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We study the overlaps between eigenvectors of nonnormal matrices. They quantify the stability of
the spectrum, and characterize the joint eigenvalues increments under Dyson-type dynamics. Well
known work by Chalker and Mehlig calculated the expectation of these overlaps for complex Ginibre
matrices. For the same model, we extend their results by deriving the distribution of diagonal
overlaps (the condition numbers), and their correlations. We prove:

(i) convergence of condition numbers for bulk eigenvalues to an inverse Gamma distribution;
more generally, we decompose the quenched overlap (i.e. conditioned on eigenvalues) as a product
of independent random variables;

(ii) asymptotic expectation of off-diagonal overlaps, both for microscopic or mesoscopic separa-
tion of the corresponding eigenvalues;

(iii) decorrelation of condition numbers associated to eigenvalues at mesoscopic distance, at poly-
nomial speed in the dimension;

(iv) second moment asymptotics to identify the fluctuations order for off-diagonal overlaps, when
the related eigenvalues are separated by any mesoscopic scale;

(v) a new formula for the correlation between overlaps for eigenvalues at microscopic distance,
both diagonal and off-diagonal.

These results imply estimates on the extreme condition numbers, the volume of the pseudospectrum
and the diffusive evolution of eigenvalues under Dyson-type dynamics, at equilibrium.
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1 Introduction

1.1 The Ginibre ensemble. Throughout this article we will essentially consider a complex Ginibre
matrix GN = (Gij)

N
i,j=1 where the Gij ’s are independent and identically distributed complex Gaussian

random variables, with distribution µ = µ(N):

Gij
(d)
= NC

(
0,

1

2N
Id
)
, µ(dλ) =

N

π
e−N |λ|

2

dm(λ), (1.1)

where m is the Lebesgue measure on C. As proved in [28], the eigenvalues of GN have joint distribution

ρN (λ1, . . . , λN )m⊗N (dλ) =
1

ZN

∏
j<k

|λj − λk|2
N∏
k=1

µ(dλk), (1.2)

where ZN = N−N(N−1)/2
∏N
j=1 j!. The above measure is written PN , with corresponding expectation EN .

The limiting empirical spectral measure converges to the circular law, i.e. 1
N

∑
δλi → 1

π1|λ|<1dm(λ).
The statistics of eigenvalues of Ginibre matrices have been studied in great details, and other non-

Hermitian matrix models are known to be integrable, see e.g. [23, 37]. Much less is known about the
statistical properties of eigenvectors of non-Hermitian ensembles.

1.2 Overlaps. Almost surely, the eigenvalues of a Ginibre matrix are distinct and G can be diagonalized
with left eigenvectors denoted (Li)

N
i=1, right eigenvectors (Ri)

N
i=1, defined by GRi = λiRi, L

t
iG = λiL

t
i (for

a column vector x, we write xt = (x1, . . . , xn), x∗ = (x1, . . . , xn) and ‖x‖ = (x∗x)1/2). Right and left
eigenvectors are biorthogonal basis sets, normalized by

LtiRj = δij . (1.3)

In other words, defining X with ith column Ri, we have G = X∆X−1 with ∆ = diag(λ1, . . . , λN ), and Lt
i

is the ith row of Y = X−1. Because of the normalization (1.3), the first interesting statistics to quantify
non-orthogonality of the eigenbasis is

Oij = (R∗jRi)(L
∗
jLi). (1.4)

These overlaps are invariant under the rescaling Ri → ciRi, Li → c−1
i Li and the diagonal overlaps Oii =

‖Ri‖2‖Li‖2 directly quantify the stability of the spectrum. Indeed, if we assume all eigenvalues of G are
distinct and denote λi(t) the eigenvalues of G + tE, standard perturbation theory yields (in this paper
‖M‖ = sup‖x‖2=1 ‖Mx‖2)

O
1/2
ii = lim

t→0
sup
‖E‖=1

t−1|λi(t)− λi|,

so that the O
1/2
ii ’s are also called condition numbers. They also naturally appear through the formulas

O
1/2
ii = ‖RiLt

i‖ or O
1/2
ii = lim supz→λi ‖(z −G)−1‖ · |z − λi|. We refer to [52, Sections 35 and 52] for further

discussion and references about the relevance of condition numbers to the perturbative theory of eigenvalues,
and to estimates of the pseudospectrum.

Eigenvector overlaps also play a fundamental role in non perturbative dynamical settings. First, the large
off-diagonal Oij ’s appear when G is the generator of evolution in real or imaginary time, see [13, Appendix
B]. More generally, eigenvector correlations are as relevant as eigenvalue distributions in determining evo-
lution at intermediate times, a well known fact in hydrodynamic stability theory [53]. Second, the overlaps
also fully characterize the eigenvalue increments when all matrix entries undergo independent Brownian
motions, as shown in Appendix A, for any deterministic initial condition. For the Dyson Brownian motion
on Hermitian matrices, the eigenvalues evolution is autonomous and coincides with Langevin dynamics for
a one-dimensional log-gas. On the contrary, in the nonnormal setting, the Dyson and Langevin dynamics
strongly differ. More about the Dyson-type dynamics in the context of the Ginibre ensemble can be found
in [11,30], and the Langevin equation related to (1.2) is studied in [7].
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1.3 Overlaps statistics. The statistical study of overlaps started with the seminal work of Chalker and
Mehlig [12,13,43]. They estimated the large N limit of the expectation of diagonal and off-diagonal overlaps,
for the complex Ginibre ensemble: for any |z1|, |z2| < 1,

E (O11 | λ1 = z1) ∼
N→∞

N(1− |z1|2), (1.5)

E (O12 | λ1 = z1, λ2 = z2) ∼
N→∞

− 1

N

1− z1z2

|z1 − z2|4
1− (1 +N |z1 − z2|2)e−N |z1−z2|

2

1− e−N |z1−z2|2
, (1.6)

with (1.6) uniformly in |z1− z2| from the macroscopic up to the microscopic N−1/2 scale1. In [13], (1.5) and
(1.6) were rigorously established for z1 = 0, and convincing heuristics extended them anywhere in the bulk
of the spectrum. From (1.5), one readily quantifies the instability of the spectrum, an order N greater than
for normal matrices in the bulk, and more stable closer to the edge.

An increasing interest in the statistical properties of overlaps for nonnormal matrices followed in the-
oretical physics [5, 29, 33, 48, 50], often with interest in calculating overlaps averages beyond the Ginibre
ensemble. For example, eigenvector overlaps appear to describe resonance shift if one perturbs a scattering
system [25–27]. This was experimentally verified [31]. Remarkably, the exact statistics (1.6) appeared very
recently in an experiment from [15] for microscopic separation of eigenvalues, suggesting some universality
of this formula. Unfortunately, many of the models considered in the physics literature are perturbative,
and most of the examined statistics are limited to expectations.

In the mathematics community, the overlaps were recently studied in [54]. Walters and Starr extended
(1.5) to any z1 in the bulk, established asymptotics for z1 at the edge of the spectrum, and suggested an
approach towards a proof of (1.6). They also studied the connection between overlaps and mixed matrix
moments. Concentration for such moments for more general matrix models was established in [21], together
with applications to coupled differential equations with random coefficients. We continue the rigorous analysis
of overlaps by deriving the full distribution of the condition numbers for bulk eigenvalues of the complex
Ginibre ensembles. We also establish (1.6) and an explicit formula for the correlation between diagonal and
off-diagonal overlaps, on any scale including microscopic. These formulas have consequences on the volume
of the pseudospectrum and eigenvalues dynamics.

Motivated by our explicit distribution for the overlaps, Fyodorov [24] recently derived the distribution of
diagonal overlaps for real eigenvalues of real Ginibre matrices, as well as an alternative proof for the distribu-
tion of diagonal overlaps for the complex Ginibre ensemble. Fyodorov’s method relies on the supersymmetry
approach in random matrix theory, while our technique is probabilistic, as described below.

1.4 Main Results. Equation (1.5) suggests that the overlaps have typical size of order N . For the complex
Ginibre ensemble (like all results below), we confirm that this is indeed the typical behavior, identifying the
limiting distribution of O11. We recall that a Gamma random variable γα has density 1

Γ(α)x
α−1e−x on R+.

Theorem 1.1 (Limiting distribution of diagonal overlaps). Let κ > 0 be an arbitrarily constant. Uniformly2

in |z| < 1−N− 1
2 +κ, the following holds. Conditionally on λ1 = z, the rescaled diagonal overlap O11 converges

in distribution to an inverse Gamma random variable with parameter 2 as N →∞, namely

O11

N(1− |z|2)

(d)→ 1

γ2
. (1.7)

Our proof also gives convergence of the expectation, in the complex Ginibre case, so that it extends (1.5).
Equation (1.7) means that for any continuous bounded function f we have

E
(
f

(
O11

N(1− |z|2)

)
| λ1 = z

)
→
∫ ∞

0

f(t)
e−

1
t

t3
dt. (1.8)

1Our formula (1.6) differs from the analogues in [12, 13, 43, 54] through the additional denominator, due to eigenvalues
repulsion: we consider conditional expectation instead of averages.

2More precisely, for any smooth, bounded, compactly supported function f and deterministic sequence (zN ) such that

|zN | < 1−N− 1
2
+κ we have E

(
f(O11/(N(1− |zN |2))) | λ1 = zN

)
→ Ef(γ−1

2 ).
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This t−3 asymptotic density was calculated for N = 2 in [13, Section V.A.2], where this heavy tail was
suggested to remain in the large N limit.

Theorem 1.1 requires integrating over all the randomness of the Ginibre ensemble, in this sense this is an
annealed result. It derives from a quenched result, when conditioning on all eigenvalues: the overlap O11 can
then be decomposed as a product of independent random variables, see Theorem 2.2. Very similar results
have been recently established for the Quaternionic Ginibre Ensemble [19], as well as for the Spherical and
Truncated Unitary Ensembles [20].

We observe that the limiting density in (1.8) vanishes exponentially fast at 0, so that it is extremely
unlikely to find any bulk overlap of polynomial order smaller than N : the spectrum is uniformly unstable.
This is confirmed by the following bound on the extremes of condition numbers.

Corollary 1.2 (Bounds on the condition numbers). Let κ, ε > 0, κ < κ0 6 1/2 be fixed and ΩN ⊂
{1 − N−

1
2 +κ0 6 |z| < 1 − N−

1
2 +κ} be deterministic, measurable. Then with probability tending to 1 as

N →∞, the following event holds: for any λi ∈ ΩN ,

N
1
2 +κ−ε 6 Oii 6 N1+κ0+εm(ΩN )1/2.

In particular, all bulk overlaps are in [N1−ε, N3/2+ε] with large probability. In terms of polynomial scales
in N , the above lower bound is clearly optimal, and we believe the upper bound is also the best possible.

The next result is a rigorous proof of (1.6) in the bulk of the spectrum. It answers Conjecture 4.5 in [54]
and gives firm grounds to the heuristic arguments of Chalker and Mehlig [13]. Different heuristics towards
Theorem 1.3 for more general ensembles recently appeared in [46], based on diagrammatics. Another recent
approach [14] allows to compute the conditional expectation of more general multi-index overlaps when
eigenvalues are conditioned to be at macroscopic distance.

Theorem 1.3 (Expectation of off-diagonal overlaps, microscopic and mesoscopic scales). For any κ ∈
(0, 1/2), any ε > 0 and C > 0 the following holds. Uniformly in z1, z2 such that |z1| < 1 − N−

1
2 +κ,

ω =
√
N |z1 − z2| ∈ [N−C , Nκ−ε], we have

E (O12 | λ1 = z1, λ2 = z2) = −N 1− z1z2

|ω|4
1− (1 + |ω|2)e−|ω|

2

1− e−|ω|2
(
1 + O(N−2κ+ε)

)
. (1.9)

In particular, under the same hypothesis, in the mesoscopic regime |w| → ∞, equation (1.9) simplifies to

E (O12 | λ1 = z1, λ2 = z2) = − 1− z1z2

N |z1 − z2|4
(1 + o(1)), (1.10)

showing that the expectation of off-diagonal overlaps decreases with the separation of eigenvalues. Our next
result, about second moments at any scale, allows to identify the natural size of off-diagonal overlaps, and
gives polynomial decay of correlations between condition numbers.

Theorem 1.4 (Correlations of overlaps: microscopic and mesoscopic scales). Let κ ∈ (0, 1/2) and σ ∈ (0, κ).

Let ε > 0. Then uniformly in z1, z2 such that |z1| < 1−N− 1
2 +κ, ω =

√
N |z1 − z2| ∈ [N−

κ
2 +ε, Nσ], we have

E
(
|O12|2 | λ1 = z1, λ2 = z2

)
=
N2(1− |z1|2)(1− |z2|2)

|ω|4
(

1 + O(N2(σ−κ)+ε)
)
, (1.11)

E (O11O22 | λ1 = z1, λ2 = z2) =
N2(1− |z1|2)(1− |z2|2)

|ω|4
1 + |ω|4 − e−|ω|2

1− e−|ω|2
(

1 + O(N2(σ−κ)+ε)
)
. (1.12)

For the mesoscopic scales |w| → ∞, the above asymptotics become

E
(
|O12|2 | λ1 = z1, λ2 = z2

)
∼ (1− |z1|2)(1− |z2|2)

|z1 − z2|4
, (1.13)

E (O11O22 | λ1 = z1, λ2 = z2) ∼ E (O11 | λ1 = z1)E (O22 | λ2 = z2) . (1.14)
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Equations (1.10) and (1.13) suggest that for any mesoscopic separation of eigenvalues, O12 does not concen-
trate, because E(|O12|2) is of larger order than E(O12)2. Contrary to (1.6), (1.13) therefore identifies the size
of off-diagonal overlaps, at mesoscopic scales.

The covariance bounds from Theorem 1.4 yield effective estimates on the volume of the pseudospectrum,
defined through σε(G) =

{
z : ‖z −G‖−1 > ε−1

}
. We state the result when the pseudospectrum is intersected

with a mesoscopic ball, although it clearly holds on any domain within the bulk that is regular enough.

Corollary 1.5 (Volume of the pseudospectrum). Let κ > a > 0 be any constants and BN ⊂ {|z| <
1−N− 1

2 +κ} be a ball with radius at least N−
1
2 +a, at most N−

1
2 +κ−a. Then the volume of the pseudospectrum

in BN is deterministic at first order: for any c > 0,

lim
N→∞

lim
ε→0

P

(
1− c < m (σε(G) ∩BN )

ε2N2
∫

BN
(1− |z|2)dm(z)

< 1 + c

)
= 1. (1.15)

Finally, we remark that our results shed some light on natural matrix dynamics on nonnormal matrices,
the Dyson-type evolution where all matrix entries follow independent complex Ornstein-Uhlenbeck processes.
Under this evolution, the eigenvalues follow the dynamics (see Proposition A.1)

dλk(t) = dMk(t)− 1

2
λk(t)dt

where the martingales (Mk)16k6N have brackets 〈Mi,Mj〉 = 0 and d〈Mi,Mj〉t = Oij(t)
dt
N . Based on this

observation, Theorem 1.1, Theorem 1.3 and some bound from [24], we show that the eigenvalues propagate
with diffusive scaling, at equilibrium, but slower when close to the boundary.

Corollary 1.6 (Diffusive exponent for eigenvalues dynamics). Let c, a > 0 be arbitrarily. Consider the
matrix dynamics (A.1) with initial condition G(0) distributed as (1.1). Let B ⊂ {|z| < 1− c} be a ball, and
t < N−c. Then as N →∞ we have

E(|λ1(t)− λ1(0)|21λ1(0)∈B) = t

∫
B

(1− |z|2)
dm(z)

π
(1 + o(1)), (1.16)

E
(

(λ1(t)− λ1(0))(λ2(t)− λ2(0))1{λ1(0)∈B}∩{|λ1(0)−λ2(0)|<N−a}

)
= o(tN−2a). (1.17)

Given the time scale in (1.16), we expect that, conditionally on {λi(0) = z}, the process

(λi(ts)− z)06s61√
t(1− |z|2)

converges in distribution to a normalized complex Brownian motion as N →∞ (t is any scale N−1+c < t <

N−c), i.e. 1√
2
(B

(i)
s + iB̃

(i)
s )06s61 with B(i) and B̃(i) independent standard Brownian motions. Moreover,

from (1.17), we expect that these limiting processes associated to different eigenvalues are independent.

1.5 About the proofs. Our analysis of the condition numbers starts with the observation of Chalker and
Mehlig: the overlaps coincide with those of the Schur form of the original operator, a particularly simple
decomposition when the input is a Ginibre matrix. We refer the reader to (2.2) for this key structure at the
source of our inductions.

In Section 2 our method to prove Theorem 1.1 follows from a simple, remarkable identity in law: the
quenched overlap (i.e. conditionally on eigenvalues and integrating only over the complementary randomness
of the Ginibre ensemble) is a product of N − 1 independent random variables, see Theorem 2.2. In the
specific case λ1 = 0, for the complex Ginibre ensemble, this split of the distribution of O11 remains in the
annealed setting, as a consequence of a theorem of Kostlan: the radii of eigenvalues of complex Ginibre
matrices are independent random variables. For the Ginibre ensemble with conditioned eigenvalue, we give
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the extension of Kostlan’s theorem in Section 5. This concludes a short probabilistic proof of Theorem 1.1
in the case λ1 = 0.

The extension to general λ1 in the bulk proceeds by decomposition of O11 into a long-range factor, which
gives the deterministic 1 − |z|2 coefficient, and a short-range factor, responsible for the γ−1

2 fluctuations.
Concentration of the long-range contribution relies on rigidity results for eigenvalues, from [9,10]. To prove
that the short-range contribution is independent of the position of λ1, we need strong form of invariance
for our measure, around the conditioned point λ1. While translation invariance for P follows easily from
the explicit form of the Ginibre determinantal kernel, the invariance of the conditioned measure requires
more involved tools such as the negative association property for determinantal point processes, see Section
4. Corollary 1.2 directly follows from our estimates on the speed of convergence to the inverse Gamma
distribution, as explained in Section 2.

The proof of theorems 1.3 and 1.4 in Section 3 follows the same scheme: first a quenched identity, then
an explicit formula obtained for z1 = 0 and a localization procedure to isolate the short and long-range
contributions. The main difference with the proof of Theorem 1.1 concerns the special case z1 = 0, the
other step being more robust. Due to conditioning on z2, rotational invariance of the remaining eigenvalues
is broken and there is no analogue of Kostlan’s theorem to obtain the explicit joint distribution of O12,O11

and O22. Despite this lack of rotational invariance, Chalker and Mehlig had already obtained a closed-form
formula for E(O12) when z1 = 0. Remarkably, the second moments are also explicit (although considerably
more involved) even for finite N , see Proposition 3.6. Our correlation estimates on overlaps imply Corollary
1.5 by a second moment method. It is plausible yet unclear that Theorem 1.4 admits generalizations to
joint moments with an arbitrary number of conditioned eigenvalues. In fact, our second moment calculation
involves a P-recursive sequence (see (3.23)), for which explicit solutions are not expected in general. We
hope to address the general study of relevant holonomic sequences in future work.

In Appendix A, we consider eigenvalues dynamics. After deriving the relevant stochastic differential
equations in Proposition A.1, we show that Corollary 1.6 follows from Theorem 1.1 and Theorem 1.3. The
diagonal overlaps dictates the eigenvalues quadratic variation, the off-diagonal overlaps their correlations.

Finally, although this article focuses on the eigenvalues condition numbers, the Schur decomposition
technique also readily answers the natural question of angles between normalized Ginibre eigenvectors, as
explained in Appendix B.

1.6 Numerical test for universality of the distribution of overlaps. Universality of eigenvector
statistics recently attracted a lot of attention for random Hermitian matrices. For the Gaussian orthogonal
and unitary ensembles, the eigenvectors basis is Haar distributed on the corresponding unitary group. As

(a) Complex Ginibre ensemble, en-
tries have density (1.1).

(b) Complex Bernoulli, indepen-
dent ±1 real and imaginary parts.

(c) Complex Uniform, entries are
uniform on {|z| < 1}.

Figure 1: The histogram of the overlaps Oii
N(1−|λi|2) associated to bulk eigenvalues for different densities of

the matrix entries. The average is performed over all bulk eigenvalues of a 600 × 600 matrix, sampled 100
times. The curve gives the density of the inverse Gamma distribution with parameter 2.
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a consequence, projections of eigenvectors on deterministic directions are asymptotically normal, as the
projection of the uniform measure on high dimensional spheres (a result due to Lévy and Borel). These
eigenvector statistics are now known to be universal [8, 39,51], holding for generalized Wigner matrices.

The situation is quite different for eigenvectors of dense random non Hermitian matrices: orders of
magnitude such as delocalization are known [49] , but universality seems out of reach with current techniques.
In Figure 1, we numerically investigate whether the inverse Gamma distribution from Theorem 1.1 describes
the typical behavior of condition numbers. This leads us to conjecture that for any complex random matrix
with i.i.d. entries with substantial real and imaginary parts, the normalized condition numbers converge to
the inverse Gamma distribution with parameter two.

1.7 Notations and conventions. The partial sums of the exponential are written

e
(`)
k (x) =

∑̀
i=k

xi

i!
(1.18)

and we abbreviate ek = e
(∞)
k , e(N) = e

(N)
0 . Throughout the paper, 0 6 χ 6 1 is a smooth cut-off function

on R+ such that χ(x) = 1 for x < 1/2 and 0 for x > 1. We write f = O(φ) if |f | < C|φ| for some C > 0
which does not depend on N , and f = o(φ) if |f |/|φ| → 0 as N →∞. Along this work, the constants C and
c are some universal (resp. typically large and small) constants that may vary from line to line.

Acknowledgement. The authors thank the referees for particularly precise and pertinent suggestions which
helped improving this article.

2 Diagonal overlaps

This section first gives a remarkable identity in law for the diagonal overlap conditioned on the eigenvalues,
Theorem 2.2. Eigenvalues are then integrated, first for λ1 at the center of the spectrum thanks to a variant
of Kostlan’s theorem, then anywhere in the bulk.

2.1 The quenched diagonal overlap. For all i 6= j we denote αij = 1
λi−λj , and αii = 0. These numbers

satisfy

αij + αji = 0, αij + αjk =
αijαjk
αik

. (2.1)

We first recall the analysis of the overlaps given by Chalker and Mehlig, and include the short proof for
completeness.

Proposition 2.1 (from [12,13,43]). The following joint equality in distribution holds:

O11 =

N∑
i=1

|bi|2, O12 = −b2
N∑
i=2

bidi, O22 = (1 + |b2|2)

N∑
i=2

|di|2,

where b1 = d2 = 1, d1 = 0, and the next terms are defined by the recurrence

bi = α1i

i−1∑
k=1

bkTki for i > 2, di = α2i

i−1∑
k=1

dkTki for i > 3.

The Tij are independent complex Gaussian variables, centered and with variance N−1 (Tij
(d)
= Gij).

Proof. We defined X and Y = X−1 such that G = X∆Y (see subsection 1.2). The QR algorithm applied
to X yields X = UR, Y = R−1U∗, and thus the Schur form G = UTU∗ with T = R∆R−1. It is
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straightforward to check that U is independent of T and uniformly distributed on the unitary group. The
overlaps are unchanged by an unitary change of basis, and therefore we can study directly the overlaps of
the matrix T . As proved in [44, Appendix 35], this matrix T has the eigenvalues of G as diagonal entries,

and independently the upper triangle consists in uncorrelated Gaussian random variables, Tij
(d)
= Gij :

T =


λ1 T12 . . . T1N

0 λ2 . . . T2N

...
. . .

. . .
...

0 . . . 0 λN

 . (2.2)

For T , the right eigenvectors are of type

R1 = (1, 0, . . . , 0)t, R2 = (a, 1, 0, . . . , 0)t,

and the left eigenvectors are denoted

L1 = (b1, . . . , bN )t, L2 = (d1, . . . , dN )t.

Biorthogonality relations give b1 = 1, d1 = 0, d2 = 1 and a = −b2. The formulas given for the overlaps
follow, and the recurrence formulas proceed from the definition of the eigenvectors, i.e. LtjT = λjL

t
j .

Proposition 2.1 shows that the eigenvectors, and thus the overlaps, are obtained according to a very
straightforward random process. Indeed, let us consider the sequences of column vectors:

Bk = (1, b2, . . . , bk)t so that L1 = BN ,

Dk = (0, 1, d3, . . . , dk)t so that L2 = DN ,

Tk = (T1,k+1, . . . , Tk,k+1)t (subset of the k + 1 th column of T ).

For any k, Tk is a k-dimensional centered Gaussian vector with independent coordinates and variance 1/N .
We denote the corresponding σ-algebras

Fn = σ (Tk, 1 6 k 6 n) = σ (Ti,j+1, 1 6 i 6 j 6 n) .

In particular, b2 = T12

λ1−λ2
∈ F1. The recurrence formula from Proposition 2.1 becomes

bn+1 = α1,n+1B
t
nTn, dn+1 = α2,n+1D

t
nTn, n > 1. (2.3)

Theorem 2.2. The following equality in law holds conditionally on {λ1, . . . , λN}:

O11
(d)
=

N∏
n=2

(
1 +

|Xn|2

N |λ1 − λn|2
)

where the Xn’s are independent standard complex Gaussian random variables (Xn
(d)
= 1√

2
(N1 + iN2) with

standard real Gaussians N1, N2).

Remark 2.3. In particular

ET (O11) =

N∏
n=2

(
1 +

1

N |λ1 − λn|2
)
, (2.4)

where ET is partial integration in the upper-diagonal variables (Tij)j>i. We therefore recover the result by
Chalker and Mehlig [12, 13, 43].
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Proof. For fixed N and 1 6 n 6 N we shall use the notations

O
(n)
11 = ‖Bn‖2, O

(n)
12 = −b2Bt

nD̄n, O
(n)
22 = (1 + |b2|2)‖Dn‖2. (2.5)

Note that

O
(1)
11 = 1, O

(2)
11 = 1 + |b2|2 = 1 +

∣∣∣ T12

λ1 − λ2

∣∣∣2
and, with (2.3),

O
(n+1)
11 = ‖Bn+1‖2 = ‖Bn‖2 + |bn+1|2 = ‖Bn‖2

(
1 +
|α1,n+1B

t
nTn|2

‖Bn‖2
)

= O
(n)
11

(
1 +

|Xn+1|2

N |λ1 − λn+1|2
)
,

where Xn+1 :=
√
N
Bt
nTn
‖Bn‖ is a Fn-measurable Gaussian with variance 1, independent of Fn−1. We have

therefore proved the expected factorization with independent Xn’s, by an immediate induction.

2.2 The annealed diagonal overlap at the origin. We recall that a Gamma random variable γα has

density 1
Γ(α)x

α−1e−x on R+, and a Beta random variable βa,b has density Γ(a+b)
Γ(a)Γ(b)x

a−1(1− x)b−11[0,1](x).

Proposition 2.4. Conditionally on {λ1 = 0}, the following equality in distribution holds:

O11
(d)
=

1

β2,N−1
. (2.6)

In particular, E (O11 | λ1 = 0) = N and N−1O11 converges weakly to γ−1
2 .

Proof. With the notations from Theorem 2.2, we have (|X2|2, . . . , |XN |2)
(d)
= (γ

(2)
1 , . . . γ

(N)
1 ), a collection of

N − 1 independent Gamma random variables with parameter 1. Moreover, still conditionally on λ1 = 0,

from Corollary 5.6 we have {N |λ2|2, . . . , N |λN |2}
(d)
= {γ2, . . . , γN}, a set of independent Gamma random

variables with corresponding parameters. Theorem 2.2 therefore yields, conditionally on λ1 = 0,

O11
(d)
=

N∏
j=2

(
1 +

γ
(j)
1

γj

)
,

where all random variable are independent. Equation (2.6) then follows immediately from Lemma 2.5 below.
This readily implies

E (O11 | λ1 = 0) = E
(
β−1

2,N−1

)
=

Γ(1)Γ(N + 1)

Γ(2)Γ(N)
= N. (2.7)

The convergence in distribution follows from a simple change of variables: for any bounded test function f ,

E
(
f

(
1

Nβ2,N−1

))
=

∫ 1

0

f

(
1

Nx

)
N !

(N − 2)!
x(1− x)N−2dx =

∫ ∞
N−1

f (t)
N − 1

N

(
1− 1

Nt

)N−2
dt

t3
, (2.8)

which clearly converges to the right hand side of (1.8) as N →∞.

Lemma 2.5. The following equalities in distribution hold, where all random variables with different indexes
are independent:

γa
γa + γb

(d)
= βa,b, (2.9)

N∏
j=2

βj,1
(d)
= β2,N−1. (2.10)

Proof. Equation (2.9) is standard, see e.g. [34, Chapter 25]. The equality (2.10) follows by immediate
induction from the following property [17]: if βp,q and βp+q,r are independent, their product has distribution
βp,q+r.
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2.3 The annealed diagonal overlap in the bulk. With the following theorem, we first recall how the
expectation of diagonal overlaps is accessible, following [12,13,43], [54]. We then prove Theorem 1.1.

The following was proved by Chalker and Mehlig for z = 0. They gave convincing arguments for any z
in the bulk, a result then proved by Walters and Starr. Explicit formulae have also been recently obtained
in [1] for the conditional expectation of diagonal and off-diagonal overlaps with respect to any number of
eigenvalues. We include the following statement and its short proof for the sake of completeness.

Theorem 2.6 (from [12,13,43,54]). For any z ∈ D, we have

E (O11 | λ1 = z) = N(1− |z|2) + O

(√
N
e−c(z)N

1− |z|2

)
) where c(z) = |z|2 − 1− log(|z|2) > 0.

Proof. From (2.4), we can write

E (O11 | λ1 = z) = E

(
N∏
k=2

(
1 +

1

N |z − λk|2

)
| λ1 = z

)
.

Theorem 5.3 with g(λ) = 1 + 1
N |z−λ|2 then gives

E

(
N∏
k=2

g(λk) | λ1 = z

)
=

det(fij)16i,j6N−1

Z
(z)
N

where fij =
1

i!

∫
λi−1λ̄j−1

(
1

N
+ |z − λ|2

)
µ(dλ).

This is the determinant of a tridiagonal matrix, with entries (we use (5.1))

fii =
1

N i
+
N−1 + |z|2

iN i−1
, fi,i+1 = − z

N i
, fi,i−1 = − z

iN i−1
.

Denoting x = N |z|2 and dk = det((Mij)16i,j6k), with the convention d0 = 1 we have

d1 =
x+ 2

N
,

dk =

(
1 +

x+ 1

k

)
1

Nk
dk−1 −

x

k

1

N2k−1
dk−2,

so that ak = dkN
k(k+1)

2 satisfies a0 = 1, a1 = x+ 2,

ak =

(
1 +

x+ 1

k

)
ak−1 −

x

k
ak−2.

This gives ak = (k + 1)e(k+1)(x)− xe(k)(x) by an immediate induction. Thus, we conclude

E (O11 | λ1 = z) = N
e(N)(x)

e(N−1)(x)
− x. (2.11)

From the asymptotics

e(N)(x) = ex −
∑
`>N

x`

`!
= ex + O

(
xN

N !(1− |z|2)

)
= ex

(
1 + O

(
eN(1−|z|2+log |z|2)

√
2πN(1− |z|2)

))
,

the expected formula follows.

The following proofs make use of special integrability when the conditioned particle is at the center,
together with a separation of the short-range and long-range eigenvalues. This separation of scales idea is
already present in [13], though not rigorous. To illustrate the main ideas, we first give an alternative proof
of Theorem 2.6 (with deteriorated error estimate) which does not rely on explicit formulas, but rather on
rigidity and translation invariance. We then prove the main result of this section, Theorem 1.1.
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Alternative proof of Theorem 2.6. We denote νz the measure (1.2) conditioned to λ1 = z. Note that νz is

a determinantal measure as it has density
∏

26i<j6N |λi − λj |2e−
∑N

2 V (λi) for some external potential V
(which depends on z). With a slight abuse of language, we will abbreviate Eνz (X) = E(X | λ1 = z) even for
X a function of the overlaps.

The proof consists in three steps: we first show that we can afford a small cutoff of our test function
around the singularity, then we decompose our product into smooth long-range and a short-range parts. The
long range concentrates, and the short range is invariant by translation.

First step: small cutoff. Let gz(λ) = 1+ 1
N |z−λ|2 . Remember that from (2.4), Eνz (O11) = Eνz

(∏N
i=2 gz(λi)

)
.

We denote hz(λ) = gz(λ)1|z−λ|>N−A , with A = A(κ) a large enough chosen constant, and first prove the
following elementary equality:

Eνz

(
N∏
i=2

gz(λi)

)
= Eνz

(
N∏
i=2

hz(λi)

)
+ O(N−3). (2.12)

Note that the exponent N−3 here is just chosen for the sake of concreteness. The left hand side coincides

with Eνz
(∏N

i=2(|z − λi|2 +N−1)
)(

Eνz
(∏N

i=2(|z − λi|2)
))−1

, so that (2.12) follows if we can prove

Eνz

(
N∏
i=2

(|z − λi|2 +N−1)e−N(|z|2−1))

)
− Eνz

(
N∏
i=2

(|z − λi|2 +N−11|z−λi|>N−A)e−N(|z|2−1)

)
= O(N−B),

(2.13)

Eνz

(
N∏
i=2

(|z − λi|2)e−N(|z|2−1)

)
> N−C , (2.14)

for a constant B sufficiently larger than C. Equation (2.14) follows from Lemma 2.11. For equation (2.13),
note that the left hand side has size order

Eνz

(
N∏
i=2

(|z − λi|2 +N−1)e−N(|z|2−1))1∃i:|λi−z|<N−A

)
= O(N−A/10)Eνz

(
N∏
i=2

(|z − λi|2 +N−1)2e−2N(|z|2−1)

)1/2

,

by Cauchy-Schwarz inequality, union bound, and considering that A can be taken as large as needed. This
last expectation is bounded by Lemma 2.11, which concludes the proof of (2.12) by choosing A large enough.

Second step: the long-range contribution concentrates. We smoothly separate the short-range from a long-
range contributions on the right hand side of (2.12). For this, we define:

χz,δ(λ) = χ
(
N

1
2−δ|z − λ|

)
with δ ∈ (0, κ) (2.15)

f `z(λ) =
1

N |z − λ|2
(1− χz,δ(λ)) (2.16)

f̄z = (N − 1)

∫
D

1− χz,δ(λ)

N |z − λ|2
dm(λ)

π
(2.17)

hz(λ) = eh
s
z(λ)+h`z(λ),

hsz(λ) = log
(

1 +
1

N |z − λ|2
1|z−λ|>N−A

)
χz,δ(λ), (2.18)

h`z(λ) = log
(

1 +
1

N |z − λ|2
)

(1− χz,δ(λ)),

11



Note that ∣∣∣∣∣
N∑
i=2

h`z(λi)− f̄z

∣∣∣∣∣ 6
∣∣∣∣∣
N∑
i=2

f `z(λi)− f̄z

∣∣∣∣∣+

N∑
i=2

1

N2|z − λi|4
(1− χz,δ(λi)). (2.19)

To bound the first term on the right hand side, we rely on [10, Lemma 3.2]: for any α such that α‖f `z‖∞ < 1/3
(in practice ‖f `z‖∞ < N−2δ so that we will choose α = cN2δ for some fixed small c), we have

Eνz
(
eα(

∑N
i=2 f

`
z(λi)−Eνz (

∑N
i=2 f

`
z(λi)))

)
6 eCα

2Varνz (
∑N
i=2 f

`
z(λi)) (2.20)

for some C which does not depend on N . We first bound the above variance. Introduce a partition of type 1 =
χ+

∑
k>1 ξ(2

−kx) for any x > 0, with ξ smooth, compactly supported. Let f `z,k(λ) = f `z(λ)ξ(2−kN1/2−δ|z−
λ|) and K = min{k > 1 : 2kN−1/2+δ > C} where C and therefore K only depend on ξ. Then

∑
i f

`
z(λi) =∑K

k=1

∑
i f

`
z,k(λi) with probability 1 − e−cN (here we use that there are no eigenvalues |λk| > 1 + ε with

probability 1 − e−c(ε)N , thanks to the Corollary 5.5). Moreover, from [9, Theorem 1.2], for any ε > 0 and
D > 0, there exists N0 > 0 such that for any N > N0, |z| < 1 and 1 6 k 6 K we have

PN−1

(∣∣∣∣∣∑ f `z,k(λi)− (N − 1)

∫
|λ|<1

f `z,k

∣∣∣∣∣ > N−2δ+ε

)
6 N−D.

This implies the same estimate for the conditioned measure by a simple Cauchy-Schwarz inequality:

Pνz

(∣∣∣∣∣∑ f `z,k(λi)− (N − 1)

∫
|z|<1

f `z,k

∣∣∣∣∣ > N−2δ+ε

)

6 NCPN−1

(∣∣∣∣∣∑ f `z,k(λi)− (N − 1)

∫
|z|<1

f `z,k

∣∣∣∣∣ > N−2δ+ε

)1/2

Eνz

(
N∏
i=2

|z − λi|4e−2N(|z|2−1)

)1/2

6 N−
D
2 +2C .

where we used Lemma 2.11. We conclude that for any ε > 0 and D we have

Pνz
(
|
∑

f `z(λi)− f̄z| > N−2δ+ε
)
6 N−D,

so that Varνz (
∑N
i=2 f

`
z(λi)) = O(N−4δ+ε) and Eνz (

∑N
i=2 f

`
z(λi)) = f̄z + O(N−2δ+ε). As a consequence,

(2.20) becomes

Eνz
(
eα(

∑N
i=2 f

`
z(λi)−f̄z)

)
6 eCα

2N−4δ+ε+C|α|N−2δ+ε

. (2.21)

The same reasoning yields

Eνz
(
e
α
∑N
i=2

1
N2|z−λi|4

(1−χz,δ(λi))
)

6 eCα
2N−8δ+ε+C|α|N−2δ+ε

. (2.22)

The choice α = ±cN2δ in (2.21), (2.22) together with (2.19) implies

Pνz (A) < e−cN
ε

, where A =

{∣∣∣∣∣
N∑
i=2

h`z(λi)− f̄z

∣∣∣∣∣ > N−2δ+ε

}
.

This yields, for some p = 1 + c(κ), c(κ) > 0 and some q, r > 1,

Eνz
(
e
∑
i(h

s
z(λi)+h

`
z(λi))1A

)
6 Eνz

(
ep
∑
i h
s
z(λi)

)1/p

Eνz
(
eq
∑
i h
`
z(λi)

)1/q

Pνz (A)1/r 6 e−cN
ε

. (2.23)
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Here we used that the third term has size order e−cN
ε

, the second one is of order eqf̄z = O(NC) from (2.21),
(2.22), and so is the first one from Lemma 2.9 (we needed the initial small cutoff changing g into h in order
to apply this Lemma). Moreover,

Eνz
(
e
∑
i(h

s
z(λi)+h

`
z(λi))1Ac

)
= (1+O(N−2δ+ε))Eνz

(
e
∑
i h
s
z(λi)+f̄z

)
−(1+O(N−2δ+ε))Eνz

(
e
∑
i h
s
z(λi)+f̄z1A

)
,

and this last expectation is of order e−cN
ε

for the same reason as (2.23). To summarize, with the previous
two equations we have proved (up to exponentially small error terms)

Eνz

(
N∏
i=2

hz(λi)

)
= (1 + O(N−2δ+ε))ef̄z Eνz

(
e
∑
i h
s
z(λi)

)
.

Third step: the local part is invariant. With p = 1 in (2.33), we have

Eνz
(
e
∑
i h
s
z(λi)

)
= Eν0

(
e
∑
i h
s
0(λi)

)
+ O

(
e−cN

2κ
)
.

This yields

Eνz

(
N∏
i=2

hz(λi)

)
= (1 + O(N−2δ+ε))ef̄z−f̄0 Eν0

(
N∏
i=2

h0(λi)

)
.

From Lemma 2.8, ef̄z−f̄0 = 1− |z|2, and from (2.7), (2.12) we have Eν0
(∏N

i=2 h0(λi)
)

= N + O(N−2). This

concludes the proof.

Proof of Theorem 1.1. We follow the same method as in the previous proof, except that we won’t need a
small a priori cutoff: we are interested in convergence in distribution, not in L1.

First step: the long-range contribution concentrates. We smoothly separate the short-range from a long-range
contributions in Theorem 2.2:

O11
(d)
= e

∑N
2 gsz(λi,Xi)+

∑N
2 g`z(λi,Xi), (2.24)

gsz(λ, x) = log
(

1 +
|x|2

N |z − λ|2
)
χz,δ(λ),

g`z(λ, x) = log
(

1 +
|x|2

N |z − λ|2
)

(1− χz,δ(λ)),

For the convenience of the reader we recall the notations defined above :

χz,δ(λ) = χ
(
N

1
2−δ|z − λ|

)
with δ ∈ (0, κ)

f `z(λ, x) =
|x|2

N |z − λ|2
(1− χz,δ(λ))

f̄z = (N − 1)

∫
D

1− χz,δ(λ)

N |z − λ|2
dm(λ)

π

Let G be the distribution of (X2, . . . , XN ). For any ε > 0, by Gaussian tail we have

G(B) > 1− e−cN
ε/10

, where B = {|Xi|2 6 Nε/10 for all 2 6 i 6 N}.

Moreover,

|
N∑
i=2

g`z(λi, Xi)− f̄z|1B 6 |
N∑
i=2

f `z(λi, Xi)− f̄z|+ CNε/2
N∑
i=2

1

N2|z − λi|4
(1− χz,δ(λi)). (2.25)
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To bound the first term on the right hand side, we first integrate over the Gaussian variables:

Eνz×G
(
eα(

∑N
i=2 f

`
z(λi,Xi)−f̄z)

)
= Eνz

 N∏
i=2

1

1− α 1−χz,δ(λi)
N |z−λi|2

e−αf̄z


6 Eνz

(
e
α(
∑N
i=2 f

`
z(λi)−f̄z)+Cα2∑N

i=2
1

N2|z−λi|4
(1−χz,δ(λi))2

)
6 eCα

2N−4δ+ε+CαN−2δ+ε

,

where, for the last inequality, we used (2.21) and (2.22) together with the Cauchy-Schwarz inequality, with
α = cN2δ for some fixed small enough c being admissible. With (2.25), we obtain

Pνz×G(A) < e−cN
ε

, where A =

{∣∣∣∣∣
N∑
i=2

g`z(λi, Xi)− f̄z

∣∣∣∣∣ > N−2δ+ε

}
. (2.26)

Let ξ ∈ R be fixed. From the above bound we have

E

((
O11

N(1− |z|2)

)iξ

| λ1 = z

)
= Eνz×G

(e∑N
2 gsz(λi,Xi)+

∑N
2 g`z(λi,Xi)

N(1− |z|2)

)iξ

1Ac

+ O(e−cN
ε

)

= Eνz×G

(e∑N
2 gsz(λi,Xi)+f̄z

N(1− |z|2)

)iξ

1Ac

+O
(
|ξ|N−2δ+ε

)
= Eνz×G

(e∑N
2 gsz(λi,Xi)+f̄0

N

)iξ
+O(|ξ|N−2δ+ε),

where we used ef̄z/(1− |z|2) = ef̄0 , from Lemma 2.8.
We now define the function az (omitting the dependence in ξ in the notation) through

eaz(λ) = EG
(
eiξgsz(λ,Xi)

)
.

Note that az does not depend on i because the Xi’s are identically distributed. We want to apply Lemma 4.3.
Note that az is supported on |z − λ| < CN−

1
2 +δ and Re(az) 6 0, so that (4.3) and (4.4) are automatically

satisfied and (N‖ν‖1)r 6 CN2rδ, hence (4.2) holds for the choice r = 3, δ = κ/10. For this choice of δ, we
therefore have

Eνz
(
e
∑N
i=2 az(λi)

)
= Eν0

(
e
∑N
i=2 a0(λi)

)
+ O

(
e−cN

2κ
)

(2.27)

uniformly in ξ. This proves

E

((
O11

N(1− |z|2)

)iξ

| λ1 = z

)
= Eν0×G

(e∑N
2 gs0(λi,Xi)+f̄0

N

)iξ
+ O(|ξ|N−2δ+ε)

= E

((
O11

N

)iξ

| λ1 = 0

)
+ O(|ξ|N−2δ+ε). (2.28)

Together with Proposition 2.4, this concludes the proof of Theorem 1.1.

Proof of Corollary 1.2. We start with the lower bound. From (2.26) we have

P
(

O11

1− |z|2
< N1−ε | λ1 = z

)
6 Pνz×G

(
e
∑N

2 gsz(λi,Xi)+f̄0 < N1− ε2
)

+ O(e−cN
ε

).

We now apply Lemma 2.10 to justify that z can essentially be replaced by z = 0 in the above left hand side.
From (2.27), the Fourier transforms of gz, g0 are exponentially close uniformly in the Fourier parameter ξ.
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By choosing in Lemma 2.10 R = T = eN
ε/10

and F smooth bounded equal to 1 on the interval (−∞, (1 −
ε/2 logN − f̄0)], 0 on [(1− ε/2 logN − f̄0 + 1,∞), we have

Pνz×G
(
e
∑N

2 gsz(λi,Xi)+f̄0 < N1− ε2
)
6 Pν0×G

(
e
∑N

2 gs0(λi,Xi)+f̄0 < N1− ε4
)

+ O(e−N
ε/10

)

6 P
(
O11 < N1−ε/8 | λ1 = 0

)
+ O(e−N

ε/10

) = O(e−N
ε/10

), (2.29)

where this last probability was estimated thanks to Proposition 2.4. For |z| < 1−N− 1
2 +κ, this yields

P
(
O11 < N−

1
2 +κN1−ε | λ1 = z

)
= O(e−N

ε/10

),

and we conclude by a union bound (an error bound o(N−1) above would be enough). For the upper estimate,
in the same way as previously, for any x > 0 we obtain

P
(

O11

1− |z|2
> x | λ1 = z

)
6 P (O11 > x/2 | λ1 = 0) + O(e−N

ε/10

). (2.30)

For x� N , the following is easy to justify:

P (O11 > x | λ1 = 0) = N(N − 1)

∫ 1/x

0

u(1− u)N−2du =
N − 1

N

∫ ∞
x/N

(
1− 1

Nt

)N−2
dt

t3
∼
∫ ∞
x/N

dt

t3
=
N2

2x2
.

We obtained

N∑
i=1

P
(
λi ∈ ΩN ,Oii > N1+κ0+εm(ΩN )1/2

)
= NP (λi ∈ ΩN )P

(
O11 > N1+κ0+εm(ΩN )1/2 | λ1 ∈ ΩN

)
6 NP (λi ∈ ΩN )P

(
O11

1− |λ1|2
> N

3
2 +εm(ΩN )1/2 | λ1 ∈ ΩN

)
6 Nm(ΩN )

N2

(N
3
2 +εm(ΩN )1/2)2

6 N−2ε,

which concludes the proof by a union bound.

Remark 2.7. One may wonder about the true asymptotics of the greatest overlap over the whole spectrum.
The above bounds could easily be refined to prove that for any C > 0 and N � x� NC ,

N∑
i=1

P (Oii > x) ∼ N
∫
D

N2(1− |z|2)2

2x2

dm(z)

π
=
N3

6x2
.

If the overlaps are sufficiently independent (a fact suggested by (1.14)), this hints towards convergence of the
maximum to a Fréchet distribution: for any fixed y > 0, as N →∞

P
(

max
16i6N

Oii
N3/2

< y

)
→ e

− 1
6y2 .

Remember that 0 6 χ 6 1 is a smooth cut-off function on R+ such that χ(x) = 1 for x < 1/2 and 0 for
x > 1, and we denote

χz,δ(λ) = χ
(
N

1
2−δ|z − λ|

)
.

The following three lemmas were used in the previous proofs.

Lemma 2.8. There exists a constant c(χ) such that for any |z| < 1−N− 1
2 +δ we have

1

π

∫
D

1− χz,δ(λ)

|z − λ|2
dm(λ) = (1− 2δ) log(N) + log(1− |z|2) + c(χ).
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Proof. For z = 0, this is an elementary calculation in polar coordinates, so that we only need to show that
for any given 0 < ε < 1− |z| we have (here Da is the disk with center a, radius ε)

1

π

∫
D−Dz

1

|z − λ|2
dm(λ)− 1

π

∫
D−D0

1

|λ|2
dm(λ) = log(1− |z|2). (2.31)

Denote x+ iy = reiθ and a = |z|. Note that 1
r2 = ∂x(x log r

r2 ) +∂y(y log r
r2 ), so that by Green’s theorem we have

1

π

∫
D−Dz

1

|z − λ|2
dm(λ) =

1

π

(∫
∂D
−
∫
∂Dz

)
log |reiθ − a|
|reiθ − a|2

((x− a)dy − ydx) .

The second integral clearly does not depend on a. The first integral can be split into

1

π

∫
∂D

log |reiθ − a|
|eiθ − a|2

dθ − a

2π

∫
∂D

log |reiθ − a|
|eiθ − a|2

(eiθ + e−iθ)dθ.

To calculate the first integral above, we expand log |eiθ−a| = <
∑
p>1

1
p (ae−iθ)p, |eiθ−a|−2 =

∑
k,`>0 a

k+`ei(k−`)θ,
and obtain

1

π

∫
∂D

log |reiθ − a|
|eiθ − a|2

dθ = 2
∑

p>1,k=p+`

ap+k+`

p
= 2

log(1− a2)

1− a2
.

In the same way, we have

a

2π

∫
∂D

log |reiθ − a|
|eiθ − a|2

(eiθ + e−iθ)dθ = a

 ∑
p>1,k+1=p+`

+
∑

p>1,k−1=p+`

 ak+`+p

p
=

log(1− a2)

1− a2
+ a2 log(1− a2)

1− a2

To summarize we have proved that

1

π

∫
D−Dz

1

|z − λ|2
dm(λ) = log(1− a2) + c

where c does not depend on z, and (2.31) follows.

Lemma 2.9. Let hsz be given by (2.18). For any κ ∈ (0, 1/2), there exists c(κ), C(κ) > 0 such that for any

|z| < 1−N− 1
2 +κ and p ∈ [1, 1 + c(κ)], we have

Eνz
(
ep
∑N

2 hsz(λi)
)
6 NC(κ).

Proof. First, the result is true for z = 0. Indeed,

Eν0
(
ep
∑N

2 hs0(λi)
)
6 Eν0

(
N∏
i=2

(
1 +

1

N |λi|

)p)
=

N∏
k=2

E
((

1 +
1

γk

)p)
= O(NC), (2.32)

where we used Corollary 5.6.
We want to apply Lemma 4.3 to conclude the proof. For this we need to check conditions (4.2), (4.3)

and (4.4) for our function f = phsz, and ν = ef − 1. First note that ‖ν‖1 6 C
∫
N−A<|λ|<1

1
(N |λ2|)p 6

CN−pNA(2p−2), so that (4.2) holds by choosing p = 1 + c(κ) with c(κ) small enough. To prove (4.3) and
(4.4), we rely on Lemma 4.2:

Eνz
(
ep
∑N
i=2 h

s
z(λi)

)
= Eνz

(
ep
∑N
i=2 h

s
0(λi)

)
(1 + o(1)) 6 E

((
1 +

1γ1>N−A

γ1

)p) N∏
k=2

E
((

1 +
1

γk

)p)
6 NC

where we used (4.2) for the first equation, and the calculation
∫∞
N−A

1
xp e
−x 6 NC . We therefore obtained

Eνz
(
ep
∑N

2 hsz(λi)
)

= Eν0
(
ep
∑N

2 hsz(λi)
)

+ O
(
e−cN

2κ
)

(2.33)

for any 1 6 p 6 1 + c(κ) with c(κ) small enough. Equations (2.32) and (2.33) conclude the proof.
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To quantitatively invert the Fourier transform, we use the following crude bound, see [4, Lemma 2.6]
following from [6, Corollary 11.5].

Lemma 2.10. There exists a constant c such that if µ and ν are probability measures on R with Fourier
transforms µ̂ (t) =

∫
eitxµ (dx) and ν̂ (t) =

∫
eitxν (dx), then for any R, T > 0 and any function f : R → R

with Lipschitz constant C,

|µ (f)− ν (f)| 6 c
C

T
+ c‖f‖∞

{
RT‖1(−T,T ) (µ̂− ν̂) ‖∞ + µ ([−R,R]c) + ν ([−R,R]c)

}
. (2.34)

The following crude a priori estimates are used in this paper. Note that for z strictly in the bulk of the
spectrum (|z| < 1− ε for fixed ε > 0), the first statement is a simple consequence of the main result in [55].

Lemma 2.11. For any p, κ > 0, there exists C > 0 such that, for large enough N , uniformly in |z1|, |z2| <
1−N− 1

2 +κ we have

N−C 6 EN

(
N∏
i=1

|z1 − λi|2pe−pN(|z1|2−1)

)
6 NC , (2.35)

N−C 6 EN

(
N∏
i=1

(
|z1 − λi|2 +

1

N

)p
e−pN(|z1|2−1)

)
6 NC , (2.36)

N−C 6 EN

(
N∏
i=1

|z1 − λi|2|z2 − λi|2e−N(|z1|2−1)e−N(|z2|2−1)

)
6 NC . (2.37)

Proof. We start with the lower bounds, which are elementary: as E(eX) > eE(X), we have

EN

(
N∏
i=1

|z1 − λi|2pe−pN(|z1|2−1)

)
> exp

(
2pN

∫
log(|z1 − λ|)(ρN1 (λ)−

1|λ|<1

π
)dm(z)

)
> exp(O(1)),

where for the last inequality we used that the density of states for the Ginibre ensemble is close to the
uniform measure on the disk with high accuracy (se e.g. [9, Lemma 4.5]). This proves the lower bounds in
(2.35) and the lower bounds for (2.36), (2.37) hold by the same argument.

For the upper bounds, we only need to prove (2.36), as (2.35) will follow by monotonicity, and (2.37)
by the Cauchy-Schwarz inequality from (2.35). Remember the notation (2.15) and abbreviate logN (x) =
log(|x|2 + 1/N). We can bound

EN

(
N∏
i=1

(
|z1 − λi|2 +

1

N

)p
e−pN(|z1|2−1)

)
6 EN

(
e2p

∑
logN (z1−λi)χz1,δ(λi)−2pN

∫
log |z1−λ|χz1,δ(λ)

) 1
2

× EN
(
e2p

∑
logN (z1−λi)(1−χz1,δ(λi))−2pN

∫
log |z1−λ|(1−χz1,δ(λ)).

) 1
2

(2.38)

For the first expectation corresponding to the short range, we apply Lemma 4.2, observing that N‖ν‖1 =
O(N2δ) is negligible for δ small enough. We obtain that this first expectation is equivalent to

EN
(
e2p

∑
logN (λi)χ0,δ(λi)−2pN

∫
log |λ|χ0,δ(λ)

)
6 NC ,

where the above inequality follows from Corollary 5.5.
The second expectation in (2.38) is the Laplace transform of smooth linear statistics, so that the loop

equations techniques apply to prove it is of polynomial order, see [40, Theorem 1.3]. More precisely, [40]
applies to the smooth function (1− χz1,δ) log instead of (1− χz1,δ) logN , but we can decompose logN (λ) =
2 log |λ| + log(1 + 1

N |λ2| ). With the Cauchy-Schwarz inequality we separate contribution from these two

functions, then the analogue (for the unconditioned measure) of (2.21) shows the Laplace transform of linear
statistics of (1 − χz1,δ) log(1 + 1

N |λ2| ) is O(1), and finally [40, Theorem 1.3] bounds the contribution of

(1− χz1,δ) log |λ| by O(NC).
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3 Off-diagonal overlaps

In this section we consider the distribution of N Ginibre points conditioned to {λ1 = z1, λ2 = z2}. We
will successively prove identities for the quenched off-diagonal overlaps, for all z1, z2, and then get explicit
relations for z1 = 0 in the annealed setting. Finally, these new correlation identities are extended to any
z1, z2 in the bulk of the spectrum by a decomposition of short and long range contributions.

3.1 The quenched off-diagonal overlap. Contrary to the diagonal overlap, the factorization here
doesn’t involve independent variables.

Proposition 3.1. The following equality in law holds, conditionally on {λ1, . . . , λN}:

O12
(d)
= −

∣∣∣ T12

λ1 − λ2

∣∣∣2 N∏
n=3

(
1 +

Zn

N(λ1 − λn)(λ2 − λn)

)
,

where, conditionally on Fn−2, Zn is a product of two (correlated) complex Gaussian random variables, and
E(Zn | Fn−2) = 1.

Proof. As for the diagonal overlap, we simply compute, with the notation (2.5),

O
(2)
12 = −|b2|2 = −

∣∣∣ T12

λ1 − λ2

∣∣∣2
and

O
(n+1)
12 = −b2Bt

n+1D̄n+1 = −b2(Bt
nD̄n + bn+1dn+1) = −b2(Bt

nD̄n + α1,n+1B
t
nTnα2,n+1Dt

nTn)

= −b2Bt
nD̄n

(
1 + α1,n+1α2,n+1

Bt
nTnD

t
nTn

Bt
nD̄n

)
= O

(n)
12

(
1 +

Zn+1

N(λ1 − λn+1)(λ2 − λn+1)

)
,

where

Zn+1 = N
Bt
nTnD

t
nTn

Bt
nD̄n

. (3.1)

Clearly, conditionally on Fn−1, Zn+1 is a product of two complex Gaussian random variables, a distribution

which depends on O
(n)
12 . Moreover, Bn, Dn ∈ Fn−1 and Tn is independent of Fn−1, so that E(Zn+1 | Fn−1) =

1.

Remark 3.2. By successive conditional expectations with respect to Fn−2, . . . ,F1, Proposition 3.1 implies

ET (O12) = − 1

N |λ1 − λ2|2
N∏
k=3

(
1 +

1

N(λ1 − λk)(λ2 − λk)

)
, (3.2)

an important fact already proved in [12, 13, 43].

3.2 The annealed off-diagonal overlap: expectation. Remarkably, the works [12,13,43] also explicitly
integrated the random variable (3.2) over λ3, . . . , λN , in the specific case λ1 = 0. We state the resulting
asymptotics and add the proof from Chalker and Mehlig, for completeness.

Corollary 3.3 (Chalker, Mehlig [12, 13, 43]). For any ε > 0, there exists c > 0 such that uniformly in
|z| < N−ε,

E (O12 | λ1 = 0, λ2 = z) = − 1

N |z|4
1− (1 +N |z|2)e−N |z|

2

1− e−N |z|2
+ O(e−cN ).
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Proof. From (3.2), we want to evaluate

E (O12 | λ1 = 0, λ2 = z) = − 1

N |z|2
E

(
N∏
k=3

(
1− 1

Nλk(z − λk)

)
| λ1 = 0, λ2 = z

)

From Theorem 5.4 with g(λ) = 1− 1
Nλ(z−λ)

, we find that

E

(
N∏
k=2

g(λk) | λ1 = 0, λ2 = z

)
=

1

Z
(0,z)
N

det(fi,j)
N−2
i,j=1

where

fi,j =
1

(i+ 1)!

∫
λi−1λ̄j−1|λ|2|z − λ|2g(λ)µ(dλ) =

1

(i+ 1)!

∫
λi−1λ̄j−1

(
|λ|2|z − λ|2 − 1

N
λ(z − λ)

)
µ(dλ).

This matrix is tridiagonal with entries

fii =
1

N i+1
+

|z|2

(i+ 1)N i
+

1

(i+ 1)N i+1
, fi,i+1 = − z

N i+1
, fi,i−1 = − z

iN i
.

Let dk = det(fi,j)
k
i,j=1 and x = N |z|2. With the convention d0 = 1 we have

d1 =
1

N2

(
3

2
+
x

2

)
,

dk =

(
1 +

x+ 1

k + 1

)
1

Nk+1
dk−1 −

x

k

1

N2k+1
dk−2.

so that ak = dkN
k(k+3)

2 satisfies a0 = 1, a1 = 3/2 + x/2,

ak =

(
1 +

x+ 1

k + 1

)
ak−1 −

x

k
ak−2.

An immediate induction gives ak = (k + 2)x−2e
(k+2)
2 (x). Thus, we conclude

E (O12 | λ1 = 0, λ2 = z) = −N
x2

e
(N)
2 (x)

e
(N)
1 (x)

.

The proof is then concluded by standard asymptotics.

With Corollary 3.3, the expectation of O12 is known for λ1 = 0. To extend the result to anywhere in the
bulk of the spectrum, we mimic the alternative proof of Theorem 2.6, from Subsection 2.3.

Proof of Theorem 1.3. We denote νz1,z2 the measure (1.2) conditioned to λ1 = z1, λ2 = z2. Note that νz1,z2
is a determinantal measure. With a slight abuse of language, we will abbreviate Eνz1,z2 (X) = E(X | λ1 =
z1, λ2 = z2) even for X a function of the overlaps.

We follow the same three steps as in the alternative proof of Theorem 2.6. Strictly speaking, if we were
to impose |z1− z2| > N−C for some fixed C, we would not need the first step below, as the singularity 1/|z|
is integrable, contrary to our previous singularity 1/|z|2. However, in Theorem 1.3 we allow z1 and z2 to be
arbitrarily close, so we first perform an initial small cutoff.

First step: small cutoff. Let gz1,z2(λ) = 1 + 1
N(z1−λ)(z2−λ)

. Remember that, from (3.2)

Eνz1,z2 (O12) = − 1

N |z1 − z2|2
Eνz1,z2

(
N∏
n=3

gz1,z2(λi)

)
.
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We denote hz1,z2(λ) = gz1,z2(λ)1λ6∈B where B = {|λ − z1| < N−A} ∪ {|λ − z2| < N−A}. For A a large
enough constant, the analogue of (2.12) holds:

Eνz1,z2

(
N∏
i=3

gz1,z2(λi)

)
= Eνz1,z2

(
N∏
i=3

hz1,z2(λi)

)
+ O(N−3). (3.3)

Indeed, by making explicit the above conditional measures, (3.3) follows from

EN−2

(
N∏
i=3

(|z1 − λi|2|z2 − λi|2 +N−1(z1 − λi)(z2 − λi))e−N(|z1|2−1)−N(|z2|2−1)

)
(3.4)

−EN−2

(
N∏
i=3

(|z1 − λi|2|z2 − λi|2 +N−1(z1 − λi)(z2 − λi))1λi 6∈Be
−N(|z1|2−1)−N(|z2|2−1)

)
= O(N−B),

and

EN−2

(
N∏
i=3

(|z1 − λi|2|z2 − λi|2)e−N(|z1|2−1)−N(|z2|2−1)

)
> N−C1 . (3.5)

with B much larger than C1. Lemma 2.11 gives (3.5). The left hand side of (3.4) has size order

EN−2

(
N∏
i=3

(|z1 − λi|2 +N−1)(|z2 − λi|2 +N−1)e−N(|z1|2−1)−N(|z2|2−1)1∃i:λi∈B

)
= O(N−A+C2)

by the Cauchy-Schwarz inequality and Lemma 2.11, for some C2 which does not depend on A. This con-
cludes the proof of (3.3) by choosing A large enough.

Second step: the long-range contribution concentrates. We smoothly separate the short-range from a long-
range contributions on the right hand side of (3.3):

hz1,z2(λ) = eh
s
z1,z2

(λ)+h`z1,z2
(λ),

hsz1,z2(λ) = log
(

1 +
1

N(z1 − λ)(z2 − λ)
1λ 6∈B

)
χz,δ(λ),

h`z1,z2(λ) = log
(

1 +
1

N(z1 − λ)(z2 − λ)

)
(1− χz,δ(λ)),

and we denote z = (z1 + z2)/2, recall |z1 − z2| < N−
1
2 +κ−ε, χz,δ(λ) = χ

(
N

1
2−δ|z − λ|

)
, and choose

δ ∈ (κ − ε, κ). In the definition of hsz1,z2 , we can choose any branch for the logarithm, this won’t have any

impact on the rest of the proof. In the long-range contribution h`z1,z2 , the logarithm is defined by continuity

from log(1) = 0. Let f `z1,z2(λ) = 1

N(z1−λ)(z2−λ)
(1− χz,δ(λ)) and f̄z1,z2 = N−2

N
1
π

∫
D

1−χz,δ(λ)

(z1−λ)(z2−λ)
dm(λ). Note

that

|
N∑
i=3

h`z1,z2(λi)−f̄z1,z2 | 6 |
N∑
i=3

f `z1,z2(λi)−f̄z1,z2 |+
1

2

(
N∑
i=3

1

N2|z1 − λi|4
(1− χz,δ(λi)) +

N∑
i=3

1

N2|z2 − λi|4
(1− χz,δ(λi))

)
.

(3.6)
The last two sums are bounded as in (2.22). For the first term on the right hand side, we bound the real
and imaginary parts separately: similarly to (2.20), we have

Eνz1,z2
(
eα(

∑N
i=3 Ref`z1,z2

(λi)−Eνz1,z2 (
∑N
i=3 Ref`z1,z2

(λi)))
)
6 eCα

2Varνz1,z2
(
∑N
i=3 Ref`z1,z2

(λi)) (3.7)
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where α = cN2δ for some fixed c and C which does not depend on N . We first bound the above variance.
Remember we have a partition of type 1 = χ +

∑
k>1 ξ(2

−kx) for any x > 0, with ξ smooth, compactly

supported. Let f `z1,z2,k(λ) = f `z1,z2(λ)ξ(2−kN1/2−δ|z − λ|) and K = min{k > 1 : 2kN−1/2+δ > 10}. Then∑
i f

`
z(λi) =

∑K
k=1

∑
i f

`
z,k(λi) with probability 1 − e−cN , and with [9, Theorem 1.2], for any ε > 0 and

D > 0, there exists N0 > 0 such that for any N > N0 and 1 6 k 6 K we have (we now omit to write the
real part, being understanding that f is either Ref or Imf)

PN−2

(∣∣∣∣∣∑ f `z1,z2,k(λi)− (N − 2)

∫
|z|<1

f `z1,z2,k

∣∣∣∣∣ > N−2δ+ε

)
6 N−D.

The same estimate holds for the conditioned measure by the Cauchy-Schwarz inequality:

Pνz1,z2

(
|
∑

f `z1,z2,k(λi)− (N − 2)

∫
|z|<1

f `z1,z2,k| > N−2δ+ε

)

6 PN−2

(
|
∑

f `z1,z2,k(λi)− (N − 2)

∫
|z|<1

f `z1,z2,k| > N−2δ+ε

)1/2

NC

EN−2

(
N∏
i=2

|z1 − λi|4e−2N(|z1|2−1)
N∏
i=2

|z2 − λi|4e−2N(|z2|2−1)

)1/2

6 N−
D
2 +2C .

for some C which only depends on κ, where we used Lemma 2.11. We conclude that for any small ε > 0 and
D we have

Pνz1,z2
(
|
∑

f `z1,z2(λi)− f̄z1,z2 | > N−2δ+ε
)
6 N−D,

so that Varνz1,z2 (
∑N
i=3 f

`
z1,z2(λi)) = O(N−4δ+ε) and Eνz1,z2 (

∑N
i=3 f

`
z1,z2(λi)) = f̄z1,z2 + O(N−2δ+ε). As a

consequence, (3.7) becomes

Eνz1,z2
(
eα(

∑N
i=3 f

`
z1,z2

(λi)−f̄z1,z2 )
)
6 eCα

2N−4δ+ε+CαN−2δ+ε

. (3.8)

With α = cN2δ, we obtain

Pνz1,z2 (A) < e−cN
ε

, where A =

{∣∣∣∣∣
N∑
i=2

h`z1,z2(λi)− f̄z1,z2

∣∣∣∣∣ > N−2δ+ε

}
.

This yields, for some p = 1 + c(κ), c(κ) > 0 and some q, r > 1,

Eνz1,z2
(
e
∑
i(h

s
z1,z2

(λi)+h
`
z1,z2

(λi))1A

)
6 Eνz1,z2

(
ep
∑
i h
s
z1,z2

(λi)
)1/p

Eνz1,z2
(
eq
∑
i h
`
z1,z2

(λi)
)1/q

P(A)1/r 6 e−cN
ε

.

(3.9)
Here we used that the third term has size order e−cN

ε

, the second one is of order eqf̄z1,z2 = O(NC), and so
is the first one from Lemma 3.8 and |1 + 1

(z1−λ)(z2−λ)
| 6 (1 + 1

N |z1−λ|2 )(1 + 1
N |z2−λ|2 ). Moreover,

Eνz1,z2
(
e
∑
i(h

s
z1,z2

(λi)+h
`
z1,z2

(λi))1Ac
)

= (1 + O(N−2δ+ε))Eνz1,z2
(
e
∑
i h
s
z1,z2

(λi)+f̄z1,z2

)
− (1 + O(N−2δ+ε))Eνz1,z2

(
e
∑
i h
s
z1,z2

(λi)+f̄z1,z21Ac
)
, (3.10)

and this last expectation is of order e−cN
ε

for the same reason as (3.9). To summarize, with the previous
two equations we have proved (up to exponentially small additive error terms)

Eνz1,z2

(
N∏
i=3

hz1,z2(λi)

)
= (1 + O(N−2δ+ε))ef̄z1,z2 Eνz1,z2

(
e
∑
i h
s
z1,z2

(λi)
)
.
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Third step: the local part is invariant. For our test function hsz1,z2 , the reader can easily check the conditions
of Lemma 4.4, so that

Eνz1,z2
(
e
∑
i h
s
z1,z2

(λi)
)

= Eν0,z2−z1
(
e
∑
i h
s
0,z2−z1

(λi)
)

+ O
(
e−cN

2κ
)
.

This yields

Eνz1,z2

(
N∏
i=3

hz1,z2(λi)

)
= (1 + O(N−2δ+ε))ef̄z1,z2−f̄0,z2−z1 Eν0,z2−z1

(
N∏
i=3

h0,z2−z1(λi)

)
.

From Lemma 3.4, ef̄z1,z2−f̄0,z2−z1 = (1−z1z2)
N−2
N . Together with Corollary 3.3, this concludes the proof.

Lemma 3.4. For any λ1, λ2 ∈ D,

1

π

∫
D

1

(λ1 − z)(λ2 − z)
dm(z) = log

( 1− λ1λ2

|λ1 − λ2|2
)
.

Proof. We consider the following domains, assuming 0 < |λ1| < |λ2| < 1 and ε > 0 is small enough. The
following computation still holds if |λ1| = |λ2|, as long as λ1 6= λ2. Integrability is clear, as the poles
are simple and isolated. Moreover, under these conditions, the integral cancels on the disks D1 and D2.

D0 = D(0, |λ1| − ε),
D1 = D(λ1, ε),

D2 = D(λ2, ε),

R1 = D(0, |λ1|+ ε)−D(0, |λ1| − ε),
R2 = D(0, |λ2| − ε)−D(0, |λ1|+ ε),

R3 = D(0, |λ2|+ ε)−D(0, |λ2| − ε),
R4 = D(0, 1)−D(0, |λ2|+ ε).

Integration over the domain D0 yields

1

π

∫
D0

1

(λ1 − z)(λ2 − z)
dm(z) =

1

π

∫∫ |λ1|−ε

r=0

1

λ1λ2

rdrdθ

(1− reiθ

λ1
)(1− reiθ

λ2
)

= 2

∫ |λ1|−ε

r=0

1

λ1λ2

∑
k

( r2

λ1λ2

)k
rdr

=

∫ |λ1|−ε

r=0

2r

λ1λ2 − r2
dr = log(λ1λ2)− log(λ1λ2 − (|λ1| − ε)2). (3.11)

The same type of expansion shows that the integral over R2 vanishes and the contribution from R4 is

1

π

∫
R4

1

(λ1 − z)(λ2 − z)
dm(z) = log(1− λ1λ2)− log((|λ2|+ ε)2 − λ1λ2). (3.12)

As the expression is integrable, on the domains R1, R3 there is no contribution as ε → 0. Summing (3.11)
and (3.12) gives the result.

3.3 The quenched off-diagonal overlap: second moments. The main result of this subsection is the
following lemma, which gives the expectation of second moments of overlaps conditionally on the eigenvalues
positions. For this, we define

Xn =

(
|Bt
nD̄n|2

‖Bn‖2‖Dn‖2
)
, γij =

αi,j√
N
, An =

(
|1 + γ1,nγ2,n|2 |γ1,nγ2,n|2
|γ1,nγ2,n|2 (1 + |γ1,n|2)(1 + |γ2,n|2)

)
. (3.13)
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Lemma 3.5. For any 2 6 n 6 N − 1 we have

E (Xn+1 | Fn−1) = An+1Xn. (3.14)

In particular,(
ET (|O12|2 | F1)
ET (O11O22 | F1)

)
=

(
|b2|2 0

0 1 + |b2|2
)( n∏

i=3

Ai

)(
|b2|2 0

0 1 + |b2|2
)(

1
1

)
. (3.15)

Proof. We recall the notation (3.1) and the property E(Zn+1 | Fn−1) = 1. A short calculation also gives

E(|Zn+1|2 | Fn−1) = 1 + ‖Bn‖2‖Dn‖2
|Bt
nD̄n|2

. Abbreviating γk = γk,n+1, this gives

E
(
|Bt
n+1D̄n+1|2 | Fn−1

)
= E

(
|Bt
nD̄n|2|1 + γ1γ2Zn+1|2 | Fn−1

)
= |Bt

nD̄n|2E
(
1 + γ1γ2Zn+1 + γ1γ2Zn+1 + |γ1γ2Zn+1|2 | Fn−1

)
= |1 + γ1γ2|2|Bt

nD̄n|2 + |γ1γ2|2‖Bn‖2‖Dn‖2. (3.16)

We now denote X = Xn+1 =
√
N
Bt
nTn
‖Bn‖ , Y = Yn+1 =

√
N
Dt
nTn
‖Dn‖ , so that E(|Xn+1|2 | Fn−1) = E(|Yn+1|2 |

Fn−1) = 1 and E(|Xn+1Yn+1|2 | Fn−1) = 1 +
|Bt
nD̄n|

2

‖Bn‖2‖Dn‖2 . This yields

E
(
‖Bn+1‖2‖Dn+1‖2 | Fn−1

)
= E

(
‖Bn‖2‖Dn‖2

(
1 + |γ1X|2

)(
1 + |γ2Y |2

)
| Fn−1

)
= ‖Bn‖2‖Dn‖2E

(
1 + |γ1X|2 + |γ2Y |2 + |γ1γ2XY |2 | Fn−1

)
=
(
1 + |γ1|2

)(
1 + |γ2|2

)
‖Bn‖2‖Dn‖2 + |γ1γ2|2|Bt

nD̄n|2. (3.17)

Equations (3.16) and (3.17) together conclude the proof of (3.14). Denoting Yn = ET (Xn | F1), we obtain

Yn =

(
n∏
i=3

Ai

)
Y2 =

(
n∏
i=3

Ai

)
E
((

|Bt
2D̄2|2

‖B2‖2‖D2‖2
)
| F1

)
=

(
n∏
i=3

Ai

)(
|b2|2

1 + |b2|2
)

and (3.15) immediately follows.

3.4 The annealed off-diagonal overlap: second moments for λ1 = 0. We now want to integrate
(3.15) over the eigenvalues λ3, . . . , λN , first in the special case λ1 = 0. This requires some new notations.
We abbreviate

δ = N |λ1 − λ2|2, a =
δ

2
+

√
1 +

δ2

4
, b = −a−1 =

δ

2
−
√

1 +
δ2

4

and will often use the property

δ = a− 1

a
= b− 1

b
. (3.18)

We also define the following rational fractions of x

uk(x) = 1− 1− x−1

k + 3
, (3.19)

dk(x, δ) =
(k + 2)(k + 3)

e
(k+1)
1 (δ)

(
uk(x)

1

(x− 1)2
e

(k)
3 (δ)− δuk(x)

2x
+

1

(x− 1)2

x2 + (k + 2)x+ (k + 1)(k + 3)

(k + 3)!
δk+1

)
.

We can now state the following main proposition on which Theorem 1.4 depends. The reason why such
formulas exist relies on two algebraic facts.

(i) The An’s from (3.13) are diagonalizable in the same basis, see (3.20). Their commutation was expected,
our choice of eigenvalues ordering being arbitrary, while the left hand side of (3.15) is intrinsic.
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(ii) More surprisingly, the obtained holonomic sequence (3.23) is exactly solvable.

Proposition 3.6. Conditionally on {λ1 = 0, λ2 = z}, we have

E(|O12|2) =
1

1 + a2

(
a2

(a+ 1)2
dN−2(a, δ) +

a2

(a− 1)2
dN−2(b, δ)

)
,

E(O11O22) =
1

1 + a2

(
1

(a+ 1)2
dN−2(a, δ) +

a4

(a− 1)2
dN−2(b, δ)

)
.

Proof. Importantly, the matrices An, 3 6 n 6 N , can be diagonalized in the same basis: from (3.13) an
elementary calculation based on (2.1) gives

An = (1 + |γ1,n|2)(1 + |γ2,n|2)I2 + |γ1,nγ2,n|2
(
−N |λ1 − λ2|2 1

1 0

)
, (3.20)

so that its eigenvectors clearly do not depend on n. With these notations, the eigenvalues of An are

λ+(n) = (1 + |γ1,n|2)(1 + |γ2,n|2)− |γ1,nγ2,n|2a
λ−(n) = (1 + |γ1,n|2)(1 + |γ2,n|2)− |γ1,nγ2,n|2b,

and the orthogonal basis

U =
1√

1 + a2

(
a −1
1 a

)
diagonalizes all An’s simultaneously: UAnU

t = diag(λ+(n), λ−(n)). Then (3.15), together with the codiag-
onalization of the An’s, E|T |2 = 1 and E(|T |4) = 2, yields the following simple expression:(

ET (|O12|2)
ET (O11O22)

)
=

1

1 + a2

(
a2

(a+1)2 d+ + a2

(a−1)2 d−
1

(a+1)2 d+ + a4

(a−1)2 d−

)
, (3.21)

d+ =

N∏
n=3

λ+(n), d− =

N∏
i=3

λ−(n). (3.22)

Note that we have not yet used z1 = 0: the above formula holds for any given z1, z2.
The remarkable fact is that in the specific case z1 = 0, E(d+) and E(d−) can be calculated, as shown

below (here E denotes integration over all variables except λ1, λ2). We start with E(d+). From Theorem
5.4, the following representation holds:

E

(
N∏
n=3

λ+(n) | λ1 = 0, λ2 = z

)
=

det(fi,j)16i,j6N−2

Z
(0,z)
N

where Z
(0,z)
N is given by (5.2) and

fi,j =
1

(i+ 1)!

∫
λi−1λ̄j−1|λ|2|z − λ|2λ+(λ)µ(dλ)

=
1

(i+ 1)!

∫
λi−1λ̄j−1(|λ|2|z − λ|2 +N−1|λ|2 +N−1|z − λ|2 −N−2(a− 1))µ(dλ).

We expand |λ− z|2 = |λ|2 + |z|2 − z̄λ− zλ̄. The resulting matrix is thus tridiagonal with

fi,i−1 = −z 1

iN i
,

fi,i =
1

N i+1
+

2N−1 + |z|2

(i+ 1)N i
+
N−1|z|2 −N−2(a− 1)

i(i+ 1)N i−1
,

fi,i+1 = −z̄ i+ 2

(i+ 1)N i+1
.
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With the notation dk = det(fij)16i,j6k, the recurrence dk = fk,kdk−1 − fk,k−1fk−1,kdk−2 holds, so that

defining ak = dkN
k(k+3)

2 we have

ak =

(
1 +

2 + δ

k + 1
+

1− a−1

k(k + 1)

)
ak−1 − δ

k + 1

k2
ak−2,

with the convention a0 = 1 and a1 = 2 + δ
2 + 1−a−1

2 . Note that for z = 0 we have δ = 0 and a = 1, hence

a0
k := ak(z = 0) = 2

k∏
j=2

(
1 +

2

j + 1

)
=

(k + 2)(k + 3)

6
.

As a consequence, gk = ak
a0k

satisfies g0 = 1, g1 = 1 + δ
4 + 1−a−1

4 , and

gk = m1(k, a)gk−1 −m2(k, a)gk−2, (3.23)

m1(k, a) = 1 +
δ

k + 3
+

1− a−1

k(k + 3)
,

m2(k, a) = δ
(k + 1)2

k(k + 2)(k + 3)
.

We cannot see an a priori reason why this equation could be solved, but it can be. We remark that the
function uk = uk(a) from (3.19) also satisfies the induction

uk = m1(k, a)uk−1 −m2(k, a)uk−2. (3.24)

The reader who would like to check the above equation can substitute δ = a− 1
a and verify that the Laurent

series in a on both sides of (3.24) coincide. This equation implies

gk−1
uk
uk−1

= m1(k, a)gk−1 −m2(k, a)gk−1
uk−2

uk−1
(3.25)

Subtracting (3.25) from (3.23) gives

δk := gk − gk−1
uk
uk−1

= −m2(k, a)
(
gk−2 − gk−1

uk−2

uk−1

)
= m2(k, a)

uk−2

uk−1
δk−1,

which yields

δk =

 k∏
j=2

m2(j, a)
uj−2

uj−1

 δ1 = 36
1

(k + 3)!

k + 1

k + 2
δk−1 u0

uk−1
δ1. (3.26)

Together with gk
uk

= gk−1

uk−1
+ δk

uk
, from (3.26) we obtain

gk
uk

= 36

k∑
j=1

1

(j + 3)!

j + 1

j + 2
δj−1 u0

uj−1uj
δ1 +

g0

u0
.

A calculation gives u0δ1 = 1
6 (a− a−1)(1 + a−1), so that

gk
uk

= 6(1 + a−1)

k∑
j=1

1

(j + 3)!

j + 1

j + 2
δj

1

uj−1uj
+

1

u0
. (3.27)

Note that
1

uj−1uj
=

(j + 2)(j + 3)

1− a−1

(
1

uj−1
− 1

uj

)
,
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which simplifies (3.27) into

gk
uk

= 6
1 + a−1

1− a−1

k∑
j=1

1

j!(j + 2)

(
1

uj−1
− 1

uj

)
δj +

1

u0

= 6
1 + a−1

1− a−1

k−1∑
j=1

1

uj

(
δ

(j + 1)!(j + 3)
− 1

j!(j + 2)

)
δj − 1

k!(k + 2)

δk

uk
+

δ

3u0

+
1

u0

= 6
a+ 1

a− 1

k−1∑
j=1

(
a

(j + 2)!
− 1

(j + 1)!

)
δj − 1

k!(k + 2)

δk

uk
+

δ

3u0

+
1

u0

= 6
a+ 1

a− 1

 1

aδ2

k∑
j=3

δj

j!
+

aδk−1

(k + 1)!
− δ

2
− 1

k!(k + 2)

δk

uk
+

δ

3u0

+
1

u0

where we used δ = a− a−1 and (3.19) at several steps. The above formula can be written in terms of (1.18)
and further simplified as

gk = 6uk
a+ 1

a− 1

1

aδ2
e

(k)
3 (δ)− 3uk

a
+ 6

a+ 1

a− 1

a+ (k + 2) + a−1(k + 1)(k + 3)

(k + 3)!
δk−1.

By definition of gk, ak = gka
0
k, that is

ak = uk
1

(a− 1)2δ
(k + 2)(k + 3)e

(k)
3 (δ)− uk

2a
(k + 2)(k + 3) +

a+ 1

a− 1

a+ (k + 2) + a−1(k + 1)(k + 3)

(k + 1)!
δk−1.

Then, using the normalizing constant (5.2), we obtain

E(d+) =
dN−2

Z
(0,z)
N

=
aN−2

Z
(0,z)
N N

(N−2)(N+1)
2

=
δaN−2

e
(N−1)
1 (δ)

as δ = N |z|2. We find

E(d+) =
N(N + 1)

e
(N−1)
1 (δ)

(
uN−2(a)

(a− 1)2
e

(N−2)
3 (δ)− δuN−2(a)

2a
+

1

(a− 1)2

a2 +Na+ (N − 1)(N + 1)

(N + 1)!
δN−1

)
(3.28)

which has been defined as dN−2(a, δ). The formula for E(d−) is obtained in the exact same way, with the
only difference that a is replaced by b. Finally, conditionally on {λ1 = 0, λ2 = z}, (3.21) gives

(
E(|O12|2)
E(O11O22)

)
=

1

1 + a2

(
a2

(a+1)2E(d+) + a2

(a−1)2E(d−)
1

(a+1)2E(d+) + a4

(a−1)2E(d−)

)
.

We can replace E(d+) and E(d−) by their exact expressions to obtain the claimed formula.

Proposition 3.7. Let σ ∈ (0, 1/2). Denoting ω =
√
N |z|, uniformly in |z| ∈ [0, N−

1
2 +σ] we have

E
(
|O12|2 | λ1 = 0, λ2 = z

)
=

N2

|ω|4
(
1 + O(N2σ−1)

)
, (3.29)

E (O11O22 | λ1 = 0, λ2 = z) =
N2

|ω|4
1 + |ω|4 − e−|ω|2

1− e−|ω|2
(
1 + O(N2σ−1)

)
. (3.30)
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Proof. We consider asymptotics in Proposition 3.6. First, the term δN−1

(N+1)! is obviously negligible. Second,

we always have a > 1 and |b| > c/δ > N−2σ, so that uN−2(a) = 1 + O(N−1), uN−2(b) = 1 + O(N2σ−1).
Moreover,

e
(N−1)
1 (δ) = (eδ − 1)

(
1 + O(N−1)

)
, e

(N−2)
3 (δ) = (eδ − 1− δ − δ2

2
)
(
1 + O(N−1)

)
.

From (3.18), we have a2

(1+a)2(1−a)2 = b2

(1+b)2(1−b)2 = 1
δ2 , so that (3.28) and its analogue for d− give

a2

(a+ 1)2
E(d+) =

N2

δ2(eδ − 1)

(
eδ − 1− δ − δ2

2
− δ(a− 1)2

2a

)(
1 + O(N−1)

)
, (3.31)

a2

(a− 1)2
E(d−) =

N2

δ2(eδ − 1)

(
a2

(
eδ − 1− δ − δ2

2

)
+
δa

2
(a+ 1)2

)(
1 + O(N2σ−1)

)
. (3.32)

We observe that

1

a2 + 1

(
−δ(a− 1)2

2a
+
δa

2
(a+ 1)2

)
= δ +

δ2

2
,

and the previous three equations give

E(|O12|2 | λ1 = 0, λ2 = x) =
1

1 + a2

(
a2

(a+ 1)2
E(d+) +

a2

(a− 1)2
E(d−)

)
=

N2

δ2(eδ − 1)

(
eδ − 1− δ − δ2

2
+ δ +

δ2

2

)(
1 + O(N2σ−1)

)
=

N2

|ω|4
(
1 + O(N2σ−1)

)
.

The similar computation for E(O11O22 | λ1 = 0, λ2 = z) involves the two terms

1

(a+ 1)2
E(d+) =

N2

eδ − 1

(
1

(a− 1)2(a+ 1)2

(
eδ − 1− δ − δ2

2

)
− δ

2a(a+ 1)2

)(
1 + O(N−1)

)
,

a4

(a− 1)2
E(d−) =

N2

eδ − 1

(
a6

(a− 1)2(a+ 1)2

(
eδ − 1− δ − δ2

2

)
+

δa5

2(a− 1)2

)(
1 + O(N2σ−1)

)
.

Moreover, some algebra gives

1

1 + a2

(
1

(a− 1)2(a+ 1)2
+

a6

(a− 1)2(a+ 1)2

)
=

1 + δ2

δ2
,

1

1 + a2

(
δa5

2(a− 1)2
− δ

2a(a+ 1)2

)
=

(δ + 1)(δ2 + δ + 2)

2δ
.

Once combined, these four equations yield

E (O11O22 | λ1 = 0, λ2 = z) =
1

1 + a2

(
1

(a+ 1)2
E(d+) +

a4

(a− 1)2
E(d−)

)
=

N2

eδ − 1

(
1 + δ2

δ2

(
eδ − 1− δ − δ2

2

)
+

(δ + 1)(δ2 + δ + 2)

2δ

)(
1 + O(N2σ−1)

)
=

N2

|ω|4
1 + |ω|4 − e−|ω|2

1− e−|ω|2
(
1 + O(N2σ−1)

)
,

which concludes the proof.
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3.5 The annealed off-diagonal overlap: second moments in the general case. We can now prove
Theorem 1.4. We closely follow the method developed first in our alternative proof of Theorem 2.6, in
Subsection 2.3, then in our proof of Theorem 1.3 in Subsection 3.2. In particular, following the proof of
Theorem 1.3, we denote νz1,z2 the measure (1.2) conditioned to λ1 = z1, λ2 = z2.

Proof of Theorem 1.4. Remember the notation (3.22). Assume we can prove (under the hypothesis of The-
orem 1.4) that

Eνz1,z2 (d+) = (1− |z1|2)(1− |z2|2)Eν0,z2−z1 (d+)
(
1 + O(N−2κ+ε)

)
, (3.33)

Eνz1,z2 (d−) = (1− |z1|2)(1− |z2|2)Eν0,z2−z1 (d−)
(
1 + O(N−2κ+ε)

)
. (3.34)

From (3.31) and (3.32), a calculation gives Eν0,z2−z1 (d+) > 0, Eν0,z2−z1 (d−) > 0, so that (3.33), (3.34)
together with (3.21) give(

Eνz1,z2 (|O12|2)
Eνz1,z2 (O11O22)

)
= (1− |z1|2)(1− |z2|2)

(
Eν0,z2−z1 (|O12|2)
Eν0,z2−z1 (O11O22)

)(
1 + O(N−2κ+ε)

)
.

Together with Proposition 3.7, this concludes the proof. We therefore only need to show (3.33). The proof
for (3.34) is identical up to trivial adjustments.

First step: small cutoff. Our test function of interest and its short-range cut version are

gz1,z2(λ) =

(
1 +

1

N |z1 − λ|2

)(
1 +

1

N |z2 − λ|2

)
− a

N2

1

|z1 − λ|2|z2 − λ|2
(3.35)

hz1,z2(λ) =

(
1 +

1

N |z1 − λ|2
1λ6∈B

)(
1 +

1

N |z2 − λ|2
1λ6∈B

)
− a

N2

1

|z1 − λ|2|z2 − λ|2
1λ 6∈B (3.36)

where B = {|λ−z1| < N−A}∪{|λ−z2| < N−A}. We first prove (3.3) for our new definition of gz1,z2 , hz1,z2 .
It follows from

EN−2

(
N∏
i=3

(
(|z1 − λi|2 +

1

N
)(|z2 − λi|2 +

1

N
)− a

N2

)
e−N(|z1|2−1)−N(|z2|2−1)

)
(3.37)

− EN−2

(
N∏
i=3

(
(|z1 − λi|2 +

1λi 6∈B

N
)(|z2 − λi|2 +

1λi 6∈B

N
)− a

N2
1λi 6∈B

)
e−N(|z1|2−1)−N(|z2|2−1)

)
= O(N−A/2+C),

(3.38)

and (3.5), for some C which does not depend on A. Equation (3.38) holds as the left hand side is bounded
by

EN−2

(
N∏
i=3

(
(|z1 − λi|2 +

1

N
)(|z2 − λi|2 +

1

N
)

)
(1−

N∏
3

1λi 6∈B)e−N(|z1|2−1)−N(|z2|2−1)

)

= O(N−A/2)EN−2

(
N∏
i=3

(
(|z1 − λi|2 +

1

N
)2(|z2 − λi|2 +

1

N
)

)2

e−2N(|z1|2−1)−2N(|z2|2−1)

)1/2

, (3.39)

where we used the Cauchy-Schwarz inequality and∣∣∣∣(|z1 − λi|2 +
1

N
)(|z2 − λi|2 +

1

N
)− a

N2

∣∣∣∣ 6 (|z1 − λi|2 +
1

N
)(|z2 − λi|2 +

1

N
).

Indeed, after rescaling and shifting and introducing z so that |z|2 = δ, the above bound follows from

2(1+|λ|2)(1+|z−λ|2)−a = ((1+|λ|2)(1+|z−λ|2)−δ)+(1+|λ|2)(1+|z−λ|2)+(δ−a) > 1+δ−a = 1− 1

a
> 0.
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We used (1 + |λ|2)(1 + |z − λ|2) > δ, as proved by a simple optimization. The last expectation in (3.39)
has size order at most NC from Lemma 2.11, which concludes the proof of our initial short-range cutoff by
choosing A large enough.

Second step: the long-range contribution concentrates. We smoothly separate the short-range from a long-
range contributions in (3.36):

hz1,z2(λ) = eh
s
z1,z2

(λ)+h`z1,z2
(λ),

hsz1,z2(λ) = (log hz1,z2(λ))χz,δ(λ),

h`z1,z2(λ) = (log hz1,z2(λ))(1− χz,δ(λ)),

and, as earlier in this article, we denote z = (z1 +z2)/2, recall |z1−z2| < N−
1
2 +σ, χz,δ(λ) = χ

(
N

1
2−δ|z−λ|

)
,

and choose δ ∈ (σ, κ). Note that our notation δ in this step of the proof is unrelated to δ = N |λ1 −
λ2|2 in the previous step. We define f `z1,z2(λ) = ( 1

N |z1−λ|2 + 1
N |z1−λ|2 )(1 − χz,δ(λ)) and f̄z1,z2 = (N −

2) 1
π

∫
D f

`
z1,z2(λ)dm(λ). Note that∣∣∣∣∣

N∑
i=3

h`z1,z2(λi)− f̄z1,z2

∣∣∣∣∣ 6
∣∣∣∣∣
N∑
i=3

f `z1,z2(λi)− f̄z1,z2

∣∣∣∣∣+
(

N∑
i=3

N2σ

N2|z1 − λi|4
(1− χz,δ(λi)) +

N∑
i=3

N2σ

N2|z2 − λi|4
(1− χz,δ(λi))

)
,

where we used a 6 N2σ.
With the exact same reasoning as from (2.20) to (2.21) (with νz replaced by νz1,z2), we obtain that∑N
i=3 f

`
z1,z2(λi) − f̄z1,z2 is exponentially concentrated on scale N−2δ+ε. Moreover, similarly, to (2.22), we

now have

Eνz1,z2

(
e
α
∑N
i=2

N2σ

N2|z1−λi|4
(1−χz,δ(λi))

)
6 eCα

2N4σ−8δ+ε+CαN2σ−2δ+ε

.

With α = cN2δ, we therefore obtain

Pνz1,z2 (A) < e−cN
ε

, where A =

{∣∣∣∣∣
N∑
i=2

h`z1,z2(λi)− f̄z1,z2

∣∣∣∣∣ > N2σ−2δ+ε

}
.

This yields, for some p = 1 + c(κ), c(κ) > 0 and some q, r > 1,

Eνz1,z2
(
e
∑
i(h

s
z1,z2

(λi)+h
`
z1,z2

(λi))1A

)
6 Eνz1,z2

(
ep
∑
i h
s
z1,z2

(λi)
)1/p

Eνz1,z2
(
eq
∑
i h
`
z1,z2

(λi)
)1/q

P(A)1/r 6 e−cN
ε

.

(3.40)
Here we used that the third term has size order e−cN

ε

, the second one is of order eqf̄z1,z2 = O(NC), and so
is the first one from Lemma 3.8. Moreover,

Eνz1,z2
(
e
∑
i(h

s
z1,z2

(λi)+h
`
z1,z2

(λi))1Ac
)

= (1 + O(N2σ−2δ+ε))Eνz1,z2
(
e
∑
i h
s
z1,z2

(λi)+f̄z1,z2

)
− (1 + O(N2σ−2δ+ε))Eνz1,z2

(
e
∑
i h
s
z1,z2

(λi)+f̄z1,z21Ac
)
,

Following similar arguments as (3.9), (3.10), still relying on Lemma 3.8, we finally obtain

Eνz1,z2

(
N∏
i=3

hz1,z2(λi)

)
= (1 + O(N2σ−2δ+ε))ef̄z1,z2 Eνz1,z2

(
e
∑
i h
s
z1,z2

(λi)
)
.

Third step: the local part is invariant. For our test function hsz1,z2 , the reader can easily check the conditions
of Lemma 4.4: the only new ingredient is∫

Bc

dm(λ)

|z1 − λ|2|z2 − λ|2
6

logN

|z1 − z2|2
,
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so that in this setting, the existence of r > 2, d < κ such that (N‖ν‖1)r 6 Nd means that there exists ε > 0

such that
(

logN
N |z1−z2|2

)2+ε

6 N2κ−ε, i.e. |z1 − z2| > N−
1
2−

κ
2 +ε, as we assumed by hypothesis. This gives

Eνz1,z2
(
e
∑
i h
s
z1,z2

(λi)
)

= Eν0,z2−z1
(
e
∑
i h
s
0,z2−z1

(λi)
)

+ O
(
e−cN

2κ
)
.

This yields

Eνz1,z2

(
N∏
i=3

hz1,z2(λi)

)
= (1 + O(N2σ−2δ+ε))ef̄z1,z2−f̄0,z2−z1 Eν0,z2−z1

(
N∏
i=3

h0,z2−z1(λi)

)
.

From Lemma 2.8, ef̄z1,z2−f̄0,z2−z1 = (1−|z1|2)(1−|z2|2). With Proposition 3.7, this concludes the proof.

Lemma 3.8. For any 0 < σ < d < κ < 1/2, there exists p > 1, C > 0 such that for any |z1| <
1−N−1/2+κ, |z1 − z2| < N−

1
2 +σ, z = (z1 + z2)/2, we have

Eνz1,z2

(
N∏
k=3

((
1 +

1

N |λk − z1|2

)(
1 +

1

N |λk − z2|2

))pχz,δ(λk)
)

6 NC .

Proof. The above left hand side is at most

E
(∏N

k=3

((
1 + 1

N |λk−z1|2

)(
1 + 1

N |λk−z2|2

))(p−1)χz,δ(λk)

(|z1 − λk|2 + 1
N )(|z2 − λk|2 + 1

N )e−N(|z1|2−1)−N(|z2|2−1)

)
E
(∏N

k=3 |z1 − λk|2|z2 − λk|2e−N(|z1|2−1)−N(|z2|2−1)
)

With Lemma 2.11 and the Cauchy-Schwarz inequality, we therefore just need to prove that

EN−2

(
N∏
k=3

((
1 +

1

N |λk − z1|2

)4(p−1)χz,δ(λk)
))

6 NC .

We can apply Lemma 4.2 (for p small enough we have N‖ν‖1 = O(1)) to compare it to the case z1 = 0,
which is easily shown to be O(NC) by Corollary 5.6.

3.6 Proof of Corollary 1.5. Following a notation from [52], let κ(λj) = O
1/2
jj be the condition number

associated to λj . As the spectrum of a G is almost surely simple, from [52, Equation (52.11)] we know that

‖(z −G)−1‖ =
κ(λj)

|z − λj |
+ O

∑
k 6=j

κ(λk)

|z − λk|


as z → λj . Together with σε(G) =

{
z : ‖z −G‖−1 > ε−1

}
, this gives the following almost sure asymptotics:

m(σε(G) ∩BN ) ∼
ε→0

∑
λj∈BN

π(κ(λj)ε)
2.

Denoting cN = N2
∫

BN
(1− |z|2)dm(z)

π , we therefore have

lim
ε→0

P
(

1− c < m(σε(G) ∩BN )

πε2cN
< 1 + c

)
= P

(∣∣∣∣∣
∑
λj∈Bn

Ojj

cN
− 1

∣∣∣∣∣ < c

)
.

From Corollary 1.2,
P(∃i : λi ∈ BN : |Oii| > N10) = o(1),
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hence we only need to prove

P

(∣∣∣∣∣
∑
λj∈Bn

Ojj

cN
− 1

∣∣∣∣∣ < c,Oii 6 N10 for all λi ∈ BN

)
→ 1. (3.41)

We proceed by bounding the second moment

E


∣∣∣∣∣∣
∑

λj∈Bn

Ojj − cN

∣∣∣∣∣∣
2
N∏
i=1

1Oii6N10

 6 E

 ∑
λj∈Bn

O2
jj1Ojj6N10

 (3.42)

+ E

 ∑
λi,λj∈Bn,i6=j

OiiOjj1Oii,Ojj6N10

 (3.43)

+ c2N − 2cNE

( ∑
λi∈Bn

Oii

)
+ 2cNE

( ∑
λi∈Bn

Oii1∃λj∈BN :Ojj>N10

)
(3.44)

To bound the first term, note that

E
(
O2
jj1λj∈BN ,Ojj6N10

)
6 C

∫
BN

∫ N10

0

xP(Ojj > x | λj = z)dxdm(z).

Following the same reasoning as (2.29), we have

P (Ojj > x | λj = z) 6 P(Ojj > xN−ε(1− |z|2)−1 | λj = 0) + O(e−N
ε

) 6
CN2+2ε(1− |z|2)2

x2
+ O(e−N

ε

),

where we used Proposition 2.4. Denoting a the center of BN , we therefore bounded the right hand side of
(3.42) by N3+3ε(1− |a|2)2m(BN )� c2N because m(BN ) > N−1+2a and ε is arbitrary.

To bound (3.43), we first consider close eigenvalues and bound OiiOjj 6 1
2 (O2

ii + O2
jj):

E

 ∑
λi,λj∈Bn,i6=j

OiiOjj1
Oii,Ojj6N10,|λi−λj |<N−

1
2
+ε

 6 CNE
(
O2

111O116N10,λ1∈BN
|{j : |λj − λ1| 6 N−

1
2 +ε}|

)
6 CN1+2εE

(
O2

111O116N10,λ1∈BN

)
m(BN ) 6 CN3+4ε(1− |a|2)2 � c2N .

In the second estimate, we used the local law for Ginibre matrices: from [9, Theorem 4.1] the above number
of close eigenvalues is at most CN2ε for some large C, with probability at least 1−N−D for arbitrarily large
D. The third estimate was obtained in the same way we bounded (3.42).

For eigenvalues at mesoscopic distance in [N−
1
2 +ε, N−

1
2 +κ−a], the contribution of (3.43) is obtained

thanks to (1.12):

E

 ∑
λi,λj∈Bn,N

− 1
2
+ε<|λi−λj |

OiiOjj

 = N(N − 1)E
(
O11O221

λ1,λ2∈BN ,N
− 1

2
+ε<|λ1−λ2|

)

=N(N − 1)

∫
B2
N∩{|z1−z2|>N

− 1
2
+ε}

E (O11O22 | λ1 = z1λ2 = z2)
dm(z1)

π

dm(z2)

π
+ O(e−cN

ε

)

=N(N − 1)

∫
B2
N∩{|z1−z2|>N

− 1
2
+ε}

N2(1− |z1|2)(1− |z2|2)(1 + O(N−ε))
dm(z1)

π

dm(z2)

π
+ O(e−cN

ε

)

=c2N (1 + O(N−ε)).

Finally, the line (3.44) is easily shown to be of order −c2N (1 +N−ε) thanks to (1.5) and (2.30). We conclude
that the left hand side of (3.42) is at most N−εc2N , which concludes the proof of (3.41) by Markov’s inequality.
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4 Translation invariance for conditioned measures

Recall that the Ginibre kernel is

KN (z, w) =
N

π
e
−N

(
|z|2
2 +

|w|2
2

)
N−1∑
k=0

(Nzw̄)k

k!
.

We also denote its bulk limit as kN (z, w) = N
π e
−N(

|z|2
2 +

|w|2
2 −zw̄).

Lemma 4.1. Let κ > 0. There exists c = c(κ) > 0 such that for any |z|, |w| 6 1−N− 1
2 +κ, we have

KN (z, w) = kN (z, w) + O(e−cN
2κ

)

Proof. This is a straightforward adaptation of the proof of [9, Lemma 4.2].

We denote Ba,δ the ball with center a and radius N−
1
2 +δ.

Lemma 4.2. Let 0 < δ < κ < 1/2 be fixed constants. Consider any C-valued measurable function f

supported on B0,δ, |a| 6 1 − N− 1
2 +κ, and ν(z) = ef(z) − 1. For any r > 2 there exists c, C > 0 depending

only on κ, δ, r such that

E
(
e
∑N
i=1 f(λi−a)

)
= E

(
e
∑N
i=1 f(λi)

)
+ O

(
e−cN

2κ

eC(N‖ν‖1)r
)
.

Proof. Let K
(a)
N (z, w) = KN (z − a,w − a). We define ‖K‖ = supz,w∈supp(ν) |K(z, w)|. We successively

compare linear statistics for K
(a)
N , k

(a)
N , kN and KN . First note that kN is the kernel of a translation invariant

point process, so that comparison between k
(a)
N and kN is trivial. For the other steps, we use [2, Lemma

3.4.5] and obtain∣∣∣E(e∑N
i=1 f(λi−a)

)
− E

(
e
∑N
i=1 f(λi)

)∣∣∣
6
∞∑
n=1

n1+n
2

n!
‖ν‖n1

(
max(‖K(a)

N ‖, ‖k
(a)
N ‖)

n−1‖K(a)
N − k(a)

N ‖+ max(‖KN‖, ‖kN‖)n−1‖KN − kN‖
)
. (4.1)

Clearly, ‖KN‖ 6 N
π and we bound ‖K(a)

N −KN‖ with Lemma 4.1. We conclude that for a universal large
enough C, and 1/r + 1/s = 1, we have∣∣∣E(e∑N

i=1 f(λi−a)
)
− E

(
e
∑N
i=1 f(λi)

)∣∣∣ 6 e−cN
2κ
∞∑
n=1

n1+n
2

(n!)1/s

1

(n!)1/r

(
N

π
‖ν‖1

)n
6 Ce−cN

2κ

eC(N‖ν‖1)r ,

where in the last inequality we used Hölder’s inequality and r > 2.

Lemma 4.3. Remember ν(z) = ef(z) − 1 and Ba,δ is the ball with center a and radius N−
1
2 +δ. Let

0 < δ < κ < 1/2 be fixed constants. Consider any C-valued measurable function f supported on B0,δ, and

|a| 6 1−N− 1
2 +κ. Assume also that either (i) or (ii) below holds:

(i) Re(f) = 0;

(ii) there exist d > 0, p > 1 and r > 2 such that rd < 2κ, f = 0 on |z| < e−N
d

, and (f+ = max(Ref, 0))

(N‖ν‖1)r 6 Nd, (4.2)

log ‖e
∑N
i=2 f+(λi−a)‖Lp 6 Nd, (4.3)

log ‖e
∑N
i=2 f+(λi)‖Lp 6 Nd. (4.4)

where the Lp norm is taken with respect to EN−1.
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Then for any q < 2κ, uniformly in f satisfying the above hypothese, we have

E
(
e
∑N
i=2 f(λi−a) | λ1 = a

)
= E

(
e
∑N
i=2 f(λi) | λ1 = 0

)(
1 + O

(
e−cN

q
))

+ O
(
e−cN

q
)
.

Proof. In this proof we first consider the most difficult case (ii), and we will finally mention the simple
modifications required for (i). We start with

EN
(
e
∑N
i=2 f(λi−a) | λ1 = a

)
=

EN−1

(
e
∑N
i=2 f(λi−a)

∏N
i=2 |λi − a|2e−N(|a|2−1)

)
EN−1

(∏N
i=2 |λi − a|2e−N(|a|2−1)

) . (4.5)

Fix some constants κ1, κ2 such that d < q < κ2 < κ1 < 2κ and define χaj (λ) = 1|λ−a|<e−N
κj , j = 1, 2. We

first show we can afford imposing χa2(λi) = 0: for some positive q, r such that p−1 + q−1 + r−1 = 1, we have

EN−1

(
e
∑N
i=2 f(λi−a)

(
1−

N∏
i=2

(1− χa2(λi))

)
N∏
i=2

|λi − a|2e−N(|a|2−1)

)

6
∥∥∥e∑N

i=2 f(λi−a)
∥∥∥

Lp

∥∥∥∥∥1−
N∏
i=2

(1− χa2(λi))

∥∥∥∥∥
Lq

∥∥∥∥∥
N∏
i=2

|λi − a|2e−N(|a|2−1)

∥∥∥∥∥
Lr

(4.6)

where Lp = Lp(PN−1). By hypotheses (4.3) and (4.4), the first norm is at most ecN
d

. The second is at most
NPN−1(|λ2| 6 e−N

κ2
) 6 e−cN

κ2
. The third norm is at most NC , as a simple consequence of Lemma 2.11.

These estimates also hold for f = 0, so that we proved

EN
(
e
∑N
i=2 f(λi−a) | λ1 = a

)
=

EN−1

(
e
∑N
i=2 f(λi−a)

∏N
i=2(1− χa2(λi))|λi − a|2e−N(|a|2−1)

)
+ O(e−cN

κ2
)

EN−1

(∏N
i=2(1− χa2(λi))|λi − a|2e−N(|a|2−1)

)
+ O(e−cN

κ2 )
.

(4.7)
If |λ1 − a| < e−N

κ1
and |λi − a| > e−N

κ2
, 2 6 i 6 N , we have

N∏
i=2

|λi − a| =
(

1 + O
(
e−cN

κ1
)) N∏

i=2

|λi − λ1|, e−N |a|
2

=
(

1 + O
(
e−cN

κ1
))

e−N |λ1|2 .

The expectation in the numerator of (4.7) is therefore (in the first equation below λ1 has distribution U , the
uniform measure on the unit disk with center a and radius e−N

κ1
, with volume bN = π(e−2Nκ1 )):

EPN−1×U

(
e
∑N
i=2 f(λi−a)

N∏
i=2

(1− χa2(λi))|λi − λ1|2e−N(|λ1|2−1)

)(
1 + O

(
e−cN

κ1
))

=
eNZN
ZN−1

1

bN
EN

(
e
∑N
i=2 f(λi−a)

N∏
i=2

(1− χa2(λi))χ
a
1(λ1)

)(
1 + O

(
e−cN

κ1
))

(4.8)

We now want to remove the constraint on (λi)
N
i=2, i.e. prove

1

bN
EN

(
e
∑N
i=2 f(λi−a)

N∏
i=2

(1− χa2(λi))χ
a
1(λ1)

)
=

1

bN
EN

(
e
∑N
i=2 f(λi−a)χa1(λ1)

)
+ O(e−cN

κ2
). (4.9)

This requires a longer argument. Let Ba
i = {|z − a| 6 e−N

κi}, i = 1 or 2, ξ =
∑N

1 δλi , ξ̃ =
∑N

2 δλi . Then,∣∣∣∣∣e∑N
i=2 f(λi−a)(1−

N∏
i=2

(1− χa2(λi)))χ
a
1(λ1)

∣∣∣∣∣ 6 e
∑N
i=2 Ref(λi)ξ̃(Ba

2 )χa1(λ1)

6 e
∑N
i=2 Ref(λi)ξ(Ba

2 −Ba
1 )χa1(λ1) + e

∑N
i=2 Ref(λi)ξ̃(Ba

1 )χa1(λ1). (4.10)
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To bound the first term, we use the negative association property of determinantal point processes for disjoint
sets (see e.g. [42]), using f+ > 0 and f = 0 on Ba

2 :

EN
(
e
∑N
i=2 Ref(λi)ξ(Ba

2 −Ba
1 )ξ(Ba

1 )
)

6 EN
(
e
∑N
i=2 f+(λi)

)
EN (ξ(Ba

2 −Ba
1 ))EN (ξ(Ba

1 )) . (4.11)

By (4.3) and (4.4), the first expectation above has size order at most ecN
d

. The second is of order e−cN
κ2

and the third one is bounded by NbN (1 + o(1)), so that the first term in (4.10) gives an error O(bNe
−cNκ2 ).

For the second term in (4.10), we also use the negative association property and f = 0 on Ba
2 :

EN
(
e
∑N
i=2 Ref(λi)ξ̃(Ba

1 )χa1(λ1)
)
6 EN

(
e
∑N
i=2 f+(λi)

)
EN

(
ξ̃(Ba

1 )χa1(λ1)
)
6 eN

d

EN
(
ξ̃(Ba

1 )χa1(λ1)
)
.

Together with

E
(
ξ̃(Ba

1 )χa1(λ1)
)
6 E (ξ(Ba

1 )(ξ(Ba
1 )− 1)) =

∫
(Ba

1 )2
|KN (z1, z2)|2 6 N2b2N , (4.12)

we have proved that the second term in (4.10) gives an error O(bNe
−cNκ2 ). This concludes the proof of

(4.9), so that the numerator in (4.7) is

eNZN
ZN−1

(
1

bN
EN

(
e
∑N
i=2 f(λi−a)χa1(λ1)

)(
1 + O

(
e−cN

q
))

+ O
(
e−cN

q
))

+ O
(
e−cN

q
)

=
eNZN
ZN−1

(
1

bN
EN

(
e
∑N
i=2 f(λi−a)χa1(λ1)

)(
1 + O

(
e−cN

q
))

+ O
(
e−cN

q
))

,

where we used eNZN
ZN−1

∼ c1N
c2 for some c1, c2, as obtained from (1.2). In the same way, the denominator in

(4.7) is eNZN
ZN−1

(
1 + O

(
e−cN

κ2
))

, so that we obtained

EN
(
e
∑N
i=2 f(λi−a) | λ1 = a

)
=

1

bN
EN

(
e
∑N
i=2 f(λi−a)χa1(λ1)

)(
1 + O

(
e−cN

q
))

+ O(e−cN
q

)

=
1

bN
EN

(
e
∑N
i=1 f(λi−a)χa1(λ1)

)(
1 + O

(
e−cN

q
))

+ O(e−cN
q

)

=
1

NbN
EN

(
e
∑N
i=1 f(λi−a)ξ(Ba

1 )
)(

1 + O
(
e−cN

q
))

+ O(e−cN
q

), (4.13)

where we successively used that fact that f vanishes on Ba
1 and symmetrized.

To conclude the proof, we therefore just need

f ′a(0) = f ′0(0) + O(e−cN
2κ

), where fa(w) =
1

NbN
EN

(
e
∑N
i=1 f(λi−a)+wξ(Ba

1 )
)
. (4.14)

From Lemma 4.2 we know that uniformly on |w| < 1 we have

fa(w) = f0(w) + O(e−N
2κ

),

which proves (4.14) by Cauchy’s theorem, and therefore the lemma in case (ii).
Under the assumption (i), up to (4.13) the results hold and the reasoning is simplified as all Lp norms

related to f can be bounded by 1. To justify an analogue of (4.13) and the end of the reasoning, we first

replace f by f̃ = f1(Ba
1 )c and note that∣∣∣∣ 1

bN
EN

((
e
∑N
i=2 f(λi−a) − e

∑N
i=2 f̃(λi−a)

)
χa1(λ1)

)∣∣∣∣ 6 2

bN
EN (ξ(Ba

1 )(ξ(Ba
1 )− 1)) = O(N2bN ),

so that by symmetrizing we now obtain

EN
(
e
∑N
i=2 f(λi−a) | λ1 = a

)
=

1

NbN
EN

(
e
∑N
i=1 f̃(λi−a)ξ(Ba

1 )
)

+ O(e−cN
κ2

).

The rest of the proof is identical to case (i).
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We now state and prove an analogue of Lemma 4.3 when conditioning on two points. We will only need
case (ii), as we are interested in expectations in Section 3, not in convergence in distribution.

Lemma 4.4. Let 0 < δ < κ < 1/2 be fixed constants and C > 0 fixed, arbitrarily large. Consider any

C-valued measurable function f supported on B0,δ, |a|, |b| 6 1 − N− 1
2 +κ, and N−C < |b − a| < N−1/2+d.

Assume that there exists d < 2κ, p > 1 and r > 2 such that f = 0 on |z| < e−N
d

, on |z − (b − a)| < e−N
d

,
and (4.2), (4.3) and (4.4) hold. Then for any q < 2κ we have

EN
(
e
∑N
i=3 f(λi−a) | λ1 = a, λ2 = b

)
= EN

(
e
∑N
i=3 f(λi) | λ1 = 0, λ2 = b− a

)(
1 + O

(
e−cN

q
))

+ O
(
e−cN

q
)
.

Proof. We start similarly to the proof of Lemma 4.3, by writing

EN
(
e
∑N
i=2 f(λi−a) | λ1 = a, λ2 = b

)
=

EN−2

(
e
∑N
i=3 f(λi−a)

∏N
i=3 |λi − a|2e−N(|a|2−1)

∏N
i=3 |λi − b|2e−N(|b|2−1)

)
EN−2

(∏N
i=3 |λi − a|2e−N(|a|2−1)

∏N
i=3 |λi − b|2e−N(|b|2−1)

) .

(4.15)
Again, we fix some constants κ1, κ2 such that d < κ2 < κ1 < 2κ and define χxj (λ) = 1|λ−a|<e−N

κj , j = 1, 2,

x = a, b. The strict analogue of (4.6) holds, so that the left hand side of (4.15) can be written

EN−2

(
e
∑N
i=3 f(λi−a)

∏N
i=3(1− χa2(λi))|λi − a|2e−N(|a|2−1)

∏N
i=3(1− χb2(λi))|λi − b|2e−N(|b|2−1)

)
+ O(e−cN

κ2
)

EN−2

(∏N
i=3(1− χa2(λi))|λi − a|2e−N(|a|2−1)

∏N
i=3(1− χb2(λi))|λi − b|2e−N(|b|2−1)

)
+ O(e−cN

κ2 )
.

(4.16)
The analogue of (4.8) then holds exactly in the same way: the expectation in the numerator of (4.16) is

e2NZN
|a− b|2ZN−2

1

b2N
EN

(
e
∑N
i=3 f(λi−a)

N∏
i=3

(1− χa2(λi))(1− χb2(λi))χ
a
1(λ1)χb1(λ2)

)(
1 + O

(
e−cN

κ1
))

.

Again, we want to remove the constraint on (λi)
N
i=3, i.e. prove

1

b2N
EN

(
e
∑N
i=3 f(λi−a)

N∏
i=3

(1− χa2(λi))(1− χb2(λi))χ
a
1(λ1)χb1(λ2)

)

=
1

b2N
EN

(
e
∑N
i=3 f(λi−a)χa1(λ1)χb1(λ2)

)
+ O(e−cN

κ2
).

With the negative association property, the strict analogues of equation (4.10), (4.11) and (4.12) hold, so
that the numerator in (4.16) is

e2NZN
|a− b|2ZN−2

(
1

b2N
EN

(
e
∑N
i=3 f(λi−a)χa1(λ1)χb1(λ2)

)
+ O

(
e−cN

κ2
))

+ O
(
e−cN

κ2
)

=
e2NZN

|a− b|2ZN−2

(
1

b2N
EN

(
e
∑N
i=3 f(λi−a)χa1(λ1)χb1(λ2)

)
+ O

(
e−cN

κ2
))

where we used e2NZN
ZN−2

∼ c1N c2 for some c1, c2, as obtained from (1.2). In the same way, the denominator in

(4.16) is e2NZN
|a−b|2ZN−2

(
1 + O

(
e−cN

κ2
))

, giving

EN
(
e
∑N
i=3 f(λi−a) | λ1 = a, λ2 = b

)
=

1

b2N
EN

(
e
∑N
i=3 f(λi−a)χa1(λ1)χb1(λ2)

)(
1 + O(e−cN

q

)
)

+ O(e−cN
q

)

=
1

b2N
EN

(
e
∑N
i=1 f(λi−a)χa1(λ1)χb1(λ2)

)(
1 + O(e−cN

q

)
)

+ O(e−cN
q

)

=
1

N(N − 1)b2N
EN

(
e
∑N
i=1 f(λi−a)ξ(Ba

1 )ξ(Bb
1)
)(

1 + O(e−cN
q

)
)

+ O(e−cN
q

), (4.17)
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where we successively used that fact that f vanishes on Ba
1 ∪Bb

1, Ba
1 ∩Bb

1 = ∅ (this holds because |a− b| >
N−C) and symmetrized. To conclude the proof, we therefore just need ∂z1z2fa,b(0, 0) = ∂z1z2f0,b−a(0, 0) +
O(e−cN

q

), where

fa,b(z1, z2) =
1

N(N − 1)b2N
EN

(
e
∑N
i=1 f(λi−a)+z1ξ(B

a
1 )+z2ξ(B

b
1))
)

(4.18)

This follows from Lemma 4.2 and Cauchy’s Theorem, similarly to the end of the proof of Lemma 4.3.

5 Andréief’s identity and Kostlan’s theorem

This section gives applications of Andréief’s identity to the conditioned measures of interest in this work.
In particular, it proves some slight extensions of Kostlan’s theorem (Corollary 5.5), following a method
from [18]. The common main tool will be the following classical Lemma, by Andréief [3] (see [16] for a short
proof). Note that the original proof of Kostlan’s theorem [38] and some of its extensions [32] were based on
different arguments.

Lemma 5.1 (Andréief’s identity). On a measured space (E, E , µ) For any functions (φi, ψi)
N
i=1 ∈ L2(µ)2N ,

1

N !

∫
EN

det (φi(λj)) det (ψi(λj)) µ(dλ1) . . . µ(dλN ) = det (fi,j) where fi,j =

∫
E

φi(λ)ψj(λ)µ(dλ).

Theorem 5.2. Let E = C, g ∈ L2(µ), and {λ1, . . . , λN} eigenvalues from the Ginibre ensemble. Then

E

(
N∏
k=1

g(λk)

)
= N

N(N−1)
2 det(fi,j)

N
i,j=1 where fi,j =

1

(j − 1)!

∫
λi−1λ̄j−1g(λ)µ(dλ).

Proof. The following is elementary: ∫
|λ|2idµ(λ) =

i!

N i
. (5.1)

The proof then follows from Andréief’s identity.

Theorem 5.3. We have (remember µ = µ(N))

E

(
N∏
k=2

g(λk) | λ1 = z

)
=

1

Z
(z)
N

det(fi,j)
N−1
i,j=1 where fi,j =

1

j!

∫
λi−1λ̄j−1|z − λ|2g(λ)µ(dλ)

and

Z
(z)
N = N−

N(N−1)
2 e(N−1)

(
N |z|2

)
.

Proof. Using Andréief’s identity with φi(λ) = λi−1g(λ)|z − λ|2, ψj(λ) = λj−1, we find

E

(
N∏
k=2

g(λk) | λ1 = z

)
=

1

Z
(z)
N

det(fi,j)
N−1
i,j=1

where

Z
(z)
N = det(Mij)

N−1
i,j=1, Mij =

1

i!

∫
λi−1λ̄j−1|z − λ|2µ(dλ).

By expanding |z − λ|2 = |z|2 + |λ|2 − zλ − zλ, we see that that M is tridiagonal, with entries (remember
(5.1))

Mii =
1

N i
+
|z|2

iN i−1
, Mi,i+1 = − z

N i
, Mi,i−1 = − z

iN i−1
.
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Denoting x = N |z|2 and dk = det((Mij)16i,j6k), with the convention d0 = 1 we have

d1 =
1 + x

N

dk =
(

1 +
x

k

) 1

Nk
dk−1 −

x

k

1

N2k−1
dk−2

so that ak = dkN
k(k+1)

2 satisfies a0 = 1, a1 = 1 + x,

ak =
(

1 +
x

k

)
ak−1 −

x

k
ak−2.

This gives ak = e(k)(x) by an immediate induction.

Theorem 5.4. We have

E

(
N∏
k=3

g(λk) | λ1 = 0, λ2 = z

)
=

1

Z
(0,z)
N

det(fi,j)
N−2
i,j=1 where fi,j =

1

(i+ 1)!

∫
λi−1λ̄j−1|λ|2|z−λ|2g(λ)µ(dλ)

and

Z
(0,z)
N = N−

(N−2)(N+1)
2

e
(N−1)
1 (N |z|2)

N |z|2
. (5.2)

Proof. By Andréief’s identity, the result holds with

Z
(0,z)
N = det(Mij)

N−2
i,j=1, Mij =

1

(i+ 1)!

∫
λi−1λ̄j−1|λ|2|z − λ|2µ(dλ).

Expanding |z − λ|2 = |z|2 + |λ|2 − zλ− zλ, we see that M is tridiagonal with entries

Mii =
1

N i+1
+

|z|2

(i+ 1)N i
, Mi,i+1 = − z

N i+1
, Mi,i−1 = − z

(i+ 1)N i
.

Denoting x = N |z|2 and dk = det((Mij)16i,j6k), with the convention d0 = 1 we have

d1 =
2 + x

2N2
,

dk =

(
1 +

x

k + 1

)
1

Nk+1
dk−1 −

x

k + 1

1

N2k+1
dk−2.

so that ak = dkN
k(k+3)

2 satisfies a0 = 1, a1 = 1 + x/2,

ak =

(
1 +

x

k + 1

)
ak−1 −

x

k + 1
ak−2.

This gives the expected result by an immediate induction.

Kostlan’s theorem now comes as a corollary, as well as a similar property for the Ginibre ensemble conditioned
on λ1 = 0.

Corollary 5.5 (Kostlan). The set N{|λ1|2, . . . , |λN |2} is distributed as {γ1, . . . , γN}, a set of (unordered)
independent Gamma variables of parameters 1, 2, . . . , N .
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Proof. Let g ∈ C[X] and use Theorem 5.2 with the radially symmetric function g(| · |2). The relevant matrix
is then diagonal, with coefficients

fi,i =
1

(i− 1)!

∫
|λ|2i−2g(|λ|2)µ(dλ) =

N−(i−1)

(i− 1)!

∫ ∞
r=0

ri−1g(r/N)e−rdr = N−(i−1)E(g(γi/N)).

In other words,

E

(
N∏
i=1

g(|λi|2)

)
= E

(
N∏
i=1

g(γi/N)

)
.

Note that these statistics characterize the distribution of a set of unordered points, as such expressions with
polynomial g generate all symmetric polynomials, as shown in Lemma 5.7, and the gamma distributions

are characterized by their moments. For more details, see [18]. We conclude that N{|λ1|2, . . . , |λN |2}
d
=

{γ1, . . . , γN}.

Corollary 5.6. Conditioned on {λ1 = 0}, {N |λ2|2, . . . , N |λN |2} is distributed as {γ2, . . . γN}, a set of
(unordered) independent Gamma variables of parameters 2, 3, . . . , N .

Proof. Similarly to the proof of Corollary 5.5, we take g ∈ C[X] and the radially symmetric function g(| · |2).
In Theorem 5.3, we have

fi,i =
1

i!

∫
|λ|2ig(|λ|2)µ(dλ) =

N−i

i!

∫ ∞
r=0

rig(r/N)e−rdr = N−iE
[
g(γi+1/N)

]
.

This together with our expression for Z
(z=0)
N in Theorem 5.3 yields

E

(
N∏
i=2

g(|λi|2) | λ1 = 0

)
= E

(
N∏
i=2

g(γi)

)

and we conclude in the same way that N{|λ2|2, . . . , |λN |2}
d
= {γ2, . . . , γN}.

For the proof of the following lemma, we refer to [18]. We define the product symmetric polynomials as the
symmetric polynomials given by products of polynomials in one variable:

PSC(N) =

{
N∏
i=1

P (Xi) | P ∈ C[X]

}

Lemma 5.7. PSC(N) spans the vector space of symmetric polynomials of N variables.

Appendix A Eigenvalues dynamics

This Appendix derives the Dyson-type dynamics for eigenvalues of nonnormal matrices. More precisely, we
consider the Ornstein-Uhlenbeck version so that the equilibrium measure is the (real or complex) Ginibre en-
semble. These dynamics take a particularly simple form in the case of complex Gaussian addition, where the
drift term shows no interaction between eigenvalues: only the correlation of martingale terms is responsible
for eigenvalues repulsion.

We also describe natural dynamics with equilibrium measure given by the real Ginibre ensemble. Then,
the eigenvalues evolution is more intricate.

It was already noted in [11] that eigenvectors impact the eigenvalues dynamics for nonnormal matrices,
and the full dynamics in the complex case have been written down in [30].
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Complex Ginibre dynamics. Let G(0) be a complex matrix of size N , assumed to be diagonalized as
Y GX = ∆ = Diag(λ1, . . . , λN ), where X,Y are the matrices of the right- and left-eigenvectors of G(0). We
also assume that G(0) has simple spectrum, and X,Y invertible. The right eigenvectors (xi) are the columns
of X, and the left-eigenvectors (yj) are the rows of Y . They are chosen uniquely such that XY = I and, for
any 1 6 k 6 N , Xkk = 1.

We now consider the complex Dyson-type dynamics: for any 1 6 i, j 6 N ,

dGij(t) =
dBij(t)√

N
− 1

2
Gij(t)dt, (A.1)

where the Bij ’s are independent standard complex Brownian motions:
√

2 Re(Bij) and
√

2 Im(Bij) are
standard real Brownian motions. One can easily check that G(t) converges to the Ginibre ensemble as
t→∞, with normalization (1.1).

In the following, the bracket of two complex martingales M,N is defined by bilinearity: 〈M,N〉 =
〈ReM,ReN〉 − 〈ImM, ImN〉+ i〈ReM, ImN〉+ i〈ImM,ReN〉.

Proposition A.1. The spectrum (λ1(t), . . . , λn(t)) is a semimartingale satisfying the system of equations

dλk(t) = dMk(t)− 1

2
λk(t)dt

where the martingales (Mk)16k6N have brackets 〈Mi,Mj〉 = 0 and

d〈Mi,Mj〉t = Oij(t)
dt

N
.

Remark A.2. As explained below, this equation (in particular the off-diagonal brackets) is coherent with the
eigenvalues repulsion observed in (1.2). Contrary to the Hermitian Dyson Brownian motion, all eigenvalues
are martingales (up to the Ornstein Uhlenbeck drift term), so that their repulsion is not due to direct mutual
interaction, but to correlations between these martingales at the microscopic scale.

For example, assume that G(0) is already at equilibrium. Using physics conventions, for any bulk eigen-
values λ1, λ2 satisfying w = O(1) (remember w =

√
N(λ1 − λ2)), Proposition A.1 and Theorem 1.4 imply

E
(
dλ1dλ2 | λ1 = z1, λ2 = z2

)
∼ E(O12 | λ1 = z1, λ2 = z2)

dt

N
∼ −(1− |z1|2)

1

|w|4
1− (1 + |ω|2)e−|ω|

2

1− e−|ω|2
dt

in the bulk. By considering the real part in this equation and denoting dλ1 = dx1 + idy1, dλ2 = dx2 + idy2,
we have in particular E(dx1dx2 + dy1dy2) < 0, and this negative correlation is responsible for repulsion:
the eigenvalues tend to move in opposite directions. Moreover, as eigenvalues get closer on the microscopic
scale, w → 0 and the repulsion gets stronger:

E
(
dλ1dλ2 | λ1 = z1, λ2 = z2

)
∼ −1− |z1|2

|w|2
dt.

On the other hand, for mesoscopic scale N−1/2 � |λ1 − λ2|, Proposition A.1 and Theorem 1.4 give

E
(
dλ1dλ2

)
∼ − (1−|λ1|2)

N2|λ1−λ2|4 dt = o(dt), so that increments are uncorrelated for large N .

For a given differential operator f 7→ f ′, we introduce the matrix C = X−1X ′. Along the following
lemmas, all eigenvalues are assumed to be distinct. In our application, this spectrum simplicity will hold
almost surely for any t > 0 as G(0) has simple spectrum.

Lemma A.3. We have X ′ = XC and Y ′ = −CY .

Proof. The first equality is the definition of C. For the second one, XY = I gives XY ′ + X ′Y = 0, hence
Y ′ = −X−1X ′Y = −CY.
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Lemma A.4. The first order perturbation of eigenvalues is given by λ′k = ykG
′xk.

Proof. We have ∆′ = (Y GX)′ = Y ′GX+Y G′X+Y GX ′ = Y G′X+Y GXC−CY GX = Y G′X+∆C−C∆ =
Y G′X + [∆, C]. Therefore λ′k = (Y G′X)kk + [∆, C]kk = ykG

′xk.

Lemma A.5. For any i 6= j, Cij =
yiG
′xj

λj−λi .

Proof. For such i, j, ∆′ij = 0. With the same computation as in the previous lemma, this gives (Y G′X)ij +
[∆, C]ij = 0. Thus (λi − λj)Cij = −(Y G′X)ij = −yiG′xj , from which the result follows.

Lemma A.6. For any 1 6 k 6 N , Ckk = −
∑
l 6=kXkl

ylG
′xk

λk−λl .

Proof. We use the assumption Xkk = 1. From this, and the definition of C, we get

X ′kk = 0 = (XC)kk =

n∑
l=1

XklClk = XkkCkk +
∑
l 6=k

XklClk.

As a consequence, Ckk = −
∑
l 6=kXklClk and we obtain the result thanks to the previous lemma.

From now on the differential operator will be either ∂ReGab (G′ = Eab = {δiaδjb}16i,j6N ), or ∂ImGab ,
(G′ = iEab). In both cases, G′′ = 0. We denote CRe and CIm accordingly. In particular, for any k and i 6= j
the following holds:

∂ReGabλk = YkaXb,k, ∂ImGabλk = iYkaXb,k

CRe
ij =

YiaXbj

λj − λi
, CRe

kk = −
∑
l 6=k

Xkl
YlaXb,k

λk − λl
, CIm

ij = i
YiaXbj

λj − λi
, CIm

kk = −i
∑
l 6=k

Xkl
YlaXb,k

λk − λl
. (A.2)

Lemma A.7. We have

∂ReGabXij =
∑
l 6=j

(Xil −XijXjl)
YlaXbj

λj − λl
, ∂ImGabXij = i

∑
l 6=j

(Xil −XijXjl)
YlaXbj

λj − λl
.

∂ReGabYij =
∑
l 6=i

1

λi − λl
(XilYlaXb,iYij + YiaXblYlj), ∂ImGabYij = i

∑
l 6=i

1

λi − λl
(XilYlaXb,iYij + YiaXblYlj).

Proof. Below is the computation for ∂ReGabXij . We use X ′ = XC and (A.2):

X ′ij = (XC)ij =

n∑
l=1

XilClj =
∑
l 6=j

Xil
YlaXbj

λj − λl
− Xij

∑
l 6=j

Xjl
YlaXbj

λj − λl
=
∑
l 6=j

(Xil − XijXjl)
YlaXbj

λj − λl
.

The case ∂ImGabXij is obtained similarly, as are the formulas for Y .

Lemma A.8. The second order perturbation of eigenvalues is given by

∂2
ReGab

λk = 2
∑
l 6=k

YkaXblYlaXb,k

λk − λl
, ∂2

ImGab
λk = −2

∑
l 6=k

YkaXblYlaXb,k

λk − λl
.

Proof. We compute the perturbation for ∂ReGab . Differentiating λ a second time gives

λ′′k = y′kG
′xk + ykG

′′xk + ykG
′x′k = Y ′kaXb,k + YkaX

′
b,k.
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Replacing X ′ and Y ′ with their expressions yields

λ′′k =
∑
l 6=k

1

λk − λl
(XklYlaXb,kYka + YkaXblYla)Xb,k + Yka

∑
l 6=j

(Xbl −Xb,kXkl)
YlaXb,k

λk − λl

=
∑
l 6=k

1

λk − λl
(XklYlaXb,kYkaXb,k + YkaXblYlaXb,k + YkaXblYlaXb,k − YkaXb,kXklYlaXb,k)

= 2
∑
l 6=k

YkaXblYlaXb,k

λk − λl
,

which concludes the proof, the other cases being similar.

For the proof of Proposition A.1, we need the following elementary lemma.

Lemma A.9. Let τ = inf{t > 0 : ∃i 6= j, λi(t) = λj(t)}. Then τ =∞ almost surely.

Proof. The set of matrices G with Jordan form of type

λ1 ⊕ · · · ⊕ λN−2 ⊕
(
λN−1 1

0 λN−1

)
(respectively λ1 ⊕ · · · ⊕ λN−2 ⊕ λN−1 ⊕ λN−1)

is a submanifold M1 (resp. M2) of CN2

with complex codimension 1 (resp. 3), see e.g. [36, 47]. Therefore,

almost surely, a Brownian motion in CN2

starting from a diagonalizable matrix with simple spectrum will
not hit M1 or M2. This concludes the proof.

All derivatives can therefore be calculated, as eigenvalues and eigenvectors are analytic functions of the
matrix entries (see [35]).

Proof of Proposition A.1. In our context,the Itô formula will take the following form: for a function f from
Cn to C of class C2, where Bt = (B1

t , . . . , B
n
t ) is made of independent standard complex Brownian motions,

we have

df(Bt) =

n∑
i=1

(
∂f

∂ Re zi
d ReBit +

∂f

∂ Im zi
d ImBit

)
+

1

2

(
n∑
i=1

∂2f

∂ Re zi2
+

∂2f

∂Im zi
2

)
dt. (A.3)

For any given 0 < ε < min{|λi(0)− λj(0)|, i 6= j}, let

τε = inf{t > 0 : ∃i 6= j, |λi(t)− λj(t)| < ε}. (A.4)

Eigenvalues are smooth functions of the matrix coefficients on the domain ∩i<j{|λi − λj | > ε}, so that
equation (A.3) together with Lemmas A.4 and A.8 gives the following equality of stochastic integrals, with
substantial cancellations of the drift term:

dλk(t∧τε) =

n∑
i,j=1

YkiXjk

(
dBij(t ∧ τε)√

N
− Gij

2
d(t ∧ τε)

)
+

1

N

∑
i,j,` 6=k

(
YkiXjlYliXjk

λk − λl
−YkiXjlYliXjk

λk − λl

)
d(t∧τε)

=

n∑
i,j=1

YkiXjk
dBij(t ∧ τε)√

N
− 1

2

n∑
i,j=1

YkiGijXjkd(t ∧ τε) =

n∑
i,j=1

YkiXjk
dBij(t ∧ τε)√

N
− 1

2
λkd(t ∧ τε).

Taking ε→ 0 in the above equation together with Lemma A.9 yields

dλk(t) =

n∑
i,j=1

YkiXjk
dBij(t)√

N
− 1

2
λkdt.
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The eigenvalues martingales terms are correlated. Their brackets are

d〈λi, λ̄j〉t =
1

N

n∑
a,b,c,d=1

YiaXb,iYjcXd,jd〈Bab,dBcd〉t = (XtX)ij(Y Y
∗)ij

dt

N
= Oij(t)

dt

N
, (A.5)

d〈λi, λj〉t = 0. (A.6)

This concludes the proof.

Proof of Corollary 1.6. Let At,ε = {sup06s6t |λ1(s)− λ1(0)| < Nεt1/2}. We start by proving that

P(At,ε) = 1− o(1). (A.7)

From Proposition A.1 and Itô’s formula, we have

e
t
2λ1(t)− λ1(0) =

∫ t

0

e
s
2 dM1(s), (A.8)

which is a local martingale. It is an actual martingale because

E
(
〈
∫ ·

0

e
s
2 dM1(s)〉t

)
=

∫ t

0

E
(
e
s
2
O11(s)

N
ds

)
= O(t) <∞, (A.9)

where in the last equality we used E(O11(s)) = O(N), which follows from (2.11). The estimate (A.7) follows
by Doob’s and Markov’s inequalities.

For (1.16), we start with

|e t2λ1(t)− λ1(0)|2 = 2Re

∫ t

0

e
s
2λ1(s)− λ1(0)e

s
2 dM1(s) +

∫ t

0

es
O11(s)

N
ds. (A.10)

This implies

E
(
et|λ1(t)− λ1(0)|21{λ1(0)∈B}

)
=

∫ t

0

E
(
es

O11(s)

N
1{λ1(0)∈B}

)
ds+ o(t). (A.11)

Here, we used that (Re
∫ t

0
e
s
2λ1(s)− λ1(0)e

s
2 dM1(s))t is an actual martingale, because the expectation of its

bracket is∫ t

0

esE
(
|e s2λ1(s)− λ1(0)|2 O11(s)

N
1{λ1(0)∈B}ds

)
6 2

∫ t

0

e2sE
(
|λ1(s)|2 + 1)

O11(s)

N
ds

)
<∞,

where for the last inequality we used (2.11).
To evaluate the right hand side of (A.11), we would like to change λ1(0) ∈ B into λ1(s) ∈ B. First,∣∣∣∣E(O11(s)

N
1At,ε

(
1λ1(0)∈B − 1λ1(s)∈B

))∣∣∣∣ 6 E
(

O11(s)

N
1dist(λ1(s),∂B)6Nεt1/2

)
= O(Nεt1/2), (A.12)

where for the last inequality we used (2.11), again. Moreover, if 1/p+ 1/q = 1 with p < 2. we have

E
(

O11(s)

N
1(At,ε)c

)
6 E

((
O11(s)

N

)p)1/p

P
(

(A
(1)
t,ε )c

)1/q

= o(1), (A.13)

where we used [24, Theorem 2.3] to obtain that uniformly in the complex plane and in N , O11/N has finite
moment of order p < 2. Equations (A.11), (A.12) and (A.13) imply

E
(
|λ1(t)− λ1(0)|21λ1(0)∈B

)
=

∫ t

0

E
(

O11(s)

N
1{λ1(s)∈B}

)
ds+ o(t),
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and one concludes the proof of (1.16) with (2.11).
The proof of (1.17) is identical, except that we rely on the off-diagonal bracket d〈λ1, λ̄2〉s = O12(s)ds

N ,
the estimate (1.9), and the elementary inequality

|O12| = |(R∗jRi)(L∗jLi)| 6 ‖Rj‖‖Ri‖‖Lj‖‖Li‖ 6
1

2

(
‖Ri‖2‖Li‖2 + ‖Rj‖2‖Lj‖2

)
=

1

2
(O11 + O22)

to bound the (first and p-th) moment of O12 in the whole complex plane based on those of O11, O22.

Real Ginibre dynamics. We now consider G(0) a real matrix of size N , again assumed to be diagonalized
as Y GX = ∆ = Diag(λ1, . . . , λN ), where X,Y are the matrices of the right- and left-eigenvectors of G(0).
We also assume that G(0) has simple spectrum, and X,Y invertible. We keep the same notations for the
right eigenvectors (xi), columns of X, and the left-eigenvectors (yj), rows of Y . They are again chosen such
that XY = I and, for any 1 6 k 6 N , Xkk = 1.

In this subsection, the real Dyson-type dynamics are (1 6 i, j 6 N),

dGij(t) =
dBij(t)√

N
− 1

2
Gij(t)dt, (A.14)

where the Bij ’s are independent standard Brownian motions. One can easily check that G(t) converges to
the real Ginibre ensemble as t→∞.

Note that the real analogue of Lemma A.9 gives weaker repulsion: the set of real matrices with Jordan
form of type

λ1 ⊕ · · · ⊕ λN−2 ⊕
(
λN−1 1

0 λN−1

)
is a submanifoldM1 of RN2

, supported on λN−1 ∈ R, with real codimension 1 (as proved by a straightforward
adaptation of [36, Theorem 7]). Denoting τ = inf{t > 0 : ∃i 6= j, λi(t) = λj(t)}, under the dynamics (A.14)
for any t > 0 we therefore have

P(τ < t) > 0,

so that we can only state the real version of Proposition A.1 up to time τ . In fact, collisions occur transforming
pairs of real eigenvalues into pairs of complex conjugate eigenvalues, a mechanism coherent with the random
number of real eigenvalues in the real Ginibre ensemble [22,41].

The overlaps (1.4) are enough to describe the complex Ginibre dynamics, and so are they for the real
Ginibre ensemble, up to the introduction of the following notation: we define ī ∈ J1, NK through λī = λi,
i.e. ī is the index of the conjugate eigenvalue to λi. Note that ī = i if λi ∈ R. For real matrices, if Lj , Rj
are eigenvectors associated to λj , L̄j , R̄j are eigenvectors for λ̄j , so that

Oij̄ = (R̄∗jRi)(L̄
∗
jLi) = (Rt

jRi)(L
t
jLi).

Proposition A.10. The spectrum (λ1(t), . . . , λn(t)) evolves according to the following stochastic equations,
up to the first collision:

dλk(t ∧ τ) = dMk(t ∧ τ) +

∑
l 6=k

Okl̄
λk − λ`

− 1

2
λk

 d(t ∧ τ)

where the martingales (Mk)16k6N have brackets

d〈Mi,Mj〉t∧τ = Oij̄(t)
d(t ∧ τ)

N
, d〈Mi,Mj〉t∧τ = Oij(t)

d(t ∧ τ)

N
.

Note that the real eigenvalues have associated real eigenvectors. For those, Okl̄ = Okl, and the variation
is real: real eigenvalues remain real as long as they do not collide.
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Remark A.11. Proposition A.10 is coherent with the attraction between conjugate eigenvalues exhibited
in [45]. In fact, if η = Im(λk) > 0, the drift interaction term with λ̄k is Okk/(λk − λ̄k) = −iOkk/(2η), so
that these eigenvalues attract each other stronger as they approach the real axis.

For the proof, we omit the details and only mention the differences with respect to Proposition A.1.
We apply the Itô formula for a C 2 function f from Rn to C, with argument Ut = (U1

t , . . . , U
n
t ) is made of

independent Ornstein-Uhlenbeck processes. Together with the perturbation formulas for λk, Lemmas A.4
and A.8, we obtain (remember the notation (A.4))

dλk(t ∧ τε) =

n∑
i,j=1

YkiXjk

(
dBij(t ∧ τε)√

N
− 1

2
Gijd(t ∧ τε

)
+
∑
i,j

∑
l 6=k

YkiXjlYliXjk

λk − λl
d(t ∧ τε)

=

n∑
i,j=1

YkiXjk
dBij(t ∧ τε)√

N
+

∑
l 6=k

(XtX)lk(Y Y t)kl
λk − λ`

− 1

2
λk

 d(t ∧ τε).

We can take ε→ 0 in the above formulas and the brackets are calculated as follows, concluding the proof:

d〈λi, λ̄j〉t∧τ =
1

N

n∑
a,b,c,d=1

YiaXb,iYjcXd,jd〈Bab,dBcd〉t∧τ = (XtX)ij(Y Y
∗)ij

d(t ∧ τ)

N
= Oij(t)

d(t ∧ τ)

N
,

(A.15)

d〈λi, λj〉t∧τ =
1

N

n∑
a,b,c,d=1

YiaXb,iYjcXd,jd〈Bab,dBcd〉t∧τ = (XtX)ij(Y Y
t)ij

d(t ∧ τ)

N
= Oij̄(t)

d(t ∧ τ)

N
.

(A.16)

Appendix B Normalized eigenvectors

This paper focuses on the condition numbers and off-diagonal overlaps, but the Schur decomposition also
easily gives information about other statistics such as the angles between eigenvectors. We include these
results for the sake of completeness. We denote the complex angle as

arg(λ1, λ2) =
R∗1R2

‖R1‖‖R2‖
,

where the phases of R1(1) and R2(1) can be chosen independent uniform on [0, 2π). We also define

Φ(z) =
z√

1 + |z|2
.

Proposition B.1. Conditionally on λ1 = z1, λ2 = z2, we have

arg(λ1, λ2)
(d)
= Φ

(
X√

N |z1 − z2|

)
where X ∼ NC(0, 1

2 Id).

In particular, for λ1, λ2 at mesoscopic distance, the complex angle converges in distribution to a Dirac
mass at 0. Therefore in such a setting eigenvectors strongly tend to be orthogonal: matrices sampled from the
Ginibre ensemble are not far from normal, when only considering eigenvectors angles. The limit distribution
becomes non trivial in the microscopic scaling |λ1−λ2| ∼ N−1/2, it is the pushforward of a complex Gaussian
measure by Φ.
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Proof. From Proposition 2.1 we know that R∗1R2 = R∗T,1RT,2, ‖R1‖ = ‖RT,1‖ and ‖R2‖ = ‖RT,2‖, where
RT,i (and LT,i) are the normalized bi-orthogonal bases of right and left eigenvectors for T , defined as (2.2).
The first eigenvectors are written RT,1 = (1, 0, . . . , 0) and RT,2 = (a, 1, 0 . . . , 0) where a = −b̄2 = − T12

λ1−λ2
,

with T12 complex Gaussian N
(
0, 1

2N Id
)
, independent of λ1 and λ2. This gives

arg(λ1, λ2) = − b̄2√
1 + |b2|2

and concludes the proof.

From Proposition B.1, the distribution of the angle for fixed λ1 and random λ2 can easily be inferred. For
example, if λ2 is chosen uniformly among eigenvalues in a macroscopic domain Ω ⊂ {|z| < 1} with nonempty
interior, we obtain the convergence in distribution (XΩ is uniform on Ω, independent of N )

N | arg(λ1, λ2)|2 →
N→∞

|N |2

|z1 −XΩ|2
.

When z1 = 0 and z2 is free, the following gives a more precise distribution, for finite N and in the limit.

Corollary B.2. Conditionally on {λ1 = 0} we have

N | arg(λ1, λ2)|2 (d)
= Nβ1,UN

(d)−→ X

where UN is an independent random variable uniform on {2, . . . , N}, and X has density 1−(1+t)e−t

t2 1R+(t).

Proof. From Corollary 5.6, N |λ2|2 ∼ γUN . Together with Lemma 2.5, this gives

| arg(λ1, λ2)|2 =

|N |2
N |λ2|2

1 + |N |2
N |λ2|2

(d)
=

γ1

γ1 + γUN

(d)
= β1,UN .

The limiting density then follows from the explicit distribution of β random variables.
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