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Tea Time in Princeton

He said :“That’s the form factor for the
pair correlation of eigenvalues of random
Hermitian matrices !”.

This note is about who“He” is, what
“That” is, and why you should never miss
tea time.

Since the seminal work of Riemann, it is well-known that the distribution of
prime numbers is closely related to the behavior of the ζ function. Most importantly,
it was conjectured in [13] that all its (non-trivial) zeros are aligned 1, and Hilbert
and Pólya put forward the idea of a spectral origin for this phenomenon.

I spent two years in Göttingen ending around the begin of 1914. I tried to learn
analytic number theory from Landau. He asked me one day : “You know some
physics. Do you know a physical reason that the Riemann hypothesis should
be true ?” This would be the case, I answered, if the nontrivial zeros of the
ξ-function were so connected with the physical problem that the Riemann hy-
pothesis would be equivalent to the fact that all the eigenvalues of the physical
problem are real.

George Pólya, correspondence with Andrew Odlyzko, 1982.

Despite the lack of progress concerning the horizontal distribution of the zeros (i.e.
all their real parts being supposedly equal), some support for the Hilbert-Pólya idea
came from the vertical distribution, i.e. the distribution of the gaps between the
imaginary parts of the non-trivial zeros. Indeed, in 1972, the number theorist Hugh
Montgomery evaluated the pair correlation of these zeros, and the mathematical
physicist Freeman Dyson realized that they exhibit the same repulsion as the eigen-
values of typical large random Hermitian matrices. In this expository note, we aim
at explaining Montgomery’s result, placing emphasis on the common points with
random matrices. These statistical connections have since been extended to many
other L-functions (e.g. over function fields, cf. [12]) ; for the sake of brevity we only
consider the Riemann zeta function, and refer for example to [8] for many other
connections between analytic number theory and random matrices.

1 Independent random points

As a first step towards the repulsion between some particles, eigenvalues or zeros
of the zeta function, we wish to understand what happens when there is no repul-
sion, in particular for independent random points. For this, consider the following

1. For a definition of the Riemann zeta function and the Riemann hypothesis, see the beginning of Section 2.
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natural question.

Choose n independent and uniform points on the interval [0, 1]. What is the
typical spacing between two successive such points ?

A good way to make this question more precise is to assume that amongst these
points x1, . . . , xn, we label one, say x1, and we consider the probability that it has
no right-neighbor up to distance δ. Denoting χ(I) the number of xi’s in an interval
I, the probability of such an event is∫ 1

0

P(χ((y, y + δ]) = 0 | x1 = y)dy,

because x1 is uniformly distributed. Now, as all the xi’s are independent, the inte-
grand is also (when y + δ < 1)

P(∩ni=2{xi 6∈ (y, y + δ]}) =
n∏
i=2

P(xi 6∈ (y, y + δ]) = (1− δ)n−1.

Figure 1 – Histogram of 105 nearest-
neighbor spacings (i.e. n∆). Dashed : the re-
scaled e−u curve.

Choosing δ = u
n

and considering the limit
n → ∞, we get that the probability that
the gap between x1 and its right neighbor is
greater than u

n
converges to e−u. More ge-

nerally, denoting by ∆ the gap between x1

and its right-neighbor, we obtain that, for
any 0 < a < b,

P(n∆ ∈ [a, b]) −→
n→∞

∫ b

a

e−udu . (1)

Another way to quantify the microsco-
pic structure of these independent points
consists in looking at the following statis-
tics, r(f, n) = 1

n

∑
1≤j,k≤n,j 6=k f(n(xj − xk)),

for a generic test function f . The reader will
easily prove the following asymptotics :

E (r(f, n)) −→
n→∞

∫
R
f(y)dy. (2)

This limiting exponential distribution (1) and the pair correlation (2) appear
universally, i.e. when the sampled points are sufficiently close to independence, no
matter which distribution they have 2. It is a natural question whether this remains
valid for other random points, and we will explain what happens when considering
the ζ zeros with large imaginary part or the eigenvalues of random matrices. The
gaps statistics will be very different, both for the former (Section 2) and the latter
(Section 3), for which a common type of correlations appears in the limit. The
following sections are widely independent.

2. For example, the reader could consider independent points with strictly positive density with respect to the
uniform measure on [0, 1], and he would obtain an exponential law in the limit as well.
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2 The pair correlation of the ζ zeros.

In this section, we state some elementary properties of the Riemann zeta func-
tion, mentioning along the way a formal analogy between the ζ zeros and the eigenva-
lues of the Laplacian on some symmetric spaces. We then come to more quantitative
estimates through Montgomery’s result on the repulsion between the ζ zeros.

For σ = <(s) > 1, the Riemann zeta function can be defined as a Dirichlet
series or an Euler product :

ζ(s) =
∞∑
n=1

1

ns
=
∏
p∈P

1

1− 1
ps

,

where P is the set of all prime numbers. The second equality is a consequence of
the expansion (1 − p−s)−1 =

∑
k≥0 p

−ks and uniqueness of factorization of integers
into prime numbers. Remarkably, as proved in Riemann’s original paper, ζ can
be meromorphically extended to C − {1}, and this extension satisfies a functional
equation (see e.g. [15] for a proof) : writing ξ(s) = π−s/2Γ(s/2)ζ(s), we have

ξ(s) = ξ(1− s).
Consequently, the zeta function admits trivial zeros at s = −2,−4,−6, . . . corres-
ponding to the poles of Γ(s/2). All the other zeros are confined in the critical strip
0 ≤ σ ≤ 1, and they are symmetrically positioned about the real axis and the critical
line σ = 1/2. The Riemann Hypothesis states that all of this non-trivial zeros are
exactly on the line σ = 1/2.

Trace formulas. The first similarity between the zeta zeros and spectral proper-
ties of operators occurs when looking at linear statistics. Namely, we state the Weil
explicit formula concerning the ζ zeros and Selberg’s trace formula for the Laplacian
on surfaces with constant negative curvature.

First consider the Riemann zeta function. For a function f : (0,∞)→ C, define
its Mellin transform F (s) =

∫∞
0
f(s)xs−1dx. Then the inversion formula (where σ is

chosen in the fundamental strip, i.e. where the image function F converges)

f(x) =
1

2πi

∫ σ+i∞

σ−i∞
F (s)x−sds

holds under suitable smoothness assumptions, in a similar way as the inverse Fourier
transform. Hence, for example,
∞∑
n=2

Λ(n)f(n) =
∞∑
n=2

Λ(n)
1

2πi

∫ 2+i∞

2−i∞
F (s)n−sds =

1

2πi

∫ 2+i∞

2−i∞

(
−ζ
′

ζ

)
(s)F (s)ds,

where Λ is Van Mangoldt’s function 3. To derive the above formula, we use that

− ζ′

ζ
(s) =

∑
n≥2

Λ(n)
ns

, which is obtained by deriving the formula− log ζ(s) =
∑
P log(1−

p−s). Now, changing the line of integration from <(s) = 2 to <(s) = −∞, all trivial
and non-trivial poles (as well as s = 1) are crossed, leading to the following formula,∑

ρ

F (ρ) +
∑
n≥0

F (−2n) = F (1) +
∑

p∈P,m∈N

(log p) f(pm),

3. Λ(n) = log p if n = pk for some prime p, 0 otherwise.
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where the first sum is over non-trivial zeros counted with multiplicities. When repla-
cing the Mellin transform by the Fourier transform, the above formula linking linear
statistics of zeros and primes takes the following form, known as the Weil explicit
formula.

Theorem. Let h be even, analytic on |=(z)| < 1/2 + δ, bounded, and decreasing as
h(z) = O(|z|−2−δ) for some δ > 0. Here, the sum is over all γn’s such that 1/2 + iγn
is a non-trivial zero, and ĥ(x) = 1

2π

∫∞
−∞ h(y)e−ixydy :∑

γn

h(γn)− 2h

(
i

2

)
=

1

2π

∫
R
h(r)

(
Γ′

Γ

(
1

4
+
i

2
r

)
− log π

)
dr

− 2
∑

p∈Pm∈N

log p

pm/2
ĥ(m log p). (3)

In a very distinct context holds a similar relation, the Selberg’s trace formula.
In one of its simplest manifestations, it can be stated as follows. Let Γ\H be a quo-
tient of the Poincaré half-plane, where Γ is a subgroup of PSL2(R), the orientation-
preserving isometries of H = {x+ iy, y > 0} endowed with the metric

(ds)2 =
(dx)2 + (dy)2

y2
. (4)

The Laplace-Beltrami operator ∆ = −y2(∂xx + ∂yy) is self-adjoint with respect to

the invariant measure associated to (4), dµ = dxdy
y2

, i.e.
∫
v(∆u)dµ =

∫
(∆v)udµ,

so all eigenvalues of ∆ are real and positive. If Γ\H is compact, the spectrum of ∆
restricted to a fundamental domain D of representatives of the conjugation classes
is discrete, noted 0 ≤ λ0 < λ1 < . . . To state Selberg’s trace formula, we need, as
previously, a function h analytic on |=(z)| < 1/2+ δ, even, bounded, and decreasing
as h(z) = O(|z|−2−δ), for some δ > 0.

Theorem. Under the above hypotheses, setting λk = sk(1− sk), sk = 1/2 + irk, then
∞∑
k=0

h(rk) =
µ(D)

2π

∫ ∞
−∞

rh(r) tanh(πr)dr +
∑

p∈P,m∈N∗

`(p)

2 sinh
(
m`(p)

2

) ĥ(m`(p)), (5)

where ĥ is the Fourier transform of h (ĥ(x) = 1
2π

∫∞
−∞ h(y)e−ixydy), P is now the

set of all primitive 4 periodic orbits 5 and ` is the geodesic distance corresponding to
(4).

The similarity between (3) and (5) may make you wish that prime numbers
would correspond to primitive orbits, with lengths log p, p ∈ P . No result in this
direction is known however, and it seems safer not to think about this analogy
as a conjecture, but rather just as a tool guiding intuition (as done e.g. in [3] to
understand the pair correlations between the zeros of ζ). Nevertheless, the reader
could prove that, as a consequence of Selberg’s trace formula, the number of primitive
orbits with length less than x is

|{`(p) < x}| ∼
x→∞

ex

x
.

4. i.e. not the repetition of shorter periodic orbits
5. of the geodesic flow on Γ\H
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Similarly, by the prime number theorem,

|{log(p) < x}| ∼
x→∞

ex

x
.

Montgomery’s theorem. A more quantitative connection of analytic number
theory with a spectral problems appeared in the early 70’s thanks to a conversation,
during tea time, in Princeton, about some research on the spacings between the
ζ zeros. Here is a how the author of this work, Hugh Montgomery, relates this
“serendipity” moment [6].

I took afternoon tea that day in Fuld Hall with Chowla. Freeman Dyson was stan-
ding across the room. I had spent the previous year at the Institute and I knew
him perfectly well by sight, but I had never spoken to him. Chowla said : “ Have
you met Dyson ? ” I said no, I hadn’t. He said : “I’ll introduce you.” I said no, I
didn’t feel I had to meet Dyson. Chowla insisted, and so I was dragged reluctantly
across the room to meet Dyson. He was very polite, and asked me what I was
working on. I told him I was working on the differences between the non-trivial
zeros of Riemann’s zeta function, and that I had developed a conjecture that the

distribution function for those differences had integrand 1−
(

sinπu
πu

)2
. He got very

excited. He said : “That’s the form factor for the pair correlation of eigenvalues
of random Hermitian matrices !” I’d never heard the term “pair correlation.” It
really made the connection. The next day Atle (Selberg) had a note Dyson had
written to me giving references to Mehta’s book, places I should look, and so on.
To this day I’ve had one conversation with Dyson and one letter from him. It
was very fruitful. I suppose by this time the connection would have been made,
but it was certainly fortuitous that the connection came so quickly, because then
when I wrote the paper for the proceedings of the conference, I was able to use
the appropriate terminology and give the references and give the interpretation.
I was amused when, a few years later, Dyson published a paper called “Missed
Opportunities.” I’m sure there are lots of missed opportunities, but this was a
counterexample. It was real serendipity that I was able to encounter him at this
crucial juncture.

So what was it exactly that Montgomery proved ? To state his result, we need to
first introduce some notation. First by choosing for h an appropriate approximation
of an indicator function, from the explicit formula (3) one can prove the following :
the number of ζ zeros ρ counted with multiplicities in 0 < =(ρ) < t is asymptotically

N (t) ∼
t→∞

t

2π
log t. (6)

In particular, the mean spacing between ζ zeros at height t is 2π/ log t. Now, we
write as previously 1/2± iγn for the zeta zeros counted with multiplicity, assuming
the Riemann hypothesis and the ordering γ1 ≤ γ2 ≤ . . . Let ωn = γn

2π
log γn

2π
. From

(6) we know that δn = ωn+1 − ωn has a mean value 1 as n → ∞. A more precise
understanding of the zeta zeros interactions relies on the study of the spacings
distribution function below for t→∞,

1

N (t)
|{(n,m) ∈ J1,N (t)K2 : α < ωn − ωm < β, n 6= m}|,
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and more generally on the operator

r̃(f, t) =
1

N (t)

∑
1≤j,k≤N (t),j 6=k

f(ωj − ωk).

As we saw in (2), if the ωk’s behaved as independent random variables (up to the
ordering), r̃(f, t) would converge to

∫
R f(y)dy as t → ∞. The following result by

Montgomery [10] proves that the zeros are actually not asymptotically independent,
but present some statistical repulsion instead. We include an outline of a proof
directly following the statement for the interested reader.

Figure 2 – The function r̃(y) and the histo-
gram of the normalized spacing between non-
necessarily consecutive ζ zeros, at height 1013 (a
number of 2 × 109 zeros have been used to com-
pute the empirical density, represented as small
circles). Source : Xavier Gourdon [7]

Theorem. Assume the Riemann hypo-
thesis. Suppose f is a test function
with the following property : its Fou-
rier transform 6 is C∞ and supported in
(−1, 1). Then

r̃(f, t) −→
t→∞

∫
R
f(y)r̃(y)dy,

where r̃(y) = 1−
(

sin(πy)
πy

)2

.

In fact an important conjecture due
to Montgomery asserts that the above
result holds with no condition on the
support of the Fourier transform. Ho-
wever, weakening the restriction even to
supp f̂ ⊂ (−1− ε, 1 + ε) for some ε > 0
out of reach with known techniques. The
Montgomery conjecture would have im-
portant consequences for example in terms of the statistics of gaps between the prime
numbers p1 < p2 < . . . : for example, it would imply that pn+1 − pn �

√
pn log pn.

Sketch of proof of Montgomery’s Theorem. Consider the function

F (α, t) =
1

t
2π

log t

∑
0<γ,γ′<t

tiα(γ−γ′) 4

4 + (γ − γ′)2
,

where the γ’s are the imaginary parts of the ζ zeros. This is the Fourier transform
of the normalized spacings, up to the factor 4/(4 + (γ − γ′)2), present here just for
technical convergence reasons. This function naturally appears when counting the
second order moments∫ t

0

|G(s, tα)|2ds = F (α, t)t log t+ O(log3 t), G(s, x) = 2
∑
γ

xiγ

1 + (s− γ)2
. (7)

6. Contrary to the Weil and Selberg formulas (3) and (5), the chosen normalization here is f̂(x) =∫∞
−∞ f(y)e−i2πxydy
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As G is a linear functional of the zeros, it can be written as a sum over primes by
an appropriate explicit formula like (3) : Montgomery proved that

G(s, x) = −
√
x

(∑
n≤x

Λ(n)
(x
n

)− 1
2

+is

+
∑
n>x

Λ(n)
(x
n

) 3
2

+is
)

+ ε(s, x),

where ε(s, x) is an error term which, under the Riemann hypothesis, can be bounded
efficiently and makes no contribution in the following asymptotics. The moment (7)
can therefore be expanded as a sum over primes, and the Montgomery-Vaughan
inequality (cf. the exercise hereafter) leads to∫ t

0

|G(s, tα)|2ds = (t−2α log t+ α + o(1))t log t. (8)

These asymptotics can be proved by the Montgomery Vaughan inequality, but only
in the range α ∈ (0, 1), which explains the support restriction in the hypotheses.
Gathering both asymptotic expressions for the second moment of G yields F (α, t) =
t−2α log t+ α + o(1). Finally, by the Fourier inversion formula,

1
t

2π
log t

∑
0≤γ,γ′≤t

f

(
(γ − γ′) log t

2π

)
4

4 + (γ − γ′)2
=

∫
R
F (α, t)f̂(α)dα.

If supp f̂ ⊂ (−1, 1), this is approximately∫
R
f̂(α)(t−2|α| + |α|)dα =

∫
R
e−2|α|f̂(α/ log t)dα +

∫
R
|α|f̂(α)dα

= f̂(0)+f(0)−
∫
R
(1−|α|)f̂(α)dα+o(1) = f(0)+

∫
R
f(x)

(
1−

(
sin πx

πx

)2
)

dx+o(1),

by the Plancherel formula.

(Difficult) Exercise. Let (ar) be complex numbers, (λr) distinct real numbers and
δr = mins 6=r |λr − λs|. Then the Montgomery-Vaughan inequality asserts that

1

t

∫ t

0

|
∑
r

are
iλrs|2ds =

∑
r

|ar|2
(

1 +
3πθ

tδr

)
for some |θ| < 1. In particular,∫ t

0

∣∣∣∣∣
∞∑
n=1

an
nis

∣∣∣∣∣
2

ds = t
∞∑
n=1

|an|2 + O

(
∞∑
n=1

n|an|2
)
.

Prove that the above result implies (8).
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Figure 3 – The distribution function of
asymptotic gaps between eigenvalues of ran-
dom matrices compared with the histogram
of gaps between successive normalized ζ ze-
ros, based on a billion zeros near #1.3 ·1016.

To numerically test Montgomery’s conjec-
ture, Odlyzko [11] computed the normalized
gaps, ωi+1 − ωi, and produced the joint his-
togram. In particular, note that the limiting
density vanishes at 0, contrasting with Fi-
gure 1, and that this type of repulsion coin-
cides remarkably with the shape of gaps for
random matrices.

Moreover, Montgomery’s result has
been extended in the work by Rudnick and
Sarnak [14], who proved that for some sta-
tistics depending on more than just one gap,
the ζ zeros also present the same limit dis-
tribution as predicted by Random Matrix
Theory. This urges us to explain in more de-
tails what we mean by random matrices.

3 Eigenvalues repulsion for random matrices

Let χ be a point process, i.e. a random set of points {x1, x2, . . .}, in a metric
space Λ, identified with the random punctual measure

∑
i δxi . The kth correlation

function for this point process, ρk, is defined as the asymptotic (normalized) proba-
bility of having exactly one particle in respective neighborhoods of k fixed points.
More precisely, if the ui’s are distinct in Λ,

ρk(u1, . . . , uk) = lim
ε→0

P (χ(Bui,ε) = 1, 1 ≤ i ≤ k)∏k
j=1 λ(Bui,ε)

,

provided that the limit exists (here Bui,ε denotes the ball with radius ε and center
u, and the measure λ will be specified later). If χ consists almost surely of n points,
the correlation functions satisfy the integration property

(n− k)ρk(u1, . . . , uk) =

∫
Λ

ρk+1(u1, . . . , uk+1)dλ(uk+1). (9)

Interestingly, many properties about a point process are well-understood when the
correlation functions are also determinants. More precisely, assume now that Λ = C.
If there exists a function K : C×C→ C such that for all k ≥ 1 and (z1, . . . , zk) ∈ Ck

ρk(z1, . . . , zk) = det
(
K(zi, zj)

k
i,j=1

)
,

then χ is said to be a determinantal point process with respect to the underlying
measure λ and with correlation kernel K.

The determinantal condition for all correlation functions is quite restrictive. Ne-
vertheless, as stated in the following theorem, any bidimensional system of particles
with quadratic interaction is determinantal (see [1] for a proof).

Theorem. Let dλ be any 7 finite measure on C (eventually concentrated on a line).

7. We just need a decreasing of the mass at infinity of type
∫
|z|>t dλ(z)� t−k for any k > 0.
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Consider the probability distribution with density

c(n)
∏

1≤k<l≤n

|zl − zk|2

with respect to
∏n

j=1 dλ(zj), where c(n) is the normalization constant. For this joint

distribution, {z1, . . . , zn} is a determinantal point process with the following explicit
kernel,

K(x, y) =
n−1∑
k=0

Pk(x)Pk(y)

where Pk (0 ≤ k ≤ n−1) is a polynomial with degree k and the Pj’s are orthonormal
for the Hermitian product f, g 7→

∫
fgdλ.

We apply the above result to the following examples, which are among the most
studied random matrices. First, consider the so-called Gaussian unitary ensemble
(GUE). This is the ensemble (or set) of random n × n Hermitian matrices with

independent (up to symmetry) Gaussian entries : M
(n)
ij = M

(n)
ji = 1√

n
(Xij+iYij), 1 ≤

i < j ≤ n, where the Xij’s and Yij’s are independent centered real Gaussians entries

with mean 0 and variance 1/2 and M
(n)
ii = Xii/

√
n with Xii real centered Gaussians

with variance 1, still independent. These random matrices are natural in the sense
that they are uniquely characterized by the independence (up to symmetry) of their
entries, and invariance by unitary conjugacy. A similar natural set of matrices, when
the entries are now real Gaussian, called GOE (Gaussian orthogonal ensemble) will
appear in the next section.

For the GUE, the distribution of the eigenvalues has an explicit density,

1

Zn
e−n

∑n
i=1 λ

2
i /2

∏
1≤i<j≤n

|λi − λj|2 (10)

with respect to Lebesgue measure (see e.g. [1] for a derivation of this result). We
denote by (hn) the Hermite polynomials, more precisely the successive monic poly-

nomials orthogonal with respect to the Gaussian weight e−x
2/2dx, and consider the

associated normalized functions

ψk(x) =
e−x

2/4√√
2πk!

hk(x).

Then from the previous Theorem, one can prove that the set of point {λ1, . . . , λn}
with law (10) is a determinantal point process whose kernel (with respect to the
Lebesgue measure on R) is given by

KGUE(n)(x, y) = n
ψn(x

√
n)ψn−1(y

√
n)− ψn−1(x

√
n)ψn(y

√
n)

x− y
,

extended by continuity when x = y. Here we used a simplification : the sum over
all orthogonal polynomials can simplify as a sum over just two of them, this is the
Christoffel-Darboux formula.

The Plancherel-Rotach asymptotics for the Hermite polynomials implies that,
as n→∞, KGUE(n)(x, x)/n has a non-trivial limit.
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Figure 4 – Histogram of the eigenvalues
from the Gaussian Unitary Ensemble in di-
mension 104. Dashed : the rescaled semicircle
law.

More precisely, the empirical spectral distri-
bution 1

n

∑
δλi converges in probability to

the semicircle law with density

ρsc(x) =
1

2π

√
(4− x2)+

with respect to Lebesgue measure. This is
the asymptotic behavior of the spectrum
in the macroscopic regime. The microsco-
pic interactions between eigenvalues also can
be evaluated thanks to asymptotics of the
Hermite orthogonal polynomials : for any
x ∈ (−2, 2), u ∈ R,

1

nρsc(x)
KGUE(n)

(
x, x+

u

nρsc(x)

)
−→
n→∞

K(u) =
sin (πu)

πu
.

This leads to a repulsive correlation structure for the eigenvalues at the scale of the
average gap : for example the two-point correlation function asymptotics are(

1

nρsc(x)

)2

ρ
GUE(n)
2

(
x, x+

u

nρsc(x)

)
−→
n→∞

r̃(u) = 1−
(

sin (πu)

πu

)2

,

the strict analogue to Montogmery’s result, an analogy identified by Dyson as men-
tioned in Section 2.

Figure 5 – Upper line : a sample of independent points distributed according to the semicircle
law after zooming in the bulk. Middle line : a sample eigenvalues of the GUE after zooming in the
bulk of the spectrum. Lower line : a sequence of imaginary parts of the ζ zeros, about height 105.

A remarkable fact about the above limiting sine kernel is that it appears uni-
versally in the limiting correlation functions of random Hermitian matrices with
independent (up to symmetry) entries (not necessarily Gaussian) ; these deep uni-
versality results were achieved, still for the Hermitian symmetry class, in recent
works by Erdős, Yau et al, or by Tao, Vu. In the case of other symmetry classes 8,
the universality of the local eigenvalues statistics has also been proved by Erdős,
Yau et al.

Finally we want to mention the following structural reason for the repulsion of
the eigenvalues of typical matrices : as an exercise, the reader could prove that the
space of Hermitian matrices with at least one repeated eigenvalue has codimension
3 in the space of all Hermitian matrices. Repeated eigenvalues therefore occur with
very small probability compared to independent points (on a product space, the
codimension of the subspace where two points coincide is 1). László Erdős asked me
about a structural, heuristic, argument for the repulsion of the ζ zeros. Unable to
answer it, I transmit the question to the readers.

8. i.e. for random symmetric matrices or random symplectic matrices
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4 Eigenvalues repulsion for quantum billiards

To conclude this expository note, we wish to mention some conjectures about
the asymptotic distribution of eigenvalues, for the Laplacian on compact spaces.

The examples we consider are two-dimensional quantum billiards 9. For some
billiards, the classical trajectories are integrable 10 and for others they are chaotic.

Figure 6 – An integrable billiard (ellipse) and a chaotic one (stadium)

On the quantum side, we consider the Helmholtz equation inside the billiard,
describing the standing waves :

−∆ψn = λnψn,

where the spectrum is discrete as the domain is compact, with ordered eigenva-
lues 0 ≤ λ1 ≤ λ2 . . . , and appropriate Dirichlet or Neumann boundary conditions.

Figure 7 – Some chaotic billiards, from left to
right, up to down : the stadium, Sinai’s billard,
the cardioid, and a billiard with no name.

The questions about quantum billiards
we are interested here is about the
asymptotic behavior of the λn’s, i.e.
whether they will present asympto-
tic independence or a Random Matrix
Theory type of repulsion. The situa-
tion is still somehow mysterious : there
is a conjectural dichotomy between the
chaotic and integrable cases.

First, in 1977, Berry and Tabor [4]
put forward the conjecture that for most
integrable systems, the large eigenvalues
have the statistics of a Poisson point
process, i.e. rescaled gaps being asymptotically exponential random variables, like
in Section 1. More precisely, by Weyl’s law, we know that the number of such eigen-
values up to λ is

|{i : λi ≤ λ}| ∼
λ→∞

area(D)

4π
λ. (11)

To analyze the correlations between eigenvalues, consider the point process

χ(n) =
1

n

∑
i≤n

δ 4π
area(D)

(λi+1−λi).

Its expectation converges to 1 (as n→∞) from (11).

9. A billiard is a compact connected set with nonempty interior, with a generally piecewise regular boundary,
so that the classical trajectories are straight lines reflecting with equal angles of incidence and reflection

10. Roughly speaking this means that there are many conserved quantities along the trajectory, and that explicit
solutions can be given for the speed and position of the ball at any time
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Figure 8 – Energy levels for the circular billiard
compared to those of the Gaussian ensembles and
Poissonian statistics (data and picture from [2]).

By the conjectured limiting Poisso-
nian behavior, the spacing distribution
converges to an exponential law : for any
I ⊂ R+

χ(n)(I) −→
n→∞

∫
I

e−xdx. (12)

In the chaotic case, the situation
differs radically : the eigenvalues are
supposed to repel each other, with gaps
statistics conjecturally similar to those
of a random matrix, from an ensemble
depending on the symmetry properties
of the system (e.g. time-reversibility
for our quantum billiards correspond
to the Gaussian Orthogonal Ensemble).
This is known as the Bohigas-Giannoni-
Schmidt Conjecture [5].

Figure 9 – Energy levels for the cardioid billiard
compared to those of the Gaussian ensembles and
Poissonian statistics (data and picture from [2]).

Numerical experiments were per-
formed in [5] giving a correspondence
between the eigenvalue spacings statis-
tics for Sinai’s billiard and those of the
Gaussian Orthogonal Ensemble. The
joint graphs, by A. Backer, present simi-
lar experiments for an integrable billiard
(Figure 8) and a chaotic one (Figure 9).
These statistics are perfectly coherent
with both the Berry-Tabor and the
Bohigas-Giannoni-Schmidt conjectures.
This deepens the interest in these Ran-
dom Matrix Theory distributions, which
appear increasingly in many fields, in-
cluding analytic number theory.
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