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We prove the two-dimensional analogue of the asymptotics for Toeplitz determinants with Fisher-Hartwig
singularities, for general real symbols. This formula has applications to random normal matrices with
complex spectra: (i) the characteristic polynomial converges to a Gaussian multiplicative chaos random
measure on the limiting droplet, in the subcritical phase; (ii) the electric potential converges pointwise
to a logarithmically correlated field; (iii) the measure of its level sets (i.e. thick points) is identified; (iv)
the associated free energy undergoes a freezing transition.

This establishes emergence of the Liouville quantum gravity measure from free fermions in 2d, and
universality with respect to the external potential.
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1 INTRODUCTION

Determinants of the form
Dy (p) = det (/ zizjdu(z)) (1t a measure on C)
0<i,j<N—1

arise naturally in probability, approximation theory, and complex geometry. In the primary settings, p is
supported on either the unit circle (Toeplitz determinants) or the real line (Hankel determinants). The case
in which it has a smooth density except at a finite number of singularities is of particular interest in statistical
physics, as such singularities can manifest phase transitions. These singularities can be either a polynomial
vanishing (root singularity) or a discontinuity (jump singularity), and the large N evaluation of Dy in these
settings — commonly referred to as Fisher—Hartwig asymptotics — is well understood (see Subsection 1.1).
For general p supported on C presenting singularities, much less is known. These determinants are then
related to free fermions in 2d and random matrices with complex spectrum, through Andreiev’s identity:
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This paper gives asymptotics of Dy for u supported on the complex plane in the presence of root singularities.
A particular case of our main results gives the limiting fractional moments of the characteristic polynomial



for the Ginibre ensemble, defined as an N x N random matrix G with independent complex Gaussian entries:
G;j has distribution

N —N|z|? .
—e dm(z), (dm is the Lebesgue measure on C).
T
With this normalization of the matrix entries, the empirical measure of eigenvalues converges to the uniform
probability measure on the unit disc D. As a consequence of our asymptotics for fractional moments, the
characteristic polynomial converges to the Gaussian multiplicative chaos on D (see Subsection 1.2). These
results are informally stated as follows.

Theorem. For any fized m, distinct (; in the interior of D and positive exponents v;, 1 < j < m, we have
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where G is the Barnes G-function. Such non-Hermitian Fisher-Hartwig asymptotics — in the full form stated
in Subsection 1.1 — imply the following convergence on D, in distribution with respect to the weak topology
and in the subcritical phase (i.e. v < 2v/2):

| det(G — 2)|" L h(z)
—_——d —ev? d
Efldet(@ —o)py] ) 7 et dmlz),
where h is the Gaussian field with covariance E[h(w)h(2)] = —log |z — w| on D?, and evah(® dm(z) denotes

the Gaussian multiplicative chaos random measure associated to h, with parameter %

The main Theorem 1.1 below generalizes the above moment formula to the exponential generating
function of the electric potential, coupled with mesoscopic linear statistics, for general confining external
potentials. A remarkable aspect of this general formula is the relevance of the harmonic measure on the
boundary of the droplet, with the following consequence: the Gibbs measure associated to the electric
potential converges to a Gaussian multiplicative chaos measure, which is universal up to a global Gaussian
shift inherited from the capacity of the droplet (see Theorem 1.7).

Figure 1: The random field %%Z)“ for |z| < 1 and a Ginibre matrix G of size N = 1000.

1.1 Fisher-Hartwig asymptotics. The main results of this paper are explicit large N asymptotics of
Dy (p) in the 2d context, involving special functions that parallel the Toeplitz and Hankel cases. More
precisely, for Toeplitz determinants a simple version of the strong Szeg6 theorem states that if du = eV gfr

with V real-valued and smooth enough,
A 1
Dy (p) ~ exp(NVp + §||V||%{1/2) (1.1)

for large N, where the Fourier transform is normalized as f;, = fOQTr F(@) e 098 and || 112, = X ez Inl | fal?.
For p with general 1d support, similar formulas were obtained which connect Dy (1) to the Loewner energy
of curves and Weil-Petersson quasicircles [53,56,57].



In presence of singularities, Fisher and Hartwig [42] made a seminal general conjecture about the
asymptotic form of Dy(u) in the Toeplitz case, which has been corrected by Basor and Tracy [11] and
is settled in full generality by Deift, Its and Krasovsky, using Riemann-Hilbert methods [37], after multiple
important contributions, e.g.[97,10,40]. For example, in the special case where du(z) = eV (*) H;nzl |z —
z]\z% 5. with m > 1 fixed singularities z; on the unit circle, a; > —1/2, and smooth centered real V, the
Fisher-Hartwig asymptotics states that

lVQI 50— m asz]- m (y% 1+a
Dav(pr) = AV s i esVio) NE7ad T [y — o] 20 H Gl 1+2(; (1+0o(1),  (L2)
1<j<k<m i)

where the Barnes function G is defined in Subsection 1.5. Applications of general Fisher-Hartwig asymptotics
for Toeplitz determinants (including the case of jump singularities) are multiple, we refer for example to [38]
for the relevance to phase transitions in the Ising model. The main contribution of our paper is the analogue
of (1.2) — a formula due to Harold Widom in 1973 — for non-Hermitian random matrices, as explained below.

We consider the ensemble of N x N random normal matrices, defined on the manifold {M € CN*V .
MM* = M*M}, endowed with the probability measure,

PY(dM) o e N VD qps

where dM is the measure induced by the Lebesgue measure on all N x N complex matrices and V : C —
R U {+00} be a confining potential. This induces the following probability measure on the eigenvalues of M:

1
H - zk\QHu (dz), p(dz) = e NVEdm(z2)

Z
NV 1<j<k<N

where Zy y is the normalizing constant. In the following we will mostly suppress the dependence on V' and
N, writing P = PY and E = EY for the corresponding expectation, and only make it explicit when necessary.

Under suitable regularity and growth assumptions on V' (see Subsection 1.4), the normalized empirical
distribution of the particles N=13"4§,. converges almost surely, as N — 0o, to a compactly supported
probability measure uy -, called the equilibrium measure. Its support has non-empty interior, denoted by .5,
which is referred to as the droplet. The equilibrium measure is then given by

AV (2)
4

dpv(z) = pv(z)dm(z), pv(z)= 1s(2), (A is the Laplacian in R?).

The fluctuations around this deterministic limit were first fully understood by Rider and Virdg [86] when
the potential is quadratic, V(z) = |z|?; then, the eigenvalues density coincides with the complex Ginibre
ensemble previously mentioned and S = D. Their central limit theorem is the 2d analogue of the strong
Szegé theorem (1.1): for smooth enough f,

E[e”ﬁf(G)f]E[T&rf(G)]} o7 Jo IVFPdm+ 31 fI3 /2 (1.3)

Ameur, Hedenmalm, and Makarov proved analogous results for general V' and rigorously introduced the
method of Ward identities (also called loop equations) in this bidimensional setting [5,6]. The main Theorem
1.1 below is an extension of the results in [6] to include root singularities.

Before stating it, we introduce some notation and recall some facts from potential theory (see e.g. [47,
Chapters II-IIT]). For a functlon ¢ with domain including S, let ¢° denote the unlque bounded harmonic
extension of g to S¢, with ¢° = g on 5. Note that for this harmonic extension, g¥(co) := lim|, 0 g°(2)
exists and

|gS(z) - gs(oo)| =0 (|z|_1), |V"gs(z)| =0 (|z|_”_1) for allm > 1 as |z| — oc.
9gls

Omitting the dependence on S from the notation, we define the Neumann jump operator by N (g) = B

99°|se.

5 on 0S where n is the exterior normal vector (this is the negative of the definition used in [6]).



Denote log® = log | —-|. The Green’s function with a pole at co on the exterior domain S° is defined
by (see e.g. [47, Chapter I1.2])

G(z,00) = log® z — (log®)%(2), ¢e &8

where the right hand side is independent of the choice of ( € S (see Appendix B) and we omitted the
dependence on S from the notation. The capacity of the set S is defined by (see e.g. [47, Chapter 111.1])

5 := log cap(S) = (log®)*(c0) (1.4)
where the right hand side is again independent of the choice of ( € S (see Appendix B). Equivalently,

—log cap(S) is the infimum of the energy integral

I(n) = / / log — () (w) (1.5)

|z —w

over all probability measures p supported on S, [47, Thm. I1I.4.1]. The infimum is uniquely attained by the
harmonic measure seen from infinity which is supported on the boundary 95 and given by

1 0G(z,00) 1 ¢
. ds = 271_J\/(log; )(2)ds, z€dS (1.6)

where ds denotes arc-length measure on 95, [47, Thm. II1.2.5]. See Appendix B for a self-contained proof
of the independence of the right-hand side from the choice of ¢ € S and the fact that w® is a probability
measure. Equivalently, w® is characterized probabilistically as follows. Let B* be planar Brownian motion
started from z € C, and 7 denote the hitting time of 0S. Then, w™ coincides with the weak limit of the law
of BZ as |z| — oo. Finally, for any ¢ € S, the Poisson-Jensen formula applied to (logC)S yields

dw®™(2) =

s = (log%)5 (00) = / log¢ (2) dw™(2), for all ¢ € 5. (1.7)
oS
We also need the notations L = log %, and refer to Subsection 1.5 for the definition of the functional
space -/, ¢k, to state the following main theorem. It gives the asymptotics for the joint Laplace transform
of the electrostatic potential, or equivalently the joint moments of the characteristic polynomial of random
normal matrices.

Theorem 1.1 (General potential). Let C > 1, m e N, 0 < k < % be fixed constants. Then, uniformly in

f € F50ms ClyernyCm €{C €8+ dist(¢,08) > N™V2H5Y satisfying miny<jcpem |( — G| > N™V25 and
Y1y -y Ym € [0,C] we have (G stands for the Barnes G-function, see Subsection 1.5)

m N - |

E[eZ?’:l " H H 2 - CJPJ} = NS Syt ss (VTP AL AFH AL )dm H GWTJ(fas fdw‘x’—f(Cj))
j=1li=1 i
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1<j<k<m
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The Ginibre ensemble is the paradigmatic non-Hermitian random matrix model; see [25] for its many

Cdm _ [¢P—1
2

facets. For this ensemble, our asymptotics take a simpler form. We have fD log™ <~

and choosing
¢ = 0 gives /\/'(logc) =1and fBD logC ds = 0, so log cap(D) = 0. Hence the main theorem takes the following
simplified expression, conjectured by Webb and Wong in [96].

Theorem 1.2 (Ginibre ensemble). Let G be a complex Ginibre matriz with eigenvalues z;. Fix constants
C>1,meN, 0<k< ﬁ. Then, uniformly in f € 5 o, C1,y---5,¢m € B(0,1 — N71/2+’“) satisfying
ming<j<k<m [ — Gl > N7V and y1,. .., ym € [0,0] we have

E[eTrf(G) H ‘ det(G _ Cj)l'y]} _ 6% Jp fdm+g= [, |Vf\2dm+%|\f“il1/2+$ Jp Afdm H e%(fo—f(fj))

Jj=1 Jj=1
2

T 2N -0y _ (2T
X He 2 J N —~2
j=1

[T 16-al ™" (1+om—19).

1<j<k<m

G(1+%)



Remark 1.3 (Complex exponents). The case m = 1,V (z) = |z|, f = 0 was proved in [96] with a different
method which analyses a related Riemann-Hilbert problem [9], and allows any complex exponent Rey > —2.
The current proof of Theorem 1.1 extends to complex v;’s in a neighbourhood of [0,C], but the statement is
expected to hold uniformly in compact subsets of Reyy, > —2, 1 < k < m. We do not address this here but
note potential applications to fluctuations of the measure of thick points of the field, see Remark 1.12.

Remark 1.4 (Jump singularities). In the Toeplitz case, the most general version of Fisher-Hartwig asymptotics
[37] allows jump singularities with general complex exponents, with asymptotics involving a subtle variational

problem. As a natural 2d analogue, one may consider the asymptotics ofE[eZ;n:l Vf#{zi€ﬂj}} . No conjecture

is known for general ; C C and complex ;. Results were obtained for rotationally invariant ensembles,
concentric rings Q;’s, and exponents in a neighbourhood of R, see [28] and references therein.

Remark 1.5 (Painlevé transcendents). For merging singularities on microscopic scale (namely (j — (i =<
N‘l/z), the joint moments of characteristic polynomials are expected to give rise to Painlevé transcendents,
mirroring a similar phenomenon identified for Toeplitz determinants in [32]. In dimension 2, this was
recognized by Deano and Simm, who proved it by algebraic methods for the Ginibre ensemble, integer
moments, with no linear statistics f. Then Painlevé V appears for two merging singularities in the bulk (see
[35, Theorem 1.5]), and Painlevé IV on the boundary of the disk (see [35, Theorem 1.3]). In a forthcoming
work [72], these asymptotics are extended to fractional moments in the bulk, for V(z) = |z|?> and f = 0. The
methods developed for Theorem 1.1 have potential to prove the emergence of these Painlevé transcendents
for general V. f, by comparison with [35,72], but we do not pursue this goal here.

A straightforward corollary of Theorem 1.1 is the following central limit theorem for the log-characteristic
polynomial. Gaussian fluctuations of the determinant of random matrices have been studied extensively, both
for 1d [61,93,22,23,78] and 2d spectra [48,93,89]. Our main theorem proves such fluctuations for random
normal matrices, generalizing [96, Corollary 1.2] to the multidimensional setting and general V.

Corollary 1.6 (Log-correlations pointwise). Fiz m € N and x € (0,1/2). Assume that the (possibly
N-dependent) points Ci,...,Cm € {C € S : dist(¢,0S) > N™V245Y satisfy ming<jcpem ¢ — G| > N7V

—log |¢; — Gkl

Slon N €Tists for every j # k. Let ¥ = (c; ;)i"—y where ¢;; = i for each

and the limit cjp = limy_ o0
i=1,...,m. Then

N—oc0

N m
> i1 10g ¢ — zi| = N [log |G — z|duvy (2) (&)
N(0,%).
Vdiog N )
j=
In the case m = 1, [3, Theorem 1.2] shows that such a CLT also holds at points where the limiting density
AV may vanish or diverge, with a variance depending on the order of the singularity.

To conclude this subsection, we note that moments of random characteristic polynomials of wide classes
of random matrices have been a topic of major interest, see e.g. [1,44,19,43,8,2,88] in the case of integer
exponents by algebraic and supersymmetric methods, and [67, 52, 27, 15, 96, 29, 33, 24, 36] for fractional
exponents by Riemann-Hilbert methods. Motivations for the study of random determinants in the non-Hermitian
setting include for example the stability of large complex systems [14]. Theorems 1.1 and 1.2 introduce joint
fractional moments for non-Hermitian ensembles, motivated by two-dimensional random geometry from free
fermions, as explained below.

1.2 Gaussian multiplicative chaos. The Gaussian multiplicative chaos (GMC) appeared in attempts
to model intermittency in fluid mechanics, with its premises in studies by Kolmogorov [63,64], Obukhov [81]
and Mandelbrot [75,76]. Its general, rigorous foundations were led by Kahane in [59]: in his theory, the
Gaussian multiplicative chaos is the fractal measure on R? defined by the density

X — Qi 7 X () - BE(X.(2)?)
e—0 ’

with respect to the Lebesgue measure, where X. is a mollification of a log-correlated Gaussian field X
(meaning E[X (v)X (w)] = —log|v — w| + O(1) as v — w) on a domain D C RY. The regularization and
renormalization are necessary because of the negative Sobolev regularity of the field. The convergence holds



in probability with respect to the topology of weak convergence, the limit does not depend on the mollification
and it is non-trivial for any v € (0,v/2d), see for example [84] for these properties. The specific case where
X is a two dimensional Gaussian free field (a Gaussian field whose covariance function is the inverse of the
Laplacian) has proved to be connected with many different domains in mathematical physics. To name a
few, it is the volume form in Liouville quantum gravity, a metric measure space corresponding to the formal
Riemannian metric tensor “e?X (dz? + dy?)” [39,49], it appears in the scaling limit of random planar maps
[74,77,50], and it plays a central role in the rigorous approach to Liouville Conformal Field Theory [34,68].
We refer to the surveys [91,85] for more references on these connections.

In [95], Webb connected the GMC and random matrix theory, showing that the characteristic polynomial
of random unitary matrices evaluated on the unit circle converges to a one-dimensional GMC. He conjectured
that similar results also hold for the Gaussian ensembles, one-dimensional S-ensembles, and more generally
for random matrix models presenting log-correlations, including in dimension two. His proof and the ones of
the following works [15,80,33] relied on Fisher-Hartwig asymptotics based on the Riemann-Hilbert method.
Another approach based on sparse matrix models showed that the limit of the spectral measure of circular
B-ensembles, and the characteristic polynomial, also converge to a GMC, still for d =1 [30,71].

In two-dimensional space-time settings when dynamics are involved, the works [21,62] obtained convergence
of the eigenvalues counting function and the electric potential to a 2d GMC, for the geometry of the 2d torus
(unitary Brownian motion) and the 2d strip (non-intersection Brownian motions), respectively. These works
rely on a general surgery method replacing the Riemann-Hilbert approach when there is no known equivalence
to asymptotics of orthogonal polynomials.

In the 2d ambient space the Liouville quantum gravity measure also appears as stated in Theorem 1.7
below. The key ingredient is the precise asymptotics of the moments of the characteristic polynomial,
Theorem 1.1 above. To state our result, note that from Corollary 1.6, the log-characteristic polynomial of
a random normal matrix is %—log—correla‘ced7 so the corresponding critical value becomes v, = 2v/2. The
regime v < 2 is often referred to as the L2-phase, while the full subcritical range v < 2v/2 is called the
L'-phase. All arguments below are carried out in the L!-phase.

We consider the field X associated to the characteristic polynomial,

Xn(z) =log|det(M — z)| — E[log |det(M — 2)|], (1.8)

and note that the fine asymptotics of the centering term (as follows from the proof of Theorem 1.1): for
some € > 0

E[log|det(M — 2)|] = N/logz duy + i + i(L(z) — L%(c0)) + O(N9).

At the level of fluctuations, v/2 Xy converges to a Gaussian free field X (see [5]) with covariance kernel Ty
on S?% defined by

1
Ts(z,w) = o /tc V(log®)® - V(log")®dm = log + s,

|z — w]
where the second equality is shown in Appendix B. Note that s = log cap(S) is the smallest real number for
which the kernel T is positive semi-definite, since — log cap(S) is the infimum of the energy integral given in
(1.5).

Let v, (s) be the GMC measure associated to X, formally given by
Vs (s) (A) :/ XN (),
A

2 -
More precisely, v, sy the limit, as ¢ — 0, of eVXE(Z)’WT]E[XE(Z)Z]dm(z)7 where X, is the convolution of X
with a bump function on scale . As already mentioned, this limit is non-trivial and does not depend on the

convolution kernel, see e.g. [84, Theorem 3.1]. Then the random Borel measure

eYXn(2)

Z/%N(A)z/Ade(z) (1.9)

converges to a GMC measure in the full L!-phase, as conjectured in [95,96,69].



Theorem 1.7 (Convergence to a GMC). For any0 < v < 2v/2, as N — 0o we have the following convergence
in distribution with respect to the weak topology on S:

Vy.N = Vy /3, (s)"

d
More explicitly, the above convergence means that | gpdry N ﬁ /. S(pdl/,y /V2,(s) for any continuous

bounded ¢ supported in S. Moreover, we also note that the denominator in (1.9) is explicit thanks to
Theorem 1.1.

Remark 1.8 (Outside the droplet). The field Xy behaves very differently on S¢ and the fractal nature of
the limit disappears: in the case of the Ginibre ensemble, det(Id — 2z~ 1G) converges in law of the exponential
of a random analytic function for |z| < 1, as proved in [18] in the general setting of random matrices with
i.0.d. entries.

Remark 1.9 (The Coulomb gas). A natural extension of the model considered is the two-dimensional
Coulomb gas confined by the external field V', at general inverse temperature B, i.e. the Gibbs measure

N

N

e PH where H(z) = — Z log |z; — 2x| + 5 ZV(zl)
1<j<k<N i=1

In this setting, distributional convergence of Xn(z) = > log|z — z;| —EY log|z — z]| to the Gaussian free
field was proved in [73,13], suggesting convergence of 7N to a GMC. More precisely, in view of Theorem
1.7, one expects
eYXn(2)
E[e X~ G| = Vo /VB.(s)

in the L' phase, which corresponds to v < 2+/B. It is an interesting problem to prove the above convergence
without relying on an analogue of Theorem 1.1, which seems out of reach with current methods.

Remark 1.10 (Dynamics). An extension of (1.3) was recently obtained in [20], for the Ornstein-Uhlenbeck
process on the space of non-Hermitian matrices. In this setting the field Xn(z,t) = log|det(G — z)| —
E[log|det(Gy — 2)|] converges to a Gaussian field X on I x R which is log-correlated for the parabolic
distance:

1
E[Xn (2, 1) XN (w, s)] = E[X (2,1) X (w, s)] = —5 log(|z —w| + vt = 5) + O(1),
raising the question of the convergence o et(Gy — 2 m(z)dt to a relate .
g the q f th q f | det(G )|Ydm(z)d lated 3d GMC

Another corollary of our main theorems concerns the thick points of the field, where Xy attains unusually
large values, which play a central role in the geometry of extremes for log-correlated fields. It follows directly
from [33, Proposition 3.8]. It is the 2d analogue of [7, Theorem 1.3] which considers high points of the
circular unitary ensemble.

1

Corollary 1.11 (Thick points). For every compact K C S with non-empty interior, v € [0, 7

we have

) and € > 0,

lim PN < [{z € K: Xy(2) > 71og N} < N727+) =1,
N—o00

Remark 1.12 (Fluctuations of thick points). The fluctuations of N*'|{z € K : Xn(z) = ylogN}| are
supposedly related to the mass of N ABE Indeed [58] gives a general criterion for this correspondence,
and applies it to identify the fluctuations of the measure of high points of the characteristic polynomial of
the circular unitary ensemble, which had been conjectured in [46]. In our setting, the criterion from [58]
requires an extension of Theorem 1.1 to complex exponents (;, see Remark 1.3. However, while the mass of
the Gaussian multiplicative chaos measures on the unit circle has an explicit distribution [45,83], to the best
of our knowledge there is no conjectural explicit density in the 2d case.

From the above corollary, by following the same steps as in [7, Proof of Corollary 1.4], we obtain the
following consequence for the free energy. This extends the identity [69, (1.15)] to the non-Hermitian setting
with a general potentiall.

1As a minor remark, [69] appears to have omitted the factor N in the numerator inside the logarithm.



Corollary 1.13 (Freezing). For every compact K C S with non-empty interior and v > 0, the free energy
converges in probability as N — co:

log (N [, eX¥Edm(z)) . {,ly + 32, for

~vlog N %7 for
The above transition of the free energy appears in statistical physics for models exhibiting the freezing
scenario, which is instrumental in the analysis of equilibrium Gibbs measures with logarithmic spatial
correlations [26].

Remark 1.14 (Extreme values). Our main theorems also allow to recover the leading order asymptotics
for the electric field for general potential: For K any compact subset of S with non-empty interior and any
e >0,

lim P

N—o0

1
gﬂea}}é(m S [ﬁ*g,ﬁ+€]) =1. (110)
The leading-order asymptotics for Xn has already been established for the Ginibre ensemble in [69], for
general § with quadratic potential in [70], for general B and potential in [82], and for i.i.d. matrices in [31].

With Theorem 1.7, the lower bound in the above equation follows directly from the support of the GMC
on so-called y-thick points (see [33, Theorem 3.4] ), while the upper bound follows directly from Theorem 1.1,
as explained in [69, Proof of Proposition 3.1]. A natural problem is refining the method for Theorem 1.1
(closer singularities, complex exponents) for finer orders in (1.10).

( Xn(z) 1

1.3 OQwutline. The proof of the main Theorem 1.1 is based on the integration of two techniques, the Ward
identities as introduced in [6] for non-Hermitian matrices, and the removal of singularities, first implemented
in space-time in [21]. The surgery from [21] can be applied to a variety of models involving local, special
factors and long-range interactions, but implementation in different settings presents specific difficulties.
This method proceeds in several steps:

(1) Cut the long range nonsingular part of the determinants, and prove a decoupling of the resulting product
of localized root singularities.

(2) Establish a general “gluing operation” for nonsingular terms.

(3) Evaluate asymptotics of one localized singularity, by gluing the opposite of the associated long range
nonsingular part to the determinant, evaluated for one specific model where integrability holds.

(4) Glue back the nonsingular parts of the determinant, and the additional smooth function f to the localized
singularities.

Step (1) requires some decay of correlations, obtained here from a general multiplicative comparison of
Fredholm determinants introduced in [21] and kernel estimates from [4], see Lemma 3.4. At the technical
level, this step requires an a priori submicroscopic smoothing of the log-singularity (Proposition 3.1) and
goes beyond the usual decoupling methods for determinantal point processes which give additive error terms
instead of multiplicative.

Steps (2) and (4) rely on the method of Ward identities, or loop equations, which is common in field
theories. For Hermitian random matrices, the seminal work [54] relied on loop equations to reduce Laplace
transform estimates to a shift of the density of states. In our non-Hermitian setting, Ward identities are
also instrumental as in [6], but the control of the error due to potential anisotropy (i.e. local directional
contribution from the interactions) and the boundary of the droplet, is delicate for measures biased by
determinant powers, i.e. in the presence of root singularities. Regarding the proof of local isotropy —
a problem naturally absent in the settings of [21,62] — Lemma 2.14 first treats nonsingular potentials,
by a moments method specific to determinantal point processes but flexible enough to cover mesoscopic
observables up to the boundary of the droplet; this estimate is then transferred to singular setting, as it
holds with overwhelming probability (here 1 — e~ (log N )" for any D > 0), while in [6] angular cancellations
hold in expectation for the nonsingular potentials. About the effect of the boundary, one novelty of our
analysis is a careful control of the norms of the harmonic extensions of functions on mesoscopic scales,
and an analysis of the effect of bulk singularities on the boundary field. This analysis is significant due to
the harmonic measure on the boundary of the droplet, which generates an additional Gaussian shift when
compared to the free field with free boundary conditions, harmonically extended outside of the droplet.



For step (3), while the emergence of the Barnes special function was rooted in the Selberg integrals in
the space-time settings [21,62], in this article it relies on a result by Kostlan stating that the radial parts
of the eigenvalues of a Ginibre matrix are independent, see Lemma 3.6. In [21] this step dealt with only
one matrix ensemble, the CUE, due to rotational invariance; in [62] this step required comparison between
two different ensembles (GUE at arbitrary energy level and CUE); in the present work, this comparison is
pushed further, matching the Ginibre ensemble to any random normal matrix model, as needed towards the
proved universality of the limiting GMC.

These steps are implemented in the next Sections 2 and 3 to prove Theorem 1.1. Section 4 then proves
Theorem 1.7, the convergence of the Gibbs measure associated to the electric potential to a GMC, based on
a general criterion from [33].

1.4 Assumptions on the potential. We impose the following assumptions (A1)-(A4) on the external
potential V.

(A1) Growth: V € ¢*(C) and there exists an € > 0 such that liminf .|, (V(2) — (2 + €)log|z|) > 0
for some € > 0. For convenience we also assume that there exists a constant C' > 0 such that
[V(2)] + |VV(2)| < C(1 + |2])€ for all z € C; noting that this additional condition can be relaxed
easily.

Under (Al), standard results in logarithmic potential theory (see e.g. [87]) guarantee that the energy
functional

Z(n) = [ 10 ) duw) + [veaue)

admits a unique minimizer, called the equilibrium measure py, among all probability measures on C. Its

support is compact and on the support its density is %‘r/. Moreover, py is the limiting distribution of the

normalized empirical spectral distribution for random normal matrices with confining potential V.

(A2) Boundary regularity: The boundary of supp(uy) is a real-analytic Jordan curve and the interior of
supp(uy ), denoted by S, is simply connected.

(A3) Regularity: V is real-analytic in a neighbourhood of supp(uy ).
We define,
V(z) = sup{f(2) : f € €*(C) is subharmonic, f(z) < 2log|z| + Op|»(1), f< V]
It is known (e.g. [6]) that V € C*'(C), satisfies V' =V on S, is subharmonic on C, harmonic on C\ S and
V(2) = 2log 2] + Oz )00 (1),

OV (z) = / duv(®) s e, (L.11)

zZ—Ww

where the second equation is obtained by the Euler-Lagrange equation if z € S and uniqueness of the
harmonic extension if z € S°.

(A4) Non-degeneracy: AV(z) > 0 on the coincidence set {z € C : V(z) = V(z)} and the coincidence set
coincides with supp(uy ).

1.5 Notations and conventions. We collect here the notations used throughout the paper.

1.5.1 Scales and geometry. We use the symbols « and x to denote small fixed constants in the exponents.
We define the mesoscopic scale §, the submicroscopic scale A, and the slightly super-microscopic scale §y
as follows:

§=N"2re  A=N"V2e 5y = (log N)2N /2,



We let 7 vary from mesoscopic to macroscopic scales, i.e., 7 € [, 1]. For any parameter a > 0, we define the
inner, outer, and edge neighbourhoods of the droplet .S:

Sin(a) = {z € S : dist(z,0S5) > a},
Sous(a) = {z € §¢ : dist(z,0S5) > a},
Sedge(a) = {z € C : dist(z,0S5) < a}.

1.5.2 Function classes and differential operators. Denote by €™ (A) the class of real-valued functions on
A C C whose partial derivatives up to order n are continuous. We utilize the complex differential operators
9 = 1(0y —10y), 0 = $(0y + 10,), and the Laplacian A = 499. For f € €"(C) we define

2
VG = e 10801Vl = sup [V
n1 z€E

+n2=n

For any € > 0 and n € N, we define the scale-dependent norm

n

1 n
Hf”n,e = Z 57||ka”007 where ”v f”OO = anin:

sup |9, 0,2 f(2)]- (1.12)
k=0 zeC

n

We denote by 7, . the collection of smooth functions that are supported in a ball of radius € and are smooth
up to the nt" derivative on that scale:

e = {g e¢"(C) ‘g is supported in B(zg,¢) for some zy € C, and ||g||n.c < 1}.

Additionally, for constants C' > 0 and « > 0, we define a collection of (sequence of) functions .#, ¢ . by:

|[Clog N|
o Cor = {f = f(N) ‘ f= Z gi; where g; € o, .., € € [N_1/2+”,1]}.

i=1

1.5.3 Cutoff functions and log-regularization. Unless otherwise stated, the symbol x denotes a fixed smooth
radial cutoff function with x = 1 on B(0,1/2), x = 0 outside B(0, 1) and let x.(z) = x(z/¢). For any € > 0,
we define log-regularization on scale € by

Xe
[Ixellzs

log, = log| - |

For shifted functions, we use the shorthand
Xé=xe(-—¢), logt =log (- — Q).

1.5.4 DBiased measures. We denote the particles by z; and the singularities by (;. The linear statistics and
centered linear statistics are given by:

N

N
T() =Y S, Xy = > fz) - N /S Foy dm

i=1

where py = % on S. Finally, we define the biased probability measure IP; and the corresponding expectation
E; by
eTr(f)

1.5.5 Barnes G-function. The Barnes G-function is defined as the Weierstrass product

2221+~ > k2
Glz+1) = (2m) 22 [T (14 2) e
k=1 k

where v is the Euler-Mascheroni constant. It satisfies the functional equation G(z + 1) = I'(2)G(z) where T
is the Gamma function.
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2 PRELIMINARIES ON NONSINGULAR POTENTIALS

In this section, we gather preliminary estimates for nonsingular potentials, in preparation for the next
section treating root singularities. Many relevant methods appeared in [6], to obtain concentration bounds
(Proposition 2.11) and fluctuations (Proposition 2.6) for linear statistics of the z’s. We follow a similar
strategy based on the Ward identities, with additional ideas from [12] to cover linear statistics on any
mesoscopic scale, including at the edge of the droplet.

These improvements to mesoscopic scales are instrumental in the next section, to treat smoothed versions
of log by multiscale decompositions, and to eventually allow the main Theorem 1.1 to cover the electric
potential up to the mesoscopic distance N~1/21% from the boundary.

2.1 Ward identity. We denote

1 AV o
v =D s py = —lsdm, iy =jiv — py

for any V € ¢?(C) satisfying

e V()
lim inf 2log |2] ’ 21)
V()| +|VV(2)] < C(L+|2])¢ (2.2)

for some fixed constant C' > 0. In this subsection, we do not impose the non-degeneracy and boundary
regularity assumptions from Subsection 1.4; these will be assumed in all other sections.
Moreover, assume that h : C — C is a function such that

h is continuous on C, (2.3)
hlp and h |pe are €,

1Plloe + (VA Ip [loo + [[(VA) [pe

o <C (2.5)

for some fixed C, possibly depending on N. For any z € (C\dS)", we define
h(z;) — h(z
Wi(z) =) (i)fz:k) +) " 0h(z) = N Y _h(z)0V(z)). (2.6)
i<k j j

The following lemma, sometimes called the Ward identity or loop equation, is analogous to [6, Proposition
2.1], where it first appeared in the context of 2d Coulomb gases and was used to study Gaussian fluctuations
of finy. It was also instrumental in [13] to prove such fluctuations at any inverse temperature. Its relation to
Conformal Field Theory is discussed in [60].

In [6], it was stated for Lipschitz and compactly supported test function. We give another version, with
assumptions closer to [12, Lemma 8.3], and essentially reproduce the proof from [12] by integration by parts.

Lemma 2.1. Assume V and h are as described above. Then we have
EY [W{] =o0.

Proof. Let H(z) = =23, ;logl|z — zj| + N Zf\il V(z;). Let dc be a smooth Dirac approximation on scale
¢ and h. = h x d.. By integration by parts, for any j € [1, N], we have

EY [0h.(2;)] = EY [he(2;)0-, H(z)] .

11



Summing this over j € [1, N] gives

XN:E [Oh = [zN:hE (2 (NBV 2 —2282j10g|zj zk|)}
Jj=1 j=1

k#j
hs Z5) — ha 2
=EY [N he(2)0V(z) = > (;)fzk(k)
; ik /

We now take ¢ — 0 and conclude by dominated convergence. Indeed, first Oh. converges almost everywhere
to Oh and ||Vhe|loo < C by (2.5). Second, |h.0V| < C|0V| which is integrable by (2.1) and (2.2). Finally
w is uniformly bounded thanks to (2.3) and (2.5). This concludes the proof. O

The following classical decomposition will also be useful in the next key proposition.

Lemma 2.2. For any h, V as above, and z € (C\3S)Y, we have
h(w 1 1 .
S [ @) [[ D i wy (d2) =~ WE @5 300+ S )0V (2) -0V (z1)
J J j

= / . M MO (@) (). (2.7

Proof. The proof only relies on the definition of W and (1.11). With (1.11), we can write the left-hand side
of (2.7) as

N// S— dzuvderthjanj N// v (dw)uy (dz)

1 h(z h(zk) N ) _
=% Z TA%g) 7 <) — —&—;h 2;)OV (z;) //;ﬁw T w ~(dz) iy (dw),

i<k

which is equivalent to (2.7) for z € (C\0S)", where W} is well defined.

For any given function f of class ¢°(C) with at most logarithmic growth as |z| — oo and |V f(2)| <
C(1+ |2])¢ (for a possibly N-dependent C), we denote the probability measure

_ —L)(
d/tf( Zf H|Zz_2:]|2 ]\72:1 1 ( ~) Hdm Zz

N i<y

and write Py = PV-% E = EV-+% for probability and expectation with this biased measure. Note that
this coincides with the biased measure definition in (1.13).
By definition (2.6), we have

ng% =W+ h(z)0f(2).
J
Thus, Lemma 2.1 implies:

[WV __Ef[zh ;)0 f ZJ)]

Therefore, taking the expectation of (2.7) with respect to the biased measure E; we obtain:

Z/Z v (dw)| + B[S h(2)(0V (25) - 0V (7)) N//

- —Ef[Zh 2)0f(25)] + JIVEf[Zah (23)] +Ey | // hz) = hw) oo @) iin(dw)]. (2.8)

Mv (dw)pyv (dz)
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2.2 Harmonic extension and decomposition. We define an analogous version of the || - ||, norm in
(1.12) on a curve: For any smooth Jordan curve v parametrized by + : [0,27] — C, and any smooth function
g on the curve v we define,

n

1, d
= Flgrenll

k=0

Although the definition depends on the choice of parametrization, we omit this dependence from the notation.
We fix an order 1 parametrization of 0.5 and will not need to refer to it again.

Let Kk > 0, 7 € [N*1/2+", 1], n > 2 and g € ¢, . be fixed. We denote the unique bounded harmonic
extension of g|gg into S¢ by gous. As S is a simply connected open set there exists a biholomorphic map ¢ :
S¢ — D¢ satisfying ¢(co0) = co. Since S is real-analytic, the map ¢ can be extended to a ¢ *°-diffeomorphism
from S° onto D° by the Kellogge—Warschawski Theorem (see, e.g. [66, Theorem 5.2.4]) and further to a €°
function on the whole complex plane C. We define,

G=goyp !, ondD.

Observe that since g € 4, ,, we have ||g|lasnr < C for some constant C' depending only on S. By
¢ *°-diffeomorphism of ¢, it follows that |G|lap.n,r < C’, where C’ is a constant depending only on ¢. In
addition, we may assume that G is supported on an arc of length 7 and ||G|lgp,n,» < 1, since G can be
written as a sum of finitely many such functions, the number of which depends only on S and ¢.

If we denote the Fourier coefficients of G by Gp =L 027r G(e'?)e*9dh, the bounded harmonic extension
of G on D¢, denoted by Gy, becomes
1 4 1 4 A 1 4 1 . .
Gout(2) =+ 5G 2+ -G1+Go+ -G1+ 5Ga+--, if[z]>1
z z z z

Note that gout = Gout 0@ on S€ by the uniqueness of harmonic extension. Decompose G, into two functions,

— 1 — 1
ka b G(2) =) G, forz €D, (2.9)
k=0 k=1

The following lemma proves that the regularity of G on dD is preserved for the functions G4 and G_.

Lemma 2.3. Let0 < e < 1 and assume f : 0D — C is smooth function supported on a curve of length € with
Ifllopne <1 for ann > 2. Let f+ and f_ be defined as in (2.9) on D°. Then, for every ¢ € {0,1,...,n—1}
and 1 < |z| < 2 we have

€
IV e (2) + V- (2) < Co m (2.10)
max (E, dist(z, supp(f))
where Cy is an absolute constant depending only on £. Moreover, for any |z| > 2,
IV S (2)| + VO f-(2)] < Ce. (2.11)
Proof. For any |z| > 1,
27 2m —i6
i0 Z do i0 e dé
= — — _(2) = _— 2.12
R R L e A O = (212)

where two integrands add up to the Poisson kernel on the unit circle. We discuss the proof for f, here in
detail, for f_ the proof is identical.
Fix an arbitrary point zy in the support f. If |z — zg| > 2¢ and |z| < 2,

z do €
aZ 10 ) — < c)p——— .
fe(z f ele)zw ‘3|Z_Z0|e+1
We now move on to the case |z — z0| < 2e. Note that there exists universal constants ay ¢, 1 < £ < k such

that for any |z| > 1 we have

ak:

= k Zak la@ . (2]‘3)

z—e“’
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From (2.12), (2.13) and integration by parts, we obtain

k 2T 0 (10
1 95 f () do
0" f1(2) ok z§=1:( ) ak.e , 1— iei() o

This implies that
0% f+(2)] < Cr_sup

1<e<k

[ v
0

1= 1027 |”
z

Note that the Cauchy transform fo T af’f (e )49 has boundary

T on

2 9lr(eif)  qe 1 Cf(e?) do
lim M 7a£f( 19) + lim L(e)—.
r—1-Jo 1 —rel@=9¥) 27 30 J g6 1 — €10=¢) 27

a5f(0) — o5 de
‘/ rte” I, <[ 954(6) gfw)ldaﬂwgfllw/
O—p|>6 L —€ <|0—p|<e
< ell95™ fllow + el flloc = O(L/€.

We bound the above right-hand side by writing, for any 0 < § < ¢,
|eif — el | [0—p|>c |elf — eiv]
Ocsupp(f)

This completes the proof of (2.10) as dfy = 0 on D°. The second estimation (2.11) follows directly from the
the maximum principle for harmonic functions. O

Let n be a smooth cutoff function that is equal to 1 on B(0, 2) and vanishes on B(0, 3)°. Pick an arbitrary
point zg € supp(G). Let > po; xx be a partition of unity such that x; is supported in B(z9,27) and yy is
supported in B(zq, 28717) \ B(zo, 2" 1) with | x|, 2x, < C for some universal constant C. By Lemma 2.3,
the decompositions

Gin= Z Ginxg, G-x= ZGJ?XJ'
J J

contain O(log N) many (non-zero) terms satisfying: Gynx; supported in a ball of radius 277! and smooth

up to the (n — 1) derivative on that scale (similarly for G_nx;).

Now, assume f : D¢ — C is supported in a ball of radius ¢ that is smooth on that scale up to the k™"
derivative. Then we can extend the domain of f to include S preserving its regularity as follows:

Zﬁjf re'? T 1+7( _.1)j Xe(r —1).

4!

This construction extends f to a function on C supported in a ball of radius Ce, satisfying || V7 f|lo < C/e’
for every j = 0,...,k for some universal constant C. Applying this procedure to G1nx; and G_nx;, and
then gluing the resulting extensions together, we obtain smooth extensions of G; and G_ into D while
preserving their regularity. More precisely, if g € o, , for a 7 € [N~Y/2%% 1], then G171 and G_n can be
decomposed into sum of O(log N) many functions each of which is supported in a ball of radius ¢; and
smooth up to (n — 1) derivative on that scale for an ¢; € [r, 1].

We define

g+ =Grop, g-=G_op onS".

We now take a biholomorphic map % from S to . As 0S is real-analytic, ¥ extends holomorphically to an
open neighbourhood of S. Using this map, we construct g+ ; = (G4nx;) oy and g_ ; = (G_nx,) o ¥ on
that open neighbourhood of S. Gluing g4 ;’s together (and g_ ;’s) we obtain an extension of g, (and g_) to
the whole complex plane such that g, x and g_x can be decomposed as a sum of O(log N) many functions
each of which is supported in a ball of radius €; and smooth up to the (n — 1)** derivative on that scale for
an ¢; € [71,1]; where x is an order 1 bump function that is 1 on S'U Seqge(1/3) and 0 on Syu(1/2).

Note that, by construction, dg, = dg_ = 0 and gous = g° = g4 + g_ on S°. We extend the definition of
Jous to all C by setting gous = g4 + g everywhere. Recall that, in contrast, g° was defined to coincide with
g on S. We summarize the main properties in below lemma.
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Lemma 2.4. Let £ > 0, 7 € [N7Y24% 1] || fllnr < 1 with supp(f) C B(zo,7) for some zy € 3S. Let x be
a smooth bump function such that x =1 on B(zo,1) and x = 0 outside B(zo,2). Then there exist a constant
¢ depending only on S and two functions fy, f_ € €"1(C) satisfying the following properties:

(i) (fy+ f2)|se is the bounded harmonic extension of f|as on S°.
(i) 9fy =0f- =0 on S°.
(iii) fix can be decomposed as ZLCIOgNJ f+.k such that supp(fi k) C B(z0,7x) for some 1, € [1,1] and
||f+,k||n 1,7 < 1. Simalarly for f—.
(iv) f+(1 —x) has uniformly bounded first and second derivatives on C. Similarly for f_(1 — x).
2.3 Application of the Ward identity. Let x > 0 and g € o, for some 7 € [N~Y/?+% 1], Let ¢ > 0
be a constant so that OV — 9V # 0 and AV > 0 on Seqee(2t) \ S (see e.g. [6, Proof of Lemma 5.2] for the

existence of such ¢). Denote a bump function that is 1 on S'U Seqge(t) and 0 on Sgue(2¢) by x. We
We apply (2.8) for three different choices of h:

hi =

dgs _ dg o0, r= (2 990 )1s. (2.14)

AV/A PTAV/Y BT AV/A oV —av  AV/4

where go = (g — gout)Xx- As shown in [5, Lemma 5.2], the function hj satisfies the conditions (2.3)-(2.5);
the continuity of hs relies on the fact that go = 0 on dS and AV = 0 on S¢. The subtle point is that,
although 7 is continuous along 05, its derivatives are not. Nevertheless, the key estimates for r remain valid
as discussed below.

The following lemma collects the decomposition of hy, ko, hg —r and r together with the corresponding
estimates. The part concerning hi, he and hg — r follows directly from Lemma 2.4 (iii-iv), while the
decomposition and estimates for r are obtained by using Lemma 2.4 (iii-iv) and following the argument in
the proof of [5, Lemma 5.2 (i)]. We present it here for convenience, as it will be referred repeatedly, and
omit the proof since it follows exactly as above.

Lemma 2.5. Let k > 0, n > 3 and g € o, , for some T € [N~YV2+% 1]. There ewists a constant C
(depending only on S and n) such that g+ (and similarly g— and go) can be decomposed as p + q where
P E Fn1,0r and q is supported in Sout(1/2) such that ||Vqlleo + [|[V3q|leo < C.

Moreover, if g is supported in S, then r = 0. On the other hand, if there exists a zo € supp(g) N IS,
then r can be decomposed similarly as ZLCI o8 V) T + g where q is again supported in Sou(1/2) such that
IValloo+V2qlloe < C; eachry, is continuous, equal to 0 on S, with || V77| e 5y < TJ% forj=0,...,n—1

k

and supp(ry) C B(zg, 1) for some 7 € [1,C].

We now proceed to apply the Ward identity to the functions hy, he and h3. Recall that we denote
lim| ;|00 Jout (2) by ¢°(00). Using dg4 = dg— = 0 on S¢, by Green’s theorem we obtain:

/’jfjgdwijcﬁumz)g%o), e e

for every z € C\ 9S. On the other hand, because gy = 0 on the boundary

/hs(w)duvzl/%:{go(zh ze$ h3(z)(aV(z)—6V(z))={O’ z€8
T™Js

Z—w z—w 0, ze 8’ go(z), z€8°

Recall that oy = ﬁ 0., — py Adding the three equations (after taking the conjugate of the second
one) we obtain that

N

Ef [’;g(%)} - N/gduv = / (hOf + ha0f + h3Of)dpy + %/ (Ohy + Ohy + 0hs)duy + En(f,9)
N
+Ef Z — GJout Zk))(l *X(Zk)) s (215)
k=1
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where
S9(0,9) = By [ [ mdf +5a0F + hod dfi]

—&—]Ef_/@hl +87h2+8h3d/1]\{}

B hi(z) = ha(w) - - 1/
B //#w w An(dz) in(dw)| + 5 [ Ohadpy
f‘2 z#w zZ—w KN \AZ) N w_ 2 2dpy
TN h —h 5 _ q 1
+Er 5 //Z#w w;w(dz) iy (dw) | + 5/ahgdw_

The expectation of the trace of (g — gout)(1 — x) in the right-hand side of (2.15) is already sub-polynomial,
since its support lies outside the droplet and Lemma A.4.(ii) gives exponential decay of the one-point function
for the biased measure. We denote this contribution by O(N %) for arbitrarily large D > 0. Furthermore,
the main terms in equation (2.15) simplify as follows. Since the expression on the left-hand side of the
integral below depends only on the values of f within S, we may, without loss of generality, replace f by
a smooth, compactly supported function that agrees with it in a neighbourhood of S. This modification is
made solely for convenience in the forthcoming computations:

[ (dr + 7207 + mad )y = < [ (Bg.0f +0g-05 + 500 yam

1 _ 1 _
= [0+ +9907am -~ [ god0fdm
TJc mJs
1 1
= —/ Vigs +9-)-Vfdm+ —/ Vgo - Vfdm
47T C 47T S

1 1
— VgS-Vfdm+—/Vg-Vfdm
T ar i Jg

1
/v .V f¥dm.
47T

Similarly, let L = log % and replace L by a smooth, compactly supported function that agrees with it in a
neighbourhood of S. The analogous calculations lead to,

1/(3h1 + Ohy + Ohs)dpy = S / Agdm — i/ (0g4+OL + dg_OL + 0goOL) dm
2 8 S 2T S
:L/Agdmfi/ (5g+8L+8g_5L) deri/goALdm
m™Js 2T C 8 S

1 1 1
:7/Agder—/goutALder—/gOALdm
m™Js 8 C 81 S

1

1
Ag dm + — / g°ALdm
87T 8 C

and

1 S 1 S S
— ALdm = — [ gAL — AL — LA
87r/<cg dm 87r/g dm—i—8 /L( g°) dm

1 1 oL dg oL 09°|se

- /LAgd”” &7 /85 (gan Lan) + (ga(_n) La(—n)>d5

8g 8LS|SC
— [ LA — L’ —
/ gdm+ o2 /as ( a—n) Y a(=n) ) ds

:—/LSAgdm
8w C
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where we used 0 = [, g9ALS — LSAg¥ = [, g%L(ilj; - L%‘%S_‘s; in the third equality.
Substituting these into (2.15), we obtain

N
£ [ o) N/gduv - —/Vg stdm+—/Agdm—i—s—/LSAgdm—i-o@N(f, g)+O(N-P).
k=1
(2.16)
Note that every term in this equation is linear in g, but not in f. Moreover, an alternative representation
involving a Neumann jump term follows from Green’s identity:

/LSAgdm:/Angm+/ (AgLngALS)dm
C s ge

dg oL dg OL®|ge /
= AL L—= L — = AL — L
/Sg dm+/ ( n gan)ds—i—/as( 3 98(—n)>d8 Sg dm 8Sg]\/( )ds

(2.17)

which holds given g smooth, compactly supported.
Next, we apply the estimation (2.16) to the Laplace transform of the linear statistics.

Proposition 2.6. Let C, x > 0 be fized constants. Let g = g1 + go where g1 € 5.0, 92 € €>(C) supported
in Sout(1/2) with at most logarithmic growth as |z| — oo and ||Vga|lee = O(N'88N)  Let f be of class
€>(C) with at most logarithmic growth as |z| — oo and |V f(2)| < ¢(1 + |z|)¢ for an N-dependent constant
c. Then, for any D > 0,

1 1
logE[eEi(f"Fg)(zi)] :logE[eZif(z /Vg fsdm_ki/ |Vgs\2dm—|——/Agdm

1
+f/gALdm—8—/ gN(L)ds+ N gduv—|—/ En(f +tg,g1)dt + O(N~D).
a8 0

The error term is uniform in g1, g2 and f.

Observe that if g, is compactly supported [¢ gALdm — [, gN(L)ds can be replaced by [ L°Agdm.

Proof. We define Fy(h) = logE [eX/+], X}, = 3. h(z) — N [ hdpy for any function h. Equation (2.16)
together with (2.17) applied to f + tg and g, substituted into f and g respectively, gives

d 1 t 1
&FN(tg) ]Ef+tg [Xg} :7/ngVdem+4f/ |ng\2dm+8—/Agl dm
C TJs

1
—&-—/glALdm—s—/ GN(L)ds +Eppyy [ Xy, + En(f +tg,91) + O(N7P).
oS5

In the integrals on the right-hand side, each g1 may be replaced by g, as the support of g — g1 = g2 lies
entirely outside of a neighbourhood of the set S. Thus, we only need to prove that

Efiig [ng] = O(N_D)~

This follows easily by the exponential decay of the one-point correlation function outside the droplet S, i.e.,
Lemma A.4.(ii). O

2.4 Fluctuations. The following central limit theorem is a quantitative extension to mesoscopic scales
of the main result from [6]. The proof follows the same path, with (i) Johansson’s idea to reduce Laplace
transform estimates to a shift of the density of states [54], (ii) the Ward identity, (iii) estimates of the kernel
of the determinantal point process as an input.

The main differences with [6] are the following: for the error estimations in step (ii) we need an isotropy
result for general potential, i.e. Lemma 2.14, and for step (iii) we need kernel asymptotics when the external

potential is perturbed on a mesoscopic scale, a technicality proved in Appendix A similarly to the macroscopic
case [16,6].
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Proposition 2.7. Let 0 < k < 1/2, C > 0 be fized constants. Then, uniformly in f € S ¢ x, we have

E [er’zlf(zi)} — NS Fduvgs [ (V5P +1sAf+LSAf ) dm (1 4 O(N*"”"/lo)) .

For the proof of this proposition, we apply Proposition 2.6 for g and f substituted by f and 0. This
yields the desired result provided that

En(tf, f) = O(N~*/10) (2.18)

uniformly in 0 < ¢t < 1. We now prove the above estimate, only for ¢ = 1 to simplify notations (uniformity
in t of the following estimates is easy to check). Note that by linearity of &y in the second coordinate, it
suffices to prove the error estimation (2.18) for &y (f, g) uniformly in g or type <% , for a 7 € [N~1/2+% 1].

We now prove &y (f,g) = O(N~"/19) holds in the following sequence of Lemmas 2.8 to 2.10, which
conclude the proof. We only state the lemmas for ¢ = 1, naturally the proof extends to any 0 < ¢ < 1 and
the error estimates are uniform in this parameter range.

Lemma 2.8. Let C,k > 0, f € S0, and g € 95 for some T € [N=1/2+%5 1], Let h; be as defined in
(2.14). For any e >0 and i =1,2,3 we have

B / hidf djix| = O(N—"+) (2.19)

where the implicit constant is independent of f, T and g.

Proof. Recall the definition of function 7 from (2.14). By Lemma 2.5 hy, hy and (h3 —r) can be decomposed
as g—f/ + ¢ where p € %% ¢, and ¢ is supported in Soy4(1/2) and uniformly Lipschitz with Lipschitz constant
depending only on S. By Lemma A.4.(ii), the contribution of ¢ is easily subpolynomial. Thus, it suffices to

prove the estimation for 2—%’, when p € o7, for some 7 € [N~1/2+% 1].

Ey| f—@afdﬁw}z f—@af(N—1KN<z,z>—pv<z))dm(z>,

where we used the notation from Theorem A.1. From this theorem, for z € Siy (8 ), we have |(N 'Ky (z, z)—
pv(z)| < N1 SUPR(2 255 ) |V2f] < N~2#1og N, because of f € %3 ¢,. We therefore have

op
E / 20 djin]
! |: Sin(dn) AV

KT¢& K€ vp2 —4KkTE
—2 /| of|dm —2et /S(|AV||2+|W|2)dm<N Zrte (2.20)

where we used the easy estimate fS |Vf|?> < nClog N for any f € #3.c.,. The contribution from z € Sou(dn)
can be bounded easily with Lemma A.4.(ii), which gives

I~{N(z, z) < exp(—c(log N)2)

for all such z. Finally, for the domain z € Seqge(dn), note that by Lemma A.4.(i) there exists a universal
C > 0 such that _
KN(Z’ Z)

<C.
N <¢

This gives, using a shorthand notation K for the function K N(z,2),

gp I~<N
192 a5 | BY oy lam < / 122 ot am < N+ (2.21)
/k;'edge((SN) AV N Sedge((SN) AV

because % is O(1/7) on a domain of area O(7dy), and df is O(N'/2~%1og N).
Thus, it only remains to show E;[[ rdf dfin] = O(N ") the following to complete the proof of (2.19).
This follows the same argument: On S,y (dx), it’s again subpolynomial and at the edge, the calculation is

identical to (2.21). O
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Lemma 2.9. Let C,k > 0, f € S0, and g € 95 for some T € [N=1/2t5 1], Let h; be as defined in
(2.14). For any € > 0 we have

o [/ahl + Oy + Ohs d,zN} — O(N—"F%)

where the implicit constant is independent of f, T and g.

Proof. Recall the definition of function r from (2.14). We have

Ohy + Ohs + Ohz =

Ag (5g+8L 0g_0L 5908L> or
AV \Avia TAviE T AV

on C\ 9S where L = log . We prove that each term in this sum yield to a negligible integral. All terms
except Or can be treated i 1n the same way as in the previous lemma. Starting with the first term, we write

Ag Ag —17z
/ diiy / o (N Ky — pv) dm. (2.22)

On z € Siu(6n), the integral is O(N ~=2%+¢) by Theorem A.1. On z € Syt (), the integral is subpolynomial
due to Lemma A.4.(ii). On Seqge(dn), the integrand is O(1/72) and the integration area is 76 which gives
O(N~"%¢) bound.

By Lemma 2.5, each g, g, go can be written as p + ¢ where p € .%5 ¢, and Lipschitz ¢ with supp(q) C
Sout(1/2).  The contribution of ¢ is easily subpolynomial. Thus, it suffices to consider the following
expectation for p € %, with 7 € [N~1/2+% 1]

OpdL OpOL

By AV/4dMN}: AV/4

(N_lf{N - pv) dm(z). (2.23)
By the same way, it follows that this term is O(N~").

Lastly, r admits a similar decomposition by Lemma 2.5. For the term E[[ dr dfin], the integral over
Sout(dn) is already subpolynomial, while the contribution from Seqge(dn) can be bounded in the same way
by O( M). 0

Lemma 2.10. Let C,x > 0, f € 3.0, and g € o5, for some T € [N~V2T5 1], Let h; be as defined in
(2.14). For anye >0 and i = 1,2,3 we have

N hi(z) = hi(w) N—r/1
5 / / I fin (d2) i ( dw / Oh; dpy = /10) (2.24)

where the implicit constant is independent of f, 7 and g.

Proof. We begin with proving that E¢[N ff#w Mdm\;du]\;] = I(r; C,C) is negligible where we define

z—w

rrap) - [ [ e ((KN}V’? 2 (B ) - 'RN(N“))'> dm(w)dm(2).

Recall the r = g+ > r, decomposition from Lemma 2.5. By Lemma A.4.(ii) I(g; C,C) is subpolynomial. For
I(r; C,C), again by Lemma A.4.(ii) when either of z and w is in Sou(dn), the contribution to the integral
is subpolynomial. Then there are two remaining cases: z,w € Sedge(dn) and z € Seqge(On), W € Sin(dn).
Recall that by Lemma 2.5, r; is a contlnuous function that is 0 on S, supported on a ball with radius 73
and supc, gg |Vr| < —-; which implies |ry| < on Sedge(ON)-

If z,w e Sedge(5N), we rely only on the bound Kn(z,2) = O(N) from Lemma A.4.(i). Therefore,

|1(ri: Seage(0n ), Seage(0n))| = N / / "L 6 (1) dm(2)dm(w) = O(Nx Tog N) / I (2)[dm(2)
ed<re(5N)2 |Z - 'LU‘ Sedge(éN)
3
_ O(N(SN logN) — O(N—K-‘rs).
Tk

19



If 2 € Sin(dn), w € Sedge(dn), using Theorem A.1 for z, we obtain

(W SUPB(2,26 5 V2| _ Ky(z, w)|?
10 Sin(8): Sease )| = O [[ g :(12:0( e VI sy, NGO 4y,

WESedge (ON)

The contribution from IKNI(V% can be bounded by the reproducing property (A.1) as follows:

//Zesmw, :Zk_ Uz: LSYERD] dm(z)dm(w)ZO(NlTl?) [ o ReGwPanEan)

weSedge N wESedge(‘;N)msupp(r)

1 ~ N _
:O—/ Ky (w, w)dm(w) = O(=) = O(N~"*¢).
( Nr,f) S N (w, w) dm(w) = O( Tk) ( )

Moreover, as f € .5 ¢ ., it can be written as ZkClogN fe where f; is supported in a ball centered at
2, with radius 7, and smooth on that scale for some 7 € [N~Y/2+% 1] i.e. |[V3f|| < (7/)7%. Note that for

each £ we have supp, o5, [V fe| = O((TI#ILB(%QTD(z)). So, the contribution from % will be
bounded by

[ (w)]
/ﬂes,n(aNmB e |l dm(z)dm(w)

WESedge (ON)

(SN logN
- Z 2€Sin (53 )NB( 25,27’[

WESedge (ON)

62 (log N)?

m(z)dm(w) = O(=————) = O(N™"). (2.25)

wl

Lastly, the contribution from N~3/2 is easily seen to be O(N~'/2§y/72) = O(N~*). This completes the
proof of negligiblity of E¢ fo MduNduN]

We now proceed to proving (2.24) for hy, he and (hg — r). By Lemma 2.5, it suffices to consider
I h(z h(w)duNduN] when 7 - h € %4, and supp(h) C B(zo,7) for some 7 € [N~V2+5 1], 25 € {2 €

(C dlst(z S) < 2}
We rely on a multiscale decomposition idea from [41] which was used for two dimensional Coulomb gases

n [12,13]. Let ¢(z) = e~ 17 1ts easy to verify that

2 z—& w—¢ _ _%
7r/(Cgp( ; >gp(t> dm(€) = t%e , (2.26)

/noo (i/c‘p(tg)@(wt_f) dm(E))iZﬁ. (2.27)

Let 7 < 7 be some small fixed parameter to be chosen. From (2.26)-(2.27), for any function h we have

B |3 [ M i i )] = Batn) + Bl
where

B =5 | ] . M) 5 a ) ). (229)

N / e [ // ;w 0 ( - ) 0 (“’tf) (h(z) - h(w))(m)dﬂﬂz)dﬂwu)} m(a) &

To bound Fs we use the measure cancellation due to iy, i.e., the explicit uniform bounds in Corollary 2.12.

Ba(n, h) %’fi /n h /C E; { / wi(2)djin (2) / vz-(w)dﬂN(w)} m(df)%

20



where

w@ =¢ (35) 06 - HOE=D, nlw) =¢(“75),

()= (575 ) - hO) wtw) = ¢ (“T) €0

With a negligible error, we can assume that the function ¢ is truncated so that it’s supported in B(0, (log N)°&1e V),
Thus, the integration region for & can be restricted to B(zo, T + t(log N )log log Ny - Moreover, note that the
contribution from ¢ > N' is negligible, because | [uidjin| < [|uill < ¢ and similarly |fu2duN|
| [vidiin] S 1, | fvedfin| S t. This leads to a negligible contribution of order N [y, ¢ ~2dt.

On the other hand, by Corollary 2.12 we obtain

N o N o
| [udanl < N5 o] < N | [ udig] < N5 [ eadin] < N

with probability greater than 1 — e * with respect to the unbiased measure for every ¢ and & (¢ is

an arbitrarily small positive constant, that may change line-by-line). Uniformity of these inequalities in
t € [n,N'°] and ¢ € B(zo, N'°) can be argued easily by a grid argument. Moreover, by Corollary 2.13,
the same inequalities hold with overwhelming probability with respect to the biased measure. Thus, the
contribution to EF5 becomes:

N10 9 Cte
. ! dt o N
N 1+8/ﬁ (v 7)°—dm(§) 55 < N7 + .
We now choose ¢ < £/100 and 5 = N~1/2+#/15,

To bound F;, we do not only use the measure cancellation due to fix and rely also on some phase
cancellation of the kernel first, which follows from Theorem A.1. We write the Taylor expansion for h first.

M2 = 2W) _ o2y + 0n(z) 2 *Z +0(]z — w)).

Z—w zZ —

The negligibility of the contribution from O(|z — w]|) to E; follows by

NEy [/ |z —wle ‘z;n“z’l? (dﬂN(z) + pv(2) dm(z)) (dﬂN(w) + pv(w) dm(w))}
KN(z,z)/N KN( w)/N

Lz—wi?
§N//|z—w\e 27?7 det KN(w 2)/N KN( w) /N

+N//|z—w|e s KNZZ)dm( dm(w +N//|z—w|e ES5E () dm(w).
(2.29)

dm(z)dm(w)

Using Ky (z,2)/N < C by Lemma A.4.(i) and the decay of Kn(z,2) as |z| > 1 by Lemma A.4.(ii), we
obtain that the expression above is bounded by Nn3.

On the other hand, the contribution from 0h(z) to E; can be bounded similarly to Es using (2.26),
except the fact that we get a deterministic extra term % J dhdpuy due to the diagonal terms. More explicitly,

_ \sz\Q
substituting (2.26) into JE¢ [ff#w Oh(z)e” 27* djindfiy] we get that it’s equal to

o [foon

The first term can be bounded similarly with Ey(n, k), by & 7 T2 N

stands for the area of the integration region for &, Ljs

5) djin (2 )/(p (“’;5> dﬂN(w)} dm(¢ Ef [Zah 2] (230)

1+s
N—1+e = N—26/15+2¢ where 12 factor

and NV *HE factors stand for the normalized centered
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linear statistics terms respectively. The second term can be evaluated easily as —% J Ohdpy up to a negligible
error, by Theorem A.1 and Lemma A.4:

1

NEf[ h(z)] /ahdw_/ah ——pv)dm( )

=o(N7Y) + /S Lot yam + / L o()am = o),

iH((SN)msupp(h) T Sedge((sN)ﬂsupp(h) T

Lastly, we finish the proof by discussing the contribution of the term 5h(z)§:g (n,h). By the
isotropy lemma, i.e. Lemma 2.14, the combination from djiy(z)dfiy(w) can be bounded easily:

SB[ [ eIt S i x| = o) (231)

2 zZ—w

as ||[720h|| < 1. Secondly, the dfin(2)dpuy (w) integral can be bounded as follows,

~

*Ef [/8}’ /Sz_w _|z2”1g‘2 dpy (w )dﬂN(Z)}

N 3 Fow gl - z2))dm(w)diy(z
~ N, [/Sm(nlogmama / ( e T (o (1) — py () dim(w)dfin )]

2 zmlogN) # — W

> T z—w|?
/ oh(2) / 270 T iy (w)dfin (2)
Sin(nlog N) S\B(z,nlogN) # — W

N
—E
+2f

N
—E
+2f

N 3
:O(Tn) < N~*/? (2.32)

/ (=) (i (2) + dpy (2))
in(nlog N)©

which can be eXplained as follows. The first expectation in the right-hand side O(Nn37% %) = O(N ~1/2F+/3)
K(z 2| 4+ |&Y(z) | = O(1); because the integral over w is O(n?®) and |0h| = O(1/72) with the area of

|2 —w|2

integration region is the support of h which is O(72). The second term is subpolynomial due to the e~ 27
term. The third integral is subpolynomial when evaluated for z € Sout(dn) due to Lemma A.4.(ii), and the
integral on the edge layer Seqge(nlog N) is bounded by N(n7)-5n? by Lemma A.4.(i).

using |

The only term left is the integral with djiy(w)dpuy (z), which gives

3 LB [0 0 St )] a2
o / o) [ ZEESE () + OV log ) dmu) (2
Sin (1)

z—w _l—w? Ky(w,w)

+ = ah(z)/ e 2 ———~dm(w)dpy(z)
2 J$\Sim(nlog N) Sin(m)e Z — W N
N = Z—w _l—w? Ky(w,w)

Y h(2) / o~ B w) 4y (2) (2.33)
2 Sm(n log N) Sm(n)c z-w N

where we have used ‘RTN(Z, 2)—pv(2)| < N~%%log N in the bulk. The third integral is subpolynomial due to
the exponential term and Lemma A.4.(i). The second integral is bounded by N(rnlog N)Z5n* < N—%/2 by
Lemma A.4.(i). On the other hand, in the first integral, the contribution of O(N~2*log N) will be bounded

_lz—w]

by Nn>N~2%1og N which is negligible. The only term left is & fs oh(z me Z=®e™ 20 dpyduy. This
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can be easily bounded using the rotational symmetry as done above, more explicitly it’s equal to:

N Z—w _lz=w?
N on(z) [ e T (py (w) — pv(2))dm(w)dpuy (2)
2 Jsw(2n10g N) B(zmlog N) # — W
N Z—w _lz—wl?
+ = Oh(z / e 2 py(w)dm(w)duy (2)
2 JSi(2n1og N) Sin(M)\B(z.nlog N) # — W
N _ — == wF
T on(z) [ ISR ()i (2
2 edge(Qn log N) Sin(n) Fow
) 1
= O(Nn®) +o(N~1) + O(N(rnlog N)=n?) = O(N~"/2).
T
This completes the proof. O

2.5 Concentration of linear statistics. We provide a uniform exponential tail bound for the centered
linear statistics of sufficiently regular functions which implies the stability of overwhelmingly likely events as
will be discussed at the end of this subsection. While Gaussian-type bounds for general inverse temperature
B are available in the literature (see e.g. [73,12,90]), we opt for a simple, self-contained argument relying
only on the kernel estimates from Section A. In contrast to the cited results, our approach treats the edge
without difficulty, allowing us to cover the bulk regime in our main Theorem 1.1 up to the mesoscopic
distance N~/2** from the boundary.

The proposition below highlights the essential role of the isotropy lemma, Lemma 2.14, in exploiting
angular cancellations to achieve o(1) estimates. In fact, if we only aim for an error of order O((log N)°), the
kernel estimates alone suffice as follows.

Proposition 2.11 (Uniform Exponential Tail). Fiz C,k > 0. Then there exist Ng = No(V, C, k) such that,
for every 1o € [N~Y/24% 1] 25 € C, and f € 3 5, with supp(f) C B(z0,70),

logE [e'*7] < (log N)" for all [t| < Clog N and N > N,
Consequently, P (| Xs| > t) < eosN)' =t g E[|X/|] < (log N)7 for allt >0 and N > Ny

Proof. Tf zg € Sout(270), then the result follows easily by Lemma A.4.(ii). If zg € Sin(279) it follows easily
by Theorem A.1 as follows. As in the proof of Proposition 2.6,

o) X = 1 st s = ' (K z,z—N#z,z m(z)ds
logB(er) = [ Buyitxslds = [ [ 50 (Rovz,2) R 2))dm(2)d

= O(logN)/ max |Ky(z,2) — R%(@zﬂdm(z)
Sin(70) SE[O 1]

where we suppress the dependence on s in the notation of the kernel corresponding to the st f-tilted measure
Ky. By Theorem A.1, the integral is O(log N), hence the bound follows. Thus, the only remaining case
is 20 € Sedge(270). For simplicity, we can assume that zo € 0S5, because there exists a z; € 95 such that

supp(f) C B(z},370) and || f||3,3r, < 1.

By Proposition 2.6, it suffices to show that max,e(0,1) En(tf, f) < (log N)7. Lemmas 2.8 and 2.9 remain
valid, as their proofs do not invoke stability. The only modification needed is in the proof of Lemma 2.10.
By Lemma 2.4, it suffices to show the following for any 7 € [0, 1], continuous h with supg, 55 [VA| < % and

supp(h) C B(z0,7),
vedff PE) 1) 7 (@2) ()] = O((1oz V1)
Let H(z,w) = %Z)(w) The left-hand side equals to I(C,C) — J, where we define
14,5 =N [ [ #w) (B = o) (B - o 0)dmw)an(o),

J= N//H 'KN B P o w)dm(2).
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The term J can be bounded easily using the reproducing property of the kernel (A.1) and Lemma A.4.(i),
as follows:

2 ~
<o ff N ol B 4 )am(e) = o(-L) I/ o TRt )P ()2
_ o(NLTQ) /EB( )RN(Z, 2)dm(z) = O(1)

where in the first line we used that H(z,w) is 0 when both z,w ¢ B(zo, 7).

We now turn to the integral I, which will be analysed according to the locations of z and w. When at
least one of the variables z and w lies in Syut(dn), the integral is already negligible by Lemma A.4.(ii), in
particular I(Sout(dn), C) is subpolynomial. Thus, it remains to consider the three remaining configurations
where z and w belong to Sedge(dn) or Sin(dn).

First case: If z,w € Seqge(0n). We rely only on the bound Ky = O(N) from Lemma A 4.(i):

T(Seage(53), Sedge (6x)) = N / / . ‘Z M@ 6 (1) dm(2)dm(w) = O(Nox log N) / Ih(2)[dm(2)

w| Sedge (0N )NB(20,7)
= O((log N)%).

Second case: If z € Sin(0n), W € Sedge(dn). Using Theorem A.1 for z, we obtain

log N _
I(Sin(0x). Seage(0x) / / s, HE10 (T n a0y () + N792)dm(z)dm(w).

wESedge(5N)
Note that

1 1 1
N / / 8y, (20 dm () dm(u) = / / B, T ()

wGSedge(ziN) wGSPdge(éN
2
oy log N
TT0

= O( ) =o(1),

and the contribution from N~3/2 is easily seen to be o(1).
Third case: If z,w € Sin(dn). By Theorem A.1 applied to both z and w, we have

)‘(lo g N

I(Sln 5N 1n 5N )
log N
—3/2 —3/2
G2 N2 1B(z9,2r0)(2) + N )( N2 5 1B (20,270 (W) + N )dm(z)dm(w).

o fJ,

We estimate the contributions from each terms as follows:

1 1 1
N// |H(z,w)|— —=dm(z)dm(w) = O(—=) = o(1)
(Sin(83)NB(20,270))? N7§ N7§ N2

and
O() / / o I 2 am(w) = O( ) = o),

concluding the proof. O
By Holder’s inequality Proposition 2.11 implies the following corollary.

Corollary 2.12. For any C,k > 0, there exist No = No(C, k) such that, for every f € S5 ¢,
logE [e"X/] < (log N)" forall t € [-C,C] and N > N,

Consequently, P (| Xf| > t) < eoe M=t gng E[|X/|] < (log N)7 for allt >0 and N > Ny
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By stability we mean that an event A with overwhelming probability, P(A) > 1 — e~ (log N )D, remains
overwhelmingly likely under the biased measure Py given by Pr(A) = E|[1 A];:—Xff], Xy = >, flz) —
N [ fduy. Using Cauchy-Schwarz and Jensen’s inequalities, the results in this section yield stability for
73 ¢, biases. We record this as a corollary for ease of reference.

Corollary 2.13 (Stability). Fiz C,k > 0. For every f € /5 ¢ x, if an event A satisfies P(A) > 1—e—(ogM)”
for some D > 10, then Py(A) > 1 — e—(og N)P/2.

2.6 Local isotropy. In the Lemma below, we define (2 — w)/(z — w) =0 for z = w.

Lemma 2.14. Consider a fixed small parameter k > 0 and let 6 = N—zts, Then, for any D > 0, there
exists an Ng = No(k,D) € N such that for every T € [N7V2T15% 1] 2y € C and continuous function
g : C = R satisfying supp(g) C B(zp,7) and ||g|lcc < 1, we have

Zi— 7 _lmol?
P Z g(zi); — 27 e | > AN | g e lea M) (2.34)
1<i,5<N v

for all N > Ny.

Note that if no cancellation were expected, with overwhelming probability, the number of indices ¢ with
lzs—z;12
52 = 1 would contribute

Zq Zj —_
Zi—2Zj

g(z;) < 1 would be < 72N. For each such i, the sum over j’s for which

about N2*. Consequently, one would expect the total sum to be on the order of 72N1*2%, The lemma above
shows, however, that angular cancellations occur and the apparent leading contribution is substantially
reduced. Some angular cancellations were also instrumental in [73,13], in which isotropy was obtained
differently from partition function asymptotics, for arbitrary inverse temperature. The above lemma is
specific to the determinantal setting, and the proofs proceeds very differently, to cover cancellations up to
the edge of the droplet, and for general biased measures.

Proof. The proof follows by four main steps.

First step: reducing to the bulk. Let x be a smooth bump function that is equal to 1 on S;,(2N2%§), and 0
outside Si,(N2%§). We first consider the sum

Y 91— x(=)

1<4,j<N

— 2
2 — Zj _‘Zi*;j‘
e 5

zifzj

Note that Seqge(2N%%0) can be covered by < (N?%¢)~! many balls of radius 4N?*§. Applying Proposition
2.12 to each ball and using a union bound we obtain that, with overwhelming probability, the number of
particles in B(29, 7) N Sedge (2N 2%6) is bounded by 7N 1/2+45 - Again with overwhelming probability, for each
particle z; in this outer ring, the number of z;’s inside B(z;, N*4) is bounded by N™*; because B(z;, N*4) is
a subset of union of O(1) many balls of radius 4N2%§ constructed above. This leads to a rough upper bound
TN/24115 which is smaller than N'=2%72. On the other hand, the contribution from z; with dist(z;, S) > &
is already negligible by Lemma A.4.(ii) and Markov’s inequality.

So, it suffices to prove the equation (2.34) when g is replaced by gx. For notational simplicity, we will
henceforth write g in place of gy.

Second step: grouping and centering. Consider £ = (26N*Z?) N B(z9,7) N{z € S : dist(z,d9) > N?74},

¢ =1|.Z|. Let . be the set of squares with vertices w+JN" +i0N", where w € Z. For any o € . we define
W—Z _lw—z?

Xa: Z fa(ziazj)7 fu(w7z):g(w)w_ € g 1

1<i, <N

wEa]l\wfz|<6N"/2'

We have the deterministic estimate

> |z —2412 K
Z g(zi)zZ e Z X,| < N2e ™V

o — .
I<i,jSN ‘ J acs
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so we only need to prove that, under the same hypotheses as Lemma 2.14 we have

P(ZXa

acs
Denote the centered X, by Y, = X, — E[X,]. Note that for any a € .,

> TZNl—,»c) < e—(logN)D-

W—7 _lw=z?
E[X,] Z//g(w) e~ o2 ]lwea]l‘w,ZK(;NN/zpéN)(z,w)dm(z)dm(w) (2.35)

w—z

where ,oéN)(z7 w) = Ky(z, 2)Kn(w,w) — Ky (z,w)|? is the two-point correlation function. Using Theorems

A.1 and A.5 with the Taylor expansion in (A.6) we can write
N2

péN) (va) = ?(({95‘/(11)))2(1 _ e*N\wa

2 AV (w)
2

) + O(N3/2+2m)

when both z and w are in {¢€ € S : dist(¢, ) < N~Y/2+25} with |z — w| < N~Y/2%2%_ Due to the rotational
symmetry of the integrand (over the variable z) in (2.35), this leads to a rough bound

E[X.] = O(N3/2+25(6NK/2)2(5NH)2) _ O(N71/2+9K).

Thus Y E[Y,] = O(N~V/2H9%|.7|) = 72N1=# O(N~1/2+6%) So, given x < 1/13, it suffices to prove

P(ZYa

acs
Third step: decoupling. For a given exponent p > 5 (possibly N-dependent) we expand

> T2N1*”~> < e~ (os M) (2.36)

2p)! —qa o
Ell D Yol = 2 H(p)HE[ [IREREENEDY > E[[[vi-va]).
aes ParGa>0,0EF, aey Pafar = 1 ICS, 3 crPa=>2 qer 4a=P, acl
agypazzagy da=P [I|<2p Patqaz1,
Pasqa =0
(2.37)

To bound the above expectations, we now consider a given I C . and exponents p,+q, = 1. Let G be the
graph with vertices I and edges {{w1, w2} € .7 : wy and ws are distinct and adjacent horizontally, vertically,
or diagonally}. Denote I = UE(ZII) I; the decomposition of I into connected components for G (c¢(I) is the
number of connected components).

For any i, denote m; = |I;| and n; =23 c; Pa+a- Let O, (resp. ©F) be the set of r-tuples of elements

(resp. distinct elements) in {z1,...,2n}. We expand
o ) ) Po Patqa
[[yeve =3 9 with fO@) = [T | T[] fa® ™) ] falwi® ) (2.38)
a€l; ZG(")ni a€l; k=1 k=pa+1

where we have decomposed z = (w(®),2(*)),c;, and w(®,z(*) have length p, + qo. Let d(w) be the number
of distinct eigenvalues appearing in the tuple w. Equation (2.38) implies that if we define

19 (2) = ) 79 (w),

WE{z1,0eeze } 7, d(w)=r

[[yeeve=> > . (2.39)

a€l; r<n; z€O}

then we have

This expansion over r-tuples of distinct eigenvalues allows to write expectations in terms of correlation
functions. Note that there is a constant C' > 0 depending only on p such that ||£\”||e < C. Moreover, f."
is supported on the §N*/2neighbourhood of (Uaer, )", so that if £ (z) # 0 and £ (w) # 0 or i # j, then

26




the minimal distance between points from z and w is at least N /2. In particular the supports of fr(i) and
f& ) are distinct so that

(1) c(I)
H Z Z fr(L)(Z) = Z Z g’/‘l,mﬂ"c(z) (Z)’ where ng,m,Tc(I)( ) H f(z) (ZT )
i=1r<n; z€O; ri<n; zf:'@rlJr ren i=1

Here, we have decomposed z = (z,,, ..., Zrcu)) with z,, € ©7,.

Moreover, by definition of the correlation functions we have

— (N)
2 T o) = [ i @ @), (@0

1t rer

When gy, o (z) # 0, as mentioned before the minimal distance between z,, and z,, for i # j is at least
SN" /2, so that, using Theorem A.5 and assuming p < (log N)'°81°8 N we obtain
(N) _ .
Pri+- +7‘C(1)( ) - > T?Stz: i KN(Zu Z])
c(I)
= H det Ky (zr, (i), 2, (7)) + O | PIKn (%~ max = |[Ky(z,w)

Tk XTk [z—w|>N"6/2,
|z]lw|<1-46

_eN2F
= pN () o) (2,) + O (7). (2.41)

From (2.40) and (2.41) we have

c(I)

SIS 5 w0 = (ITe] £ ] vo ()

i=1r<n,; z€O} TN Zr, GO*
c(I)
7CN2K/
=1IE[ > > £ -
i=1 r<n; z€O}

With the definition (2.39), this means that there exists Ny > 0 such that for any p < (log N)'°&le N N > N,
IC Y and ) c;Pa+ qa = 2p With po + ¢a = 1, Pa, g = 0 we have

c() (1)

E{H II Yé)a?ﬂ H]E[ I vi-v qa} +O< _chﬁ)

=1 a€l; acl;

Fourth step: counting and Markov. We can now estimate the right-hand side of (2.37). First, observe that
the contribution of I’'s with ¢(I) > p is zero. Indeed, for any such I, there exists ¢ € [1,c¢(I)] such that
I; = {a}, and (pa, ¢a) = (1,0) or (Pa, ) = (0,1). Due to the centering, we already have E[Y,] = E[Y,] = 0,
which forces the entire corresponding term in the sum to be zero.

For any I such that c¢(I) < p, we simply bound |X,| < [{2; : d(z;,a) < dN*}|? and E[X,] < N®~.
So, by Corollary 2.12, we have ‘]E[Hael Ype Yq“]‘ < NP5 For any I C .7 satisfying |I| < 2p, we have

H(Pa»da)acr i PasGa = 0,2 qcrPa = D ner Ga = P < p™. The contribution to (2.37) is therefore bounded
by p? NYPrp™[{T C .7 |I| < 2p,c(I) < p}| < p'OPN'TP%|.7|P(18p)% < p'oP72» NPUHIS) for any p > 20.
In sum, we have proved that for any 20 < p < (log N)'°&1°e N we have

< p15p7_2pr(1+13r€) ,

acS
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so by Markov’s inequality

(5>

acs

2N1 l<a> ngplon

where we have used p < (log N)°81°¢ N For fixed x, D > 0, the choice p = (log N)P/(10x) concludes the
proof of (2.36) and the lemma. O

3 SINGULAR POTENTIALS

In this section, we prove Laplace transform estimates similarly to Proposition 2.7, but now with logarithmic
singularities. The approach contains key modifications compared to the previous section, in particular a
decoupling of local singularities and a comparison with a reference model, the electric potential for the
Ginibre ensemble at ¢ = 0. At a high level, this section mirrors a method initiated in [21] in the context of
Fisher-Hartwig singularities in a space-time setting.

3.1 Regulam'zing and localizing log-singularities. Recall the logarithmic regularization log, = log | -

| * W defined for e > 0. We begin by noting that the root-type singularities in Theorem 1.1 can be

replaced by their submicroscopic regularizations. Indeed, compared to [21,62] the submicroscopic smoothing
is considerably simpler for two dimensional Coulomb gasses. Owing to the subharmonicity and harmonicity
properties of the logarithm in 2d, there is no need to invoke Hua-Pickrell type kernel estimates as in [21,
Lemmas 2.4-2.5] or to use change of variables, see [62, Proposition 6.1].

Proposition 3.1. Let C > 0, m € N, a,x > 0, A = N-V2-o f ¢ 3.0k Y5+ Ym € [0,C)] and
Ciy-o o5 Gm € Sin(20n). Then

E [T +27 v Iogff)] :E{eTr(f-&-Zg’;lw 1og§)}(1 +O(N"2)).

Proof. Because x is radial and log is subharmonic, logn > log, which proves one side of the proposition.
For the other direction, note that log, = log outside B(0, A) due to harmonicity of log. Defining the set
G = {there is no eigenvalue in U2, B((;,A)}, we can write

]E[GTY(f+Z_§":mj 1ogif>] < ]E[e'ﬁ(f+2_;”:1%' log%)} +E[eﬂ<f+z;f;nj tog ). ]

Moreover, using the estimation on the one-point correlation function in Lemma A.4.(i) we obtain

E [eTr<f+z;f';1 i logd ) gc}

_ =K . ¢ |Lge é/ RN(z,z)dm(z):O(N72a)
E[eTU T 11063 et 191 S o

which completes the proof. O

Fix k > 0, § = N~%/2%% (¢ € C and let x be a smooth bump function such that y = 1 on B(¢,1) and 0

outside B((,2). For any ¢ € Si,(dn), one has Xlogg € Yc,x for some suitable constant C' (depending only
on S). This follows from the multiscale decomposition:

IOgé z = Zgn y In(z 1Og6(2 - C)Xn(Néiﬂz <),

where 1 = Zn>0 Xn is a partition of Ry, o is supported on [0,2], X, is supported on [27~1 27F1] and

HX(p)”oo < Cp27™ for m,p 2 0. It’s straightforward to verify that g, € &/cson for some constant C'. Using
this decomposition for indices n such that 2" < ¢ yields the desired result Xlog 3 € SCon
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Proposition 3.2. Let k,a > 0 be small, C > 0, m € N be some fized constants, A = N~/27% gnd § =
N=Y2H5 /3. Then, uniformly in f € F5.co, Ciy- -y Cm € Sin(N™Y2H5) satisfying mingz; | — (| > N~1/2+#%
and Y1, ..., Ym € [0, C] we have

m

]E{ezgil F(z1) H eI logA(zifgj):| — NI (45, 108y Jduy ik [ (IVF5P+1sAf+L5AF)dm

Jj=1
m m 2
. s g .
% H 6”73(]85 fdw°°—f((7 H 84 log 5.v(21ogd —logy?)S dm+ 4 (14+L(¢;)— L5 (c0))
j=1 j=1

[H EiLi (08 ~los;) Z1:|H|<J Gl e Wﬁ<1+O(N*H/10)).

J#k

Proof. We begin similarly to the proof of Proposition 2.7, with the exception that we remove only the
function f and the mesoscopic contributions from logarithmic singularities using Proposition 2.6. More
explicitly, let x be an order 1 bump function that is equal to 1 on S U Seqge(1/2) and 0 on Sou¢(2/3). Then

Fa=30 ’Yj(lOgCAj —logg’) and g := f + 37,7, loggj substituted into f and g respectively (with g1 = gy,
g2 = g(1 — x)) in Proposition 2.6 yields

log E[ezi(F+g)(2i)} = log ]E[ezi F(Zi)] +T(f) + Z ~v; D(f, long) + Z v F(long) + Z '7;2 F(loggj , 1Ong)
j=1 j=1 j=1

+) 7 D(log® , log) +N/gduv+/ En(F +tg,g1)dt + O(N~D)
J#k

where

D(f) = / (V52 +1sAf + LSAf)dm

1

81 C
1 .

D(flog") = o [ V% (1og) dm,
47 C
o1 1 | 1 .
I(log®) = Alog({ dm+ — [ logy’ ALdm — — logs’ N'(L)ds,

8 s /s 8

I'(log%,log" ) = /V logg (210g logéj)s dm,

1 , .
I'(log®, log®* /V (log§’)® (log ) dm + & / V(log§)® - V(log% —logg’ ) dm.
C

We now evaluate each term one-by-one. I'(f) is already in the desired form Recalling the definition of the

harmonic measure w® given in (1.6) and the fact that A(logi) 2 I'(f,10g%) can be simplified

HX H
easily as follows:
1 .
I(f,log®) = / Vi Viogd dm+4— VfS-vaogg)Sdm
Sc
1 (1 $iVS | e
as 4 d(—n)
/ fdw™ + O(NT™).

Next, for I'(log®) term, we begin by establishing the analogue of (2.17), accounting for the non-compact
support of the logarithm. We denote L°(c0) by L5 and modify L to LS — L5 so that Green’s identity can
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be applied on S°¢:
/(LS — L3 )Alogy dm = /(L — L) Alogy dm +/ ((LS — L3)Alogy —logd A(L® — Lfo))dm
C S Se

. 8log<j - OL 810g<j 0L ge
— 1 i AL L_LS ) —1 ¢ Y& / L_LS ) —1 Cj
,/S 0gs dm + /35 (( oo) on 0gs an)ds + 95 (( oo) a(in) 08 a(in) )dS

= / logy ALdm — [ logy N(L)ds.
s as

¢
Substituting A(logi) = 271 —XA again we obtain that

HXA ”Ll

1 . 1 . 11 Con
I(log%) = 87(/Smogg dm + — /C(LS — L5 )Alog§ dm = 1+ 1) - L) + O(N Y2,

We leave the I'(log®,log®) term as it is. So, the last term we consider is I'(log®,log®*). The calculation
of this term relies on the fact that the singularities are separated on a scale greater than the mesoscopic
log-regularization. More explicitly,

1 1)

1
Vlogk log —log¥)¥dm =0 / dm =0 O(N™F).
/ R ) (IC] Ck‘) B(G 12— Gl (ICJ <k|) S
Thus
(logcf log®* /Vlog(; Vlog dm + — v(long) - V(log&)® dm + O( )
T

1 9logh 1 ]
:——/logéJAlog dm+—/ logy 21084 ds+—/ log¥/ logR)* | +O(N™)
81 Jas n 85 d(-n)

- log I¢; — Gl + f/ long dw®™ 4+ O(N™"F)
4 4 Jss

and the second integral in the right hand side is equal to s by (1.7). Therefore it remains only to show that
En(F +tg,g1) = O(N—%/10) Let hy = F +tg. Since the expression is linear in its second argument, it
suffices to establish this bound for &y (h:, g) uniformly on g € o/, with 7 € [N~1/2+% 1], which is done in
the next lemma. O

Lemma 3.3. &y (ht,g) term in the proof of Proposition 3.2 is O(N—*/10).

Proof. The proof follows the same general strategy as in Lemmas 2.8-2.10, with only a few modifications that
we now indicate. Most of the steps in the proofs of the lemmas remain valid without change: in particular,
using the notation from Appendix A, we still have Ky = = O(N), exponential decay of Ky(z, z) outside the

unit disc, and |M pv(z)] < N725%€ when z € Sin(dn) \ U;B(¢;,0) by Lemma A.4 and Theorem
A.1. The stability of the overwhelming probability events also continues to hold by Corollary 3.9. The only
points where the argument requires modification are those that invoke integration in a neighbourhood of the
singularities, i.e. on U;B({j,d). In these steps, the local behaviour around the singularities must be handled
separately, as we describe below.

Adjustments to the proof of Lemma 2.8: The argument differs in (2.20) and (2.21), when integrals are

evaluated on on U;B((;,6). For (2.20), we split the integration domain U;B((j,d) into two regions as
follows.

3fduN}

1 1 1)
/ S ———dm(z) S = = O(N"*%) (3.1)
B(¢;,38n T

Ey, { /
L sn@anBie sa0) AV Tz =G

where we used Lemma A.4.(i). Moreover,

11 1 1
/ - 2dm 2) < —
B¢, 0\B(¢;,30x) T 12— Gl Nz = ¢

afduN}

]E;t[ /
L s m)nB(G . 00\B (¢ 300) AV
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where we used Theorem A.1. For (2.21), the argument is simpler, relies only on Ky (z,2) = O(N):

dm < / ;dm(z) = O(N~"te),

f| — =PV
Seage(53)NB(¢;,0) TG — 2]

/ Sedge(53)NB(C,6) AV

Adjustments to the proof of Lemma 2.9: The adjustments are identical to the previous case, and in fact
simpler. We again re-evaluate the integrals over the neighbours of the singularities, while the rest of the
argument remains unchanged. Moreover, the absence of a multiplicative term involving f in the integrand
further simplifies the analysis, since the estimations along Seqge(0n) N B({j,0) proceed in the same manner

as in the proof of Lemma 2.9, relying only on the bound Ky = O(NN). Hence, it suffices to estimate the
integrals on Sin(dn) N B((j, ), so, it suffices to bound integrations (2.22) and (2.23) on B((j, 9).
We begin with the integral in (2.22). This can be done similarly to (3.1)-(3.2):

Ag 63 Ag .. log N
Ey, / dix O(AL Ep, / —diy| = 0(7)
[ B(G aan) AV ] T [ Sin (35)NB(G,0)\B(¢; 30x) AV } N2

The bound on (2.23) follows easier, directly by Ky = O(N):

OpOL 1 9
By, {/B(Cj,é) mdﬁw} =0(6%/7)

and completes the proof.

Adjustments to the proof of Lemma 2.10: For the first half of the proof concerning the estimation

/ / e Z—w ) (dz)/}N(dw)} = Q(N—rte), (3.3)

the required changes are, in essence, the same as those made in (3.1)-(3.2). The bound for I(74; Sedge(dn),
Sedge(0n)) remains the same as it relies only on Ky (2, 2z) = O(N). The evaluation of I(r; Sin(0n ), Sedge(0n))
requires a minor adjustment as follows. We split the integral I(74; Sin(0n), Sedge(dn)) into two regions,

according to whether z is close the the singularities or not. When z € U;B((;,3dn) we simply use Ky (z, z) =
O(N). Otherwise we apply Theorem A.l again. Hence the integral is bounded by,

|rk‘(w)‘ SupB(Z,Q(SN) |v2f‘ 73/2 ‘KN(Z, w)|2
//es,n(éN)\u]B(gj 3n), |2 — wl O N +N + N2 dm(z)dm(w)

wesedge N
i (w)]
ﬂeu B¢, 36n), w|dm(z)dm(w)

wesedge 5N

The first double integral is estimated exactly as before, cf. (2.25). For the second double integral we use the
bounds |ry,(w)| < 6x /77 together with |z —w| > N~/2%% on the domain of integration. Thus,

i (w)] 6N
/ﬂeujB(gj,:;(sN) lz_w|dm(z)dm(w)— O(N 7 - 1/2+K // €USB(E; 35w), dm(z)dm(w)

Sedge(ON) WESedge (5 )Nsupp(ry)

6N 1 2 —K

This completes the necessary modifications for (3.3).

What remains in the proof are just the adjustments required to evaluate the estimates for hy, ho, and
(hs —); these are detailed below. The treatment of Eo(n, h) in (2.28) is unaffected: the bounds for centered
linear statistics (Proposition 2.11) and transfer of the overwhelming probability events to the biased measure
remain valid (Corollary 3.9).

For Ey(n, h), the three contributions from dh(z), Oh(z)2=2, and O(|z — w|) behave as follows. (i) The

z—w’

O(]z — w|) term: (2.29) relies only on Ky (z,2) = O(N) and exponential decay, hence unchanged. (ii) The
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Oh(z) term: (2.30) depends solely on the estimates for centered linear statistics, also unchanged by the
stability. (iii) The Oh(z)2=2 (2.31), (2.32) remain valid by Lemma 2.14, stability
and Lemma A.4. The only adjustment is required in the third case (2.33). As the calculations are more
intricate here, we re-evaluate the full integral, not just near the singularities, for the reader’s convenience
despite some repetition. With § = N~1/2+%/5 we decompose the left-hand side of (2.33) as,

N 5h(z)/ Z—wef'z;i%"?(p () + O(— Tog N))dm(w)dur ()
- : y §
2 J$\u;B(¢;.0) Sin(mM\U;B(¢;,0/2) # — W 92N
N 5 Z—w _l—wi? K
2 Js\U;B(¢; ) U,;B(g,0/2) R W N
N — > lz—w|? w\2 K
T2 o) [ e K (0) 4 ) (2
2 Ju;B(¢;,0) Sin(n) 2 — W N
—w _L—w? K
+*/8h / z w a2 Mdm(w)duv(z)
Sm("] c 2 N

(i) In the first term, the contribution from O( 425 log N) can bounded similarly by N72%n? 1‘9’;55]]\;' = o(N~"/%)
—lz— w|2

where 7 is the support size of h, 2 is the maximum of Oh, and 7n? is the integral of e~ 27  on w. (ii)
The second term is subpolynomial due to the exponential term, as |z —w| > 6/2 > n. (iii) The third term
is controlled by N6?%n* = O(N~") using Ky (w,w)/N = O(1), where 62 stands for the integration area
over z, }2 for maximum of dh and 7? for the integral over w. (iv) Lastly, the fourth term term is bounded

2

exactly as in (2.33), using Ky (w,w)/N = O(1). Thus, only the following term remains:

N _ 7—w _lz—w?
il o) [ EERSE py () dmu)du 2
2 Js\U;B(¢;.0) Sim(n) 2 W
N Z—w _lz=wl?
== oh T - d d
2 Jsuenes M\EGE) /B(z,nlogN) et 7 (ev(w) = pv(2)dm(w)dpy (2)
_ 7 _lz—w?
X o) | 220y (w)dm(w)dpay (2)
2 JSin (20108 N)\U,;B(C;,0) Sin(M\B(z,nlog N) # — W
N —w _l== w|2
+, Oh(= / ZZ 0 SE py (w)dm(w)dpy (2).
Seage(2nlog N)\U;B((;,6) Sin(m) # W

Analogously to the previous calculations, the first integral on the right-hand side is O(N%3log V), the second
is subpolynomial, and the third is O(N(rnlog N )%nz); each of these contributions is negligible. O

3.2 Decoupling and comparison. We discuss two important results concerning submicroscopically
regularized local log-singularities, both of which rely on Fredholm determinant theory: the decoupling and
the Ginibre comparison.

The first proposition is an analogue of [21, Proposition 3.4]. Thanks to the exponential decay of the
determinantal kernel, Theorem A.5, the decoupling holds with much more relaxed conditions for 2d Coulomb
gases. Moreover, because we have a single-time problem, the correlation kernel is already self-adjoint, which
makes the proof considerably easier compared to [21]. Here we give the details for the sake of completeness.

Lemma 3.4. Assume that C >0, m €N, a >0, k € [0,1/2), A = NV/272 § = NV2¥6/3 ~ 5, €
[0,C) and (1, ..., Cm € Sin(N~Y/25) satisfy the separation condition miny<izi<m |G — ¢l > N71%. Then

|:H 27 1'\/](logA logé (2 :| H]E|: i 1‘y] logA loggj)(zi):| (1_‘_0(671\]&/5)).

7j=1

Proof. Define

Cj <5 e
hj:@yj(lOgA_IO&S )’ gJ:1/1—h],h:HhJ7g:\/1—h
j=1
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and let € = min,¢[,,) min.cc h;(2). Consider the operators K, Ky, ..., K,, acting on L%(C),

(Kf)(z) = /C 9(2) K (2, w)g(w) f(w)dm(w),  (K;1)(z) = /C 03(2)K x (2, w)g; (w) f (w)dm(w)

where Ky is the determinantal kernel, recall (A.2). Note that these are self-adjoint operators because
Kn(z,w) = Kn(w,2) and g and g;’s are real valued:

(6, 1) = / / 3(2)9(2) K (2, w)g(w)(w)dm(z)dm(w) = / / §(w) K (w, 2)3(2)3(2) (w)dm(z)dm(w) = (K, ).

As Ky is a projection-type sum, we see that these are also positive semi-definite operators. From [92,
Theorem 2.12], we conclude that these are trace-class operators. Application of the Cauchy-Binet formula
(see e.g. [55, Proposition 2.11]),

N N

E[[]n(z)] = det(id = K), E[]] hj(2:)] = det(Id — K;)

i=1 =1

where the right-hand sides are Fredholm determinants. Using the property det(Id + A)det(Id + B) =
det(Id + A + B + AB) for the Fredholm determinants we obtain

m

ﬁ Hh 2)] HdetId K;) = det(Id - > K;)

Jj=1 j=1

where we have used the fact that each g; is supported on a disjoint set which yields KC;KC; to be the zero
operator for every i # j. For convenience we define, K= Z;nzl K;.

From [92, Theorem 3.7], we know that for every constant £ € R, the Fredholm determinants det(Id — £K)
and det(Id — £€K) can be expressed in terms of the eigenvalues {\}72,, {:\;}2":1 of the operators K and K
respectively, as follows:

N 00
E|J](-¢ 1—h(zn)))1 = det(Id — ¢K) = [ (1 - &),
n=1 k=1
m N 00
[Tz |1 - €0 )] = asaa - )~ T - €50
j=1 n=1 k=1

Note that (1 — h) and (1 — h;) lives inside the interval [0,1 — €]. Therefore, the left-hand sides are strictly

positive when & < {L-. This leads to the restriction on the spectra o(K),o(K) c [0,1 — €], when the

right-hand side expressions are considered.
Following the same steps with the third step of [21, Proof of Proposition 3.4}, for any n > 2, we can write

. =~ Tr(KF) — Tr(K* 1 -
| log det(Id — K) — logdet(Id — K)| < | Tr K — Tr K| + ) _ | ( )k ( )|+%(||IC||%{S+HICH12{S).
k=2

(3.4)

By [92, Theorem 2.12], the traces can be expressed as the integrals along the diagonal, i.e.
Tk = [ oKz 2a(m() = 3 [ 0K (g, (2)dmz) = Tk
j=1

since the supports of g;’s are disjoint. On the other hand, for every k > 2

/1 Tr((K — K)(tK + (1 — t)/%)k-l)dt‘
0

/ —Tr((tK + (1 — t)i%)k)dt‘ -

‘Iwc’f) Tr(K*)
3

<K = Rilas o 4K+ (1= K) s < 1€ = Klls mace (I + (1 = R s 1 + (1 = K*2)
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where we have used Tr(AB) < HA||HS||B||HS and [[AB|lus < [|Allus|| B for Hilbert-Schmidt operators (| -
stands for the operator norm). As ||tk + (1 — t)K|| < t||K|| + (1 — t)||K| < 1 — &, we have

Tr(KF) — Tr(K*)

- < [[K = Kllns max(|IKus, |1 K]lns)-

Finally, the following Hilbert-Schmidt norm bounds are straightforward, given the uniform estimations on
the kernel, Theorem A.5 and Lemma A.4.(i):

- —N*/2 K - K
IK = Kllus = Oe™"), [IK[us = O(N™), [|K[us = O(N®).

Substituting these, we get
~ 1
| log det(Id — K) — log det(Id — K)| < ne™N""* N37/2 1 N
n

/4

Choosing n =e¢ concludes the proof. O

The next observation follows from calculations closely analogous to those in [62, Proposition 2.3], with
one key modification. We do not estimate the Hilbert-Schmidt norm of the operator difference, since the
angular term prevents the determinantal kernel for a general potential from being approximated by the
Ginibre kernel. Instead, we use that these angular contributions vanish in the trace calculations, which is
all that we require.

We denote the expectation for quadratic potential V(z) = |z|? case, i.e. the Ginibre case, by EG™.

Lemma 3.5. Given C > 2. Then, uniformly in v € [0,C], a,k > 0 satisfying o + k < ﬁ, and ¢ €
Sin(N~1/2+5) denoting § = N~1/2T% /3, A = N=1/2= ye have

E[ew Tr(logcA —logg)} — EGin [e'yTr(logA — logs)] (1 + O(N—1/8)) (35)
where A = A %@) and & = 5\/%@).

Proof. Let 0 = AV( )
log, /. z + log ¢, we have

and V(z) = V(0z + ¢). By change of variables, using the fact that log,_(cz) =

EY [ S, (logy — 10g§)(z7:)] —_EV e S (loga — logs)(0=1)] — EV e S (logy ~ logy)(1)]

and this shift applies directly to the droplet S and the determinantal kernels. More explicitly, the droplet
for the potential V' is S' = {z € C': 0z + ( € S} and the determinantal kernel for V', denoted by Ky (z, w), is

Ky (z,w) =Ky (02 + ¢, 0w + ¢) 62
Using the Taylor expansion we obtain that for any |z|, |w| < §:
V(0z+¢) =2V (02 + ¢, 0w+ ) + V(w + ¢) = |2|* — 22w + |w|* — 2iF (2, w) + O(5°),
where F(z,w) = Im (0V(¢)0(z — w) + v 2(0 0%(2* — w?)).

Theorems A.1 and A.5 imply that for any z,w € {z € S : dist(z,5) > 8} with |z — w| < 26:

K (z,w) = e =P =200l HiNFEw) | o(N29). (3.6)
s

Let h = eY(oga—logs) g — /T —h. Similar to the proof of Proposition 3.4, we define integral operators
K1 (z,w) = g(2)Kn(z,w)g(w) and Ky(z, w) = g(2)KG™ (2, w)g(w) where the Ginibre kernel is K& (z, w) =
;e’%|z|2’2m+|“"2. In order to prove (3.5), it suffices to achieve an O(N~'/®) bound to the following
expression, as in (3.4):

"L Te(K TrIC 1
S [ RUD B)) L e g+ Kl 6

k=1
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for some n to be chosen later, and ¢ = ¢7(08a 0-10850) = N=¥(a+%)  The rough bounds |Ky(z,w)| = O(N)
and |[K§"(z,w)| = O(N) give ||Ki|lus = O(N*) for i = 1,2. On the other hand, note that

Tr(le) = Ki(z1,20)K;i(22,23) - - - Ki(2k, 21)dm(z1) . . . dm(zk)
(Ck

for i = 1,2. For convenience, let zp411 = z1. Plugging the estimation (3.6), due to Zif:l F(zp,2041) =0, we
get

.
Tr(Ky) = /B(O 5 I (Ka(ze, 2041) + O(N?6%))dm(z1) .. . dm(z)
=1
Mk
=Tr(K5) +0 (D (£> (N26%)%) = Tr(K%) + k O(N?6°)
=1

uniformly in & < (N26°)7!, where we used the fact that [ Ne_%‘z_“"zdm(z) = 2. Substituting this into
(3.7) yields the following bound:

’ logE[eV Tr(logi — logﬁ)] _ logIE[eV Tr(loga — 10g5)} ’ < nO(N?6%) + lNW(a+N)+2F~
n
for n < (N26°)~1. Choosing n = N/ completes the proof. O

3.3 Determinant of the Ginibre matriz. In this section, we derive the asymptotic formula for a single
logarithmic singularity at the origin in the Ginibre case.

Lemma 3.6. Fiz C > 0. For ally € [0,C], @ >0 and A = N='/27 we have

a2
EGin [e’y Tr(logA)] — e—N’y/2N§ G((Qﬂ') 4 (1 4 O(N_ min(a,l)))

14+ 3)

for all sufficiently large N.

Proof. By Kostlan’s theorem [65], {|z1]?,...,|zn]?} @ {T'1/N,...,Tn/N} where z are eigenvalues of

Ginibre ensemble and T'; are independent, with I'; ~ Gamma(i, 1). Defining f(z) = e?!°8a \/m, this leads
EGIII e Tr(logA) H E ]/N

Writing the probability density of the gamma random variable we get

Gin ] _ 1 > - V/ijflefm r— 1 Al T /2 - I le= T dy
BN [(0/N)] = gy [ /) do— =5y [ (@) = p/) )t
_ 1 T@G+v/2) A2y 1 T(j+7/2) —a(
= TG +O( i ) = NE TG (1+O( ( +1))).

Using Barnes G-function asymptotics (e.g. see [94, (A.6)]):

logz 3 z log 2z
_ .2 _ 2 z _
logG(z +1) =2 ( 5 4>+210g27r 5

)

GIN+1+13)
G(N+1)G(1+3)

for some constant B, we obtain

N .
EGin [efyTr(logA)] _ (1 + O(Nfa))NfN'y/2 H F(]I:EJ’;’/Z) _ (1 + O(Nfa))N*N’Y/Q
j=1
(2m)%

+3)

concluding the proof. O

_ 6—N7/2N§ (1 + O(N_ min(a, 1)))
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For later reference, we also record the formula non-regularized case which improves the error term in
[96, Theorem 1]. The proof follows identically.

Lemma 3.7. Let C > 0. Uniformly in v € [0,C], we have
N

in A,i,lG(N o 2 7
EC [E%I]N NzG(N+f)(1};_2|_;)e N NSGI((Qlj_;)(leO(;])),

[N

3.4 Stability for log-biases. Here, we derive some estimates on linear statistics of log-singular test
functions regularized at submicroscopic scales under general external potential and state the related stability
result, analogous to the Subsection 2.5.

Let a, k > 0 and define § = N~'/2+%/3 A = N=1/2= and ¢ € Sp,,(N~/?*%). Proposition 2.12 yields
EHXlogC ] < (log N)7. Moreover, using the kernel estimate in Theorem A.1, we get

| Xrogs, — Xioas| = ‘ / (logl = — log$ 2)(Kn (2, 2) — Npy (2))dm(2)| = o(N71).

Hence E“Xlogi [] < (log N)7 for all sufficiently large N. For the Laplace transform bound, we leverage the
Ginibre comparison for the local contribution. Combining Proposition 2.12, Lemma 3.6, and Lemma 3.5,
we obtain the uniform Laplace bound for sub-microscopically regularized log-singularities in the bulk. More
explicitly, a Cauchy-Schwarz inequality gives the following corollary.

Corollary 3.8. For every C > 1, k € (0, ﬁ), there exist Ny such that for every 0 < a < A =

N=YV2= and ¢ € {z € S : dist(z,05) > N~V/2T5} | defining, we have

1
100C

logE[et 1"%] (log N)7
for allt € 10,C] and N > Ny. Moreover, E[|X10gi|} < (log N)7.

An analogous statement to Corollary 2.13 for biases involving submicroscopically regularized logarithms
is as follows.

Corollary 3.9 (Stability for log-biases). Fiz C > 1, k,a € (0, 1555) and a non-negative integer m. Let
Y1y oy Ym € [0,C] and 1, ..., Cm € Sin(N~V2H5), Set

f= h—l—Z'yjlogg, he.Ss0n A=N12"o
j=1

If an event A satisfies P(A) > 1 — e~ (o8 N® for some D > 10, then Pr(A) > 1— e og N®/2,

3.5 Proof of Theorem 1.1. We now prove Theorem 1.1, by combining Proposition 3.2, Lemmas 3.4, 3.5,
3.7.

Proof of Theorem 1.1. By Proposition 3.1, it suffices to prove the statement of the Theorem for exponentials
of submicroscopically regularized logarithmic singularities, instead of root-type singularities. Let @ = xk and
take the submicroscopic scale A = N~1/2-¢ in the regularizations.

Combining the asymptotics in Proposition 3.2 with the results from Lemmas 3.4 and 3.5 we obtain that

m .
E[eﬂil F(zi) H ey Vs logA(zi,—Cj)i| — NS log duveﬁ(fc |V 75 Pdm+1sAf+L5 A fdm)
j=1

~a

m m 2 . . .
XHGTJ Jos Fdw™=F(¢;)) H 3L Jo V(logy )5V (21083 —logs?)® dm+ 2 (14+L(¢;)~ L5 (00))

j=1

<.

in N_ 1 —1 Zi _’YL’YJ ’Yi’Yj —r
% HEG [ i=1 75 (loga; —logs )( } H |C] Cel s (1 +O(N /10))
J#k
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where A; = Ay/ AV(C’ and §; = 44/ AVT@. On the other hand, applying Proposition 3.2 for quadratic
potential with a smgle singularity, by the same way as above, we obtain that for any j =1,...,m

N
. N 2 D, e \D v
EGm [ H |Zi"Yj] —e i Jp log(;j dme'yJ Je V(log{;j) V(QIOgAJ_ log,(;j) dm+

i=1

% EGin {ezfil ’Y](lOgAj *logaj)(zi)} (1 + O(N—K//l())) )

Combining the last two asymptotics, we can use the following simplifications:

A A
/log(; dpy — —/log5 dm = /10g€1 dpy — —/logdm+/(log51 log®)( 4V Z(CJ)) dm
/iy 7i

= /logg dpy — — / logdm + O(6%)
T Jp
where log in the integrands stands for log| - | and
a GiS - D . D
/ V( log5 V(2 log —logy’)” dm / V(logs,)" - V(2log, —logs, )" dm
c
_ / V(log%)® - V(log% ) dm — / V(logs, P - V(loga, )P dm
/Vloggj Vlog dm+/ V(log$’)® -V(logg)sdm—/VIOg(;j Vloga, dm
D

log® 1og® )5 | ge
/log(;Alog dm+/ log® (8 og” _ Illog”)7|s )ds+/log5,AlogA, dm
a8 on on D 7 J

= —2mlogs(0) + 2mlogs, (0) + / log® N (log®) ds + O(A/6)
as
=7nL({;) + 2ms + O(N~"79).

Together with Lemma 3.7, these complete the proof. O

4 CONVERGENCE TO THE (GAUSSIAN MULTIPLICATIVE CHAOS

A collection of sufficient conditions for convergence to a GMC measure throughout the entire L'-phase has
been provided in [33]. We first state this result and then verify the conditions in our setting using the main
Theorem 1.1. This leads to the proof of Theorem 1.7.

4.1 GMC convergence in the L'-phase. Let U be a simply connected, open, bounded subset of R? for
some d > 1. Let X be a log-correlated Gaussian field on U with symmetric positive semi-definite covariance
kernel

K(z,w) = log + g(z,w)

1
|2 — wl

for a continuous function g € L?(U x U) that is bounded from above. Let (Xy)n>1 be a sequence of random
functions, defined on probability spaces Qy,

Xn:Qn = {f:U—=R| feL'(U), sup f(z) < oo, fis upper semi-continuous}
zeU

satisfying the following properties: for each 8 > 0, z € U and ¢ € €>°(U),

N —oc0

E[eﬁXN(Z)] < 00, E[erXN(Z)LP(z)dm(z)] < o0, /XN(Z)gO( )dm (d) /X m(z).
U
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Denote the mollifications of X and X by

XP =xyr X xO =y X
lIxell: lIxells

for every ¢ > 0 and let XI(\(,)) = Xy, X© = X for convenience. We also denote the multiplicative chaos
measure generated by the Gaussian field X on U by p? which can be formally written as

BX(2)
6 _ e
du(z) = E[eFX()]
Theorem 4.1 ([33, Proposition 2.13]). Let Xy and X be as defined above. Assume that for a § € (0,v2d),
there exists a sequence ey = en(8) converging to 0 as N — oo satisfying the following properties:

(i) For any fized €, > 0,

E[efXn ()+AXE (w)] _ X ()X (w)] (4.1)

lim © @

N—oo E[GBXN (Z)]]E[eBXN (w)]
for all z # w in U and the convergence is uniform for all (z,w) in any fixzed compact subset of
{(u,v) € U%:u #v}.

(i) For any fized e > 0, ' > 0, and compact set K C U, there exists a positive constant C = C(B,¢e,¢e', K)
such that

E[eBXE (48X (w)
sup sup le (:)V N(E,) ] <C. (4.2)
NeN z,weK ]E[eﬂXN (z)]]E[eﬁXN (w)}

(iii) For any fixred A € R, and compact set K C U, there exists a positive constant C = C (B, A\, K) such that

E[efXn ()XY ()]
E[efXn(2)]

A2

<Ce M7 (4.3)

forallze K, e >¢en, and N € N,
(iv) For any fized compact set K C U, there exists a positive constant C = C(3, K) such that

E[eBXn (2)+BXn (w)]
E[e ¥ JE[eF X (v]

éC\z—wFﬁQ (4.4)

for all (z,w) € K2N{(u,v) €eU?: |[u—w|>en} and N € N.

(v) For any fizred p >0, g, 20, n € N, A € R", and compact set K C U,

E[efX Y @4+XE" () Thy WX ()]

X = —+ iE " (ng) 2
B +3 ! 1 (0] 1)) e2 (ko1 A X (ur))?]
E[e J<\I€)(z) X](\f )(w)] ( N—>oo( ))

% eXnot BARELX D) (2) X ) (up ) +-X D (2) X ) (uy,)] (4.5)
uniformly for all (z,w) € K2N{(u,v) € U?: lu—v| > p}, u € K", and n € (en,1]". The implicit
constant may depend on B, p,e,¢',n, X, and K.

(vi) For any fited A € R and compact set K C U, there exists a positive constant C = C(B, A\, K) such that

)¢, " (w (M) (4 ,
E[eBXN ( )+ﬂXN ( )+)\XN ( )] < CSL;E[X(W)(M)2]+)\ﬁE[X(E)(Z)X(77)(w)+x(a )(w)X(n)(w)] (46)

lim sup 5 =)
N— o0 E[eﬁXN (Z)J"BXN (w)]

foralln>e >e withe' >0 and xz,y € K.
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(vit) For any fized A € R and compact set K € U, there ezists a positive constant C = C(8, X\, K) such that

E[ef XN (2)+6Xx () +AX Y (w)]
E[efXn (2)+8XN ()]

< Ce P EXD (@)THABELX (5) X7 (w)4+X ()X (w)] (4.7)

for allm > ey and (z,w) € K2N{(u,v): |[u—v|>en}.

_B82y2
(viii) There exists a small parameter 0 < 6 < min( (d T2 ) ,%2) such that for any compact set K C U there

is a positive constant C = C (B, K) satisfying

E[ ﬂXN(ZH_BXN(w)] 7maX(32*d,0)*6
//| A B R m(dm(w) < Oey : (4.8)
Then
BXN(2)
Efern o] ) 5520 dp’(2)

where the convergence holds in distribution with respect to the weak topology of measures, i.e., for every
bounded continuous function ¢ : U — R,

eﬁXN (2) (d)
/90( )E[eﬁxN(z)] N—o0 /

n [33], condition (4.7) is stated uniformly for all (z,w) € K2. However, tracing through their proof
shows that the requirement is only necessary when z and w are separated at scale . Consequently, it is
sufficient to assume (4.7) holds uniformly on the restricted set as given above. In addition, we correct a typo
in the denominator of this condition: in [33], it was written as E[efX (*)+8X(w)],

Moreover, for any condition in the theorem, once a compact set K C U is fixed, it is enough to verify
the equation only for mollification parameters ¢, ', n, g, smaller than dist(K, 9U).

4.2 Proof of Theorem 1.7. 'To obtain a log-correlated limit without any additional scaling, we modify
(1.8) and for convenience in the calculations below, define

N N
Xn(z)=V2- (Zlog|z—zi\ —E{Zlogk—zi@)

which yields

X (Z log, (2 — 2) — E{ﬁj log, (= — zi)} )

Denote the limit field by X. It follows easily by Theorem 1.1 that X is a centered log-correlated field with
covariance structure

1 1
E[X(Z)X(’w)} = log m +5= % A V(logz)s . V(logw)sdm, Z,W € S,

|z

where s is as in (1.4). Then

E[X® ()X (w)] = /logz v dm+s, zweS
C

||><s/||L1
for all €,&’ > 0. Recall that

/logZ w_ X' g = /V log?)® - V(log®)®dm
c lIxer |22
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if e < dist(z,05) and &’ < dist(w, 95).
Moreover, the following formulation of Theorem 1.1 will be useful in the calculations:

m

m
E[eTrf-i-ZT:m;‘TrlOng} — B[] T E[eEia v on =] H L [ VIS, log%)Sdm

j=1
X H eaw Je V(s IOng)S'V(W IOgC")sdm(l + O(N~"/10))

with

E[eTrf—]E[Trf]] — e fC\VfS\zdm(l +O(N—I€/10))-

Proof of Theorem 1.7. Fix a € (0,2). We use Theorem 4.1, choosing ey = N~Y/?** for fixed x =

_8
min (1555, 1T) We now verify every condition in Theorem 4.1 one-by-one, using the asymptotic formula

in Theorem 1.1.

Condition (4.1). Fix an arbitrary compact subset of {(u,v) € U% : u # v}. Uniformly for all (z,w) in the
compact subset,
E[efXN (048X (w)]

1

— e/ﬂﬂj;cvaogg)s-wlogg,)sdm(l + O(N*’""/w)) _ €ﬁ2]E[X(E)(z)X(5/)(w)](1 + O(N*’””/lo)).

E[ef XN GE[efXN )]
Condition (4.2). Given ¢’ > 0 and compact set K in U, uniformly for all z,w € K,

(e) (")
E[eﬁXN (z)+BX N (w)] _ *52 [ log®~ de+5 s O(l) _ 652 O(1+10g€/).

E[efXN (]E[fXN ()]
Condition (4.3). Fix a compact K C U. Uniformly for all z € K,

E[efXn ()XY (2)]

_ o —AB2: [ V(log*)S-V(logZ)Sdm A2 L [ |V(logZ)®|*dm
[ %~ ()] ¢« erm o)

2 2
— o log 0B~ SOk TRTAmE e () =¥ o, (1),

Condition (4.4). Uniformly for z and w in the given set,

E[e/BXN(Z)"FﬂXN(w)]
E[efXn (2)]|E[efXn ()]

= |z —w|"F e 0(1).

Condition (4.5). Uniformly for all z, w, u, and 7 satisfying the given conditions:

E[efX Y @4+BXE" () Tiy WX ()]

i =(1 +O(N*H/10))eﬁ Je VIGZioy A lognf)®[2dm
E[eﬁx§5>(z)+6x§; )(w)]

% e2k=1 £ [ V(BlogZ)® V(i 1og1j,’§)sdmez;;:1 = [ V(Blog®)® V(A logsk)Sdm
— (1 + O(N—F/10))3BI(S oy M X %) ()]

% eXnoy BARELX (D) (2) X ) (up )+ X D (2) X 8 (uy,)]

Condition (4.6). Fix n > & > e with ¢’ > 0 and z,w € K. Then

E[eXK (248X ) +AX (w)]

=0(1) o= Jo VI logy) ¥ 12 dm o g [ V(Blog2)®-V(Xlogy)¥dm 5 [ V(Blogt)® -V (X logyy)*dm

E[eﬂXﬁ)(z)+3X§\f/)(w)]

— O(1) e ¥ EX P @A EX @ ()X ()X (w) X ()],
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Condition (4.7). The calculation is identical to that of condition (4.6).

Condition (4.8). Applying Cauchy-Schwarz to the numerator we obtain that the expression in (4.8) is
bounded by

E[eQBXN(z)]l/zE[eQBXN(w)}l/Q 52 _1+ﬁ+2,@
// cwer, —Em R // e ONE)dm(z)dm(w) = O(N=1+5+2%)

|z—w|<en |z— w\<sN

32

By the choice of x < —2 the desired result follows easily. O

A KERNEL ESTIMATES

In this appendix, we obtain kernel estimates by following [4, Section 3] and [6, Appendix], with certain
modifications, in particular to cover some logarithmic singularities. We provide the details for completeness.

A.1 Setup. Let Py(z),Pi(2),... be the monic analytic polynomials of degrees 0,1,... respectively that
are orthogonal with respect to the measure e=VV()dm(2), i.e., the inner product is given by (fi, fo) =
| h foe™ NV Let Ky be the reproducing kernel of the space of analytic polynomials of degree at most N — 1
with norm induced from the inner product above; more explicitly,

Py (2)Pa(w)
n—0 HP’I’LH%2(6—NV)

Kn(z,w) =

which satisfies the reproducing property

/ (2, ) K (& w)e ™V O dm(€) = Ky (2, w). (A1)

When viewed as an integral operator, this is a projection from L?(e=™V) to Py, the space of analytic

polynomials of degree at most NV — 1:

N—

TN f(z /KN z,w) f(w)e _Nv(w)dm Z

Recall from Subsection 1.5 that we assume V is real-analytic in a neighborhood of the droplet. Hence we
may extend V(z,z) = V(z) to a function V (-, ) that is complex-analytic in two variables in a neighbourhood
of the diagonal {(z,z) : z € C} N S; see, for example, [5, Section 2]. For this extension we have

V(z,w) =V(w,z), 05V (z2) =0d"0"V(z)
where J; and 0y are partial derivatives with respect to the first and second coordinates. The first order
approximation of Ky (z,w) inside the droplet S is given by
K¥(z,w) = falaQV( w)eNV ),
Embedding the measure into the kernels, we obtain the determinantal kernel K v and we define its approximation
Kﬁ similarly
Ky (z,w) = Ky(z,w)e” > VOO KE (2 w) = KF (2, w)e™ > V@V ), (A2)
The same definitions applies to K N K ~ where V is replaced by V=V- where f is a smooth function

to be determined later. We define the projection HNg( ) = (g, KN( , )>L2(e—NV) similarly. The main result
of this appendix is that for sufficiently regular functions f,

N

K#(z,w) = falaw( )NV ED Lo KE (2 w) = K#(z,w)e > (VEHV @)

approximates Ky and Ky where f,,(2) = f(w) + (z — w)9 f(w). We also define the projection ﬁﬁ for f(f\f

similarly to ﬁN, i.e. using the weight eV,
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A.2 Results. In the remainder of this section, we fix an arbitrarily large constant C' > 0, small parameters
k,a > 0 and a non-negative integer m. Let v1,...,%m € [0,C] and (1,...,(m € Sin(20y) satisfy the
separation condition min;<;zj<m |G — (| > 20n, h € S3.c. and A = N71/272 We then set

F=h+Y vlogX.
j=1
Theorem A.1. Let f be defined as above and 6 > 0 be a fized constant. Then, uniformly in z € Sin(20n)
satisfying infg(z 25y) AV > 0 with minjcpmy |2z — ;| > 30n and any w € B(z,0n/2), we have

Ky (z,w) —K§(zw)| =0 | sup [V2f|+N"V2].
B(z,25N)
Theorem A.1 is an immediate consequence of the following two propositions. Here, in the rest of this
section, for a generic kernel K we often write K,,(z) = Kn(z,w), omitting the N-dependence. We also fix
a cutoff function y, such that y, = 1 in B(2,0x), x» = 0 outside B(z,30x/2), and ||[Vx. |l < oy

~

Proposition A.2. Assume f satisfies the assumptions of Theorem A.1. Let 6 > 0 be a fized constant.
Then, uniformly in z € Sin(20N) satisfying infg(, 05y AV > 6 with minjcp, |z — (| > 30y and any
w € B(z,0n/2), we have

[?N(z7w) — ﬁN ([?foz)(z) =0 ( (Sup )|V2f| + N—1/2> e%(f/(z)+\~/(w))_
B Z,Z(;N

Proposition A.3. Assume f satisfies the assumptions of Theorem A.1. Let 8 > 0 be a fized constant.
Then, uniformly in z € Sin(20N) satisfying infg(, 06,y AV > 6 with minjcpy,y |z — ¢l > 30y and any
w € B(z,0n/2), we have

REGow) — T (R ) () = O (o008 ) TV,

We also have the following lemma which is particularly useful when evaluating the kernel outside the
droplet S.

Lemma A.4. Assume f satisfies the assumptions of Theorem A.1. Then:
(i) For all z € C, |[Ky(z,2)| = O(N).
(i) For all z € C, [Ky(z, 2)| = NOW e~ NV(E)-V(),

Recall from the assumptions on V' (Subsection 1.4) that there exists &,¢ > 0 such that V(z) — V(z) >
cdist(z,05)? on Sedge(€) \ S; where the constant ¢ may change line to line. Moreover, combining the growth
condition on V' with V(z) = 2log 2|+ 0|,/ (1), we obtain a constant ¢ > 0 such that V(z)—V(z) > clog |z|
for all z € B(0, C)°. Since the coincidence set {z € C : V() = V(2)} coincides with S, the difference V —V is

strictly positive on Sous(€). By continuity, there exists ¢ > 0 such that V(z) —V(z) = ¢ on B(0, C) N Sous(€).
Putting these estimates together, we conclude that there exist constants ¢, C' > 0 such that

cdist(z,09)%, 2€B(0,C)\ S

V() -Vie) 2 {clog |z, z € B(0,0)°

In addition to these results, whose proofs are provided in the following section, we quote without proof
a theorem concerning the off-diagonal decay of the kernel from [4]. The same estimate was independently
established in a more general setting in [17, Theorem 5.7].

Theorem A.5 ([4, Corollary 8.2]). There exists C > 0 and ¢ > 0 depending only on V such that for any
z € S, denoting r = dist(z,0S)/2, we have

Ky (z,w)| < C Ne—clinfaiz.r) AV)l/Q\/Nmin(r,|w7z\)efN(V(w)f\'/(w))

for all w e C.
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A.3 Proofs. We begin with the proof of Lemma A.4, followed by those of Propositions A.2 and A.3.

Proof of Lemma A.4. Let § > 0 and u : C — C be a function (which are possibly N-dependent). Define, for
any z € C

F(€) = |u(z + 6¢)[2e NV (+00)+A() 68
where A(z) = max(0, supg, 5 NAV). Easy to see that, if u is analytic on B(z,¢), then A(log F') > 0 for all

& €D, ie. logF is subharmonic, so is F'. By the mean value inequality for the subharmonic functions we
obtain

- ~ A(z)8? -
()P VO < [ Jule g T ) < S [ pugPe N Odme)  (43)
D B(z,9)
for every z € C. We fix an arbitrary w € C and take u(z) = I;wa) Notice that by reproducing property
N (w,w

of the kernel we have fc lu|2e=N Vol Using the above inequality, we get
=~ 2
|I£N(Z7w)|26—N\7(z) < eA(Z)é

Ky (w,w) 42

<
Notice that A(z) = O(max(0, N supg(, 5 AV)) as Alogl) = 27THX>C<? - > 0. Thus, taking w = z and
AL

§=N"12if supp(.,1) AV <0 and § = N~Y2min(1, (supg(z,1) AV)~1/2) otherwise, we have

IKn(z,2)| = O(N)max(1, sup AV) (A.4)
B(z,1)

which proves the estimation (i) uniformly in compact subsets of C.
On the other hand, note that by the choice of f, there is a constant ¢ such that for all z € C, e"VV(2) >

e~ NV(z)=clog N' (¢ may change line-by-line). Hence, taking § = N~'/27 we obtain
K 2
‘M e VV(2) <1, forall ze€S.
Ney/ Ky (w,w)
Thus, by [87, Theorem III.2.1], we get
K 2 §
‘M e NV(2) < 1, forall zeC
Ney/ Ky (w,w)
(cf. [4, Lemma 3.4]). Taking z = w, this gives
|I?N(sz)|e—N\7(z) < Nee N(V(2)=V(2)) (A.5)

completing the proof of (ii) in the lemma. Moreover, combining (A.4) and (A.5) with the growth condition
on V, it follows immediately that (i) holds uniformly in z € C. O

Before moving onto the proof of Proposition A.2, we start with the following quantitative strict analogue
of [6, Lemma A.2].

Lemma A.6. Let z € Siy(26n) with minjepy,) |2 — (5| > 30n and g be an analytic function on B(z,26y).
Then, uniformly in w € B(z,0n5/2),

T 5 z e w,&)—
g(w) — 1% (gx-) (w) = O (/ (\(w —&)gx:| + |g5X o lgx-| sup IVQfI)SNR (Vwe) V(g))dm(§)>
N B(z2,20x)

where the implicit constant in the error term does not depend on z and g.
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Proof. Substituting the definitions, ﬁﬁ (gxz) (w) is equal to
_ e N . w0 B (-
/@ K3 (w, ©)g()x:()e™ ™ @dm(¢) = — / 9(£)0105V (w, )NV OV Dy (g)e™ (=T O dm(e).

So, defining a(¢) = g(€)eNV@O=VE) and b(&) = y.(&)e~ @99/ the above expression can be written

as
1 da (w—
;/ b(€) éf )10 </ (w0 = g€V OO (e)e 5)8f(£)‘dm(£)) ,
By Green’s formula applied to a - b (here we use dg = 0), the first term is equal to
1 [a(§)on(g)
ow) =~ [ “EE ame)

To bound the errors, note supg, 25,) IVf] S 55", so that e~ (W=927(©) = O(1) when b is non-zero, and
Ib(&) = O(|0x=(&)] + x=(&)|w — ¢ SUDR(, 26y | V2/]). Noting that [w — &| =< dy when Jx- is non-zero the
result follows easily. O

Proof of Proposition A.2. We apply the above lemma to g(w) = I?N(w,z) for an arbitrary z € S with
min;esy |2 — ;| > 30n, and obtain that uniformly in w € B(z, dn/2),

o =~ = 5 z e w,&)—
K (w,2) = T (Kax:) (w) = O < / (1w = €)gxal + 9 e Lt ol S )|v2f|)eNR i) V“”dm(s)) :

First, by the Cauchy-Schwarz inequality we have
B (6 2)| < [KN(€ RN (2,2)[? < CNeE VOV @),

The first inequality means the two-point function is non-negative, and the second is a consequence of Lemma
A.4.(i). Second, on the support of x., we have f(¢) = f(w) 4+ O(1). Third, by Taylor expansion,

_ _ AV (w
Re (~V/(w, ) + 2V (,€) ~ V(£.8) = ~fw 22 4 O(jw — ¢, (A6)
Hence, substituting these, we have proved that

KN<w,z>=ﬁﬁ(f@xz)<w>+o<N1/2+ p |V2f|> FO@ ),
B(z,20n)

Moreover, noting that x, and V are real-valued, taking conjugates of both sides completes the proof of
Proposition A.2. O

Proof of Proposition A.3. First, viewing Il N as a projection into the set of analytic polynomials with degree
up to N—1 (denoted by Zy), the function @ = K7 x.—IIy (K¥ x.) can be described as the L?(e~"")-minimum
solution of the following system:

{au — 0(K#x.),

—K#Xz € Px.

Similarly, we also denote u = fosz — Iy (I?foz) which is the L?(e~¥V)-minimum solution of the same
system. Our goal is to bound #(z). Because |z — w| < dx, @ is analytic on B(z, N~'/2). So, by Equation
(A.3) we have

[i(z) 2NV ) < N a2

< Nljul? (A7)

Lz(e—NV L2(6—NV)
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where in the second inequality we used the fact that @ is the L2(e™V V)-minimum solution. Note that, due
to the choice of function fin V=V — %, we have f = O(log N) on B(0, N). This gives

||7.L : ]lB(O,N)”iz(e—Nf/) < NcHu”%?(e*NV)

for some constant ¢ > 0. For the remainder of the proof, ¢ will be used to denote arbitrary constants,
possibly taking different values in different occurrences. On the other hand, on |£| > N,

u(§) </|KN(£’y)ffﬁ(y,w)xz(y)e’w(y)!dm(y) < eNEN(E O

where in the second inequality we have used Cauchy-Schwarz and Lemma A.4.(i) to get |[Kn (€, y)| <
|Kn (6,62 Kn(y, y)|/? < |Kn (&, €)[?eN and a rough bound |Kﬁ(y,w)\ < €Y in the integration region.
Applying Lemma A.4.(ii) gives |KN(§,§)\6_N‘7(5) < e Neloglél for a fixed positive constant ¢ as [£] > 1.
Substituting this bound, we obtain

||u . HB(O’N)C HiQ(e*N\N/) g eCN / |KN(£, §)|6_NV(£)dm(§) g e—CN IOgN.
B(0,N)¢

Thus, we obtain

2

Hu||L2(e—N\7)

< Nl ey + €N 15, (A8)

Next, we define p(€) = V(£) + + log(1+|¢|?) noting that it is strictly subharmonic outside S; and for any
entire function, ||g||z2(.-~e) < 400 implies g € Py. Indeed, the latter follows by using polar coordinates

for [ |g|?e=N¥ and substituting Cauchy integral formula dnd(lzgf) (0) < 525 OZW lg(rel?)[2df. We denote the
L?(e~N¥)-minimum solution of

v =d(K#x.)
by v. Due to a.e. subharmonicity of ¢, applying Hormander’s estimate [51, (4.2.6)] (also see [4, Section 4.2])
we obtain

. e~ N o~
[0l ey < [olevey [ 10RE PS5 S N IORE ) ooy (A.9)

where in the first inequality we used ¢ < V + ¢ and in the last inequality we used Ay < 1 and V' < ¢ on
the support of .. On the other hand, by definition, v — K7 Y, is an entire function and since it has a finite

L?(e~N¥)-norm, it must be an analytic polynomial in &y. This implies, by the L?(e~™"V)-minimality of w,
alZagoonv < olngenvy.
Combining this with (A.7), (A.8) and (A.9) we obtain
[(=)le™ 37 E < NYOKE X 2ewv) + "N 15N (A.10)

Moreover, when | — w| < dn, by Taylor expansion (A.6) we have

GNReV(ED) ¢ (FV(EO+FV(w)—cllog N)*
Substituting this estimate into the definition of f(ﬁ (&, w), we obtain
o~ _ 4 /2y 4 N
Ha(K#XZ)HL2(e—NV) < (/ |8XZ(€)|26*C(logN) dm(f)) ez V(w) < e—cllog N)* o 5 V(w)

Combined with (A.10), this completes the proof. O

45



B THE HARMONIC MEASURE AND CAPACITY

In this appendix, we justify the definitions of the harmonic measure seen from infinity (1.6) and the
logarithmic capacity (1.7), and prove several basic properties mentioned in the introduction.

Well-definedness of (1.6). We show that the function A(log®) does not depend on the choice of ¢ € S.
Let (1 € S, r = dist({y,0S5) and choose an arbitrary (; € B({1,7/2). Then

C1_<2>

log®? z = log®! z + Relog (1 +
z=Q

where the function Re log( + <1 <2) goes to zero as |z| — oo and is harmonic on the set {w € S :

dist(w, 0S) < r/2} U S°, which can be easily seen from |(¢; — ¢2)/(z — (1)] < 1. Thus, the Neumann jump
of this function is zero, which gives

N(log®) = N (log®?).

By iterating this argument, we conclude that for any (;,{> € S, the Neumann jumps of logCl and log®?
coincide.

w™ is non-negative. Fix an arbitrary point ¢ € S. Let f = log® f(logc)s on S¢. Note that f is harmonic on
S¢ f=0o0ndS and f(z) goes to oo as |z] = co. By the maximum principle, f attains its minimum value
on 0S. Thus, f(z) > 0 for all z € S°. Thus, % > 0 on 0S.

w™ is a probability measure. What remains is to verify that [, 5g dw™ is 1. This follows from the Green’s
theorem,

1
/ 0log® ds—/lAlonger/VLVlongm:Zﬂ',
as On S s

log¢)S log$)S
/ 9098)" 15— lim (/ 1A(1og<)5dm+/ V1. V(log¢)Sdm — Mds) =0
as O0(—n) R—o0 \ JB(0,R)\S B(0,R)\S oB(0,R) On

Well-definedness of (1.4). By the second equality in (1.7), it suffices to show that fas log! dw™ =
/. 8s 1ogC2 dw®® for any (7, (s distinct in the interior of S. We begin with a symmetric expression, and apply
Green’s theorem again,

/V logCl (logcz)sdm /V logCI) V(log@)sdm—i— V(logCI)S . V(log@)sdm
SC

61 a(1 ¢2\S
- / log® oe" ds—/ log® Alog® dm+/ log®! ﬁds = —2mlog i —C2|+27r/ log®* dw™
a5 on oS a(_n) a8

Note that the right-hand side is not symmetric with respect to {; and (o, which implies

/ log®! dw®™ :/ log®? dw™
as as

Remark B.1. The properties of the harmonic measure stated in the introduction and proved above can
easily be extended to the case of arbitrary connected droplet S with smooth boundary, without the simple
connectivity assumption. In this general case, independence of w™ from the choice of C is proved in the same
manner, w™ is a measure with mass 1 which is non-negative and supported on the outer boundary of S, and
fas log® dw® does not depend on , again.
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