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We prove the two-dimensional analogue of the asymptotics for Toeplitz determinants with Fisher-Hartwig
singularities, for general real symbols. This formula has applications to random normal matrices with
complex spectra: (i) the characteristic polynomial converges to a Gaussian multiplicative chaos random
measure on the limiting droplet, in the subcritical phase; (ii) the electric potential converges pointwise
to a logarithmically correlated field; (iii) the measure of its level sets (i.e. thick points) is identified; (iv)
the associated free energy undergoes a freezing transition.

This establishes emergence of the Liouville quantum gravity measure from free fermions in 2d, and
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1 Introduction

Determinants of the form

DN (µ) = det

(∫
ziz̄jdµ(z)

)
0⩽i,j⩽N−1

(µ a measure on C)

arise naturally in probability, approximation theory, and complex geometry. In the primary settings, µ is
supported on either the unit circle (Toeplitz determinants) or the real line (Hankel determinants). The case
in which it has a smooth density except at a finite number of singularities is of particular interest in statistical
physics, as such singularities can manifest phase transitions. These singularities can be either a polynomial
vanishing (root singularity) or a discontinuity (jump singularity), and the large N evaluation of DN in these
settings – commonly referred to as Fisher–Hartwig asymptotics – is well understood (see Subsection 1.1).

For general µ supported on C presenting singularities, much less is known. These determinants are then
related to free fermions in 2d and random matrices with complex spectrum, through Andreiev’s identity:

DN (µ) =
1

N !

∫
CN

∏
j<k

|zj − zk|2
N∏
i=1

dµ(zi).

This paper gives asymptotics ofDN for µ supported on the complex plane in the presence of root singularities.
A particular case of our main results gives the limiting fractional moments of the characteristic polynomial
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for the Ginibre ensemble, defined as an N×N random matrix G with independent complex Gaussian entries:
Gij has distribution

N

π
e−N |z|2 dm(z), (dm is the Lebesgue measure on C).

With this normalization of the matrix entries, the empirical measure of eigenvalues converges to the uniform
probability measure on the unit disc D. As a consequence of our asymptotics for fractional moments, the
characteristic polynomial converges to the Gaussian multiplicative chaos on D (see Subsection 1.2). These
results are informally stated as follows.

Theorem. For any fixed m, distinct ζj in the interior of D and positive exponents γj, 1 ⩽ j ⩽ m, we have

E
[ m∏
j=1

|det(G− ζj)|γj

]
∼

N→∞

m∏
j=1

e
γj
2 N(|ζj |2−1)N

γ2
j
8

(2π)
γj
4

G
(
1 +

γj

2

) ∏
1⩽j<k⩽m

|ζj − ζk|−
γjγk

2 ,

where G is the Barnes G-function. Such non-Hermitian Fisher-Hartwig asymptotics – in the full form stated
in Subsection 1.1 – imply the following convergence on D, in distribution with respect to the weak topology
and in the subcritical phase (i.e. γ < 2

√
2):

|det(G− z)|γ

E[|det(G− z)|γ ]
dm(z) → e

γ√
2
h(z)

dm(z),

where h is the Gaussian field with covariance E[h(w)h(z)] = − log |z−w| on D2, and e
γ√
2
h(z)

dm(z) denotes
the Gaussian multiplicative chaos random measure associated to h, with parameter γ√

2
.

The main Theorem 1.1 below generalizes the above moment formula to the exponential generating
function of the electric potential, coupled with mesoscopic linear statistics, for general confining external
potentials. A remarkable aspect of this general formula is the relevance of the harmonic measure on the
boundary of the droplet, with the following consequence: the Gibbs measure associated to the electric
potential converges to a Gaussian multiplicative chaos measure, which is universal up to a global Gaussian
shift inherited from the capacity of the droplet (see Theorem 1.7).

Figure 1: The random field | det(G−z)|
E| det(G−z)| for |z| < 1 and a Ginibre matrix G of size N = 1000.

1.1 Fisher-Hartwig asymptotics. The main results of this paper are explicit large N asymptotics of
DN (µ) in the 2d context, involving special functions that parallel the Toeplitz and Hankel cases. More
precisely, for Toeplitz determinants a simple version of the strong Szegő theorem states that if dµ = eV dθ

2π
with V real-valued and smooth enough,

DN (µ) ∼ exp(NV̂0 +
1

2
∥V ∥2H1/2) (1.1)

for largeN , where the Fourier transform is normalized as f̂k =
∫ 2π

0
f(eiθ)e−ikθ dθ

2π and ∥f∥2
H1/2 =

∑
n∈Z |n| |f̂n|2.

For µ with general 1d support, similar formulas were obtained which connect DN (µ) to the Loewner energy
of curves and Weil-Petersson quasicircles [53,56,57].
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In presence of singularities, Fisher and Hartwig [42] made a seminal general conjecture about the
asymptotic form of DN (µ) in the Toeplitz case, which has been corrected by Basor and Tracy [11] and
is settled in full generality by Deift, Its and Krasovsky, using Riemann-Hilbert methods [37], after multiple
important contributions, e.g.[97, 10, 40]. For example, in the special case where dµ(z) = eV (z)

∏m
j=1 |z −

zj |2αj dθ
2π with m ⩾ 1 fixed singularities zj on the unit circle, αj > −1/2, and smooth centered real V , the

Fisher-Hartwig asymptotics states that

DN (µ) = e
1
2∥V ∥2

H1/2−
∑m

j=1 αjV (zj)N
∑m

j=1 α2
j

∏
1⩽j<k⩽m

|zj − zk|−2αjαk

m∏
j=1

G(1 + αj)
2

G(1 + 2αj)
(1 + o(1)), (1.2)

where the Barnes function G is defined in Subsection 1.5. Applications of general Fisher-Hartwig asymptotics
for Toeplitz determinants (including the case of jump singularities) are multiple, we refer for example to [38]
for the relevance to phase transitions in the Ising model. The main contribution of our paper is the analogue
of (1.2) – a formula due to Harold Widom in 1973 – for non-Hermitian random matrices, as explained below.

We consider the ensemble of N × N random normal matrices, defined on the manifold {M ∈ CN×N :
MM∗ =M∗M}, endowed with the probability measure,

PV (dM) ∝ e−N TrV (M)dM

where dM is the measure induced by the Lebesgue measure on all N × N complex matrices and V : C →
R∪{+∞} be a confining potential. This induces the following probability measure on the eigenvalues of M :

1

ZN,V

∏
1⩽j<k⩽N

|zj − zk|2
N∏
i=1

µ(dzi), µ(dz) = e−NV (z)dm(z)

where ZN,V is the normalizing constant. In the following we will mostly suppress the dependence on V and
N , writing P = PV and E = EV for the corresponding expectation, and only make it explicit when necessary.

Under suitable regularity and growth assumptions on V (see Subsection 1.4), the normalized empirical
distribution of the particles N−1

∑
δzi converges almost surely, as N → ∞, to a compactly supported

probability measure µV , called the equilibrium measure. Its support has non-empty interior, denoted by S,
which is referred to as the droplet. The equilibrium measure is then given by

dµV (z) = ρV (z) dm(z), ρV (z) =
∆V (z)

4π
1S(z), (∆ is the Laplacian in R2).

The fluctuations around this deterministic limit were first fully understood by Rider and Virág [86] when
the potential is quadratic, V (z) = |z|2; then, the eigenvalues density coincides with the complex Ginibre
ensemble previously mentioned and S = D. Their central limit theorem is the 2d analogue of the strong
Szegő theorem (1.1): for smooth enough f ,

E
[
eTrf(G)−E[Trf(G)]

]
∼ e

1
8π

∫
D |∇f |2dm+ 1

4∥f∥
2

H1/2 . (1.3)

Ameur, Hedenmalm, and Makarov proved analogous results for general V and rigorously introduced the
method of Ward identities (also called loop equations) in this bidimensional setting [5,6]. The main Theorem
1.1 below is an extension of the results in [6] to include root singularities.

Before stating it, we introduce some notation and recall some facts from potential theory (see e.g. [47,
Chapters II-III]). For a function g with domain including S̄, let gS denote the unique bounded harmonic
extension of g to Sc, with gS = g on S̄. Note that for this harmonic extension, gS(∞) := lim|z|→∞ gS(z)
exists and

|gS(z)− gS(∞)| = O
(
|z|−1

)
, |∇ngS(z)| = O

(
|z|−n−1

)
for all n ⩾ 1 as |z| → ∞.

Omitting the dependence on S from the notation, we define the Neumann jump operator by N (g) = ∂g|S
∂n −

∂gS |Sc

∂n on ∂S where n is the exterior normal vector (this is the negative of the definition used in [6]).
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Denote logζ = log |ζ − · |. The Green’s function with a pole at ∞ on the exterior domain Sc is defined
by (see e.g. [47, Chapter II.2])

G(z,∞) = logζ z − (logζ)S(z), ζ ∈ S

where the right hand side is independent of the choice of ζ ∈ S (see Appendix B) and we omitted the
dependence on S from the notation. The capacity of the set S̄ is defined by (see e.g. [47, Chapter III.1])

s := log cap(S̄) = (logζ)S(∞) (1.4)

where the right hand side is again independent of the choice of ζ ∈ S (see Appendix B). Equivalently,
− log cap(S̄) is the infimum of the energy integral

I(µ) =

∫∫
log

1

|z − w|
dµ(z)dµ(w) (1.5)

over all probability measures µ supported on S̄, [47, Thm. III.4.1]. The infimum is uniquely attained by the
harmonic measure seen from infinity which is supported on the boundary ∂S and given by

dω∞(z) =
1

2π

∂G(z,∞)

∂n
ds =

1

2π
N (logζ)(z)ds, z ∈ ∂S (1.6)

where ds denotes arc-length measure on ∂S, [47, Thm. II.2.5]. See Appendix B for a self-contained proof
of the independence of the right-hand side from the choice of ζ ∈ S and the fact that ω∞ is a probability
measure. Equivalently, ω∞ is characterized probabilistically as follows. Let Bz be planar Brownian motion
started from z ∈ C, and τ denote the hitting time of ∂S. Then, ω∞ coincides with the weak limit of the law
of Bz

τ as |z| → ∞. Finally, for any ζ ∈ S, the Poisson-Jensen formula applied to (logζ)S yields

s = (logζ)S(∞) =

∫
∂S

logζ(z) dω∞(z), for all ζ ∈ S. (1.7)

We also need the notations L = log ∆V
4 , and refer to Subsection 1.5 for the definition of the functional

space Sn,C,κ, to state the following main theorem. It gives the asymptotics for the joint Laplace transform
of the electrostatic potential, or equivalently the joint moments of the characteristic polynomial of random
normal matrices.

Theorem 1.1 (General potential). Let C > 1, m ∈ N, 0 < κ ⩽ 1
100C be fixed constants. Then, uniformly in

f ∈ S5,C,κ, ζ1, . . . , ζm ∈ {ζ ∈ S : dist(ζ, ∂S) > N−1/2+κ} satisfying min1⩽j<k⩽m |ζj − ζk| > N−1/2+κ and
γ1, . . . , γm ∈ [0, C] we have (G stands for the Barnes G-function, see Subsection 1.5)

E
[
e
∑N

i=1 f(zi)
m∏
j=1

N∏
i=1

|zi − ζj |γj

]
= eN

∫
fdµV + 1

8π

∫
C(|∇fS |2+1S∆f+∆fLS)dm

m∏
j=1

e
γj
2

( ∫
∂S

fdω∞−f(ζj)
)

×
m∏
j=1

eγjN
∫
logζj dµV N

γ2
j
8

(2π)
γj
4

G
(
1 +

γj

2

)e γj
4 (L(ζj)−LS(∞))+

γ2
j
8 (L(ζj)+2s)

×
∏

1⩽j<k⩽m

|ζj − ζk|−
γjγk

2 e
γjγk

2 s
(
1 + O(N−κ/10)

)
.

The Ginibre ensemble is the paradigmatic non-Hermitian random matrix model; see [25] for its many

facets. For this ensemble, our asymptotics take a simpler form. We have
∫
D logζ dm

π = |ζ|2−1
2 and choosing

ζ = 0 gives N (logζ) = 1 and
∫
∂D logζ ds = 0, so log cap(D̄) = 0. Hence the main theorem takes the following

simplified expression, conjectured by Webb and Wong in [96].

Theorem 1.2 (Ginibre ensemble). Let G be a complex Ginibre matrix with eigenvalues zi. Fix constants
C > 1, m ∈ N, 0 < κ ⩽ 1

100C . Then, uniformly in f ∈ S5,C,κ, ζ1, . . . , ζm ∈ B(0, 1 − N−1/2+κ) satisfying

min1⩽j<k⩽m |ζj − ζk| > N−1/2+κ and γ1, . . . , γm ∈ [0, C] we have

E
[
eTrf(G)

m∏
j=1

|det(G− ζj)|γj

]
= e

N
π

∫
D fdm+ 1

8π

∫
D |∇f |2dm+ 1

4∥f∥
2

H1/2+
1
8π

∫
D ∆fdm

m∏
j=1

e
γj
2 (f̂0−f(ζj))

×
m∏
j=1

e
γj
2 N(|ζj |2−1)N

γ2
j
8

(2π)
γj
4

G
(
1 +

γj

2

) ∏
1⩽j<k⩽m

|ζj − ζk|−
γjγk

2

(
1 + O(N−κ/10)

)
.
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Remark 1.3 (Complex exponents). The case m = 1, V (z) = |z|2, f = 0 was proved in [96] with a different
method which analyses a related Riemann-Hilbert problem [9], and allows any complex exponent Re γ > −2.
The current proof of Theorem 1.1 extends to complex γi’s in a neighbourhood of [0, C], but the statement is
expected to hold uniformly in compact subsets of Re γk > −2, 1 ⩽ k ⩽ m. We do not address this here but
note potential applications to fluctuations of the measure of thick points of the field, see Remark 1.12.

Remark 1.4 (Jump singularities). In the Toeplitz case, the most general version of Fisher-Hartwig asymptotics
[37] allows jump singularities with general complex exponents, with asymptotics involving a subtle variational

problem. As a natural 2d analogue, one may consider the asymptotics of E
[
e
∑m

j=1 γj#{zi∈Ωj}
]
. No conjecture

is known for general Ωj ⊂ C and complex γj. Results were obtained for rotationally invariant ensembles,
concentric rings Ωj’s, and exponents in a neighbourhood of R, see [28] and references therein.

Remark 1.5 (Painlevé transcendents). For merging singularities on microscopic scale (namely ζj − ζk ≍
N−1/2), the joint moments of characteristic polynomials are expected to give rise to Painlevé transcendents,
mirroring a similar phenomenon identified for Toeplitz determinants in [32]. In dimension 2, this was
recognized by Deaño and Simm, who proved it by algebraic methods for the Ginibre ensemble, integer
moments, with no linear statistics f . Then Painlevé V appears for two merging singularities in the bulk (see
[35, Theorem 1.5]), and Painlevé IV on the boundary of the disk (see [35, Theorem 1.3]). In a forthcoming
work [72], these asymptotics are extended to fractional moments in the bulk, for V (z) = |z|2 and f = 0. The
methods developed for Theorem 1.1 have potential to prove the emergence of these Painlevé transcendents
for general V, f , by comparison with [35, 72], but we do not pursue this goal here.

A straightforward corollary of Theorem 1.1 is the following central limit theorem for the log-characteristic
polynomial. Gaussian fluctuations of the determinant of random matrices have been studied extensively, both
for 1d [61, 93, 22, 23, 78] and 2d spectra [48, 93, 89]. Our main theorem proves such fluctuations for random
normal matrices, generalizing [96, Corollary 1.2] to the multidimensional setting and general V .

Corollary 1.6 (Log-correlations pointwise). Fix m ∈ N and κ ∈ (0, 1/2). Assume that the (possibly
N -dependent) points ζ1, . . . , ζm ∈ {ζ ∈ S : dist(ζ, ∂S) > N−1/2+κ} satisfy min1⩽j<k⩽m |ζj − ζk| > N−1/2+κ

and the limit cj,k = limN→∞
− log |ζj−ζk|

2 logN exists for every j ̸= k. Let Σ = (ci,j)
m
i,j=1 where ci,i =

1
4 for each

i = 1, . . . ,m. Then (∑N
i=1 log |ζj − zi| −N

∫
log |ζj − z|dµV (z)√

logN

)m

j=1

(d)−−−−→
N→∞

N (0,Σ).

In the case m = 1, [3, Theorem 1.2] shows that such a CLT also holds at points where the limiting density
∆V may vanish or diverge, with a variance depending on the order of the singularity.

To conclude this subsection, we note that moments of random characteristic polynomials of wide classes
of random matrices have been a topic of major interest, see e.g. [1, 44, 19, 43, 8, 2, 88] in the case of integer
exponents by algebraic and supersymmetric methods, and [67, 52, 27, 15, 96, 29, 33, 24, 36] for fractional
exponents by Riemann-Hilbert methods. Motivations for the study of random determinants in the non-Hermitian
setting include for example the stability of large complex systems [14]. Theorems 1.1 and 1.2 introduce joint
fractional moments for non-Hermitian ensembles, motivated by two-dimensional random geometry from free
fermions, as explained below.

1.2 Gaussian multiplicative chaos. The Gaussian multiplicative chaos (GMC) appeared in attempts
to model intermittency in fluid mechanics, with its premises in studies by Kolmogorov [63,64], Obukhov [81]
and Mandelbrot [75, 76]. Its general, rigorous foundations were led by Kahane in [59]: in his theory, the
Gaussian multiplicative chaos is the fractal measure on Rd defined by the density

eγX(z) = lim
ε→0

eγXε(z)− γ2

2 E(Xε(z)
2),

with respect to the Lebesgue measure, where Xε is a mollification of a log-correlated Gaussian field X
(meaning E[X(v)X(w)] = − log |v − w| + O(1) as v → w) on a domain D ⊂ Rd. The regularization and
renormalization are necessary because of the negative Sobolev regularity of the field. The convergence holds
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in probability with respect to the topology of weak convergence, the limit does not depend on the mollification
and it is non-trivial for any γ ∈ (0,

√
2d), see for example [84] for these properties. The specific case where

X is a two dimensional Gaussian free field (a Gaussian field whose covariance function is the inverse of the
Laplacian) has proved to be connected with many different domains in mathematical physics. To name a
few, it is the volume form in Liouville quantum gravity, a metric measure space corresponding to the formal
Riemannian metric tensor “eγX(dx2 + dy2)” [39, 49], it appears in the scaling limit of random planar maps
[74,77,50], and it plays a central role in the rigorous approach to Liouville Conformal Field Theory [34,68].
We refer to the surveys [91,85] for more references on these connections.

In [95], Webb connected the GMC and random matrix theory, showing that the characteristic polynomial
of random unitary matrices evaluated on the unit circle converges to a one-dimensional GMC. He conjectured
that similar results also hold for the Gaussian ensembles, one-dimensional β-ensembles, and more generally
for random matrix models presenting log-correlations, including in dimension two. His proof and the ones of
the following works [15,80,33] relied on Fisher-Hartwig asymptotics based on the Riemann-Hilbert method.
Another approach based on sparse matrix models showed that the limit of the spectral measure of circular
β-ensembles, and the characteristic polynomial, also converge to a GMC, still for d = 1 [30,71].

In two-dimensional space-time settings when dynamics are involved, the works [21,62] obtained convergence
of the eigenvalues counting function and the electric potential to a 2d GMC, for the geometry of the 2d torus
(unitary Brownian motion) and the 2d strip (non-intersection Brownian motions), respectively. These works
rely on a general surgery method replacing the Riemann-Hilbert approach when there is no known equivalence
to asymptotics of orthogonal polynomials.

In the 2d ambient space the Liouville quantum gravity measure also appears as stated in Theorem 1.7
below. The key ingredient is the precise asymptotics of the moments of the characteristic polynomial,
Theorem 1.1 above. To state our result, note that from Corollary 1.6, the log-characteristic polynomial of
a random normal matrix is 1

2 -log-correlated, so the corresponding critical value becomes γc = 2
√
2. The

regime γ < 2 is often referred to as the L2-phase, while the full subcritical range γ < 2
√
2 is called the

L1-phase. All arguments below are carried out in the L1-phase.
We consider the field XN associated to the characteristic polynomial,

XN (z) = log |det(M − z)| − E
[
log |det(M − z)|

]
, (1.8)

and note that the fine asymptotics of the centering term (as follows from the proof of Theorem 1.1): for
some ε > 0

E
[
log |det(M − z)|

]
= N

∫
logz dµV +

1

4
+

1

4
(L(z)− LS(∞)) + O(N−ε).

At the level of fluctuations,
√
2XN converges to a Gaussian free field X (see [5]) with covariance kernel Ts

on S2 defined by

Ts(z, w) =
1

2π

∫
C
∇(logz)S · ∇(logw)Sdm = log

1

|z − w|
+ s,

where the second equality is shown in Appendix B. Note that s = log cap(S̄) is the smallest real number for
which the kernel T is positive semi-definite, since − log cap(S̄) is the infimum of the energy integral given in
(1.5).

Let νγ,(s) be the GMC measure associated to X, formally given by

νγ,(s)(A) =

∫
A

eγX(z)− γ2

2 E[X(z)2]dm(z).

More precisely, νγ,(s) the limit, as ε → 0, of eγXε(z)− γ2

2 E[Xε(z)
2]dm(z), where Xε is the convolution of X

with a bump function on scale ε. As already mentioned, this limit is non-trivial and does not depend on the
convolution kernel, see e.g. [84, Theorem 3.1]. Then the random Borel measure

νγ,N (A) =

∫
A

eγXN (z)

E[eγXN (z)]
dm(z) (1.9)

converges to a GMC measure in the full L1-phase, as conjectured in [95,96,69].
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Theorem 1.7 (Convergence to a GMC). For any 0 < γ < 2
√
2, as N → ∞ we have the following convergence

in distribution with respect to the weak topology on S:

νγ,N → νγ/
√
2,(s).

More explicitly, the above convergence means that
∫
S
φdνγ,N

(d)−−−−→
N→∞

∫
S
φdνγ/

√
2,(s) for any continuous

bounded φ supported in S. Moreover, we also note that the denominator in (1.9) is explicit thanks to
Theorem 1.1.

Remark 1.8 (Outside the droplet). The field XN behaves very differently on Sc and the fractal nature of
the limit disappears: in the case of the Ginibre ensemble, det(Id− z−1G) converges in law of the exponential
of a random analytic function for |z| < 1, as proved in [18] in the general setting of random matrices with
i.i.d. entries.

Remark 1.9 (The Coulomb gas). A natural extension of the model considered is the two-dimensional
Coulomb gas confined by the external field V , at general inverse temperature β, i.e. the Gibbs measure

e−βH where H(z) = −
∑

1⩽j<k⩽N

log |zj − zk|+
N

2

N∑
i=1

V (zi).

In this setting, distributional convergence of XN (z) =
∑

log |z − zi| − E
∑

log |z − zi| to the Gaussian free
field was proved in [73, 13], suggesting convergence of eγXN to a GMC. More precisely, in view of Theorem
1.7, one expects

eγXN (z)

E[eγXN (z)]
→ νγ/

√
β,(s)

in the L1 phase, which corresponds to γ ⩽ 2
√
β. It is an interesting problem to prove the above convergence

without relying on an analogue of Theorem 1.1, which seems out of reach with current methods.

Remark 1.10 (Dynamics). An extension of (1.3) was recently obtained in [20], for the Ornstein-Uhlenbeck
process on the space of non-Hermitian matrices. In this setting the field XN (z, t) = log |det(Gt − z)| −
E
[
log |det(Gt − z)|

]
converges to a Gaussian field X on D × R which is log-correlated for the parabolic

distance:

E[XN (z, t)XN (w, s)] → E[X(z, t)X(w, s)] = −1

2
log(|z − w|+

√
t− s) + O(1),

raising the question of the convergence of |det(Gt − z)|γdm(z)dt to a related 3d GMC.

Another corollary of our main theorems concerns the thick points of the field, where XN attains unusually
large values, which play a central role in the geometry of extremes for log-correlated fields. It follows directly
from [33, Proposition 3.8]. It is the 2d analogue of [7, Theorem 1.3] which considers high points of the
circular unitary ensemble.

Corollary 1.11 (Thick points). For every compact K ⊂ S with non-empty interior, γ ∈ [0, 1√
2
) and ε > 0,

we have

lim
N→∞

P
(
N−2γ2−ε ⩽

∣∣{z ∈ K : XN (z) ⩾ γ logN
}∣∣ ⩽ N−2γ2+ε

)
= 1.

Remark 1.12 (Fluctuations of thick points). The fluctuations of N2γ
∣∣{z ∈ K : XN (z) ⩾ γ logN

}∣∣ are
supposedly related to the mass of νγ/

√
2,(s). Indeed [58] gives a general criterion for this correspondence,

and applies it to identify the fluctuations of the measure of high points of the characteristic polynomial of
the circular unitary ensemble, which had been conjectured in [46]. In our setting, the criterion from [58]
requires an extension of Theorem 1.1 to complex exponents ζi, see Remark 1.3. However, while the mass of
the Gaussian multiplicative chaos measures on the unit circle has an explicit distribution [45,83], to the best
of our knowledge there is no conjectural explicit density in the 2d case.

From the above corollary, by following the same steps as in [7, Proof of Corollary 1.4], we obtain the
following consequence for the free energy. This extends the identity [69, (1.15)] to the non-Hermitian setting
with a general potential1.

1As a minor remark, [69] appears to have omitted the factor N in the numerator inside the logarithm.
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Corollary 1.13 (Freezing). For every compact K ⊂ S with non-empty interior and γ > 0, the free energy
converges in probability as N → ∞:

log
(
N
∫
K
eγXN (z)dm(z)

)
γ logN

→

{
1
γ + γ

8 , for γ ⩽ 2
√
2,

1√
2
, for γ ⩾ 2

√
2.

The above transition of the free energy appears in statistical physics for models exhibiting the freezing
scenario, which is instrumental in the analysis of equilibrium Gibbs measures with logarithmic spatial
correlations [26].

Remark 1.14 (Extreme values). Our main theorems also allow to recover the leading order asymptotics
for the electric field for general potential: For K any compact subset of S with non-empty interior and any
ε > 0,

lim
N→∞

P
(
max
z∈K

XN (z)

logN
∈ [

1√
2
− ε,

1√
2
+ ε]

)
= 1. (1.10)

The leading-order asymptotics for XN has already been established for the Ginibre ensemble in [69], for
general β with quadratic potential in [70], for general β and potential in [82], and for i.i.d. matrices in [31].

With Theorem 1.7, the lower bound in the above equation follows directly from the support of the GMC
on so-called γ-thick points (see [33, Theorem 3.4]), while the upper bound follows directly from Theorem 1.1,
as explained in [69, Proof of Proposition 3.1]. A natural problem is refining the method for Theorem 1.1
(closer singularities, complex exponents) for finer orders in (1.10).

1.3 Outline. The proof of the main Theorem 1.1 is based on the integration of two techniques, the Ward
identities as introduced in [6] for non-Hermitian matrices, and the removal of singularities, first implemented
in space-time in [21]. The surgery from [21] can be applied to a variety of models involving local, special
factors and long-range interactions, but implementation in different settings presents specific difficulties.
This method proceeds in several steps:

(1) Cut the long range nonsingular part of the determinants, and prove a decoupling of the resulting product
of localized root singularities.

(2) Establish a general “gluing operation” for nonsingular terms.

(3) Evaluate asymptotics of one localized singularity, by gluing the opposite of the associated long range
nonsingular part to the determinant, evaluated for one specific model where integrability holds.

(4) Glue back the nonsingular parts of the determinant, and the additional smooth function f to the localized
singularities.

Step (1) requires some decay of correlations, obtained here from a general multiplicative comparison of
Fredholm determinants introduced in [21] and kernel estimates from [4], see Lemma 3.4. At the technical
level, this step requires an a priori submicroscopic smoothing of the log-singularity (Proposition 3.1) and
goes beyond the usual decoupling methods for determinantal point processes which give additive error terms
instead of multiplicative.

Steps (2) and (4) rely on the method of Ward identities, or loop equations, which is common in field
theories. For Hermitian random matrices, the seminal work [54] relied on loop equations to reduce Laplace
transform estimates to a shift of the density of states. In our non-Hermitian setting, Ward identities are
also instrumental as in [6], but the control of the error due to potential anisotropy (i.e. local directional
contribution from the interactions) and the boundary of the droplet, is delicate for measures biased by
determinant powers, i.e. in the presence of root singularities. Regarding the proof of local isotropy –
a problem naturally absent in the settings of [21, 62] – Lemma 2.14 first treats nonsingular potentials,
by a moments method specific to determinantal point processes but flexible enough to cover mesoscopic
observables up to the boundary of the droplet; this estimate is then transferred to singular setting, as it

holds with overwhelming probability (here 1 − e−(logN)D for any D > 0), while in [6] angular cancellations
hold in expectation for the nonsingular potentials. About the effect of the boundary, one novelty of our
analysis is a careful control of the norms of the harmonic extensions of functions on mesoscopic scales,
and an analysis of the effect of bulk singularities on the boundary field. This analysis is significant due to
the harmonic measure on the boundary of the droplet, which generates an additional Gaussian shift when
compared to the free field with free boundary conditions, harmonically extended outside of the droplet.
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For step (3), while the emergence of the Barnes special function was rooted in the Selberg integrals in
the space-time settings [21, 62], in this article it relies on a result by Kostlan stating that the radial parts
of the eigenvalues of a Ginibre matrix are independent, see Lemma 3.6. In [21] this step dealt with only
one matrix ensemble, the CUE, due to rotational invariance; in [62] this step required comparison between
two different ensembles (GUE at arbitrary energy level and CUE); in the present work, this comparison is
pushed further, matching the Ginibre ensemble to any random normal matrix model, as needed towards the
proved universality of the limiting GMC.

These steps are implemented in the next Sections 2 and 3 to prove Theorem 1.1. Section 4 then proves
Theorem 1.7, the convergence of the Gibbs measure associated to the electric potential to a GMC, based on
a general criterion from [33].

1.4 Assumptions on the potential. We impose the following assumptions (A1)-(A4) on the external
potential V .

(A1) Growth: V ∈ C 2(C) and there exists an ε > 0 such that lim inf |z|→∞
(
V (z) − (2 + ε) log |z|

)
⩾ 0

for some ε > 0. For convenience we also assume that there exists a constant C > 0 such that
|V (z)| + |∇V (z)| ⩽ C(1 + |z|)C for all z ∈ C; noting that this additional condition can be relaxed
easily.

Under (A1), standard results in logarithmic potential theory (see e.g. [87]) guarantee that the energy
functional

IV (µ) =
∫∫

log
1

|z − w|
dµ(z)dµ(w) +

∫
V (z) dµ(z)

admits a unique minimizer, called the equilibrium measure µV , among all probability measures on C. Its
support is compact and on the support its density is ∆V

4π . Moreover, µV is the limiting distribution of the
normalized empirical spectral distribution for random normal matrices with confining potential V .

(A2) Boundary regularity: The boundary of supp(µV ) is a real-analytic Jordan curve and the interior of
supp(µV ), denoted by S, is simply connected.

(A3) Regularity: V is real-analytic in a neighbourhood of supp(µV ).

We define,

V̌ (z) = sup{f(z) : f ∈ C 2(C) is subharmonic, f(z) ⩽ 2 log |z|+O|z|→∞(1), f ⩽ V }.

It is known (e.g. [6]) that V̌ ∈ C1,1(C), satisfies V̌ = V on S, is subharmonic on C, harmonic on C \ S and

V̌ (z) = 2 log |z|+O|z|→∞(1),

∂V̌ (z) =

∫
dµV (w)

z − w
, for all z ∈ C, (1.11)

where the second equation is obtained by the Euler-Lagrange equation if z ∈ S and uniqueness of the
harmonic extension if z ∈ Sc.

(A4) Non-degeneracy: ∆V (z) > 0 on the coincidence set {z ∈ C : V̌ (z) = V (z)} and the coincidence set
coincides with supp(µV ).

1.5 Notations and conventions. We collect here the notations used throughout the paper.

1.5.1 Scales and geometry. We use the symbols α and κ to denote small fixed constants in the exponents.
We define the mesoscopic scale δ, the submicroscopic scale ∆, and the slightly super-microscopic scale δN
as follows:

δ = N−1/2+κ, ∆ = N−1/2−α, δN = (logN)2N−1/2.
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We let τ vary from mesoscopic to macroscopic scales, i.e., τ ∈ [δ, 1]. For any parameter a ⩾ 0, we define the
inner, outer, and edge neighbourhoods of the droplet S:

Sin(a) = {z ∈ S : dist(z, ∂S) > a},
Sout(a) = {z ∈ Sc : dist(z, ∂S) > a},
Sedge(a) = {z ∈ C : dist(z, ∂S) < a}.

1.5.2 Function classes and differential operators. Denote by C n(A) the class of real-valued functions on
A ⊆ C whose partial derivatives up to order n are continuous. We utilize the complex differential operators
∂ = 1

2 (∂x − i∂y), ∂̄ = 1
2 (∂x + i∂y), and the Laplacian ∆ = 4∂∂̄. For f ∈ C n(C) we define

|∇nf(z)| = max
n1+n2=n

|∂n1
x ∂n2

y f(z)|, ∥∇nf∥∞ = sup
z∈C

|∇nf(z)|.

For any ε > 0 and n ∈ N, we define the scale-dependent norm

∥f∥n,ε =
n∑

k=0

1

εk
∥∇kf∥∞, where ∥∇nf∥∞ = max

n1+n2=n
sup
z∈C

|∂n1
x ∂n2

y f(z)|. (1.12)

We denote by An,ε the collection of smooth functions that are supported in a ball of radius ε and are smooth
up to the nth derivative on that scale:

An,ε =
{
g ∈ C n(C)

∣∣∣ g is supported in B(z0, ε) for some z0 ∈ C, and ∥g∥n,ε ⩽ 1
}
.

Additionally, for constants C > 0 and κ > 0, we define a collection of (sequence of) functions Sn,C,κ by:

Sn,C,κ =

{
f = f(N)

∣∣∣ f =

⌊C logN⌋∑
i=1

gi where gi ∈ An,εi , εi ∈ [N−1/2+κ, 1]

}
.

1.5.3 Cutoff functions and log-regularization. Unless otherwise stated, the symbol χ denotes a fixed smooth
radial cutoff function with χ = 1 on B(0, 1/2), χ = 0 outside B(0, 1) and let χε(z) = χ(z/ε). For any ε > 0,
we define log-regularization on scale ε by

logε = log | · | ∗ χε

∥χε∥L1

.

For shifted functions, we use the shorthand

χζ
ε = χε(· − ζ), logζε = logε(· − ζ).

1.5.4 Biased measures. We denote the particles by zi and the singularities by ζj . The linear statistics and
centered linear statistics are given by:

Tr(f) =

N∑
i=1

f(zi), Xf =

N∑
i=1

f(zi)−N

∫
S

fρV dm

where ρV = ∆V
4π on S. Finally, we define the biased probability measure Pf and the corresponding expectation

Ef by

Pf (A) = E
[
1A

eTr(f)

E[eTr(f)]
]
. (1.13)

1.5.5 Barnes G-function. The Barnes G-function is defined as the Weierstrass product

G(z + 1) = (2π)z/2e−
z+z2(1+γ)

2

∞∏
k=1

(
1 +

z

k

)k
e

z2

2k−z

where γ is the Euler-Mascheroni constant. It satisfies the functional equation G(z + 1) = Γ(z)G(z) where Γ
is the Gamma function.
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2 Preliminaries on nonsingular potentials

In this section, we gather preliminary estimates for nonsingular potentials, in preparation for the next
section treating root singularities. Many relevant methods appeared in [6], to obtain concentration bounds
(Proposition 2.11) and fluctuations (Proposition 2.6) for linear statistics of the zi’s. We follow a similar
strategy based on the Ward identities, with additional ideas from [12] to cover linear statistics on any
mesoscopic scale, including at the edge of the droplet.

These improvements to mesoscopic scales are instrumental in the next section, to treat smoothed versions
of log by multiscale decompositions, and to eventually allow the main Theorem 1.1 to cover the electric
potential up to the mesoscopic distance N−1/2+κ from the boundary.

2.1 Ward identity. We denote

µ̂N =
1

N

∑
δzk , µV =

∆V

4π
1S dm, µ̃N = µ̂N − µV

for any V ∈ C 2(C) satisfying

lim inf
z→∞

V (z)

2 log |z|
> 1, (2.1)

|V (z)|+ |∇V (z)| ⩽ C(1 + |z|)C (2.2)

for some fixed constant C > 0. In this subsection, we do not impose the non-degeneracy and boundary
regularity assumptions from Subsection 1.4; these will be assumed in all other sections.

Moreover, assume that h : C → C is a function such that

h is continuous on C, (2.3)

h |D and h |Dc are C 1, (2.4)

∥h∥∞ + ∥(∇h) |D ∥∞ + ∥(∇h) |Dc ∥∞ < C (2.5)

for some fixed C, possibly depending on N . For any z ∈ (C\∂S)N , we define

Wh
V (z) =

∑
j<k

h(zj)− h(zk)

zj − zk
+
∑
j

∂h(zj)−N
∑
j

h(zj)∂V (zj). (2.6)

The following lemma, sometimes called the Ward identity or loop equation, is analogous to [6, Proposition
2.1], where it first appeared in the context of 2d Coulomb gases and was used to study Gaussian fluctuations
of µ̂N . It was also instrumental in [13] to prove such fluctuations at any inverse temperature. Its relation to
Conformal Field Theory is discussed in [60].

In [6], it was stated for Lipschitz and compactly supported test function. We give another version, with
assumptions closer to [12, Lemma 8.3], and essentially reproduce the proof from [12] by integration by parts.

Lemma 2.1. Assume V and h are as described above. Then we have

EV
[
Wh

V

]
= 0.

Proof. Let H(z) = −2
∑

j<k log |zi − zj |+N
∑N

i=1 V (zi). Let δε be a smooth Dirac approximation on scale
ε and hε = h ∗ δε. By integration by parts, for any j ∈ J1, NK, we have

EV [∂hε(zj)] = EV
[
hε(zj)∂zjH(z)

]
.
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Summing this over j ∈ J1, NK gives

N∑
j=1

EV [∂hε(zj)] = E
[ N∑
j=1

hε(zj)
(
N∂V (zj)− 2

∑
k ̸=j

∂zj log |zj − zk|
)]

= EV

N∑
j

hε(zj)∂V (zj)−
∑
j ̸=k

hε(zj)− hε(zk)

zj − zk

 .
We now take ε→ 0 and conclude by dominated convergence. Indeed, first ∂hε converges almost everywhere
to ∂h and ∥∇hε∥∞ < C by (2.5). Second, |hε∂V | < C|∂V | which is integrable by (2.1) and (2.2). Finally
hε(zj)−hε(zk)

zj−zk
is uniformly bounded thanks to (2.3) and (2.5). This concludes the proof.

The following classical decomposition will also be useful in the next key proposition.

Lemma 2.2. For any h, V as above, and z ∈ (C\∂S)N , we have

∑
j

∫
h(w)

zj − w
µV (dw)−N

∫∫
h(w)

z − w
µV (dw)µV (dz) = − 1

N
Wh

V (z)+
1

N

∑
j

∂h(zj)+
∑

h(zj)(∂V̌ (zj)−∂V (zj))

+
N

2

∫∫
z ̸=w

h(z)− h(w)

z − w
µ̃N (dz) µ̃N (dw). (2.7)

Proof. The proof only relies on the definition of Wh
V and (1.11). With (1.11), we can write the left-hand side

of (2.7) as

N

∫∫
h(w)− h(z)

z − w
µ̂N (dz)µV (dw) +

∑
j

h(zj)∂Q̌(zj)−
N

2

∫∫
h(w)− h(z)

z − w
µV (dw)µV (dz)

= − 1

N

∑
j<k

h(zj)− h(zk)

zj − zk
+
∑
j

h(zj)∂V̌ (zj) +
N

2

∫∫
z ̸=w

h(z)− h(w)

z − w
µ̃N (dz)µ̃N (dw),

which is equivalent to (2.7) for z ∈ (C\∂S)N , where Wh
V is well defined.

For any given function f of class C 5(C) with at most logarithmic growth as |z| → ∞ and |∇f(z)| ⩽
C(1 + |z|)C (for a possibly N -dependent C), we denote the probability measure

dµf (z) =
1

Zf
N

∏
i<j

|zi − zj |2e−N
∑N

i=1(V− f
N )(zi)

N∏
i=1

dm(zi),

and write Pf = PV− f
N , Ef = EV− f

N for probability and expectation with this biased measure. Note that
this coincides with the biased measure definition in (1.13).

By definition (2.6), we have

Wh
V− f

N

=Wh
V +

∑
j

h(zj)∂f(zj).

Thus, Lemma 2.1 implies:

Ef [W
h
V ] = −Ef

[∑
j

h(zj)∂f(zj)
]
.

Therefore, taking the expectation of (2.7) with respect to the biased measure Ef we obtain:

Ef

[∑
j

∫
h(w)

zj − w
µV (dw)

]
+ Ef

[∑
h(zj)(∂V (zj)− ∂V̌ (zj))

]
−N

∫∫
h(w)

z − w
µV (dw)µV (dz)

=
1

N
Ef

[∑
j

h(zj)∂f(zj)
]
+

1

N
Ef

[∑
j

∂h(zj)
]
+ Ef

[N
2

∫∫
z ̸=w

h(z)− h(w)

z − w
µ̃N (dz) µ̃N (dw)

]
. (2.8)
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2.2 Harmonic extension and decomposition. We define an analogous version of the ∥ · ∥n,ε norm in
(1.12) on a curve: For any smooth Jordan curve γ parametrized by γ : [0, 2π] → C, and any smooth function
g on the curve γ we define,

∥g∥γ,n,ε =
n∑

k=0

1

εk
∥∥ dk

dθk
(g ◦ γ)

∥∥
∞.

Although the definition depends on the choice of parametrization, we omit this dependence from the notation.
We fix an order 1 parametrization of ∂S and will not need to refer to it again.

Let κ > 0, τ ∈ [N−1/2+κ, 1], n ⩾ 2 and g ∈ An,τ be fixed. We denote the unique bounded harmonic
extension of g|∂S into Sc by gout. As S is a simply connected open set there exists a biholomorphic map φ :
S̄c → D̄c satisfying φ(∞) = ∞. Since ∂S is real-analytic, the map φ can be extended to a C∞-diffeomorphism
from Sc onto Dc by the Kellogg–Warschawski Theorem (see, e.g. [66, Theorem 5.2.4]) and further to a C∞

function on the whole complex plane C. We define,

G = g ◦ φ−1, on ∂D.

Observe that since g ∈ An,τ , we have ∥g∥∂S,n,τ < C for some constant C depending only on S. By
C∞-diffeomorphism of φ, it follows that ∥G∥∂D,n,τ < C ′, where C ′ is a constant depending only on φ. In
addition, we may assume that G is supported on an arc of length τ and ∥G∥∂D,n,τ ⩽ 1, since G can be
written as a sum of finitely many such functions, the number of which depends only on S and φ.

If we denote the Fourier coefficients of G by Ĝk = 1
2π

∫ 2π

0
G(eiθ)e−ikθdθ, the bounded harmonic extension

of G on Dc, denoted by Gout, becomes

Gout(z) = · · ·+ 1

z2
Ĝ−2 +

1

z
Ĝ−1 + Ĝ0 +

1

z̄
Ĝ1 +

1

z̄2
Ĝ2 + · · · , if |z| ⩾ 1.

Note that gout = Gout◦φ on Sc by the uniqueness of harmonic extension. Decompose Gout into two functions,

G+(z) =

∞∑
k=0

1

zk
Ĝ−k, G−(z) =

∞∑
k=1

1

z̄k
Ĝk, for z ∈ Dc. (2.9)

The following lemma proves that the regularity of G on ∂D is preserved for the functions G+ and G−.

Lemma 2.3. Let 0 < ε < 1 and assume f : ∂D → C is smooth function supported on a curve of length ε with
∥f∥∂D,n,ε < 1 for an n ⩾ 2. Let f+ and f− be defined as in (2.9) on Dc. Then, for every ℓ ∈ {0, 1, . . . , n−1}
and 1 < |z| < 2 we have

|∇ℓf+(z)|+ |∇ℓf−(z)| ⩽ Cℓ
ε

max
(
ε, dist(z, supp(f)

)ℓ+1
(2.10)

where Cℓ is an absolute constant depending only on ℓ. Moreover, for any |z| > 2,

|∇ℓf+(z)|+ |∇ℓf−(z)| ⩽ Cℓ ε. (2.11)

Proof. For any |z| > 1,

f+(z) =

∫ 2π

0

f(eiθ)
z

z − eiθ
dθ

2π
, f−(z) =

∫ 2π

0

f(eiθ)
e−iθ

z̄ − e−iθ

dθ

2π
, (2.12)

where two integrands add up to the Poisson kernel on the unit circle. We discuss the proof for f+ here in
detail, for f− the proof is identical.

Fix an arbitrary point z0 in the support f . If |z − z0| > 2ε and |z| < 2,

∂ℓf+(z) =

∫ 2π

0

f(eiθ)∂ℓ
( z

z − eiθ
)dθ
2π

⩽ Cℓ
ε

|z − z0|ℓ+1
.

We now move on to the case |z− z0| < 2ε. Note that there exists universal constants ak,ℓ, 1 ⩽ ℓ ⩽ k such
that for any |z| > 1 we have

∂k
z

z − eiθ
=

1

zk

k∑
ℓ=1

ak,ℓ∂
ℓ
θ

z

z − eiθ
. (2.13)

13



From (2.12), (2.13) and integration by parts, we obtain

∂kf+(z) =
1

zk

k∑
ℓ=1

(−1)ℓak,ℓ

∫ 2π

0

∂ℓθf(e
iθ)

1− 1
z e

iθ

dθ

2π
.

This implies that

|∂kf+(z)| ⩽ Ck sup
1⩽ℓ⩽k

∣∣∣∣∫ 2π

0

∂ℓθf(e
iθ)

1− 1
z e

iθ

dθ

2π

∣∣∣∣ .
Note that the Cauchy transform

∫ 2π

0
∂ℓ
θf(e

iθ)

1− 1
z e

iθ
dθ
2π has boundary

lim
r→1−

∫ 2π

0

∂ℓθf(e
iθ)

1− rei(θ−φ)

dθ

2π
=

1

2
∂ℓθf(e

iθ) + lim
δ→0

∫
|θ−φ|>δ

∂ℓθf(e
iθ)

1− ei(θ−φ)

dθ

2π
.

We bound the above right-hand side by writing, for any 0 < δ < ε,∣∣∣∣∣
∫
|θ−φ|>δ

∂ℓθf(e
iθ)

1− ei(θ−φ)
dθ

∣∣∣∣∣ ⩽
∫
δ<|θ−φ|<ε

|∂ℓθf(θ)− ∂ℓθf(φ)|
|eiθ − eiφ|

dθ + ∥∂ℓθf∥∞
∫

|θ−φ|>ε
θ∈supp(f)

dθ

|eiθ − eiφ|

⩽ ε∥∂ℓ+1
θ f∥∞ + c∥∂ℓθf∥∞ = O(1/εℓ).

This completes the proof of (2.10) as ∂̄f+ = 0 on Dc. The second estimation (2.11) follows directly from the
the maximum principle for harmonic functions.

Let η be a smooth cutoff function that is equal to 1 on B(0, 2) and vanishes on B(0, 3)c. Pick an arbitrary
point z0 ∈ supp(G). Let

∑∞
k=1 χk be a partition of unity such that χ1 is supported in B(z0, 2τ) and χk is

supported in B(z0, 2
k+1τ) \B(z0, 2k−1τ) with ∥χk∥n,2kτ < C for some universal constant C. By Lemma 2.3,

the decompositions

G+η =
∑
j

G+ηχj , G−χ =
∑
j

G−ηχj

contain O(logN) many (non-zero) terms satisfying: G+ηχj supported in a ball of radius 2j+1τ and smooth
up to the (n− 1)st derivative on that scale (similarly for G−ηχj).

Now, assume f : Dc → C is supported in a ball of radius ε that is smooth on that scale up to the kth

derivative. Then we can extend the domain of f to include S preserving its regularity as follows:

f(reiθ) =

 k∑
j=0

∂jrf(re
iθ)
∣∣
r=1+

(r − 1)j

j!

χε(r − 1).

This construction extends f to a function on C supported in a ball of radius Cε, satisfying ∥∇jf∥∞ ⩽ C/εj

for every j = 0, . . . , k for some universal constant C. Applying this procedure to G+ηχj and G−ηχj , and
then gluing the resulting extensions together, we obtain smooth extensions of G+ and G− into D while
preserving their regularity. More precisely, if g ∈ An,τ for a τ ∈ [N−1/2+κ, 1], then G+η and G−η can be
decomposed into sum of O(logN) many functions each of which is supported in a ball of radius εj and
smooth up to (n− 1)st derivative on that scale for an εj ∈ [τ, 1].

We define

g+ = G+ ◦ φ, g− = G− ◦ φ on Sc.

We now take a biholomorphic map ψ from S to D. As ∂S is real-analytic, ψ extends holomorphically to an
open neighbourhood of S̄. Using this map, we construct g+,j = (G+ηχj) ◦ ψ and g−,j = (G−ηχj) ◦ ψ on
that open neighbourhood of S̄. Gluing g+,j ’s together (and g−,j ’s) we obtain an extension of g+ (and g−) to
the whole complex plane such that g+χ and g−χ can be decomposed as a sum of O(logN) many functions
each of which is supported in a ball of radius εj and smooth up to the (n− 1)st derivative on that scale for
an εj ∈ [τ, 1]; where χ is an order 1 bump function that is 1 on S ∪ Sedge(1/3) and 0 on Sout(1/2).

Note that, by construction, ∂̄g+ = ∂g− = 0 and gout = gS = g+ + g− on Sc. We extend the definition of
gout to all C by setting gout = g+ + g− everywhere. Recall that, in contrast, gS was defined to coincide with
g on S. We summarize the main properties in below lemma.
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Lemma 2.4. Let κ > 0, τ ∈ [N−1/2+κ, 1], ∥f∥n,τ ⩽ 1 with supp(f) ⊂ B(z0, τ) for some z0 ∈ ∂S. Let χ be
a smooth bump function such that χ = 1 on B(z0, 1) and χ = 0 outside B(z0, 2). Then there exist a constant
c depending only on S and two functions f+, f− ∈ C n−1(C) satisfying the following properties:

(i) (f+ + f−)|Sc is the bounded harmonic extension of f |∂S on Sc.

(ii) ∂̄f+ = ∂f− = 0 on Sc.

(iii) f+χ can be decomposed as
∑⌊c logN⌋

k=1 f+,k such that supp(f+,k) ⊂ B(z0, τk) for some τk ∈ [τ, 1] and
∥f+,k∥n−1,τk ⩽ 1. Similarly for f−.

(iv) f+(1− χ) has uniformly bounded first and second derivatives on C. Similarly for f−(1− χ).

2.3 Application of the Ward identity. Let κ > 0 and g ∈ A3,τ for some τ ∈ [N−1/2+κ, 1]. Let ι > 0

be a constant so that ∂V − ∂V̌ ̸= 0 and ∆V > 0 on Sedge(2ι) \ S (see e.g. [6, Proof of Lemma 5.2] for the
existence of such ι). Denote a bump function that is 1 on S ∪ Sedge(ι) and 0 on Sout(2ι) by χ. We

We apply (2.8) for three different choices of h:

h1 =
∂̄g+
∆V/4

, h2 =
∂g−
∆V/4

, h3 =
∂̄g0

∆V/4
+ r, r =

( g0

∂V − ∂V̌
− ∂̄g0

∆V/4

)
1S̄c (2.14)

where g0 = (g − gout)χ. As shown in [5, Lemma 5.2], the function h3 satisfies the conditions (2.3)-(2.5);
the continuity of h3 relies on the fact that g0 = 0 on ∂S and ∆V̌ = 0 on Sc. The subtle point is that,
although r is continuous along ∂S, its derivatives are not. Nevertheless, the key estimates for r remain valid
as discussed below.

The following lemma collects the decomposition of h1, h2, h3 − r and r together with the corresponding
estimates. The part concerning h1, h2 and h3 − r follows directly from Lemma 2.4 (iii-iv), while the
decomposition and estimates for r are obtained by using Lemma 2.4 (iii-iv) and following the argument in
the proof of [5, Lemma 5.2 (i)]. We present it here for convenience, as it will be referred repeatedly, and
omit the proof since it follows exactly as above.

Lemma 2.5. Let κ > 0, n ⩾ 3 and g ∈ An,τ for some τ ∈ [N−1/2+κ, 1]. There exists a constant C
(depending only on S and n) such that g+ (and similarly g− and g0) can be decomposed as p + q where
p ∈ Sn−1,C,κ and q is supported in Sout(1/2) such that ∥∇q∥∞ + ∥∇2q∥∞ < C.

Moreover, if g is supported in S, then r = 0. On the other hand, if there exists a z0 ∈ supp(g) ∩ ∂S,
then r can be decomposed similarly as

∑⌊C logN⌋
k=1 rk + q where q is again supported in Sout(1/2) such that

∥∇q∥∞+∥∇2q∥∞ < C; each rk is continuous, equal to 0 on S̄, with ∥∇jrk∥L∞(S̄c) <
C

τj+1
k

for j = 0, . . . , n−1

and supp(rk) ⊂ B(z0, τk) for some τk ∈ [τ, C].

We now proceed to apply the Ward identity to the functions h1, h2 and h3. Recall that we denote
lim|z|→∞ gout(z) by g

S(∞). Using ∂̄g+ = ∂g− = 0 on Sc, by Green’s theorem we obtain:∫
h1(w)

z − w
dµV =

1

π

∫
C

∂̄g+
z − w

= g+(z)− gS(∞),

∫
h2(w)

z − w
dµV =

1

π

∫
C

∂g−
z − w

= g−(z)

for every z ∈ C \ ∂S. On the other hand, because g0 = 0 on the boundary∫
h3(w)

z − w
dµV =

1

π

∫
S

∂̄g0
z − w

=

{
g0(z), z ∈ S

0, z ∈ S̄c
, and h3(z)(∂V (z)− ∂V̌ (z)) =

{
0, z ∈ S

g0(z), z ∈ S̄c
.

Recall that µ̃N = 1
N

∑
δzk − µV Adding the three equations (after taking the conjugate of the second

one) we obtain that

Ef

[ N∑
k=1

g(zk)
]
−N

∫
g dµV =

∫ (
h1∂f + h2∂f + h3∂f

)
dµV +

1

2

∫ (
∂h1 + ∂h2 + ∂h3

)
dµV + EN (f, g)

+ Ef

[
N∑

k=1

(g(zk)− gout(zk))(1− χ(zk))

]
, (2.15)
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where

EN (f, g) = Ef

[ ∫
h1∂f + h2∂f + h3∂f dµ̃N

]
+ Ef

[ ∫
∂h1 + ∂h2 + ∂h3 dµ̃N

]
+ Ef

[N
2

∫∫
z ̸=w

h1(z)− h1(w)

z − w
µ̃N (dz) µ̃N (dw)

]
+

1

2

∫
∂h1dµV

+ Ef

[N
2

∫∫
z ̸=w

h2(z)− h2(w)

z − w
µ̃N (dz) µ̃N (dw)

]
+

1

2

∫
∂h2dµV

+ Ef

[N
2

∫∫
z ̸=w

h3(z)− h3(w)

z − w
µ̃N (dz) µ̃N (dw)

]
+

1

2

∫
∂h3dµV .

The expectation of the trace of (g − gout)(1− χ) in the right-hand side of (2.15) is already sub-polynomial,
since its support lies outside the droplet and Lemma A.4.(ii) gives exponential decay of the one-point function
for the biased measure. We denote this contribution by O(N−D) for arbitrarily large D > 0. Furthermore,
the main terms in equation (2.15) simplify as follows. Since the expression on the left-hand side of the
integral below depends only on the values of f within S, we may, without loss of generality, replace f by
a smooth, compactly supported function that agrees with it in a neighbourhood of S. This modification is
made solely for convenience in the forthcoming computations:∫ (

h1∂f + h2∂f + h3∂f
)
dµV =

1

π

∫
S

(∂̄g+∂f + ∂g−∂̄f + ∂̄g0∂f)dm

= − 1

π

∫
C
(g+ + g−)∂̄∂fdm− 1

π

∫
S

g0∂̄∂fdm

=
1

4π

∫
C
∇(g+ + g−) · ∇fdm+

1

4π

∫
S

∇g0 · ∇fdm

=
1

4π

∫
Sc

∇gS · ∇fdm+
1

4π

∫
S

∇g · ∇fdm

=
1

4π

∫
C
∇gS · ∇fSdm.

Similarly, let L = log ∆V
4 and replace L by a smooth, compactly supported function that agrees with it in a

neighbourhood of S. The analogous calculations lead to,

1

2

∫ (
∂h1 + ∂h2 + ∂h3

)
dµV =

1

8π

∫
S

∆g dm− 1

2π

∫
S

(
∂̄g+∂L+ ∂g−∂̄L+ ∂̄g0∂L

)
dm

=
1

8π

∫
S

∆g dm− 1

2π

∫
C

(
∂̄g+∂L+ ∂g−∂̄L

)
dm+

1

8π

∫
S

g0∆Ldm

=
1

8π

∫
S

∆g dm+
1

8π

∫
C
gout∆Ldm+

1

8π

∫
S

g0∆Ldm

=
1

8π

∫
S

∆g dm+
1

8π

∫
C
gS∆Ldm

and

1

8π

∫
C
gS∆Ldm =

1

8π

∫
S

g∆Ldm+
1

8π

∫
Sc

(
gS∆L− L∆gS

)
dm

=
1

8π

∫
S

L∆g dm+
1

8π

∫
∂S

(
g
∂L

∂n
− L

∂g

∂n

)
+
(
g

∂L

∂(−n)
− L

∂gS |Sc

∂(−n)

)
ds

=
1

8π

∫
S

L∆g dm+
1

8π

∫
∂S

(
LS ∂g

∂(−n)
− g

∂LS |Sc

∂(−n)

)
ds

=
1

8π

∫
C
LS∆g dm
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where we used 0 =
∫
Sc g

S∆LS − LS∆gS =
∫
∂S
g ∂LS |Sc

∂(−n) − L∂gS |Sc

∂(−n) in the third equality.

Substituting these into (2.15), we obtain

Ef

[ N∑
k=1

g(zk)
]
−N

∫
g dµV =

1

4π

∫
C
∇gS ·∇fSdm+

1

8π

∫
S

∆g dm+
1

8π

∫
C
LS∆g dm+EN (f, g)+O(N−D).

(2.16)
Note that every term in this equation is linear in g, but not in f . Moreover, an alternative representation
involving a Neumann jump term follows from Green’s identity:∫

C
LS∆g dm =

∫
S

∆gLdm+

∫
Sc

(
∆gLS − g∆LS

)
dm

=

∫
S

g∆Ldm+

∫
∂S

(
L
∂g

∂n
− g

∂L

∂n

)
ds+

∫
∂S

(
L

∂g

∂(−n)
− g

∂LS |Sc

∂(−n)

)
ds =

∫
S

g∆Ldm−
∫
∂S

gN (L) ds

(2.17)

which holds given g smooth, compactly supported.
Next, we apply the estimation (2.16) to the Laplace transform of the linear statistics.

Proposition 2.6. Let C, κ > 0 be fixed constants. Let g = g1 + g2 where g1 ∈ S3,C,κ, g2 ∈ C 3(C) supported
in Sout(1/2) with at most logarithmic growth as |z| → ∞ and ∥∇g2∥∞ = O(N log logN ). Let f be of class
C 5(C) with at most logarithmic growth as |z| → ∞ and |∇f(z)| ⩽ c(1 + |z|)c for an N -dependent constant
c. Then, for any D > 0,

logE[e
∑

i(f+g)(zi)] = logE[e
∑

i f(zi)] +
1

4π

∫
C
∇gS · ∇fSdm+

1

8π

∫
C
|∇gS |2dm+

1

8π

∫
S

∆g dm

+
1

8π

∫
S

g∆Ldm− 1

8π

∫
∂S

gN (L) ds+N

∫
g dµV +

∫ 1

0

EN (f + tg, g1)dt+O(N−D).

The error term is uniform in g1, g2 and f .

Observe that if g2 is compactly supported
∫
S
g∆Ldm−

∫
∂S
gN (L) ds can be replaced by

∫
C L

S∆g dm.

Proof. We define FN (h) = logE
[
eXf+h

]
, Xh =

∑
i h(zi) − N

∫
hdµV for any function h. Equation (2.16)

together with (2.17) applied to f + tg and g, substituted into f and g respectively, gives

d

dt
FN (tg) = Ef+tg [Xg] =

1

4π

∫
C
∇gS1 · ∇fSdm+

t

4π

∫
C
|∇gS1 |2dm+

1

8π

∫
S

∆g1 dm

+
1

8π

∫
S

g1∆Ldm− 1

8π

∫
∂S

g1N (L) ds+ Ef+tg [Xg2 ] + EN (f + tg, g1) + O(N−D).

In the integrals on the right-hand side, each g1 may be replaced by g, as the support of g − g1 = g2 lies
entirely outside of a neighbourhood of the set S̄. Thus, we only need to prove that

Ef+tg [Xg2 ] = O(N−D).

This follows easily by the exponential decay of the one-point correlation function outside the droplet S, i.e.,
Lemma A.4.(ii).

2.4 Fluctuations. The following central limit theorem is a quantitative extension to mesoscopic scales
of the main result from [6]. The proof follows the same path, with (i) Johansson’s idea to reduce Laplace
transform estimates to a shift of the density of states [54], (ii) the Ward identity, (iii) estimates of the kernel
of the determinantal point process as an input.

The main differences with [6] are the following: for the error estimations in step (ii) we need an isotropy
result for general potential, i.e. Lemma 2.14, and for step (iii) we need kernel asymptotics when the external
potential is perturbed on a mesoscopic scale, a technicality proved in Appendix A similarly to the macroscopic
case [16,6].
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Proposition 2.7. Let 0 < κ ⩽ 1/2, C > 0 be fixed constants. Then, uniformly in f ∈ S5,C,κ, we have

E
[
e
∑N

i=1 f(zi)
]
= eN

∫
f dµV + 1

8π

∫
C

(
|∇fS |2+1S∆f+LS∆f

)
dm
(
1 + O(N−κ/10)

)
.

For the proof of this proposition, we apply Proposition 2.6 for g and f substituted by f and 0. This
yields the desired result provided that

EN (tf, f) = O(N−κ/10) (2.18)

uniformly in 0 ⩽ t ⩽ 1. We now prove the above estimate, only for t = 1 to simplify notations (uniformity
in t of the following estimates is easy to check). Note that by linearity of EN in the second coordinate, it
suffices to prove the error estimation (2.18) for EN (f, g) uniformly in g or type A5,τ for a τ ∈ [N−1/2+κ, 1].

We now prove EN (f, g) = O(N−κ/10) holds in the following sequence of Lemmas 2.8 to 2.10, which
conclude the proof. We only state the lemmas for t = 1, naturally the proof extends to any 0 ⩽ t ⩽ 1 and
the error estimates are uniform in this parameter range.

Lemma 2.8. Let C, κ > 0, f ∈ S3,C,κ and g ∈ A3,τ for some τ ∈ [N−1/2+κ, 1]. Let hi be as defined in
(2.14). For any ε > 0 and i = 1, 2, 3 we have

Ef

[ ∫
hi∂f dµ̃N

]
= O(N−κ+ε) (2.19)

where the implicit constant is independent of f , τ and g.

Proof. Recall the definition of function r from (2.14). By Lemma 2.5 h1, h2 and (h3− r) can be decomposed

as ∂̄p
∆V + q where p ∈ S2,C,κ and q is supported in Sout(1/2) and uniformly Lipschitz with Lipschitz constant

depending only on S. By Lemma A.4.(ii), the contribution of q is easily subpolynomial. Thus, it suffices to

prove the estimation for ∂̄p
∆V when p ∈ Aτ for some τ ∈ [N−1/2+κ, 1].

Ef

[ ∫ ∂̄p

∆V
∂fdµ̃N

]
=

∫
∂̄p

∆V
∂f
(
N−1K̃N (z, z)− ρV (z)

)
dm(z),

where we used the notation from Theorem A.1. From this theorem, for z ∈ Sin(δN ), we have |(N−1K̃N (z, z)−
ρV (z)| ⩽ N−1 supB(z,2δN ) |∇2f | ⩽ N−2κ logN , because of f ∈ S3,C,κ. We therefore have∣∣∣∣∣Ef

[ ∫
Sin(δN )

∂̄p

∆V
∂fdµ̃N

]∣∣∣∣∣ ⩽ N−2κ+ε

∫
S

| ∂̄p
∆V

∂f |dm ⩽ N−2κ+ε

∫
S

( |∇p|2
|∆V |2

+ |∇f |2
)
dm ⩽ N−2κ+ε (2.20)

where we used the easy estimate
∫
S
|∇f |2 ⩽ πC logN for any f ∈ S3,C,κ. The contribution from z ∈ Sout(δN )

can be bounded easily with Lemma A.4.(ii), which gives

K̃N (z, z) ⩽ exp(−c(logN)2)

for all such z. Finally, for the domain z ∈ Sedge(δN ), note that by Lemma A.4.(i) there exists a universal
C > 0 such that

K̃N (z, z)

N
⩽ C.

This gives, using a shorthand notation K̃N for the function K̃N (z, z),∫
Sedge(δN )

| ∂̄p
∆V

∂f |

∣∣∣∣∣K̃N

N
− ρV

∣∣∣∣∣dm ≲
∫
Sedge(δN )

| ∂̄p
∆V

∂f |dm ⩽ N−κ+ε (2.21)

because ∂̄p
∆V is O(1/τ) on a domain of area O(τδN ), and ∂f is O(N1/2−κ logN).

Thus, it only remains to show Ef [
∫
r∂f dµ̃N ] = O(N−κ+ε) the following to complete the proof of (2.19).

This follows the same argument: On Sout(δN ), it’s again subpolynomial and at the edge, the calculation is
identical to (2.21).
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Lemma 2.9. Let C, κ > 0, f ∈ S3,C,κ and g ∈ A3,τ for some τ ∈ [N−1/2+κ, 1]. Let hi be as defined in
(2.14). For any ε > 0 we have

Ef

[ ∫
∂h1 + ∂h2 + ∂h3 dµ̃N

]
= O(N−κ+ε)

where the implicit constant is independent of f , τ and g.

Proof. Recall the definition of function r from (2.14). We have

∂h1 + ∂h2 + ∂h3 =
∆g

∆V
−
( ∂̄g+∂L
∆V/4

+
∂g−∂̄L

∆V/4
+
∂̄g0∂L

∆V/4

)
+ ∂r

on C \ ∂S where L = log ∆V
4 . We prove that each term in this sum yield to a negligible integral. All terms

except ∂r can be treated in the same way as in the previous lemma. Starting with the first term, we write

Ef

[ ∫ ∆g

∆V
dµ̃N

]
=

∫
∆g

∆V

(
N−1K̃N − ρV

)
dm. (2.22)

On z ∈ Sin(δN ), the integral is O(N−2κ+ε) by Theorem A.1. On z ∈ Sout(δN ), the integral is subpolynomial
due to Lemma A.4.(ii). On Sedge(δN ), the integrand is O(1/τ2) and the integration area is τδN which gives
O(N−κ+ε) bound.

By Lemma 2.5, each g+, g−, g0 can be written as p+ q where p ∈ S2,C,κ and Lipschitz q with supp(q) ⊂
Sout(1/2). The contribution of q is easily subpolynomial. Thus, it suffices to consider the following
expectation for p ∈ A2,τ with τ ∈ [N−1/2+κ, 1]:

Ef

[ ∫ ∂̄p∂L

∆V/4
dµ̃N

]
=

∫
∂̄p∂L

∆V/4

(
N−1K̃N − ρV

)
dm(z). (2.23)

By the same way, it follows that this term is O(N−κ).
Lastly, r admits a similar decomposition by Lemma 2.5. For the term Ef [

∫
∂r dµ̃N ], the integral over

Sout(δN ) is already subpolynomial, while the contribution from Sedge(δN ) can be bounded in the same way

by O( δN logN
τ ).

Lemma 2.10. Let C, κ > 0, f ∈ S3,C,κ and g ∈ A5,τ for some τ ∈ [N−1/2+κ, 1]. Let hi be as defined in
(2.14). For any ε > 0 and i = 1, 2, 3 we have

Ef

[N
2

∫∫
z ̸=w

hi(z)− hi(w)

z − w
µ̃N (dz) µ̃N (dw)

]
+

1

2

∫
∂hi dµV = O(N−κ/10) (2.24)

where the implicit constant is independent of f , τ and g.

Proof. We begin with proving that Ef [N
∫∫

z ̸=w
r(z)−r(w)

z−w dµ̃Ndµ̃N ] = I(r;C,C) is negligible where we define

I(r;A,B) = N

∫
A

∫
B

r(z)− r(w)

z − w

((K̃N (z, z)

N
− ρV (z)

)(K̃N (w.w)

N
− ρV (w)

)
− |K̃N (z, w)|2

N2

)
dm(w)dm(z).

Recall the r = q+
∑
rk decomposition from Lemma 2.5. By Lemma A.4.(ii) I(q;C,C) is subpolynomial. For

I(rk;C,C), again by Lemma A.4.(ii) when either of z and w is in Sout(δN ), the contribution to the integral
is subpolynomial. Then there are two remaining cases: z, w ∈ Sedge(δN ) and z ∈ Sedge(δN ), w ∈ Sin(δN ).
Recall that by Lemma 2.5, rk is a continuous function that is 0 on S̄, supported on a ball with radius τk
and supC\∂S |∇r| ⩽ 1

τk
; which implies |rk| ⩽ δN

τ2
k

on Sedge(δN ).

If z, w ∈ Sedge(δN ), we rely only on the bound K̃N (z, z) = O(N) from Lemma A.4.(i). Therefore,

|I(rk;Sedge(δN ), Sedge(δN ))| = N

∫∫
Sedge(δN )2

|rk(z)|
|z − w|

O(1)dm(z)dm(w) = O(NδN logN)

∫
Sedge(δN )

|rk(z)|dm(z)

= O(
Nδ3N logN

τk
) = O(N−κ+ε).

19



If z ∈ Sin(δN ), w ∈ Sedge(δN ), using Theorem A.1 for z, we obtain

|I(rk;Sin(δN ), Sedge(δN ))| = O(N)

∫∫
z∈Sin(δN ),
w∈Sedge(δN )

|rk(w)|
|z − w|

O

(
supB(z,2δN ) |∇2f |

N
+N−3/2 +

|K̃N (z, w)|2

N2

)
dm(z)dm(w).

The contribution from |K̃N (z,w)|2
N2 can be bounded by the reproducing property (A.1) as follows:

N

∫∫
z∈Sin(δN ),
w∈Sedge(δN )

|rk(w)|
|z − w|

|K̃N (z, w)|2

N2
dm(z)dm(w) = O(

1

Nτ2k
)

∫∫
z∈C,

w∈Sedge(δN )∩supp(r)

|K̃N (z, w)|2dm(z)dm(w)

= O(
1

Nτ2k
)

∫
Sedge(δN )∩supp(r)

K̃N (w,w) dm(w) = O(
δN
τk

) = O(N−κ+ε).

Moreover, as f ∈ S3,C,κ, it can be written as
∑

ℓ<C logN fℓ where fℓ is supported in a ball centered at

z′ℓ with radius τ ′ℓ and smooth on that scale for some τ ′ℓ ∈ [N−1/2+κ, 1], i.e. ∥∇3fℓ∥ ⩽ (τ ′ℓ)
−3. Note that for

each ℓ we have supB(z,2δN ) |∇2fℓ| = O( 1
(τ ′

ℓ)
21B(z′

ℓ,2τ
′
ℓ)
(z)). So, the contribution from

supB(z,2δN ) |∇
2f |

N will be

bounded by

∑
ℓ

1

(τ ′ℓ)
2

∫∫
z∈Sin(δN )∩B(z′

ℓ,2τ
′
ℓ),

w∈Sedge(δN )

|rk(w)|
|z − w|

dm(z)dm(w)

=
∑
ℓ

O(
δN logN

τ2(τ ′ℓ)
2
)

∫∫
z∈Sin(δN )∩B(z′

ℓ,2τ
′
ℓ),

w∈Sedge(δN )

1

|z − w|
dm(z)dm(w) = O(

δ2N (logN)2

τ2
) = O(N−κ). (2.25)

Lastly, the contribution from N−3/2 is easily seen to be O(N−1/2δN/τ
2) = O(N−κ). This completes the

proof of negligiblity of Ef [N
∫∫

z ̸=w
r(z)−r(w)

z−w dµ̃Ndµ̃N ].

We now proceed to proving (2.24) for h1, h2 and (h3 − r). By Lemma 2.5, it suffices to consider

Ef [
N
2

∫∫ h(z)−h(w)
z−w dµ̃Ndµ̃N ] when τ · h ∈ A3,τ and supp(h) ⊂ B(z0, τ) for some τ ∈ [N−1/2+κ, 1], z0 ∈ {z ∈

C : dist(z, S) ⩽ 2}.
We rely on a multiscale decomposition idea from [41] which was used for two dimensional Coulomb gases

in [12,13]. Let φ(z) = e−|z|2 . It’s easy to verify that

2

π

∫
C
φ

(
z − ξ

t

)
φ

(
w − ξ

t

)
dm(ξ) = t2e−

|z−w|2

2t2 , (2.26)

∫ ∞

η

(
2

π

∫
C
φ

(
z − ξ

t

)
φ

(
w − ξ

t

)
dm(ξ)

)
dt

t5
=

1− e
− |z−w|2

2η2

|z − w|2
. (2.27)

Let η < τ be some small fixed parameter to be chosen. From (2.26)-(2.27), for any function h we have

Ef

[
N

2

∫∫
h(z)− h(w)

z − w
dµ̃N (z)dµ̃N (w)

]
= E1(η, h) + E2(η, h)

where

E1(η, h) =
N

2
Ef

[∫∫
z ̸=w

h(z)− h(w)

z − w
e
− |z−w|2

2η2 dµ̃N (z)dµ̃N (w)

]
, (2.28)

E2(η, h) =
N

π

∫ ∞

η

∫
C
Ef

[∫∫
z ̸=w

φ

(
z − ξ

t

)
φ

(
w − ξ

t

)
(h(z)− h(w))(z − w)dµ̃N (z)dµ̃N (w)

]
m(dξ)

dt

t5
.

To bound E2 we use the measure cancellation due to µ̃N , i.e., the explicit uniform bounds in Corollary 2.12.

E2(η, h) =
2N

π

2∑
i=1

∫ ∞

η

∫
C
Ef

[∫
ui(z)dµ̃N (z)

∫
vi(w)dµ̃N (w)

]
m(dξ)

dt

t5
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where

u1(z) = φ

(
z − ξ

t

)
(h(z)− h(ξ))(z − ξ), v1(w) = φ

(
w − ξ

t

)
,

u2(z) = φ

(
z − ξ

t

)
(h(z)− h(ξ)), v2(w) = φ

(
w − ξ

t

)
(ξ − w).

With a negligible error, we can assume that the function φ is truncated so that it’s supported in B(0, (logN)log logN ).
Thus, the integration region for ξ can be restricted to B(z0, τ + t(logN)log logN ). Moreover, note that the
contribution from t > N10 is negligible, because |

∫
u1dµ̃N | ≲ ∥u1∥∞ ≲ t and similarly |

∫
u2dµ̃N | ≲ 1,

|
∫
v1dµ̃N | ≲ 1, |

∫
v2dµ̃N | ≲ t. This leads to a negligible contribution of order N

∫∞
N10 t

−2dt.

On the other hand, by Corollary 2.12 we obtain

|
∫
u1dµ̃N | ⩽ N−1+ε t

2

τ2
, |
∫
v1dµ̃N | ⩽ N−1+ε, |

∫
u2dµ̃N | ⩽ N−1+ε t

τ2
, |
∫
v2dµ̃N | ⩽ N−1+εt

with probability greater than 1 − e−Nε/2

with respect to the unbiased measure for every t and ξ (ε is
an arbitrarily small positive constant, that may change line-by-line). Uniformity of these inequalities in
t ∈ [η,N10] and ξ ∈ B(z0, N

10) can be argued easily by a grid argument. Moreover, by Corollary 2.13,
the same inequalities hold with overwhelming probability with respect to the biased measure. Thus, the
contribution to E2 becomes:

N−1+ε

∫ N10

η

(t ∨ τ)2 t
2

τ2
dm(ξ)

dt

t5
⩽ N−2κ+ε +

N−1+ε

η2
.

We now choose ε < κ/100 and η = N−1/2+κ/15.

To bound E1, we do not only use the measure cancellation due to µ̃N and rely also on some phase
cancellation of the kernel first, which follows from Theorem A.1. We write the Taylor expansion for h first.

h(z)− h(w)

z − w
= ∂h(z) + ∂̄h(z)

z̄ − w̄

z − w
+O(|z − w|).

The negligibility of the contribution from O(|z − w|) to E1 follows by

N Ef

[ ∫∫
|z − w|e−

|z−w|2

2η2
(
dµ̂N (z) + ρV (z) dm(z)

)(
dµ̂N (w) + ρV (w) dm(w)

)]
≲N

∫∫
|z − w|e−

|z−w|2

2η2 det

∣∣∣∣∣K̃N (z, z)/N K̃N (z, w)/N

K̃N (w, z)/N K̃N (w,w)/N

∣∣∣∣∣dm(z)dm(w)

+N

∫
S

∫
|z − w|e−

|z−w|2

2η2
K̃N (z, z)

N
dm(z)dm(w) +N

∫
S

∫
S

|z − w|e−
|z−w|2

2η2 dm(z)dm(w).

(2.29)

Using K̃N (z, z)/N ⩽ C by Lemma A.4.(i) and the decay of K̃N (z, z) as |z| ≫ 1 by Lemma A.4.(ii), we
obtain that the expression above is bounded by Nη3.

On the other hand, the contribution from ∂h(z) to E1 can be bounded similarly to E2 using (2.26),
except the fact that we get a deterministic extra term 1

2

∫
∂hdµV due to the diagonal terms. More explicitly,

substituting (2.26) into N
2 Ef [

∫∫
z ̸=w

∂h(z)e
− |z−w|2

2η2 dµ̃Ndµ̃N ] we get that it’s equal to

N

πη2

∫
C
Ef

[∫
∂h(z)φ

(
z − ξ

η

)
dµ̃N (z)

∫
φ

(
w − ξ

η

)
dµ̃N (w)

]
dm(ξ)− 1

2N
Ef

[ N∑
i=1

∂h(zi)
]
. (2.30)

The first term can be bounded similarly with E2(η, h), by
N
η2 τ

2N−1+ε

τ2 N−1+ε = N−2κ/15+2ε where τ2 factor

stands for the area of the integration region for ξ, N−1+ε

τ2 and N−1+ε factors stand for the normalized centered
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linear statistics terms respectively. The second term can be evaluated easily as − 1
2

∫
∂hdµV up to a negligible

error, by Theorem A.1 and Lemma A.4:

1

N
Ef

[ N∑
i=1

∂h(zi)
]
−
∫
∂hdµV =

∫
∂h(z)(

K̃N

N
− ρV )dm(z)

= o(N−1) +

∫
Sin(δN )∩supp(h)

1

τ2
O(N−2κ+ε)dm+

∫
Sedge(δN )∩supp(h)

1

τ2
O(1)dm = O(N−κ+ε).

Lastly, we finish the proof by discussing the contribution of the term ∂̄h(z) z̄−w̄
z−w to E1(η, h). By the

isotropy lemma, i.e. Lemma 2.14, the combination from dµ̂N (z)dµ̂N (w) can be bounded easily:

N

2
Ef

[∫∫
z ̸=w

∂̄h(z)
z̄ − w̄

z − w
e
− |z−w|2

2η2 dµ̂N (z)dµ̂N (w)

]
= O(N−κ) (2.31)

as ∥τ2∂h∥∞ ≲ 1. Secondly, the dµ̃N (z)dµV (w) integral can be bounded as follows,

N

2
Ef

[∫
∂̄h(z)

∫
S

z̄ − w̄

z − w
e
− |z−w|2

2η2 dµV (w)dµ̃N (z)

]
=
N

2
Ef

[∫
Sin(η logN)

∂̄h(z)

∫
B(z,η logN)

z̄ − w̄

z − w
e
− |z−w|2

2η2 (ρV (w)− ρV (z))dm(w)dµ̃N (z)

]

+
N

2
Ef

[∫
Sin(η logN)

∂̄h(z)

∫
S\B(z,η logN)

z̄ − w̄

z − w
e
− |z−w|2

2η2 dµV (w)dµ̃N (z)

]

+
N

2
Ef

[∫
Sin(η logN)c

|∂̄h(z)|η2
(
dµ̂N (z) + dµV (z)

)]
= O(

Nη3

τ
) ≪ N−κ/2 (2.32)

which can be explained as follows. The first expectation in the right-hand side O(Nη3τ2 1
τ2 ) = O(N−1/2+κ/5)

using | K̃(z,z)
N | + |∆V (z)

4π | = O(1); because the integral over w is O(η3) and |∂h| = O(1/τ2) with the area of

integration region is the support of h which is O(τ2). The second term is subpolynomial due to the e
− |z−w|2

2η2

term. The third integral is subpolynomial when evaluated for z ∈ Sout(δN ) due to Lemma A.4.(ii), and the
integral on the edge layer Sedge(η logN) is bounded by N(ητ) 1

τ2 η
2 by Lemma A.4.(i).

The only term left is the integral with dµ̂N (w)dµV (z), which gives

N

2

∫
S

Ef

[∫
∂̄h(z)

z̄ − w̄

z − w
e
− |z−w|2

2η2 dµ̂N (w)

]
dµV (z)

=
N

2

∫
S

∂̄h(z)

∫
Sin(η)

z̄ − w̄

z − w
e
− |z−w|2

2η2
(
ρV (w) + O(N−2κ logN)

)
dm(w)dµV (z)

+
N

2

∫
S\Sin(η logN)

∂̄h(z)

∫
Sin(η)c

z̄ − w̄

z − w
e
− |z−w|2

2η2
K̃N (w,w)

N
dm(w)dµV (z)

+
N

2

∫
Sin(η logN)

∂̄h(z)

∫
Sin(η)c

z̄ − w̄

z − w
e
− |z−w|2

2η2
K̃N (w,w)

N
dm(w)dµV (z) (2.33)

where we have used | K̃N

N (z, z)−ρV (z)| ⩽ N−2κ logN in the bulk. The third integral is subpolynomial due to

the exponential term and Lemma A.4.(i). The second integral is bounded by N(τη logN) 1
τ2 η

2 ≪ N−κ/2 by
Lemma A.4.(i). On the other hand, in the first integral, the contribution of O(N−2κ logN) will be bounded

by Nη2N−2κ logN which is negligible. The only term left is N
2

∫
S
∂̄h(z)

∫
Sin(η)

z̄−w̄
z−we

− |z−w|2

2η2 dµV dµV . This
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can be easily bounded using the rotational symmetry as done above, more explicitly it’s equal to:

N

2

∫
Sin(2η logN)

∂̄h(z)

∫
B(z,η logN)

z̄ − w̄

z − w
e
− |z−w|2

2η2 (ρV (w)− ρV (z))dm(w)dµV (z)

+
N

2

∫
Sin(2η logN)

∂̄h(z)

∫
Sin(η)\B(z,η logN)

z̄ − w̄

z − w
e
− |z−w|2

2η2 ρV (w)dm(w)dµV (z)

+
N

2

∫
Sedge(2η logN)

∂̄h(z)

∫
Sin(η)

z̄ − w̄

z − w
e
− |z−w|2

2η2 ρV (w)dm(w)dµV (z)

= O(Nη3) + o(N−1) + O(N(τη logN)
1

τ2
η2) = O(N−κ/2).

This completes the proof.

2.5 Concentration of linear statistics. We provide a uniform exponential tail bound for the centered
linear statistics of sufficiently regular functions which implies the stability of overwhelmingly likely events as
will be discussed at the end of this subsection. While Gaussian-type bounds for general inverse temperature
β are available in the literature (see e.g. [73, 12, 90]), we opt for a simple, self-contained argument relying
only on the kernel estimates from Section A. In contrast to the cited results, our approach treats the edge
without difficulty, allowing us to cover the bulk regime in our main Theorem 1.1 up to the mesoscopic
distance N−1/2+κ from the boundary.

The proposition below highlights the essential role of the isotropy lemma, Lemma 2.14, in exploiting
angular cancellations to achieve o(1) estimates. In fact, if we only aim for an error of order O((logN)c), the
kernel estimates alone suffice as follows.

Proposition 2.11 (Uniform Exponential Tail). Fix C, κ > 0. Then there exist N0 = N0(V,C, κ) such that,
for every τ0 ∈ [N−1/2+κ, 1] z0 ∈ C, and f ∈ A3,τ0 with supp(f) ⊂ B(z0, τ0),

logE
[
etXf

]
⩽ (logN)7 for all |t| ⩽ C logN and N ⩾ N0.

Consequently, P (|Xf | > t) ⩽ e(logN)7−t and E[|Xf |] ⩽ (logN)7 for all t ⩾ 0 and N ⩾ N0.

Proof. If z0 ∈ Sout(2τ0), then the result follows easily by Lemma A.4.(ii). If z0 ∈ Sin(2τ0) it follows easily
by Theorem A.1 as follows. As in the proof of Proposition 2.6,

logE(etXf ) =

∫ 1

0

Estf [tXf ]ds =

∫ 1

0

∫
C
tf(z)

(
K̃N (z, z)− K̃#

N (z, z)
)
dm(z)ds

= O(logN)

∫
Sin(τ0)

max
s∈[0,1]

|K̃N (z, z)− K̃#
N (z, z)|dm(z)

where we suppress the dependence on s in the notation of the kernel corresponding to the stf -tilted measure
K̃N . By Theorem A.1, the integral is O(logN), hence the bound follows. Thus, the only remaining case
is z0 ∈ Sedge(2τ0). For simplicity, we can assume that z0 ∈ ∂S, because there exists a z′0 ∈ ∂S such that
supp(f) ⊂ B(z′0, 3τ0) and ∥f∥3,3τ0 ⩽ 1.

By Proposition 2.6, it suffices to show that maxt∈[0,1] EN (tf, f) ⩽ (logN)7. Lemmas 2.8 and 2.9 remain
valid, as their proofs do not invoke stability. The only modification needed is in the proof of Lemma 2.10.
By Lemma 2.4, it suffices to show the following for any τ ∈ [τ0, 1], continuous h with supC\∂S |∇h| ⩽ 1

τ2 and
supp(h) ⊂ B(z0, τ),

N Ef

[ ∫∫
z ̸=w

h(z)− h(w)

z − w
µ̃N (dz) µ̃N (dw)

]
= O((logN)6).

Let H(z, w) = h(z)−h(w)
z−w . The left-hand side equals to I(C,C)− J , where we define

I(A,B) = N

∫
A

∫
B

H(z, w)
(K̃N (z, z)

N
− ρV (z)

)(K̃N (w,w)

N
− ρV (w)

)
dm(w)dm(z),

J = N

∫∫
H(z, w)

|K̃N (z, w)|2

N2
dm(w)dm(z).
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The term J can be bounded easily using the reproducing property of the kernel (A.1) and Lemma A.4.(i),
as follows:

|J | ⩽ 2N

∫∫
z∈B(z0,τ)

|H(z, w)| |K̃N (z, w)|2

N2
dm(w)dm(z) = O(

1

Nτ2
)

∫∫
z∈B(z0,τ)

|K̃N (z, w)|2dm(w)dm(z)

= O(
1

Nτ2
)

∫
z∈B(z0,τ)

K̃N (z, z)dm(z) = O(1)

where in the first line we used that H(z, w) is 0 when both z, w /∈ B(z0, τ).
We now turn to the integral I, which will be analysed according to the locations of z and w. When at

least one of the variables z and w lies in Sout(δN ), the integral is already negligible by Lemma A.4.(ii), in
particular I(Sout(δN ),C) is subpolynomial. Thus, it remains to consider the three remaining configurations
where z and w belong to Sedge(δN ) or Sin(δN ).

First case: If z, w ∈ Sedge(δN ). We rely only on the bound K̃N = O(N) from Lemma A.4.(i):

I(Sedge(δN ), Sedge(δN )) = N

∫∫
Sedge(δN )2

|h(z)|
|z − w|

O(1)dm(z)dm(w) = O(NδN logN)

∫
Sedge(δN )∩B(z0,τ)

|h(z)|dm(z)

= O((logN)5).

Second case: If z ∈ Sin(δN ), w ∈ Sedge(δN ). Using Theorem A.1 for z, we obtain

I(Sin(δN ), Sedge(δN )) = N

∫∫
z∈Sin(δN ),
w∈Sedge(δN )

|H(z, w)|O
( logN
Nτ20

1B(z0,2τ0)(z) +N−3/2
)
dm(z)dm(w).

Note that

N

∫∫
z∈Sin(δN )∩B(z0,2τ0),

w∈Sedge(δN )

|H(z, w)| 1

Nτ20
dm(z)dm(w) =

1

τ20 τ

∫∫
z∈Sin(δN )∩B(z0,2τ0),

w∈Sedge(δN )

1

|z − w|
dm(z)dm(w)

= O(
δ2N logN

ττ0
) = o(1),

and the contribution from N−3/2 is easily seen to be o(1).
Third case: If z, w ∈ Sin(δN ). By Theorem A.1 applied to both z and w, we have

I(Sin(δN ), Sin(δN ))

= O(N)

∫∫
Sin(δN )2

|H(z, w)|
( logN
Nτ20

1B(z0,2τ0)(z) +N−3/2
)( logN

Nτ20
1B(z0,2τ0)(w) +N−3/2

)
dm(z)dm(w).

We estimate the contributions from each terms as follows:

N

∫∫
(Sin(δN )∩B(z0,2τ0))2

|H(z, w)| 1

Nτ20

1

Nτ20
dm(z)dm(w) = O(

1

Nτ2
) = o(1)

and

O(N)

∫∫
Sin(δN )2

|H(z, w)|N−3/2dm(z)dm(w) = O(
1

N1/2τ
) = o(1),

concluding the proof.

By Hölder’s inequality Proposition 2.11 implies the following corollary.

Corollary 2.12. For any C, κ > 0, there exist N0 = N0(C, κ) such that, for every f ∈ S3,C,κ,

logE
[
etXf

]
⩽ (logN)7 for all t ∈ [−C,C] and N ⩾ N0.

Consequently, P (|Xf | > t) ⩽ e(logN)7−t and E[|Xf |] ⩽ (logN)7 for all t ⩾ 0 and N ⩾ N0.
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By stability we mean that an event A with overwhelming probability, P(A) ⩾ 1 − e−(logN)D , remains

overwhelmingly likely under the biased measure Pf given by Pf (A) = E
[
1A

eXf

EeXf

]
, Xf =

∑
i f(zi) −

N
∫
fdµV . Using Cauchy-Schwarz and Jensen’s inequalities, the results in this section yield stability for

S3,C,κ biases. We record this as a corollary for ease of reference.

Corollary 2.13 (Stability). Fix C, κ > 0. For every f ∈ S3,C,κ, if an event A satisfies P(A) ⩾ 1−e−(logN)D

for some D ⩾ 10, then Pf (A) ⩾ 1− e−(logN)D/2.

2.6 Local isotropy. In the Lemma below, we define (z̄ − w̄)/(z − w) = 0 for z = w.

Lemma 2.14. Consider a fixed small parameter κ > 0 and let δ = N− 1
2+κ. Then, for any D > 0, there

exists an N0 = N0(κ,D) ∈ N such that for every τ ∈ [N−1/2+15κ, 1], z0 ∈ C and continuous function
g : C → R satisfying supp(g) ⊆ B(z0, τ) and ∥g∥∞ ⩽ 1, we have

P

∣∣∣∣∣∣
∑

1⩽i,j⩽N

g(zi)
zi − zj
zi − zj

e−
|zi−zj |

2

δ2

∣∣∣∣∣∣ > τ2N1−κ

 ⩽ e−(logN)D (2.34)

for all N ⩾ N0.

Note that if no cancellation were expected, with overwhelming probability, the number of indices i with

g(zi) ≍ 1 would be ≍ τ2N . For each such i, the sum over j’s for which
zi−zj
zi−zj

e−
|zi−zj |

2

δ2 ≍ 1 would contribute

about N2κ. Consequently, one would expect the total sum to be on the order of τ2N1+2κ. The lemma above
shows, however, that angular cancellations occur and the apparent leading contribution is substantially
reduced. Some angular cancellations were also instrumental in [73, 13], in which isotropy was obtained
differently from partition function asymptotics, for arbitrary inverse temperature. The above lemma is
specific to the determinantal setting, and the proofs proceeds very differently, to cover cancellations up to
the edge of the droplet, and for general biased measures.

Proof. The proof follows by four main steps.

First step: reducing to the bulk. Let χ be a smooth bump function that is equal to 1 on Sin(2N
2κδ), and 0

outside Sin(N
2κδ). We first consider the sum∑

1⩽i,j⩽N

g(zi)(1− χ(zi))
zi − zj
zi − zj

e−
|zi−zj |

2

δ2 .

Note that Sedge(2N
2κδ) can be covered by ≍ (N2κδ)−1 many balls of radius 4N2κδ. Applying Proposition

2.12 to each ball and using a union bound we obtain that, with overwhelming probability, the number of
particles in B(z0, τ)∩Sedge(2N

2κδ) is bounded by τN1/2+4κ. Again with overwhelming probability, for each
particle zi in this outer ring, the number of zj ’s inside B(zi, N

κδ) is bounded by N7κ; because B(zi, N
κδ) is

a subset of union of O(1) many balls of radius 4N2κδ constructed above. This leads to a rough upper bound
τN1/2+11κ which is smaller than N1−2κτ2. On the other hand, the contribution from zi with dist(zi, S) > δ
is already negligible by Lemma A.4.(ii) and Markov’s inequality.

So, it suffices to prove the equation (2.34) when g is replaced by gχ. For notational simplicity, we will
henceforth write g in place of gχ.

Second step: grouping and centering. Consider L = (2δNκZ2) ∩ B(z0, τ) ∩ {z ∈ S : dist(z, ∂S) > N2κδ},
ℓ = |L |. Let S be the set of squares with vertices w± δNκ± iδNκ, where w ∈ L . For any α ∈ S we define

Xα =
∑

1⩽i,j⩽N

fα(zi, zj), fα(w, z) = g(w)
w − z

w − z
e−

|w−z|2

δ2 1w∈α1|w−z|<δNκ/2 .

We have the deterministic estimate∣∣∣∣∣∣
∑

1⩽i,j⩽N

g(zi)
zi − zj
zi − zj

e−
|zi−zj |

2

δ2 −
∑
α∈S

Xα

∣∣∣∣∣∣ ⩽ N2e−Nκ
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so we only need to prove that, under the same hypotheses as Lemma 2.14 we have

P

(∣∣∣∣∣∑
α∈S

Xα

∣∣∣∣∣ > τ2N1−κ

)
⩽ e−(logN)D .

Denote the centered Xα by Yα = Xα − E[Xα]. Note that for any α ∈ S ,

E[Xα] =

∫∫
g(w)

w − z

w − z
e−

|w−z|2

δ2 1w∈α1|w−z|<δNκ/2ρ
(N)
2 (z, w)dm(z)dm(w) (2.35)

where ρ
(N)
2 (z, w) = KN (z, z)KN (w,w)− |KN (z, w)|2 is the two-point correlation function. Using Theorems

A.1 and A.5 with the Taylor expansion in (A.6) we can write

ρ
(N)
2 (z, w) =

N2

π2
(∂∂̄V (w))2

(
1− e−N |z−w|2 ∆V (w)

4

)
+O(N3/2+2κ)

when both z and w are in {ξ ∈ S : dist(ξ, S) < N−1/2+2κ} with |z − w| < N−1/2+2κ. Due to the rotational
symmetry of the integrand (over the variable z) in (2.35), this leads to a rough bound

E[Xα] = O(N3/2+2κ(δNκ/2)2(δNκ)2) = O(N−1/2+9κ).

Thus
∑

α E[Yα] = O(N−1/2+9κ|S |) = τ2N1−κ O(N−1/2+6κ). So, given κ < 1/13, it suffices to prove

P

(∣∣∣∣∣∑
α∈S

Yα

∣∣∣∣∣ > τ2N1−κ

)
⩽ e−(logN)D . (2.36)

Third step: decoupling. For a given exponent p ⩾ 5 (possibly N -dependent) we expand

E
[
|
∑
α∈S

Yα|2p
]
=

∑
pα,qα⩾0,α∈S ,∑

α∈S pα=
∑

α∈S qα=p

(2p)!∏
α∈S pα!qα!

E
[ ∏
α∈S

Y pα
α Y

qα
α

]
⩽ p2p

∑
I⊂S ,
|I|⩽2p

∑
∑

α∈I pα=
∑

α∈I qα=p,
pα+qα⩾1,
pα,qα⩾0

∣∣∣∣∣E[ ∏
α∈I

Y pα
α Y

qα
α

]∣∣∣∣∣ .
(2.37)

To bound the above expectations, we now consider a given I ⊂ S and exponents pα+qα ⩾ 1. LetG be the
graph with vertices I and edges {{w1, w2} ∈ S : w1 and w2 are distinct and adjacent horizontally, vertically,

or diagonally}. Denote I = ∪c(I)
i=1 Ii the decomposition of I into connected components for G (c(I) is the

number of connected components).
For any i, denote mi = |Ii| and ni = 2

∑
α∈Ii

pα+qα. Let Θr (resp. Θ∗
r) be the set of r-tuples of elements

(resp. distinct elements) in {z1, . . . , zN}. We expand

∏
α∈Ii

Y pα
α Y

qα
α =

∑
z∈Θni

f (i)(z) with f (i)(z) =
∏
α∈Ii

 pα∏
k=1

fα(w
(α)
k , z

(α)
k )

pα+qα∏
k=pα+1

fα(w
(α)
k , z

(α)
k )

 (2.38)

where we have decomposed z = (w(α), z(α))α∈Ii and w(α), z(α) have length pα+ qα. Let d(w) be the number
of distinct eigenvalues appearing in the tuple w. Equation (2.38) implies that if we define

f (i)r (z) =
∑

w∈{z1,...,zr}ni , d(w)=r

f (i)(w),

then we have ∏
α∈Ii

Y pα
α Y

qα
α =

∑
r⩽ni

∑
z∈Θ∗

r

f (i)r (z). (2.39)

This expansion over r-tuples of distinct eigenvalues allows to write expectations in terms of correlation

functions. Note that there is a constant C > 0 depending only on p such that ∥f (i)r ∥∞ ⩽ C. Moreover, f
(i)
r

is supported on the δNκ/2-neighbourhood of (∪α∈Iiα)
r, so that if f

(i)
r (z) ̸= 0 and f

(j)
s (w) ̸= 0 or i ̸= j, then

26



the minimal distance between points from z and w is at least δNκ/2. In particular the supports of f
(i)
r and

f
(j)
s are distinct so that

c(I)∏
i=1

∑
r⩽ni

∑
z∈Θ∗

r

f (i)r (z) =
∑
ri⩽ni

∑
z∈Θ∗

r1+···+rc(I)

gr1,...,rc(I)(z), where gr1,...,rc(I)(z) =

c(I)∏
i=1

f (i)ri (zri).

Here, we have decomposed z = (zr1 , . . . , zrc(I)) with zri ∈ Θ∗
ri .

Moreover, by definition of the correlation functions we have

E
[ ∑
z∈Θ∗

r1+···+rc(I)

gr1,...,rc(I)(z)

]
=

∫
Cr1+···+rc(I)

gr1,...,rc(I)(z)ρ
(N)
r1+···+rc(I)

(z)dm(z). (2.40)

When gr1,...,rc(I)(z) ̸= 0, as mentioned before the minimal distance between zri and zrj for i ̸= j is at least

δNκ/2, so that, using Theorem A.5 and assuming p ⩽ (logN)log logN , we obtain

ρ
(N)
r1+···+rc(I)

(z) = det∑
ri×

∑
ri
KN (zi, zj)

=

c(I)∏
k=1

det
rk×rk

KN (zrk(i), zrk(j)) + O

p!∥KN∥p∞ max
|z−w|>Nκδ/2,
|z|,|w|⩽1−δ

|KN (z, w)|


= ρ(N)

r1 (zr1) · · · ρ(N)
rc(I)

(zrc(I)) + O
(
e−cN2κ

)
. (2.41)

From (2.40) and (2.41) we have

E
[ c(I)∏
i=1

∑
r⩽ni

∑
z∈Θ∗

r

f (i)r (z)
]
=
∑
ri⩽ni

c(I)∏
i=1

E
[ ∑
zri

∈Θ∗
ri

f (i)ri (zri)
]
+O

(
e−cN2κ

)
=

c(I)∏
i=1

E
[ ∑
r⩽ni

∑
z∈Θ∗

r

f (i)r (z)
]
+O

(
e−cN2κ

)
.

With the definition (2.39), this means that there exists N0 > 0 such that for any p ⩽ (logN)log logN , N ⩾ N0,
I ⊂ S and

∑
α∈I pα + qα = 2p with pα + qα ⩾ 1, pα, qα ⩾ 0 we have

E
[ c(I)∏
i=1

∏
α∈Ii

Y pα
α Y

qα
α

]
=

c(I)∏
i=1

E
[ ∏
α∈Ii

Y pα
α Y

qα
α

]
+O

(
e−cN2κ

)
.

Fourth step: counting and Markov. We can now estimate the right-hand side of (2.37). First, observe that
the contribution of I’s with c(I) > p is zero. Indeed, for any such I, there exists i ∈ J1, c(I)K such that
Ii = {α}, and (pα, qα) = (1, 0) or (pα, qα) = (0, 1). Due to the centering, we already have E[Yα] = E[Ȳα] = 0,
which forces the entire corresponding term in the sum to be zero.

For any I such that c(I) ⩽ p, we simply bound |Xα| ⩽ |{zi : d(zi, α) ⩽ δNκ}|2 and E[Xα] ⩽ N8κ.

So, by Corollary 2.12, we have
∣∣∣E[∏α∈I Y

pα
α Y

qα
α

]∣∣∣ ⩽ N17pκ. For any I ⊂ S satisfying |I| ⩽ 2p, we have

|{(pα, qα)α∈I : pα, qα ⩾ 0,
∑

α∈I pα =
∑

α∈I qα = p}| ⩽ p7p. The contribution to (2.37) is therefore bounded

by p2pN17pκp7p|{I ⊂ S : |I| ⩽ 2p, c(I) ⩽ p}| ⩽ p10pN17pκ|S |p(18p)2p ⩽ p15pτ2pNp(1+13κ) for any p > 20.
In sum, we have proved that for any 20 < p ⩽ (logN)log logN we have

E

[∣∣∣ ∑
α∈S

Yα

∣∣∣2p] ⩽ p15pτ2pNp(1+13κ),
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so by Markov’s inequality

P

(∣∣∣ ∑
α∈S

Yα

∣∣∣ > τ2N1−κ

)
⩽ N−p10κ

where we have used p ⩽ (logN)log logN . For fixed κ,D > 0, the choice p = (logN)D/(10κ) concludes the
proof of (2.36) and the lemma.

3 Singular potentials

In this section, we prove Laplace transform estimates similarly to Proposition 2.7, but now with logarithmic
singularities. The approach contains key modifications compared to the previous section, in particular a
decoupling of local singularities and a comparison with a reference model, the electric potential for the
Ginibre ensemble at ζ = 0. At a high level, this section mirrors a method initiated in [21] in the context of
Fisher-Hartwig singularities in a space-time setting.

3.1 Regularizing and localizing log-singularities. Recall the logarithmic regularization logε = log | ·
| ∗ χε

∥χε∥L1
defined for ε > 0. We begin by noting that the root-type singularities in Theorem 1.1 can be

replaced by their submicroscopic regularizations. Indeed, compared to [21,62] the submicroscopic smoothing
is considerably simpler for two dimensional Coulomb gasses. Owing to the subharmonicity and harmonicity
properties of the logarithm in 2d, there is no need to invoke Hua-Pickrell type kernel estimates as in [21,
Lemmas 2.4–2.5] or to use change of variables, see [62, Proposition 6.1].

Proposition 3.1. Let C > 0, m ∈ N, α, κ > 0, ∆ = N−1/2−α, f ∈ S3,C,κ, γ1, . . . , γm ∈ [0, C] and
ζ1, . . . , ζm ∈ Sin(2δN ). Then

E
[
eTr(f+

∑m
j=1 γj logζj )

]
= E

[
eTr(f+

∑m
j=1 γj log

ζj
∆ )
]
(1 + O(N−2α)).

Proof. Because χ is radial and log is subharmonic, log∆ ⩾ log, which proves one side of the proposition.
For the other direction, note that log∆ = log outside B(0,∆) due to harmonicity of log. Defining the set
G = {there is no eigenvalue in ∪m

j=1 B(ζj ,∆)}, we can write

E
[
eTr(f+

∑m
j=1 γj log

ζj
∆ )
]
⩽ E

[
eTr(f+

∑m
j=1 γj logζj )

]
+ E

[
eTr(f+

∑m
j=1 γj log

ζj
∆ )1Gc

]
.

Moreover, using the estimation on the one-point correlation function in Lemma A.4.(i) we obtain

E
[
eTr(f+

∑m
j=1 γj log

ζj
∆ )1Gc

]
E
[
eTr(f+

∑m
j=1 γj log

ζj
∆ )
] = E

f+
∑m

j=1 γj log
ζj
∆

[
1Gc

]
⩽
∫
∪m

j=1B(ζj ,2∆)

K̃N (z, z)dm(z) = O(N−2α)

which completes the proof.

Fix κ > 0, δ = N−1/2+κ, ζ ∈ C and let χ be a smooth bump function such that χ = 1 on B(ζ, 1) and 0

outside B(ζ, 2). For any ζ ∈ Sin(δN ), one has χ logζδ ∈ SC,κ for some suitable constant C (depending only
on S). This follows from the multiscale decomposition:

logδ(z − ζ) =

∞∑
n=0

gn(z), gn(z) = logδ(z − ζ)χn(N
1
2−κ|z − ζ|),

where 1 =
∑

n⩾0 χn is a partition of R+, χ0 is supported on [0, 2], χn is supported on [2n−1, 2n+1], and

∥χ(p)
n ∥∞ ⩽ Cp2

−np for n, p ⩾ 0. It’s straightforward to verify that gn ∈ ACδ2n for some constant C. Using

this decomposition for indices n such that 2n < δ yields the desired result χ logζδ ∈ SC,κ.
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Proposition 3.2. Let κ, α > 0 be small, C > 0, m ∈ N be some fixed constants, ∆ = N−1/2−α and δ =
N−1/2+κ/3. Then, uniformly in f ∈ S5,C,κ, ζ1, . . . , ζm ∈ Sin(N

−1/2+κ) satisfying mini̸=j |ζi−ζj | > N−1/2+κ

and γ1, . . . , γm ∈ [0, C] we have

E
[
e
∑N

i=1 f(zi)
m∏
j=1

e
∑N

i=1 γj log∆(zi−ζj)
]
= eN

∫ (
f+

∑
j γj log

ζj
δ

)
dµV e

1
8π

∫
C

(
|∇fS |2+1S∆f+LS∆f

)
dm

×
m∏
j=1

e
γj
2

( ∫
∂S

fdω∞−f(ζj)
) m∏
j=1

e
γ2
j

8π

∫
C ∇(log

ζj
δ )S ·∇(2 log

ζj
∆ − log

ζj
δ )S dm+

γj
4 (1+L(ζj)−LS(∞))

×E
[ m∏
j=1

e
∑N

i=1 γj(log
ζj
∆ − log

ζj
δ )(zi)

]∏
j ̸=k

|ζj − ζk|−
γiγj

4 e
γiγj

4 s
(
1 + O(N−κ/10)

)
.

Proof. We begin similarly to the proof of Proposition 2.7, with the exception that we remove only the
function f and the mesoscopic contributions from logarithmic singularities using Proposition 2.6. More
explicitly, let χ be an order 1 bump function that is equal to 1 on S ∪ Sedge(1/2) and 0 on Sout(2/3). Then

F :=
∑

j γj(log
ζj
∆ − log

ζj
δ ) and g := f +

∑
j γj log

ζj
δ substituted into f and g respectively (with g1 = gχ,

g2 = g(1− χ)) in Proposition 2.6 yields

logE[e
∑

i(F+g)(zi)] = logE[e
∑

i F (zi)] + Γ(f) +

m∑
j=1

γj Γ(f, log
ζj ) +

m∑
j=1

γj Γ(log
ζj ) +

m∑
j=1

γ2j Γ(log
ζj , logζj )

+
∑
j ̸=k

γjγk Γ(log
ζj , logζk) +N

∫
g dµV +

∫ 1

0

EN (F + tg, g1) dt+O(N−D)

where

Γ(f) =
1

8π

∫
C

(
|∇fS |2 + 1S∆f + LS∆f

)
dm,

Γ(f, logζj ) =
1

4π

∫
C

∇fS · ∇(log
ζj
∆ )Sdm,

Γ(logζj ) =
1

8π

∫
S

∆ log
ζj
δ dm+

1

8π

∫
S

log
ζj
δ ∆Ldm− 1

8π

∫
∂S

log
ζj
δ N (L)ds,

Γ(logζj , logζj ) =
1

8π

∫
C
∇(log

ζj
δ )S · ∇(2 log

ζj
∆ − log

ζj
δ )S dm,

Γ(logζj , logζk) =
1

8π

∫
C
∇(log

ζj
δ )S · ∇(logζk∆ )S dm+

1

8π

∫
C
∇(logζkδ )S · ∇(log

ζj
∆ − log

ζj
δ )S dm.

We now evaluate each term one-by-one. Γ(f) is already in the desired form. Recalling the definition of the

harmonic measure ω∞ given in (1.6) and the fact that ∆(logζ∆) = 2π
χζ
∆

∥χζ
∆∥L1

, Γ(f, logζj ) can be simplified

easily as follows:

Γ(f, logζj ) =
1

4π

∫
S

∇f · ∇ log
ζj
∆ dm+

1

4π

∫
Sc

∇fS · ∇(log
ζj
∆ )Sdm

= − 1

4π

∫
S

f∆ log
ζj
∆ dm+

1

4π

∫
∂S

f
∂ log

ζj
∆

∂n
ds+

1

4π

∫
∂S

f
∂(log

ζj
∆ )S |Sc

∂(−n)
ds

= −1

2
f(ζj) +

1

2

∫
∂S

f dω∞ +O(N−κ).

Next, for Γ(logζj ) term, we begin by establishing the analogue of (2.17), accounting for the non-compact
support of the logarithm. We denote LS(∞) by LS

∞ and modify LS to LS −LS
∞ so that Green’s identity can

29



be applied on Sc:∫
C
(LS − LS

∞)∆ log
ζj
δ dm =

∫
S

(L− LS
∞)∆ log

ζj
δ dm+

∫
Sc

(
(LS − LS

∞)∆ log
ζj
δ − log

ζj
δ ∆(LS − LS

∞)
)
dm

=

∫
S

log
ζj
δ ∆Ldm+

∫
∂S

(
(L− LS

∞)
∂ log

ζj
δ

∂n
− log

ζj
δ

∂L

∂n

)
ds+

∫
∂S

(
(L− LS

∞)
∂ log

ζj
δ

∂(−n)
− log

ζj
δ

∂LS |Sc

∂(−n)

)
ds

=

∫
S

log
ζj
δ ∆Ldm−

∫
∂S

log
ζj
δ N (L) ds.

Substituting ∆(logζ∆) = 2π
χζ
∆

∥χζ
∆∥L1

again we obtain that

Γ(logζj ) =
1

8π

∫
S

∆ log
ζj
δ dm+

1

8π

∫
C
(LS − LS

∞)∆ log
ζj
δ dm =

1

4
+

1

4
(L(ζj)− LS

∞) + O(N−1/2+κ).

We leave the Γ(logζj , logζj ) term as it is. So, the last term we consider is Γ(logζj , logζk). The calculation
of this term relies on the fact that the singularities are separated on a scale greater than the mesoscopic
log-regularization. More explicitly,∫

C
∇(logζkδ )S · ∇(log

ζj
∆ − log

ζj
δ )S dm = O

( 1

|ζj − ζk|
) ∫

B(ζj ,δ)

1

|z − ζj |
dm = O

( δ

|ζj − ζk|
)
= O(N−κ).

Thus

Γ(logζj , logζk) =
1

8π

∫
S

∇ log
ζj
δ ·∇ logζk∆ dm+

1

8π

∫
Sc

∇(log
ζj
δ )S · ∇(logζk∆ )S dm+O(N−κ)

= − 1

8π

∫
S

log
ζj
δ ∆ logζk∆ dm+

1

8π

∫
∂S

log
ζj
δ

∂ logζk∆
∂n

ds+
1

8π

∫
∂S

log
ζj
δ

∂(logζk∆ )S

∂(−n)
ds+O(N−κ)

= −1

4
log |ζj − ζk|+

1

4

∫
∂S

logζj dω∞ +O(N−κ)

and the second integral in the right hand side is equal to s by (1.7). Therefore it remains only to show that
EN (F + tg, g1) = O(N−κ/10). Let ht = F + tg. Since the expression is linear in its second argument, it
suffices to establish this bound for EN (ht, g) uniformly on g ∈ AC,τ with τ ∈ [N−1/2+κ, 1], which is done in
the next lemma.

Lemma 3.3. EN (ht, g) term in the proof of Proposition 3.2 is O(N−κ/10).

Proof. The proof follows the same general strategy as in Lemmas 2.8-2.10, with only a few modifications that
we now indicate. Most of the steps in the proofs of the lemmas remain valid without change: in particular,
using the notation from Appendix A, we still have K̃N = O(N), exponential decay of K̃N (z, z) outside the

unit disc, and | K̃N (z,z)
N − ρV (z)| ⩽ N−2κ+ε when z ∈ Sin(δN ) \ ∪jB(ζj , δ) by Lemma A.4 and Theorem

A.1. The stability of the overwhelming probability events also continues to hold by Corollary 3.9. The only
points where the argument requires modification are those that invoke integration in a neighbourhood of the
singularities, i.e. on ∪jB(ζj , δ). In these steps, the local behaviour around the singularities must be handled
separately, as we describe below.

Adjustments to the proof of Lemma 2.8: The argument differs in (2.20) and (2.21), when integrals are
evaluated on on ∪jB(ζj , δ). For (2.20), we split the integration domain ∪jB(ζj , δ) into two regions as
follows. ∣∣∣∣∣Eht

[ ∫
Sin(δN )∩B(ζj ,3δN )

∂̄p

∆V
∂fdµ̃N

]∣∣∣∣∣ ≲
∫
B(ζj ,3δN )

1

τ

1

|z − ζj |
dm(z) ≲

δN
τ

= O(N−κ+ε) (3.1)

where we used Lemma A.4.(i). Moreover,∣∣∣∣∣Eht

[ ∫
Sin(δN )∩B(ζj ,δ)\B(ζj ,3δN )

∂̄p

∆V
∂fdµ̃N

]∣∣∣∣∣ ≲
∫
B(ζj ,δ)\B(ζj ,3δN )

1

τ

1

|z − ζj |
1

N |z − ζj |2
dm(z) ≲

1

τδNN
= O(N−κ)

(3.2)
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where we used Theorem A.1. For (2.21), the argument is simpler, relies only on KN (z, z) = O(N):∫
Sedge(δN )∩B(ζj ,δ)

| ∂̄p
∆V

∂f |

∣∣∣∣∣K̃N

N
− ρV

∣∣∣∣∣ dm ≲
∫
Sedge(δN )∩B(ζj ,δ)

1

τ |ζj − z|
dm(z) = O(N−κ+ε).

Adjustments to the proof of Lemma 2.9: The adjustments are identical to the previous case, and in fact
simpler. We again re-evaluate the integrals over the neighbours of the singularities, while the rest of the
argument remains unchanged. Moreover, the absence of a multiplicative term involving f in the integrand
further simplifies the analysis, since the estimations along Sedge(δN ) ∩ B(ζj , δ) proceed in the same manner

as in the proof of Lemma 2.9, relying only on the bound K̃N = O(N). Hence, it suffices to estimate the
integrals on Sin(δN ) ∩ B(ζj , δ), so, it suffices to bound integrations (2.22) and (2.23) on B(ζj , δ).

We begin with the integral in (2.22). This can be done similarly to (3.1)-(3.2):

Eht

[ ∫
B(ζj ,3δN )

∆g

∆V
dµ̃N

]
= O(

δ2N
τ2

), Eht

[ ∫
Sin(δN )∩B(ζj ,δ)\B(ζj ,3δN )

∆g

∆V
dµ̃N

]
= O(

logN

Nτ2
).

The bound on (2.23) follows easier, directly by K̃N = O(N):

Eht

[ ∫
B(ζj ,δ)

∂̄p∂L

∆V/4
dµ̃N

]
= O(δ2/τ)

and completes the proof.

Adjustments to the proof of Lemma 2.10: For the first half of the proof concerning the estimation

Eht

[
N

∫∫
z ̸=w

r(z)− r(w)

z − w
µ̃N (dz)µ̃N (dw)

]
= O(N−κ+ε), (3.3)

the required changes are, in essence, the same as those made in (3.1)-(3.2). The bound for I(rk;Sedge(δN ),

Sedge(δN )) remains the same as it relies only on K̃N (z, z) = O(N). The evaluation of I(rk;Sin(δN ), Sedge(δN ))
requires a minor adjustment as follows. We split the integral I(rk;Sin(δN ), Sedge(δN )) into two regions,

according to whether z is close the the singularities or not. When z ∈ ∪jB(ζj , 3δN ) we simply use K̃N (z, z) =
O(N). Otherwise we apply Theorem A.1 again. Hence the integral is bounded by,

O(N)

∫∫
z∈Sin(δN )\∪jB(ζj ,3δN ),

w∈Sedge(δN )

|rk(w)|
|z − w|

O

(
supB(z,2δN ) |∇2f |

N
+N−3/2 +

|K̃N (z, w)|2

N2

)
dm(z)dm(w)

+ O(N)

∫∫
z∈∪jB(ζj ,3δN ),
w∈Sedge(δN )

|rk(w)|
|z − w|

dm(z)dm(w).

The first double integral is estimated exactly as before, cf. (2.25). For the second double integral we use the
bounds |rk(w)| ⩽ δN/τ

2
k together with |z − w| ⩾ N−1/2+κ on the domain of integration. Thus,

O(N)

∫∫
z∈∪jB(ζj ,3δN ),
w∈Sedge(δN )

|rk(w)|
|z − w|

dm(z)dm(w) = O(N
δN
τ2k

1

N−1/2+κ
)

∫∫
z∈∪jB(ζj ,3δN ),

w∈Sedge(δN )∩supp(rk)

dm(z)dm(w)

= O
(
N
δN
τ2k

1

N−1/2+κ
(δNτk)δ

2
N

)
= O(N−κ).

This completes the necessary modifications for (3.3).
What remains in the proof are just the adjustments required to evaluate the estimates for h1, h2, and

(h3− r); these are detailed below. The treatment of E2(η, h) in (2.28) is unaffected: the bounds for centered
linear statistics (Proposition 2.11) and transfer of the overwhelming probability events to the biased measure
remain valid (Corollary 3.9).

For E1(η, h), the three contributions from ∂h(z), ∂̄h(z) z̄−w̄
z−w , and O(|z − w|) behave as follows. (i) The

O(|z − w|) term: (2.29) relies only on K̃N (z, z) = O(N) and exponential decay, hence unchanged. (ii) The
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∂h(z) term: (2.30) depends solely on the estimates for centered linear statistics, also unchanged by the
stability. (iii) The ∂̄h(z) z̄−w̄

z−w term: the first two cases (2.31), (2.32) remain valid by Lemma 2.14, stability
and Lemma A.4. The only adjustment is required in the third case (2.33). As the calculations are more
intricate here, we re-evaluate the full integral, not just near the singularities, for the reader’s convenience
despite some repetition. With θ = N−1/2+κ/5, we decompose the left-hand side of (2.33) as,

N

2

∫
S\∪jB(ζj ,θ)

∂̄h(z)

∫
Sin(η)\∪jB(ζj ,θ/2)

z̄ − w̄

z − w
e
− |z−w|2

2η2
(
ρV (w) + O(

1

θ2N
logN)

)
dm(w)dµV (z)

N

2

∫
S\∪jB(ζj ,θ)

∂̄h(z)

∫
∪jB(ζj ,θ/2)

z̄ − w̄

z − w
e
− |z−w|2

2η2
K̃N (w,w)

N
dm(w)dµV (z)

+
N

2

∫
∪jB(ζj ,θ)

∂̄h(z)

∫
Sin(η)

z̄ − w̄

z − w
e
− |z−w|2

2η2
K̃N (w,w)

N
dm(w)dµV (z)

+
N

2

∫
S

∂̄h(z)

∫
Sin(η)c

z̄ − w̄

z − w
e
− |z−w|2

2η2
K̃N (w,w)

N
dm(w)dµV (z).

(i) In the first term, the contribution from O( 1
θ2N logN) can bounded similarly by Nτ2 1

τ2 η
2 logN

θ2N = o(N−κ/5)

where τ2 is the support size of h, 1
τ2 is the maximum of ∂̄h, and η2 is the integral of e

−|z−w|2

2η2 on w. (ii)
The second term is subpolynomial due to the exponential term, as |z − w| > θ/2 ≫ η. (iii) The third term

is controlled by Nθ2 1
τ2 η

2 = O(N−κ) using K̃N (w,w)/N = O(1), where θ2 stands for the integration area
over z, 1

τ2 for maximum of ∂̄h and η2 for the integral over w. (iv) Lastly, the fourth term term is bounded

exactly as in (2.33), using K̃N (w,w)/N = O(1). Thus, only the following term remains:

N

2

∫
S\∪jB(ζj ,θ)

∂̄h(z)

∫
Sin(η)

z̄ − w̄

z − w
e
− |z−w|2

2η2 ρV (w)dm(w)dµV (z)

=
N

2

∫
Sin(2η logN)\∪jB(ζj ,θ)

∂̄h(z)

∫
B(z,η logN)

z̄ − w̄

z − w
e
− |z−w|2

2η2
(
ρV (w)− ρV (z)

)
dm(w)dµV (z)

+
N

2

∫
Sin(2η logN)\∪jB(ζj ,θ)

∂̄h(z)

∫
Sin(η)\B(z,η logN)

z̄ − w̄

z − w
e
− |z−w|2

2η2 ρV (w)dm(w)dµV (z)

+
N

2

∫
Sedge(2η logN)\∪jB(ζj ,θ)

∂̄h(z)

∫
Sin(η)

z̄ − w̄

z − w
e
− |z−w|2

2η2 ρV (w)dm(w)dµV (z).

Analogously to the previous calculations, the first integral on the right-hand side is O(Nη3 logN), the second
is subpolynomial, and the third is O(N(τη logN) 1

τ2 η
2); each of these contributions is negligible.

3.2 Decoupling and comparison. We discuss two important results concerning submicroscopically
regularized local log-singularities, both of which rely on Fredholm determinant theory: the decoupling and
the Ginibre comparison.

The first proposition is an analogue of [21, Proposition 3.4]. Thanks to the exponential decay of the
determinantal kernel, Theorem A.5, the decoupling holds with much more relaxed conditions for 2d Coulomb
gases. Moreover, because we have a single-time problem, the correlation kernel is already self-adjoint, which
makes the proof considerably easier compared to [21]. Here we give the details for the sake of completeness.

Lemma 3.4. Assume that C > 0, m ∈ N, α > 0, κ ∈ [0, 1/2), ∆ = N−1/2−α, δ = N−1/2+κ/3, γ1, . . . , γm ∈
[0, C] and ζ1, . . . , ζm ∈ Sin(N

−1/2+κ) satisfy the separation condition min1⩽i ̸=j⩽m |ζi − ζj | > N−1+κ. Then

E
[ m∏
j=1

e
∑N

i=1 γj(log
ζj
∆ − log

ζj
δ )(zi)

]
=

m∏
j=1

E
[
e
∑N

i=1 γj(log
ζj
∆ − log

ζj
δ )(zi)

]
(1 + O(e−Nκ/5

)).

Proof. Define

hj = eγj(log
ζj
∆ − log

ζj
δ ), gj =

√
1− hj , h =

m∏
j=1

hj , g =
√
1− h
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and let ε = minj∈[[m]] minz∈C hj(z). Consider the operators K,K1, . . . ,Km acting on L2(C),

(Kf)(z) =
∫
C
g(z)KN (z, w)g(w)f(w)dm(w), (Kjf)(z) =

∫
C
gj(z)KN (z, w)gj(w)f(w)dm(w)

where KN is the determinantal kernel, recall (A.2). Note that these are self-adjoint operators because
KN (z, w) = KN (w, z) and g and gj ’s are real valued:

⟨ϕ,Kψ⟩ =
∫∫

ϕ̄(z)g(z)K(z, w)g(w)ψ(w)dm(z)dm(w) =

∫∫
ḡ(w)K(w, z)ḡ(z)ϕ̄(z)ψ(w)dm(z)dm(w) = ⟨Kϕ, ψ⟩.

As KN is a projection-type sum, we see that these are also positive semi-definite operators. From [92,
Theorem 2.12], we conclude that these are trace-class operators. Application of the Cauchy-Binet formula
(see e.g. [55, Proposition 2.11]),

E
[ N∏
i=1

h(zi)
]
= det(Id−K), E

[ N∏
i=1

hj(zi)
]
= det(Id−Kj)

where the right-hand sides are Fredholm determinants. Using the property det(Id + A) det(Id + B) =
det(Id +A+B +AB) for the Fredholm determinants we obtain

m∏
j=1

E
[ N∏
i=1

hj(zi)
]
=

m∏
j=1

det(Id−Kj) = det(Id−
m∑
j=1

Kj)

where we have used the fact that each gj is supported on a disjoint set which yields KiKj to be the zero

operator for every i ̸= j. For convenience we define, K̃ =
∑m

j=1 Kj .
From [92, Theorem 3.7], we know that for every constant ξ ∈ R, the Fredholm determinants det(Id− ξK)

and det(Id− ξK̃) can be expressed in terms of the eigenvalues {λk}∞k=1, {λ̃k}∞k=1 of the operators K and K̃
respectively, as follows:

E

[
N∏

n=1

(1− ξ(1− h(zn)))

]
= det(Id− ξK) =

∞∏
k=1

(1− ξλk),

m∏
j=1

E

[
N∏

n=1

(1− ξ(1− hj(zn)))

]
= det(Id− ξK̃) =

∞∏
k=1

(1− ξλ̃k).

Note that (1 − h) and (1 − hj) lives inside the interval [0, 1 − ε]. Therefore, the left-hand sides are strictly

positive when ξ < 1
1−ε . This leads to the restriction on the spectra σ(K), σ(K̃) ⊂ [0, 1 − ε], when the

right-hand side expressions are considered.
Following the same steps with the third step of [21, Proof of Proposition 3.4], for any n ⩾ 2, we can write

∣∣ log det(Id−K)− log det(Id− K̃)
∣∣ ⩽ |TrK − Tr K̃|+

n∑
k=2

∣∣Tr(Kk)− Tr(K̃k)

k

∣∣+ 1

nε
(∥K∥2HS + ∥K̃∥2HS).

(3.4)

By [92, Theorem 2.12], the traces can be expressed as the integrals along the diagonal, i.e.

TrK =

∫
C
g(z)KN (z, z)g(z)dm(z) =

m∑
j=1

∫
C
gj(z)KN (z, z)gj(z)dm(z) = Tr K̃

since the supports of gj ’s are disjoint. On the other hand, for every k ⩾ 2∣∣∣∣∣Tr(Kk)− Tr(K̃k)

k

∣∣∣∣∣ = 1

k

∣∣∣∣∫ 1

0

d

dt
Tr((tK + (1− t)K̃)k)dt

∣∣∣∣ = ∣∣∣∣∫ 1

0

Tr((K − K̃)(tK + (1− t)K̃)k−1)dt

∣∣∣∣
⩽ ∥K − K̃∥HS max

t∈[0,1]
∥(tK + (1− t)K̃)k−1∥HS ⩽ ∥K − K̃∥HS max

t∈[0,1]

(
∥tK + (1− t)K̃∥HS∥tK + (1− t)K̃∥k−2

)
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where we have used Tr(AB) ⩽ ∥A∥HS∥B∥HS and ∥AB∥HS ⩽ ∥A∥HS∥B∥ for Hilbert-Schmidt operators (∥ · ∥
stands for the operator norm). As ∥tK + (1− t)K̃∥ ⩽ t∥K∥+ (1− t)∥K̃∥ ⩽ 1− ε, we have∣∣∣∣∣Tr(Kk)− Tr(K̃k)

k

∣∣∣∣∣ ⩽ ∥K − K̃∥HS max(∥K∥HS, ∥K̃∥HS).

Finally, the following Hilbert-Schmidt norm bounds are straightforward, given the uniform estimations on
the kernel, Theorem A.5 and Lemma A.4.(i):

∥K − K̃∥HS = O(e−Nκ/2

), ∥K∥HS = O(Nκ), ∥K̃∥HS = O(Nκ).

Substituting these, we get∣∣ log det(Id−K)− log det(Id− K̃)
∣∣ ≲ ne−Nκ/2

N3κ/2 +
1

nε
N2κ.

Choosing n = eN
κ/4

concludes the proof.

The next observation follows from calculations closely analogous to those in [62, Proposition 2.3], with
one key modification. We do not estimate the Hilbert-Schmidt norm of the operator difference, since the
angular term prevents the determinantal kernel for a general potential from being approximated by the
Ginibre kernel. Instead, we use that these angular contributions vanish in the trace calculations, which is
all that we require.

We denote the expectation for quadratic potential V (z) = |z|2 case, i.e. the Ginibre case, by EGin.

Lemma 3.5. Given C > 2. Then, uniformly in γ ∈ [0, C], α, κ > 0 satisfying α + κ < 1
20C , and ζ ∈

Sin(N
−1/2+κ), denoting δ = N−1/2+κ/3, ∆ = N−1/2−α we have

E
[
eγ Tr(logζ

∆ − logζ
δ)
]
= EGin

[
eγ Tr(log∆̆ − logδ̆)

]
(1 + O(N−1/8)) (3.5)

where ∆̆ = ∆
√

∆V (ζ)
4 and δ̆ = δ

√
∆V (ζ)

4 .

Proof. Let θ =
√

4
∆V (ζ) and V̆ (z) = V (θz + ζ). By change of variables, using the fact that logε(cz) =

logε/c z + log c, we have

EV
[
eγ

∑N
i=1(log

ζ
∆ − logζ

δ)(zi)
]
= EV̆

[
eγ

∑N
i=1(log∆ − logδ)(θzi)

]
= EV̆

[
eγ

∑N
i=1(log∆̆ − logδ̆)(zi)

]
and this shift applies directly to the droplet S and the determinantal kernels. More explicitly, the droplet
for the potential V̆ is S̆ = {z ∈ C : θz+ ζ ∈ S} and the determinantal kernel for V̆ , denoted by K̆N (z, w), is

K̆N (z, w) = KN (θz + ζ, θw + ζ) θ2.

Using the Taylor expansion we obtain that for any |z|, |w| < δ:

V (θz + ζ)− 2V (θz + ζ, θw + ζ) + V (θw + ζ) = |z|2 − 2zw̄ + |w|2 − 2iF (z, w) + O(δ3),

where F (z, w) = Im
(
∂V (ζ)θ(z − w) +

∂2V (ζ)

2
θ2(z2 − w2)

)
.

Theorems A.1 and A.5 imply that for any z, w ∈ {z ∈ S : dist(z, ∂S) > δ} with |z − w| < 2δ̆:

K̆N (z, w) =
N

π
e−

N
2 (|z|2−2zw̄+|w|2)+iNF (z,w) +O(N2δ3). (3.6)

Let h = eγ(log∆̆ − logδ̆), g =
√
1− h. Similar to the proof of Proposition 3.4, we define integral operators

K1(z, w) = g(z)K̆N (z, w)g(w) and K2(z, w) = g(z)KGin
N (z, w)g(w) where the Ginibre kernel is KGin

N (z, w) =
N
π e

−N
2 |z|2−2zw̄+|w|2 . In order to prove (3.5), it suffices to achieve an O(N−1/8) bound to the following

expression, as in (3.4):

n∑
k=1

∣∣Tr(Kk
1)− Tr(Kk

2)

k

∣∣+ 1

nε
(∥K1∥2HS + ∥K2∥2HS) (3.7)
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for some n to be chosen later, and ε = eγ(log∆ 0−logδ 0) ≍ N−γ(α+κ). The rough bounds |K̆N (z, w)| = O(N)
and |KGin

N (z, w)| = O(N) give ∥Ki∥HS = O(Nκ) for i = 1, 2. On the other hand, note that

Tr(Kk
i ) =

∫
Ck

Ki(z1, z2)Ki(z2, z3) · · · Ki(zk, z1)dm(z1) . . . dm(zk)

for i = 1, 2. For convenience, let zk+1 = z1. Plugging the estimation (3.6), due to
∑k

ℓ=1 F (zℓ, zℓ+1) = 0, we
get

Tr(Kk
1) =

∫
B(0,δ̆)

k∏
ℓ=1

(
K2(zℓ, zℓ+1) + O(N2δ3)

)
dm(z1) . . . dm(zk)

= Tr(Kk
2) + O

( k∑
ℓ=1

(
k

ℓ

)
(N2δ5)ℓ

)
= Tr(Kk

2) + kO(N2δ5)

uniformly in k ⩽ (N2δ5)−1, where we used the fact that
∫
CNe

−N
2 |z−w|2dm(z) = 2π. Substituting this into

(3.7) yields the following bound:∣∣∣ logE[eγ Tr(logζ
∆ − logζ

δ)
]
− logE

[
eγ Tr(log∆ − logδ)

]∣∣∣ ⩽ nO(N2δ5) +
1

n
Nγ(α+κ)+2κ

for n ⩽ (N2δ5)−1. Choosing n = N1/4 completes the proof.

3.3 Determinant of the Ginibre matrix. In this section, we derive the asymptotic formula for a single
logarithmic singularity at the origin in the Ginibre case.

Lemma 3.6. Fix C > 0. For all γ ∈ [0, C], α > 0 and ∆ = N−1/2−α, we have

EGin
[
eγ Tr(log∆)

]
= e−Nγ/2N

γ2

8
(2π)

γ
4

G
(
1 + γ

2

)(1 + O(N−min(α,1))
)

for all sufficiently large N .

Proof. By Kostlan’s theorem [65], {|z1|2, . . . , |zN |2} (d)
= {Γ1/N, . . . ,ΓN/N} where zi are eigenvalues of

Ginibre ensemble and Γi are independent, with Γi ∼ Gamma(i, 1). Defining f(x) = eγ log∆

√
|x|, this leads

EGin
[
eγ Tr(log∆)

]
=

N∏
j=1

E
[
f
(
Γj/N

)]
.

Writing the probability density of the gamma random variable we get

EGin
[
f
(
Γj/N

)]
=

1

(j − 1)!

∫ ∞

0

(
x/N

)γ/2
xj−1e−xdx− 1

(j − 1)!

∫ ∆2

0

((
x/N

)γ/2 − f(x/N)
)
xj−1e−xdx

=
1

Nγ/2

Γ(j + γ/2)

Γ(j)
+ O

(∆2j+2γ

j!

)
=

1

Nγ/2

Γ(j + γ/2)

Γ(j)

(
1 + O(N−α(j+1))

)
.

Using Barnes G-function asymptotics (e.g. see [94, (A.6)]):

logG(z + 1) = z2
(
log z

2
− 3

4

)
+
z

2
log 2π − log z

12
+B +O|z|→∞

(
1

z

)
for some constant B, we obtain

EGin
[
eγ Tr(log∆)

]
= (1 + O(N−α))N−Nγ/2

N∏
j=1

Γ(j + γ/2)

Γ(j)
= (1 + O(N−α))N−Nγ/2 G(N + 1 + γ

2 )

G(N + 1)G(1 + γ
2 )

= e−Nγ/2N
γ2

8
(2π)

γ
4

G
(
1 + γ

2

)(1 + O(N−min(α,1))
)

concluding the proof.
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For later reference, we also record the formula non-regularized case which improves the error term in
[96, Theorem 1]. The proof follows identically.

Lemma 3.7. Let C > 0. Uniformly in γ ∈ [0, C], we have

EGin
[ N∏
k=1

|zk|γ
]
= N−N γ

2
G(N + 1 + γ

2 )

G(N + 1)G(1 + γ
2 )

= e−N γ
2N

γ2

8
(2π)

γ
4

G
(
1 + γ

2

) (1 + O

(
1

N

))
.

3.4 Stability for log-biases. Here, we derive some estimates on linear statistics of log-singular test
functions regularized at submicroscopic scales under general external potential and state the related stability
result, analogous to the Subsection 2.5.

Let α, κ > 0 and define δ = N−1/2+κ/3, ∆ = N−1/2−α and ζ ∈ Sin(N
−1/2+κ). Proposition 2.12 yields

E[|Xlogζ
δ
|] ⩽ (logN)7. Moreover, using the kernel estimate in Theorem A.1, we get

|Xlogζ
∆
−Xlogζ

δ
| =

∣∣∣∣∫ (logζ∆ z − logζδ z)(KN (z, z)−NρV (z))dm(z)

∣∣∣∣ = o(N−1).

Hence E[|Xlogζ
∆
|] ⩽ (logN)7 for all sufficiently large N . For the Laplace transform bound, we leverage the

Ginibre comparison for the local contribution. Combining Proposition 2.12, Lemma 3.6, and Lemma 3.5,
we obtain the uniform Laplace bound for sub-microscopically regularized log-singularities in the bulk. More
explicitly, a Cauchy-Schwarz inequality gives the following corollary.

Corollary 3.8. For every C > 1, κ ∈ (0, 1
100C ), there exist N0 such that for every 0 < α < 1

100C , ∆ =

N−1/2−α and ζ ∈ {z ∈ S : dist(z, ∂S) > N−1/2+κ}, defining, we have

logE
[
e
tX

log
ζ
∆

]
⩽ (logN)7

for all t ∈ [0, C] and N ⩾ N0. Moreover, E
[
|Xlogζ

∆
|
]
⩽ (logN)7.

An analogous statement to Corollary 2.13 for biases involving submicroscopically regularized logarithms
is as follows.

Corollary 3.9 (Stability for log-biases). Fix C > 1, κ, α ∈ (0, 1
100C ) and a non-negative integer m. Let

γ1, . . . , γm ∈ [0, C] and ζ1, . . . , ζm ∈ Sin(N
−1/2+κ). Set

f = h+

m∑
j=1

γj log
ζj
∆ , h ∈ S3,C,κ, ∆ = N−1/2−α.

If an event A satisfies P(A) ⩾ 1− e−(logN)D for some D ⩾ 10, then Pf (A) ⩾ 1− e−(logN)D/2.

3.5 Proof of Theorem 1.1. We now prove Theorem 1.1, by combining Proposition 3.2, Lemmas 3.4, 3.5,
3.7.

Proof of Theorem 1.1. By Proposition 3.1, it suffices to prove the statement of the Theorem for exponentials
of submicroscopically regularized logarithmic singularities, instead of root-type singularities. Let α = κ and
take the submicroscopic scale ∆ = N−1/2−α in the regularizations.

Combining the asymptotics in Proposition 3.2 with the results from Lemmas 3.4 and 3.5 we obtain that

E
[
e
∑N

i=1 f(zi)
m∏
j=1

e
∑N

i=1 γj log∆(zi−ζj)
]
= eN

∫
f+

∑
j γj log

ζj
δ dµV e

1
8π

( ∫
C |∇fS |2dm+1S∆f+LS∆fdm

)

×
m∏
j=1

e
γj
2

( ∫
∂S

fdω∞−f(ζj)
) m∏
j=1

e
γ2
j

8π

∫
C ∇(log

ζj
δ )S ·∇(2 log

ζj
∆ − log

ζj
δ )S dm+

γj
4 (1+L(ζj)−LS(∞))

×
m∏
j=1

EGin
[
e
∑N

i=1 γj(log∆j
− logδj

)(zi)
]∏
j ̸=k

|ζj − ζk|−
γiγj

4 e
γiγj

4 s
(
1 + O(N−κ/10)

)
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where ∆j = ∆
√

∆V (ζj)
4 and δj = δ

√
∆V (ζj)

4 . On the other hand, applying Proposition 3.2 for quadratic

potential with a single singularity, by the same way as above, we obtain that for any j = 1, . . . ,m

EGin
[ N∏
i=1

|zi|γj

]
= e

N
π γj

∫
D logδj

dm
e
γ2
j

∫
C ∇(logδj

)D·∇(2 log∆j
− logδj

)D dm+
γj
4

× EGin
[
e
∑N

i=1 γj(log∆j
− logδj

)(zi)
] (

1 + O(N−κ/10)
)
.

Combining the last two asymptotics, we can use the following simplifications:∫
log

ζj
δ dµV − N

π

∫
D
logδj dm =

∫
logζj dµV − N

π

∫
D
log dm+

∫
(log

ζj
δ − logζj )(

∆V

4π
− ∆V (ζj)

4π
)dm

=

∫
logζj dµV − N

π

∫
D
log dm+O(δ3)

where log in the integrands stands for log | · | and∫
C
∇(log

ζj
δ )S · ∇(2 log

ζj
∆ − log

ζj
δ )S dm−

∫
C
∇(logδj )

D · ∇(2 log∆j
− logδj )

D dm

=

∫
C
∇(log

ζj
δ )S · ∇(log

ζj
∆ )S dm−

∫
C
∇(logδj )

D · ∇(log∆j
)D dm

=

∫
S

∇ log
ζj
δ ·∇ log

ζj
∆ dm+

∫
Sc

∇(log
ζj
δ )S · ∇(log

ζj
∆ )S dm−

∫
D
∇ logδj ·∇ log∆j

dm

= −
∫
S

log
ζj
δ ∆ log

ζj
∆ dm+

∫
∂S

logζj
(∂ logζj

∂n
− ∂(logζj )S |Sc

∂n

)
ds+

∫
D
logδj ∆ log∆j

dm

= −2π logδ(0) + 2π logδj (0) +

∫
∂S

logζj N (logζj ) ds+O(∆/δ)

= πL(ζj) + 2πs+O(N−κ−α).

Together with Lemma 3.7, these complete the proof.

4 Convergence to the Gaussian multiplicative chaos

A collection of sufficient conditions for convergence to a GMC measure throughout the entire L1-phase has
been provided in [33]. We first state this result and then verify the conditions in our setting using the main
Theorem 1.1. This leads to the proof of Theorem 1.7.

4.1 GMC convergence in the L1-phase. Let U be a simply connected, open, bounded subset of Rd for
some d ⩾ 1. Let X be a log-correlated Gaussian field on U with symmetric positive semi-definite covariance
kernel

K(z, w) = log
1

|z − w|
+ g(z, w)

for a continuous function g ∈ L2(U×U) that is bounded from above. Let (XN )N⩾1 be a sequence of random
functions, defined on probability spaces ΩN ,

XN : ΩN →
{
f : U → R

∣∣ f ∈ L1(U), sup
z∈U

f(z) <∞, f is upper semi-continuous
}

satisfying the following properties: for each β > 0, z ∈ U and φ ∈ C∞
c (U),

E[eβXN (z)] <∞, E[e
∫
U

XN (z)φ(z)dm(z)] <∞,

∫
U

XN (z)φ(z)dm(z)
(d)−−−−→

N→∞

∫
U

X(z)φ(z)dm(z).
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Denote the mollifications of XN and X by

X
(ε)
N = XN ∗ χε

∥χε∥L1

, X(ε) = X ∗ χε

∥χε∥L1

for every ε > 0 and let X
(0)
N = XN , X(0) = X for convenience. We also denote the multiplicative chaos

measure generated by the Gaussian field X on U by µβ which can be formally written as

dµβ(z) =
eβX(z)

E[eβX(z)]
.

Theorem 4.1 ([33, Proposition 2.13]). Let XN and X be as defined above. Assume that for a β ∈ (0,
√
2d),

there exists a sequence εN = εN (β) converging to 0 as N → ∞ satisfying the following properties:

(i) For any fixed ε, ε′ ⩾ 0,

lim
N→∞

E[eβX
(ε)
N (z)+βX

(ε′)
N (w)]

E[eβX
(ε)
N (z)]E[eβX

(ε′)
N (w)]

= eβ
2E[X(ε)(z)X(ε′)(w)] (4.1)

for all z ̸= w in U and the convergence is uniform for all (z, w) in any fixed compact subset of
{(u, v) ∈ U2 : u ̸= v}.

(ii) For any fixed ε ⩾ 0, ε′ > 0, and compact set K ⊂ U , there exists a positive constant C = C(β, ε, ε′,K)
such that

sup
N∈N

sup
z,w∈K

E[eβX
(ε)
N (z)+βX

(ε′)
N (w)]

E[eβX
(ε)
N (z)]E[eβX

(ε′)
N (w)]

⩽ C. (4.2)

(iii) For any fixed λ ∈ R, and compact set K ⊂ U , there exists a positive constant C = C(β, λ,K) such that

E[eβXN (z)+λX
(ε)
N (z)]

E[eβXN (z)]
⩽ Cε−λβ−λ2

2 (4.3)

for all z ∈ K, ε ⩾ εN , and N ∈ N.

(iv) For any fixed compact set K ⊂ U , there exists a positive constant C = C(β,K) such that

E[eβXN (z)+βXN (w)]

E[eβXN (z)]E[eβXN (w)]
⩽ C|z − w|−β2

(4.4)

for all (z, w) ∈ K2 ∩ {(u, v) ∈ U2 : |u− w| ⩾ εN} and N ∈ N.

(v) For any fixed ρ > 0, ε, ε′ ⩾ 0, n ∈ N, λ ∈ Rn, and compact set K ⊂ U ,

E[eβX
(ε)
N (z)+βX

(ε′)
N (w)e

∑n
k=1 λkX

(ηk)

N (uk)]

E[eβX
(ε)
N (z)+βX

(ε′)
N (w)]

= (1 + oN→∞(1)) e
1
2E[(

∑n
k=1 λkX

(ηk)(uk))
2]

× e
∑n

k=1 βλkE[X(ε)(z)X(ηk)(uk)+X(ε′)(z)X(ηk)(uk)] (4.5)

uniformly for all (z, w) ∈ K2 ∩ {(u, v) ∈ U2 : |u − v| ⩾ ρ}, u ∈ Kn, and η ∈ (εN , 1]
n. The implicit

constant may depend on β, ρ, ε, ε′, n, λ, and K.

(vi) For any fixed λ ∈ R and compact set K ⊂ U , there exists a positive constant C = C(β, λ,K) such that

lim sup
N→∞

E[eβX
(ε)
N (z)+βX

(ε′)
N (w)+λX

(η)
N (w)]

E[eβX
(ε)
N (z)+βX

(ε′)
N (w)]

⩽ Ce
λ2

2 E[X(η)(w)2]+λβ E[X(ε)(z)X(η)(w)+X(ε′)(w)X(η)(w)] (4.6)

for all η ⩾ ε′ ⩾ ε with ε′ > 0 and x, y ∈ K.
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(vii) For any fixed λ ∈ R and compact set K ∈ U , there exists a positive constant C = C(β, λ,K) such that

E[eβXN (z)+βXN (w)+λX
(η)
N (w)]

E[eβXN (z)+βXN (w)]
⩽ Ce

λ2

2 E[X(η)(w)2]+λβ E[X(z)Xη(w)+X(w)Xη(w)] (4.7)

for all η ⩾ εN and (z, w) ∈ K2 ∩ {(u, v) : |u− v| ⩾ εN}.

(viii) There exists a small parameter 0 < θ < min(
(d− β2

2 )2

4d , β
2

8 ) such that for any compact set K ⊂ U there
is a positive constant C = C(β,K) satisfying∫∫

z,w∈K,
|z−w|⩽εN

E[eβXN (z)+βXN (w)]

E[eβXN (z)]E[eβXN (w)]
dm(z)dm(w) ⩽ Cε

−max(β2−d,0)−θ
N . (4.8)

Then

eβXN (z)

E[eβXN (z)]
dm(z) −−−−→

N→∞
dµβ(z)

where the convergence holds in distribution with respect to the weak topology of measures, i.e., for every
bounded continuous function φ : U → R,∫

U

φ(z)
eβXN (z)

E[eβXN (z)]
dm(z)

(d)−−−−→
N→∞

∫
U

φ(z) dµβ(z).

In [33], condition (4.7) is stated uniformly for all (z, w) ∈ K2. However, tracing through their proof
shows that the requirement is only necessary when z and w are separated at scale εN . Consequently, it is
sufficient to assume (4.7) holds uniformly on the restricted set as given above. In addition, we correct a typo
in the denominator of this condition: in [33], it was written as E[eβX(z)+βX(w)].

Moreover, for any condition in the theorem, once a compact set K ⊂ U is fixed, it is enough to verify
the equation only for mollification parameters ε, ε′, η, ηk smaller than dist(K, ∂U).

4.2 Proof of Theorem 1.7. To obtain a log-correlated limit without any additional scaling, we modify
(1.8) and for convenience in the calculations below, define

XN (z) =
√
2 ·
( N∑

i=1

log |z − zi| − E
[ N∑

i=1

log |z − zi|
])

which yields

X
(ε)
N (z) =

√
2 ·
( N∑

i=1

logε(z − zi)− E
[ N∑

i=1

logε(z − zi)
])
.

Denote the limit field by X. It follows easily by Theorem 1.1 that X is a centered log-correlated field with
covariance structure

E
[
X(z)X(w)

]
= log

1

|z − w|
+ s =

1

2π

∫
C
∇(logz)S · ∇(logw)Sdm, z,w ∈ S,

where s is as in (1.4). Then

E
[
X(ε)(z)X(ε′)(w)

]
= −

∫
C
logz−w

ε

χε′

∥χε′∥L1

dm+ s, z, w ∈ S

for all ε, ε′ ⩾ 0. Recall that

−
∫
C
logz−w

ε

χε′

∥χε′∥L1

dm+ s =
1

2π

∫
C
∇(logzε)

S · ∇(logwε′)
Sdm
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if ε < dist(z, ∂S) and ε′ < dist(w, ∂S).
Moreover, the following formulation of Theorem 1.1 will be useful in the calculations:

E
[
eTr f+

∑m
j=1 γj Tr logζj

]
= E

[
eTr f

] m∏
j=1

E[e
∑N

i=1 γj logζj zi ]

m∏
j=1

e
1
4π

∫
C ∇fS ·∇(γj logζj )Sdm

×
∏
j<k

e
1
4π

∫
C ∇(γj logζj )S ·∇(γk logζk )Sdm

(
1 + O(N−κ/10)

)
with

E
[
eTr f−E[Tr f ]] = e

1
8π

∫
C |∇fS |2dm(1 + O(N−κ/10)

)
.

Proof of Theorem 1.7. Fix a β ∈ (0, 2). We use Theorem 4.1, choosing εN = N−1/2+κ for fixed κ =

min
(

1
1000 ,

1− β2

2

5

)
. We now verify every condition in Theorem 4.1 one-by-one, using the asymptotic formula

in Theorem 1.1.

Condition (4.1). Fix an arbitrary compact subset of {(u, v) ∈ U2 : u ̸= v}. Uniformly for all (z, w) in the
compact subset,

E[eβX
(ε)
N (z)+βX

(ε′)
N (w)]

E[eβX
(ε)
N (z)]E[eβX

(ε′)
N (w)]

= eβ
2 1

2π

∫
C ∇(logz

ε)
S ·∇(logw

ε′ )
Sdm(1 + O(N−κ/10)) = eβ

2E[X(ε)(z)X(ε′)(w)](1 + O(N−κ/10)).

Condition (4.2). Given ε′ > 0 and compact set K in U , uniformly for all z, w ∈ K,

E[eβX
(ε)
N (z)+βX

(ε′)
N (w)]

E[eβX
(ε)
N (z)]E[eβX

(ε′)
N (w)]

= e
−β2

∫
logw−z

ε′
χε

∥χε∥
L1

dm+β2s
O(1) = eβ

2 O(1+log ε′).

Condition (4.3). Fix a compact K ⊂ U . Uniformly for all z ∈ K,

E[eβXN (z)+λX
(ε)
N (z)]

E[eβXN (z)]
= e−λβ 1

2π

∫
C ∇(logz)S ·∇(logz

ε)
Sdme

λ2

2
1
2π

∫
C |∇(logz

ε)
S |2dm O(1)

= e−λβ logε 0+λβse
−λ2

2

∫
logε

χε
∥χε∥

L1
dm+λ2

2 s
O(1) = ε−λβ−λ2

2 Oλ,β(1).

Condition (4.4). Uniformly for z and w in the given set,

E[eβXN (z)+βXN (w)]

E[eβXN (z)]E[eβXN (w)]
= |z − w|−β2

eβ
2s O(1).

Condition (4.5). Uniformly for all z, w, u, and η satisfying the given conditions:

E[eβX
(ε)
N (z)+βX

(ε′)
N (w)e

∑n
k=1 λkX

(ηk)

N (uk)]

E[eβX
(ε)
N (z)+βX

(ε′)
N (w)]

= (1 + O(N−κ/10))e
1
4π

∫
C ∇|(

∑n
k=1 λk log

uk
ηk

)S |2dm

× e
∑n

k=1
1
2π

∫
C ∇(β logz

ε)
S ·∇(λk log

uk
ηk

)Sdme
∑n

k=1
1
2π

∫
C ∇(β logw

ε′ )
S ·∇(λk log

uk
ηk

)Sdm

=(1 + O(N−κ/10))e
1
2E[(

∑n
k=1 λkX

(ηk)(uk))
2]

× e
∑n

k=1 βλkE[X(ε)(z)X(ηk)(uk)+X(ε′)(z)X(ηk)(uk)].

Condition (4.6). Fix η ⩾ ε′ ⩾ ε with ε′ > 0 and z, w ∈ K. Then

E[eβX
(ε)
N (z)+βX

(ε′)
N (w)+λX

(η)
N (w)]

E[eβX
(ε)
N (z)+βX

(ε′)
N (w)]

= O(1) e
1
4π

∫
C ∇|(λ logw

η )S |2dme
1
2π

∫
C ∇(β logz

ε)
S ·∇(λ logw

η )Sdme
1
2π

∫
C ∇(β logw

ε′ )
S ·∇(λ logw

η )Sdm

= O(1) e
λ2

2 E[X(η)(w)2]+λβ E[X(ε)(z)X(η)(w)+X(ε′)(w)X(η)(w)].
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Condition (4.7). The calculation is identical to that of condition (4.6).

Condition (4.8). Applying Cauchy-Schwarz to the numerator we obtain that the expression in (4.8) is
bounded by∫∫

z,w∈K,
|z−w|⩽εN

E[e2βXN (z)]1/2E[e2βXN (w)]1/2

E[eβXN (z)]E[eβXN (w)]
dm(z)dm(w) =

∫∫
z,w∈K,

|z−w|⩽εN

O(N
β2

2 )dm(z)dm(w) = O(N−1+ β2

2 +2κ).

By the choice of κ ⩽
1− β2

2

5 the desired result follows easily.

A Kernel estimates

In this appendix, we obtain kernel estimates by following [4, Section 3] and [6, Appendix], with certain
modifications, in particular to cover some logarithmic singularities. We provide the details for completeness.

A.1 Setup. Let P0(z), P1(z), . . . be the monic analytic polynomials of degrees 0, 1, . . . respectively that

are orthogonal with respect to the measure e−NV (z)dm(z), i.e., the inner product is given by ⟨f1, f2⟩ =∫
f1f̄2e

−NV . Let KN be the reproducing kernel of the space of analytic polynomials of degree at most N −1
with norm induced from the inner product above; more explicitly,

KN (z, w) =

N−1∑
n=0

Pn(z)Pn(w)

∥Pn∥2L2(e−NV )

which satisfies the reproducing property∫
C
KN (z, ξ)KN (ξ, w)e−NV (ξ)dm(ξ) = KN (z, w). (A.1)

When viewed as an integral operator, this is a projection from L2(e−NV ) to PN , the space of analytic
polynomials of degree at most N − 1:

ΠNf(z) =

∫
C
KN (z, w)f(w)e−NV (w)dm(w) =

N−1∑
n=0

⟨f, Pn⟩Pn(z)

Recall from Subsection 1.5 that we assume V is real-analytic in a neighborhood of the droplet. Hence we
may extend V (z, z̄) = V (z) to a function V (·, ·) that is complex-analytic in two variables in a neighbourhood
of the diagonal {(z, z̄) : z ∈ C} ∩ S; see, for example, [5, Section 2]. For this extension we have

V (z̄, w̄) = V (w, z), ∂n1 ∂
k
2V (z, z̄) = ∂n∂̄kV (z)

where ∂1 and ∂2 are partial derivatives with respect to the first and second coordinates. The first order
approximation of KN (z, w) inside the droplet S is given by

K#
N (z, w) =

N

π
∂1∂2V (z, w̄)eNV (z,w̄).

Embedding the measure into the kernels, we obtain the determinantal kernelKN and we define its approximation
K#

N similarly

KN (z, w) = KN (z, w)e−
N
2 (V (z)+V (w)), K#

N (z, w) = K#
N (z, w)e−

N
2 (V (z)+V (w)). (A.2)

The same definitions applies to K̃N , K̃N where V is replaced by Ṽ = V − f
N where f is a smooth function

to be determined later. We define the projection Π̃Ng(z) = ⟨g, K̃N (·, z)⟩L2(e−NṼ ) similarly. The main result

of this appendix is that for sufficiently regular functions f ,

K̃#
N (z, w) =

N

π
∂1∂2V (z, w̄)eNV (z,w̄)−fw(z), K̃#

N (z, w) = K̃#(z, w)e−
N
2 (Ṽ (z)+Ṽ (w))

approximates K̃N and K̃N where fw(z) = f(w) + (z − w)∂f(w). We also define the projection Π̃#
N for K̃#

N

similarly to Π̃N , i.e. using the weight e−NṼ .
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A.2 Results. In the remainder of this section, we fix an arbitrarily large constant C > 0, small parameters
κ, α > 0 and a non-negative integer m. Let γ1, . . . , γm ∈ [0, C] and ζ1, . . . , ζm ∈ Sin(2δN ) satisfy the
separation condition min1⩽i ̸=j⩽m |ζi − ζj | > 2δN , h ∈ S3,C,κ and ∆ = N−1/2−α. We then set

f = h+

m∑
j=1

γj log
ζj
∆ .

Theorem A.1. Let f be defined as above and θ > 0 be a fixed constant. Then, uniformly in z ∈ Sin(2δN )
satisfying infB(z,2δN ) ∆V > θ with minj∈[[m]] |z − ζj | > 3δN and any w ∈ B(z, δN/2), we have

|K̃N (z, w)− K̃#
N (z, w)| = O

(
sup

B(z,2δN )

|∇2f |+N−1/2

)
.

Theorem A.1 is an immediate consequence of the following two propositions. Here, in the rest of this
section, for a generic kernel K we often write Kw(z) = KN (z, w), omitting the N -dependence. We also fix
a cutoff function χz such that χz = 1 in B(z, δN ), χz = 0 outside B(z, 3δN/2), and ∥∇χz∥∞ ≲ δ−1

N .

Proposition A.2. Assume f satisfies the assumptions of Theorem A.1. Let θ > 0 be a fixed constant.
Then, uniformly in z ∈ Sin(2δN ) satisfying infB(z,2δN ) ∆V > θ with minj∈[[m]] |z − ζj | > 3δN and any
w ∈ B(z, δN/2), we have

K̃N (z, w)− Π̃N

(
K̃#

w χz

)
(z) = O

(
sup

B(z,2δN )

|∇2f |+N−1/2

)
e

N
2 (Ṽ (z)+Ṽ (w)).

Proposition A.3. Assume f satisfies the assumptions of Theorem A.1. Let θ > 0 be a fixed constant.
Then, uniformly in z ∈ Sin(2δN ) satisfying infB(z,2δN ) ∆V > θ with minj∈[[m]] |z − ζj | > 3δN and any
w ∈ B(z, δN/2), we have

K̃#
N (z, w)− Π̃N

(
K̃#

w χz

)
(z) = O

(
e−c(logN)4

)
e

N
2 (Ṽ (z)+Ṽ (w)).

We also have the following lemma which is particularly useful when evaluating the kernel outside the
droplet S.

Lemma A.4. Assume f satisfies the assumptions of Theorem A.1. Then:

(i) For all z ∈ C, |K̃N (z, z)| = O(N).

(ii) For all z ∈ C, |K̃N (z, z)| = NO(1)e−N(Ṽ (z)−V̌ (z)).

Recall from the assumptions on V (Subsection 1.4) that there exists ε, c > 0 such that V (z) − V̌ (z) ⩾
cdist(z, ∂S)2 on Sedge(ε) \S; where the constant c may change line to line. Moreover, combining the growth
condition on V with V̌ (z) = 2 log |z|+O|z|→∞(1), we obtain a constant c > 0 such that V (z)−V̌ (z) ⩾ c log |z|
for all z ∈ B(0, C)c. Since the coincidence set {z ∈ C : V (z) = V̌ (z)} coincides with S̄, the difference V −V̌ is
strictly positive on Sout(ε). By continuity, there exists c > 0 such that V (z)− V̌ (z) ⩾ c on B(0, C)∩Sout(ε).
Putting these estimates together, we conclude that there exist constants c, C > 0 such that

V (z)− V̌ (z) ⩾

{
cdist(z, ∂S)2, z ∈ B(0, C) \ S
c log |z|, z ∈ B(0, C)c

.

In addition to these results, whose proofs are provided in the following section, we quote without proof
a theorem concerning the off-diagonal decay of the kernel from [4]. The same estimate was independently
established in a more general setting in [17, Theorem 5.7].

Theorem A.5 ([4, Corollary 8.2]). There exists C > 0 and c > 0 depending only on V such that for any
z ∈ S, denoting r = dist(z, ∂S)/2, we have

|KN (z, w)| ⩽ CNe−c(infB(z,r) ∆V )1/2
√
N min(r,|w−z|)e−N(V (w)−V̌ (w))

for all w ∈ C.
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A.3 Proofs. We begin with the proof of Lemma A.4, followed by those of Propositions A.2 and A.3.

Proof of Lemma A.4. Let δ > 0 and u : C → C be a function (which are possibly N -dependent). Define, for
any z ∈ C

F (ξ) = |u(z + δξ)|2e−NṼ (z+δξ)+A(z)|δξ|2

where A(z) = max(0, supB(z,δ)N∆Ṽ ). Easy to see that, if u is analytic on B(z, δ), then ∆(logF ) ⩾ 0 for all
ξ ∈ D, i.e. logF is subharmonic, so is F . By the mean value inequality for the subharmonic functions we
obtain

|u(z)|2e−NṼ (z) ⩽
∫
D
|u(z + δξ)|2e−NṼ (z+δξ)+A(z)|δξ|2dm(ξ) ⩽

eA(z)δ2

δ2

∫
B(z,δ)

|u(ξ)|2e−NṼ (ξ)dm(ξ) (A.3)

for every z ∈ C. We fix an arbitrary w ∈ C and take u(z) = K̃N (z,w)√
K̃N (w,w)

. Notice that by reproducing property

of the kernel we have
∫
C |u|2e−NṼ = 1. Using the above inequality, we get

|K̃N (z, w)|2

K̃N (w,w)
e−NṼ (z) ⩽

eA(z)δ2

δ2
.

Notice that A(z) = O(max(0, N supB(z,δ) ∆V )) as ∆(logζ∆) = 2π
χζ
∆

∥χζ
∆∥L1

⩾ 0. Thus, taking w = z and

δ = N−1/2 if supB(z,1) ∆V ⩽ 0 and δ = N−1/2 min(1, (supB(z,1) ∆V )−1/2) otherwise, we have

|K̃N (z, z)| = O(N)max(1, sup
B(z,1)

∆V ) (A.4)

which proves the estimation (i) uniformly in compact subsets of C.
On the other hand, note that by the choice of f , there is a constant c such that for all z ∈ C, e−NṼ (z) ⩾

e−NV (z)−c logN (c may change line-by-line). Hence, taking δ = N−1/2−α we obtain∣∣∣ K̃N (z, w)

N c

√
K̃N (w,w)

∣∣∣2e−NV (z) ⩽ 1, for all z ∈ S.

Thus, by [87, Theorem III.2.1], we get∣∣∣ K̃N (z, w)

N c

√
K̃N (w,w)

∣∣∣2e−NV̌ (z) ⩽ 1, for all z ∈ C

(cf. [4, Lemma 3.4]). Taking z = w, this gives

|K̃N (z, z)|e−NṼ (z) ⩽ N ce−N(Ṽ (z)−V̌ (z)) (A.5)

completing the proof of (ii) in the lemma. Moreover, combining (A.4) and (A.5) with the growth condition
on V , it follows immediately that (i) holds uniformly in z ∈ C.

Before moving onto the proof of Proposition A.2, we start with the following quantitative strict analogue
of [6, Lemma A.2].

Lemma A.6. Let z ∈ Sin(2δN ) with minj∈[[m]] |z − ζj | > 3δN and g be an analytic function on B(z, 2δN ).
Then, uniformly in w ∈ B(z, δN/2),

g(w)− Π̃#
N

(
gχz

)
(w) = O

(∫ (
|(w − ξ)gχz|+

|g∂̄χz|
δN

+ |gχz| sup
B(z,2δN )

|∇2f |
)
eN Re(V (w,ξ̄)−V (ξ))dm(ξ)

)

where the implicit constant in the error term does not depend on z and g.
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Proof. Substituting the definitions, Π̃#
N

(
gχz

)
(w) is equal to∫

C
K̃#

N (w, ξ)g(ξ)χz(ξ)e
−NṼ (ξ)dm(ξ) =

N

π

∫
g(ξ)∂1∂2V (w, ξ̄)eN(V (w,ξ̄)−V (ξ))χz(ξ)e

−(w−ξ)∂f(ξ)dm(ξ).

So, defining a(ξ) = g(ξ)eN(V (w,ξ̄)−V (ξ)) and b(ξ) = χz(ξ)e
−(w−ξ)∂f(ξ), the above expression can be written

as

1

π

∫
b(ξ)∂̄a(ξ)

w − ξ
dm(ξ) + O

(∫ ∣∣∣(w − ξ)g(ξ)eN(V (w,ξ̄)−V (ξ))χz(ξ)e
−(w−ξ)∂f(ξ)

∣∣∣dm(ξ)

)
.

By Green’s formula applied to a · b (here we use ∂̄g = 0), the first term is equal to

g(w)− 1

π

∫
a(ξ)∂̄b(ξ)

w − ξ
dm(ξ).

To bound the errors, note supB(z,2δN ) |∇f | ≲ δ−1
N , so that e−(w−ξ)∂f(ξ) = O(1) when b is non-zero, and

∂̄b(ξ) = O(|∂̄χz(ξ)| + χz(ξ)|w − ξ| supB(z,2δN ) |∇2f |). Noting that |w − ξ| ≍ δN when ∂̄χz is non-zero the
result follows easily.

Proof of Proposition A.2. We apply the above lemma to g(w) = K̃N (w, z) for an arbitrary z ∈ S with
minj∈[[J]] |z − ζj | > 3δN , and obtain that uniformly in w ∈ B(z, δN/2),

K̃N (w, z)− Π̃#
N

(
K̃zχz

)
(w) = O

(∫ (
|(w − ξ)gχz|+

|g∂̄χz|
δN

+ |gχz| sup
B(z,2δN )

|∇2f |
)
eN Re(V (w,ξ̄)−V (ξ))dm(ξ)

)
.

First, by the Cauchy-Schwarz inequality we have

|K̃N (ξ, z)| ⩽ |K̃N (ξ, ξ)K̃N (z, z)|1/2 ⩽ CNe
N
2 (Ṽ (ξ)+Ṽ (z)).

The first inequality means the two-point function is non-negative, and the second is a consequence of Lemma
A.4.(i). Second, on the support of χz, we have f(ξ) = f(w) + O(1). Third, by Taylor expansion,

Re
(
−V (w, w̄) + 2V (w, ξ̄)− V (ξ, ξ̄))

)
= −|w − ξ|2∆V (w)

4
+ O(|w − ξ|3). (A.6)

Hence, substituting these, we have proved that

K̃N (w, z) = Π̃#
N

(
K̃zχz

)
(w) + O

(
N−1/2 + sup

B(z,2δN )

|∇2f |

)
e

N
2 (Ṽ (z)+Ṽ (w)).

Moreover, noting that χz and Ṽ are real-valued, taking conjugates of both sides completes the proof of
Proposition A.2.

Proof of Proposition A.3. First, viewing Π̃N as a projection into the set of analytic polynomials with degree

up toN−1 (denoted by PN ), the function ũ = K̃#
w χz−Π̃N

(
K̃#

w χz

)
can be described as the L2(e−NṼ )-minimum

solution of the following system: {
∂̄u = ∂̄

(
K̃#

w χz

)
,

u− K̃#
w χz ∈ PN .

Similarly, we also denote u = K̃#
w χz − ΠN

(
K̃#

w χz

)
which is the L2(e−NV )-minimum solution of the same

system. Our goal is to bound ũ(z). Because |z − w| < δN , ũ is analytic on B(z,N−1/2). So, by Equation
(A.3) we have

|ũ(z)|2e−NṼ (z) ⩽ N∥ũ∥2
L2(e−NṼ )

⩽ N∥u∥2
L2(e−NṼ )

(A.7)

44



where in the second inequality we used the fact that ũ is the L2(e−NṼ )-minimum solution. Note that, due

to the choice of function f in Ṽ = V − f
N , we have f = O(logN) on B(0, N). This gives

∥u · 1B(0,N)∥2L2(e−NṼ )
⩽ N c∥u∥2L2(e−NV )

for some constant c > 0. For the remainder of the proof, c will be used to denote arbitrary constants,
possibly taking different values in different occurrences. On the other hand, on |ξ| ⩾ N ,

u(ξ) ⩽
∫ ∣∣KN (ξ, y)K̃#

N (y, w)χz(y)e
−NV (y)

∣∣dm(y) ⩽ ecN |KN (ξ, ξ)|1/2

where in the second inequality we have used Cauchy-Schwarz and Lemma A.4.(i) to get |KN (ξ, y)| ⩽
|KN (ξ, ξ)|1/2|KN (y, y)|1/2 ⩽ |KN (ξ, ξ)|1/2ecN and a rough bound |K#

N (y, w)| ⩽ ecN in the integration region.

Applying Lemma A.4.(ii) gives |KN (ξ, ξ)|e−NṼ (ξ) ⩽ e−Nε log |ξ| for a fixed positive constant ε as |ξ| ≫ 1.
Substituting this bound, we obtain

∥u · 1B(0,N)c∥2L2(e−NṼ )
⩽ ecN

∫
B(0,N)c

|KN (ξ, ξ)|e−NṼ (ξ)dm(ξ) ⩽ e−cN logN .

Thus, we obtain

∥u∥2
L2(e−NṼ )

⩽ N c∥u∥2L2(e−NV ) + e−cN logN . (A.8)

Next, we define φ(ξ) = V̌ (ξ)+ 1
N log(1+ |ξ|2) noting that it is strictly subharmonic outside S; and for any

entire function, ∥g∥L2(e−Nφ) < +∞ implies g ∈ PN . Indeed, the latter follows by using polar coordinates

for
∫
|g|2e−Nφ and substituting Cauchy integral formula dn(|g|2)

dzn (0) ⩽ n!
2πrn

∫ 2π

0
|g(reiθ)|2dθ. We denote the

L2(e−Nφ)-minimum solution of

∂̄v = ∂̄
(
K̃#

w χz

)
by v. Due to a.e. subharmonicity of φ, applying Hörmander’s estimate [51, (4.2.6)] (also see [4, Section 4.2])
we obtain

∥v∥2L2(e−NV ) ⩽ ∥v∥2L2(e−Nφ) ≲
∫

|∂̄(K̃#
w χz)|2

e−Nφ

N∆φ
≲ N−1∥∂̄(K̃#

w χz)∥2L2(e−NV ) (A.9)

where in the first inequality we used φ ⩽ V + c and in the last inequality we used ∆φ ≍ 1 and V ⩽ φ on
the support of χz. On the other hand, by definition, v− K̃#

w χz is an entire function and since it has a finite
L2(e−Nφ)-norm, it must be an analytic polynomial in PN . This implies, by the L2(e−NV )-minimality of u,

∥u∥2L2(e−NV ) ⩽ ∥v∥2L2(e−NV ).

Combining this with (A.7), (A.8) and (A.9) we obtain

|ũ(z)|e−N
2 Ṽ (z) ⩽ N c∥∂̄(K̃#

w χz)∥L2(e−NV ) + e−cN logN (A.10)

Moreover, when |ξ − w| ≍ δN , by Taylor expansion (A.6) we have

eN ReV (ξ,w̄) ⩽ e
N
2 V (ξ)+N

2 V (w)−c(logN)4 .

Substituting this estimate into the definition of K̃#
N (ξ, w), we obtain

∥∂̄(K̃#
w χz)∥L2(e−NV ) ≲

(∫
|∂̄χz(ξ)|2e−c(logN)4dm(ξ)

)1/2
e

N
2 V (w) ⩽ e−c(logN)4e

N
2 V (w).

Combined with (A.10), this completes the proof.
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B The harmonic measure and capacity

In this appendix, we justify the definitions of the harmonic measure seen from infinity (1.6) and the
logarithmic capacity (1.7), and prove several basic properties mentioned in the introduction.

Well-definedness of (1.6). We show that the function N (logζ) does not depend on the choice of ζ ∈ S.

Let ζ1 ∈ S, r = dist(ζ1, ∂S) and choose an arbitrary ζ2 ∈ B(ζ1, r/2). Then

logζ2 z = logζ1 z +Re log
(
1 +

ζ1 − ζ2
z − ζ1

)
where the function Re log

(
1 + ζ1−ζ2

z−ζ1

)
goes to zero as |z| → ∞ and is harmonic on the set {w ∈ S :

dist(w, ∂S) < r/2} ∪ Sc, which can be easily seen from |(ζ1 − ζ2)/(z − ζ1)| < 1. Thus, the Neumann jump
of this function is zero, which gives

N (logζ1) = N (logζ2).

By iterating this argument, we conclude that for any ζ1, ζ2 ∈ S, the Neumann jumps of logζ1 and logζ2

coincide.

ω∞ is non-negative. Fix an arbitrary point ζ ∈ S. Let f = logζ −(logζ)S on Sc. Note that f is harmonic on
Sc, f = 0 on ∂S and f(z) goes to ∞ as |z| → ∞. By the maximum principle, f attains its minimum value
on ∂S. Thus, f(z) ⩾ 0 for all z ∈ Sc. Thus, ∂f

∂n ⩾ 0 on ∂S.

ω∞ is a probability measure. What remains is to verify that
∫
∂S

dω∞ is 1. This follows from the Green’s
theorem, ∫

∂S

∂ logζ

∂n
ds =

∫
S

1∆ logζ dm+

∫
S

∇1 · ∇ logζ dm = 2π,∫
∂S

∂(logζ)S

∂(−n)
ds = lim

R→∞

(∫
B(0,R)\S

1∆(logζ)Sdm+

∫
B(0,R)\S

∇1 · ∇(logζ)Sdm−
∫
∂B(0,R)

∂(logζ)S

∂n
ds
)
= 0.

Well-definedness of (1.4). By the second equality in (1.7), it suffices to show that
∫
∂S

logζ1 dω∞ =∫
∂S

logζ2 dω∞ for any ζ1, ζ2 distinct in the interior of S. We begin with a symmetric expression, and apply
Green’s theorem again,∫

C
∇(logζ1)S · ∇(logζ2)Sdm =

∫
S

∇(logζ1)S · ∇(logζ2)Sdm+

∫
Sc

∇(logζ1)S · ∇(logζ2)Sdm

=

∫
∂S

logζ1
∂ logζ2

∂n
ds−

∫
S

logζ1 ∆ logζ2 dm+

∫
∂S

logζ1
∂(logζ2)S

∂(−n)
ds = −2π log |ζ1−ζ2|+2π

∫
∂S

logζ1 dω∞.

Note that the right-hand side is not symmetric with respect to ζ1 and ζ2, which implies∫
∂S

logζ1 dω∞ =

∫
∂S

logζ2 dω∞.

Remark B.1. The properties of the harmonic measure stated in the introduction and proved above can
easily be extended to the case of arbitrary connected droplet S with smooth boundary, without the simple
connectivity assumption. In this general case, independence of ω∞ from the choice of ζ is proved in the same
manner, ω∞ is a measure with mass 1 which is non-negative and supported on the outer boundary of S, and∫
∂S

logζ dω∞ does not depend on ζ, again.
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[41] C. Fefferman and R. de la Llave, Relativistic stability of matter. I, Rev. Mat. Iberoamericana 2 (1986), no. 1-2, 119–213.

[42] M. E. Fisher and R. E. Hartwig, Toeplitz determinants: Some applications, theorems, and conjectures, Advan. Chem. Phys.
217 (1968).

[43] P. J. Forrester and E. M. Rains, Matrix averages relating to Ginibre ensembles, J. Phys. A 42 (2009), no. 38, 385205, 13.

[44] Y. V. Fyodorov, Negative moments of characteristic polynomials of random matrices: Ingham-Siegel integral as an
alternative to Hubbard-Stratonovich transformation, Nuclear Phys. B 621 (2002), no. 3, 643–674.

[45] Y. V. Fyodorov and J.-P. Bouchaud, Freezing and extreme-value statistics in a random energy model with logarithmically
correlated potential, J. Phys. A 41 (2008), no. 37, 372001, 12.

[46] Y. V. Fyodorov and J. P. Keating, Freezing transitions and extreme values: random matrix theory, and disordered
landscapes, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 372 (2014), no. 2007, 20120503, 32.

[47] J. B. Garnett and D. E. Marshall, Harmonic measure, New Mathematical Monographs, vol. 2, Cambridge University Press,
Cambridge, 2005.

[48] V. L. Gı̄rko, The central limit theorem for random determinants, Teor. Veroyatnost. i Primenen. 26 (1981), no. 3, 532–542.

[49] E. Gwynne and J. Miller, Existence and uniqueness of the Liouville quantum gravity metric for γ ∈ (0, 2), Invent. Math.
223 (2021), no. 1, 213–333.

[50] N. Holden and X. Sun, Convergence of uniform triangulations under the Cardy embedding, Acta Math. 230 (2023), no. 1,
93–203.
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