOE), and ξ ∼ N (0, 1/N) is independent of WN .
Matrices of this style are very common in the landscape-complexity program, but our main theorems do not apply
directly because of the presence of long-range correlations (here, along the diagonal of HN ). Nevertheless, there is
still a general procedure to understand the determinant asymptotics for such matrices, which we illustrate in the
case of this example. We first notice

E[|det(HN )|] = 1√
2π/N

∫
R
e−N

u2
2 E[|det(WN + u)|] du.

Our determinant asymptotics do apply to WN + u, giving E[|det(WN + u)|] ≈ eNΣ(u) for some constants Σ(u); then
the Laplace method suggests

lim
N→∞

1
N

logE[|det(HN )|] = sup
u∈R

{
Σ(u)− u2

2

}
. (4.1)

This method has appeared before in special cases, for example in [AC14] and [FLD20]. In Section 4.2, we prove
results of this type without reference to any particular matrix model. In Section 4.3, we prove extensions necessary
to understand asymptotics of the form

lim
N→∞

1
N

logE[|det(HN )|1HN>0].

In complexity computations, these “restricted determinants” correspond to counting just the local minima among
all critical points. The upshot is that this limit is also a variational problem as in (4.1), but restricted to u in some
good set instead of all Euclidean space.

4.2 Variational principles for unrestricted determinants. For applications to complexity, we will need not
just one matrix HN , but a field of matrices HN (u) for u ∈ Rm (here m is independent of N), with approximating
measures µN (u).

Theorem 4.1. Assume the following:
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– (Assumptions locally uniform in u) Each HN (u) satisfies all the assumptions of Theorem 1.1, or all the
assumptions of Theorem 1.2. In addition, all limits, powers, and rates in these assumptions are uniform over
compact sets of u.3

– (Limit measures) There exist probability measures µ∞(u) such that

dBL(µN (u), µ∞(u)) 6 N−κ if we are in the setting of Theorem 1.1, or
W1(µN (u), µ∞(u)) 6 N−κ if we are in the setting of Theorem 1.2

for κ = κ(u) > 0 that can, again, be chosen uniformly on compact sets of u. These measures also admit
densities µ∞(u, ·) on [−κ, κ] that satisfy µ∞(u, x) < κ−1|x|−1+κ for all |x| < κ.

– (Continuity and decay in u) For each N , the map u 7→ HN (u) is entrywise continuous. Furthermore, there
exists C > 0 such that

E[|det(HN (u))|] 6 (C max(‖u‖, 1))N . (4.2)

Then for any α > 0, any fixed p ∈ R, and any D ⊂ Rm with positive Lebesgue measure that is the closure of its
interior, we have

lim
N→∞

1
N

log
∫
D

e−(N+p)α‖u‖2E[|det(HN (u))|] du = sup
u∈D

{∫
R

log|λ|µ∞(u)(dλ)− α‖u‖2
}
.

Remark 4.2. A close inspection of the proof shows that the condition “D is the closure of its interior” is only
necessary for the lower bound in Theorem 4.1. For the upper bound, it suffices to assume that D is simply closed
(and has positive measure). We will use this below.

The proof of this theorem relies on the following two lemmas, in addition to determinant concentration in the
form of Theorem 1.1 or 1.2. We postpone their proofs until after the proof of the theorem. Recall that BR is the
ball of radius R around zero in Rm.

Lemma 4.3.
lim
R→∞

lim sup
N→∞

1
N

log
∫
Bc
R

e−(N+p)α‖u‖2E[|det(HN (u))|] du = −∞.

Lemma 4.4. The function
Sα[u] =

∫
R

log|λ|µ∞(u)(dλ)− α‖u‖2,

is continuous, and lim‖u‖→+∞ Sα[u] = −∞.

Proof of Theorem 4.1. First we prove the upper bound. We apply Theorem 1.1 or 1.2 with the reference measures
µ∞(u). Since all inputs are uniform over compact sets of u, so is the conclusion; that is, for all R, we have

lim sup
N→∞

1
N

log sup
u∈BR

{
E[|det(HN (u))|]e−N

∫
R

log|λ|µ∞(u)(dλ)
}
6 0

and a matching lower bound we will use momentarily. If R is large enough that |BR ∩D| > 0, then we conclude

lim sup
N→∞

1
N

log
∫
BR∩D

e−(N+p)α‖u‖2E[|det(HN (u))|] du 6 lim sup
N→∞

1
N

log e|p|αR
2
∫
BR∩D

e
−Nα‖u‖2+N

∫
R

log|λ|µ∞(u,λ) dλ du

6 sup
u∈D
Sα[u] + lim sup

N→∞

[
log(|BR ∩D)|

N

]
.

An application of Lemma 4.3 finishes the proof of the upper bound.
3For example, writing (λi(u))Ni=1 for the eigenvalues of HN (u), the condition (1.5) becomes: for every compact K ⊂ Rm,

limN→∞ supu∈K
1
N

logE
[∏N

i=1(1 + |λi(u)|1|λi(u)|>eNε )
]

= 0 .
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Now we prove the lower bound. Lemma 4.4 tells us that supu∈D Sα[u] is achieved at some (possibly not unique)
u0. Since Sα is continuous, for every ε > 0 there exists a bounded neighborhood Uε of u0 on which Sα[u] > Sα[u0]−ε.
Since D is the closure of its interior, we have |Uε ∩D| > 0.

For each R, applying Theorem 1.1 or 1.2 with arguments as above yields

lim inf
N→∞

1
N

log inf
u∈BR

{
E[|det(HN (u))|]e−N

∫
R

log|λ|µ∞(u)(dλ)
}
> 0.

If R is so large that Uε ⊂ BR, then

lim inf
N→∞

1
N

log
∫
D

e−(N+p)α‖u‖2E[|det(HN (u))|] du

> lim inf
N→∞

1
N

log
{
e−|p|αR

2
∫
Uε∩D

e−Nα‖u‖
2
E[|det(HN (u))|] du

}
> lim inf

N→∞

1
N

log
∫
Uε∩D

eNSα[u] du > lim inf
N→∞

1
N

log
∫
Uε∩D

eN(Sα[u0]−ε) du > Sα[u0]− ε+ lim inf
N→∞

log(|Uε ∩D|)
N

.

Letting ε→ 0 completes the proof.

Proof of Lemma 4.3. If ωm is the surface area of the unit ball in Rm, then from (4.2) we have∫
Bc
R

e−(N+p)α‖u‖2E[|det(HN (u))|] du 6
∫
Bc
R

eN(log(C‖u‖)−α‖u‖2)−pα‖u‖2 du = ωm

∫ ∞
R

eN(log(Cr)−αr2)−pαr2
rm−1 dr

which suffices by the Laplace method.

Proof of Lemma 4.4. FixN . We assumed thatHN (u) is an entrywise continuous function of u. Since the determinant
is a continuous function of the matrix entries, dominated convergence (with dominating function given by (4.2)) says
that E[|det(HN (u))|] is continuous in u, hence so is 1

N logE[|det(HN (u))|]. Then Theorem 1.1 or 1.2 shows

lim
N→∞

sup
u∈BR

∣∣∣∣ 1
N

logE[|det(HN (u))|]−
∫
R

log|λ|µ∞(u)(dλ)
∣∣∣∣ = 0, (4.3)

and
∫
R log|λ|µ∞(u)(dλ) is the locally uniform limit of continuous functions. Thus Sα[u] is continuous.

The decay at infinity follows from
∫
R log|λ|µ∞(u)(dλ) 6 lim infN→∞ 1

N logE[|det(HN (u))|] 6 log(C max(‖u‖, 1)),
obtained by (4.3) and (4.2).

4.3 Variational principles for restricted determinants. Let G ⊂ Rm be the set of “good” u values

G = {u ∈ Rm : µ∞(u)((−∞, 0)) = 0} = {u ∈ Rm : l(µ∞(u)) > 0}. (4.4)

For each ε > 0, consider the following inner and outer approximations of G:

G+ε = {u ∈ Rm : l(µ∞(u)) > 2ε},
G−ε = {u ∈ Rm : µ∞(u)((−∞,−ε)) 6 ε}.

(4.5)

Theorem 4.5. Fix some D ⊂ Rm, and suppose that D and the matrices HN (u) satisfy the following.

– All the assumptions of Theorem 4.1.

– (Superexponential concentration) For every R > 0 and every ε > 0, we have

lim
N→∞

1
N logN log

[
sup
u∈BR

P(dBL(µ̂HN (u), µ∞(u)) > ε)
]

= −∞. (4.6)
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– (No outliers) For every R > 0 and every ε > 0, we have

lim
N→∞

inf
u∈D∩G+ε∩BR

P(Spec(HN (u)) ⊂ [l(µ∞(u))− ε, r(µ∞(u)) + ε]) = 1. (4.7)

– (Topology) Each G+ε is convex; D is convex and closed; the set D ∩ G+1 has positive Lebesgue measure; and

D ∩

(⋃
ε>0
G+ε

)
= D ∩ G. (4.8)

Then for any α > 0 and any fixed p ∈ R, we have

lim
N→∞

1
N

log
∫
D

e−(N+p)α‖u‖2E[|det(HN (u))|1HN (u)>0] du = sup
u∈D∩G

{∫
R

log|λ|µ∞(dλ)− α‖u‖2
}
.

We prove the upper and lower bounds separately in the next two subsubsections.

4.3.1 Upper bound. The proof of the upper bound of Theorem 4.5 relies on the following three lemmas, which
we will prove after.

Lemma 4.6. Each G−ε is closed, and G is closed.

Lemma 4.7. For every ε > 0, we have

lim
N→∞

1
N

log
∫

(G−ε)c
e−(N+p)α‖u‖2E[|det(HN (u))|1HN (u)>0] du = −∞.

Lemma 4.8. We have
lim
ε↓0

sup
u∈D∩G−ε

Sα[u] 6 sup
u∈D∩G

Sα[u].

Proof of the upper bound in Theorem 4.5. For each ε > 0, Lemma 4.7 yields

lim sup
N→∞

1
N

log
∫
D

e−(N+p)α‖u‖2E[|det(HN (u))|1HN (u)>0] du

6 lim sup
N→∞

1
N

log
∫
D∩G−ε

e−(N+p)α‖u‖2E[|det(HN (u))|1HN (u)>0] du

6 lim sup
N→∞

1
N

log
∫
D∩G−ε

e−(N+p)α‖u‖2E[|det(HN (u))|] du 6 sup
u∈D∩G−ε

Sα[u].

The last inequality holds by Theorem 4.1 applied to D ∩ G−ε, which is closed (by Lemma 4.6) and has positive
measure (as a superset of D ∩ G+1, which has positive measure by assumption). By Remark 4.2, these are the only
conditions we need to check. Letting ε tend to zero and applying Lemma 4.8 completes the proof.

Proof of Lemma 4.6. Since we assumed that u 7→ HN (u) is entrywise continuous and the spectrum is a continuous
function of matrix entries, we have that u 7→ µ̂HN (u) is almost surely continuous with respect to the bounded-
Lipschitz distance: dBL(µ̂HN (u), µ̂HN (u′)) 6 1

N

∑N
i=1 min(2, |λi(u)− λi(u′)|). By dominated convergence, this means

that u 7→ E[µ̂HN (u)] is continuous with respect to dBL. But dBL(E[µ̂HN (u)], µ∞(u)) → 0 uniformly on compact sets
of u by assumption (here we use dBL 6 W1 for the concentrated-input case), so we conclude that u 7→ µ∞(u) is
continuous with respect to dBL, as well. Since dBL metrizes weak convergence, and since the defining properties of
G and G−ε can be stated in terms of distribution functions of µ∞(u), which are continuous since each µ∞(u) has a
density with respect to Lebesgue, the lemma follows.
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Proof of Lemma 4.7. From Lemma 4.3, it suffices to show

lim
N→∞

1
N

log
∫

(G−ε)c∩BR
e−(N+p)α‖u‖2E[|det(HN (u))|1HN (u)>0] du = −∞

for each R > 0. IfHN (u) > 0 and u ∈ (G−ε)c, then by taking some 1
2 -Lipschitz fε satisfying

ε
21x60 > fε(x) > ε

21x6−ε

we obtain dBL(µ̂HN (u), µ∞(u)) > ε
2µ∞(u)((−∞,−ε)) > ε2

2 . For small δ > 0, this gives (for N > −p)∫
(G−ε)c∩BR

e−(N+p)α‖u‖2E[|det(HN (u))|1HN (u)>0] du

6 |BR|
(

sup
u∈BR

E[|det(HN (u))|1+δ]
1

1+δ

)(
sup
u∈BR

P(dBL(µ̂HN (u), µ∞(u)) > ε2

2 )
) δ

1+δ

.

This suffices by (1.7) and (4.6).

Proof of Lemma 4.8. From their definitions, we have
⋂
ε>0 G−ε = G. We take the intersection of both sides with D.

Next, we claim that there exists some R > 0 such that

sup
u∈D∩G

Sα[u] = max
u∈(D∩G∩BR)

Sα[u] and sup
u∈D∩G−ε

Sα[u] = max
u∈(D∩G−ε∩BR)

Sα[u] (4.9)

for every ε > 0. Indeed, the proof of Lemma 4.4 shows that

Sα[u] 6 log(C‖u‖)− α‖u‖2

on Rm. Since Sα is continuous and D∩G is closed by Lemma 4.6, let u∗ ∈ D∩G satisfy supu∈D∩G S[u] = S[u∗], and
let R > 1 be so large that log(CR)− αR2 < Sα[u∗].

For each ε, since D ∩ G−ε is closed (again by Lemma 4.6), let uε be such that Sα[uε] = supu∈D∩G−ε Sα[u]. Then
uε ∈ BR; otherwise, we would have

max
u∈D∩G−ε

Sα[u] = Sα[uε] 6 log(CR)− αR2 < Sα[u∗] = max
u∈D∩G

Sα[u] 6 max
u∈D∩G−ε

Sα[u].

This verifies (4.9).
Since the {uε} lie in a compact set, they have a limit point u0 up to extraction. Furthermore, u0 ∈ D ∩ G =

∩ε(D ∩ G−ε). Indeed, otherwise a neighborhood of u0 would be contained in (D ∩ G−ε1)c for some ε1, hence in
(D ∩ G−ε)c for every ε < ε1 (since the sets are nested). But then u0 could not be a limit point of {uε}.

Thus by continuity of Sα we have limε↓0 supu∈D∩G−ε Sα[u] = limε↓0 Sα[uε] = Sα[u0] 6 supu∈D∩G Sα[u].

4.3.2 Lower bound. The proof of the lower bound in Theorem 4.5 relies on the following two lemmas, which we
will prove after.

Lemma 4.9. For each u ∈ Rm and each δ, ε > 0, define the set of probability measures

M(u, δ, ε) = {µ : dBL(µ, µ∞(u)) < δ and supp(µ) ⊂ [l(µ∞(u))− ε, r(µ∞(u)) + ε]}

that are close to µ∞(u) both in dBL and in support. For all R, all δ, and all ε sufficiently small depending on R, we
have

inf
u∈D∩G+ε∩BR

(
inf

µ∈M(u,δ,ε)

∫
log|λ|µ(dλ)−

∫
log|λ|µ∞(u)(dλ)

)
> −2δ

ε
.

Lemma 4.10. Each G+ε is closed, and for all R large enough we have

sup
u∈D∩G

Sα[u] = max
u∈D∩G∩BR

Sα[u] and sup
u∈D∩G+ε

Sα[u] = max
u∈D∩G+ε∩BR

Sα[u] (4.10)

for every 0 < ε < 1. Furthermore,
lim
ε↓0

sup
u∈D∩G+ε

Sα[u] = sup
u∈D∩G

Sα[u]. (4.11)
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Proof of the lower bound in Theorem 4.5. Since

P(µ̂HN (u) 6∈M(u, δ, ε)) 6 P(Spec(HN (u)) 6⊂ [l(µ∞(u))− ε, r(µ∞(u)) + ε]) + P(dBL(µ̂HN (u), µ∞(u)) > δ),

(4.7) and (4.6) tell us that

lim
N→∞

1
N

log
(

inf
u∈D∩G+ε∩BR

P(µ̂HN (u) ∈M(u, δ, ε))
)

= 0. (4.12)

Let R satisfy Lemma 4.10, and additionally be so large that
∣∣D ∩ G+1 ∩BR

∣∣ > 0. If ε < 1 is sufficiently small
depending on R, then by Lemma 4.9 we have∫

D

e−(N+p)α‖u‖2E[|det(HN (u))|1HN (u)>0] du

> e−|p|αR
2
∫
D∩G+ε∩BR

e−Nα‖u‖
2

exp
(
N inf

µ∈M(u,δ,ε)

∫
log|λ|µ(dλ)

)
P(µ̂HN (u) ∈M(u, δ, ε)) du

> e−|p|αR
2

(
inf

u∈D∩G+ε∩BR
P(µ̂HN (u) ∈M(u, δ, ε))

)
exp
(
−2Nδ

ε

)∫
D∩G+ε∩BR

eNSα[u] du.

Now we take the logarithm of both sides, divide by N , let N →∞, and then let δ ↓ 0. The set D∩G+ε∩BR is closed
and convex, as the finite intersection of such sets. Since closed convex sets in Euclidean space have empty interior if
and only if they lie in a lower-dimensional affine space, we conclude that D ∩ G+ε ∩BR has nonempty interior from
the fact that it has positive measure. Since a closed convex set with nonempty interior is the closure of its interior,
we can apply Theorem 4.1 to this set. From this theorem and from (4.12), we have

lim inf
N→∞

∫
D

e−(N+p)α‖u‖2E[|det(HN (u))|1HN (u)>0] du > sup
u∈D∩G+ε∩BR

Sα[u] = sup
u∈D∩G+ε

Sα[u].

By (4.11), this suffices.

Proof of Lemma 4.9. Consider the function fu defined on [l(ρ∞(u)) − ε, r(ρ∞(u)) + ε] by fu(λ) = log|λ|. If u ∈
D ∩ G+ε ∩BR, then

‖fu‖Lip + ‖fu‖L∞ 6
1
ε

+ max{|log(ε)|, |log(r(ρ∞(u)) + ε)|} 6 2
ε

where the last inequality holds for ε sufficiently small, uniformly over u ∈ BR, since supp(ρ∞(u)) is compactly
supported uniformly over u ∈ BR. This implies that whenever µ ∈M(u, δ, ε), we have∣∣∣∣∫ log|λ|µ(dλ)−

∫
log|λ|µ∞(u)(dλ)

∣∣∣∣ 6 2
ε
dBL(µ, µ∞(u)) 6 2δ

ε
.

Proof of Lemma 4.10. The proof of Lemma 4.6 shows that the map u 7→ ρ∞(u) is continuous with respect to weak
convergence; thus each G+ε is closed.

The proof of Lemma 4.4 shows that Sα[u] 6 log(C‖u‖)− α‖u‖2 on Rm and that Sα is continuous. Since D ∩ G
is closed by Lemma 4.6, and each D ∩ G+ε is closed by the argument above, we can write supu∈D∩G Sα[u] = Sα[u∗]
for some u∗ and supu∈D∩G+ε Sα[u] = Sα[uε] for some uε.

Let R > 1 be so large that log(CR)− αR2 < Sα[u1]. Then uε ∈ BR for each ε < 1; else we would have

max
u∈D∩G+ε

Sα[u] = Sα[uε] 6 log(CR)− αR2 < Sα[u1] = max
u∈D∩G+1

Sα[u] 6 max
u∈D∩G+ε

Sα[u].

This verifies (4.10).
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For each ε > 0, let

f+ε(u) =
{
Sα[u] if u ∈ D ∩ G+ε,

−∞ otherwise,
f+0(u) = sup

ε>0
f+ε(u) =

{
Sα[u] if u ∈ D ∩ (∪ε>0G+ε),
−∞ otherwise.

Since the G+ε’s are nested and Sα is continuous, we have

lim
ε↓0

sup
u∈D∩G+ε

Sα[u] = sup
ε>0

sup
u∈D∩G+ε

Sα[u] = sup
ε>0

sup
u∈Rm

f+ε(u) = sup
u∈Rm

sup
ε>0

f+ε(u) = sup
u∈Rm

f+0(u)

= sup
u∈D∩(∪ε>0G+ε)

Sα[u] = sup
u∈D∩(∪ε>0G+ε)

Sα[u] = sup
u∈D∩G

Sα[u],

where the last equality follows from (4.8).

Appendix A Extensions to products of determinants

In this section, we are interested in expectations of products of determinants like E[
∏`
i=1 |det(H(i)

N )|], where ` is
independent of N . In the landscape complexity program, these asymptotics help understand the `th moment of the
number of critical points of some high-dimensional random function. Everything essentially is the same as in the
case ` = 1, and we obtain leading-order determinant asymptotics consistent with

E

[∏̀
i=1
|det(H(i)

N )|
]
≈
∏̀
i=1

E[|det(H(i)
N )|], (A.1)

on exponential scale in N . This is true no matter the correlation structure between the H(i)
N ’s, which is perhaps

surprising at first glance. However, note that (A.1) should hold at “both ends of the correlation spectrum,” so to
speak: On the one hand, it holds with exact equality if the H(i)

N ’s are independent; on the other hand, if we believe
in concentration then (A.1) is very plausible when the H(i)

N ’s are the same as each other.
However, (A.1) does require slightly stronger moment assumptions, which are encapsulated in the following

generalization of assumption (C) (notice that (C`) with ` = 1 is the same as (C)).

(C`) In addition to the Wegner assumption (1.6), we require

lim
N→∞

1
N

logE
[
N∏
i=1

(1 + |λi|1|λi|>eNε )`
]

= 0 (A.2)

for every ε > 0 and
lim sup
N→∞

1
N logN logE[|det(HN )|`(1+δ)] <∞ for each i, (A.3)

for all sufficiently small δ > 0.

Here is the analogue of Theorem 1.1.

Theorem A.1. (Convexity-preserving functionals) Fix ` ∈ N, and consider ` collections (X(i))`i=1 each con-
sisting of M arbitrary independent entries. The collections can have any correlation structure with respect to each
other. Consider matrices H(i)

N = Φ(i)(X(i)) that each satisfy Assumptions (I), (M), (E), (C`), and (S) with reference
measures µ(i)

N . Then

lim
N→∞

(
1
N

logE
[∏̀
i=1
|det(H(i)

N )|
]
−
∑̀
i=1

∫
R

log|λ|µ(i)
N (dλ)

)
= 0. (A.4)
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Proof. We refer freely to objects from the proof of Theorem 1.1, adding a parenthetical index (i) to indicate their
corresponding matrix. For example,

E(i)
ss = {dKS(µ̂Φ(i)(X(i)), µ̂Φ(i)(X(i)

cut)) 6 N
−κ}

and so on. The main estimate in the upper bound is

1
N

logE
[∏̀
i=1
|det(H(i)

N )|1E(i)
ss
1E(i)

conc

]

6
1
N

logE

e∑`

i=1
N
∫

logKη (λ)µ̂Φ(i)(X(i))(dλ) ∏̀
i=1

 N∏
j=1

(1 + |λ(i)
j |1|λ(i)

j
|>K)

1E(i)
ss
1E(i)

conc


6 `(2ε1(N) + t) +

∑̀
i=1

∫
R

logKη (λ)µ(i)
N (dλ) +

∑̀
i=1

1
`N

logE

 N∏
j=1

(1 + |λ(i)
j |1|λ(i)

j
|>K)`


where we use Hölder’s inequality in the last line. Using the assumption (A.2) and arguments as in the one-determinant
case, we use this to find

lim sup
N→∞

(
1
N

logE
[∏̀
i=1
|det(H(i)

N )|1E(i)
ss
1E(i)

conc

]
−
∑̀
i=1

∫
log|λ|µ(i)

N (dλ)
)
6 0.

To conclude the upper bound, write E(i) = E(i)
ss ∩ E(i)

conc. We expand

E

[∏̀
i=1
|det(H(i)

N )|(1E(i) + 1(E(i))c),
]

as a sum over 2` terms, each of which has a product of ` determinants and a product of ` indicators. We just studied
the term with every indicator on E(i), and now claim that any term with at least one indicator on the complement
of E(i) does not contribute. Indeed, suppose for concreteness that the indicator 1(E(1))c appears; then the term is
bounded above by

E

[∏̀
i=1
|det(H(i)

N )|1(E(1))c

]
6

(∏̀
i=1

E[|det(H(i)
N )|`(1+δ)]

1
`(1+δ)

)
P((E(1))c)

δ
1+δ

according to Hölder’s. Using the new assumption (A.3), we proceed as in the proof of Lemma 2.4 to complete the
proof of the upper bound.

The lower bound is easier to generalize; by following the proof of Lemma 2.5, we find

1
N

logE
[∏̀
i=1

e
N
∫

(log|λ|−logη(λ))µ̂Φ(i)(X(i))(dλ)
1E(i)

gap
1E(i)

ss
1E(i)

conc

]
> −ε̃2(N)

with

ε̃2(N) = `

(
pb
2 log(1 + e2Nεη2) + η2

2w2
b

)
− 1
N

logP
(⋂̀
i=1
E(i)

gap, E(i)
ss , E(i)

conc, E
(i)
b

)
,

which tends to zero since each of the events E(i)
··· has probability tending to one.

Here is the analogue of Theorem 1.2.

Theorem A.2. (Concentrated inputs) Fix ` ∈ N, and suppose that each of the matrices (H(i)
N )`i=1 satisfies the

assumptions of the one-determinant Theorem 1.2 with measures µ(i)
N . Then (A.4) holds.
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Proof. For the upper bound, we mimic the proof of the one-determinant case, using Hölder’s to obtain terms of

the form E[e
`N
∫

logη(λ)(µ̂
H

(i)
N

−E[µ̂
H

(i)
N

])(dλ)
]1/`; we simply absorb this ` into the Lipschitz constant of logη. The lower

bound is generalized as in the convexity-preserving-functional case, Theorem A.1.

We give two corollaries.

Corollary A.3. (Products of ` Wigner matrices with subexponential tails) Let (µ(i))`i=1 be a collection of
centered probability measures on R with unit variance and subexponential tails in the sense of (1.12) (the constants α
and β can depend on i). Let W (i)

N be a real symmetric Wigner matrix corresponding to µ(i). Then for every collection
(E(i))`i=1 we have

lim
N→∞

1
N

logE
[∏̀
i=1
|det(W (i)

N − E
(i))|

]
=
∑̀
i=1

∫
R

log |λ− E(i)|ρsc(λ) dλ.

Proof. We use Theorem A.1, verifying its assumptions as in the case of one Wigner matrix. The verification of (A.2)
and (A.3) is as follows: Dropping (· · · )(i) from the notation and arguing as in the one-point case, we find

E

 N∏
j=1

(1 + |λj |1|λj |>eNε )`
 6 E

 N∏
j=1

(
1 + 10

N∑
k=1
|Bjk|

)`,
where B is the matrix of tails, which has independent entries up to symmetry. When we expand and factor the
right-hand side, entries of B now appear with power at most 2` (instead of 2 before). Similarly, to verify (A.3) we
mimic the original notation and find

|det(WN + E)|`(1+δ) 6 (N !)`(1+δ)
∑
σX

`(1+δ)
σ

N ! .

Corollary A.4. (Products of ` non-invariant Gaussian matrices) If (H(i)
N )`i=1 are Gaussian matrices with

a (co)variance profile satisfying the requirements of Corollary 1.9.B, or block-diagonal Gaussian matrices satisfying
the requirements of Corollary 1.10 – or a mixture of both – and µ(i)

N are the corresponding MDE measures, then

lim
N→∞

(
1
N

logE
[∏̀
i=1
|det(H(i)

N )|
]
−
∑̀
i=1

∫
R

log|λ|µ(i)
N (λ) dλ

)
= 0.

Appendix B Second moments and exponential finiteness

In the main text we found sufficient conditions to compute the exact value of limN→∞
1
N logE[|det(HN )|]. In this

section we ask just when this limit is finite, but the conditions we find are both necessary and sufficient.
For the theorem statement, we fix some probability measure µ, and let HN be a Wigner matrix associated with

µ in the sense of Section 1.5. We emphasize that there are no regularity assumptions on µ other than the moment
ones made in the theorem statement.

Theorem B.1. Fix p > 1 and E ∈ R. If µ has infinite (2p)-th moment, then

E[|det(HN − E)|p] = +∞

for every finite N . On the other hand, if µ has finite (2p)-th moment, then

lim sup
N→∞

1
N

logE[|det(HN − E)|p] <∞.

The proof relies on the following elementary lemma, whose proof will be given at the end:
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Lemma B.2. For any a, b > 0 and p > 1, the function f : R+ → R+ given by f(x) = (a + x1/p)p/2(b + x1/p)p/2 is
concave.

Proof of Theorem B.1. First, suppose that µ has infinite (2p)-th moment. We can write det(HN − E) = XH2
12 +

Y H12 + Z, where the random vector (X,Y, Z) is independent of H12 and X = −det((Hij − E)36i,j6N ). Denoting
µX,Y,Z the joint law of (X,Y, Z) on R3 and EH12 denote expectation with respect to H12, we have

E[|det(HN )|p] >
∫
R3
µX,Y,Z(dx, dy,dz)1x 6=0EH12 [

∣∣xH2
12 + yH12 + z

∣∣p].
We have P(X = 0) < 1, so it suffices to show that, for every deterministic (x, y, z) ∈ R3 with x 6= 0, we have
E[
∣∣xH2

12 + yH12 + z
∣∣p] = +∞. Indeed, suppose without loss of generality that x > 0; then there exists a threshold

tx,y,z such that, for |H12| > tx,y,z, we have xH2
12 + yH12 + z > x

2H
2
12; thus

E[
∣∣xH2

12 + yH12 + z
∣∣p] > (x2)pE[|H12|2p1|H12|>tx,y,z ] = +∞.

Now suppose that µ has finite (2p)-th moment, and write the columns of HN − E, which are N vectors each
of length N , as (Vi)Ni=1 = (V (E)

i )Ni=1. Write ‖ · ‖ for the 2-norm on vectors, and for simplicity of notation write
H for HN . By Hadamard’s inequality |det(H − E)| 6

∏N
i=1 ‖Vi‖, it suffices to prove, for some finite C, that

E
[∏N

i=1 ‖Vi‖p
]
6 CN .

The problem is that the Vi’s are correlated (since H is symmetric); to surmount this, we will apply a Lindeberg-
style argument. Fix some ordering of the strict-upper-triangular positions, i.e., a map ` : {(i, j)}16i<j6N → J1, vmaxK
(of course, vmax = N(N−1)

2 ). Then, for v ∈ J0, vmaxK, define the symmetric matrix H(v) entrywise through

for i < j, (H(v))ij =
{
Hij if v < `((i, j)),

1√
N
E[(
√
NHij)2p]

1
2p if v > `((i, j)),

for i = j, (H(v))ij = Hij ,

for i > j, (H(v))ij = (H(v))ji.

In other words, H(0) = H, and in H(v) we have replaced v of the entries in the (strict) upper triangle, along with
their reflections in the lower triangle, with deterministic numbers.

Write (V (v)
i )16i6N for the columns of H(v) − E. For any 1 6 v 6 vmax we claim that

E

[
N∏
i=1
‖V (v−1)

i ‖p
]
6 E

[
N∏
i=1
‖V (v)

i ‖
p

]
. (B.1)

This naturally follows from

Ev

[
N∏
i=1
‖V (v−1)

i ‖p
]
6

N∏
i=1
‖V (v)

i ‖
p,

where Ev denotes the integration with respect to the single entry H`(v) (and of course its reflection in the lower
triangle). Writing H`(v) = N−1/2X for some random variable X ∼ µ which has finite (2p)-th moment, the above
equation can be rewritten as

E
[
(a+N−1(X2p)

1
p )

p
2 (b+N−1(X2p)

1
p )

p
2

]
6 (a+N−1E[X2p]

1
p )

p
2 (b+N−1E[X2p]

1
p )

p
2

for some a, b > 0. But this rewriting follows from Jensen’s inequality and Lemma B.2.
Thus (B.1) holds and by iterations we end up with

E

[
N∏
i=1
‖Vi‖p

]
6 E

[
N∏
i=1
‖V (vmax)

i ‖p
]
.
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On the right-hand side, all off-diagonal entries were replaced by deterministic ones, so the expectation splits. We
have thus proved that

E

[
N∏
i=1
‖Vi‖p

]
6

(
E

[(
(H11 − E)2 + (N − 1) 1

N
E[(
√
NH12)2p]

1
p

) p
2
])N

6 CN ,

which concludes the proof.

Proof of Lemma B.2. One can compute

2f ′(x) = (a+ x
1
p )

p
2−1(b+ x

1
p )

p
2 x

1
p−1 + (a+ x

1
p )

p
2 (b+ x

1
p )

p
2−1x

1
p−1.

Thus

2f ′′(x) =
[
(a+ x

1
p )

p
2−1(b+ x

1
p )

p
2 + (a+ x

1
p )

p
2 (b+ x

1
p )

p
2−1
](1

p
− 1
)
x

1
p−2 +

[
(a+ x

1
p )

p
2−1(b+ x

1
p )

p
2−1x

1
p−1

+
(p

2 − 1
)

(a+ x
1
p )

p
2−2 1

p
x

1
p−1(b+ x

1
p )

p
2 + (a+ x

1
p )

p
2

(p
2 − 1

)
(b+ x

1
p )

p
2−2 1

p
x

1
p−1
]
x

1
p−1,

i.e.

2(a+x
1
p )1− p2 (b+x

1
p )1− p2 x2− 2

p f ′′(x) =
[
(a+ x

1
p ) + (b+ x

1
p )
](1

p
− 1
)
x−

1
p+1+

(
1
2 −

1
p

)(
(a+ x

1
p )

(b+ x
1
p )

+ (b+ x
1
p )

(a+ x
1
p )

)

and f ′′(x) has the same sign as(
1
2 −

1
p

)(
(a+ x

1
p )

(b+ x
1
p )

+ (b+ x
1
p )

(a+ x
1
p )
− 2
)

+
(

1
p
− 1
)
x−

1
p (a+ b).

When we change variables as u = ax−1/p, v = bx−1/p, the above becomes(
1
2 −

1
p

)(
1 + u

1 + v
+ 1 + v

1 + u
− 2
)

+
(

1
p
− 1
)

(u+ v),

and it suffices to show this is nonpositive for all u, v > 0 and p > 1. Since y + y−1 − 2 > 0, it is nonpositive
when p = 1; it thus suffices to show that it is non-increasing in p for every fixed u and v. Its partial derivative in
p is 1

p2

(
1+u
1+v + 1+v

1+u − 2− (u+ v)
)
, so we just want to show that g(u, v) = 1+u

1+v + 1+v
1+u − 2 − (u + v) is nonpositive

for all u, v > 0; but g has the properties (i) g(0, v) = 1
1+v + 1 + v − 2 − v = 1

1+v − 1 6 0, and (ii) ∂ug(u, v) =
−1 + 1

1+v −
1+v

(1+u)2 6 −1 + 1
1+v = −v

1+v 6 0, which completes the proof.
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