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Elementary probability prerequisites

These pages remind some important results of elementary probability theory that
we will make use of in the stochastic analysis lectures. All the notions and results
hereafter are explained in full details in Probability Essentials, by Jacod-Protter, for
example.

Probability space

Sample space Ω Arbitrary non-empty set.
σ-algebra F A set of subsets of Ω, including the empty set, stable

under complements and countable union (hence
countable intersection).

Probability measure P A function from F to [0, 1] such that P(Ω) = 1 and
P(∪iAi) =

∑
i P(Ai) for any disjoint elements in F .

Probability space (Ω,F ,P) A triple composed on a set Ω, a σ-algebra F ⊂ 2Ω,
and a probability measure on F .

Random variable X Given a probability space (Ω,F ,P) and a metric
space (G,G), X : Ω → G is measurable in the sense
X−1(g) ∈ F for any g ∈ G.

Wiener space In these lectures, Ω can be the set W of continuous
functions from [0, 1] to R (Wiener space) vanishing
at 0, F = σ(Ws, 0 6 s 6 1) is the smallest σ-algebra
for which all coordinates mappings ω → Wt(ω) =
ω(t) are measurable, and G = Rd endowed with its
Borel σ-algebra.

Monotone class theorem For C ⊂ 2Ω, let σ(C) be the smallest σ-algebra
containing C (uniquely defined as an intersection of
σ-algebras is a σ-algebra). Let P and Q be two pro-
bability measures on σ(C). If C is stable by inter-
section and P, Q coincide on C, then P = Q.

Conditional expectation

Definition On a probability space (Ω,F ,P), given an inte-
grable random variable X : Ω → G and a sub-σ-
algebra G ⊂ F , a conditional expectation of X with
respect to G is any G-measurable random variable
E(X | G) : ω → G such that

∫
A
E(X | G)(ω)dP(ω) =∫

A
X(ω)dP(ω) for any A ∈ G.

Existence Given by the Radon-Nikodym theorem, hence an
absolute continuity condition. In practice, the exis-
tence is often proved in a constructive way, i.e. by
showing a random variable with the desired proper-
ties (e.g. the Brownian bridge).

Uniqueness In the almost sure sense, i.e. two conditional expec-
tation of X with respect to G only differ on a set of
probability measure 0.

Property E(E(X | G)) = E(X) whenever G ⊂ F .


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Functional analysis

Closed operator Let F : D(F) ⊂ A → B be a linear operator, A,B
being Banach spaces. The operator F is said to be
closed if for any sequence of elements an ∈ D(F)
converging to a ∈ A, such that F(an) → b ∈ B,
a ∈ D(F) and F(a) = b : the graph of F is closed in
the direct sum A⊕ B.

Riesz representation Any element ϕ of the dual H∗ of a Hilbert space H
can be uniquely written ϕ = 〈x, ·〉 for some x ∈ H.

Lp − Lq duality If 1/p + 1/q = 1, p, q > 0, then ‖f‖Lp =
sup‖g‖Lq61〈f, g〉.

Convergence types

Almost sure On the same probability space (Ω,F ,P), Xn

converges almost surely to X if P(Xn →
n→∞

X) = 1,

where the limit is in the sense of the metric of the
space G.

Lp On the same probability space (Ω,F ,P), Xn

converges to X in Lp (p > 0) if E(|Xn−X|p) →
n→∞

0,

where the distance is in the sense of the metric of
the space G, and E is the expectation with respect
to P.

In probability On the same probability space (Ω,F ,P), Xn

converges to X in probability if for any ε > 0
P(|Xn − X| > ε) →

n→∞
0, , where the distance is

in the sense of the metric of the space G.
In law On possibly distinct probability spaces, but identi-

cal image space (G,G), Xn with law Pn converges in
law (or in distribution, weakly) to X if for any boun-
ded continuous function f on G, En(f(Xn)) →

n→∞
E(f(X)).

Portmanteau’s theorem Any of the following implies the convergence in
law : (i) the test function f only needs to be Lip-
schitz (ii) if G = Rd it only needs to be infini-
tely differentiable (iii) for any closed subset C of G,
lim supn→∞ Pn(C) 6 P(C) (iv)for any open subset
O of G, lim infn→∞ Pn(O) > P(O).

Implications

Almost sure Lp ←−
(q>p>0)

Lq

↘ ↓
In probability

↓
In law

Partial reciprocal Convergence in probability implies the almost
convergence along a subsequence.

Paul Lévy’s theorem Take G = Rd. If, for any u ∈ Rd, En(eiu·Xn) →
n→∞

f(u) := E(eiu·X) and f is continuous at 0, then Xn

converges in law to X.
Paul Lévy : the easy impli-
cation

If Xn converges in law to X, E(eiu·Xn) converges to
E(eiu·X) uniformly in compact subsets of Rd.
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Theorems

Strong law of large numbers For i.i.d. random variables Xi’s with finite expecta-
tion, 1

n

∑n
1 Xi converges almost surely to E(X1).

Central limit theorem For i.i.d. random variables Xi’s in L2, with expecta-
tion µ and variance σ2, 1

σ
√
n

∑n
1 (Xi − µ) converges

in law to a standard Gaussian random variable.

Useful lemmas

Borel-Cantelli On a probability space (Ω,F ,P), if An ∈ F and∑
n P(An) <∞, then P(∩∞n=1 ∪m>n Am) = 0.

Borel-Cantelli, independent
case

On a probability space (Ω,F ,P), if An ∈ F , the
An’s are independent and

∑
n P(An) = ∞, then

P(∩∞n=1 ∪m>n Am) = 1.
Fatou On a probability space (Ω,F ,P), if Xn > 0, then

E(lim inf Xn) 6 lim inf E(Xn).





Motivations

It is very natural to think about these random functions imagined
by mathematicians, and that were wrongly only seen as mathema-
tical curiosities.

Jean Perrin
Les atomes, 1913

In the above quote, Perrin refers to his derivation of the Avogadro number : pre-
vious works by Einstein, supposing that molecules move randomly, yield to a theo-
retical derivation of this physical constant ; Perrin’s work gave further experimental
support to Einsein’s hypothesis on the particles motion.

These trajectories, known now as Brownian motions, appeared first in the work
of Brown about pollen particles moving on the surface of water. They exhibit strong
irregularities (infinite variation, nowhere differentiable, uncountable set of zeros) and
are universal in many senses presented hereafter. These lecture notes aim to give a self-
contained introduction to these random paths, through the important contributions
of Lévy, Wiener, Kolmogorov, Doob, Itô, but also to show how they enlighten non-
probabilistic questions, such as a the Dirichlet problem and concentration of measure.

A first approach towards Brownian motion consists in an asymptotic analysis of
random walks. Let Xi be independent Bernoulli random variables, i.e. P(Xi = 1) =
P(Xi = −1) = 1/2. Consider the partial sum Sn =

∑n
i=1 Xi. The central limit theorem

states that
Sn√
n

law−→ N , (0.1)

a standard Gaussian random variable. Many other questions of interest about Sn in-
clude the asymptotic distribution of sup16i6n Si or |{i 6 n | Si > 0}| for example. In
the case of Bernoulli random variables, these problems can be handled by combina-
torial techniques involving the Catalan numbers, but for more general variables Xi in
L2, what is required is a weak limit of (Sn, n > 0), the entire process.

Figure 1. Samples of Bn, 0 6 t 6 1 : n =
10 (red), 100 (blue) and 1000 (black).

In order to get a functional limit of
Sn, (0.1) gives the required normaliza-
tion. More precisely, let

Sn(t) =
Sbntc√
n
,

and Bn be the unique continuous piece-
wise affine function such that Bn(t) =
Sn(t) when nt ∈ N. In the Bernoulli
case, as the jumps of the function Sn are
±1/
√
n, for any s < t

sup
s=t0<···<tm=t

∑
|Bn(tk+1)− Bn(tk)| = (t− s)

√
n −→
n→∞

∞,

. Approximately 6 × 1023, defined as the number of atoms in 12 gram of carbon-12 atoms in
their ground state at rest. In his PhD thesis, Einstein derived from a Brownian motion hypothesis
equations for diffusion coefficients and viscosities in which Avogadro’s number appears. From expe-
rimental values of the diffusion coefficients and viscosities of sugar solutions in water, he obtained
an approximation, improved by Perrin.





 Motivations

so if the path Bn converges in some sense to a limiting object B, this is of infinite
variation on any nonempty interval.

Now, given any increasing sequence 0 = t0 < t1 < . . . , the central limit theorem
yields that Bn(ti+1)− Bn(ti) converges as n→∞ to a normally distributed random
variable with variance ti+1 − ti. More precisely,

(Bn(t1),Bn(t2)− Bn(t1), . . . ,Bn(tk+1)− Bn(tk))

law−→ (
√
t1N1,

√
t2 − t1N2, . . . ,

√
tk − tk−1Nk) (0.2)

whereN1, . . . ,Nk are independent standard Gaussian random variables. This suggests
the following definition.

Definition. A random trajectory (Bt, t > 0) with values in R is a Brownian motion
if the following four conditions are satisfied :

(i) B0 = 0 almost surely ;

(ii) for any n > 2, 0 < t1 6 · · · 6 tn, (Bt1 ,Bt2 −Bt1 , . . . ,Btn −Btn−1) is a Gaussian
vector with independent components ;

(iii) for a any 0 < s < t, Bt − Bs ∼ N (0, t− s) ;

(iv) B is almost surely continuous.

Note that such a definition implies strange properties of the sample trajectory.
For example, for any t > 0, s = t0 < · · · < tm = t

E

(
m∑
i=1

|B(ti+1)− B(ti)|

)
−→
n→∞

m∑
i=1

√
ti+1 − ti E(|N1|) > E(|N1|)

√
t− s

√
m,

by the Cauchy-Schwarz inequality, so as expected the L1-norm of the total variation
of B on [s, t] is ∞.

More interesting than the total variation is the quadratic one : from the conver-
gence in law (0.2),

E

(
m∑
i=1

|Bn(ti+1)− Bn(ti)|2
)
−→
n→∞

t− s,

suggesting that the quadratic variation of a Brownian path till any time t must be t.
One can even prove from the definition of the Brownian motion that

lim

( m∑
i=1

|Bn(ti+1)− Bn(ti)|2 − (t− s)

)2
 = 0

where the limit is in the sense of the time step going to 0 for the subdivision s =
t0 < · · · < tm = t. These observations can make skeptical about the existence of
such paths. We will prove in Chapter 2 the following theorem, together with the first
properties of Brownian motion. As a prerequisite, properties of discrete martingales,
like Sn, will be studied in Chapter 1.

Theorem. The Brownian motion exists. More precisely, there is a measure W on
C o([0, 1]) such that :

(i) W({ω(0) = 0}) = 1 ;

(ii) for any n > 2, 0 < t1 6 · · · 6 tn, the projection of W by ω → (ωt1 , ωt2 −
ωt1 , . . . , ωtn − ωtn−1

) is a Gaussian measure ;
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(iii) for a any 0 < s < t, the projection of W by ω → ωt−ωs is the centered Gaussian
measure with variance t− s.

Moreover, this measure is unique and is called the Wiener measure.

Moreover, this measure is the weak limit of the random paths Bn, no matter which
distribution the normalized Xi’s have. This is Donsker’s theorem.

Theorem. Let Bn be constructed as previously from iid Xi’s, E(Xi) = 0, E(X2
i ) = 1.

Then for any bounded continuous (for the L∞ norm) functional F on C o([0, 1]),

E(F(Bn(s), 0 6 s 6 1)) −→
n→∞

EW(F(B(s), 0 6 s 6 1)).

We say that the process Bn converges weakly to the Brownian motion.

To some extent, the Brownian motion is the only natural random function. More
precisely, take any continuous integrable random curve (Xs, s > 0) satisfying the
martingale property

E(Xt | Fs) = Xs

for any s < t, where Fs = σ(Xs, s 6 t). Then a theorem by Dubins and Schwartz
states that there exists a nondecreasing F-measurable random function f such that

(Xf(s), s > 0)

is a Wiener process. This means that, up to a change of time, any martingale (which
does not presuppose normality) is a Brownian motion. In particular, this implies that
any martingale must either be constant or have infinite variation on any interval :
there are no smooth nontrivial martingales. A study of martingales is the purpose of
Chapter 3.

Chapter 4 relates martingales and the Brownian motion through the Itô calculus.
This requires the definition of a stochastic integral, as the limit in probability of

Xt =

∫ t

0

a(Bs)dBs = lim
mesh→0

∑
a(Bti)(Bti+1

− Bti)

under proper integrability assumptions for a. The Itô calculus gives the decomposition,
as a stochastic integral, of transforms of the process X.

One application of the Itô formula will be the links between Brownian motion and
harmonic functions.

Figure 2. A bidimensional Bownian
motion till hitting the peanut frontier.

More precisely, for example,
consider a connected D ⊂ R2 with
smooth boundary ∂D. The Dirichlet
problem consists in finding a func-
tion f : R2 → R such that{

f(x) = u(x) , x ∈ ∂D,
∆f = 0 , x ∈ Do.

Given a bidimensional Brownian
motion B = (B1,B2) (B1 and B2

independent Brownian motions with
values in R), a solution to the Diri-
chlet problem is

f(x) = E (u(BT) | B0 = x))

where T = inf{t | Bt 6∈ U}. This is an example of existence results proved by proba-
bilistic means.

Chapters 5 focuses on stochastic differential equations, here existence and unique-
ness results for dynamics driven by a Brownian motion. Some analogies with ordinary
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differential equations appear, for example if the coefficients a and b are Lipschitzian,
there is a unique path X measurable in terms of B (Xt = f(Bs, s 6 t)) such that

Xt =

∫ t

0

a(Xs)dBs +

∫ t

0

b(Xs)ds.

Surprisingly, we will see that in other situations solutions to stochastic differential
equations require less smoothness assumptions than in the deterministic case. For
example, for

Xt = Bt +

∫ t

0

b(Xs)ds,

the measurability and boundedness of b yield to existence and uniqueness of a solution.
The question, important in filtering theory, whether X is a function of B in the above
equation will be addressed.

Chapters 6 has a more functional analysis content. First, we deal with represen-
tations of random variables. For example, any F1-measurable random variable X in
L2 can be written as

X =

∫ 1

0

asdBs (0.3)

for some adapted process a. This implies in particular such random variables can
be decomposed into an orthogonal basis generated by multiple stochastic integrals,
the so-called chaos decomposition. Then the Gross-Sobolev derivative is introduced.
This allows to investigate questions like the infinitesimal variation of F(B) (F being
F1-measurable, say) when B is perturbed by a deterministic element h, such that

h(t) =
∫ t

0
ḣ(s)ds, ‖h‖2H =

∫ t
0
|ḣ(s)|2ds < ∞ : for a suitable function F, by the Riesz

representation theorem, there is an element ∇F(B) ∈ H such that

lim
ε

F(B + εh)− F(B)

ε
= 〈∇F(B), h〉.

This ∇F is called the Gross Sobolev derivative of F, and will make it possible to
give a complete description of what the processus a is in Itô’s representation theorem
(0.3). This is important in control theory : it enables to get a random variable X by
integrating predictably along the random path B.

Finally, we give two applications, of independent interest, of the stochastic analy-
sis. The first one is about concentration of measure, in Chapter 8. Examples of such
a concentration appear on any compact Riemannian manifold with positive Ricci
curvature. For simplification here, consider the case of a n-dimensional unit sphere
S n, with uniform probability measure µn. Then, for any Lipschitz function F with
Lipschitz constant ‖F‖L, there are constants C, c > 0 independent of n, F such that

Figure 3. Density of x1 for the uni-
form measure on S n, n = 20 (pink),
30 (red), 40 (blue), 50 (black).

µn {|F− Eµ(F) > ε|} 6 Ce
−c(n−1) ε2

‖F‖2L .

In particular, choosing

F(x) = min(dist(x,M), ε)

where M is the Equator, M = {x1 = 0}∩
Sn, yields for some constants C, c > 0

µn(dist(x,M) < ε) > 1− Ce−cnε
2

,

i.e. all the mass of the uniform measure
concentrates exponentially fast around

. Fs = σ(Bu, u 6 s)
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the Equator ! How are these results related to stochastic processes ? A method to prove
concentration, initiated by Bakry and Emery, roughly speaking consists in seing the
uniform measure as the equilibrium measure of a Brownian motion on the manifold :
F−Eµ(F) is the different between t = 0 and t =∞ of an evolution along the Browian
path, whose differential can be controlled.

This shows an application of Brownian paths, and more generally dynamics, to
time-independent probabilistic statements.





Chapter 1

Discrete time processes

Although these lectures focus on the continuous time setting, which involves phe-
nomena not appearing in discrete time, this chapter aims to give the intuition and
necessary tools for the following ones. On a probability space (Ω,F ,P), an increasing
sequence (Fn)n>0 of sub-σ-algebras of F is called a filtration :

F0 ⊂ F1 ⊂ · · · ⊂ Fn ⊂ . . .

Intuitively, the index n is a time and a random variable is Fn-measurable if it only
depends on the past up to time n.

1. Martingales, stopping times, the martingale property for stopping times

Definition 1.1. A sequence (Xn)n>0 of random variables is called a ((Fn)n>0,P)-
martingale if it satisfies the three following conditions, for any n > 0 :

(i) E(|Xn|) <∞ ;

(ii) Xn is Fn-measurable ;

(iii) E(Xn | Fm) = Xm for any m 6 n, P-almost surely.

The submartingale (resp. supermartingale) is defined in the same way, except that
E(Xn | Fm) > Xm (resp. E(Xn | Fm) 6 Xm)

The above conditional expectations are assumed to exist, and there is no ambiguity
on the choice (necessarily made up to a set of measure 0). Note that, as a direct
consequence of the above definition, a martingale X vanishing almost surely at time
n vanishes almost surely on J0, nK.

Figure 1.1. Examples of trajectories for
Sn for 100 steps : martingale (µ = 0,
black), submartingale (µ > 0, red), su-
permartingale (µ < 0, blue).

As an example, if the Xi’s are inde-
pendent Bernoulli random variables with
parameter 1/2 and Fn = σ(X1, . . . ,Xn),

Sn := nµ+

n∑
i=1

Xi (1.1)

is a (Fn)n>0-martingale for µ = 0, a sub-
martingale for µ > 0, and a supermartin-
gale if µ < 0. This process is called the
biased random walk with parameter µ.

The submartingales are stable when
composing with a no-decreasing convex
function, and a similar result holds for
supermartingales, taking the opposite.

Proposition 1.2. Let X be a (Fn)n>0-submartingale and f a Lipschitz convex non-
decreasing function. Then (f(Xn), n > 0) is a (Fn)n>0-submartingale.

We will often use the following special case : if X is a submartingale, so is sup(X, 0).


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Proof. The Lipschitz hypothesis is just a condition ensuring that f(Xn) is integrable.
Now, for n > m, by Jensen’s inequality

E (f(Xn) | Fm) > f (E(Xn | Fm)) .

As E(Xn | Fm) > Xm and f is non-decreasing, this is greater than f(Xm).

Now, consider a specific class of random times adapted to the filtration : their
values are determined in view of the past.

Definition 1.3. A function T : Ω→ N ∪ {+∞} is a stopping time if {T 6 n} ∈ Fn
for any n > 0.

An example of stopping time is Ta = inf{n > 0 | Sn > a}, the time when the
process (1.1) reaches the level a ∈ R.

The definitions prove that the set

FT := {A ∈ F | ∀n ∈ N,A ∩ {T 6 n} ∈ Fn}

is a σ-algebra. Intuitively, FT is the information available at time T. Other straight-
forward properties are (i) if S 6 T, FS ⊂ FT and (ii) T and XT1T<∞ are FT-
measurable.

Proposition 1.4. Let X be a (Fn)n>0-submartingale and (Hn, n > 0) be a bounded
nonnegative process, with Hn ∈ Fn−1 for n > 1. Then the process Y defined by Y0 = 0
and Yn = Yn−1 + Hn(Xn −Xn−1) is a (Fn)n>0-submartingale. In particular, if T is
a stopping time, (Xn∧T, n > 0) is a submartingale.

Proof. For the first statement, note that when n > m

E(Yn | Fm) = E(Yn−1 + Hn(Xn −Xn−1) | Fm)

= E(Yn−1 + Hn E(Xn −Xn−1 | Fn−1) | Fm) > E(Yn−1 | Fm).

By an immediate induction, this implies E(Yn | Fm) > Ym. The second statement
follows when choosing Hn = 1n6T, which is Fn−1-measurable by definition of a
stopping time.

Note that the above result implies that a martingale frozen at a stopping time is
still a martingale.

A natural question is whether the martingale property E(Xn | Fm) = Xm remains
when m, n are random times. The answer is yes for bounded, ordered stopping times,
as shown by the following theorem. To prove it, we first note that if T 6 c is a stopping
time, then E(XT) = E(X0). Indeed, as {T = n} ∈ Fn,

E(XT) =

c∑
n=1

E(Xn1T=n) =

c∑
n=1

E (E(Xc | Fn)1T=n)

=

c∑
n=1

E (E(Xc1T=n | Fn)) = E(Xc) = E(X0).

Theorem 1.5 (Doob’s first sampling or stopping theorem). Let (Xn)n>0 be a mar-
tingale, and T, S two stopping times such that S 6 T 6 c for some constant c > 0.
Then almost surely

E(XT | FS) = XS.

. Example : let T is the first sunny day of the year in Paris, A the event my hibernation has been
longer than 60 days this year, and B the event at some time in History, Mars is aligned with Jupiter
and Saturn. Then, assuming one does not hibernate on sunny days, A ∈ FT and B 6∈ FT. Note that,
when replacing Paris with London in the above example, remarkably B ∈ FT.
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Proof. First, XT 6
∑c
i=0 |Xi| is clearly integrable and XS is FS measurable, so from

the definition of the conditional expectation we need to check that for any FS mea-
surable bounded random variable Z,

E(XTZ) = E(XSZ).

The random variable Z can be chosen of the form 1A where A ∈ FS (by approxima-
ting nonnegative random variables by linear combinations of such indicators, and a
substraction gives the result for any bounded Z).

Now, define U as the random time S if ω ∈ A and T if ω 6∈ A. Then U is a
stopping time, bounded by c, so E(XU) = X0 = E(XT). A simplification, writing
XU = XS1A + XT1Ac yields the expected result E(XT1A) = E(XS1A).

This theorem has an immediate equivalent form for submartingales and supermar-
tingales evaluated on bounded stopping times. Moreover, note that this boundedness
assumption is essential : if S is the random walk (1.1) with parameter µ = 0, and
T = inf{n > 0 | Sn = 1}, the (false) equality E(ST | F0) = S0 yields 1 = 0.

Finally, the above result gives easy proofs of not being a stopping time. As an
example, let m > 1 and T = sup{n ∈ J0,mK | Sn = supJ0,10K Si}. The (false) equality

E(ST | F0) = S0 would give E(ST) = 0, obviously false as E(ST) > P(S1 = 1) = 1/2.
Hence T is not a stopping time.

2. Inequalities : Lp norms in terms of final values, number of jumps.

Both theorems below are stated for nonnegative submartingale. By by replacing X
by X+ = sup(X, 0) – a submartingale from Proposition 1.2 – they also give estimates
for general submartingales.

Theorem 1.6 (Doob’s maximal inequality). Let (Xn)n>0 be a non-negative submar-
tingale, and X∗n = supJ0,nK Xi. Then for any λ > 0

P(X∗n > λ) 6
E(Xn)

λ
.

Proof. Hence for any bounded stopping time T 6 n, E(XT) 6 E(Xn).
Take T = inf(n, inf{k | Xk > λ}) :

P(X∗n > λ) = P(XT > λ) 6
1

λ
E(XT) 6

1

λ
E(Xn),

which is the expected result.

Theorem 1.7 (Doob’s inequality). Let (Xn)n>0 be a non-negative submartingale.
Then for any p > 1

E ((X∗n)p) 6

(
p

p− 1

)p
E (Xp

n) ,

may the right member be infinite.

Proof. Note that the proof of Doob’s maximal inequality yields slightly more than
stated :

λP(X∗n > λ) 6 E(Xn1X∗n>λ).

Indeed, still writing T = inf(n, inf{k | Xk > λ}), as 1X∗n>λ is FT-measurable and
T 6 n,

E(Xn1X∗n>λ) > E(XT1X∗n>λ) > E(λ1XT>λ1X∗n>λ) = λP(XT > λ).
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Hence we only need to prove that for nonnegative random variables X and Y, if for
any λ > 0

λP(Y > λ) 6 E(X1Y>λ), (1.2)

then E(Yp) 6
(

p
p−1

)p
E(Xp). First note that, as yp =

∫ y
0
pλp−1dλ, E(Yp) =∫∞

0
pλp−1P(Y > λ)dλ. This yields, using successively the hypothesis and Hölder’s

inequality (we define q by 1/p+ 1/q = 1),

E(Yp) =

∫ ∞
0

pλp−1P(Y > λ)dλ 6
∫ ∞

0

pλp−2 E(X1Y>λ)dλ

= E

(
X

∫ Y

0

pλp−2dλ

)
= q E(XYp−1) 6 q‖X‖Lp‖Yp−1‖Lq .

If E(Yp) < ∞, the inequality E(Yp) 6 q‖X‖Lp‖Yp−1‖Lq can be simplified and gives
the required result. If E(Yp) = ∞, for any m > 0 define Tm = inf{k > 0 | |Xk| >
m} ∧ n. Then by using the previous result for the submartingale (Xn∧Tm)n>0, we
obtain

‖ sup
06k6n

Xk∧Tm‖
p
Lp 6

(
p

p− 1

)p
‖Xn‖pLp .

By monotone convergence, taking m→∞ allows to conclude.

Remark. For p = 1, a similar inequality holds :

E (X∗n) 6
e

e− 1

(
1 + E(|Xn| log+ |Xn|)

)
,

Both of Doob’s inequalities above will be important in the next chapters as it
allows to control uniform convergence of martingales from their distribution at a
given time.

Theorem 1.8 (Doob’s jumps inequality). Let (Xn)n>0 be a submartingale and a < b.
Let Un be the number of jumps from a to b before time n. More precisely, define by
induction T0 = 0, Sj+1 = inf{k > Tj | Xk 6 a} and Tj+1 = inf{k > Sj+1 | Xk > b}.
Then Un = sup{j | Tj 6 n}.

Then

E(Un) 6
1

b− a
E ((Xn − a)+) .

Proof. Let Yn := (Xn − a)+. By definition, YTi −YSi > b− a for the above stopping
times Ti, Si smaller than n. Consequently,

Yn = YS1∧n +
∑
i>1

(YTi∧n −YSi∧n) +
∑
i>1

(YSi+1∧n −YTi∧n)

> (b− a)Un +
∑
i>1

(YSi+1∧n −YTi∧n).

Now, as x → (x − a)+ is convex and X is a submartingale, so is Y, from Propo-
sition 1.2. Consequently, as Si+1 ∧ n > Ti ∧ n are increasing bounded stopping
times, E(YSi+1∧n) > E(YTi∧n), so taking expectations in the previous inequality
yields E(Yn) > (b− a)E(Un), the expected result.

3. Convergence of martingales.

Theorem 1.9 (Convergence of submartingales). Let Xn be a submartingale such
that supn E ((Xn)+) < ∞. Then Xn converges almost surely to some X ∈ R and
X ∈ L1(Ω,F ,P).
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Proof. Given any a < b, let Un(a, b) be the number of jumps from a to b before time n,
like in Theorem 1.8. By monotone convergence, E(U∞(a, b)) = limn→∞ E(Un(a, b)).
But E(Un(a, b)) is uniformly bounded :

E(Un(a, b)) 6
1

b− a
E((Xn − a)+) 6

1

b− a
(E(Xn)+ + a) .

Consequently, E(U∞(a, b)) < ∞, so U∞(a, b) < ∞ almost surely. From the inclusion
of events

∩a<b,a,b∈Q{U∞(a, b) <∞} ⊂ {Xn converges}
we conclude that Xn converges almost surely. The limit X eventually can be ±∞, but
this is not the case. Indeed, note that |x| = 2x+ − x, so

E(|Xn|) = 2E((Xn)+)− E(Xn) 6 2E((Xn)+)− E(X0)

because E(Xn) > E(X0) (X is a submartingale). Hence, from the hypothesis, E(|Xn|)
is uniformly bounded, and using Fatou’s lemma

E(|X|) = E(lim
n
|Xn|) 6 lim inf E(|Xn|) <∞.

We proved that |X| is integrable, so X ∈ R almost surely.

For the following result, the notion of uniformly integrable family of random va-
riables is required : this is a set {Xn}n>0 of elements in L1(Ω,F ,P) such that

lim
λ→∞

sup
n

E(|Xn|1|Xn|>λ) = 0.

A (Ω,F ,P)-martingale X is said to be uniformly integrable if {Xn}n>0 is uniformly
integrable. There are many criteria to prove uniform integrability. For example if, for
some p > 1, supn E(|Xn|p) < ∞, the family is uniformly integrable. If there is an
integrable Y such that, for any n, Xn 6 Y, then the family {Xn}n>0 is integrable.

A straightforward reasoning yields that if X is integrable, Xn := E(X | Fn) is a
uniformly integrable martingale. The following result shows that the converse is true.

Theorem 1.10 (Convergence of martingales). Let Xn be a uniformly integrable mar-
tingale. Then Xn converges almost surely and in L1(Ω,F ,P) to some integrable X ∈ R
and Xn = E (X | Fn) for any n > 0.

Proof. As the family is uniformly integrable, for some ε > 0 there is a λ > 0 such
that supn E(|Xn|1|Xn|>λ) < ε. Hence

E((Xn)+) 6 E(|Xn|) = E(|Xn|1|Xn|>λ) + E(|Xn|1|Xn|6λ) 6 ε+ λ,

so supn E((Xn)+) <∞ and the convergence of submartingales, Theorem 1.9, implies
that (Xn)n>0 converges almost surely to some X ∈ L1(Ω,F ,P).

Now, take any ε > 0 and note, for any λ > 0,

fλ(x) = x1|x|6λ + λ1x>λ − λ1x<−λ.

The uniform integrability implies that there is a sufficiently large λ > 0 such that

E(|Xn − fλ(Xn)|) < ε. (1.3)

Moreover, as X ∈ L1(Ω,F ,P), dominated convergence implies that, for sufficiently
large λ,

E(|X− fλ(X)|) < ε. (1.4)

Finally, Xn → X a.s. so fλ(Xn) → fλ(X) a.s. by continuity of fλ. This implies by
dominated convergence that given λ, for sufficiently large n

E(|fλ(X)− fλ(Xn)|) < ε. (1.5)
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Equations (1.3), (1.4) and (1.5) together prove that Xn converges to X in L1.
Our last task is proving that Xn = E(X | Fn). As usual, taking some A ∈ Fn, we

need to prove that
E(Xn1A) = E(X1A). (1.6)

For any m > n, as Xn = E(Xm | Fn), E(Xn1A) = E(Xm1A). Consequently,

|E(Xn1A)−E(X1A)| 6 |E(Xn1A)−E(Xm1A)|+|E(Xm1A)−E(X1A)| 6 E(|Xm−X|).

As Xm → X in L1, this converges to 0 as m→∞, which proves (1.6).

Theorem 1.11 (Doob’s optional sampling or stopping theorem). Let (Xn)n>0 be a
uniformly integrable martingale, and T, S two stopping times such that S 6 T. Then
almost surely

E(XT | FS) = XS.

Proof. We first prove the result when T = ∞. We know, by Theorem 1.10, that Xn

converges almost surely and in L1 to some X ∈ L1. Then, note that for any n ∈ N,

E(X | FS)1S=n = E(X | Fn)1S=n. (1.7)

To prove the above identity, note that both terms are Fn-measurable and that, for
any A ∈ Fn,∫

A∪{S=n}
E(X | Fn)dP =

∫
A∪{S=n}

XdP =

∫
A∪{S=n}

E(X | FS)dP

because A ∪ {S = n} is both in Fn and FS. Now, using Theorem 1.10 and (1.7),

XS =
∑
n

Xn1S=n =
∑
n

E(X | Fn)1S=n =
∑
n

E(X | FS)1S=n = E(X | FS),

where the summation over n includes the case n = ∞, corresponding to XS = X, in
case S is ∞ with positive probability. This gives the expected result when T = ∞,
and the conditioning

XS = E(X | FS) = E(E(X | FT) | FS) = E(XT | FS)

yields the general case.

We end this chapter with a convergence result about processes indexed by −N,
this will be useful when extending Theorem 1.11 to the continuous setting. An inverse
martingale is a sequence of random variables (X−n, n > 0) in L1 such that for m >
n > 0

E(X−n | F−m) = X−m

almost surely, where F−m ⊂ F−n : (F−n, n > 0) can be thought of as a filtration
indexed by negative times.

Theorem 1.12. Let (X−n, n > 0) be an inverse martingale for the filtration
(F−n, n > 0). Then, as n→∞, Xn converges a.s. and in L1 to some X ∈ L1.

Proof. The proof is very similar to the one of Theorems 1.9 and 1.10. First, for any
a < b the number of jumps from a to b is almost surely finite from the Doob’s jumps
inequality Theorem 1.8 :

E(U(a, b)) = lim
n→∞

E(Un(a, b)) 6
1

b− a
E((X0 − a)+) <∞,
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where Un(a, b) is the number of jumps between times −n and 0. As a consequence,
X−n converges almost surely to some X, eventually equal to ±∞. As x+ is convex
and nondecreasing, Fatou’s lemma and Proposition 1.2 yield

E(X+) 6 lim inf
n→∞

E((X−n)+) 6 E((X0)+) <∞.

In the same way one can consider −X, giving X ∈ L1, so in particular X is finite. The
last step consists in proving the convergence in L1. Copying the proof of Theorem 1.10,
we just need to know that the family of random variables (X−n, n > 0) is uniformly
integrable. This is automatic because X−n = E(X0 | F−n).

. The only difference with the proof of Theorem 1.9 is that here the condition supn E((X−n)+) <∞
is automatically true thanks to the negative indexation





Chapter 2

Brownian motion

After reminding some elementary facts about Gaussian random variables, we will
be ready for constructing one specific random trajectory, the Brownian motion, and
study its basic properties. At the end of the chapter, it is shown to be universal as
a continuous limit of random walks. In the next two chapters, it will be shown to be
universal amongst continuous martingales.

1. Gaussian vectors

This section is a reminder about properties of Gaussian vectors useful in the
following. First, a random variable X is said to be Gaussian with expectation µ and
variance σ2 (X ∼ N (µ, σ)) if its law has density

1√
2πσ2

e−
(x−µ)2

2σ2

with respect to the Lebesgue measure. By convention, the Dirac measure δµ is

Gaussian with distribution N (µ, 0). Hence, if X ∼ N (µ, σ2), X
law
= µ + σY where

Y ∼ N (0, 1).

Theorem 2.1. If X ∼ N (µ, σ2), for any t ∈ R

E(eitX) = eitµ− (σt)2

2

If X1 and X2 are independent Gaussian random variables (X1 ∼ N (µ1, σ
2
1),X2 ∼

N (µ2, σ
2
2)), X1 + X2 is Gaussian with expectation µ1 + µ2 and variance σ2

1 + σ2
2.

Proof. To prove the form of the characteristic function, as X
law
= µ + σY where Y ∼

N (0, 1), we only need to prove that

f(t) := E(eitY) = e−
t2

2 .

Derivation into the integral sign is clearly allowed, and a subsequent integration by
parts yields

f ′(t) =
1√
2π

∫
R

ixeitxe−
x2

2 = −tf(t).

As f(0) = 1, the unique solution is f(t) = e−
t2

2 .
Now, for X1 and X2 as in the hypothesis, by independence

E
(
eit(X1+X2)

)
= E

(
eitX1

)
E
(
eitX2

)
= eit(µ1+µ2)− (σ21+σ22)t2

2 .

As the characteristic function uniquely determines the law, this means that X1 + X2

is Gaussian with mean µ1 + µ2 and variance σ2
1 + σ2

2 .

The rigidity of the family of Gaussian measures implies that it is stable by conver-
gence in law, and that convergence in probability implies Lp convergence.

Theorem 2.2. Let Xn ∼ N (λn, σ
2
n).


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(i) If Xn
law−→ X, then λn (resp. σ2

n) converges to some λ ∈ R (resp. σ2 ∈ R+) and
X ∼ N (λ, σ2).

(ii) If Xn
P−→ X then, for any p > 1, Xn

Lp−→ X.

Proof. Concerning (i), we know that the convergence in law implies the uniform
convergence of characteristic functions on compact sets, i.e.

E
(
eitXn

)
= eitµn−

σ2nt
2

2 −→
n→∞

E
(
eitX

)
.

Taking the modulus, σ2
n converges to some σ2 ∈ R+ (σ2 = ∞ is not possible as

E(eitX) would be discontinuous, 1t=0). If (µn, n > 0) is bounded, this implies that

µn → µ ∈ R because for any accumulation points µ, µ′, for any t, eitµ = eitµ′ , so
µ = µ′, and by convergence of the characteristic functions Xn converges in law to
Gaussian N (µ, σ2).

The unbounded case is impossible : if for example a subsequence µnk →∞, then
as the variables are Gaussian and σ2

n is bounded P(Xnk > λ) → 1 for any λ, so by
weak convergence P(X > λ) = 1, a contradiction when λ is large enough.

For (ii), first note that we just proved that µn and σ2
n are bounded. Hence we have

supn E(|Xn|2p) <∞ for any p > 0. By Fatou’s lemma, as Xmk converges almost surely
to X along a subsequence, this implies that E(|X|2p) <∞, and therefore supn E(|Xn−
X|2p) <∞. Hence the sequence (Xn −X, n > 0) is bounded in L2 and converges to 0
in probability, hence it converges to 0 in L1, as expected.

We now come to a multidimensional natural generalization : a random variable X
with values in Rd is called a Gaussian vector if any linear combination of the coordi-
nates is a Gaussian random variable : for any u ∈ Rd, u ·X is normally distributed.

For example, if X1, . . . ,Xd are independent Gaussians, X = (X1, . . . ,Xd) is a
Gaussian vector. Under the same hypothesis, if M is a d′ × d, MX is still a Gaussian

vector with values in Rd′ . Note that there are vectors with Gaussian entries which are
not Gaussian vectors. For example, if X ∼ N (0, 1) and ε is an independent random
variable, P(ε = 1) = P(ε = −1) = 1/2, then (X, εX) has Gaussian entries but is not a
Gaussian vector : the sum of its coordinates has probability 1/2 to be 0.

Theorem 2.3. Let X be a Gaussian vector. Then its entries are independent if and
only if its covariance matrix (cov(Xi,Xj))16i,j6d is diagonal.

Proof. If the entries are independent, the covariance matrix is obviously diagonal.
Reciprocally, if the matrix is diagonal, for any u ∈ Rd

E(u ·X) =
∑

ui E(Xi)

var(u ·X) =
∑
j,k

ujuk cov(Xi,Xj) =
∑
j

u2
j var(Xj)

Hence the Gaussian random variable u ·X has characteristic function

E(eiu·X) = eiE(u·X)− var(u·X)
2 =

d∏
k=1

eiuk E(Xk)− var(Xk)

2 =

n∏
k=1

E(eiukXk).

As a consequence of this splitting of the characteristic function, the Xk’s are inde-
pendent.

Finally, in this section we want to give a useful estimate of the queuing distribution
of Gaussian random variables.

Lemma 2.4. Let X ∼ N (0, 1). Then, as λ→∞,

P(X > λ) ∼ 1

λ
√

2π
e−

λ2

2
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Proof. By integration by parts,

P(X > λ) =
1√
2π

∫ ∞
λ

−1

x
(−x)e−

x2

2 =
1

λ
√

2π
e−

λ2

2 − 1√
2π

∫ ∞
λ

e−x
2/2

x2
dx.

Obviously,

1√
2π

∫ ∞
λ

e−x
2/2

x2
dx 6

1

λ2
√

2π

∫ ∞
λ

e−x
2/2dx = o (P(X > λ)) ,

concluding the proof.

2. Existence of Brownian motion

Definition 2.5. (Xt, t > 0) is a Gaussian process if for any (t1, . . . , tn) ∈ Rn+,
(Xt1 , . . . ,Xtn) is a Gaussian vector.

Definition 2.6. A process B = (Bt, t > 0) is called a Brownian motion if :

(i) it is a Gaussian process ;

(ii) it is centered : for any t > 0, E(Bt) = 0 ;

(iii) for any (s, t) ∈ R2
+, E(BsBt) = s ∧ t ;

(iv) it is almost surely continuous.

Note that this definition implies B0 = 0 almost surely. One refer sometimes to
this process B as a standard Brownian motion, in contrast to x+ B which is called a
Brownian motion starting at x. Some variants of the definition also englobe the finite
horizon possibility, refering to a Brownian motion on [0,T].

The above definition is equivalent to another one, with independence of the incre-
ments.

Proposition 2.7. The process (Bt, t > 0) is a Brownian motion if and only if

(a) B0 = 0 almost surely ;

(b) for any n > 2, 0 6 t1 6 · · · 6 tn, (Bt1 ,Bt2 − Bt1 , . . . ,Btn − Btn−1) is a Gaussian
vector with independent coordinates.

(c) for any (s, t) ∈ R2
+, Bt − Bs ∼ N (0, |t− s|) ;

(d) it is almost surely continuous.

Proof. Let us first prove that (i), (ii), (iii) implies (a), (b), (c). By (iii), B0 = 0 a.s.
which is (a). Moreover, X = (Bt1 ,Bt2 − Bt1 , . . . ,Btn − Btn−1

) is clearly a Gaussian
vector, because by (i), (Bt1 ,Bt2 , . . . ,Btn) is a Gaussian vector. To prove that the
coordinates are independent, we just need to prove that the covariance matrix is
diagonal. This is a direct calculation, using (iii) : for t1 6 t2 6 t3 6 t4,

cov(Bt4−Bt3 ,Bt2−Bt1) = E((Bt4−Bt3)(Bt2−Bt1)) = t4∧t2−t4∧t1−t3∧t2+t3∧t1 = 0.

By (i), Bt − Bs is a Gaussian random variable, with expectation E(Bt) − E(Bs) = 0
by (ii) and variance

E((Bt − Bs)
2) = E(B2

t ) + E(B2
s)− 2E(BtBs) = ts− 2s ∧ t = |t− s|,

by (iii), proving (c).
Now, assume points (a), (b), (c). For any t1 6 · · · 6 tn, as (Bt1 ,Bt2−Bt1 , . . . ,Btn−

Btn−1
) is Gaussian by (b), so is (Bt1 ,Bt2 , . . . ,Btn), because (x1, . . . , xn) 7→ (x1, x2 −
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x1, . . . , xn − xn−1) is invertible. This proves (i). Point (ii) follows from Bt ∼ N (0, t),
by (a) and (c). Finally, using the independence of the increments in (b), the previously
proved fact that B is centered, and the variance of B given by (c), for t > s

E(BtBs) = E(B2
s) + E((Bt − Bs)Bs) = E(B2

s) + E((Bt − Bs)Bs) = s = s ∧ t,

which proves (iii).

In the following, we give two constructions of Brownian motion. The first one, by
Paul Lévy, is intuitive and proceeds by almost sure uniform convergence of properly
chosen piecewise affine gaussian processes. Then a more functional analytic proof will
be discussed, originating in the work of Wiener and substantially generalized by Itô
and Nisio. Both proofs exhibit a Brownian motion on [0, 1], extending to the existence
in R+ by simple juxtaposition of independent ones on [0, 1].

Theorem 2.8. The Brownian motion exists.

Proof. We proceed by induction to construct piecewise affine Gaussian processes
converging uniformly. First, take a Gaussian random variable N0,0 ∼ N (0, 1), and
define f0(t) = N0,0t, 0 6 t 6 1. This is a Gaussian process with the same distribution
as Brownian motion at time 1, but not on (0, 1). To avoid this problem, define another
N (0, 1) random variable N1,1 and the Gaussian process f1, piecewise affine, conti-

nuous, such that f1 and f0 coincide on 0 and 1, but f1(1/2) = f0(1/2) + 1
2N1,1. Now

the process f1 has the expected covariance function on the set of points {0, 1/2, 1}. We
proceed in the same way on further intervals, defining for any n > 1 the continuous
function fn, affine on [(k − 1)/2n, k/2n] for any k ∈ J1, 2nK, by{

fn
(

2`
2n

)
= fn−1

(
`

2n−1

)
fn
(

2`−1
2n

)
= fn−1

(
2`−1
2n−1

)
+ 2−

n+1
2 N`,n

,

where the Nn,`, n > 0, 1 6 ` 6 2n−1 are independent standard Gaussians. Then
an immediate induction proves that for any n > 1, (fn(t), 0 6 t 6 1) is a centered
Gaussian process, and with covariance function

E
(
fn

(
j

2n

)
fn

(
k

2n

))
=

j

2n
∧ k

2n
, (2.1)

the normalization 2−
n+1
2 in the definition of fn being chosen to get the above appro-

priate covariance.
We are now interested in the uniform convergence of fn, n > 0. Let

An = {sup
[0,1]

|fn − fn−1|(t) > 2−n/4}.

As |fn− fn−1| is continuous affine on [(k− 1)/2n, k/2n] for any k ∈ J1, 2nK, and 0 if k
is even, its maximal value is obtained at some t ∈ {(2`− 1)/2n, 1 6 ` 6 2n−1}, hence

P(An) = P

(
sup

16`62n−1

|2−
n+1
2 N`,n| > 2−n/4

)

6
2n−1∑
`=1

P
(
|N`,n| > 2−n/4+n+1

2

)
P(An) 6 2c1ne−c22n/2

for some absolute constants c1, c2 > 0, where we used Lemma 2.4. Hence
∑
n P(An) <

∞, which means by the Borel-Cantelli lemma that almost surely, there is an index
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n0(ω) such that if n > n0(ω) then ‖fn − fn−1‖∞ 6 2−n/4. This implies the almost
sure uniform convergence of fn on [0, 1], to a random function called f .

This process is almost surely continuous, as the a.s. uniform limit of continuous
functions, and this is Gaussian process because the a.s. limit of Gaussian vectors is a
Gaussian vector, by Theorem 2.2.

Our only remaining point to prove is

E(f(s)f(t)) = s ∧ t. (2.2)

Let `
(s)
n , `

(t)
n be integers such that

`
(s)
n

2n
6 s <

`
(s)
n + 1

2n
,
`
(t)
n

2n
6 t <

`
(t)
n + 1

2n
.

From the uniform convergence of fn, the Gaussian vector (fn(`
(s)
n /2n), fn(`

(t)
n /2n))

converges almost surely to (f(s), f(t)), hence in L2 by Theorem 2.2. This implies

E(fn(`(s)n /2n)fn(`(t)n /2n))→ E(f(s)f(t)),

and this first term also obviously converges to s ∧ t by (2.1), proving (2.2).

We note that there is only one Brownian motion : the subsets of type

{ω : ω(t1) ∈ A1, . . . , ω(tm) ∈ Am},

where the Am’s are Borel subsets of R, have a unique possible measure given the
definition of Brownian motion. As they are stable by intersection and generate the
sigma algebra F = σ(ω(s), 0 6 s 6 1), by the monotone class theorem there is only
one measure on F corresponding to a Brownian motion. The Wiener measure, noted
W, is the image of the Gaussian product measure (for the Nk’s) on C o([0, 1]) in the
above construction.

For another construction of Brownian motion, we need the following theorem by
Itô and Nisio [6], where E is a real separable Banach space, with its norm topology,
E∗ its dual and B its Borel algebra.

Theorem 2.9. Let (Xi)i>0 be independent E-valued random variables, and Sn =∑n
1 Xi, with law µn. Then the following three conditions are equivalent :

(a) Sn converges almost surely ;

(b) Sn converges in probability ;

(c) µn converges for the Prokhorov metric.

Moreover, if the Xi’s have a symmetric distribution (Xi
law
= −Xi), then each of the

above conditions is equivalent to any of the following ones :

(d) µn is uniformly tight ;

(e) there is a E-valued S such that for any z ∈ E∗, 〈z,Sn〉
P−→ 〈z,S〉 ;

(f) there is a measure µ on E such that for any z ∈ E∗, E
(
ei〈z,Sn〉

)
→
∫
ei〈z,x〉dµ(x).

. The Prokhoov distance between two measures µ and ν is

π(µ, ν) = inf{ε > 0 : ∀A ∈ B, µ(A)− ν(Aε) 6 ε, µ(Aε)− ν(A) 6 ε},
where Aε is the set of points within distance at most ε to A.
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In finite dimension, the symmetry condition for points (d), (e), (f) is not necessary,
but it is essential in infinite dimension, as shown by the following example : if (ei)i>1

is an orthonormal basis of a Hilbert space, and X1(ω) = e1, Xn(ω) = en − en−1 for
n > 2, then Sn(ω) = en, so 〈z,Sn〉 → 0 but Sn does not converge almost surely.

The application of the previous general result to Brownian motion is for E =
(C ([0, 1]), ‖‖∞), the space of continuous functions on [0, 1] endowed with the sup
norm.

Theorem 2.10. Let (ϕn)n>1 be an orthonormal basis of L2([0, 1]), composed of conti-
nuous functions, and (Nk)k>1 a sequence of independent standard normal variables.
Then

Sn(t) =

n∑
k=1

Nk

∫ t

0

ϕk(u)du

converges uniformly in t ∈ [0, 1] as n→∞. The limit S is a Brownian motion.

Proof. Elements in E∗ can be identified with bounded signed finitely additive mea-
sures on [0, 1] that are absolutely continuous with respect to the Lebesgue measure
on [0,1], see [4].

Let dz be such an element : we first prove point (f) in Theorem 2.9, by writing

E(ei〈z,Sn〉) =

n∏
k=1

E
(
eiNk〈z,

∫ .
0
ϕk〉
)

=

n∏
k=1

e−
1
2 |〈z,

∫ .
0
ϕk〉|2

= e−
1
2

∑n
k=1(

∫ 1
0

dz(u)
∫ u
0
ϕk(s)ds)

2

= e−
1
2

∑n
k=1(

∫ 1
0
ϕk(s)dsz([s,1]))

2

−→
n→∞

e−
1
2

∫ 1
0

dsz([s,1])2 = e−
1
2

∫
[0,1]2

(s∧t)dz(s)dz(t),

where we used the orthonomality of the ϕk’s between the second and third lines.
Now, if B is a Brownian motion, as proved by approximations by Riemann sums,

〈z,B〉 is a Gaussian random variable with variance
∫

[0,1]2
(s ∧ t)dz(s)dz(t). Conse-

quently, E(ei〈z,Sn〉) converges to
∫
ei〈z,x〉dW(x) where W is the Wiener measure. As

Xk = (Nk

∫ t
0
ϕk(u)du, 0 6 t 6 1) is symmetric, by Theorem 2.9 Sn converges almost

surely uniformly on [0, 1].
The limit is a Brownian motion : all the characteristic properties of B (independent

Gaussian increments) are proved by choosing z =
∑m
k=1 δtk in the above calculation.

3. Invariance properties

One of the useful features of Brownian motion is the invariance of the Wiener
measure under many transformations, i.e. symmetry, time reversal, time inversion
and scaling.

Theorem 2.11. Let (Bt, t > 0) be a Brownian motion. Then the following processes
are Brownian motions :

(i) Xt = −Bt, t > 0 ;

(ii) Xt = BT − BT−t, 0 6 t 6 T ;

(iii) Xt = tB1/t if t > 0 and 0 it t = 0 ;

(iv) Xt = 1√
λ

Bλt, t > 0, for some given parameter λ > 0.

Proof. It is an easy task to prove that all of these processes are centered Gaussian
processes with covariance function E(XsXt) = s ∧ t. The only problem consists in
proving the almost sure continuity of X at 0 in the case (iii).
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As (Bs, s > 0) has the same law as (sB1/s, s > 0), for any ε > 0

P
(
∩n ∪t∈Q∩(0,1/n] {|tB1/t| > ε}

)
= P

(
∩n ∪t∈Q∩(0,1/n] {|Bt| > ε}

)
.

This last term is 0 because almost surely B0 = 0 and B is continuous. Hence sB1/s → 0
along positive rational numbers, hence along R+ by continuity.

Note that as Bt → 0 almost surely as t → 0+, point (iii) implies that Bt
t → 0 as

t→∞. One can directly show that

Mt := eBt− t2

has constant expectation, and thanks to the above property it converges almost surely
to 0 : this is an example of almost sure convergence but no convergence in L1.

4. Regularity of trajectories

In this section, we are interested in the Hölder exponent of the trajectories of B,
i.e. the values of α such that there is almost surely a constant cα(ω) such that, for
any s and t in [0, 1],

|Bt − Bs| 6 cα(ω)|t− s|α.
This set of possible values for α is of type [0, α0] or [0, α0), and in the next section
we will give the precise value of α0.

First, before giving the important criterium by Kolmogorov for Hölder-continuity,
we need to introduce the following notions.

Definition 2.12. Let (Xt)t∈I and (X̃t)t∈I be two processes.

(i) X is called a version of X̃ if, for any t ∈ I, P(Xt = X̃t) = 1 ;

(ii) X and X̃ are called indistinguishable if P(∀t ∈ I,Xt = X̃t) = 1.

Is X and X̃ are indistinguishable, each one is a version of the other. The converse

is false, as shown by X(t) = 0, 0 6 t 6 1 and X̃t = 0 on [0, 1] except on U, uniform

on [0, 1], where X̃ is 1. Then on a given t both processes are almost surely equal but
almost surely, they differ somewhere along the trajectory.

Note that if I is countable, or if X and X̃ are almost surely continuous, then being
a version of the other implies the indistinguishability.

Theorem 2.13. Let I be a compact interval and X a process on I. We suppose that
there exist p, ε and c positive numbers such that for any s, t in I

E (|Xs −Xt|p) 6 c|t− s|1+ε.

Then there exists a version X̃ of X whose trajectories are Hölderian with index α for
any α ∈ [0, ε/p) : almost surely, there is cα(ω) > 0 such that for any s, t in I

|X̃t − X̃s| 6 cα(ω)|t− s|α.

Proof. If α = 0 the result is obvious by compactness of the support, so we suppose
α ∈ (0, ε/p) in the following. We can suppose I = [0, 1], and we will first show the
Hölder property for X on the set D of dyadic numbers, i.e. of type

m∑
k=1

εk
2k

for some m ∈ N∗, and εk = 0 or 1. We want to prove that for α ∈ (0, ε/p),

sup
s,t∈D,s 6=t

|Xt −Xs|
|t− s|α

<∞.
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Let us first prove that

dα = sup
n>0

sup
16i62n

|X i
2n
−X i−1

2n
|

|1/2n|α
<∞ (2.3)

almost surely. For this, let A
(n)
i = {|X i

2n
−X i−1

2n
| > 2nα}. As

P(|Xt −Xs| > a) 6 a−p E(|Xt −Xs|p) 6 ca−p|t− s|1+ε,

we have P(A
(n)
i ) 6 c2(pα−1−ε)n. As pα− ε < 0, this yields∑

n>0

P
(
∪2n

i=1A
(n)
i

)
<∞,

so by the Borel Cantelli lemma dα <∞ almost surely.
We now want to extend the result to dyadic numbers. For this, for given s < t in

D , let q be the smallest integer such that 2−q < t− s. We can write{
s = k2−q −

∑`
i=1 εi2

−q−i

t = k2−q +
∑m
i=1 ε

′
i2
−q−i

for some integers k, ` and m, and the εi’s, ε
′
i’s being 0 or 1. Define for j ∈ J0, `K and

0 ∈ J1,mK, {
sj = k2−q −

∑j
i=1 εi2

−q−i

tk = k2−q +
∑k
i=1 ε

′
i2
−q−i

Then, using (2.3) between successive sj ’s and tj ’s

|Xt −Xs| 6
∑̀
j=1

|Xsj −Xsj−1 |+
m∑
k=1

|Xtk −Xtk−1
|

6 dα

∑̀
j=1

2−(q+j)α +

m∑
k=1

2−(q+k)α


6 2dα

1

1− 2−α
2−pα

|Xt −Xs| 6 cα|t− s|α,

proving that X is Hölderian with exponent α on dyadic numbers. Define X̃ as 0 if
dα(ω) = ∞ (event with measure 0) and the continuous extension of X from D to

[0, 1] otherwise, which exists and is unique thanks to the previous results : X̃ is still
Hölderian for the exponent α, and we just need to prove that it is a version of X.
For a given t ∈ [0, 1], consider a sequence (sn)n>0 of diadic numbers converging to t.
From the hypothesis, Xsn converges to Xt in Lp, hence in probability, hence almost

surely along a subsequence. Moreover, along that subsequence, Xsn converges to X̃t

by definition of X̃. Consequently, almost surely both limits coincide, i.e. P(Xt = X̃t) =
1.

Corollary 2.14. Let B = (Bt, 0 6 t 6 1) be a Browian motion. Then B is almost
surely Hölderian with exponent α for any α ∈ [0, 1/2).

Proof. For any s and t,, if X ∼ N (0, 1),

E (|Bt − Bs|p) = E (|X|p) |t− s|p/2.

For p > 2, if ε = p
2 − 1 in Theorem 2.13, we see that B has a Hölderian version with

exponent α for any α ∈
[
0, 1

2 −
1
p

)
. As B and its version are almost surely continuous,

they are indistinguishable and taking p→∞ previously proves that B is almost surely
Hölderian for any exponent α ∈ [0, 1/2).
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Section 6 will prove that the set of values of α for which a Brownian trajectory is
almost surely Hölderian is exactly [0, 1/2).

5. Markov properties

Let Ft = σ(Bs, 0 6 s 6 t), i.e. Ft is the smallest σ-algebra in Ω such that all
Bs : Ω→ R, 0 6 s 6 t, are measurable.

Then the weak Markov property states that, writing B̃t = Bt+s − Bs, B̃ is a
Brownian motion independent of Fs. Being a Brownian motion is a straightforward
consequence of the definition. To get the independence property, by the monotone class
Theorem, it is sufficient to prove that for 0 6 t1 < · · · < tm, 0 6 s1 < · · · < sm 6 s,

the vectors b̃ = (B̃t1 , . . . , B̃tn) and b = (Bs1 , . . . ,Bsm) are independent. Note that

cov(B̃tj ,Bsk) = E((Bs+tj − Bs)Bsk) = E(Bs+tj − Bs)E(Bsk) = 0,

thanks to the independence of increments of the Brownian motion and sk 6 s 6 s+tj .

Hence for any λ = (λ1, . . . , λm) and µ = (µ1, . . . , µn), the Gaussian vector (λ · b̃, µ · b)
has a diagonal covariance matrix, and by Theorem 2.3 λ · b̃ and µ · b are independent.

This being true for any λ and µ, b and b̃ are independent, as expected.
The above result can be extended to a σ-algebra potentially bigger than Fs, namely

F+
s = ∩t>sFt.

Theorem 2.15 (Weak Markov property). Let B̃t = Bt+s−Bs. Then B̃ is a Brownian
motion independent of F+

s

Proof. Proving the independence property requires some work. By the monotone class
Theorem, a sufficient condition is that for any A ∈ F+

s , n > 0, 0 6 t1 < · · · < tn, and
F : Rn → R bounded and continuous,

E
(

F(B̃t1 , . . . , B̃tn)1A

)
= E

(
F(B̃t1 , . . . , B̃tn)

)
E (1A) . (2.4)

For any ε > 0, as (Bt+s+ε − Bs+ε, t > 0) is a Brownian motion independent of Fs+ε
and A ∈ Fs+ε,

E (F(Bt1+s+ε − Bs+ε, . . . ,Btn+s+ε − Bs+ε)1A)

= E (F(Bt1+s+ε − Bs+ε, . . . ,Btn+s+ε − Bs+ε))E (1A) .

By dominated convergence, ε→ 0 in the above equation yields the result (2.4).

As a consequence of the weak Markov property, the σ-algebra F+
0 is trivial : there

is no information in the germ of the Brownian motion.

Theorem 2.16 (Blumenthal’s 0-1 law). For any A ∈ F+
0 , P(A) = 0 or P(A) = 1.

Proof. From Theorem 2.15, A is independent of (Bt − B0, t > 0), hence independent

of σ(Bs, s > 0). Moreover, A ∈ F+
0 ⊂ σ(Bs, s > 0), hence A is independent of itself :

P(A) = E(1A1A) = E(1A)E(1A) = P(A)2,

so P(A) = 0 or P(A) = 1.

Corollary 2.17.

(i) Let τ1 = inf{t > 0 : Bt > 0}. Then τ1 = 0 almost surely.

(ii) Let τ2 = inf{t > 0 : Bt = 0}. Then τ2 = 0 almost surely.
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(iii) Let τ3 = sup{t > 0 : Bt = 0}. Then τ3 =∞ almost surely.

Proof. First note that

{τ1 = 0} = ∩n>1{ sup
[0,1/n]

Bs > 0} ∈ ∩t>0Ft = F0+,

so, from Theorem 2.16, P(τ1 = 0) = 0 or 1. Moreover, by monotone convergence,

P(τ1 = 0) = lim
ε→0

P(τ1 6 ε) > lim
ε→0

P(Bε > 0) = 1/2,

so P(τ1 = 0) = 1, proving (i). By symmetry, inf{t > 0 : Bt < 0} = 0 a.s. so
point (ii) comes from the a.s. continuity of the Brownian path and the intermediate
value theorem. From Theorem 2.11, (tB1/t, t > 0) is a Brownian motion, so (ii) gives

inf{t > 0 : tB1/t = 0} = 0 almost surely, i.e. sup{t > 0 : Bt = 0} = ∞ almost surely,

proving (iii).

We now prove the strong Markov property, i.e. an analogue of Theorem 2.15 where
the shifted Brownian motion begins from a stopping time. For this, we need to define
notions analogue to what was discussed in the discrete setting, Chapter 1.

Definition 2.18. On a probability space (Ω,F ,P), a filtration (Ft)t>0 is an increasing
sequence of sub-σ-algebras of F .

A random variable T : Ω→ R+ ∪ {∞} is called a stopping time with respect to a
filtration (Ft)t>0 if, for any t > 0, {T 6 t} ∈ Ft.

Examples of stopping times with respect to the Brownian filtration include

Ta = inf{t > 0 : Bt = a}.

Indeed, if for example a > 0, {Ta 6 t} = {sup[0,t] Bs > a} = {sup[0,t]∩Q Bs > a} by

continuity of the Brownian path, so {Ta 6 t} is a countable union of Ft-measurable
events, hence it is in Ft. As we will see thanks to the stopping time theorems, not all
F-measurable times are stopping times. As an example, g = sup{t ∈ [0, 1] : Bt = 0}
is not a stopping time.

Given a stopping time T, the information available till time T is defined as

FT = {A ∈ F : ∀t > 0,A ∩ {T 6 t} ∈ Ft}.

As an exercise, one can prove that this is a σ-algebra, and that T,BT1{T<∞} are
FT-measurable.

Theorem 2.19 (Strong Markov property). Let B be a Brownian motion and T a
stopping time with respect to (Ft)t>0, Ft = σ(Bs, s 6 t).

Then conditionally to {T <∞}, noting B̃t = BT+t−BT, B̃ is a Brownian motion
independent of FT.

Proof. First assume T < ∞ almost surely. We need to prove that for any A ∈ FT,
n > 0, 0 6 t1 < · · · < tn, and F : Rn → R bounded and continuous,

E
(

F(B̃t1 , . . . , B̃tn)1A

)
= E (F(Bt1 , . . . ,Btn))E (1A) . (2.5)

Indeed, the case A = Ω will prove that B̃ is a Brownian motion, and general A the
independence property, by the monotone class theorem. Note that, for a given ω, as
T <∞ a.s.

F(B̃t1 , . . . , B̃tn)1A = lim
m→∞

∞∑
i=1

F
(

B i
m+t1

− B i
m
, . . . ,B i

m+tn
− B i

m

)
1A1 i−1

m <T6 i
m
.
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By dominated convergence, when taking expectations they can be reversed with the
limit. As A ∈ FT, by definition of FT the event A ∩ {T 6 i

m} is F i
m

measurable.

Hence A ∩ { i−1
m < T 6 i

m} is F i
m

measurable, so by Theorem 2.15

E
(

F
(

B i
m+t1

− B i
m
, . . . ,B i

m+tn
− B i

m

)
1A1 i−1

m <T6 i
m

)
= E (F (Bt1 , . . . ,Btn))E

(
1A1 i−1

m <T6 i
m

)
.

The proof of (2.5) now follows by summation. In the case P(T = ∞) > 0, the proof
goes the same way by replacing A with A ∩ {T <∞}.

One of the most famous applications of the strong Markov property is the following
reflection principle. Please note that it is not just a curious example of an integrable
law : the queuing distribution of the maximum of B will be useful to prove tightness
in the forthcoming sections and chapters.

Theorem 2.20. Let St = sup06u6t Bu. Then for any t > 0, a > 0 and b 6 a

P(St > a,Bt 6 b) = P(Bt > 2a− b).

In particular, St
law
= |Bt|.

Proof. Let Ta = inf{t > 0 : Bt = a}. Define the process B̃ on [0, t] by

B̃s =

{
Bs if s 6 Ta

2a− Bs if Ta 6 s 6 t
.

By Theorem 2.19, (BTa+s − BTa , s > 0) is a Brownian motion independent of FTa ,

hence its reflection (B̃Ta+s − B̃Ta , s > 0) is also a Brownian motion independent of
FTa . Being the juxtaposition of the Brownian motion B till Ta with another inde-

pendent Brownian motion, B̃ is a Brownian Motion. Consequently,

P
(

sup
06u6t

Bu > a,Bt 6 b

)
= P

(
sup

06u6t
B̃u > a, B̃t 6 b

)
= P(Ta 6 t,Bt > 2a− b) = P(Bt > 2a− b)

because, as 2a−b > a, Bt > 2a−b implies Ta 6 t by the intermediate values theorem.
To conclude, we can write

P(St > a) = P(St > a,Bt 6 a) + P(St > a,Bt > a)

= P(Bt > a) + P(Bt > a) = P(|Bt| > a),

so St
law
= |Bt|.

6. Iterated logarithm law

We now turn to the exact estimate of the optimal Hölder coefficient of a Brownian
trajectory : for any α ∈ [0, 1/2), we proved in Corollary 2.14 that there is a constant
cα(ω) such that for any s, t in [0, 1]

|Bt − Bs| 6 cα(ω)|t− s|α.

Point (ii) in the following theorem proves that the trajectory is not Hölderian
with exponent 1/2.

Theorem 2.21 (Iterated logarithm law). Let B be a Brownian motion.
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(i) Almost surely, lim supt→∞
Bt√

2t log log t
= 1.

(ii) Almost surely, lim supt→0+
Bt√

2t log(− log t)
= 1.

Proof. Note that (ii) is a simple consequence of (i) by time inversion, Theorem 2.11.
To prove (i), for given λ > 1 and c > 0, we write

Ak = {Bλk > cf(λk)}

where f(t) =
√

2t log log t. Then, using Lemma 2.4, if X ∼ N (0, 1) then

P(Ak) = P
(

X > c
√

2 log log(λk)

)
∼

k→∞

1√
2π

1

c
√

2 log log(λk)
e−c

2 log log(λk)

∼
k→∞

1

2c
√
π

(
1

log λ

)c2
1√

log k

(
1

k

)c2
(2.6)

Hence
∑
k P(Ak) converges (resp. diverges) if c > 1 (resp. c 6 1). This proves by the

Borel-Cantelli lemma that

lim sup
Bλk

f(λk)
6 1 (2.7)

almost surely, and equality would hold if the Ak’s were independent, which is not
true. But there is a sufficiently small correlation between them and this problem can
be handled. More precisely, noting

Ck = {Bλk+1 − Bλk > cf(λk+1 − λk)},

a calculation similar to (2.6) yields

P (Ck) ∼
k→∞

1

2c
√
π

(
1

log λ

)c2
1√

log k

(
1

k

)c2
.

This diverges if c < 1, so thanks to the independence of the increments of B, P(∩n∪k>n
Ck) = 1 : if c < 1, in infinitely many times

Bλk+1

f(λk+1)
> c

f(λk+1 − λk)

f(λk+1)
+

f(λk)

f(λk+1)

Bλk

f(λk)

But using symmetry and (2.7), for any ε > 0, almost surely for sufficiently large k

Bλk

f(λk)
> −1− ε.

As a consequence, infinitely often

Bλk+1

f(λk+1)
> c

f(λk+1 − λk)

f(λk+1)
− (1 + ε)

f(λk)

f(λk+1)
∼

k→∞
c

√
1− 1

λ
− 1 + ε√

λ

By choosing λ arbitrary large, we have proved that

lim sup
t→∞

Bt√
2t log log t

> 1.

Our last task consists in controlling what happens between λk and λk+1 to extend
(2.7) to a lim sup with argument t. Let t ∈ [λk, λk+1]. Then, still for any λ > 1,

Bt
f(t)

=
Bλk

f(λk)

f(λk)

f(t)
+

Bt − Bλk

f(t)
6

Bλk

f(λk)
+

Bt − Bλk

f(λk)
.
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Consider the event

Dk =

{
sup

[λk,λk+1]

Bt − Bλk

f(λk)
> α

}
,

for any given α > 0. Using that (Bs+λk − Bλk , s > 0) is a Brownian motion and the
scaling property in Theorem 2.11,

P(Dk) = P

(
sup
[0,1]

Bu >
αf(λk)√
λk+1 − λk

)
= 2P

(
B1 >

αf(λk)√
λk+1 − λk

)
where we used Theorem 2.20. Lemma 2.4 therefore yields

P(Dk) ∼
k→∞

c1√
log k

(
1

k

) α2

λ−1

for some c1 > 0. Hence, if α2 > λ− 1, a.s. for sufficiently large k, t ∈ [λk, λk+1], then

Bt
f(t)

6
Bλk

f(λk)
+ α.

This proves that lim sup Bt/f(t) 6 1+α for any α >
√
λ− 1, hence lim sup Bt/f(t) 6

1.

Note that, by giving for any ε > 0 easy upper bounds to the probability of the
events En = {sup[n,n+1] |Bs − Bn| > ε}, the above Theorem proves

lim sup
n→∞

Bn√
2n log log n

= 1 (2.8)

a.s. where Bn =
∑n

1 Xk, where the Xk’s defined as Bk−Bk−1 are independent standard
Gaussians. One may wonder if this extends to the arbitrary centered reduced random
variables Xk’s. The answer is yes, and a possible proof makes use of the Skorokhod
embedding, proved in the following section : for any X with expectation 0 and variance
1, given B a Brownian motion with natural filtration (Ft)t>0, there is a stopping time
T with expectation 1 such that

BT
law
= X. (2.9)

Theorem 2.22. Let X1,X2, . . . be iid random variables with expectation 0 and va-
riance 1, and Sn =

∑n
k=1 Xk. Then almost surely

lim sup
n→∞

Sn√
2n log log n

= 1.

Proof. For the given Brownian motion B, define by induction the sequence of stopping
times

T0 = 0

Tn+1 = Tn + T(ωn)

where T is the stopping time related to the Skorokhod embedding (2.9) and ωn =
(BTn+s − BTn , s > 0). Note that E(T) = 1, hence Tn < ∞ almost surely, so by the
strong Markov Theorem 2.19 ωn is independent of FTn . This implies that :

(i) the random variables Tn+1−Tn are independent, with expectation 1, so by the
strong law of large numbers Tn/n converges to 1 almost surely ;

(ii) (Sn, n > 0)
law
= (BTn , n > 0). Consequently, we need to prove that

lim sup
n→∞

BTn

f(n)
= 1,
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where f(n) =
√

2n log log n, as previously. By (2.8) we only need to prove that

BTn − Bn
f(n)

−→
n→∞

0

almost surely. To prove this, we split the randomness coming from the Brownian
motion and the stopping time by writing, for any ε > 0 and δ ∈ (0, 1),{∣∣∣∣BTn − Bn

f(n)

∣∣∣∣ > ε

}
⊂ {|Tn − n| > δn} ∪

{
sup

s∈[(1−δ)n,(1+δ)n]

∣∣∣∣Bs − Bn
f(n)

∣∣∣∣ > ε

}
.

As Tn/n → 1 a.s. the first event of the RHS doesn’t occur for sufficiently large
n. Concerning the second, if λ := 1 + δ and kn is the unique integer such that
λkn 6 n < λkn+1, then{

sup
s∈[n,(1+δ)n]

∣∣∣∣Bs − Bn
f(n)

∣∣∣∣ > ε

}
⊂

{
sup

s∈[λkn ,λkn+2]

∣∣∣∣Bs − Bn
f(λkn)

∣∣∣∣ > ε

}

⊂

{
sup

s∈[λkn ,λkn+2]

∣∣∣∣Bs − Bλkn

f(λkn)

∣∣∣∣ > ε/2

}
∪
{∣∣∣∣Bλkn − Bn

f(λkn)

∣∣∣∣ > ε/2

}

=

{
sup

s∈[λkn ,λkn+2]

∣∣∣∣Bs − Bλkn

f(λkn)

∣∣∣∣ > ε/2

}
=: Ekn .

A calculation similar to the one performed in the proof of Theorem 2.21 proves that
if ε2 > λ2 − 1 (true by choosing δ small enough),

∑
k P(Ek) < ∞ so, for sufficiently

large k, Ek does not occur almost surely. Hence, for n large enough,

sup
s∈[n,(1+δ)n]

∣∣∣∣Bs − Bn
f(n)

∣∣∣∣ 6 ε.

The analogous result for the maximum on [(1− δ)n, n] holds similarly, concluding the
proof.

7. Skorokhod’s embedding

Before making explicit the solution to (2.9), we prove the following useful lemma.

Lemma 2.23 (Wald’s identities). Let B be a Brownian motion and T a stopping
time such that E(T) <∞. Then the following identities hold :

(i) E(BT) = 0 ;

(ii) E(B2
T) = E(T).

Proof. To prove (i), we can bound

Bt∧T 6
bTc∑
k=1

sup
06t61

|Bt+k − Bk| =: M,

and observe that M is in L1 :

E(M) =

∞∑
k=1

E
(
1T>k sup

06t61
|Bt+k − Bk|

)

=

∞∑
k=1

P(T > k)E
(

sup
06t61

|Bt+k − Bk|
)

6 E(T + 1)E
(

sup
06t61

|Bt|
)
<∞.



Brownian motion 

As a consequence, (Bt∧T, t > 0) is uniformly integrable, and the straightforward
continuous analogue of Theorem 1.11 allows to apply the stopping time theorem at
time T, thus E(BT) = 0.

To prove (ii), let Tn = inf{t > 0 : |Bt| = n}. Then (B2
t∧Tn∧T− (t∧Tn ∧T), t > 0)

is a martingale, bounded by n2 +T, which is in L1, hence this martingale is uniformly
integrable so

E(B2
T∧Tn) = E(T ∧ Tn).

By Fatou’s lemma, this yields

E(B2
T) = E(lim inf

n→∞
B2

T∧Tn) 6 lim inf
n→∞

E(B2
T∧Tn) = lim inf

n→∞
E(T ∧ Tn) = E(T)

by monotone convergence. Conversely, note that for any stopping time S 6 T,

E(B2
T) = E(B2

S)+E((BT−BS)2)+2E (BS E(BT − BS | FS)) = E(B2
S)+E((BT−BS)2),

because E(BT | FS) = BS, by the stopping time theorem applied to the uniformly
integrable martingale (Bt∧T, t > 0). As a consequence, E(B2

T) > E(B2
S), which applied

to S = T ∧ Tn yields

E(B2
T) > lim

n→∞
E(B2

T∧Tn) = lim
n→∞

E(T ∧ Tn) = E(T)

by monotone convergence. This concludes the proof.

We now come back to the embedding problem. First, note that given any random
variable X (with a bounded density for the sake of simplicity here), finding a stopping
time such that BT ∼ X is an easy task.

1) There is a F1-measurable Z with Z ∼ X : by independence of the increments of
Brownian motion, there is a family of independent standard Gaussians, and from
this family Z is obtained by rejection sampling.

2) The choice T = inf{s > 2 : Bs = Z} is almost surely finite stopping time, and
obviously BT ∼ Z.

However, it is easy to prove that E(T) = ∞, which is not nice for applications. For
example, E(T) <∞ is essential in the proof of Theorem 2.22.

Note that, by the Wald identities, if E(T) < ∞, then E(BT) = 0 and E(B2
T) =

E(T), so the expectation 0 and finite variance hypothesis in the following theorem
are not restrictive. Moreover, the variance can be assumed to be 1, by the scaling
property of Brownian motion.

Theorem 2.24 (Skorokhod’s embedding). Let X be a centered random variable with
variance 1. Then there is a stopping time T with expectation 1 such that

BT
law
= X.

To prove this result, we follow the construction of T by Dubins. There are many
other constructions, at least twenty one of them being listed, with extensions and
applications, in Ob loj’s survey [14].

To prove the above Skorokhod embedding, a central tool is the convergence of a
special type martingale to a random variable with law X. More precisely, a discrete
martingale is said to be binary splitting if conditionally to the past, it only can take
two values :

|{Xn+1(ω) : (X0, . . . ,Xn)(ω) = (x0, . . . , xn)}| 6 2.

. This continuous extension will be proved in Chapter 3.
. For this, note that E(Ta) = ∞, where Ta = inf{s > 0 : Bs = a} and a 6= 0 ; indeed, if not,

Wald’s identity would give 0 = E(BTa ) = a. Then the result follows by conditioning on F1.
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Lemma 2.25. Let X be a random variable with finite variance. Then there is a binary
splitting martingale (Xn)n>0 such that Xn → X almost surely and in L2.

Proof. Define the sequence of random variables (Xn)n>0 by, at rank 0,{
X0 = E(X)
ζ0 = 1 if X > X0,−1 otherwise

,

and for any n > 1  Gn = σ(ζ0, . . . , ζn−1)
Xn = E(X | Gn)
ζn = 1 if X > Xn, −1 otherwise

.

In the following, the values ±1 for ζn play no role, any distinct two numbers are
sufficient. The process (Xn)n>0 is a martingale, because X is integrable and (Gn)n>0

is a filtration. Conditionally to (X0, . . . ,Xn−1), Xn may be in one of the n+1 intervals
and then one may think Xn can take n + 1 values. But Xn is actually constrained
to be in only 2 possible intervals the smallest ones surrounding Xn−1 : a calculation
shows that Xn − Xk has the same sign as X` − Xk for any ` > k. Hence X has the
binary splitting property.

Moreover,

E(X2) = E(X2
n) + E((X−Xn)2) + 2E (Xn E(X−Xn | Gn))

= E(X2
n) + E((X−Xn)2) > E(X2

n),

as a consequence (Xn)n>0 is a L2-bounded martingale, hence it converges almost

surely and in L2, to a random variable noted X.
We still need to prove that X = X. Note that :

• as Xn is uniformly L2-bounded and X ∈ L2, Yn := ζn(Xn+1 −X) is bounded is
L2 ;

• limn→∞Yn = |X − X| =: Y a.s. because if X > X, for sufficiently large n

Xn < X, and the same way if X < X.

If Yn is uniformly bounded in L2 and converges almost surely to some Y ∈ L2, then

E(Yn)→ E(Y). In our situation, as ζn is Gn+1-measurable, E(Yn) = 0, so E(Y) = 0,

which is the expected result : X = X almost surely.

Proof of Theorem 2.24. From the previous lemma, there is a discrete martingale
converging in L2 and a.s. to X, and for any n the support of Xn is noted {an, bn} =

f (n)(X0, . . . ,Xn−1).
Define Tn recursively by T0 = 0 and

Tn = inf{t > Tn−1 : Bt ∈ f (n)(BT0 , . . . ,BTn−1)}.

Then obviously (BTn)n>0 and (Xn)>0 have he same law as, for a binary splitting
martingale, there is only one possible choice in the transition probabilities.

Let T = limn→∞ Tn. One easily checks that this is a stopping time. The expec-
tation of Tn is finite : there are finitely many possible an and bn’s, so Tn(ω) 6 S :=

. To prove it, note that for any α > 0

E(|Yn −Y|) = E(|Yn −Y|1Yn6α) + E(|Yn −Y|1Yn>α)

6 E(|Yn −Y|1Yn6α) + E(|Yn −Y|2)1/2P(Yn > α)1/2.

The first term converges to 0 by dominated convergence, and in the second E(|Yn−Y|2) is uniformly

bounded and as P(Yn > α) 6 E(Y2
n)/α2, the second uniformly goes to 0 as α → 0, concluding the

proof.
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inf{t > 0 : Bt ∈ {−a, a}} for sufficiently large a, and this last stopping time has a
finite expectation. Hence, as a consequence, by Wald’s lemma, E(B2

Tn
) = E(Tn) and

by monotone convergence

E(T) = lim
n→∞

E(Tn) = lim
n→∞

E(B2
Tn) = E(X2) = 1,

as (BTn)n>0
law
= (Xn)>0 and Xn converges to X in L2. To conclude, finally note that

BTn converges in law to X and almost surely to BT, hence BT ∼ X.

8. Donsker’s invariance principle

Let X1,X2, . . . be iid centered random variables, with variance 1, and Sn =∑n
k=1 Xk. These partial sums can be extended to continuous argument by writing

St = Sbtc + (t− btc)(Sbtc+1 − Sbtc). (2.10)

Consider the normalized function

S(n)(t) =
Snt√
n
, 0 6 t 6 1.

Theorem 2.26. On the set of continuous functions on [0, 1], as n →∞ the process

S(n) converges in law to a Browian motion B.

The meaning of this convergence in law is : for any bounded F : C ([0, 1]) → R,
continuous for the L∞ norm,

E(F(S(n))) −→
n→∞

E(F(B)).

As an example of application, using Portmanteau’s theorem and the reflection prin-
ciple Theorem 2.20, if (Sn)n>0 is a standard random walk, and λ > 0,

P

(
sup
J1,nK

Sk > λ
√
n

)
−→
n→∞

√
2

π

∫ ∞
λ

e−
x2

2 dx.

Proof. Let B be a Brownian motion. From the Skorokhod embedding Theorem 2.24,
there is a stopping time T(ω) such that E(T) = 1 and BT ∼ X1. Define a sequence of
stopping times (Tn)n>0 by

T0 = 0

Tn+1 = Tn + T(ωn)

where ωn = (BTn+s − BTn , s > 0). By the strong Markov Theorem 2.19,

(BTn , n > 0)
law
= (Sn, n > 0).

Define St = BTbtc + (t − btc)(BTbtc+1
− BTbtc), which is an inoffensive redundancy

with (2.10) as both functions have the same law. Imagine we can prove the tightness
condition : for any ε > 0

P (An) −→
n→∞

0, An :=

{
sup
[0,1]

∣∣∣∣Bnt√n − Snt√
n

∣∣∣∣ > ε

}
. (2.11)

. E(S) =
∫
P(S > t)dt 6

∫
P(∀s ∈ [0, t], |Bs| < a)dt, and this integrand has bounded, for t > n, by

P(|B1 − B0| < 2a, . . . , |Bk − Bk−1| < 2a), hence decreases exponentially.
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Then the proof of the theorem easily follows : for any compact K ⊂ (C ([0, 1]), ‖‖∞)
with ε-neighborhood noted Kε,

P
(

Sn·√
n
∈ K

)
6 P

(
Bn·√
n
∈ Kε

)
+ P

(
sup
[0,1]

∣∣∣∣Bnt√n − Snt√
n

∣∣∣∣ > ε

)
,

so using (2.11),

lim sup
n→∞

P
(

Sn·√
n
∈ K

)
6 P

(
Bn·√
n
∈ Kε

)
.

As ε → 0, this converges to P (B ∈ K) by monotone convergence (K is closed). This
proves the convergence in law by Portmanteau’s theorem.

We are therefore led to prove (2.11). First note that, as Snt is affine on any interval
of type [k/n, (k + 1)/n], the event An is included in{

sup
[0,1]

∣∣∣∣Bnt√n − Sbntc√
n

∣∣∣∣ > ε

}
∪

{
sup
[0,1]

∣∣∣∣Bnt√n − Sbntc+1√
n

∣∣∣∣ > ε

}

=

{
sup
[0,1]

∣∣∣∣Bnt√n − BTbntc√
n

∣∣∣∣ > ε

}
∪

{
sup
[0,1]

∣∣∣∣Bnt√n − BTbntc+1+1√
n

∣∣∣∣ > ε

}
.

For any given δ > 0, the previous events union is included in A
(1)
n ∪A

(2)
n ∪A

(3)
n ∪A

(4)
n ,

where

A(1)
n =

{
∃(s, t) ∈ [0, 2]2 : |s− t| 6 δ,

∣∣∣∣Bnt√n − Bns√
n

∣∣∣∣ > ε

}
,

A(2)
n =

{
∃t ∈ [0, 1] :

1

n
|Tbntc − nt| > δ

}
,

A(3)
n =

{
∃t ∈ [0, 1] :

1

n
|Tbntc+1 − nt| > δ

}
,

A(4)
n =

{
Tn
n

> 2

}
.

From the strong law of large numbers, for sufficiently large n, A
(4)
n does not occur.

Concerning A
(2)
n and A

(3)
n , note that if xn/n → 1, then supJ1,nK |xk − k|/n → 0 ; as

Tn/n→ 1 almost surely, there is a.s. an index n0(ω) such that neither A
(2)
n nor A

(3)
n

occur for n > n0(ω). Finally,

P(A(1)
n ) = P(∃(s, t) ∈ [0, 2]2 : |s− t| 6 δ, |Bs − Bs| > ε),

converges as δ → 0+ by monotone convergence to

P(∩δ>0{∃(s, t) ∈ [0, 2]2 : |s− t| 6 δ, |Bs − Bs| > ε}).

This event is included in the non absolute continuity of Brownian motion, which is of

measure 0 as B is a.s. continuous on the compact [0, 1]. Hence P(A
(1)
n )→ 0, uniformly

in n, as δ → 0+, and all together allows to prove (2.11).



Chapter 3

Semimartingales

In this chapter, we aim to forget Brownian Motion to study more general stochastic
processes, irrespectively to their Gaussian or Markovian structure.

For the sake of concision, all processes in this chapter have values in R. All results
are true in the Rd case (and normed vector spaces I guess).

1. Filtrations, processes, stopping times

Definition 3.1. Given a probability space (Ω,F ,P), a filtration (Ft, t > 0) is an
increasing family of sub-σ-algebras of F .

For instance, if X = (Xt, t > 0) is a process (i.e. just a collection of random
variables, here indexed by R+), Ft = σ(Xs, s 6 t) defines a filtration. Given a

filtration (Ft, t > 0), one can define another one, (F+
t , t > 0), by

F+
t = ∩s>tFs.

In general, both filtrations are not the same. If case of an equality, the filtration is
called right-continuous.

A given filtration (Ft, t > 0) is called complete if

N = {A ∈ F | P(A) = 0} ⊂ F0.

From a filtration (Ft, t > 0), one can build its usual augmentation by making it

complete and right continuous, adding N to (F+
t , t > 0).

Definition 3.2. Given a filtration (Ft, t > 0), a process (Xt, t > 0) is called adapted
if, for any t > 0, Xt is Ft-measurable.

It is called progressively-measurable if for any t > 0

[0, t]× Ω → R
(s, ω) 7→ Xs(ω)

is measurable for the σ-algebra B([0, t])⊗Ft.
The set of A ∈ B(R+) ⊗ F such that 1A(s, ω) is progressively measurable is a

σ-algebra, called the progressive σ-algebra.

It is clear that a progressively-measurable process is adapted. An example of non-
progressively-measurable adapted process is the following : if the Xt’s are independent
Gaussian standard random variables, and Ft = σ(Xs, s 6 t), then obviously X is an
adapted process. But it is not progressively-measurable : P-almost surely (hence in
particular for some ω ∈ Ω) {s 6 t | Xs(ω) > 0} is not a Borel subset of [0, t]. Ho-
wever, under reasonable continuity assumptions, adapted processes are progressively-
measurable.

. This is usually called the canonical, or natural, filtration of the process. More precisely, we will
use this expression in the following for the usual augmentation of the filtration described hereafter.
. For example, Let Xt = εt, where ε is a Bernoulli random variable. Then, if Ft = σ(Xs, s 6 t), ε

is F+
0 -measurable but not F0-measurable


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Proposition 3.3. Let X be right-continuous and adapted. Then X is progressively-
measurable. This is also true if X is left-continuous.

Proof. Let Fεt = Ft+ε. Then an adapted process is progressively-measurable with
respect to (Ft, t > 0) if and only if it for any ε > 0 it is progressively-measurable with
respect to (Fεt , t > 0). Indeed, one implication is obvious because F t ⊂ Fεt . Assume
X is progressive with respect to any (Fεt , t > 0), ε > 0. This implies that, defining

Xε
s = Xs1s∈[0,t−ε] + Xt1s=t,

the application (s, ω) 7→ Xε
s(ω) is B([0, t])⊗F t-measurable. As X is the pointwise limit

of Xε on [0, t], this implies that (s, ω) 7→ Xs(ω), defined on [0, t]×Ω, is B([0, t])⊗F t-
measurable.

As a consequence, we only need to prove that given ε > 0, X is progressive with
respect to (Fεt , t > 0). Define the process Xn by

Xn
t =

∞∑
k=1

X k
n
1t∈[ k−1

n , kn [.

If X is right-continuous, Xn converges pointwise to X. Moreover, Xn is progressively-
measurable with respect to (Fεt , t > 0) if ε > 1/n. This proves that X is progressively-
measurable with respect to (Fεt , t > 0), concluding the proof. If X is left-continuous,
the proof does not require the filtration (Fεt , t > 0) : X is the pointwise limit of

Xn
t =

∞∑
k=1

X k
n
1t∈] kn ,

k+1
n ],

and each process Xn is progressively-measurable for (F t, t > 0).

We now introduce the strict analogue of stopping times of Chapter 1, in the
continuous setting. As in the discrete case, a random time is a stopping time if at
any time the past allows to determine if it takes values in the past. The σ-algebra
associated to a stopping time T is the set of events determined by history till T.

Definition 3.4. Given a probability space (Ω,F ,P) and a filtration (F t, t > 0), a
random variable T : Ω → R+ ∪ {∞} is (F t, t > 0)-stopping time if, for any t > 0,
{T 6 t} ∈ F t.

To any stopping time is associated a σ-algebra

FT = {A ∈ F | ∀t > 0,A ∩ {T 6 t} ∈ F t}.

Checking that this is indeed a σ-algebra is straightforward. Other easy properties
are (i) if S 6 T, FS ⊂ FT and (ii) T is FT-measurable. Other useful properties are
listed below.

Proposition 3.5. (i) A random variable T : Ω → R+ ∪ {∞} is a (F t+, t > 0)
stopping time if and only if, for any t > 0, {T < t} ∈ F t.

(ii) If S and T are stopping times, so are S ∧ T and S ∨ T.

(iii) If Sn is an increasing sequence of stopping times, then S = limn→∞ Sn is also a
stopping time.

(iv) If Sn is an decreasing sequence of stopping times, then S = limn→∞ Sn is also a
stopping time for the filtration (F t+, t > 0).

. The pointwise limit of a measurable functions is measurable, see e.g. [3]
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Proof. To prove (i), assume first that T is a (F t+, t > 0)-stopping time. Then

{T < t} = ∪s<t{T 6 s} ∈ ∪s<t (∩u>s Fu) ⊂ F t .

Conversely if, for any t, {T < t} ∈ F t, then

{T 6 t} = ∩s>t{T < s} ∈ ∩s>t Fs = F t+ .

Point (ii) follows from

{S ∧ T 6 t} = {S 6 t} ∪ {T 6 t} ∈ F t,
{S ∨ T 6 t} = {S 6 t} ∩ {T 6 t} ∈ F t,

and (iii), relies on
{S 6 t} = ∩{Sn 6 t} ∈ F t .

Finally, (iv) follows from

{S < t} = ∪{Sn < t} ∈ F t

and (i).

Most of the stopping times we will consider are hitting times of open or closed
subsets of a metric space (E, d), where X takes values in E. If X is right-continuous and
adapted, and O open in E, then TO = inf{t > 0 | Xt ∈ O} is a (F t+, t > 0)-stopping
time. Indeed,

{TO < t} = ∪s∈[0,t[∩Q{Xs ∈ O} ∈ F t .

If X is continuous, adapted, and C is closed in E, then TC = inf{t > 0 | Xt ∈ C} is a
stopping time :

{TC 6 t} = { inf
[0,t]

d(Xs,C) = 0} = { inf
[0,t]∩Q

d(Xs,C) = 0} ∈ F t .

More general examples of stopping times can be obtained through the following ge-
neral result.

Theorem 3.6. Suppose that the filtration (F t, t > 0) satisfies the usual condi-
tions (right-continuity and completeness). Let A ⊂ R+ × Ω such that the process
(1A(t, ω), t > 0) is progressively-measurable, and define the beginning of A by

BA(ω) = inf{t > 0 | (t, ω) ∈ A} (inf ∅ =∞).

Then BA is a stopping time.

Proof. The proof relies on the following difficult result of measure theory : if (E, E)
is a locally compact space with a countable base, endowed with its Borel σ-algebra
E , and if (Ω,F ,P) is a complete (in the sense that K ∈ F and P(K) = 0 imply that
if L ⊂ K then L ∈ F) probability space, then for every K ∈ E ⊗ F , the projection

π(K) = {ω ∈ Ω | ∃e ∈ E, (e, ω) ∈ A}

of K on Ω is in F .
One can apply this result, for a given t > 0, for F = F t, E = [0, t[ and K =

A ∩ ([0, t[×Ω). As (1A(t, ω), t > 0) is progressively-measurable, K is B(R+) ⊗ F t-
measurable, so π(K) ∈ F t. From the definitions we have

{BA < t} = π(K) ∈ F t,

so BA is a stopping time because the filtration is right-continuous.

. A proof can be found in [2]
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2. Martingales

Definition 3.7. Let (Ω,F ,P) be a probability space, and (F t, t > 0) a filtration. Then
a process (Xt)t>0 adapted to (F t, t > 0) is a P-martingale if it satisfies the following
conditions, for any t > 0 :

(i) E(|Xt|) <∞ ;

(ii) E(Xt | Fs) = Xs for any s 6 t, P-almost surely.

A submartingale (resp. supermartingale) is defined in the same way, except that E(Xt |
Fs) > Xs (resp. E(Xt | Fs) 6 Xs).

Examples of martingales are the following. Assume that, given a filtration (F t, t >
0), X is an adapted process with independent increments (i.e. for any s < t, Xt −Xs

is independent of Fs). Then

• if, for any t, Xt ∈ L1, (Xt − E(Xt), t > 0) is a martingale ;

• if, for any t, Xt ∈ L2, (X2
t − E(X2

t ), t > 0) is a martingale (note that there is no
such statement for higher powers of X) ;

• if there is λ > 0 such that, for any t, E(eλXt) < ∞, the following process is a
martingale : (

eλXt

E(eλXt)
, t > 0

)
.

The properties of discrete martingales from Chapter 1 have strict counterparts in
the continuous setting, given hereafter.

Proposition 3.8. If X is a (F t, t > 0)-submartingale and f is a convex, Lipschitz,
nondecreasing function, then f(X) is a (F t, t > 0)-submartingale.

If X is a (F t, t > 0)-martingale and f is a convex, Lipschitz function, then f(X)
is a (F t, t > 0)-submartingale.

Proof. Identical to Proposition 1.2, relying on Jensen’s inequality.

Given a process X, we note X∗t = sup[0,t] Xs.

Theorem 3.9. Let X be a right-continuous submartingale. Then for any λ > 0, t > 0,

P (X∗t > λ) 6
E(Xt1X∗t>λ)

λ
6

E(|Xt|)
λ

.

The same result holds if X is left-continuous.

Proof. From Theorem 1.6, the result is true when considering the supremum over finite
subsets of [0, t], and then over [0, t]∩A for any countable dense subset including t. As
X is right (or left) continuous, sup[0,t]∩A Xs = sup[0,t] Xs, concluding the proof.

Theorem 3.10. Let X be a right-continuous submartingale. Then for any p > 1,
t > 0,

E (|X∗t |p) 6
(

p

p− 1

)p
E (|Xt|p) ,

may the right member be infinite. The same result holds if X is left-continuous.

Proof. From Theorem 1.7, the result is true when considering the supremum over finite
subsets of [0, t], and then over [0, t]∩A for any countable dense subset including t. As
X is right (or left) continuous, sup[0,t]∩A Xs = sup[0,t] Xs, concluding the proof.
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Theorem 3.11. Let (Xt, t > 0) be a right-continuous submartingale. Assume that
supt E((Xt)+) < ∞. Then it converges almost surely to some X ∈ L1. The same
result holds if X is left-continuous.

Proof. In the same way as the proof of Theorem 1.9, using 1.8, for any a < b the
number of jumps from a to b along any countable subset of R+ is almost surely finite
(this is proved fo a finite set first and for countable sets by monotone convergence).
As a consequence, along Q+, (Xt, t > 0) converges to some X in L1. The right (or
left) continuity assumption allows to state the convergence along R+.

Theorem 3.12. Let (Xt, t > 0) be a right-continuous uniformly integrable martingale.
Then Xt converges almost surely and in L1(Ω,F ,P) to some integrable X ∈ R, and
Xt = E (X | Ft) for any t > 0. The same result holds if X is left-continuous.

Proof. The proof goes exactly the same way as for Theorem 1.10, in which discre-
tization plays no role. The right or left-continuity are required only to make use of
Theorem 3.11.

For the stopping time theorems, more care is required to adapt the discrete results
in a continuous setting. In particular, we prove the bounded case after the uniformly
integrable case, a fact clearly contrasting with the discrete case.

Theorem 3.13. Let (Xt)t>0 be a right-continuous uniformly integrable martingale,
and T, S two stopping times such that S 6 T. Then almost surely

E(XT | FS) = XS.

Proof. Let

Tn = inf

{
k

2n
| k ∈ N,T <

k

2n

}
.

Then one easily checks that the sequence (Tn, n > 0) is a sequence of stopping times
decreasing to T. From Theorem 1.11,

XTn+1 = E(XTn+1 | FTn),

so the sequence defined by Z−n = XTn is an inverse martingale with respect to the
filtration (FTn , n ∈ N). From Theorem 1.12, this inverse martingale converges almost
surely and in L1. For S 6 T another stopping time, defining in the same way

Sn = inf

{
k

2n
| k ∈ N,S <

k

2n

}
,

we know from Theorem 1.12 that XSn = E(XTn | FSn), so for any A ∈ FS ⊂ FSn ,

E(1AXSn) = E(1AXTn).

The convergence in L1 of XSn (resp XTn) to XS (resp. XT) by right-continuity allows
to conclude that for any A ∈ FS, E(1AXS) = E(1AXT), the expected result.

Note that in particular, the previous proof shows that for any stopping time T,
under the above hypotheses XT ∈ L1.

Theorem 3.14. Let (Xt)t>0 be a right-continuous uniformly integrable martingale,
and T, S two stopping times such that S 6 T < c a.s. for some constant c. Then
almost surely

E(XT | FS) = XS.

Proof. One can apply Theorem 3.13 to (Xt∧c, t > 0), which is right-continuous and
uniformly integrable because for t 6 c, Xt = E(Xc | F t). This gives the expected
result.
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We finish this martingale section with the stability of (uniformly integrable) mar-
tingales when frozen after a stopping time. This natural result actually requires the
stopping time theorems.

Theorem 3.15. Let T be a stopping time.

(i) If (Xt, t > 0) is a uniformy integrable martingale, so is (Xt∧T, t > 0).

(ii) If (Xt, t > 0) is a martingale, so is (Xt∧T, t > 0).

Proof. To prove (i), note that the equality

Xt∧T = E(XT | F t) (3.1)

would be sufficient. Indeed, it would first imply uniform integrability, as any set of
random variables of type (E(XT | F t), t > 0) with XT ∈ L1 is uniformly integrable
(indeed, XT ∈ L1 from Theorem 3.13). Moreover, the martingale property would
follow from the calculation

E(Xt∧T | Fs) = E(E(XT | F t) | Fs) = E(XT | Fs) = Xs∧T.

To prove (3.1), note first that by Theorem 3.13,

Xt∧T = E(XT | F t∧T) = E(XT1T6t | F t∧T) + E(XT1T>t | F t∧T).

The first term is also E(XT1T6t | F t) because XT1T6t is both F t and F t∧T-
measurable. The second term is also E(XT1T>t | F t) because for any A ∈ F t,
1A1T>t ∈ F t∧T, so

E(XT1T>t1A) = E(E(XT | FT∧t)1T>t1A) = E(E(XT1T>t | FT∧t)1A).

This proves (3.1). To prove (ii), note that for any c > 0 the process (Xt∧c, t > 0) is
a uniformly integrable martingale, so from (i) the process (Xt∧c∧T, t > 0) is also a
uniformly integrable martingale. In particular, for any s < t,

E(Xt∧c∧T | Fs) = Xs∧c∧T.

Choosing c > s ∨ t concludes the proof.

As a consequence of the above stopping time theorems, hitting times by Brownian
motion are well understood. In the following, B is a Brownian motion beginning at 0.
For x ∈ R, let Tx = inf{t > 0 | Bt = x}.

Corollary 3.16. For any a < 0 < b,

P(Ta < Tb) =
b

b− a
= 1− P(Ta > Tb).

Proof. Note first that both Ta and Tb are a.s. finite, because the Brownian motion is
a.s. recurrent :

P(Ta < Tb) + P(Ta > Tb) = 1. (3.2)

Moreover, from Proposition 3.5 and Theorem 3.15, (Bt∧Ta∧Tb , t > 0) is a martin-
gale. As it is bounded, it is uniformly integrable and Theorem 3.13 applies, with the
stopping time T =∞ (or Ta ∧ Tb) : in particular, E(BTa∧Tb) = B0, i.e. using (3.2)

aP(Ta < Tb) + bP(Ta > Tb) = 0. (3.3)

Equations (3.2) and (3.3) together give the result.
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Corollary 3.17. The hitting time Ta has the following Laplace transform : for any
λ > 0,

E
(
e−λTa

)
= e−|a|

√
2λ.

If a > 0 and Sa = inf{t > 0 | |Bt| = a}, then

E
(
e−λSa

)
=

1

cosh(a
√

2λ)
.

Proof. The process

M
(µ)
t = eµBt−µ

2

2 t, t > 0,

is a well-known martingale, which is bounded when stopped at Ta, and therefore

uniformly bounded. The stopping time theorem applied to (M
(µ)
t∧Ta

, t > 0) at time

T =∞ (or Ta) therefore yields E(Mµ
Ta

) = 1, i.e.

E
(
e−

µ2

2 Ta

)
= e−µa

because the Brownian motion is recurrent : BTa = a almost surely. Up to a change
of variables, the above equation is the expected result. Concerning Sa, look at the
martingale

Nt = M
(µ)
t + M

(−µ)
t , t > 0.

Then the same reasoning yields E(NSa) = 2, i.e.

(
eµa + e−µa

)
E
(
e−

µ2

2 Sa

)
= 2,

which gives the result by λ = µ2/2.

The following application is more striking as it does not depend on any structure
of the martingale M. This is a first glimpse of universality which will be proved in the
next chapter through the Dubins-Schwarz theorem.

Corollary 3.18. Let M be a positive continuous martingale beginning at M0 > 0,
and converging to 0 almost surely . Then

M0

supt>0 Mt

is uniform on [0, 1]. As a consequence, for any µ 6= 0, supt>0

(
µBt − µ2

2 t
)

has the

same law as an exponential random variable with parameter 1.

Proof. Take a > M0 and note here Ta = inf{t > 0 | Mt = a} (inf ∅ = ∞). Then the
martingale (Mt∧Ta , t > 0) is bounded, hence uniformly bounded, hence the stopping
time theorem yields, for T = Ta (or ∞),

aP(Ta <∞) = M0,

because M is continuous and MT equals 0 on {T = ∞}. The above equation can be
written

P
(

M0

supt>0 Mt
6

M0

a

)
=

M0

a
,

. There are many examples of such martingales, like (eBt−
t
2 , t > 0), or any exponential martingale,

cf Chapter 4.
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which is the first statement. Concerning the second, note that
(
eµBt−µ

2

2 t, t > 0
)

is a

continuous martingale beginning at 1 and converging to 0 almost surely. As a conse-

quence, supt>0 e
µBt−µ

2

2 t is distributed as the inverse of a uniform random variable on

[0, 1], noted U, so for any λ > 0

P
(

sup
t>0

(
µBt −

µ2

2
t

)
> λ

)
= P

(
log

(
1

U

)
> λ

)
= e−λ,

the expected result.

3. Finite variation processes

The stochastic processes we will consider will have an oscillating (of martingale
type) part and a finite variation component. This section reviews some basic properties

of this last part, which is always assumed continuous.

Definition 3.19. Given a filtered probability space (Ω,F , (F t)t>0,P), a process A :
Ω × R+ → R is called a finite variation process if all the following conditions are
satisfied :

1. For any ω, A is continuous.

2. For any ω, A0 = 0.

3. For any ω, there is a signed measure  µ such that for any t > 0

At = µ([0, t]).

Note that the continuity and initial value assumptions implies in particular that µ
has no atoms. Moreover, this definition and the following results could also be given
in an almost sure sense. This makes no fundamental difference in the following of the
course, by defining processes to be constantly 0 on the set of ω’s without the required
property : this will not change adaptedness as we will consider complete filtrations.

Note that the decomposition µ = µ+ − µ− as the difference between two positive
measures is not unique. However, it is unique when constrained to

supp(µ+) ∩ supp(µ−) = ∅.

Indeed, the uniqueness of such a decomposition follows from the necessary identity
µ+(B) = sup{µ(C) | C ⊂ B, C Borel set} . Concerning the existence, write first
µ = µ̃+−µ̃−, for some positive measures µ̃+ and µ̃−. Then µ̃+ (resp. µ̃−) is absolutely
continuous with respect to µ̃ = µ̃+ + µ̃−, so by the Radon-Nikodym theorem it has a
density λ+(t) (resp. λ−(t)) with respect to µ̃. Then, the choice

µ+(dt) = max(λ+(t)− λ−(t), 0)µ̃(dt)

µ−(dt) = max(λ−(t)− λ+(t), 0)µ̃(dt)

gives the expected decomposition. Note S+ (resp. S−) the support of µ+ (resp. µ−),
and |µ| = µ+ + µ−. Then dµ/d|µ| = 1S+ − 1S− .

Moreover, for a finite variation process, A(t) = mu+([0, t])−mu−([0, t]). As A is
continuous, µ+ and µ− have no atoms (because they have disjoint supports), so A is

. One can extend the notion of finite variation processes to the discontinuous case, but this is not
our purpose. Note that a contrario, in the preceding section we proved martingale properties also
in discontinuous cases, but this will be necessary when building the stochastic integral in the next
chapter.
. This is the difference of two positive measures with finite mass on any compact.
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the difference of two continuous increasing functions beginning at 0. This proves that
for any t > 0

sup
0=t0<···<tn=t

n∑
k=1

|Atk −Atk−1
| <∞,

where the supremum is over all n > 0 and subdivisions of [0, t]. The above result
justifies the name finite variation process. A less obvious fact is that the above su-
premum is the |µ|-measure of [0, t]. The proof is a beautiful example of a martingale
argument.

Theorem 3.20. Let A be a finite variation process. Then for any t > 0,

sup
0=t0<···<tn=t

n∑
k=1

|Atk −Atk−1
| = |µ|([0, t]),

where the supremum is over all n > 0 and subdivisions of [0, t].

Proof. The inequality sup0=t0<···<tn=t

∑n
k=1 |Atk − Atk−1

| 6 |µ|([0, t]) is obvious be-
cause

|Atk −Atk−1
| = |µ(]tk−1, tk]| 6 |µ|(]tk−1, tk].

Consider now any sequence of refined subdivisions of [0, t] with step going to 0, noted

0 = t
(n)
0 < · · · < t

(n)
pn = t, and the filtration F0 ⊂ · · · ⊂ Fn ⊂ · · · ⊂ B([0, t]) defined

as subsets of the Borel algebra by

Fn = σ(]t
(n)
k−1, t

(n)
k ], 1 6 k 6 pn).

This is indeed a filtration because the subdivisions are refined. Take Ω = [0, t], and
the probability measure

P(ds) =
|µ|(ds)
|µ|([0, t])

on Ω. On (Ω,B([0, t]), (Fn)n>0),P), look at the random variables

X(s) = 1S+(s)− 1S−(s),

Xn(s) = E(X | Fn)(s) =
µ(]t

(n)
k−1, t

(n)
k ])

|µ|(]t(n)
k−1, t

(n)
k ])

=
A
t
(n)
k

−A
t
(n)
k−1

|µ|(]t(n)
k−1, t

(n)
k ])

when s ∈]t
(n)
k−1, t

(n)
k ],

these last equalities being easily verified by definition of the conditional expectation.
As (Xn, n > 0) is a bounded martingale, it converges almost surely and in L1 to some
Y ∈ L1, and Xn = E(Y | Fn). As a consequence, for any n, E(X − Y | Fn) = 0.
As X and Y are in

∨
n Fn (concerning X, this is a consequence of the time step

going to 0), this implies X = Y almost surely. Hence Xn → X in L1, so in particular
E(|Xn|)→ E(|X|), which means that

pn∑
k=1

|A
t
(n)
k

−A
t
(n)
k−1

| −→
n→∞

|µ|([0, t]),

concluding the proof.

If A is a finite variation process and F : [0, t] → R a process, measurable for any

given ω, such that
∫ t

0
|f(s)||µ|(ds) is finite, then we define∫ t

0

f(s)dAs =

∫ t

0

f(s)µ(ds)∫ t

0

f(s)|dAs| =
∫ t

0

f(s)|µ|(ds).

Then the above definitions are compatible with sums of Riemann type for continuous
f for example.
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Proposition 3.21. Let A be a finite variation process and F : Ω × [0, t] → R a
left-continuous process. Then for any ω∫ t

0

F(s)dAs = lim
n→∞

pn∑
k=1

F(t
(n)
k−1)(A

t
(n)
k

−A
t
(n)
k−1

), (3.4)

∫ t

0

F(s)|dAs| = lim
n→∞

pn∑
k=1

F(t
(n)
k−1)|A

t
(n)
k

−A
t
(n)
k−1

|, (3.5)

for any sequence of subdivisions of [0, t], 0 = t
(n)
0 < · · · < t

(n)
pn = t, with step going to

0. For (3.5), we require the subdivisions to be refined.

Proof. Let Fn be the process defined as F(t
(n)
k−1) on ]t

(n)
k−1, t

(n)
k ]. Then, the right hand

side of (3.4) is
∫ t

0
Fn(s)µ(ds), so the result follows by dominated convergence.

Concerning (3.5),∣∣∣∣∣
pn∑
k=1

F(t
(n)
k−1)|A

t
(n)
k

−A
t
(n)
k−1

| −
∫ t

0

Fn(s)|dAs|

∣∣∣∣∣
6 ‖F‖L∞[0,1]

(
|µ|([0, t])−

pn∑
k=1

|A
t
(n)
k

−A
t
(n)
k−1

|

)
,

and from the proof of Theorem 3.20 this converges to 0 along any refined sequence of
subdivisions with step going to 0. Hence proving that∫ t

0

Fn(s)|dAs| −→
n→∞

∫ t

0

F(s)|dAs

is sufficient, and true by dominated convergence.

The refinement of the subdivisions is actually not necessary for (3.5) : exercise !
Moreover, note that the result of the above theorem is true when changing the evalua-

tion of F(t
(n)
k−1) from F(t

(n)
k ). This property will be false when considering stochastic

integrals in Chapter 4.
Finally, finite variation processes are stable in the following sense.

Proposition 3.22. Given a filtered probability space (Ω,F , (F t)t>0,P), let A be a
finite variation process and F progressively-measurable such that for any ω, t > 0,∫ t

0
|Fs||dAs| <∞. Then

F ·A : (ω, t) 7→
∫ t

0

Fs(ω)dAs(ω)

is a finite variation process.

Proof. Let µ be the signed measure associated to A. The process F ·A begins at 0, is
continuous and has bounded variation because

(F ·A)t = µ̃([0, t]), µ̃(ds) = Hsµ(ds),

with µ̃ a signed measure with no atoms (the finite mass condition holds thanks to∫ t
0
|Fs||dAs| < ∞). Consequently, the only condition to verify carefully is the adap-

tedness of F ·A. It is true that (F ·A)t is F t-measurable if F is of type 1]u,v](s)1A(ω)

where u, v 6 t and A ∈ F t. It is then true if F = 1A for any A ∈ B([0, t]) ⊗ F t,
by the monotone class theorem. Finally, by taking linear combinations of such sums
approximating F from below, and using dominated convergence (domination by an

integrable process holds as
∫ t

0
|Fs||dAs| <∞), we get the result for general F, as the

pointwise limit of measurable functions is measurable.
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4. Local martingales

Instead of considering only martingales, we focus on a more general class of pro-
cesses, defined below. The main reason is that together with finite variation processes,
they will have stability properties by composition (cf Chapter 4), a property not sha-
red by martingales. In the following, a probability space (Ω,F , (F t)t>0,P) is given,
that satisfies the usual conditions.

Definition 3.23. A process (Mt)t>0 is called a local martingale beginning at 0 if all
the following conditions are satisfied.

(i) It is adapted.

(ii) For all ω, M0 = 0.

(iii) For all ω, M is continuous.

(iv) There exists a sequence of stopping times Tn converging to ∞ for any ω such
that, for all n, MTn := (Mt∧Tn , t > 0), is a uniformly integrable martingale.

For such a sequence of stopping times, one says that (Tn, n > 0) reduces M. A process
M is called a local martingale if Mt = M0 + Nt, where M0 ∈ F0 and N is a local
martingale beginning at 0.

Note that one could give a similar definition of a local martingale in the discrete
setting. However, for such a definition, a discrete local martingale X is a martingale
if and only if, for any n, Xn ∈ L1. This characterization is not true in the continuous

setting, allowing local martingales to have much more exotic structures.

Proposition 3.24. For a given filtered probability space (Ω,F , (F t)t>0,P), all the
following statements hold.

(i) Any continuous martingale is a local martingale.

(ii) In Definition 3.23, condition (iv) can be equivalently replaced by : there exists a
sequence of stopping times Tn converging to ∞ for any ω such that, for all n,
MTn := (Mt∧Tn , t > 0), is a martingale.

(iii) If M is a local martingale and T is a stopping time, then MT = (Mt∧T, t > 0)
is a local martingale.

(iv) If M is a local martingale, (Tn)n>0 reduces M, and (Sn)n>0 are stopping times
converging to ∞, then (Sn ∧ Tn)n>0 reduces M.

(v) The set of local martingales (e.g. with values in R) is a (e.g. real) vector space.

(vi) If M is a nonnegative local martingale and M0 ∈ L1, then M is a supermartin-
gale.

(vii) If M is a local martingale and, for all t > 0, |Mt| 6 X where X ∈ L1, then M is
a martingale.

(viii) If M is a local martingale beginning at 0, then Tn = inf{t > 0 | |Mt| = n}
reduces M.

Proof. Point (i) follows from the possible choice Tn = n : for any constant c > 0,
(Mt∧c) is uniformly integrable, as all of its values are of type E(Mc | G) for some σ-
algebra G and Mc ∈ L1. For point (ii), note that if Tn →∞ and MTn is a martingale,
then MTn∧n is uniformly integrable, as shown for (i), and Tn∧n→∞. To prove (iii)
and (iv), note that by Theorem 3.15, if MTn is a uniformly integrable martingale, so

. See Chapter 4 for an example of a local martingale which is L1-bounded but not a martingale.
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is MTn∧T. The stability by addition mentioned in (v) is a direct consequence of (iv),
by choosing (Tn)n>0 reducing the first martingale and (Sn)n>0 reducing the second.
Point (vi) is a consequence of Fatou’s lemma : if M = M0 + N and (Tn)n>0 reduces
N, then

E(Mt | Fs) = E(lim
n

Mt∧Tn | Fs) 6 lim inf
n

E(Mt∧Tn | Fs) = lim inf
n

Ms∧Tn = Ms.

Note that Mt is in L1 precisely thanks to the above equation. The result (vii) relies
on dominated convergence applied to the identity

Ms∧Tn = E(Mt∧Tn | Fs),

where (Tn)n>0 reduces M. Finally, (viii) is a direct consequence of (ii) and (vii).

The following result states that local martingales and finite variation processes are
disjoint, up to the constant processes. Some weaker statements are intuitive and easy
to prove. For example, if M is C 1 and there exist c > 0 such that sup[0,1] |M′| < c

almost surely, then M cannot be a nontrivial martingale : the martingale property
gives for any ε > 0

E
(

Mt+ε −Mt

ε
| F t

)
= 0,

so by dominated convergence E(M′t | F t) = 0. But M′t is F t-measurable (by conside-
ring increasing rates on the left now), so M′t = 0 almost surely, and as M′ is continuous
M is constant almost surely. This result extends to finite variation processes.

Theorem 3.25. Let M be a local martingale beginning at 0. If M is a finite variation
process, then M is indistinguishable from 0.

Proof. Assume M is a finite variation process, and chose

Tn = inf{t > 0 |
∫ t

0

|dMs| > n}.

Then Tn → ∞ and Tn is a stopping time, for example by Theorem 3.6. The local
martingale MTn is bounded by n, so it is a martingale by Proposition 3.24. As a
consequence, for any subdivision 0 = t0 < · · · < tp = t,

E
(

(MTn
t )2

)
=

p∑
k=1

E
(

(MTn
tk

)2 − (MTn
tk−1

)2
)

=

p∑
k=1

E
(

(MTn
tk
−MTn

tk−1
)2
)

6 E

(
max
`

∣∣∣MTn
t`
−MTn

t`−1

∣∣∣ p∑
k=1

∣∣∣MTn
tk
−MTn

tk−1

∣∣∣) 6 nE
(

max
`

∣∣∣MTn
t`
−MTn

t`−1

∣∣∣) .
As this maximum is bounded by n and M has continuous trajectories, dominated
convergence allows to conclude that

E
(

(MTn
t )2

)
= 0,

by choosing subdivisions with time step going to 0. By Fatou’s lemma, one can take
the n→∞ limit to conclude E(M2

t ) = 0, so Mt = 0 almost surely. As M is continuous,
this is equivalent to being indistinguishable from 0.

. Pessimistic people will conclude that that there are no physically reasonable fair games. Opti-
mistic people will conclude that, as fair games exist, infinite variation processes exist.
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5. Bracket

Theorem 3.25 proved that nontrivial local martingales have infinite variation. But
rescaling the increments, there is a process measuring the oscillations that is not
trivial : the good scale consists in considering the square of the increments ; this
limiting process is defined in the important theorem hereafter.

Theorem 3.26. Let M be a local martingale. Then there exists a unique (up to
indistinguishability) increasing continuous variation process process, noted 〈M,M〉,
such that (M2

t − 〈M,M〉t, t > 0) is a local martingale. Moreover, if (0 = t
(n)
0 < t

(n)
1 <

. . . , n > 0) is any sequence of subdivisions of R+ with step going to 0, then

〈M,M〉t = lim
n→∞

∑
k>1

(
M
t
(n)
k ∧t

−M
t
(n)
k−1∧t

)2

,

uniformly in the sense of convergence in probability . The process 〈M,M〉, often noted
〈M〉, is called the bracket (or quadratic variation) of M.

As an example, if B is a Brownian motion then (B2
t − t, t > 0) is a martingale, so

〈B〉t = t. Note that in general the bracket is not deterministic.

Proof. Uniqueness of quadratic variation is an easy consequence of Theorem 3.25
We will first prove the existence of the bracket when M is a true martingale, and

|M| almost surely bounded by some K > 0. For a subdivision δ = {0 = t0 < t1 . . . }
and a process Y, we note (Q for quadratic)

Q
(Y,δ)
t =

∑
k>1

(
Y
t
(n)
k ∧t

−Y
t
(n)
k−1∧t

)2

,

By a simple calculation

X
(δ)
t := M2

t −Q
(M,δ)
t = 2

∑
k>1

M
t
(n)
k−1

(
M
t
(n)
k ∧t

−M
t
(n)
k−1∧t

)
. (3.6)

Therefore, (X
(δ)
t , t > 0) is a continuous martingale (just like in the case of Proposition

1.4). For a sequence (δn, n > 0) of subdivisions with step going to 0, we want to find

a subsequence of (X(δn), n > 0) converging uniformly on compact sets. Note

∆
(n,m)
t = X

(δn)
t −X

(δm)
t = Q

(M,δm)
t −Q

(M,δn)
t ,

which is a martingale, so((
∆

(n,m)
t

)2

−Q
(∆(n,m),δn∪δm)
t , t > 0

)
is a martingale as well, by the same decomposition used to prove that X(δ) is a

martingale. As a consequence, the expectation of
(

∆
(n,m)
t

)2

is also a discrete analogue

of the quadratic variation of a finite variation process. We therefore expect this to go

. This means that for any ε > 0,

P

 sup
s∈[0,t]

∣∣∣∣∣∣〈M,M〉s −
∑
k>1

(
M
t
(n)
k
∧s
−M

t
(n)
k−1
∧s

)2
∣∣∣∣∣∣ > ε

 −→ 0
n→∞

.

. For any numbers a′ks, a
2
n −

∑n
k=1(ak − ak−1)2 = 2

∑n
k=1 ak−1(ak − ak−1).



 Semimartingales

to 0, which would prove that the sequence of the (X
(δn)
t , n > 0) is a Cauchy sequence

in L2, hence converging. Let us prove it. Note that, as (a− b)2 6 2(a2 + b2),

Q
(A−B,δ)
t 6 2

(
Q

(A,δ)
t + Q

(B,δ)
t

)
,

so in order to prove that E
((

∆
(n,m)
t

)2
)

converges to 0, a sufficient condition is

E
(

Q
(Q(M,δn),δn∪δm)
t

)
−→

n,m→∞
0. (3.7)

Note εn the supremum of |Mu −Mv| over all u, v, in [0, t] such that u− v is smaller
than the time step of δn. Then if sk−1 and sk are successive elements of δn ∪ δm, then

|Q(M,δn)
sk −Q

(M,δn)
sk−1 | 6 εn|Msk −Msk−1

|, hence

Q
(Q(M,δn),δn∪δm)
t 6 ε2

n

∑
k>1

(
Msk∧t −Msk−1∧t

)2
.

As the quadratic increments is uniformly bounded in L2 by 8K4, we get by the
Cauchy-Schwarz inequality

E
(

Q
(Q(M,δn),δn∪δm)
t

)
6
(
8K4 E(ε4

n)
)1/2

. (3.8)

By dominated convergence (εn → 0 a.s. and εn 6 2K), this goes to 0 as n→∞. We

have therefore proved (3.7), so ∆
(n,m)
t converges to 0 in L2 as n,m→∞. By Doob’s

inequality, this implies that

E

(sup
[0,t]

(X(δn) −X(δm))

)2
 −→

n,m→∞
0,

so there is a subsequence of the X(δn)’s converging almost surely, uniformly, on [0, t].

Let X denote this (continuous) limit. As the subsequence of the X(δn)’s converges
to X, in L2, their martingale property is preserved in the limit : X is a martingale.

Moreover, from the definition of Q
(M,δ)
t , M2 − X(δ) is an increasing process. This

property remains for M2 −X by uniform convergence. For s ∈ [0, t], define

〈M〉s = M2
s −Xs.

From the previous discussion, 〈M〉 satisfies all required properties of the bracket on
[0, t]. By uniqueness of the bracket, the value 〈M〉s is independent of the choice of the
horizon t > s, and of the choice of the subsequence providing uniform convergence.

Moreover, the above reasoning has proved that X
(δn)
s − X

(δm)
s is a Cauchy sequence

in L2, and as εn in (3.8) can be chosen identical for any choice of s ∈ [0, t], the
convergence is in L2 and uniform on compact sets.

. To prove this, first check for any subdivision δ = {0 = t0 < t1 < . . . } the identity(
Q

(M,δ)
t

)2
=
∑
k>1

(Msk∧t −Msk−1∧t)
4 + 2

∑
k>1

(
Q

(M,δ)
sk∧t −Q

(M,δ)
sk−1∧t

)(
Q

(M,δ)
t −Q

(M,δ)
sk∧t

)
.

As X(δ) is a martingale, E(Q
(M,δ)
t −Q

(M,δ)
sk∧t | Fsk∧t) = E(M2

t −M2
sk∧t | Fsk∧t), so using |M| 6 K

E
((

Q
(M,δ)
t

)2)
6 4K2

E
(

Q
(M,δ)
t

)
+
∑
k>1

(
Q

(M,δ)
sk∧t −Q

(M,δ)
sk−1∧t

)
= 8K2 E

(
Q

(M,δ)
t

)
= 8K2 E

(
M2
t

)
6 8K4.
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This bounded martingale case extends easily. First, note that if the result is true
for local martingales beginning at 0, it is true for local martingales : if Mt = M0 + Nt

with M0 ∈ F0 and N a local martingale beginning at 0, as M0Nt is a local martingale,
so is M2

t − 〈N〉t = N2
t − 〈N〉t + M2

0 + 2M0Nt.
Hence we can assume M0 = 0. We localize M by Tn = inf{t > 0 | |Mt| = n}.

Then, by Proposition 3.24, MTn is a local martingale, bounded by n, so we can
apply the previous study : there is an increasing process, noted 〈M〉(n), such that

(MTn)2 − 〈M〉(n) is a martingale. By uniqueness, for m 6 n, (〈M〉(n))Tm = 〈M〉(m).
Thanks to this coherence property, one can define a a process 〈M〉 such that for any n,
(MTn)2−〈M〉Tn is a martingale. As Tn →∞ almost surely, this means that M2−〈M〉
is a local martingale.

Concerning the uniform convergence of quadratic increments to the bracket, this
property is true for MTn)2 − 〈M〉Tn in L2. This with the asymptotics (by dominated
or monotone convergence)

P(Tn 6 t) −→
n→∞

0

allows to conclude that, uniformly, the convergence holds in probability.

Note that equation (3.6) can be read in the limit as M2
t −〈M〉t = 2

∫ t
0

MtdMt. This
is the first example of an Itô-type formula, from which we will derive more general
stochastic calculus rules in Chapter 4.

As we defined the bracket of one local martingale, we can define the quadratic
variation for two local martingales by polarization.

Definition 3.27. Let M and N be two local martingales. Then

〈M,N〉 =
1

2
(〈M + N,M + N〉 − 〈M,M〉 − 〈N,N〉) .

Thanks to Theorem 3.26, the reader will easily check the following properties of
the bracket :

(i) Up to indistinguishability, 〈M,N〉 is the unique finite variation process such that
MN− 〈M,N〉 is a local martingale.

(ii) The function (M,N) 7→ 〈M,N〉 is symmetric, bilinear.

(iii) If (0 = t
(n)
0 < t

(n)
1 < . . . , n > 0) is any sequence of subdivisions of R+ with step

going to 0, then

〈M,N〉t = lim
n→∞

∑
k>1

(
M
t
(n)
k ∧t

−M
t
(n)
k−1∧t

)(
N
t
(n)
k ∧t

−N
t
(n)
k−1∧t

)
, (3.9)

in probability, uniformly for t in compact sets.

(iv) For any stopping time T, t > 0, 〈M,N〉t∧T = 〈MT,N〉t = 〈MT,NT〉t.

As an example, consider on the same probability space two independent Brownian
motions B1 and B2. Then B1B2 is a local martingale, so 〈B1,B2〉 = 0. If B = B1 and

B̃ = ρB1 +
√

1− ρ2B2 for some ρ ∈ [−1, 1], bilinearity implies

〈B, B̃〉t = ρt.

As the bracket is a finite variation process, one can consider, as in Section 3, integrals
with respect to it. Then these integrals with respect to cross and diagonal brackets
are related by the following inequality, by Kumita and Watanabe.
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Theorem 3.28. Let H, K be two progressively-measurable  processes and M, N, two
local martingales. Then, for any t ∈ R+ ∪ {∞},∫ t

0

|HsKs| |d〈M,N〉s| 6
(∫ t

0

H2
s d〈M〉s

)1/2(∫ t

0

K2
s d〈N〉s

)1/2

,

may some terms be infinite.

Proof. First note that, by the approximation (3.9) and the Cauchy-Schwarz inequality,
for any given s < t,

|〈M,N〉t − 〈M,N〉s| 6 (〈M〉t − 〈M〉s)1/2
(〈N〉t − 〈N〉s)1/2

,

almost surely. As these are continuous processes, this inequality holds almost surely
for any s < t. Using Cauchy-Schwarz again, for s = t0 < · · · < tn = t, the above
inequality yields

n∑
k=1

∣∣〈M,N〉tk − 〈M,N〉tk−1

∣∣ 6 n∑
k=1

(
〈M〉tk − 〈M〉tk−1

)1/2 (〈N〉tk − 〈N〉tk−1

)1/2
6

(
n∑
k=1

(
〈M〉tk − 〈M〉tk−1

))1/2( n∑
k=1

(
〈N〉tk − 〈N〉tk−1

))1/2

= (〈M〉t − 〈M〉s)1/2
(〈N〉t − 〈N〉s)1/2

,

so using Theorem 3.20, we get∫ t

s

|d〈M,N〉u| 6
(∫ t

s

d〈M〉u
)1/2(∫ t

s

d〈N〉u
)1/2

This inequality can be extended to any Borel bounded set B in R+, first through
the finite number of intervals case (still by Cauchy-Schwarz) and then by monotone
classes : ∫

B

|d〈M,N〉u| 6
(∫

B

d〈M〉u
)1/2(∫

B

d〈N〉u
)1/2

.

Now, for functions of type H =
∑
h`1B` , K =

∑
k`1Bi , with disjoint bounded Borel

sets Bi’s,∫
|HsKs| |d〈M,N〉s| =

∑
`

|h`k`|
∫

B`

|d〈M,N〉u|

6
∑
`

|h`k`|
(∫

B`

d〈M〉u
)1/2(∫

B`

d〈N〉u
)1/2

6

(∑
`

h2
`

∫
B`

d〈M〉u

)1/2(∑
`

k2
`

∫
B`

d〈N〉u

)1/2

=

(∫ t

0

H2
s d〈M〉s

)1/2(∫ t

0

K2
s d〈N〉s

)1/2

.

Approximation of progressively-measurable processes as increasing limit of such func-
tions ends the proof.

. The proof actually does not require adaptedness : (ω, t) 7→ Ht(ω) being B(R+)⊗F-measurable
(and the same for K) is sufficient, but in the following we will always apply it in the progressively-

measurable case.
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Another important property of the bracket is that it characterizes integrability of
local martingales.

Theorem 3.29. Let M be a local martingale, M0 = 0.

(i) The process M is a L2-bounded martingale  if and only if E(〈M〉∞) < ∞. In
such a case, M2 − 〈M〉 is a uniformly integrable martingale.

(ii) The process M is a square integrable martingale  if and only if for any t > 0,
E(〈M〉t) <∞. In such a case, M2 − 〈M〉 is a martingale.

Proof. For (i) assume first that M is a L2-bounded martingale. It is therefore uni-
formly integrable and converges almost surely to some M∞. Moreover, from Doob’s
inequality,

E
(

sup
t>0

M2
t

)
6 4 sup

t>0
E
(
M2
t

)
<∞. (3.10)

As a consequence, if we define Tn = inf{t > 0 | 〈M〉t > n}, (this is easily shown to be
a stopping time because the bracket is progressively-measurable)(

M2
t∧Tn − 〈M〉t∧Tn , t > 0

)
is a local martingale (by Proposition 3.24) bounded by

(
supt>0 M2

t

)
+ n ∈ L1, so it is

a true martingale (still by Proposition 3.24), so

E (〈M〉t∧Tn) = E
(
M2
t∧Tn

)
.

Dominated convergence allows to take t→∞ on the right hand side, and monotone
convergence on the left hand side :

E (〈M〉Tn) = E
(
M2

Tn

)
.

Now, monotone convergence on the left and dominated convergence on the right yield

E (〈M〉∞) = E
(
M2
∞
)
.

In particular, E (〈M〉∞) is finite. This implies that M2 − 〈M〉 is bounded by an inte-

grable random variable (
(
supt>0 M2

t

)
+ 〈M〉∞), so it is a uniformly integrable martin-

gale.

Suppose now that E (〈M〉∞) <∞ and note T̃n = inf{t > 0 | |Mt| > n}. Then MT̃n

(bounded by n) and (MT̃n)2 − 〈M〉T̃n (bounded by n2 + 〈M〉Tn ∈ L1) are uniformly
integrable martingales. Hence, for any stopping time S, by Theorem 3.13,

E
(

M2
S∧T̃n

)
= E(〈M〉S∧T̃n

).

Fatou’s lemma therefore yields

E(M2
S) 6 E(〈M〉S) 6 E(〈M〉∞) <∞.

In particular, M is L2-bounded. Moreover, it is a martingale : in the identity

E(Mt∧T̃n
| Fs) = Ms∧T̃n

,

the limit n → ∞ is allowed by dominated convergence. Indeed, the Mt∧T̃n
’s are

bounded in L2 (E(supt M2
t ) <∞, so E(supn M2

t∧T̃n
) <∞), hence in L1.

For (ii), by Doob’s inequality, if M is square integrable, (Ms∧t, c > 0) is L2-
bounded so, by (i), E(〈M〉t) <∞. Reciprocally, if E(〈M〉t) <∞ then (i) implies that
(Ms∧t, c > 0) is bounded in L2, in particular E(M2

t ) < ∞. Finally, in such a case,
from (i) the process (M2

s∧t − 〈M〉s∧t, s > 0) is a (uniformly integrable) martingale, so
M2 − 〈M〉 is a martingale.

. supt>0 E(|Mt|2) <∞
. For any t > 0, E(|Mt|2) <∞.
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Part (i) of Theorem 3.29 has the following easy consequence.

Corollary 3.30. Let M be a local martingale, with M0 = 0 almost surely. Then M is
indistinguishable from 0 if and only if 〈M〉 is identically 0.

Proof. If M is indistinguishable from 0, it is clear that the bracket vanishes (as a limit
of quadratic increments). Reciprocally, if 〈M〉 ≡ 0, then by (i) in Theorem 3.29 M2

is a martingale so, for any given t, E(M2
t ) = 0, so Mt = 0 almost surely. One can

conclude by continuity that M is indistinguishable from 0.

Finally, the class of processes we will consider in the next chapter, and for which
a stochastic calculus will be developed, are of the following type, gathering the types
we have considered till now.

Definition 3.31. Given a probability space (Ω,F , (F t)t>0,P), a process X is called
a semimartingale if it is of type

X = X0 + M + A

where X0 ∈ F0, M is a local martingale beginning at 0 and A is a finite variation
process.

Note that, by Theorem 3.25, such a decomposition is unique, up to indistin-
guishability. As a consequence, one can define without ambiguity the bracket of

X = X0 + M + A and X̃ = X̃0 + M̃ + Ã as

〈X, X̃〉 = 〈M, M̃〉.

In particular, the bracket of a finite variation process with any semimartingale is
always 0. Then the reader can prove that the bracket is still given as a limit of

increment (the finite variation part does not contribute) : if (0 = t
(n)
0 < t

(n)
1 <

. . . , n > 0) is any sequence of subdivisions of R+ with step going to 0, then in the
sense of convergence in probability

〈X, X̃〉t = lim
n→∞

∑
k>1

(
X
t
(n)
k ∧t

−X
t
(n)
k−1∧t

)(
X̃
t
(n)
k ∧t

− X̃
t
(n)
k−1∧t

)
. (3.11)

After these many efforts to define semimartingales, the reader may reasonably
wonder whether this is a natural class of processes to consider. One possible reason
for paying attention to these processes is that they are stable when composed with
smooth function (of class C 2) : this is part of the next chapter, through the famous
Itô formula. Another reason is that, up to a deterministic part, processes with inde-
pendent increments are semimartingales : the proof of the following result (that we
state only in the continuous case) can be found in [7].

Theorem 3.32. If, given a probability space, the process Y is continuous with inde-
pendent increments, then it takes the form

Y = X + F,

where X is a semimartingale with independent increments and F is a deterministic
continuous function.



Chapter 4

The Itô formula and applications

The purpose of this chapter is to give a rigorous meaning to∫
HsdMs

where H is a progressively measurable process and M is a local martingale. Once such
integrals defined, calculus rules are given for composing sufficiently smooth functions
with semimartingales (Itô’s formula), allowing in particular to prove that semimartin-
gales is a class of processes stable when composed with C 2 functions. Consequences of
this in terms of occupation properties of Brownian motions, partial differential equa-
tions (the Dirichlet problem) and change of measure on the Wiener space (Girsanov’s
theorem) are then developed.

1. The stochastic integral

Definition 4.1. We note H2 the set of (continuous) L2-bounded martingales : M ∈ H2

if supt>0 E((Mt)
2) <∞.

Note that, if M ∈ H2, it converges almost surely and has a finite bracket :
E(〈M〉∞) <∞. Moreover, as a simple application of the Kunita Watanabe inequality,
if M and N are in H2,

E(|〈M,N〉∞|) 6 E (〈M〉∞)
1/2 E (〈N〉∞)

1/2
.

This means that we can define a scalar product on H2 by

(M,N)H2 = E (〈M,N〉∞) ,

and ‖M‖H2 = (〈M〉∞)1/2 defines a norm, associated to this scalar product : we have
already seen that if ‖M‖H2 = 0, then M is indistinguishable from 0. An important
point is that the space (H2, ‖‖H2) is complete.

Proposition 4.2. The space (H2, ‖‖H2) is a Hilbert space.

Proof. We only still need to prove that this space is complete. Consider a Cauchy
sequence (M(n))n>0 :

lim
m,n→∞

E
(

(M(n)
∞ −M(m)

∞ )2
)

= lim
m,n→∞

E
(
〈M(n) −M(m)〉∞

)
= 0.

Hence, by the Doob inequality,

lim
m,n→∞

E
(

sup
t>0
|M(n)

t −M
(m)
t |2

)
= 0, (4.1)

so we can find an increasing sequence (nk)k>0 such that

E

( ∞∑
k=1

sup
t>0
|M(nk)

t −M
(nk−1)
t |

)
6
∞∑
k=1

E
(

sup
t>0
|M(nk)

t −M
(nk−1)
t |2

)1/2

<∞. (4.2)


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As a consequence,
∑∞
k=1 supt>0 |M

(nk)
t − M

(nk−1)
t | is almost surely finite, so M(nk)

converges uniformly to some continuous adapted (the pointwise limit of measurable

functions is measurable) process M. For any given s and t, as M
(nk)
t (resp. M

(nk)
s )

converges in L2 to Mt (resp. Ms), in the martingale property

E(M
(nk)
t | Fs) = M(nk)

s ,

one can take the limits to conclude that M is a martingale. Moreover, as the M(nk)’s

satisfy (4.1), all M
(nk)
t ’s are uniformly bounded in L2 and M ∈ H2. Finally, M(nk)

converges to M in H2, because

E
(
〈M(nk) −M〉∞

)
= E

(
(M(nk)
∞ −M∞)2

)
→ 0,

e.g. by (4.2). This implies, by the Cauchy condition, that M(n) converges to M in H2

as well.

Definition 4.3. For M ∈ H2, let L2(M) be the space of progressively measurable
processes H such that

E
(∫ ∞

0

H2
sd〈M〉s

)
<∞.

Note that, as an L2 space (more precisely, one can easily check that L2(M) =

L2(R+×Ω,F , ν), with F is the progressive σ-algebra and ν(A) = E(
∫∞

0
1A(s, ·)d〈M〉s)

is a well-defined finite measure), this is a Hilbert space for

(H,K)L2(M) = E
(∫ ∞

0

HsKsd〈M〉s
)

in the sense that ‖H‖L2(M) = 0 if and only if ν-almost surely H = 0. Note also that
in the above definition, H is not necessarily continuous.

Definition 4.4. The vector subspace of L2(M) consisting in step processes is noted
E. More precisely, H ∈ E if there is some p > 1 and 0 = t0 < · · · < tp such that

Hs(ω) =

p−1∑
k=0

Hk(ω)1]tk,tk+1](s),

where Hk ∈ Ftk is bounded.

Proposition 4.5. For any M ∈ H2, E is dense in L2(M).

Proof. We need to prove that if K ∈ L2(M) is orthogonal to E , then K = 0. If K is
orthogonal to F1]s,t] ∈ E , where F ∈ Fs is bounded, then

E
(

F

∫ t

s

Kud〈M〉u
)

= 0. (4.3)

Let Xt =
∫ t

0
Kud〈M〉u. Then Xt ∈ L1, as a consequence of the Cauchy-Schwarz

inequality and M ∈ H2, K ∈ L2(M). Then (4.3) means that, for any bounded F ∈ Fs,
E((Xt − Xs)F) = 0, so Xs = E(Xt | Fs) : X is a martingale. But this is also a finite
variation process, so it is indistinguishable from 0. In other words, for any t > 0,∫ t

0

Kud〈M〉u = 0,

so K = 0, ν-almost everywhere on R+ × Ω.
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Theorem 4.6. Let M ∈ H2. To H ∈ E, written Hs(ω) =
∑p−1
k=0 Hk(ω)1]tk,tk+1](s), we

associate H ·M ∈ H2 defined by

(H ·M)t =

p∑
k=1

Hk

(
Mtk+1∧t −Mtk∧t

)
.

Then the following results hold.

(i) The map H 7→ H ·M can be uniquely extended into an isometry from L2(M) to
H2.

(ii) The process H ·M obtained by the previous extension is characterized by   : for
any N ∈ H2,

〈H ·M,N〉 = H · 〈M,N〉.

(iii) If T is a stopping time, then

(1]0,T]H) ·M = (H ·M)T = H ·MT.

(iv) The so-called stochastic integral H ·M of H with respect to M satisfies the follo-
wing associativity relation : if G ∈ L2(M) anf H ∈ L2(G ·M), then GH ∈ L2(M)
and

(GH) ·M = G · (H ·M).

Proof. To show (i), we first need to check that

E → H2

H 7→ H ·M

is an isometry from E to H2. First, one easily gets that H ·M is a L2 bounded mar-

tingale, and as 〈H ·M〉t =
∑p−1
k=1 H2

k(〈M〉tk+1∧t − 〈M〉tk∧t),

‖H ·M‖2H2 = E

(
p−1∑
k=1

H2
k(〈M〉tk+1

− 〈M〉tk)

)
= E

(∫ ∞
0

H2
sd〈M〉s

)
= ‖H‖2L2(M).

From the two preceding propositions, E is dense in the Hilbert space L2(M), so this
isometry can be extended in a unique way as an isometry between (L2(M), ‖‖L2(M))

and (H2, ‖‖H2).
Concerning (ii), a calculation allows to prove the expected relation when H ∈ E :

. In the following equation, the notation H · 〈M,N〉 refers to the usual Stieljes-type integral with

respect to a finite variation process, in the sense of Proposition 3.22
. This characterization also can give a definition of the stochastic integral : as

H2 → R
N 7→ E((H · 〈M,N〉)∞)

is continuous (by Kunita-Watanabe) and linear, by the Riesz representation theorem there is a unique

element H ·M ∈ H2 such that for any N ∈ H2

E((H · 〈M,N〉)∞ = E(〈H ·M,N〉∞)
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〈H ·M,N〉t = 〈
p∑
k=1

Hk

(
Mtk+1∧· −Mtk∧·

)
,N〉t

=

p∑
k=1

Hk〈Mtk+1∧· −Mtk∧·,N〉t

=

p∑
k=1

Hk

(
〈M,N〉tk+1∧t − 〈M,N〉tk∧t

)
=

∫ t

0

Hsd〈M,N〉s

〈H ·M,N〉 = H · 〈M,N〉.

To prove this formula for general H ∈ L2(M), consider a sequence H(n) in E
converging to H in L2(M). Then, by the isometry property, H(n) · M converges to
H ·M in H2. We will justify the steps of the following equalities afterwards :

〈H ·M,N〉∞ = lim
n→∞

〈H(n) ·M,N〉∞

= lim
n→∞

(H(n) · 〈M,N〉)∞

= (H · 〈M,N〉)∞

The first equality is in the sense of a L1-limit, and a consequence of the Kunita-
Watanabe inequality, where we take X = H(n) ·M−H ·M :

E(|〈X,N〉∞|) 6 E(〈X〉∞)1/2 E(〈N〉∞)1/2 = ‖X‖H2 E(〈N〉∞)1/2.

The second equality has just be proven and relies on H(n) ∈ E . Finally, the third
equality holds as a limit in L1 and relies on Kunita-Watanabe as well :

E
∣∣∣∣∫ ∞

0

(H(n)
s −Hs)d〈M,N〉s

∣∣∣∣ 6 E (〈N〉∞) ‖H(n) −H‖L2(M).

We have proven that E(|〈H ·M,N〉∞ − (H · 〈M, n〉)∞|) = 0 which yields that almost
surely

〈H ·M,N〉∞ = (H · 〈M,N〉)∞.

Choosing N stopped at time t in this identity proves the expected result.
To get the unique characterization of H ·M by the identity in (ii), not that if X

satisfies the same property as H ·M, then for any N ∈ H2

〈H ·M−X,N〉∞ = 0.

The choice N = H ·M−X proves that H ·M and X are indistinguishable.
For (iii), we can for example first prove (1]0,T]H) ·M = (H ·M)T. For this, we just

need to check that for any N ∈ H2

〈(1]0,T]H) ·M,N〉∞ = 〈(H ·M)T,N〉∞.

The left hand side is also ((1]0,T]H) · 〈M,N〉)∞ = (H · 〈M,N〉)T, and the right hand

side is 〈H ·M,N〉T. As 〈H ·M,N〉 = H · 〈M,N〉, this achieves the proof. Concerning
the proof of (H ·M)T = H ·MT, it proceeds the same way.

Finally, the first assertion of (iv) follows from definitions : as 〈H ·M〉 = H · 〈M,H ·
M〉 = H2〈M〉, ∫ ∞

0

(GH)2d〈M〉s =

∫ ∞
0

H2d〈G ·M〉s <∞
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because H ∈ L2(G ·M), so GH ∈ L2(M). To prove the second assertion, we just need
to test it with respect to any N ∈ H2, using the associativity for integrals of Stieljes
type :

〈(GH) ·M,N〉 = (GH) · 〈M,N〉 = G · (H · 〈M,N〉) = G · 〈H ·M,N〉 = 〈G · (H ·M),N〉,

so (GH) ·M = G · (H ·M).

In the following, we will often use the notation

(H ·M)t =

∫ t

0

HsdMs.

In this way, property (iv) of the previous theorem appears as a formal evidence :∫ t

0

Gs(HsdMs) =

∫ t

0

(GsHs)dMs.

Moreover, property (ii) when iterated yields the joint bracket of two stochastic inte-

grals : as 〈
∫ ·

0
HsdMs,N〉t =

∫ t
0

Hsd〈M,N〉s, we get for H ∈ L2(M) and G ∈ L2(N)

〈
∫ ·

0

HsdMs,

∫ ·
0

GsdMs〉t =

∫ t

0

(GsHs)d〈M,N〉s. (4.4)

In particular, the first two moment of stochastic integrals are well-known :

E
(∫ t

0

HsdMs

)
= 0

E
((∫ t

0

HsdMs

)(∫ t

0

GsdNs

))
= E

(∫ t

0

(GsHs)d〈G,H〉s
)
.

We want to emphasize that the above relations are not always true when considering
the following extension of stochastic integrals to local martingales. For this, we will
consider integration with respect to a local integral martingale of processes H locally
integrable in the following sense :

L2
loc(M) :=

{
progressively measurable H | for any t > 0,

∫ t

0

H2
sd〈M〉s <∞ a.s.

}
.

Theorem 4.7. Let M be a local martingale beginning at 0. For any H ∈ L2
loc(M),

there is a unique local martingale beginning at 0, noted H ·M, such that for any local
martingale N

〈H ·M,N〉 = H · 〈M,N〉. (4.5)

This definition extends the one from Theorem 4.6. Moreover, for any stopping time
T,

(1]0,T]H) ·M = (H ·M)T = H ·MT. (4.6)

Proof. Note

Tn = inf

{
t > 0 |

∫ t

0

(1 + H2
s)d〈M〉s = n

}
.

Then MTn ∈ H2 and H ∈ L2(MTn), so we can consider the stochastic integral H ·MTn

from Theorem 4.6. From (iii) of this Theorem, for m < n, (H ·MTm)Tn = H ·MTn .
This coherence relation proves that there is a process, noted H ·M such that, for any
n > 0, (H ·M)Tn = H ·MTn . Moreover, as H ∈ L2

loc(M), Tn →∞ almost surely with

n, hence as (H ·M)Tn is a martingale, H ·M is a local martingale.
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To prove relation (4.5), take N a local martingale and T̃n = inf{t > 0 | |Nt| = n}.
Then if Sn = T̃n ∧ Tn, NSn ∈ H2, so we can write

〈H ·M,N〉Sn = 〈(H ·M)Sn ,NSn〉 = 〈(H ·MTn)Sn ,NSn〉 = 〈H ·MTnNSn〉

= H · 〈MTn ,NSn〉 = H · 〈M,N〉Sn = (H · 〈M,N〉)Sn .

As Sn → ∞ a.s. we get the expected result (4.5). Concerning the proof of (4.6),
it proceeds exactly as for (iii) in Theorem 4.6, relying only on (4.5). Finally, our
definition coincides with the H2 and L2(M) case by just noting that (4.5) characterizes
H ·M.

To extend the notion of stochastic integral to semimartingales, we need to work
with locally bounded processes : a progressively measurable process H is said to be
locally bounded if for any t > 0, almost surely

sup
[0,t]

|Hs| <∞.

Note that if H is locally bounded and M is a local martingale, then H ∈ L2
loc(M).

Moreover, if A is a finite variation process, then for any t > 0 almost surely∫ t
0
|Hs||dAs| < ∞. As a consequence, for a semimartingale X = X0 + M + A, and

a locally bounded progressively measurable process H, the definition

H ·X = H ·M + H ·A

makes sense. We will mostly note it
∫ ·

0
HsdXs.

Proposition 4.8. The stochastic integral of a locally bounded progressively measu-
rable process with respect to a semimartingales satisfies the following properties.

(i) The application (H,X) 7→ H ·X is bilinear.

(ii) If G and H are locally bounded, G · (H ·X) = (GH) ·X

(iii) If T is a stopping time, (1]0,T]H) ·X = (H ·X)T = H ·XT.

(iv) If X is a local martingale, so is H ·X.

(v) If X is a finite variation process, so is H ·X.

(vi) If H is a step process (Hs =
∑p−1
k=0 Hk1]tk,tk+1](s)), then

(H ·X)t =

p−1∑
k=0

Hk(Xtk+1∧t −Xtk∧t).

(vii) If H is also assumed to be left-continuous, then in the sense of convergence in
probability ∫ t

0

HsdXs = lim
n→∞

pn−1∑
k=0

H
t
(n)
k

(
X
t
(n)
k+1

−X
t
(n)
k

)
,

where the sequence of subdivisions 0 = t
(n)
0 < · · · < t

(n)
pn = t has a step going to

0.

Proof. All the above results are easy consequences of previous analogue statements
concerning local martingales and finite variation processes, except (vii). To prove it,
we can suppose that X is a local martingale, a similar statement being proved for
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finite variation processes in Proposition 3.21. Let H(n) be the process equal to H
t
(n)
k

on ]t
(n)
k , t

(n)
k+1], 0 otherwise, and

Tm = inf {t > 0 | |Hs|+ 〈M〉s > m} .

Then MTm and H(n) are bounded on [0,Tm], so the definition and properties of the
stochastic integral in the H2/L2(MTm) case allow to use the isometry property :

E
((

(Hn1[0,Tm] ·MTm)t − (H1[0,Tm] ·M)t
)2)

= E

(∫ t∧Tm

0

(Hn
s −Hs)

2d〈M〉s

)
.

As H is left-continuous, this last term converges to 0 as n→∞ by dominated conver-

gence. Hence (Hn ·M)Tm
t converges in L2 to (H·M)Tm

t . As P(Tm > t)→ 1 for m→∞,
we can conclude that (Hn ·M)t converges in probability to (H ·M)t.

2. The Itô formula

One of the most important formulas in analysis is the change of variable formula.
For example, in dimension 1, it states that if A is a continuous finite variation function
and f ∈ C 1, then

f(At) = f(A0) +

∫ t

0

f ′(As)dAs.

When A is a semimartingale, we want a similar formula. This is the cornerstone of
the following of this lecture.

Theorem 4.9. Let F : Rd → R be of class C 2, and X1, . . . ,Xd (continuous) semi-
martingales. Then F(X1, . . . ,Xd) is a semimartingale and

F(X1
t , . . . ,X

d
t ) = F(X1

0, . . . ,X
d
0) +

d∑
k=1

∫ t

0

∂xkF(X1
s, . . . ,X

d
s)dXk

s

+
1

2

∑
16k,`6d

∫ t

0

∂xkx`F(X1
s, . . . ,X

d
s)d〈Xk,X`〉s.

Note that the the Itô formula gives the decomposition of F(X1, . . . ,Xd) as a sum
of a local martingale and a finite variation process.

Proof. We first prove this formula when f(x, y) = xy, which is equivalent to proving
a stochastic integration by parts formula. For this purpose, by polarization, we just
need to prove it for f(x) = x2 :

X2
t = X2

0 + 2

∫ t

0

XtdXt + 〈X〉t.

We know by (vii) in Proposition 4.8 that

2

∫ t

0

XtdXt = lim
n→∞

2

pn−1∑
k=0

X
t
(n)
k

(
X
t
(n)
k+1

−X
t
(n)
k

)
,

where the sequence of subdivisions 0 = t
(n)
0 < · · · < t

(n)
pn = t has a step going to 0,

and the limit is in probability. Writing this as

lim
n→∞

(
pn−1∑
k=0

(
X2

t
(n)
k+1

−X2

t
(n)
k

)
−
pn−1∑
k=0

(
X
t
(n)
k+1

−X
t
(n)
k

)2
)
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and using (3.11) proves the Itô formula in the quadratic case, by uniqueness of the
limit in probability. We proved that the formula is true for F being constant, linear
of of type xixj . As a consequence, if the result holds for F(x), a simple calculation
proves that it is true for F(x)xi. Hence, iterating this reasoning, the result holds for
any polynomial in the variables x1, . . . , xd of arbitrary degree.

Moreover, by localizing our processes X1, . . . ,Xd through their first exist time
from the ball with radius n, and taking n → ∞ at the end, we can assume that the
processes remain in a compact K. As F is C 2 on K, the Stone-Weierstrass theorem
gives a sequence of polynomials (Pn,> 0) in the variables x1, . . . , xn such that Pn,
its first and second order derivatives converge uniformly to those of F on K. One
can easily show by dominated convergence that if H and the Hn’s are continuous
uniformly bounded progressively measurable processes, Hn converging almost surely
to H on [0, t], then for any semimartingale X∫ t

0

Hn
s dXs −→

n→∞

∫ t

0

HsdXs

in the sense of convergence in probability : the result is true in the almost sure sense
if X is a finite variation process by the usual dominated convergence ; if X is L2-
bounded martingale the convergence holds in L2 by the isometry property ; if X is a
local martingale, the convergence holds in probability by localization. Thus, writing
the Itô formula for the polynomials Pn’s and taking the limit n→∞ yields the result
for F, by uniqueness of the limit in probability.

Finally, as the formula is proved, it is obvious that F(X1, . . . ,Xd) is a semimartin-
gale, Itô’s formula giving its explicit decomposition (as F is C 2, all integrated terms
are locally bounded, so the stochastic and Stieljes integrals make sense).

In the following, the Itô formula will often be mentioned in its differential form :

dF(X1
t , . . . ,X

d
t ) =

d∑
k=1

∂kF(X1
s, . . . ,X

d
s)dXk

s +
1

2

∑
16k,`6d

∂k`F(X1
s, . . . ,X

d
s)d〈Xk,X`〉s.

To see how the Itô formula works in practice, the following is an important familly
local martingales. Note that a complex process is called a local martingale if both its
real and imaginary parts are local martingales.

Corollary 4.10. Let M be a (real) local martingale and λ ∈ C. Then the process(
eλMt−λ

2

2 〈M〉t , t > 0
)

is a local martingale.

Proof. Let F be a C 2 function from R2 to R. Then, by the Itô formula, for a semi-
martingale M,

dF(Mt, 〈M〉t) = (∂xF)dMt + (∂yF)d〈M〉t +
1

2
(∂xxF)d〈M〉t.

As a consequence, if M is a local martingale and(
∂y +

1

2
∂xx

)
F = 0, (4.7)

then F(M, 〈M〉) is a stochastic integral with respect to M, hence a local martingale. In

our case, both the real and imaginary parts of f(x, y) = eλx−
λ2

2 y satisfy (4.7), which
yields the result.
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A fundamental application of the Itô formula is the following characterization of
the Brownian motion, that we will refer to in the following of the course as Lévy’s
criterion.

Theorem 4.11. Let M(1), . . . ,M(d) be local martingales beginning at 0. Then the
following assertions are equivalent.

(i) The processes M(1), . . . ,M(d) are independent standard Brownian motions.

(ii) For any 1 6 k, ` 6 d and t > 0, 〈M(k),M(`)〉t = 1k=`t.

Proof. Point (i) implies (ii) because (M
(k)
t

2
− t, t > 0) is a martingale, as well as

(M
(k)
t M

(`)
t , t > 0) when k 6= `.

Assume (ii), note M = (M(1), . . . ,M(d)) and consider some u ∈ Rd. Then u ·M
is a local martingale with bracket 〈u ·M〉t = |u|2t. As a consequence, from Corollary
4.10, (

eiu·M− 1
2 |u

2|t, t > 0
)

is a local martingale. As it is bounded, it is a martingale :

E
(
eiu·Mt− 1

2 |u
2|t | Fs

)
= eiu·Ms− 1

2 |u
2|s.

As a consequence, for any A ∈ Fs,

E
(
eiu·(Mt−Ms)1A

)
= e−

1
2 |u|

2(t−s)P(A).

The choice A = Ω proves that Mt −Ms is a Gaussian vector with covariance matrix
(t − s)Idd, hence with independent coordinates. Moreover, the above equation also
proves that Mt −Ms is independent of Fs. This concludes the proof.

As an example, consider a Brownian motion B, and define the process B̃ through

B̃t =

∫ t

0

sgn(Bs)dBs,

where sgn(x) = 1 if x > 0, −1 if x < 0. Then B̃ is a local martingale and from (4.4),

its bracket is 〈B̃〉t = t. As a consequence, B̃ is a Brownian motion.
Another byproduct of Lévy’s criterion is that, in the multidimensional setting,

the Brownian motion has a rotation invariant distribution : it does not depend on
the chosen orthogonal framework (in the next section we will see that for d = 2 the
Brownian motion satisfies the more general property of conformal invariance). More
precisely, consider a d-dimensional Brownian motion B = (B1, . . . ,Bd) beginning at
0 and an orthogonal matrix O ∈ O(d). Then

B̃ = OB

is also a Brownian motion. Indeed,

〈B̃k, B̃`〉t = 〈
d∑
i=1

OkiB
i,

d∑
j=1

O`jB
j〉t =

d∑
i=1

OkiO`i〈Bi〉t = (Ok ·Ol)t = 1k=`t,

which concludes the proof by Theorem 4.11.
An important consequence of the Lévy criterion is that up to a change of time,

any martingale is a Brownian motion : the natural clock of martingales is the bracket.
This is the Dubins-Schwarz theorem.
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Theorem 4.12. Let M be a local martingale such that 〈M〉∞ = ∞ almost surely.
Note

Tt = inf{s > 0 | 〈M〉s > t}.

Then for any given t the random variable Tt is an almost surely finite stopping
time, and the process  Bt = MTt is a Brownian motion with respect to the filtra-
tion (Gt)t>0 = (FTt)t>0. Moreover ,

Mt = B〈M〉t .

Proof. First, as all expected results are in the almost sure sense, we can suppose that
for any ω the process M begins at 0, is continuous, and 〈M〉∞ = ∞. The process
(Tt)t>0 is nondecreasing, right-continuous, and finite. Moreover,

〈M〉t = inf{s > 0 | Ts > t}.

Note that the processes M and 〈M〉 have the same constance intervals : if M is constant
on [S,T] so is 〈M〉 thanks to the characterization of the bracket as a limiting sum of
squares of increments ; conversely, if 〈M〉 is constant on [S,T], as a local martingale
with null bracket is indistinguishable from 0, then the result follows by considering a
proper shift of M after a stopping time.

To prove that B is continuous, note that this is obvious at points t where t is
continuous, and if T is not continuous at t this follows from the above coincidence of
constance intervals. By Lévy’s criterion, we therefore just need to prove that B and
B2
t − t are local martingales with respect to the filtration (Gt)t>0.

Let X denote M or (M2
t − t, t > 0). Let Sn = inf{t > 0 | |Xt| > n}. Then

S̃n = 〈M〉Sn is a (Gt)t>0-stopping time. As XSn is a bounded (Ft)t>0-martingale, the
stopping time theorem yields

XSn
Tt

= E
(
XSn
∞ | FTt

)
.

This means that Xτt∧S̃n
is a (Gt)t>0-martingale, so as 〈M〉Sn →∞ we get the expected

result.

Note that one can state a similar result when P(〈M〉∞) > 0, by constructing B on
an enlarged probability space. See [16] for more details. A consequence of the Dubins-
Schwarz theorem is that any local martingale M have many common properties with
a Brownian motion.

• In the interior of non constant intervals, M is nowhere differentiable, has a
Hölderian index 1/2.

• If the bracket has a strictly positive right increasing rate at t, M satisfies an
iterated logarithm law.

• Up to a null set, {ω | M converges in R} = {ω | 〈M〉∞ <∞}.

• Up to a null set, {ω | lim sup M =∞, lim inf M = −∞} = {ω | 〈M〉∞ =∞}

Finally, the following multidimensional extension of the Dubins-Schwarz theorem
can be proved in a similar way (with the additional difficulty that independence of
processes must be proven, see [16] for a proof). It will be useful in the next section.

Theorem 4.13. Let M(1), . . . ,M(d) be continuous local martingales beginning at 0
such that, for any 1 6 k 6 d, 〈M(k)〉t →∞ as t→∞. If, for any k 6= `, 〈M(k),M(`)〉 =

0, then there exist B(1), . . . ,B(d) independent standard Brownian motions such that,

for any 1 6 k 6 d, M
(k)
t = B

(k)
〈M〉t .

. defined up to a null set
. still up to a null set
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3. Transcience, recurrence, harmonicity

We are now interested in properties of the Brownian curve in connection with
classical harmonic analysis problems. First, as we will see, transcience or recurrence
properties of the Brownian motion in dimension d depend on the asymptotic behavior
of harmonic functions Then, more generally, we will give a classical interpretation
of solutions to the Dirichlet problem through harmonic measures defined from the
Brownian motion. This point of view will be developped in the next chapter when
existence and uniqueness of solutions to some stochastic differential equations will be
proved.

To begin our discussion, we need first the following highly intuitive result. Note
however that there exist continuous mappings from the unit interval to the unit square
[15].

Theorem 4.14. Let d > 2. Then for a Brownian motion B in dimension d points
are polar : for any x 6= B0,

P (∃t > 0 | Bt = x) = 0.

Proof. First, by projection on a subspace of dimension 2, proving the result for d = 2
is sufficient. Moreover, by scaling and rotation-invariance of Brownian motion (cf the
previous section), we can consider that x = (−1, 0), and that the bi-dimensional
Brownian motion (X,Y) begins at (0, 0). Let Mt = eXt cos Yt and Nt = eXt sin Yt.
Then an application of Itô’s formula yields

dMt = MtdXt −NtdYt

dNt = NtdXt + MtdYt,

so M and N are local martingales. Moreover, 〈M,N〉 = 0 and

〈N〉t = 〈M〉t =

∫ t

0

e2Xtdt.

The recurrence of the Brownian motion X easily implies that these brackets go to ∞
almost surely. As a consequence, one can apply Theorem 4.13 to conclude that there
are two Brownian motions B1,B2 such that

Mt − 1 = B1
〈M〉t , Nt = B2

〈M〉t .

As a consequence, 〈M〉 being continuous and with almost sure range [0,∞[, noting
B = (B1,B2),

P (∃t > 0 | Bt = (−1, 0)) = P(∃t > 0 | (Mt,Nt) = (0, 0)).

As |(Mt,Nt)| = eXt and almost surely Xt is finite for any t > 0, this last event has
probability 0.

Although the Brownian motion will not visit a given point, it will almost surely
visit any of its neighborhoods when d = 2.

Theorem 4.15. Let B be a Brownian motion in dimension d = 2, and O ⊂ R2 be
open. Then

P(∃t > 0 | Bt ∈ O) = 1.

Proof. We can assume B0 = a 6= 0, and we want to prove that for any r > 0 the
probability that for some t, B is in B(r) (the ball with radius r) is 1. We note here
Xt = |Bt|2.



 The Itô formula and applications

First, note that the process log Xt is a local martingale. Indeed, for a given function
f of class C 2 on R2,

df(B1
t ,B

2
t ) = (∂1f)dB2

t + (∂2f)dB2
t +

1

2
(∆f)dt.

For f(x, y) = log(x2+y2), ∆f = 0, so log Xt is a local martingale Let 0 < r < |a| < R,
and Tx = inf{t > 0 | |Bt| = x}. The stopping time theorem applied to log(Xt∧TR∧Tr )
(this is a bounded, hence uniformly integrable martingale) yields

E(log(XTR∧Tr )) = log |a|. (4.8)

As the one-dimensional Brownian motion is recurrent, TR < ∞ almost surely, so
P(Tr < TR) + P(TR < Tr) = 1, and (4.9) means

(log r)P(Tr < TR) + (log R)P(TR < Tr) = log |a|.

This implies that

P(Tr < TR) =
log R− log |a|
log R− log r

,

so when R → ∞ we get by monotone convergence P(Tr < ∞) = 1, concluding the
proof.

Note that the previous theorem can be strengthened to prove that there are arbi-
trary large t such that Bt ∈ O. Indeed, for any n > 0,

P(∃t > n | Bt ∈ 0) = E
(
E
(
1∃t>n|Bt∈O | Fn

))
,

and E
(
1∃t>n|Bt∈O | Fn

)
is constantly one as, from the Markov property, this is also

P(∃t > 0 | B̃t ∈ On) where On = O + Bn and B̃ is a Brownian motion independent of
Bn.

The above property is often referred to as the recurrence of the Brownian motion
in dimension 2. It strongly contrasts with dimension d > 3 : for any compact set
outside of the initial point, with strictly positive probability the Brownian motion

will never touch it. 

Theorem 4.16. Let d > 3 and B be a Brownian motion of dimension d. If K ⊂ Rd
is compact, simply connected and B0 6∈ K, then

P(∃t > 0 | Bt ∈ K) < 1.

Proof. First, as K is simply connected and bounded, and B0 6∈ K, there is a path
γ = (x(t), 0 6 t 6 1) such that x(0) = B0 and x(1) is strictly separate from K by an
hyperplane H. As K is closed there is some ε > 0 such that γε = {x ∈ Rd | dist(x, γ) 6
ε} is disjoint from K. Moreover, from Corollary 4.29 in the next section, one sees that

P(∀t ∈ [0, 1],Bt ∈ γε) > 0.

As a consequence, by considering (thanks to the Markov property) (Bt+1−B1, t > 0)
instead of B and embedding K in a sphere not intersecting H, we just need to prove
the following : if B0 > r, then

P(∃t > 0 | |Bt| 6 r) < 1.

. The function log diverges at 0, so strictly speaking we cannot apply this formula directly. But

the result is true, because 0 is a polar point : writing Sn = inf{t > 0 | Xt <
1
n
}, the Itô formula

yields

log Xt∧Sn = log X0 + 2

∫ t∧Sn

0

B1
sdB1

s + B2
sdB2

s

Xs
.

From Theorem 4.14, when n → ∞, Sn → ∞ a.s. so the above formula holds when replacing t ∧ Sn
by t.
. An isotropic dog with independent increments will always come back to his kennel, but such an

astronaut will not necessarily find back the International Space Station.
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To prove this, first the process |Bt|2−d is a local martingale. Indeed, for a given
function f of class C 2 on Rd,

df(B1
t , . . . ,B

d
t ) =

d∑
k=1

(∂kf)dBkt +
1

2
(∆f)dt.

For f(x1, . . . , xd) = (x2
1 + · · ·+x2

d)
1− d2 , a calculation proves that ∆f = 0, so |Bt|2−d is

a local martingale (note that, as in the proof of Theorem 4.15, the considered function
is not C 2 in Rd, so we first need to localize the process outside of arbitrarily small
neighborhoods of the origin and then use the polarity of 0). Let 0 < r < |a| < R,
and Tx = inf{t > 0 | |Bt| = x}. The stopping time theorem applied to |Xt∧TR∧Tr |2−d
(this is a bounded, hence uniformly integrable martingale) yields

E(|BTR∧Tr |2−d) = |a|2−d. (4.9)

As the one-dimensional Brownian motion is recurrent, TR < ∞ almost surely, so
P(Tr < TR) + P(TR < Tr) = 1, and (4.9) means

r2−dP(Tr < TR) + R2−dP(TR < Tr) = |a|2−d.

This implies that

P(Tr < TR) =
R2−d − |a|2−d

R2−d − r2−d ,

so when R→∞ we get by monotone convergence

P(Tr <∞) =

(
r

|a|

)d−2

< 1,

concluding the proof.

Note that the above proof holds for d = 2 (resp. 1), but it gives a trivial resp.
contrary) conclusion. The above result alone is not sufficient to conclude that for
d > 3, almost surely |Bt| → ∞ as t → ∞. We say that in dimension greater than 3
the Brownian motion is transcient, and this is proved hereafter.

Theorem 4.17. Let B be a Brownian motion in dimension d > 3. Then, almost
surely,

lim
t→∞

|Bt| =∞.

Proof. By a projection argument, we just need to prove it for d = 3. By shifting B,
we can suppose B0 = (1, 0, 0). The proof of Theorem 4.16 involved the fact that(

1

|Bt|
, t > 0

)
is a local martingale. As it is positive, it is also a supermartingale and converges
almost surely, to some random variable X. We want to prove that X = 0 a.s. and as
X > 0 we just need to prove E(X) = 0. By Fatou’s lemma,

E(X) 6 lim
t→∞

E
(

1

|Bt|

)
.

This limit is 0, because

E
(

1

|Bt|

)
=

1

t
E

((N1 −
1√
t

)2

+N 2
2 +N 2

3

)−1/2
 ,

where N1,N2,N3 are independent standard normal variables, and the above expec-
tation uniformly bounded : 1/|x| is integrable around 0 in dimension d > 2. This
concludes the proof.
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The interested reader can also prove Theorem 4.17 by using the estimates on pro-
bability of hitting a ball in the proof of Theorem 4.16 and a Borel-Cantelli argument.
One advantage of the above proof is that it gives a first example of a strict local
martingale, justifying our efforts of the previous chapter to introduce this notion :
when d = 3, (

1

|Bt|
, t > 0

)
is a local martingale but not a martingale, as its expectation converges to 0.

The previous discussion highlights the links between Brownian motion and Harmo-
nic functions. The following gives some flavor about how from the Brownian motion
allows to prove some results of Harmonic analysis.

Proposition 4.18. Let f : U → R be a function of class C 2, where U is open and
connected. Then the following points are equivalent.

(i) The function f is harmonic : ∆f = 0 on U.

(ii) For any x ∈ Rd and any r > 0 such that the ball B(x, r) is included in U,

f(x) =

∫
f(y)dσr(y),

where σr is the uniform measure, normalized to 1, on ∂B(x, r).

Proof. Let B be a Brownian motion beginning at x and τr = inf{t > 0 | |Bt−x| = r}
The Itô formula yields

f(Bτr ) = f(x) +

∫ τr

0

∇f(Bs) · dBs +
1

2

∫ τr

0

∆f(Bs)ds.

Consequently, assuming (i),

E(f(Bτr )) = f(x) + E
(∫ τr

0

∇f(Bs) · dBs

)
As the Brownian motion is invariant by rotations (cf previous section), the left hand
side is

∫
f(y)dσr(y). Moreover, as |∇f | is uniformly bounded on the ball B(x, r) with

center x and radius r,
(∫ t∧τr

0
∇f(Bs) · dBs, t > 0

)
is a martingale with the expecta-

tion of its bracket being uniformly bounded by

sup
B(x,r)

|∇f |2 E(τr) <∞.

As a consequence, it is uniformly integrable and in particular, the stopping time
theorem at time τr implies that

E
(∫ τr

0

∇f(Bs) · dBs

)
= 0,

proving (ii). Assume now that you have the mean value condition, and suppose that,
at some point x ∈ U, ∆f(x) 6= 0. Up to considering −f , assume ∆f(x) > 0 for
example. Then, by continuity, one can find r > 0 such that ∆f > 0 on B(x, r) ⊂ U.
From the previous discussion, the Itô formula and the uniformly integrable aspect of
the stochastic integral yield

E(f(Bτr )) = f(x) +
1

2
E
(∫ τr

0

∆f(Bs)ds

)
. to prove that E(τr) < ∞, just note that it is sufficient to prove it when d = 1, and it is true by

Corollary 3.17.
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Condition (i) and the invariance of Brownian motion by rotation therefore yield

E
(∫ τr

0

∆f(Bs)ds

)
= 0.

As ∆f is strictly positive along this trajectory this is only possible if τr = 0 almost
surely, which is not the case, concluding the proof : ∆f(x) = 0 necessarily.

As an exercise, the reader can prove in the same way the maximum principle for
subharmonic functions.

Consider now the following classical Dirichlet problem from partial differential
equations. For a connected open subset U ⊂ Rd, bounded, with boundary ∂U, and a
continuous function ϕ : ∂U → R, we want to find a twice continuously differentiable
function u : U→ R such that{

∆u(x) = 0 for x ∈ U
u(x) = ϕ(x) for x ∈ ∂U

(4.10)

The existence of a solution depends on the smoothness of the boarder ∂U. In the
following, we will say that a point x ∈ ∂U satisfies the Poincaré cone condition (or is
regular) if there exists some δ > 0 and a cone C with vertex x and strictly positive
angle such that

C ∩ B(x, δ) ⊂ Uc,

where B(x, δ) is the ball with center x and radius δ, and Uc is the complement of U
in Rd.

Figure 4.1. A Tridimensional
Brownian motion till hitting a

sphere.

Theorem 4.19. Let U and ϕ satisfy the
above hypotheses, and consider the Dirichlet
problem (4.10).

(i) If there is a solution u to the problem,
then it coincides with

v(x) := E (ϕ(Bτ ) | B0 = x) ,

where B is a d-dimensional Brownian
motion and τ = inf{t > 0 | Bt ∈ ∂U}.
In particular, there is at most one so-
lution.

(ii) The above v is harmonic and conti-
nuous at any regular point of ∂U. In
particular, if ∂U is everywhere regular,
v is the unique solution of the Dirichlet
problem.

Proof. To prove (i), by the Itô formula

u(Bτ ) = u(x) +

∫ τ

0

∇u(Bs) · dBs +
1

2

∫ τ

0

∆u(Bs)ds,

where B is a Brownian motion beginning at x. By the same argument as in the proof
of Proposition 4.18, the expectation of the above stochastic integral is 0 (because
E(τ) <∞ and |∇u| is bounded). As a consequence,

E(u(Bτ )) = u(x).
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But the left hand side is also E (ϕ(Bτ ) | B0 = x), concluding the proof of (i).
Point (ii) is more subtle. We first prove that v is harmonic. Take a ball B(x, δ) ⊂ U,

and τ̃ = inf{t > 0 | Bt 6∈ B(x, δ)}. Then as τ̃ 6 τ , F τ̃ ⊂ Fτ , so using the strong
Markov property for the Brownian motion,

v(x) = Ex (ϕ(Bτ )) = Ex (Ex (ϕ(Bτ ) | F τ̃ ))

= Ex (EBτ̃ (ϕ(Bτ ))) = Ex(v(Bτ̃ )) =

∫
v(y)σr(dy),

where we used the invariance of B by rotation around x in the last equality, and σr is
the uniform measure, normalized to 1, on the sphere with radius r and center x. As
a consequence, using Proposition 4.18, v is harmonic in U.

We still need to prove that v is continuous at regular points. Let x ∈ ∂U be a
regular point and take δ > 0, a cone C with vertex x and strictly positive angle such
that

C ∩ B(x, δ) ⊂ Uc.

Take a given ε > 0. As ϕ is continuous on ∂U, we can chose the above δ such that

sup
y∈∂U∩B(x,δ)

|ϕ(y)− ϕ(x)| < ε.

For a Brownian motion B, assume that there is some 0 < θ < δ such that if |z−x| < θ,
z ∈ U,

Pz(τC < τδ) > 1− ε, (4.11)

where this is the probability for a Brownian motion starting at z, τC is the hitting
time of C∩B(x, δ) and τδ is the hitting time of ∂B(x, δ). Then this would imply that
for |z − x| < θ, z ∈ U,

|v(z)− v(x)| = |Ez(ϕ(Bτ )− ϕ(x))| 6 2‖ϕ‖∞Pz(τδ < τC) + ε 6 ε(2‖ϕ‖∞ + 1).

Hence continuity will follow if we can prove (4.11). For this, by rotation invariance
we can assume that B1 corresponds to the axis of the cone, with angle α. Note that

{τC < τδ} ⊂ ∪t>0

({
B1(t) >

1

tanα

(
B2(t)2 + · · ·+ Bd(t)

2
)1/2}

∩ ∩dk=1

{
sup
[0,t]

|Bk| < c

})

for some absolute constant c > 0 depending only on δ and α. When t→ 0, these last d
events have a probability converging to 1. Concerning the first event, the probability
that it happens for some arbitrarily small t > 0 converges to 1 as well : this is an easy

consequence of the iterated logarithm law (B1(t) gets as big as
√
t log(− log t) almost

surely) and the independence of B1 from the other (Bi)
d
i=2.

Concerning links with harmonic analysis, stochastic processes yield easy proofs of
classical statements like the following famous Liouville’s theorem.

Theorem 4.20. Let d > 1. Bounded harmonic functions on Rd are constant.

Proof. Let f : Rd → [−m,m] be an harmonic function. As a direct consequence of
the Itô formula and harmonicity, for any t > 0

Ex (f(Bt)) = f(x) + E
(∫ t

0

∇f(Bs) · dBs

)
(4.12)
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where B is a Brownian motion (beginning at x). Chose x and y distinct points in

Rd, note S (n) the sphere with center x+y
2 and radius n > ‖x−y2 ‖, and H the median

hyperplane between x and y. Note

Tn = inf{t > 0 | Bt ∈ S (n)}, TH = inf{t > 0 | Bt ∈ H}.

As |∇f | is bounded inside the sphere S (n), at time t ∧ Tn the expectation on the
right hand side of (4.12) is 0, so

f(x) = Ex (f(Bt∧Tn)) = Ex (f(Bt∧Tn)1TH6t∧Tn) + Ex (f(Bt∧Tn)1TH>t∧Tn) .

The same formula holds concerning f(y), and from the reflection principle

Ex (f(Bt∧Tn)1TH6t∧Tn) = Ey (f(Bt∧Tn)1TH6t∧Tn) .

We therefore get

|f(x)− f(y)| = |Ex (f(Bt∧Tn)1TH>t∧Tn)− Ey (f(Bt∧Tn)1TH>t∧Tn)|
6 2mP(TH > t ∧ Tn).

When both t and n go to ∞, this last probability converges to 0, concluding the
proof.

The links between harmonic functions and the Brownian motion satisfy additional
features when considering in a more specific way dimension d = 2. For example, in the
following discussion, it will appear that up to a time change, entire functions of the

Brownian motion are still Brownian motions. In the following, a complex process is
said to be a local martingale if both its real and imaginary parts are local martingales.

Proposition 4.21. Let Z = X + iY be a complex local martingale. Then there exists
a unique complex process with finite variation beginning at 0 such that Z2 − 〈Z〉 is a
complex local martingale. Moreover, the four following statements are equivalent.

(i) The process Z2 is a local martingale.

(ii) The process 〈Z〉 is identically 0.

(iii) The brackets of the real and imaginary parts satisfy 〈X〉 = 〈Y〉 and 〈X,Y〉 = 0.

(iv) There is a Brownian motion  such that Zt = B〈X〉t .

Proof. The existence of the bracket is given by

〈Z〉 = 〈X + iY,X + iY〉 = 〈X〉 − 〈Y〉+ 2i〈X,Y〉,

which satisfies all required properties. Uniqueness is a consequence of Theorem 3.26,
and the equivalence between (i), (ii), (iii) is an immediate consequence of the above
formula. Moreover, (iii) implies (iv) by the general Dubins-Schwarz Theorem 4.13,
and (iv) obviously implies (iii).

A local martingale is called conformal if any of the above properties is true. To
prove that entire functions of B are conformal (this is called the conformal invariance
property of Brownian motion), let us first discuss the translation the Itô formula in
the complex analysis setting. We note

∂z =
1

2
(∂x − i∂y), ∂z =

1

2
(∂x + i∂y).

. This property was used in the proof of Theorem 4.14
. defined on an enlarged probability space if 〈X〉∞ <∞ with positive probability
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A function f : C → C is called holomorphic (resp. harmonic) of ∂zf = 0 (resp.
∆f = 4∂z∂zf = 0). For a general f of class C 2 and Z a conformal local martingale,
the Itô formula takes the form

f(Zt) = f(Z0) +

∫ t

0

∂zf(Zs)dZs +

∫ t

0

∂zf(Zs)dZs +
1

2

∫ t

0

∆f(Zs)d〈Re(Z)〉s.

As a consequence, if f is harmonic then f(Z) is a local martingale as well, and if f is
holomorphic then the local martingale f(Z) has the following easy decomposition

f(Zt) = f(Z0) +

∫ t

0

f ′(Zs)dZs. (4.13)

Theorem 4.22. Let f be entire  and non constant, and B a standard complex Brow-
nian motion . Then f(B) is a time-changed Brownian motion :

f(Bt) = f(B0) + B̃〈X〉t

where B̃ is a standard Brownian motion, and 〈X〉t :=
∫ t

0
|f ′(Bs)|2ds is strictly increa-

sing and converges to ∞.

Proof. As f is an entire function, so is f2, so f2(B) is a local martingale, so f(B) is
a conformal local martingale. By (iv) of Proposition 4.21 there is a Brownian motion

B̃ such that
f(Bt) = f(B0) + B̃〈X〉t ,

where X = Re(f(B)). From 4.13, 〈X〉t =
∫ t

0
|f ′(Bs)|2ds. As f ′ is entire and not

identically 0, it has a countable set of zeros so 〈X〉 is strictly increasing. It converges to
∞ almost surely thanks for example to the recurrence property of the bi-dimensional
Brownian motion.

As an example the above property implies the famous d’Alembert’s theorem : any
non-constant complex polynomial has a complex zero. Let P be such a polynomial,
and Z a complex Brownian motion. From the previous theorem,

P(Bt) = B̃〈Re(P(Bt))〉t ,

for some Brownian motion B, with the bracket going to ∞. As B̃ is recurrent, this
implies that for any ε > 0

{z : |P(z)| 6 ε} 6= ∅,

concluding the proof, the intersection of nonempty embedded closed sets being no-
nempty. Another example of application for the conformal invariance property is about
the winding number of the bi-dimensional Brownian motion around one point. This
is known as Spitzer’s law.

Theorem 4.23. Let B be a planar Brownian motion beginning at B0 6= 0. Define its
argument at time t, θt continuously from θ0 ∈ [0, 2π) at time 0. Then, as t→∞,

θt
log t

law−→ C

2
,

where C is a standard Cauchy random variable .

. i.e. everywhere holomorphic
. This means that C has density 1

π(1+x2)
with respect to the Lebesgue measure.
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Proof. By invariance by rotation and scaling, we can assume B0 = (1, 0). From Theo-

rem 4.22, if X and Y are independent standard real Brownian motions, then B̃ defined
by

B̃∫ t
0
e2Xsds = eXt+iYt

is a complex Brownian motion beginning at (1, 0). Let a > 1 and Sa = inf{t > 0 |
|Bt| = a}. We will first prove that

arg BSa

log a
∼ C.

The winding number arg BSa is also the value YTlog a
where Tx = inf{t > 0 | Xt = x}.

By scaling, proving that YT1 ∼ C is sufficient : we therefore just need to know the
law of T1 and compose it with that of Y.

• The distribution of T1 is well-known, for example by the reflection principle
2.20 :

P(T1 6 t) = P(sup
[0,t]

X > 1) = P(|Xt| > 1) = P
(

1

X2
1

6 t

)
,

so T1 ∼ 1/N 2 where N is a standard normal random variable.

• The density of YT1
is also that of

√
T1Y1, by conditioning on T1. Hence it has

the same law as N ′/N , both random variables being independent and standard
Gaussian. This is known to be a Cauchy distribution (for example by calculating
the characteristic function).

From the previous discussion,
arg BS√t

log t
∼ C

2
,

hence the proof will be complete if we can show that

arg Bt − arg BS√t

log t

converges to 0 in probability. For this, consider τ the inverse of the clock, defined by∫ τt

0

e2Xsds = t.

For some parameters δ ∈ (0, 1) (it will go to 0) such that δ
√
t > 1 and λ > 0 (it will

go to ∞), consider the events

A =
{

Sδ
√
t 6 t 6 Sδ−1

√
t

}
,

B =

 sup
[τS

δ
√
t
,τS

δ−1
√
t
]

|Ys −YτS
δ
√
t
| 6 λ

2

 .

Then A∩B ⊂
{
| arg Bt − arg BS√t

| 6 λ
}

, so we just need to prove that the probability

of A goes to 1 as δ → 0, and that of B goes to 1 as λ→∞, for any given δ.

• Concerning A things are easy because

{|Bt| > δ
√
t} ∩ {sup

[0,t]

|Bs| < δ−1
√
t} ⊂ A,

and both events have a probability going to 1 a δ → 0, independently of t by
scaling.



 The Itô formula and applications

• Concerning B, note that

τSa = inf{u > 0 | Xu = log a},

so from the strong Markov property

τSδ−1
√
t
− τSδ√t ∼ T−2 log δ,

where as previously Tx = inf{t > 0 | Xt = x}. As Y is independent from X, this
means that

sup
[τS(δ

√
t),τS(δ−1

√
t)]

|Ys −YτS(δ
√
t)
| ∼ sup

[0,∆]

|Ys|,

where ∆ is an almost surely finite random variable independent of Y, and with
law depending on δ but not on t. As a consequence, P(B) is independent of t
and goes to 1 as λ→∞.

This concludes the proof.

4. The Girsanov theorem

In this section, the influence of the probability measure P on the semimartingale
notion is discussed. As an example a probability space (Ω,F , (F t)06t61,P), and a
Brownian motion B on this space, one can define a new probability measure by

dQ
dP

=
sup[0,1] B

E
(

sup[0,1] B
) .

The process B is certainly not a Q-Brownian motion, as the symmetry property
does not hold anymore, but is-it a Q-semimartingale ? The main motivations for such
questions are the following :

• practicing importance sampling on trajectories spaces ;

• deriving properties of the Wiener measure itself by looking at its behavior under
some transformations ;

• just like changing variables allows to solve equations, changing the measure on
the path space is the main tool to perform some expectations.

Before stating the general result, we need the following two propositions.

Proposition 4.24. Assume Q� P on F(= F∞). For t ∈ [0,∞], note

Dt =
dQ
dP

∣∣∣∣
Ft
.

(i) The process D is a uniformly integrable martingale.

(ii) If D is assumed right-continuous , then for any stopping time T

DT =
dQ
dP

∣∣∣∣
FT

.

(iii) If D is assumed right-continuous, and Q ∼ P on F then, for any t > 0, Dt > 0.

. This is not a very restrictive hypothesis, one can show that there is always a right-continuous
version of the process D, see [12].
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Proof. For (i), note that for any t > 0 and A ∈ F t

EP(1ADt) = EQ(1A) = EP(1AD) = EP(1A E(D | F t)).

where D = dQ
dP
∣∣
F . By uniqueness of the Radon-Nikodym derivative, this implies Dt =

E(D | F t) almost surely, concluding the proof as D ∈ L1.
Point (ii) relies on the stopping time Theorem 3.13, which implies that DT =

E(D | FT). As a consequence, for any A ∈ FT,

EP

(
1A

dQ
dP

∣∣∣∣
FT

)
= EQ(1A) = EP(1AD) = EP(1ADT),

so DT = dQ
dP
∣∣
FT

.

Finally, (iii) follows from (ii) : for T = inf{t > 0 | Dt = 0}, by right-continuity
DT = 0 on {T <∞}, so

Q(T <∞) = EP(1T<∞DT) = 0.

As Q� P, this implies P(T <∞) = 0, as expected.

Proposition 4.25. Let D be a strictly positive continuous local martingale. Then
there exists a unique continuous local martingale L such that

Dt = E(L)t := eLt− 1
2 〈L〉t .

Proof. For uniqueness, note that if L and L̃ are solutions, then

L− L̃ =
1

2

(
〈L〉 − 〈L̃〉

)
is a finite variation process and also a local martingale, so it is indistinguishable from
0. For the existence, the choice

Lt = log D0 +

∫ t

0

dDs

Ds

makes sense as D is strictly positive and, by the Itô formula,

log Dt = log D0 +

∫ t

0

dDs

Ds
− 1

2

∫ t

0

d〈D〉s
D2
s

= Lt −
1

2
〈L〉t,

concluding the proof.

Both results imply the following, known as Girsanov’s theorem, or Cameron-
Martin’s theorem in the special case of deterministic shifts.

Theorem 4.26. Let Q ∼ P on F . Assume that the process defined by

Dt =
dQ
dP

∣∣∣∣
Ft

is continuous, and write  it as D = E(L), with L a local martingale. Then if M is a
P-local martingale the process

M̃ := M− 〈M,L〉

is a Q-local martingale.

. This is possible by Proposition 4.24 (iii) and Proposition 4.25
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Proof. We first prove that if a process XD is a P-local martingale, then X is a Q-
local martingale. For this, we show that for T any stopping time and X a continuous
adapted process such that (XD)T is a P-martingale, then XT is a Q-martingale :

• First the integrability condition is satisfied : from Proposition 4.24 (ii),

EQ(|XT
t |) = EP(|XT

t ||DT
t |) <∞

because (XD)T is a P-martingale.

• Moreover, for s < t and A ∈ Fs, still using Proposition 4.24 (ii) for the second
and fourth equalities, and the martingale property for (XD)T in the third one,

EQ(1AXT
t ) = EQ(1A∩{T6s}X

T
t ) + EQ(1A∩{T>s}X

T
t )

= EP(1A∩{T6s}X
T
t Dt∧T) + EP(1A∩{T>s}X

T
t Dt∧T)

= EP(1A∩{T6s}X
T
s Dt∧T) + EP(1A∩{T>s}X

T
s Ds∧T)

= EQ(1A∩{T6s}X
T
s ) + EQ(1A∩{T>s}X

T
s )

= EQ(1AXT
s ).

Hence XT
s = EQ(XT

t | Fs).

Thanks to the previous discussion, M̃D being a P-local martingale is enough to

prove that M̃ is a Q-local martingale. The Itô formula yields

d ((M− 〈M,L〉)D)t = (M− 〈M,L〉)tdDt + (dMt − d〈M,L〉t)Dt + d〈M,D〉t
= (M− 〈M,L〉)tdDt + (dMt − d〈M,L〉t)Dt + Dtd〈M,L〉t
= (M− 〈M,L〉)tdDt + DtdMt,

where in the second equality we used the fact that dDt = DtdLt. So M̃D is a stochastic
integral with respect to the P-local martingales D and M, so it is a P-local martingale,
concluding the proof.

One particularly interesting case of the above result is the case when M is a P-
Brownian motion.

Corollary 4.27. One can replace local martingale by Brownian motion in the hypo-
thesis and conclusion of Theorem 4.26.

Proof. If M is a P-Brownian motion, then M̃ is a Q-local martingale (by Girsanov’s
theorem) and its bracket is t (by the sum of quadratic increments formula in Theorem
3.26, the bracket does not depend on the underlying probability measure), so Lévy’s
criterion Theorem 4.11 applies.

The condition Q ∼ P on F in the hypothesis of the Girsanov theorem is quite res-
trictive. The following lines explain why, and a way to overcome this. As an example,
if M = B is a Brownian motion, one could try to use Girsanov’s theorem till infinite

time to study the properties of the Brownian motion with drift M̃ = (Bt − νt, t > 0).
For this, we want a measure Q on F such that for any t > 0

dQ
dP

∣∣∣∣
Ft

= eνBt− ν
2

2 t. (4.14)

By Theorem 1.3.5 in [18], such a measure Q exists. But it is not absolutely continuous
with respect to the Wiener measure P : the reader could prove that if ν > 0 the event
{lim inf Bt/t > 0} is almost sure for Q and its complement is almost sure for P. To
avoid this problem, the applications of the Girsanov theorem can be performed up
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to a finite horizon : if Q ∼ P on F t, then M̃ is a Q-local martingale when one only
considers its restriction to [0, t] : this is true by applying the general statement with
a modified filtration such that Fu = F t when u > t.

Coming back to (4.14), we get that (Bs − νs, 0 6 s 6 t) is a Q-Brownian motion,
hence for any bounded continuous functional F,

EQ (F(Bs − νs, 0 6 s 6 t)) = EP (F(Bs, 0 6 s 6 t)) .

When F is a cylindric function, this is just a change of variables formula for finite-
dimensional Gaussian measures. If F depends only on the trajectory up to a stopping
time T 6 t a.s. the above equation together with Proposition 4.24 (ii) yield

EP

(
F(Bs − νs, 0 6 s 6 T)eνBT− ν

2

2 T
)

= EP (F(Bs, 0 6 s 6 T)) . (4.15)

As an example of application, the above equation allows to prove the following law of
hitting time of a Brownian motion with drift.

Corollary 4.28. Let T
(ν)
a = inf{s > 0 | Bs + νs = a}. Then for any λ > 0

EP

(
1

T
(ν)
a <∞e

−λT(ν)
a

)
= eνa−|a|

√
2λ+ν2

.

Proof. Consider the random variable F = 1
T

(ν)
a 6t

e−λT(ν)
a (which is F t∧Ta -measurable)

in (4.15). Then

EP

(
1

T
(0)
a 6t

e−λT(0)
a e

νB
t∧T(0)

a − ν
2
2

T
(0)
a

)
= EP

(
1

T
(ν)
a 6t

e−λT(ν)
a

)
.

Dominated convergence as t→∞ yields

EP

(
1

T
(0)
a <∞e

−
(
λ+ ν2

2

)
T(0)
a eνa

)
= EP

(
1

T
(ν)
a <∞e

−λT(ν)
a

)
.

The left hand side is known thanks to Corollary 3.17, so

EP

(
1

T
(ν)
a <∞e

−λT(ν)
a

)
= eνa−|a|

√
2λ+ν2

,

the expected result.

A simple yet sometimes useful consequence of Girsanov’s theorem is that the
Wiener measure gives positive mass to any open subset of continuous functions on
[0, 1].

Corollary 4.29. Let f be continuous on (0, 1), f(0) = 0, and note Vε(f) the set of
continuous functions g on (0, 1), beginning at 0, such that sup(0,1) |f(x) − g(x)| < ε.

Then P(Vε) > 0.

Proof. First, for a given ε > 0, there exists a continuous f0, beginning at 0, such that
its ε-neighborhood has a strictly positive probability (otherwise the measure would be
null). We want to prove it for general f By interpolation and up to choosing a smaller
ε, we can suppose that h := f − f0 is C 1. In the Girsanov theorem take M = B, a

Brownian motion, and Lt =
∫ t

0
ḣsdBs. Then M− 〈M,L〉 is B− h, and

P
(
|B− f |L∞(0,1) < ε

)
= EP

(
1|B−f0|L∞(0,1)<εe

∫ 1
0
ḣsdBs− 1

2

∫ 1
0
ḣ2
sds
)
.

This right hand side is strictly positive because P
(
|B− f0|L∞(0,1) < ε

)
> 0 and∫ 1

0
ḣsdBs > −∞ almost surely.
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We finally consider the question of checking the hypotheses to apply Girsanov’s
theorem. In most applications, a P-local martingale L is given, and one makes the
choice

dQ
dP

∣∣∣∣
Ft

= eLt− 1
2 〈L〉t ,

hoping that the expectation of the right hand side is 1. Note that E(L) is a positive
local martingale, hence a supermartingale, hence it converges almost surely and

E (E(L)∞) 6 1. (4.16)

There is equality if and only if E(L) is a uniformly integrable martingale. Moreover,
if E(L) is uniformly integrable, then when defining

dQ
dP

∣∣∣∣
F

= E(L)∞,

we obviously have Q ∼ P. Hence, checking the uniform integrability of an exponential
local martingale is important to apply Girsanov’s theorem, and a famous criterium
by Novikov is given hereafter.

Theorem 4.30. Let L be a local martingale beginning at 0. If

E
(
e

1
2 〈L〉∞

)
<∞, (4.17)

then E(L) is a uniformly integrable martingale.

Proof. We first prove that (4.17) implies that L is uniformly integrable and that

E
(
e

1
2 L∞

)
<∞, which in turn implies the result, as we will see after.

Obviously, by (4.17) E(〈L〉∞) < ∞, so L is bounded in L2 by Theorem 3.29.
Hence L is a uniformly integrable martingale. Moreover, by a simple application of
the Cauchy-Schwarz inequality and using (4.16),

E
(
e

1
2 L∞

)
= E

(
E(L)

1
2∞

(
e

1
2 〈L〉∞

) 1
2

)
6 E (E(L)∞)

1
2 E
(
e

1
2 〈L〉∞

) 1
2

6 E
(
e

1
2 〈L〉∞

) 1
2

,

so E
(
e

1
2 L∞

)
< ∞. Now, we want to prove the uniform integrability of E(L). From

the discussion before Theorem 4.30, a sufficient condition is E(E(L)∞) = 1.

• First, as L is uniformly integrable, Lt = E(L∞ | F t), so by convexity e
1
2 Lt <

E
(
e

1
2 L∞ | F t

)
. This proves that (e

1
2 Lt , t > 0) is uniformly integrable.

• Moreover, as the exponential is convex and increasing, (e
1
2 Lt , t > 0) is a submar-

tingale, uniformly integrable from the previous point. Hence, for any stopping

time T, e
1
2 LT < E

(
e

1
2 L∞ | FT

)
: the family

{e 1
2 LT | T stopping time}

. If this is a uniformly integrable martingale, obviously we need to have E (E(L)∞) = 1 by the
stopping time theorem. Reciprocally, if we have equality, as the function t 7→ E (E(L)t) decreases, it
needs to be constant. Hence, for t > s, E(E(E(L)t | Fs)− E(L)s) = 0, and as the integrated term is
non-positive, we have E(E(L)t | Fs) = E(L)s almost surely : E(L) is a martingale. Moreover, as an
easy consequence of Fatou’s lemma

E(L)t > E(E(L)∞ | Ft),
and as both random variables above have the same expectation they are equal : E(L)t > E(E(L)∞ |
Ft), so E(L) is uniformly integrable.
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is uniformly integrable.

• We would like to prove that {E(L)T | T stopping time} is uniformly inte-
grable. This is slightly too much required. We can show that {E(λL)T |
T stopping time} is uniformly integrable for any 0 < λ < 1. Take any A ∈ F
(typically, A = {E(λL)T > x}). Then

E (1AE(λL)T) = E
(
1A(E(L)T)λ

2

eλ(1−λ)LT

)
6 E (E(L)T)

λ2

E
(
1Ae

λ
1+λLT

)1−λ2

6 E
(
1Ae

λ
1+λLT

)1−λ2

= E
((

1Ae
1
2 LT

) 2λ
1+λ

)1−λ2

6 E
(
1Ae

1
2 LT

)2λ(1−λ)

where we used in the second inequality that for a positive supermartingale M
and any stopping time T, E(MT) 6 M0 (this is true for bounded stopping times,
and then for any of them by Fatou). The last inequality relies on the concavity
of x 7→ xa when a < 1. The last term above being uniformly integrable (from
our second point), the set {E(λL)T | T stopping time} is uniformly integrable
for any 0 < λ < 1.

• This implies that E(λL) is a uniformly integrable martingale.As a consequence,

1 = E (E(λL)∞) 6 E (E(L)∞)
λ2

E
(
e

1
2 L∞

)2λ(1−λ)

.

Taking λ→ 1− yields E(E(L)∞) > 1.

This achieves the proof.





Chapter 5

Stochastic differential equations

Ordinary differential equations aim to find, from local data

dXt

dt
= b(Xt),

a global solution X. Some criteria on b (e.g. the Cauchy-Lipschitz theorem) yield to
existence and uniqueness of solutions to such equations. They describe the evolution
of a deterministic physical system. A random perturbation of such a system is per-
tinent in many contexts : to study stability of such trajectories (e.g. bifurcations in
dynamical systems), or directly because the physics of the deterministic problem are
too intricate, hence this mixing property is simplified as an independence hypothesis
(e.g. pollen particles floating in water) or directly because the physical assumption in-
cludes randomness (e.g. quantum mechanics). Such a random equation can be written
as

dXt = σ(Xt)dBt + b(Xt)dt.

The meaning to give to this local evolution is that X is a semimartingale such that,
almost surely, for any t > 0,

Xt = X0 +

∫ t

0

(σ(Xs)dBs + b(Xs)ds).

Note first that these random perturbations of ordinary differential equations are per-
formed through a Gaussian noise. This is not very restrictive : by the Donsker Theorem
2.26, any independent increments in L2 lead to a Brownian motion. A more subtle
discussion is required concerning whether the solution of the stochastic differential
equation is a deterministic function of the random trajectory B (strong existence and
uniqueness of the solution) or if it given by a law of the trajectory (weak uniqueness of
the solution). This point is the purpose of the next section. In Section 2, an analogue
of the Cauchy-Lipschitz theorem for the existence of strong solutions is given, based
of Picard’s iteration as well. The strong Markov property associated to these solutions
will allow us to discuss generalizations of the Dirichlet problem, already considered in
Chapter 4, when the second order differential operator is not necessarily the Euclidean
Laplacian anymore (Section 3). After that, a practical way to perform simulations of
stochastic differential equations (e.g. for Monte Carlo purpose) is given, as one (of the
many) application(s) of the Stroock-Varadhan martingale problems theory (Section
4). Finally, we will study in details the case σ ≡ 1, pertinent in filtering theory and
revealing a wide variety of existence/uniqueness cases, in Section 5.

1. Weak and strong solutions

In the following definition, σ and b depend not only on the current point Xt but
also on t and the entire trajectory till time t. Moreover, they are assumed to be
multidimensional :

σ = (σij)16i6d,16j6m, b = (bi)16i6d,

each σij , bi, being a function from R+ × C to R, σ(t, ω), b(t, ω) ∈ Xt where Xt =
σ(ωs, s 6 t).


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Definition 5.1. A solution to the equation

dXt = σ(t,X)dBt + b(t,X)dt

on R+ is the collection of :

• a filtered probability space (Ω,F , (Ft)t>0,P) ;

• a (Ft)-Brownian motion B = (B(1), . . . ,B(m)) with B(i) a (Ft)-martingale and

〈B(i),B(j)〉t = 1i=jt ;

• a (Ft)-adapted process X = (X(1), . . . ,X(d)) such that

Xt = X0 +

∫ t

0

σ(s,X)dBs +

∫ t

0

b(s,X)ds.

This is abbreviated by saying that the process X is a solution of E(σ, b). When imposed
to X0 = x, X is said to be a solution of Ex(σ, b).

This definition has an obvious extension to the solution of the stochastic differential
equation with a finite time horizon T. The main notions of uniqueness and existence
are the following.

Definition 5.2. For the equation E(σ, b), we say that there is

• weak existence if for any x ∈ Rd there is a solution to Ex(σ, b) ;

• weak existence and uniqueness is for any x ∈ Rd there is a solution to Ex(σ, b)
and all solutions to Ex(σ, b) have the same law ;

• pathwise uniqueness if, given (Ω,F , (Ft)t>0,P) and B, two solutions X and X′

such that X0 = X′0 P-almost surely cannot be distinguished.

Moreover, a solution X of Ex(σ, b) is said to be strong if X is (Bt)-adapted, where
Bt = σ(Bs, s 6 t).

We now want to illustrate the above definitions by some examples. Suppose given
a Brownian motion (βt)t>0 on a probability space (Ω,F , (Ft)t>0,P), for example
Ft = σ(βs, s 6 t) and P is the Wiener measure.

• Weak existence. Consider the stochastic differential equation

dXt = 3 sgn(Xt)|Xt|2/3dBt + 3 sgn(Xt)|Xt|1/3dt, X0 = 0.

From Itô’s formula, Xt = B3
t is a solution.

• Weak uniqueness. Consider the equation

dXt = f(Xt)dBt

where f : R → R is any measurable function with |f(x)| = 1 for any x ∈ R.
Then any solution X of the equation is a F-martingale with bracket 〈X〉t = t,
hence it is a Brownian motion. This proves uniqueness in law.

• Pathwise uniqueness. The following equation is the one describing the so-called
geometric Brownian motion :

dXt = XtdBt, X0 = 1.

Then B = β, Xt = eBt− t2 is a solution. Given (Ω,F , (Ft)t>0,P) and B, if Yt is
another solution, from the Itô formula

d

(
Yt

Xt

)
=

dYt

Xt
− YtdXt

X2
t

+
Yt

X3
t

d〈X〉t −
1

X2
t

d〈X,Y〉t = 0.

Consequently X and Y cannot be distinguished.
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• Weak existence with no weak uniqueness. Consider the same equation as pre-
viously,

dXt = 3 sgn(Xt)|Xt|2/3dBt + 3 sgn(Xt)|Xt|1/3dt, X0 = 0.

From Itô’s formula, B = β and Xt = B3
t are solutions, as well as X = 0. This

example shows as well that there can be various strong solutions.

• Weak existence and weak uniqueness with no pathwise uniqueness. From the
original Brownian motion β, define another Brownian motion (Lévy’s criterion)
by

Bt =

∫ t

0

sgn(βs)dβs,

where sgn(x) = 1 if x > 0, -1 otherwise. Then β and −β are solutions of

dXs = sgn(Xs)dBs, X0 = 0,

because
∫ t

0
1βs=0ds = 0, hence

∫ t
0
1βs=0dBs = 0. Moreover, any solution is a

Brownian motion, once again by Lévy’s criterion.

Section 5 will in particular give an example of weak existence, weak uniqueness,
and non existence of a strong solution. Note that one cannot have pathwise uniqueness
and no weak uniqueness, or pathwise uniqueness and solutions not measurable in B’s
canonical filtration, this is a famous result of Yamada and Watanabe.

Theorem 5.3. If for the equation E(σ, b) pathwise uniqueness holds, then there is
also weak uniqueness, and any solution is strong.

Proof. For notational convenience, we consider the case d = m = 1. Proving the
theorem for Ex(σ, b) is sufficient, by conditioning on the initial value. Note that some
care is needed for this conditioning , as the event has no positive measure. However,
as C (R+,R2) is a Polish space, there is a regular conditional distribution P(ω, ·) of P,
the law of (X,B), with respect to B0. See [16] for more details about this conditioning.

Let (B,X) and (B′,X′) be two solutions to Ex(σ, b), eventually defined on distinct
probability spaces. We note W = C (R+,R), with the compact uniform topology,
B(W) the topological Borel field on W, Bt(W) = σ(ωs, s 6 t). The same objects are
easily defined on W×W,W×W×W. Let P(dω,dω′) (resp. P′) be the law of (B,X)
(resp. (B′,X′)) on (W ×W,B(W ×W)). Finally, we introduce Pω(dω′) the regular
conditional distribution of P(dωdω′) given ω, i.e.

(i) for any ω ∈W, this is a probability measure on (W,B(W)),

(ii) for any A ∈ B(W), Pω(A) is B(W)-measurable as a function of ω,

(iii) for any (A,A′) ∈ B(W ×W),

P(A×A′) =

∫
A′

Pω(A)R(dω)

where R is the law of B on (W,B(W)), i.e. the Wiener measure.

For the existence of this regular conditional distribution, we refer to [9]. In the same
way we define P′ω(dω).

To make use of pathwise uniqueness in the proof, we need to consider both solu-
tions (B,X) and (B′,X′) in the same probability space. For this purpose, let Q be the
probability distribution defined on (W ×W ×W,B(W ×W ×W)) by

Q(dω1dω2dω) = Pω(dω1)P′ω(dω2)R(dω). (5.1)



 Stochastic differential equations

Note that the projection of Q on along the second coordinate is P, and P′ along the
first coordinate. We want to prove that ω is a (Q,B(W×W×W)t) Brownian motion.
Let F1,F2,F be three Bt(W)-measurable functions, and u > t. Then

EQ ((ω(u)− ω(t))F1(ω1)F2(ω2)F(ω))

=

∫
W

(ω(u)− ω(t))

(∫
W

Pω(dω1)F1(ω1)

)(∫
W

Pω(dω2)F2(ω2)

)
F(ω)R(dω).

By the following important Lemma 5.4,
∫

W
Pω(dω1)F1(ω1) and

∫
W

Pω(dω2)F2(ω2)

are Bt(W)-measurable in ω, so by conditioning on Bt(W) and using that ω is a
(R, (Bt))-martingale (a Brownian motion actually), the above term vanishes. In the
same way,

EQ

((
(ω(u)− ω(t))2 − (u− t)2

)
F1(ω1)F2(ω2)F(ω)

)
= 0,

so ω is a (Q, (Bt(W×W×W)))-martingale with bracket 〈ω〉s = s : it is a (Q, (Bt(W×
W×W)))-Brownian motion. To sum up, we have proven that on the probability space

(W ×W ×W,B(W ×W ×W), (Bt(W ×W ×W)),Q)

the processes (B,X) := (ω, ω1) and (B′,X) := (ω, ω2) are solutions to Ex(σ, b). By
pathwise uniqueness, ω1 = ω2 Q-almost surely. Looking back at (5.1), this implies that
P = P′ and there is a B(W)-measurable function F such that ω1 = F(ω), ω2 = F(ω).
By Lemma 5.4, F is adapted, hence any solution is strong.

Lemma 5.4. Let P(dωdω1) be the law of (B,X), a solution of Ex(σ, b).
For A ∈ Bt(W), the applications ω → Pω(A) and ω → P′ω(A) are Bt(W)-

measurable.

Proof. If σ1, σ2, σ are three σ-algebras such that σ1 ∨ σ2 is independent of σ under a
probability measure µ, it is a general fact that for A ∈ σ1, µ-almost surely

µ(A | σ2) = µ(A | σ2 ∨ σ).

We apply this to σ1(t) = σ(ω1(s), s 6 t), σ2(t) = σ(ω(s), s 6 t), σ(t) = σ(ω(u) −
ω(t), u > t) and the measure P(dωdω1). As, for some filtration (Ft), ω is a (Ft)-
Brownian motion, and X is (Ft)-adapted, we have σ1(t) ∨ σ2(t) independent of σ(t).
Hence the above result reads, P-almost surely

P(·,A) = EP(1A | σ2(∞)) = P(·,A) = EP(1A | σ2(t) ∨ σ(t)) = EP(1A | σ2(t)),

which is obviously Bt(W)-measurable.

2. The Lipschitz case

Like for ordinary differential equations, we will show existence and strong unique-
ness for E(σ, b) under the Lipschitz hypothesis

|σ(t, ω)− σ(t, ω′)|+ |b(t, ω)− b(t, ω′)| 6 c sup
s6t
|ω(s)− ω′(s)|.

Theorem 5.5. Under the above hypothesis, there is pathwise uniqueness for E(σ, b).
Moreover, for any filtered probability space (Ω,F , (Ft)t>0,P), any F-Brownian motion

B, and any x ∈ Rd there is a strong solution to Ex(σ, b).

Remark. There is only one strong solution in the above theorem, by pathwise uni-
queness. Moreover, the above result also proves weak existence, and by the Yamada-
Watanabe theorem weak uniqueness.
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Proof. We assume m = d = 1 to simplify notations, the general case being absolutely
similar. We first prove pathwise uniqueness : given (Ω,F , (Ft)t>0,P), a F-Brownian
motion B, let X and X′ be two solutions of the related stochastic differential equation
such that X0 = X′0 almost surely. To avoid integrability problems, consider L > 0 and
the stopping time

τ = inf{t > 0 | |Xt| > L or |X′t| > M}.
Then, for any t > 0,

Xt∧τ = X0 +

∫ t∧τ

0

σ(s,X)dBs +

∫ t∧τ

0

b(s,X)ds,

and a similar equation holds for X′. Consequently, assuming that t lies in a boun-
ded set [0,T] and using the elementary identity (a + b)2 6 2(a2 + b2), f(t) =

E
(
sups6t(Xs∧τ −X′s∧τ )2

)
is bounded by

2E

(
sup
s6t

(∫ s∧τ

0

(σ(u,X)− σ(u,X′))dBu

)2
)

+ 2E

(
sup
s6t

(∫ s∧τ

0

(b(u,X)− b(u,X′))du
)2
)
.

By the Doob (resp. Cauchy-Schwarz) inequality for the σ (resp. b) term, this is lower
than

8E

((∫ t∧τ

0

(σ(s,X)− σ(s,X′))dBs

)2
)

+ 2TE
(∫ t∧τ

0

(b(s,X)− b(s,X′))2ds

)
= 8E

(∫ t∧τ

0

(σ(s,X)− σ(s,X′))2ds

)
+ 2TE

(∫ t∧τ

0

(b(s,X)− b(s,X′))2ds

)
.

We used that the expectation of the square of a martingale is also the expectation of
its bracket (the stochastic integral is L2-bounded thanks to the stopping time τ and
the boundedness of σ by the Lispschitz hypothesis). Now, we can use the Lipschitz
hypothesis on σ and b to obtain finally

f(t) 6 2c2(4 + T)

∫ t

0

f(s)ds.

As X0 = X′0 almost surely, f(0) = 0 a.s. and Gronwall’s lemma applied to the above
inequality yields f(t) = 0 a.s. for any t ∈ [0,T], hence for any t > 0. This means that
almost surely, for any t ∈ [0,T], Xt∧τ = X′t∧τ . By making L → ∞, the processes X
and X′ cannot be distinguished.

Now, given a probability space (Ω,F , (Ft)t>0,P), a F-Brownian motion B, and
any initial value x, one can construct a solution to Ex(σ, b) which is adapted to the
canonical filtration (Bt)t>0 of B using Picard’s approximation scheme :{

X
(0)
t = x,

X
(n)
t =

∫ t
0
σ(s,X(n−1))dBs +

∫ t
0
b(s,X(n−1))ds.

These processes are properly defined as an immediate induction shows that for any
n > 0, X(n) is B-adapted, and still by induction for any T > 0 and any n > 0 there is
a constant c(n) such that

E
(

sup
t6T

(
X

(n)
t

)2
)

6 c(n). (5.2)

. This lemma states in particular that if, on R+, f ′(t) 6 af(t), then f(t) 6 f(0)eat. Proof :

f(t)e−at decreases, by differentiation and application of the hypothesis.
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This is obvious at rank n = 0. Assuming the property at rank n − 1, the rank
n case follows by using the Lipschitz conditions (in particular |σ(t, ω)| 6 c′ +
c sup[0,T] ω, |b(t, ω)| 6 c′+c sup[0,T] ω for any t ∈ [0,T]) and the identity (a+b+c)2 6

3(a2 + b2 + c2), by convexity of x→ x2 :

E
(

sup
t6T

(
X

(n)
t

)2
)

63|x|2 + 3E

(
sup
t6T

(∫ t

0

σ(s,X(n−1))dBs

)2
)

+ 3E

(
sup
t6T

(∫ t

0

b(s,X(n−1))ds

)2
)

63|x|2 + 12E

(∫ T

0

σ(s,X(n−1))dBs

)2
+ 3TE

(∫ t

0

b(s,X(n−1))2ds

)

=3|x|2 + 12E

(∫ T

0

σ(s,X(n−1))2ds

)
+ 3TE

(∫ t

0

b(s,X(n−1))2ds

)

63|x|2 + 12

∫ T

0

(
c′ + cE(sup

u6s
X(n−1))

)2

ds+ 3T

∫ T

0

(
c′ + cE(sup

u6s
X(n−1))

)2

ds

63(|x|2 + 2T(4 + T)(c′2 + c2c(n−1)))

where we used in the first inequality the Doob and the Cauchy Schwarz inequality as
previously in the proof. This achieves the inductive proof of (5.2) by taking the above

constant for c(n).
The a-priori local martingale

∫ t
0
σ(s,X(n))dBs is actually a L2-bounded martingale

from the above estimate (5.2). This allows the following upper bound for the infinite

norm between X(n+1) and X(n) on [0,T], along the same steps as previously :

E

(
sup
[0,t]

(X(n+1) −X(n))2

)
62E

(
sup
s6t

(∫ s

0

(
σ(u,X(n+1))− σ(u,X(n))

)
dBu

)2
)

+ 2E

(
sup
s6t

(∫ s

0

(
b(u,X(n+1))− b(u,X(n))

)
du

)2
)

68E
((∫ t

0

(
σ(s,X(n+1) − σ(s,X(n)))dBu

)2
))

+ 2TE
(∫ t

0

(
b(s,X(n+1))− b(s,X(n))

)2

du

)
E

(
sup
[0,t]

(X(n+1) −X(n))2

)
62(4 + T)c2 E

(∫ t

0

sup
06v6u

(X(n+1)
u −X(n)

u )2du

)
.

This can be written, for t ∈ [0,T], f (n+1)(t) 6 cT
∫ t

0
f (n)(u)du, with f (n+1)(t) =

E
(

sup[0,t](X
(n+1) −X(n))2

)
, cT = 2(4 + T)c2. An immediate induction therefore

yields

f (n)(t) 6

(
sup
[0,T]

f (0)(s)

)
(cT)n

tn

n!
.

In particular,
∑∞
n=0

√
f (n)(T) <∞, i.e.∑

n

‖sup
[0,T]

(X(n+1) −X(n))‖L2 <∞,

so
∑
n sup[0,T](X

(n+1) −X(n)) is bounded in L2, hence a.s. finite : almost surely X(n)

converges uniformly on [0,T] to a continuous process X. As X(n) is adapted to the
canonical filtration of B, X is adapted as well.
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We now need to check that X is a solution of Ex(σ, b) : as ‖sup[0,T](X
(n)−X)‖L2 6∑∞

m>n

√
f (m)(T)→ 0, the similar inequalities as previously imply that, in L2

∫ t

0

σ(s,X(n))dBs →
∫ t

0

σ(s,X)dBs,∫ t

0

b(s,X(n))dBs →
∫ t

0

b(s,X)ds.

Injecting this in the induction relation between X(n) and X(n−1), we get that

Xt =

∫ t

0

σ(s,X)dBs +

∫ t

0

b(s,X)ds,

first in L2 but almost surelyas well.

3. The Strong Markov property and more on the Dirichlet problem

4. The Stroock-Varadhan piecewise approximation

This section is devoted to approximations of the law of stochastic processes. How
can one make a reasonable simulation of the trajectory of the strong solution of
a stochastic differential equation ? More generally, the Stroock-Varadhan piecewise
approximation [18] provides the convergence in law of a discrete Markov chain to the
solution of a martingale problem.

The reason why we consider their approach is that it ensures convergence in law
of processes under very weak conditions, provided that the associated martingale
problem admits a unique solution.

4.1. Martingale problems

The Stroock-Varadhan approach allows to define Markov processes through their
generator with no explicit construction of the semigroup. In the case of diffusions,
two other classical representations of diffusions are the following.

• Kolmogorov and Feller expressed the transition probabilities as the solution of
a forward partial differential equation.

• Itô introduced its stochastic calculus and therefore represents the diffusions as
solutions of stochastic differential equations.

Consider σ a d× d matrix function, a = σ tσ and b : Rd → Rd, all of them being
measurable.

Definition 5.6. A process (Xt, t > 0) with values in Rd, together with a filtered
probability space (Ω,F , (F)t,P), is said to solve the martingale problem M(a, b) if for
any 1 6 i, j 6 d {

Yi := (Xi
t −
∫ t

0
bi(Xs)ds, t > 0),

(Yi
tY

j
t −

∫ t
0
aij(Xs)ds, t > 0),

are local martingales. If a solution to M(a, b) has a unique possible law, the problem
is said to be well posed.

. If Yn converges to Y1 in L2 and Y2 a.s., then Y1 = Y2 almost surely : Yn converges to Y2 in
probability, hence almost surely along a subsequence ; by uniqueness o the limit, Y1 = Y2.



 Stochastic differential equations

We will study the martingale approach for the following reason : Theorem 5.9
hereafter states the weak convergence of discrete time Markov processes towards so-
lutions of sde under the uniqueness condition of the the solution of the limiting martin-
gale problem. This is a more general condition than pathwise uniqueness for example.
Very general conditions for well-posedness of M(a, b) are given in [18]. For example,
in dimension 1, measurability, boundedness for a and b and uniform positivity for a
are sufficient.

Moreover, a martingale problem is well-posed if and only if there is uniqueness
in law for an associated stochastic differential equation. More precisely, if σ and b
are Lipschitz, there exists a unique strong solution (i.e. a filtered probability space
(Ω,F , (F)t,P), Ft = σ(Bs, s 6 t) where B = (B1, . . . ,Bd) is a Brownian motion and
an F-adapted X) to the stochastic differential equation E(a, b) :

dXt = σ(Xt)dBt + b(Xt)dt.

Then X together with (Ω,F , (F)t,P) solves the martingale problem M(a, b), a = σ tσ.
An interesting point is that a reciprocal is true, with weaker assumptions on σ, b. For
technical reasons, we assume that b is continuous and a = σ tσ is elliptic, but these
hypotheses can be seriously weakened, as remarked later.

Theorem 5.7. Assume the above hypotheses and that X, (Ω,F , (F)t,P) is a solution
to M(a, b). Then there exists a F-Brownian motion B in Rdsuch that X,B solves
E(σ, b).

Proof. In the following, all (stochastic) integrals make sense thanks to our (strong)
assumptions on a and b. As X is a solution of M(a, b),

Yi := (Xi
t −
∫ t

0

bi(Xs)ds, t > 0)

is a local martingale, and d〈Yi,Yj〉t = aij(t)dt. Let

Bi :=

(∫ t

0

d∑
k=1

(σ−1)ik(Xs)dYk
s , t > 0

)
. (5.3)

This is a local martingale and the joint brackets are

〈Bi,Bj〉t =

d∑
k,l=1

∫ t

0

(σ−1)ik(Xs)(σ
−1)jl(Xs)(σ

tσ)kl(Xs)ds.

But the definition of the inverse yields

d∑
k,l=1

(σ−1)ik(σ−1)jl(σ
tσ)kl =

d∑
k,l,m=1

(σ−1)ik(σ−1)jl(σ)k,m
tσml = 1i=j .

By Lévy’s criterion, the Bi’s are Brownian motions, and from (5.3)

dXt = σ(Xt)dBt + b(Xt)dt,

which concludes the proof.

Remark. This result of the theorem actually holds under weaker hypotheses, in par-
ticular without the invertibility/ellipticity condition, by letting B go independently
for any time s such that σ(Xs) is not invertible.
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4.2. Convergence of Markov chains

Consider a Markov chain (U
(ε)
n )n>0, depending on a parameter ε > 0, with a

transition kernel P(ε) :

P(U
(ε)
n+1 ∈ B | U(ε)

n = x) = P(ε)(x,B).

In the context of the strong solution a stochastic differential equation in Rd (e.g. with
Lipschitz coefficients),

dXt = σ(Xt)dBt + b(Xt)dt,

one can think about U
(ε)
n+1 as{

U
(ε)
0 = U0,

U
(ε)
n+1 = U

(ε)
n + σ(U

(ε)
n )
√
εNn + b(U

(ε)
n )ε,

where N1,N2, . . . are independent standard Gaussian vectors in Rd.
Assume now that aij , bi, are continuous coefficients in Rd such that the martingale

problem M(a, b) has a unique solution in distribution : for any x ∈ Rd there is a process
X, with unique possible distribution, such that

Yi
t := Xi

t −
∫ t

0

bi(Xs)ds, Yi
tY

j
t −

∫ t

0

aij(Xs)ds

are local martingales. Note that, in the above context of Lipschitz coefficients, writing
a = σ tσ, the martingale problem has a unique solution σ(a, b), which is the strong
solution of the differential equation.

Assume that the scaled means and variances of the jumps of U(ε) are uniformly
convergent to a and b on any compact K, as ε→ 0 :

b
(ε)
i (x) :=

1

ε

∫
|y−x|61

(yi − xi)P(ε)(x, dy), lim
ε→0

sup
K
|b(ε)i − bi| = 0, (5.4)

a
(ε)
ij (x) :=

1

ε

∫
|y−x|61

(yi − xi)(yj − xj)P(ε)(x, dy), lim
ε→0

sup
K
|a(ε)
ij − aij | = 0. (5.5)

Moreover, assume that for any δ > 0 the probability of a jump greater than δ is o(ε),
uniformly in any compact K :

lim
ε→0

sup
K

1

ε
P(ε)(x,B(x, δ)c) = 0 (5.6)

Lemma 5.8. Conditions (5.4), (5.5) and (5.6) together are equivalent to

1

ε

∫
(f(y)− f(x))P(ε)(x, dy) −→

ε→0
Lf(x) (5.7)

uniformly on compact sets, for any f ∈ C∞c , where

L =
1

2

d∑
i,j=1

aij(x)∂ij +

d∑
i=1

bi(x)∂i.

Proof. Assume first that the conditions (5.4), (5.5) and (5.6) hold, and note L(ε) the

analogue of L for the coefficients a
(ε)
ij , b

(ε)
i . It is clear, thanks to (5.4), (5.5), that

L(ε)f → Lf uniformly on compacts, so we just need to prove that∣∣∣∣1ε
∫

(f(y)− f(x))P(ε)(x, dy)− L(ε)f(x)

∣∣∣∣ −→ε→0
0 (5.8)
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uniformly on compacts. By Taylor’s theorem, for an absolute constant cf ,∣∣∣∣∣∣f(y)− f(x)−
d∑
i=1

(yi − xi)∂if(x)− 1

2

d∑
i,j=1

(yi − xi)(yj − xj)∂ijf(x)

∣∣∣∣∣∣ 6 cf |y − x|3,

so the left hand side of (5.8)is bounded by

cf

∫
|y−x|61

|y − x|3 P(ε)(x, dy)

ε
+

∫
|y−x|>1

|f(y)− f(x)|P
(ε)(x, dy)

ε
.

The second term is bounded by 2‖f‖∞ 1
εP(ε)(x,B(x, 1)c), hence converges to 0, using

(5.6). Concerning the first one, for any 0 < δ < 1 it is smaller than

cf

(
δ

∫
|x−y|<δ

P(ε)(x, dy)

ε
|x− y|2 +

P(ε)(x,B(x, δ)c)

ε

)
.

This last term converges to 0 by (5.6) and the first one is uniformly bounded on a
compact set K by

2δ

d∑
i=1

‖aii‖L∞(K),

for sufficiently small ε, from 5.5. Hence it converges uniformly to 0 on K.
Conversely, assume that (5.7) holds. We first prove (5.6), which is equivalent to :

for any δ > 0, xε → x as ε→ 0,

1

ε
P(ε)(xε,B(xε, δ)

c)→ 0. (5.9)

Chose ϕ ∈ C∞c with ϕ ≡ 1 on B(x, δ/4), ϕ ≡ 0 out of B(x, δ/2), 0 6 ϕ 6 1. For ε
sufficiently small, ϕ 6 1B(xε,δ) and ϕ(xε) = 1, so

−1

ε

∫
(ϕ(y)− ϕ(xε))P

(ε)(xε,dy) =
1

ε

∫
(1− ϕ(y))P(ε)(x,dy) >

1

ε
Pε(xε,B(xε, δ)

c).

Now, by (5.7) the left hand side converges to 0, as L ≡ 0 on B(x0, δ/4). This proves
(5.9), hence (5.6). Now, proving (5.4) and (5.5) is easy : we only need to prove that
for any compact K, f ∈ C∞ with support included in K,

1

ε
sup
K̃

∣∣∣∣∣
∫
|x−y|<1

(f(y)− f(x))P(ε)(x, dy)− Lf(x)

∣∣∣∣∣ −→ε→0
0,

because specializing f to xi (resp. xixj) in K and 0 out of K̃ = {x ∈ Rd | dist(x,K) 6
1} yields (5.4) (resp. (5.5)). As we have the uniform convergence hypothesis (5.7), the
above result follows from

sup
K̃

1

ε

∣∣∣∣∣
∫
|x−y|>1

(f(x)− f(y))P(ε)(x, dy)

∣∣∣∣∣ −→ε→0
0,

which is a straightforward consequence of (5.6) that we have proved.

In the following Theorem and till the end of this section, we will talk about the
weak convergence of cadlag processes (emerging from Markov chains) to continuous
solutions of martingale problems or stochastic differential solutions. This is justified
by using the Skorokhod topology, see [7]. The reader uncomfortable with this topology
can replace the following discontinuous processes by the continuous affine extension
of the Markov chains.
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Theorem 5.9. Let X
(ε)
t = U

(ε)
bt/εc. Assume that x(ε) := X

(ε)
0 → x0 as ε → 0, and

that conditions (5.4), (5.5) and (5.6) are satisfied. Then, if M(a, b) is well posed,

X(ε) converges weakly to X, unique solution in distribution of the martingale problem
M(a, b).

Proof. We first prove the result under the additional hypotheses

lim
ε→0

sup
Rd
|b(ε)i − bi| = 0, (5.10)

lim
ε→0

sup
Rd
|a(ε)
ij − aij | = 0, (5.11)

lim
ε→0

sup
Rd

1

ε
P(ε)(x,B(x, δ)c) = 0. (5.12)

For a given T > 0, let P
(ε)
xε be the law of (X

(ε)
t , 0 6 t 6 T). The proof relies on

two points. First the tightness of these processes holds, i.e. the set {P(ε)
xε , ε > 0} is

pre-compact. Here we refer to Theorem 1.4.11 from [18], which asserts that the two
following criteria are sufficient to deduce tightness :

• for any smooth compactly supported f there is a constant cf such that for any
ε > 0

((f(X(ε)(kε)) + cfkε)k, (Fkε)k,P(ε)
xε )

is a discrete submartingale. This is true as, from our assumptions (5.10), (5.11)

and (5.12), there is an absolute cf such that supε>0
1
ε

∫
(f(y)−f(x))P(ε)(x,dy) <

cf <∞;

• the probability of a large gap is bounded by our assumption (5.12) : for any
δ > 0,∑

06jε6T

P(ε)
xε (|X(ε)((k + 1)ε)−X(ε)(kε)| > δ) 6 dT/εe sup

Rd
P(ε)(x,B(x, δ)c),

which converges to 0 as ε→ 0.

Secondly if, for εn → 0, P
(εn)
xεn converges weakly to a measure P, then P solves

the martingale problem M(a, b) starting from x0. Indeed, to prove it, note first that
necessarily P(X0 = x0) = 1. Moreover, let s < t, f ∈ C∞c (Rd) and F : Ω → R
bounded, continuous and Fs-measurable. Then, writing kn = bs/εnc+1, `n = bt/εnc+
1,

E
P

(εn)
xεn

f(X`nεn)− f(Xknεn)−
`n−1∑
j=kn

∫
(f(y)− f(Xjεn))P(εn)(Xjεn ,dy)

F

 = 0,

because f(Xkεn)−
k−1∑
j=0

∫
(f(y)− f(Xjεn)) P(εn)(Xjεn ,dy), k > 0


is obviously a (Fkεn)-martingale. Moreover, using Lemma (5.8),

f(X(`nεn))− f(Xknεn)−
`n−1∑
j=kn

∫
(f(y)− f(Xjεn))P(εn)(Xjεn ,dy)

−→
n→∞

f(Xt)− f(Xs)−
∫ t

s

Lf(Xu)du.

. A sequence of measures (µn, n > 0) is called tight if for any ε > 0 there is a compact set K such

that, for any n, µn(K) > 1− ε.
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uniformly on compact sets. As a consequence,

EP

((
f(Xt)− f(Xs)−

∫ t

s

Lf(Xu)du

)
F

)
= 0,

hence (f(Xt)−
∫ t

0
Lf(Xu)du, (Ft),P) is a martingale. Specializing f and localization

prove therefore that X together with the probability space (Ω,F , (Ft),P) solves the
martingale problem M(a, b).

To remove the extra assumptions (5.10), (5.11) and (5.12), we proceed by loca-
lization : for k > 1, let ϕk be smooth such that ϕk ≡ 1 on B(0, k) ϕk ≡ 0 out of
B(0, k + 1), 0 6 ϕk 6 1,

P
(εn)
k (x,Γ) := ϕk(x)P(εn)(x,Γ) + (1− ϕk(x))1x∈Γ.

Then he coefficients a
(εn)
k (resp. b

(εn)
k ) associated to P

(εn)
k are uniformly bounded in

Rd and n, and converge to ϕka (resp ϕkb) on compacts. Hence, from the previous
discussion, the sequence of associated measures (Pnk )n>0 is pre-compact and all its
limit points solve the martingale problem for ϕka, ϕkb. This implies that any limit
point of (Pnk )n>0 equals PX0

on Fτk where τk = inf{t > 0 | |Xt| > k} (see Theorem

10.1.1 in [18]). As Pn,k = Pn on Fτk , any limit of Pn coincides with PX0 on Fτk .
Taking k →∞ is allowed and yields the result (see Lemma 11.1.1 in [18]).

Amongst the many applications of Theorem 5.9, the following is linked to an
important problem in the History of statistical physics. After Gibbs and Boltz-
mann, the following paradox emerged, being the source of some disputes with Poin-
caré and Zermelo. For a system of particles in a closed container, in the (com-
mon) ergodic case we expect that any state is recurrent, in particular the ini-
tial one. However, Boltzman’s work and its H-entropy theorem, based on Newto-
nian dynamics, proves non-reversibility, through the monotonicity of its entropy.

Figure 5.1. Samples of X(m) for m =
50000, 0 6 t 6 6 (i.e. 300000 ex-

changes in the urn) : for X
(m)
0 = 50

(upper graph), the dynamics are first
irreversible, then recurrent, like in the

lower graph, beginning at X
(m)
0 = 2,

discrete approximation of an Ornstein-
Uhlenbeck process.

Smoluchowski formulated the following
explanation : the states far away from
equilibrium have a considerable recur-
rence time, so the system appears to be
irreversible only for reasonable observa-
tions. Paul and Tatiana Ehrenfest for-
malized this idea by the following simple
model, known as Ehrenfest’s urn : it is
exactly solvable and they proved that
it has a very large recurrence time for
states far from equilibrium.

Consider 2m particles, in 2 urns com-
municating through a small hole. At
time n, chose uniformly one particle
amongst 2m and change its urn : it is a
model for the gaz diffusion between two

urns through a small hole. Let N
(m)
n be

the number of particles on the left urn at
time n. Consider the process X(m) defi-
ned as N

(m)
bmtc −m√

m
, t > 0

 .

The following corollary of Theorem 5.9
goes in the direction of Hilbert’s wish in
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1900 : Boltzmann’s work on the principles of mechanics suggest the problem of deve-
loping mathematically the limiting processes (. . . ) which lead from the atomistic view
to the laws of motion of continua.

Corollary 5.10. Assume that, as m → ∞, N
(m)
0 −m ∼ α

√
m. Then, as m → ∞,

for any finite horizon T > 0, the process (X
(m)
t , 0 6 t 6 T) converges weakly to the

unique (strong) solution of the Ornstein-Uhlenbeck stochastic differential equation{
dXt = −Xtdt+ dBt,
X0 = α.

Note first that the above continuous limit visits all states, hanks to small fluctua-

tions from the mean in the initial condition : N
(m)
0 −m ∼ α

√
m. If N

(m)
0 −m ∼ αm for

some α ∈ (0, 1), then there is no diffusive limit, the way to equilibrium being deter-
ministic and non-reversible, the random term is not visible compared to the drift one.
On a different topic, the above stochastic differential equation clearly has a unique
strong solution because its coefficients are Lipschitz, and using the Itô formula the
reader can check that the explicit solution is

Xt = e−t
(
α+

∫ t

0

esdBs

)
.

Proof. The set of possible values for X
(m)
t is { k√

m
,−m 6 k 6 m}, and the probability

transitions are

P(m)

(
x, x+

1√
m

)
=

1

2
− x

2
√
m
, P(m)

(
x, x− 1√

m

)
=

1

2
+

x

2
√
m
.

As a consequence, with notations analogous to (5.4) and (5.5), a direct calculation
yields

b(m)(x) = −x, a(m)(x) = 1.

As condition (5.6) is clearly satisfied and X
(m)
0 −→

m→∞
α, the result follows by the

general Theorem 5.9.

5. Shifts in the Cameron-Martin space

The purpose of this section is to consider stochastic differential equations corres-
ponding to shift of the Bownian motion along a predictable element of the Cameron-
Martin space :

dXt = dBt + b(Xs, 0 6 s 6 t)dt. (5.13)

By the Girsanov Theorem, we know some properties of any measure weak solution to
this equation : it is absolutely continuous with respect to the Wiener measure, with
an explicit density.

A more subtle question concerns the existence/uniqueness of a weak/strong so-
lution to this equation. We will show that in the Markovian case, under very weak
hypotheses on b, there is a unique strong solution (Zvonkin, [26]). It was conjectured
that the Markovian hypothesis on b could be relaxed, which was shown to be false
in a famous counterexample due to Tsirelson ([22], see also [25]). Finally, a necessary
and sufficient condition on b for existence/uniqueness of a strong solution to (5.13) is
given, from the work of Ustunel [24].

5.1. The Zvonkin theorem

Consider a general Markovian differential equation

dXt = σ(Xt)dBt + b(Xt)dt. (5.14)
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A natural idea to study the existence/uniqueness of such an equation consists in
changing the variable, Yt = f(Xt), with f ∈ C 2 : Itô’s formula yields

dYt = (σf ′)(Xt)dBt +

(
1

2
σ2f ′′ + bs′

)
(Xt)dt,

so Y is a local martingale if and only if

1

2
σ2f ′′ + bf ′ ≡ 0. (5.15)

Assume that bσ−2 is locally integrable, then

f ′(x) = e
−
∫ x
· 2

b(u)

σ(u)2
du

is a solution to (5.15). The function f is strictly increasing, so f−1 is well defined,
and Y solves the stochastic differential equation

dYt = s(Yt)dBt (5.16)

with s(x) = (σf ′) ◦ f−1. The above stochastic differential equation (and therefore
general markovian shifts in the Cameron-Martin space) has a unique weak solution,
as shown by the following lemma and delocalization (make ε→ 0 hereafter).

Lemma 5.11. Let s be a measurable function with s(x) > ε > 0. Then (5.16) admits
a unique weak solution, which is a local martingale.

Proof. Let Y be a solution of (5.16). Then its bracket converges to ∞, as

〈Y〉t =

∫ t

0

g(Ys)
2ds > εt.

Hence, by the Dubins-Schwarz theorem, β defined by

β〈Y〉t = Yt

is a Brownian motion. More explicitly,

βt = Yτ(t)

where ∫ τ(t)

0

s(Yu)2du = t.

Differentiating the above equation yields

1 = τ ′(t)s(Yτ(t))
2 = τ ′(t)s(βt)

2.

This yields an explicit expression of 〈Y〉t in terms of β :

〈Y〉t = inf{u | τ(u) > t} = inf{u |
∫ u

0

τ ′(u)du > t} = inf{u |
∫ u

0

du

s(βu)2
> t}.

Consequently, Y is a continuous function of the Brownian motion β, hence there is a
unique possible law for it.

. n.b. : such an f is not necessarily C 2, but this is overcome by IV.45.9 in [17]



Stochastic differential equations 

Much better than the above uniqueness in law, strong existence and uniqueness
hold under weak assumptions : Zvonkin observed that when σ is Lipschitz, bounded
away from 0, and b only bounded and measurable, the function s in (5.16) is locally
Lipschitz, hence there is a unique strong solution to (5.16). As f is invertible, there
is a unique strong solution to (5.14), and in particular to (5.13) where σ ≡ 1 and a
bounded b depends only on the current point (Markovian case).

By scaling, the above discussion proves that there is always a strong solution to

dYt = εdBt + b(Yt)dt,

no matter how small ε > 0 is. This contrasts with the ordinary differential equation

dYt = b(Yt)dt

which can have several solutions for a bounded measurable b.

5.2. The Tsirelson example

The preceding paragraph contrasts with the following example where b depends
on all the past. Note the fractional part

{x} = x− bxc

and consider the ounded predictable drift

b((Xs)06s6t) =

{ {
Xtk−Xtk−1

tk−tk−1

}
if tk < t 6 tk+1

0 if t = 0
,

where (tk)k∈Z is an increasing sequence converging to 0 as k → −∞. Then b is
a bounded measurable function, so from the Girsanov theorem for the stochastic
differential equation

dXt = dBt + b((Xs)06s6t)dt (5.17)

uniqueness in law holds (here (Ω,F , (Ft),P) is a filtered probability space, B is a
((Ft),P)-Brownian motion and X is (Ft)-adapted). However, there is no strong so-
lution : for any solution X to the above equation, surprisingly for any t > 0 the
fractional part {(∆X)t} of the slope (tk < t 6 tk+1)

(∆X)t :=
Xt −Xtk

t− tk

is uniform on [0, 1] and independent of Bs = σ(Bu, 0 6 u 6 s) for any s > 0.

Theorem 5.12. For any t > 0, {(∆X)t} is uniform on [0, 1] and independent of B∞.
Moreover, noting Xt = σ(Xs, s 6 t), for any 0 < s < t

Xt = Bt ∨ σ({(∆X)s}). (5.18)

Proof. Similarly to (∆X)t, let

(∆B)t =
Bt − Btk
t− tk

,

for tk < t 6 tk+1. Then, from the stochastic differential equation (5.17), for tk−1 <
t 6 tk

(∆X)t = (∆B)t + {(∆X)tk−1
}.

. Example : dYt = 2 sgn(Yt)|Yt|1/2dt has three solutions 0,±t2, due to the bifurcation choice at
t = 0. Such a phenomena cannot exist in the stochastic case because the Brownian motion prevents
from making any initial choice.
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This yields, for any p ∈ Z

E
(
ei2πp{(∆X)tk}

)
= E

(
ei2πp((∆B)tk+(∆X)tk−1

)
)

= E
(
ei2πp(∆B)tk

)
E
(
ei2πp(∆X)tk−1

)
= e
− 2π2p2

tk−tk−1 E
(
ei2πp{(∆X)tk−1

}
)
,

where we have used the independence between (∆B)tk and Ftk−1
: B is a B is a (Ft)-

Brownian motion, hence Bt − Bs is independent of Fs for t > s. An iteration of the
above equality gives for any n > 1 the upper-bound∣∣∣E(ei2πp{(∆X)tk}

)∣∣∣ 6 e−2π2p2ckn
∣∣∣E(ei2πp{(∆X)tk−n}

)∣∣∣ 6 e−2π2p2ckn,

where ck = inf`6k(t` − t`−1)−1 > 0. This proves that for any p ∈ Z∗ and k ∈ Z

E
(
ei2πp{(∆X)tk}

)
= 0,

i.e. {(∆X)tk} is uniform on [0, 1]. Moreover, for any tk < t < tk+1, (∆X)t =
(∆B)t + {(∆X)tk}, where the last term was just proven to be uniform on [0, 1], and
is independent of (∆B)t, hence {(∆X)t} is uniform on [0, 1] for any t > 0.

Now note Buv = σ(Bs, u 6 s 6 v), 0 < u < v. For any v > 0, p ∈ Z,

E
(
ei2πp{(∆X)t} | Bv

)
= lim
n→−∞

E
(
ei2πp{(∆X)t} | Btnv

)
,

and this last term vanishes : for sufficiently large n, tn < tk < t 6 tk+1 and supposing
t < v,

E
(
ei2πp{(∆X)t} | Btnv

)
= E

(
ei2πp((∆X)tn+(∆B)tn+1

+···+(∆B)tk+(∆B)t) | Btnv
)

= ei2πp((∆B)tn+1
+···+(∆B)tk+···+(∆B)t) E

(
ei2πp(∆X)tn | Btnv

)
= ei2πp((∆B)tn+1

+···+(∆B)tk+···+(∆B)t) E
(
ei2πp(∆X)tn

)
where the last equality relies on the independence of Btnv and Ftn . We proved that

E
(
ei2πp(∆X)tn

)
= 0 for p ∈ Z∗, hence if 0 < t < v

E
(
ei2πp{(∆X)t} | Bv

)
= 0,

which concludes the proof that {(∆X)t} is independent of Bv whenever v > t, hence
independent of any Bv, v > 0.

Finally, to show that {(∆X)s} is exactly the missing information to get X from
B, i.e. (5.18), we proceed by double inclusion.

First, from the stochastic differential equation (5.17), B is a functional of X so
Bt ⊂ Xt. Obviously σ({(∆X)s}) ⊂ Xt (s < t), so

σ({(∆X)s}) ∨ Bt ⊂ Xt.

Concerning the other inclusion, we make the observation that (b(Xu), 0 6 u 6 t)
is a function of (Bu)06u6t and {(∆X)s} for any choice of 0 < s < t. Indeed, if
tk < s 6 tk+1,

(∆X)s = (∆B)s + {(∆X)tk},

so {(∆X)tk} ∈ σ({(∆X)s}) ∨ Bs (n.b. : {a− b} = {{a} − {b}}). Moreover,

(∆X)tk = (∆B)tk + {(∆X)tk−1
},
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so {(∆X)tk−1
}σ({(∆X)tk})∨Btk ⊂ σ({(∆X)s})∨Bs, and by induction any {(∆X)tn},

n 6 k, is σ({(∆X)s})∨Bs-measurable. Proving the measurability of the drifts for t > s
is also straightforward :

{(∆X)tk+1
} = {{(∆X)tk}+ (∆B)tk+1

} ∈ σ({(∆X)tk}) ∨ Btk+1
,

so by an immediate induction for any n with tn < t, {(∆X)tn ∈ σ({(∆X)s}) ∨ Bt.
By going below and up s, we proved that, for any u < t, b((Xv)06v6u) is always
σ({(∆X)s}) ∨ Bt-measurable, hence for u < t

Xu =

∫ u

0

b((Xy)06y6v)dv + Bu ∈ σ({(∆X)s}) ∨ Bt

which concludes the proof.

5.3. Energy, entropy.

A simple characterization of the existence of a strong solution to

dXt = dBt + u̇tdt, (5.19)

where u̇t ∈ Xt = σ(Xs, s 6 t), was given in [24]. We abbreviate the above equation
as B = (Id − u)X and wonder about P-almost sure invertibility of Id − u. To avoid
integrability problems, we assume that u̇t is uniformly bounded in ω and t. Note
that by the Girsanov theorem the law R of X is uniquely determined and absolutely
continuous with respect to that of B. Hence the P-almost sure and R-almost sure
invertibility conditions are the same, so for notational convenience we will consider
the equation

X = (Id− u)B

instead (for the same function u, where u̇t ∈ Bt = σ(Bs, s 6 t) now), and wonder
about its P-almost sure invertibility. From the above equation, it follows that

Xt ⊂ Bt ⊂ F t .

As previously, (Ω,F , (Ft),P) is a filtered probability space, B is a ((Ft),P)-
Brownian motion and X is (Ft)-adapted. Moreover, we consider the context of a
finite horizon (0, 1). Let

Lt =
dQ
dP

∣∣∣∣
Ft

= EP(L1 | Ft), Q = (Id− u)P,

and we will abbreviate L for L1. By the Itô representation theorem, Lt = ρ(−δyt) for

some F-adapted y,
∫ t

0
ẏ2
sds <∞ a.s., with the notation

ρ(−δyt) = e−
∫ t
0
ẏsdBs− 1

2

∫ t
0
ẏ2sds.

Indeed, the Itô representation yields Lt = 1 +
∫ t

0
αsdBs for some adapted α, and as

Ls > 0 a.s., this can be written

dLt =

(
αs
Ls

)
LsdBs,

so L is an exponential martingale.

Theorem 5.13. The application Id − u is P-almost surely invertible, with inverse
Id + y, if and only if

EP(L log L) =
1

2
EP

(
‖u‖2H

)
.
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Remark. The above equation means that the relative entropy H(Q | P) coincides with
the kinetic energy of u. The following proof yields to the unconditional inequality

H(Q | P) 6
1

2
EP

(
‖u‖2H

)
.

As entropy measures the number of accessible states, the theorem means that the
application is invertible if and only if it has just enough energy to fulfill the accessible
states.

Proof. Assume first that EP(L log L) = 1
2 EP

(
‖u‖2H

)
. By substitutions,

EP(L log L) = EQ(log L) = EQ(−
∫ 1

0

ẏsdBs −
1

2

∫ 1

0

ẏ2
sds)

= EQ(−
∫ 1

0

ẏs(ẏsds+ dBs) +
1

2
EQ(

∫ t

0

ẏ2
sds).

From the Girsanov theorem, (Bs +
∫ s

0
ẏsds)s>0 is a (F ,Q)-Brownian motion. As ẏs is

Fs-adapted, this implies that EQ(−
∫ 1

0
ẏs(ẏsds+ dBs) = 0, so

EP(L log L) =
1

2
EQ(‖y‖2H) =

1

2

∫
‖y‖2H

d(Id− u)P

dP
dP

=
1

2

∫
‖y(ω)‖2HP((Id− u)−1(dω)) =

1

2
EP(|y ◦ (Id− u)|2H).

Moreover, as X represents LdP, from Lemma 5.14, ẏs◦(Id−u) = EP(u̇s | Xs) ds×dP-
a.s., so

EP(L log L) =
1

2
EP

(∫ 1

0

(EP(u̇s | Xs))2ds

)
,

and using the hypothesis

EP

(∫ 1

0

u̇2
sds

)
= EP

(∫ 1

0

(EP(u̇s | Xs))2ds

)
,

which easily implies

EP

(∫ 1

0

(u̇s − EP(u̇s | Xs))2ds

)
= 0,

i.e. u̇s = EP(u̇s | Xs dt× dP almost surely. Hence

ẏs ◦ (Id− u) = u̇s

dt× dP a.s. which means that Id + y is the almost sure inverse of Id− u.

Lemma 5.14. Keeping the previous notations, in particular

Lt =
d(Id− u)P

dP
|Ft= ρ(−δyt) = e−

∫ t
0
ẏsdBs− 1

2

∫ t
0
ẏ2sds,

then ẏs ◦ (Id− u) = EP(u̇s | Xs) ds× dP-almost surely.

Proof. An easy substitution yields

Lt ◦ (Id− u) = e−
∫ t
0

(ẏs◦(Id−u))(dBs+u̇sds+
1
2 ẏs◦(Id−u)ds). (5.20)

On the other hand, applications of the Girsanov theorem yield the following expres-
sions.
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• First,
(Lt ◦ (Id− u))E(ρ(−δut) | Xt) = 1. (5.21)

Indeed, for any Ft-measurable f , from the Girsanov theorem,

E
(
f ◦ (Id− u)Lt ◦ (Id− u)ρ(−δut)

)
= E(fLt) = E(f ◦ (Id− u)),

where the last equality just translates Lt = d(Id−u)P
dP |Ft . Hence

E
(
f ◦ (Id− u)

(
f ◦ (Id− u)Lt ◦ (Id− u)E(ρ(−δut) | Xt)− 1

))
= 0.

We have B := E(ρ(−δut) | Xt) ∈ Xt and the above equation means E(AB) = 0
for any A ∈ Xt, so B = 0 P-a.s., proving (5.21).

• Moreover, defining Z by Xt = Zt +
∫ t

0
E(u̇s | Xs)ds,

E(ρ(−δu) | Xt) = e−
∫ t
0
E(u̇s|Xs)dZs− 1

2

∫ t
0
E(u̇s|Xs)2ds(=: `t) (5.22)

, by a double application of the Girsanov theorem :

E(f ◦ (Id− u)ρ(−δu)) = E(f) = E(f ◦ (Id− u)`1),

the last equality relying on the fact that Z is a X -Brownian motion (it is a
X -martingale with bracket 〈Z〉t = t). In the above equality, conditioning on Xt
implies the expected result (5.22).

Gathering (5.20), (5.21) and (5.22) yields

1 = (Lt ◦ (Id− u))E(ρ(−δut) | Xt)

= e−
∫ t
0

(ẏs◦(Id−u))(dBs+u̇sds+
1
2 ẏs◦(Id−u)ds)e−

∫ t
0
E(u̇s|Xs)dZs− 1

2

∫ t
0
E(u̇s|Xs)2ds.

Make he substitution dZt = dBt+(u̇s−E(u̇s | Xs))ds in the above formula shows that
a continuous semimartingale vanishes almost surely for any t > 0, hence its bracket
is 0, which means ẏs ◦ (Id− u) = EP(u̇s | Xs) dt× dP almost surely.





Chapter 6

Representations

1. The Itô representation

2. The Gross-Sobolev derivative

3. The Clark formula

4. The Ornstein-Uhlenbeck semigroup







Chapter 7

Concentration of measure

Obtaining sub-gaussian tails for probability measures, like

P(|X− E(X)| > δ) 6 Ce−cδ
2

, (7.1)

is an important goal and tool, making it possible to quantify fluctuations of a random
variable around its mean. For instance, for random variables depending on an index
n (often the dimension), this allows to bound the variance and therefore to prove
tightness, which is an important step towards convergence in law.

To motivate our study and understand the nature of concentration results (high
dimension, small fluctuations around the mean), we consider in this introduction some
examples proved in the following sections. First, let σ be the uniform probability
measure on the unit sphere S (n) ⊂ Rn+1, and S a subset of S (n) such that µ(n)(S) >
1/2. Consider the neighborhood

Sε = {x ∈ S (n) | dist(x,S) 6 ε}, (7.2)

where dist is the geodesic distance on the sphere. Then

σ(Sε) > 1− e−
(n−1)ε2

2 . (7.3)

In particular, as n→∞ the uniform measure gets concentrated in a belt around the
equator. This result (7.3) can be shown by first proving that the minimum of σ(Sε)
is obtained for an hemisphere, and then by a direct integration. The intuition behind
this last step is that a unit vector of Rn has typical amplitude O(1/

√
n) for the nth

coordinate, so the volume of the neighborhood will be close to 1 if nε2 � 1.
Concerning the first step, this isoperimetry result holds for all compact manifold

with strictly positive Ricci curvature, as shown by Gromov, Lévy. More precisely, let
M be a compact manifold with Riemannian metric g and Riemannian probability
measure µ. Let R(M ) be the infimum of Ric(u, u), over all unit tangent vectors u on

M , and assume R(M ) > 0. For some r > 0, R(M ) = R(S n(r)), where S (n)(r) is
a Euclidean sphere of dimension n and radius r, with uniform probability measure
noted σr. Then, if some Borell subsets M ⊂ M , S ⊂ S , have the same measure
(µ(E) = σr(S)),

µ(Mε) > σr(Sε),

for any ε > 0. Note that, by the Minkowski content formula, this implies that the
length of the border ∂M is greater than ∂S : this is an isoperimetry result.

As σr(Sε) can be easily estimated, we get that for any ε > 0, if µ(M) > 1/2, for
some absolute constant c,C > 0

µ(Mε) > 1− Ce−cRε
2

. (7.4)

We will directly prove such results for any Lipschiz function F by using stochastic
analysis tools, regardless isoperimetry considerations.

. for a Riemannian manifoldM with metric g, the geodesic distance allows to define a neighborhood
Mε of M ⊂M up to distance ε in the same way as (7.2)
. in this chapter, the Lipschitz constant ‖F‖L of a Lipschitz function F : Rn → R is defined with

respect to the Euclidean norm : for all x, y in Rn, |F(x)− F(y)| 6 ‖F‖L|x− y|L2(Rn)


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Theorem 7.1. For some C, c > 0, independent of the manifold M and the function
F with Lipschitz constant (with respect to the Riemanian metric) ‖F‖L

µ {|F− Eµ(F) > ε|} 6 Ce
−cR(M ) ε2

‖F‖2L .

There are two interesting regimes for these results. For ε → 0, this can yield iso-
perimetric estimates like (7.3). For ε > 0, as the dimension increases, this often yields

concentration, because the curvature of the sphere S (n), with radius 1, is R = n− 1.
Note that Theorem 7.1 easily implies (7.4), by choosing F(x) = min(dist(x,M), ε).

Bounds like (7.1) or more specifically (7.3) are called concentration inequalities,
and many general criteria allow to prove them. Our aim consists in giving a non-
exhaustive (see [10] for a review of the concentration phenomenon) description of
sufficient conditions, emphasizing on how, quite surprisingly, some stochastic processes
allow to prove these time-independent relations. For example, concentration yields a
good understanding of the maximum of any Gaussian process, at first order.

Theorem 7.2. Let g(t)t∈E be a centered Gaussian process indexed by a countable set
E, and such that supE g(t) <∞ almost surely. Then E(supE g(t)) <∞ and for every
δ > 0

P
(
| sup

E
g(t)− E(sup

E
g(t))| > δ

)
6 2e−

δ2

2σ2 ,

where σ2 is the maximum of the variances , supE E(g(t)2).

As we will see, this result by Borell is for example a consequence of the hypercon-
tractivity of the Ornstein-Uhlenbeck semigroup.

Going to the discrete setting, hypercontractivity is an important tool in computer
science for example. Consider the state space {−1, 1}d endowed with the uniform
probability measure. To a function f : {−1, 1}d → {−1, 1} (f can be thought as a
decision, function of d individual behaviors) one associates the function, Tρf equal
at point x to E(f(u)), where u is obtained from x by independently flipping each

bit with probability 1−ρ
2 : Tρ is called the noise operator, and is an analogue of the

Ornstein-Uhlenbeck semigroup. Then this semigroup satisfies an hypercontrativity
property, which is fundamental in the proof of the following famous result with from
Kahn, Kanal, Linial [8] (the slightly stronger version stated here comes from Talagrand
[20]).

For x = (x1, . . . , xd) ∈ {−1, 1}d, define the influence of individual i as the proba-
bility that changing xi changes f . Let −i for the vector of size n − 1 obtained from
(1, . . . , d) by removing the ith coordinate, and ES the expectation with respect to the
uniform measures for coordinates in S ⊂ J1, dK,

infli(f) = E−i vari(f).

Then, an easy calculation proves that

d∑
i=1

infli(f) > var(f).

Indeed, one naturally expects that the influence of each coordinate on f will be of order
1/n times the variance. The remarkable result from [8] is that for some individuals,

the influence goes till log d
d times the variance.

. That σ2 <∞ is an easy consequence of E(supE g(t)) <∞
. e.g. f(x1, . . . , xd) = x1 is called the dictatorship case, f(x1, . . . , xd) = x1 . . . xd is the parity, and

f(x1, . . . , xd) = sgn(x1 + · · ·+ xd) is the majority.
. Think about ρ = e−t, with t a time, so that T1f = f and T0f = E(f) are natural
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Theorem 7.3. Under the above assumptions, thee is a constant c > 0 not depending
on d such that for any Boolean function f

d∑
k=1

inflk(f)

− log inflk(f)
> c var(f).

This statement allows to give a framework for sentences like 3% of the population
can decide about the ending of the vote with probability 99%. Of course, the proof
will not be constructive, so gives no clues about how to find this precious sampling
amongst the coordinates. In the proof we will give, the noise operator is useful because
it improves integrability (hypercontractivity) but also because Tρf very explicit in
terms of f , when this function is expanded on a Fourier basis. This is very similar to
the use of the Ornstein-Uhlenbeck semigroup to prove continuity of chaos in Lp, see
Chapter 6.

This chapter only gives a partial view of concentration results. Another aspect I
particularly like (but we won’t treat in this class) is the Talagrand inequalities [21].
They allow for example to prove this visual example of concentration, given by Tao
and Vu [19], which is an important tool in Random Matrix Theory.

Theorem 7.4. Let X1, . . . ,Xn be i.i.d. centered  Bernoulli random variables, X =
(X1, . . . ,Xn), and V a given subspace of Rn of dimension d. Then

P(|dist(X,V)−
√
n− d| > δ) 6 Ce−cδ

2

,

for some constants C and c independent of n and d.

The above result means that the typical distance between a random element of
the hypercube and a subspace of dimension d is

√
n− d, with small (concentrated

with no normalization) deviations from the mean.

1. Hypercontractivity, logarithmic Sobolev inequalities and concentration

1.1. Diffusion semigroups

On Rd endowed with a measure µ, consider a family of operators (Pt)t>0 acting
on bounded measurable functions through a transition kernel

Pt f(x) =

∫
Rd
f(y)pt(x,dy),

the measures pt(x, ·) being bounded and positive, t > 0. We will only consider cases
in which the domain of Pt can be extended to L2(µ) : ‖Ptf‖L2(µ) 6 c(t)‖f‖L2(µ). We
are interested in the case of continuous semigroups, meaning :

• the semigroup property : Pt ◦Ps = Pt+s, s, t > 0 ;

• the continuity in L2(µ) : for all f ∈ L2(µ), as t→ 0,

Pt f −→
L2(µ)

f.

Moreover, if Pt 1 = 1 for any t > 0 (Markovian semigroup), there exists a Markov
process (Xt)t>0 such that

Pt f(x) = E (f(Xt) | X0 = x) .

. P(X1 = 1) = 1/2, P(X1 = −1) = 1/2
. Cf the Hille-Yoshida theorem



 Concentration of measure

Definition 7.5. The domain D2(L) ⊂ L2(µ) is the set of functions f ∈ L2(µ) such
that the limit

L f := lim
t→0

Pt f − f
t

exists in L2(µ). Then D2(L) is dense in L2(µ) and L characterizes the semigroup :

∂t Pt f = L Pt f = Pt L f.

The semigroup (Pt)t>0 is said to be a diffusion semigroup if for any f1, . . . , fn in the
domain and Φ : Rn → R in C∞

L Φ(f1, . . . , fn) =
∑
i

∂xiΦ(f1, . . . , fn) L fi +
∑
i,j

∂xixj (f1, . . . , fn)Γ1(fi, fj),

where Γ1(f, g) = 1
2 (L(fg)− f L g − g L f) is the operator carré du champ.

The measure µ is said to be invariant by (Pt)t>0 if for any f ∈ L1(µ), t > 0,∫
Pt fdµ =

∫
fdµ.

The measure µ is said to be reversible by (Pt)t>0 if for any f, g ∈ L1(µ), t > 0∫
(Pt f)gdµ =

∫
g(Pt f)dµ.

Note that, for Markovian semigroups, the reversibility implies the invariance. Mo-
reover, for a diffusion semigroup, L(1) = 0, so the semigroup is Markovian.

1.2. Logarithmic Sobolev inequalities

The Sobolev inequality bounds the fluctuations of a function in terms of its
derivative, and therefore can somehow yield to some concentration. For example,
any compactly supported smooth function f : Rn → R, if f ∈ Lp(Rn,dx) and
∂xif ∈ Lp(Rn,dx), 1 6 i 6 n, then f ∈ Lp∗(Rn,dx) and

‖f‖p∗ 6 c(n, p)‖∇f‖p, (7.5)

where 1 6 p < n, p∗ = np
n−p > p : a Sobolev inequality provides an improved inte-

grability on f in terms of that of its derivative. In probabilistic terms, this allows for
example to bound a variance in terms of the Lipschitz constant. One may want to
quantify the fluctuations of the function in terms of its gradient in a dimensionless
inequality, which cannot be achieved in (7.5) (e.g. p∗ → p as n→∞, hence it doesn’t
give additional integrability on f).

General concentration estimates, of type (7.1), can be obtained as a corollary of
the following logarithmic analogue of (7.5).

Definition 7.6. A measure µ on some space  X is said to satisfy a logarithmic
Sobolev inequality with constant c > 0 if for any non-negative f

Eµ
(
f2 log(f2)

)
− Eµ

(
f2
)

logEµ
(
f2
)
6 cEµ

(
|∇f |2

)
.

Here, the definition of ∇f depends on the context and its modulus is considered as ∞
in the non-differentiable case.

We will see later general very efficient criteria on µ for satisfying this general
inequality. The above-stated logarithmic Sobolev inequality, corresponding to p = 2,
implies analogues for any p > 2.

. In this course X will be either a Riemannian manifold or {−1, 1}n.
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Lemma 7.7. Let (Pt)t>0 be a diffusion semigroup with invariant measure µ. Assume
that µ satisfies a logarithmic Sobolev inequality with constant c.

Then for any p > 2 and any positive function f ∈ D

Eµ (fp log(fp))− Eµ (fp) logEµ (fp) 6 −c p2

4(p− 1)
Eµ
(
fp−1 L f

)
.

Proof. If (Pt)t>0 is a diffusion semigroup, then

p2

4(p− 1)
Eµ
(
fp−1 L f

)
= −p

2

4
Eµ
(
fp−2Γ1(f)

)
= −p

2
Eµ
(
f
p
2−1Γ1(f, fp/2)

)
= −p

2
Eµ
(

Γ1(f
p
2 )
)

p2

4(p− 1)
Eµ
(
fp−1 L f

)
= Eµ

(
f
p
2 L f

p
2

)
,

hence the expected result is the logarithmic Sobolev inequality applied to the function
f
p
2 .

An interesting feature of logarihmic Sobolev inequalities is that they tensorize, in
the following way. This will be useful in Section 4. To state this property, given a
function f on X = X1 × · · · ×Xd, note

fi(xi) = f(x1, . . . , xn),

the function fi depending on the frozen coordinates x1, . . . , xi−1, xi+1, dots, xd.

Proposition 7.8. Assume that for any 1 6 k 6 d the measure µk on Xk satisfies a
logarithmic Sobolev inequality  with constant ck : for any non-negative function h

Entµk(h2) 6 ck

∫
Xk

|∇kh|2dµk.

Then µ = µ1 ⊗ · · · ⊗ µk satisfies a logarithmic Sobolev inequality with constant c =
max16k6d ck : for any non-negative function f on X

Entµ(f2) 6 c

∫
X

|∇f |2dµ,

where |∇f |2 is defined as
∑d
k=1 |∇kfk|2.

Proof. The statement easily follows from the inequality

Entµ(f) 6
∫ d∑

k=1

Entµk(fk)dµ, (7.6)

that we will prove by an extremal characterization of the entropy :

Entµ(f) = sup{
∫
fhdµ |

∫
ehdµ 6 1}. (7.7)

. we know that for diffusion semigroups

Γ1(F(f), g) = F′(f)Γ1(f, g), Eµ(F′(f) L f) + Eµ(F′′(f)Γ1(f)) = 0.

. Here, as in Definition 7.6, the definition of the gradient is arbitrary/depending on the context

and has no influence on the conclusion of the proposition
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Indeed, first note that we can suppose that
∫
fdµ = 1 by homogeneity (if λ > 0,

Ent(λf) = λEnt(f)). Then, Young’s inequality (f non-negative and g real) fh 6
f log f − f + eh yields, once integrated,∫

fhdµ 6 Entµ(f)− 1 +

∫
ehdµ.

This proves that the left hand side of (7.7) is greater than the right side. The reverse
inequality is obtained by choosing h = log f . As a consequence of (7.7), a sufficient
condition to prove (7.6) is that if

∫
ehdµ 6 1 then∫

fhdµ 6
∫ d∑

k=1

Entµk(fk)dµ.

This is true by interpolating between 1 and h in the following way. For 1 6 k 6 n, let

h(k)(xk, . . . , xn) = log

(∫
ehdµ1 . . . dµk−1

)
− log

(∫
ehdµ1 . . . dµk

)
.

Then, as
∫
ehdµ 6 1,

∑d
k=1 h

(k) > h. Moreover, obviously
∫
eh

(k)
k dµk = 1. Hence∫

fhdµ 6
d∑
k=1

∫
fh(k)dµ =

d∑
k=1

∫ (∫
fkh

(k)
k dµk

)
dµ 6

∫ d∑
k=1

Entµk(fk)dµ,

as expected.

1.3. Herbst’s lemma

The link between Logarithmic Sobolev inequalities and concentration lies in the
following Lemma, by Herbst.

Lemma 7.9. Assume that µ satisfies a logarithmic Sobolev inequality on Rn with
constant c. Let F : Rn → R be a Lipschiz function, with Lipschitz constant ‖F‖L.
Then, for any λ ∈ R,

Eµ
(
eλ(F−Eµ(F))

)
6 ecλ

2‖F‖2L/4. (7.8)

In particular, for any δ > 0,

µ {|F− Eµ(F)| > δ} 6 2e
− δ2

c‖F‖2L . (7.9)

Proof. First note that (7.9) is a consequence of (7.8) : for any λ > 0, by the Bienaymé-
Chebyshev inequality,

µ {|F− Eµ(F)| > δ} 6 e−λδ Eµ
(
eλ|F−Eµ(F)|

)
6 e−λδ

(
Eµ
(
eλ(F−Eµ(F))

)
+ Eµ

(
e−λ(F−Eµ(F))

))
6 2e−λδecλ

2‖F‖2L/4.

The optimal choice λ = 2δ
c‖F‖2L

yields (7.9).

To prove (7.8), assume first that F is differentiable, with uniformly bounded deri-
vatives :

‖F‖L = sup
x∈Rn
‖∇F‖L2(x) <∞.

Moreover, we can suppose Eµ(F) = 0. Let f(λ) = log‖e2F‖Lλ , λ > 0. Then a direct
calculation yields

d

dλ
f(λ) =

1

λ2

Eµ(2λFe2λF)− Eµ(e2λF) logEµ(e2λF)

Eµ(e2λF)
,
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which is bounded by the logarithmic Sobolev inequality by

cEµ(‖∇eλF‖2L2)

λ2 Eµ(e2λF)
6 c sup

Rn
‖∇F‖2L2 .

Moreover, as Eµ(F) = 0, limλ→0+ f(λ) = 0, hence f(λ) 6 λc supRn‖∇F‖2L2 for all
λ > 0, which is the expected result. If λ < 0, the same result holds by considering
−F.

If F is not differentiable with uniformly bounded derivatives, then we proceed by
approximation :

• We note, for ε > 0, Fε(x) = F(x) if −1/ε < F(x) < 1/ε, −1/ε if F(x) < ε and

1/ε if F(x) > −1/ε. Noting pε the Gaussian density pε(x) = e−
|x|2
2ε /(2πε)n/2,

and the convolution Fε(x) = pε ?F, then Fε(x) converges simply to F (|Fε(x)−
F(x)| 6 ‖F‖L

√
εn), it is continuously differentiable and we will be able to apply

the above discussion to it.

• Indeed, the gradient of Fε(x) is uniformly bounded : it is an easy exercise that
supRn‖∇Fε‖L2 < ‖F‖L, thus from the differentiable case, we know that

Eµ
(
eλFε

)
6 eλEµ(Fε)ecλ

2‖F‖2L/4. (7.10)

• Thanks to the simple convergence we can use Fatou’s lemma, and get Eµ(eλF) 6

elim infε→0 λEµ(Gε)ecλ
2‖F‖2L/2. Hence the proof will be complete if limε→0 Eµ Fε =

Eµ F.

• From the concentration property of Fε (7.10),

µ{|Fε − Eµ(Fε)| > δ} 6 Ce−cδ
2

,

with C and c independent of ε. Hence Fε−Eµ(Fε) is uniformly integrable. If we
can show that Eµ(Fε) is bounded, it will give the uniform integrability of Fε,
hence the expected convergence limε→0 Eµ Fε = Eµ F.

• As Fε converges simply to F, by dominated convergence we can find K, ε0 such
that, for ε < ε0, µ{|Fε| < K} > 3/4.

Moreover, from (7.10), for r sufficiently large, µ{|Fε − Eµ(Fε)| < r} > 3/4.
Hence, for ε < ε0, with probability at least 1/2, both |Fε| < K and |Fε −
Eµ(Fε)| < r, hence Eµ(Fε) < K + r : this event, has measure 0 or 1, hence it is
almost sure.

1.4. Gross’s Theorem

Definition 7.10. Given a strictly increasing function q : R+ → [q(0),∞), a semi-
group (Pt)t>0 is said to be hypercontractive with contraction function q if, for any
f ∈ D and any t > 0,

‖Pt f‖q(t) 6 ‖f‖q(0).

Theorem 7.11 (Gross). Let (Pt)t>0 be a Markov semigroup with invariant measure
µ such that either µ is reversible or (Pt)t>0 is a diffusion semigroup.

If (Pt)t>0 is hypercontractive with constant q(t) = 1 + e
4t
c , c > 0, then µ satisfies

a logarithmic Sobolev inequality with constant c.
If µ satisfies a logarithmic Sobolev inequality with a constant c > 0, then for any

q(0) > 1 and q(t) = 1 + (q(0) − 1)e
4t
c , (Pt)t>0 is hypercontractive with contraction

function q.
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Proof. The proof relies on the differentiation with respect to t,

d

dt
log‖Pt f‖q(t) =

q′(t)

q(t)2 Eµ
(
(Pt f)q(t)

) (∫ (Pt f)q(t) log((Pt f)q(t))dµ

−
∫

(Pt f)q(t)dµ log

(∫
(Pt f)q(t)dµ

)
+
q(t)2

q′(t)
Eµ
(

(Pt f)q(t)−1 L Pt f
))

. (7.11)

Suppose first that (Pt)t>0 is hypercontractive with contraction function q(t) =

1 + e
4t
c :

‖Pt f‖q(t) 6 ‖P0 f‖q(0),

hence the derivative of t 7→ log‖Pt f‖q(t) is negative at 0. From the above differentia-

tion, and as q(0)2/q′(0) = c, this means∫
f2 log(f2)dµ−

∫
f2dµ log

(∫
f2dµ

)
6 −c

∫
f L fdµ,

which is the expected logarithmic Sobolev inequality.
If µ satisfies a logarithmic Sobolev inequality, with constant c > 0, then Lemma

7.7 applied to Pt f yields∫
(Pt f)q(t) log((Pt f)q(t))dµ−

∫
(Pt f)q(t)dµ log

(∫
(Pt f)q(t)dµ

)
6 −c q(t)2

4(q(t)− 1)

∫
(Pt f)q(t)−1 L Pt fdµ.

For our choice q(t) = 1 + (q(0)− 1)e4t/c,

c
q(t)2

4(q(t)− 1)
=
q(t)2

q′(t)
,

hence from the differentiation (7.11) the function t 7→ log‖Pt f‖q(t) is decreasing,
which means the expected hypercontractivity.

2. Concentration on Euclidean spaces

2.1. Concentration for the extremum of Gaussian processes.

We are now in position to prove Borell’s inequality.

Theorem 7.12. Let g(t)t∈E be a centered Gaussian process indexed by a countable
set E, and such that supE g(t) < ∞ almost surely. Then E(supE g(t)) < ∞ and for
every δ > 0

P
(
| sup

E
g(t)− E(sup

E
g(t))| > δ

)
6 2e−

δ2

2σ2 ,

where σ2 is the maximum of the variances , supE E(g(t)2).

Proof. Consider the Gaussian probability measure

dµ =
1

Zn
e−V(x)dx =

1

(2π)n/2
e−
∑n
k=1

x2k
2 dx1 . . . dxn

on Rn. Obviously, Hess(V) > Idn, so µ satisfies a Logarithmic Sobolev inequality with
constant 2, by the Bakry-Emery Theorem 7.13. Now, consider a finite set of points

. That σ2 <∞ is an easy consequence of E(supE g(t)) <∞



Concentration of measure 

t1, . . . , tn in E, and the Gaussian vector g = (g(t1), . . . , g(tn)), with covariance tVV :

g
law
= Vx where x is a vector of standard centered Gaussians.
Consider x→ sup16i6n(Vx)i. This is a Lipschiz function with constant σ :

|F(x)− F(y)| 6 sup
16i6n

|(Vx)i − (Vy)i| = |
n∑
j=1

Vij(xj − yj)|

6

√√√√ n∑
j=1

V2
i,j |x− y|L2 =

√
var(g(ti))|x− y|L2 6 σ|x− y|L2 .

Consequently, we can apply Herbst’s Lemma 7.9 and get

P
(∣∣∣∣ sup

16k6n
g(tk)− E( sup

16k6n
g(tk))

∣∣∣∣ > δ

)
6 e−

δ2

2σ2 . (7.12)

Note that this upper bound does not depend on n, which makes us confident in
extending the result to a countable set T. We can achieve this in the following way.

First, E(supT g(t)) < ∞. Indeed, let Tn be a finite subset of T. Then for any
a, b > 0,

{E(sup
Tn

g(t)) < a+ b} ⊃ {sup
Tn

g(t) > E(sup
Tn

g(t))− a} ∩ {sup
T
g(t) < b}.

From (7.12), for a large enough (and not depending on n), the first event has pro-
bability 3/4, and the second has probability at least 3/4 for b large enough, as
supT g(t) < ∞ almost surely. E(supTn g(t)) is shorter than a + b with probability
1/2, thus with probability 1. Now, taking increasing subsets Tn → T (possible, as T
is countable), by monotone convergence E(supT g(t)) <∞.

To conclude, by dominated convergence, for an increasing sequence of subsets
Tn → T and r > 0, by (7.12)

P(sup
T
g(t)− E(sup

T
g(t)) > r) = lim

n→∞
P(sup

Tn

g(t)− E(sup
T
g(t)) > r) 6 e−

δ2

2σ2

where δ = r + |E(supT g(t))− E(supTn g(t))|. For n→∞, δ → r as previously seen,
by monotone convergence. This concludes the proof, applying the same method for
the lower bound.

Theorem 7.12 can be applied to Gaussian processes indexed by an interval un-
der the continuity assumption (continuity obtained e.g. by Kolmogorov’s regularity

criterion). Note that for the Brownian motion on [0, 1], σ = 1 and sup g(t)
law
= |X|,

X ∼ N (0, 1), so

logP (| sup g(t)− E(sup g(t))| > δ) ∼
δ→∞

−δ
2

2
,

coherent with the Theorem 7.12. However, for more general covariance structures,
this theorem is one of the very few general bounds on the law of extremes. It yields
the exact first order queuing probability for the maximum :

logP (sup g(t) > δ) ∼
δ→∞

− δ2

2σ2
.

To prove the above estimate, of large deviations type, the upper bound is a straight-
forward consequence of Theorem 7.12, and the lower bound follows from

logP(sup g(t) > δ) > logP(g(s) > δ) ∼
δ→∞

− δ2

2σ2
s

,

noting σs = var(g(s)), and considering the supremum over the σs’s.
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2.2. Convex potentials

Theorem 7.13 (Bakry, Emery). Assume that the potential V : Rn → R is strictly
convex, in the sense that for some c > 0

Hess(V) >
1

c
Id, (7.13)

for the partial order of symmetric operators. Then the probability measure

µ =
1

Zn
e−V(x1,...,xn)dx1 . . . dxn

satisfies the logarithmic Sobolev inequality with constant 2c, i.e. for any differentiable
function f : Rn → R∗+∫

f log fdµ−
(∫

fdµ

)(
log

∫
fdµ

)
6 2c

∫
|∇
√
f |2dµ.

Proof. The idea consists in integrating along the semigroup (Pt)t>0 associated with

the invariant measure e−V

Zn
:∫

f log fdµ−
∫
fdµ log

∫
fdµ = F(0)− F(∞)

where F(t) =
∫

Pt f log Pt fdµ. That F(∞) =
∫
fdµ log

∫
fdµ follows from the ergo-

dicity result Lemma 7.14 (we can assume that f has bounded derivatives and that its
image is included in a compact of R∗+ and conclude by dominated convergence).

We need to control the derivative

F′(t) =

∫ ((
d

dt
Pt f

)
log Pt f +

d

dt
Pt f

)
dµ.

The second term makes no contribution because
∫∫∞

0
d
dt Pt fdµdt =

∫
(f−

∫
fdµ)dµ =

0, still by ergodicity. The first term is∫
(L Pt f) log Pt fdµ = −

∫
Γ1(Pt f, log Pt f)dµ = −

∫
Γ1(Pt f)

Pt f
dµ,

where we used
∫
f(L g) = −

∫
Γ1(f, g) in the first equality. From Lemma 7.15, this is

greater than

−e− 2t
c

∫
(Pt

√
Γ1(f))2

Pt f
dµ.

Now, by the Cauchy-Schwarz inequality, for any positive functions a and b,

(Pt a)2

Pt b
=

(
Pt

(
a√
b

√
b
))2

Pt b
6 Pt

(
a2

b

)
,

so finally

F′(t) > −e− 2t
c

∫
Pt

(
Γ1(f)

f

)
dµ = −e− 2t

c

∫
Γ1(f)

f
dµ.

Integrating yields F(0)− F(∞) 6 2c
∫
|∇
√
f |2dµ, as expected.

Lemma 7.14. If the curvature condition (7.13) holds, then the semigroup (Pt)t>0

is ergodic, in the sense that for any bounded Lipschitz f ∈ D , almost surely (for the
Lebesgue measure)

Pt f −→
t→∞

∫
fdµ.



Concentration of measure 

Proof. For given initial data and t > 0, let

ϕ(s) = Ps(Γ1(Pt−s f)).

Then

ϕ′(s) = Ps(L Γ1(Pt−s f)) + 2 Ps(Γ1(Pt−s f,L Pt−s f)) = 2 Ps Γ2(Pt−s f). (7.14)

By the curvature condition (7.13), this is bounded by 2
c Ps Γ1(Pt−s f), hence ϕ′(s) 6

2
cϕ(s), so by Grönwall’s lemma ϕ(t) > ϕ(0)e

2
c t, i.e.

Γ1(Pt f) 6 e−
2
c t Pt Γ1(f). (7.15)

As f is Lipschitz, Γ1(f) is uniformly bounded in space, so Pt Γ1(f) is uniformly
bounded in space and time, so Γ1(Pt f) converges uniformly to 0 in Rn. Hence
Pt f converges to a constant, uniformly on compact sets (|Pt f(x) − Pt f(y)| 6
|
√

Γ1(Pt f)|∞|x−y|). Moreover, for any ε > 0 and x ∈ Rn there is a compact K ⊂ Rn
such that x ∈ K, µ(K) > 1− ε, so

|Pt f(x)−
∫
fdµ| 6

∫
|Pt f(x)−Pt f(y)|dµ(y) 6 2ε|f |∞+

∫
K

|Pt f(x)−Pt f(y)|dµ(y),

and the last integral goes to 0 thanks to the uniform convergence on compacts. This
concludes the proof.

Lemma 7.15. If the curvature condition (7.13) holds, then for all f ∈ D√
Γ1(Pt f) 6 e−

t
c Pt

(√
Γ1(f)

)
.

Proof. Let

ψ(s) = e−
s
c Ps

√
Pt−s f.

Then, noting g = Pt−s f ,

ψ′(s) = −1

c
ψ(s) + e−

s
c Ps

(
L
√

Γ1(g)
)
− e− sc Ps

(
Γ1(g,L g)√

Γ1(g)

)
.

Moreover, for F : Rn → R and f = (f1, . . . , fn),

L F(f) =
∑

(∂iF)fi +
∑
i,j

(∂ijF)(f)Γ1(fi, fj),

so

L
√

Γ1(g) =
L Γ1(g)

2
√

Γ1(g)
− Γ1(Γ1(g))

4Γ1(g)3/2
.

This yields

ψ′(s) = e−
s
c Ps

(
L Γ1(g)− 2Γ1(g,L g)

2
√

Γ1(g)
− Γ1(Γ1(g))

4Γ1(g)3/2
− 1

c

√
Γ1(g)

)

= e−
s
c Ps

(
4Γ1(g)

(
Γ2(g)− 1

cΓ1(g)
)
− Γ1(Γ(1)(g))

4Γ1(g)3/2

)
.

This is positive thanks to Lemma 7.16, so ψ(t) > ψ(0), as expected.

Lemma 7.16. If the curvature condition (7.13) holds, for any f ∈ D,

4Γ1(f)

(
Γ2(f)− 1

c
Γ1(f)

)
> Γ1(Γ1(f)).
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Proof. An elementary (and long) differentiation yields, for F : Rn → R, f =
(f1, . . . , fn),

Γ2(F(f)) =
∑
i,j

∂iF(f)∂jF(f)Γ2(fi, fj) + 2
∑
i,j,k

∂iF(f)∂jkF(f)H(fi)(fj , fk)

+
∑
i,j,k,l

∂ijF(f)∂klF(f)Γ1(fi, fk)Γ1(fj , fl)

where H(f)(g, h) = 1
2 (Γ1(g,Γ1(f, h)) + Γ1(h,Γ1(f, g))− Γ1(f,Γ1(g, h))). Applying

this to F such that, at point (f, g)(x0),

∇F =

(
1
0

)
,Hess F =

(
0 x
x 0

)
,

we get

Γ2(F(f, g)) = Γ2(f) + 4xH(f)(f, g) + 2x2(Γ1(f, g)2 − Γ1(f)Γ1(g))

>
1

c
Γ1(F(f, g)) =

1

c
Γ1(f).

The discriminant of this positive binomial needs to be negative, which implies, (by
using H(f)(f, g) = Γ1(Γ1(f), g) and Γ1(f, g)2 6 Γ1(f)Γ1(g))

Γ1(g,Γ1(f))2 6 4

(
Γ2(f)− 1

c
Γ1(f)

)
Γ1(f)Γ1(g),

and the expected result for g = Γ1(f).

3. Concentration on curved spaces

Theorem 7.13 admits a Riemannian analogue, based on the same ideas, and which
only requires some basis on differential geometry.

Consider M a compact manifold of dimension n with a Riemannian metric g.
Then gx is a positive definite bilinear map on the tangent space of M at point
x, Tx(M ). The natural underlying measure, µ, associated with (M , g) is the locally
dµ(x) =

√
detgxdx. We are interested in whether smooth modifications of this volume

measure satisfy a logarithmic Sobolev inequality. Let

µV(dx) =
1

Z
e−V(x)dµ(x)

with V a smooth function on M . A stochastic process with invariant measure µV is
given through its semigroup

Pt = etLV , LV(f) = ∆f − g(∇V,∇f),

where ∆ is the Laplace Beltrami operator on (M , g), i.e. ∆f = div∇f with divX =∑
i g(Li, [Li,X]) in local coordinates. Equivalently,∫

g(∇f,X)dµ = −
∫
fdivXdµ.

Finally, the Riemannian analogues of Γ1 and Γ2 are naturally given by

Γ1(f, h) = g(∇f,∇h),

Γn(f, h) =
1

2
(LV Γn−1(f, h)− Γn−1(LV f, h)− Γn−1(f,LV h)) .

Additionally to the Hessian of V, a Bakry-Emery type criterium needs to take into
account the shape, curvature, of M . This is expressed through the Ricci tensor :

. (Li)16i6n is an orthogonal frame, for the metric g, at point x, and the Lie bracket of two vector

fields, noted [X,Y] = XY −YX, is defined as [X,Y]i =
∑n
j=1(Xj∂jYi −Yj∂jXi)
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• A connection is a bilinear operation associating to vector fields X and Y a third
one, ∇XY, such that for any smooth f

∇fXY = f∇XY, ∇X(fY) = f∇XY + (Xf)Y.

The Levi-Civita connection is the unique torsion-free connection (∇XY−∇YX =
[X,Y]) such that Xg(Y,Z) = g(∇XY,Z) + g(Y,∇XZ).

• The Riemann curvature tensor R(,̇·) associates to vector fields X,Y an operator
on vector fields R(X,Y) defined by (∇ is the Levi-Civita connection)

R(X,Y)Z = ∇X(∇YZ)−∇Y(∇XZ)−∇[X,Y]Z.

• The Ricci curvature tensor associates to vector fields X and Y the function
Ric(X,Y), smooth on M , such that for any orthogonal local frame (Li)

Ric(X,Y)(x) =

n∑
i=1

gx(R(X,Li)Li,Y).

In more intuitive words, the Ricci cirvature measures the first non-trivial order
of difference between the Riemannian metric and its Eucliden approximation :
in loal geodesic coordinates,

dµ =

(
1− 1

6
Rjkx

jxk
)

dµEuclidean.

The iterated carré du champ operator Γ2 encodes both the Hessian of V and the
curvature, as shown by the Bochner formula, which is a key step in the next theorem :

Γ2(f, f) = 〈Hess f,Hess f〉+ (Ric + Hess V)(∇f,∇f),

where 〈Hess f,Hessh〉 =
∑
i,j(Hess f)(Li,Lj)(Hessh)(Li,Lj).

Proof of Theorem 7.1. We closely follow the dynamical method of Ledoux [11], in the
same vein as the proof of the Bakry-Emery Thorem 7.13.

First, it is sufficient to show that, for some C, c > 0, for any F with mean Eµ(F) =
0,

Eµ
(
eλF
)
6 Ce

c λ2

R‖F‖2L . (7.16)

Indeed, like in the proof of the Herst Lemma 7.9, using the Bienaymé-Chebyshev
inequality,

µ {|F− Eµ(F) > u|} 6 Ce
−λu+c λ2

R‖F‖2L ,

and minimizing over λ (take λ = Ru
2c‖F‖2L

) yields the result.

Now, to prove (7.16), we use the Bochner formula, which relates the Ricci curvature
to the Laplace-Beltrami operator, and can be written as

1

2
∆(|∇F|2)−∇F · ∇(∆F) = Ric(∇F,∇F) + ‖Hess F‖HS;

Consider the Brownian motion on M , with associated semigroup Pt = et∆, t > 0.
Note ϕ(s) = Ps(|∇(Pt−sf)|2). Then, in the same way as (7.14),

ϕ′(s) = Ps(∆Γ1(Pt−s F))− 2 Ps(Γ1(Pt−s F,∆ Pt−s F)) > 2Rϕ(s),

from the Bochner formula. Hence

|∇(Pt F)|2 6 e−2Rt Pt(|∇F|2). (7.17)
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This estimate will be important in the end of the proof. Let ψ(t) = Eµ(eλPt F). We

want to show that Ψ(0) 6 CeCλ2/R. Note that

ψ′(t) = λEµ(∆(Pt F)eλPt F) = −λ2 Eµ(|∇(PtF)|2eλPt F) > −λ2e−2Rtψ(t).

This easily implies

logψ(0)− logψ(∞) 6
∫ ∞

0

λ2e2Rtdt =
λ2

2R
,

which concludes the proof, noting that by ergodicity ψ(∞) = 1.

Theorem 7.17. Suppose that for any p ∈ M

Ricp +(Hess V)p >
1

cgp
,

in the sense of partial order of positive operators. Then µV satisfies a logarithmic
Sobolev inequality with constant 2c. In particular, for any Lipschitz function F (with
respect to the geodesic distance on M ),

PµV (|F− Eµ F| > δ) 6 2e
− δ2

c‖F‖2L

4. Concentration and Boolean functions

This section aims to give an idea about why hypercontractivity is an important
tool to quantify influences in discrete complex systems. This applies for example to
theoretical computer science and percolation theory (see [5] for a much more complete
analysis).

Let µ be the uniform measure on E = {−1, 1}d. For S ⊂ J1, dK and x ∈ E, let
χS(x) =

∏
k∈E xk. These functions are a Fourier basis on L2(E, µ) : for any f : E→ R,

f(x) =
∑

S⊂J1,dK f̂(S)χS(x), where f̂(S) = E(f(x)χS(x)).

For the Gaussian measure, we first proved hypercontractivity and then the loga-
rithmic Sobolev inequality ; the steps will be reversed in the following, concerning the
uniform measure on the hypercube.

Given a function f : E → R, let f−k(x) = f(x1, . . . , xk−1,−xk, xk+1, . . . , xd). We
define the differential operator as

Dkf(x) =
f(x)− f−k(x)

2
.

Theorem 7.18. The measure µ satisfies the logarithmic Sobolev inequality with
constant 2, in the sense that for any f : E→ R

Entµ(f2) 6 2

∫
E

d∑
k=1

|Dkf |2dµ.

Proof. We first prove it for d = 1, which means that for any real a and b

1

2

(
a2 log(a2) + b2 log(b2)

)
− a2 + b2

2
log

a2 + b2

2
6

(a− b)2

2
.

Assume a > b. Writing c = (a+ b)/2 and x = (a− b)/2. We need to prove that

ϕ(x) = (c2 + x2) log(c2 + x2) + 2x2 − (c+ x)2 log(c+ x)− (c− x)2 log(c− x)

is positive. As ϕ(0) = 0, this will follow if ϕ′ > 0 on [0, c). A calculation yields

1

2
ϕ′(x) = 2x+ 2x log(c2 + x2)− (c+ x) log(c+ x)− (x− c) log(c− x),
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which is 0 at x = 0, so we just need ϕ′′ > 0 on [0, c). Annyother calculation gives

1

2
ϕ′′(x) =

2x2

c2 + x2
+ log

(
1 +

2x2

c2 − x2

)
> 0,

concluding the proof when d = 1. The general case follows from the tensorization
property, Proposition 7.8.

The above result implies hypercontractivity for the following semigroup. Given a
function f : E → R, let Tρf(x) be the expectation of f(y) where y is obtained from

x by flipping each entry of x with probability 1−ρ
2 :

Tρf(x) =
∑
y∈E

f(y)

d∏
k=1

(
1 + ρ

2
1yk=xk +

1− ρ
2

1yk=−xk

)
= E(f(xu)

d∏
k=1

(1 + ρuk)).

In particular,

TρχS(x) = E(χS(xu)

d∏
k=1

(1 + ρuk)) = χS(x)E(χS(u)

d∏
k=1

(1 + ρuk)) = ρ|S|χS(x).

As the χS’s are a basis of L2(E, µ), this proves that (Tρ, 0 6 ρ 6 1) is a semigroup
(note that here T1 = Id : ρ needs to be thought of as e−t where t is a time) :
Tρ1 ? Tρ1 = Tρ1ρ2 .

The semigroup T is contractive in Lp for p > 1, as an easy consequence of Jensen’s
inequality. Like the Ornstein-Uhlenbeck semigroup, thanks to its smoothing property
it is even hypercontractive.

Theorem 7.19. For any ρ ∈ [0, 1] and 1 6 p 6 q satisfying q 6 1 + ρ−2(p− 1),

‖Tρf‖Lq 6 ‖f‖Lp .

Proof. We proceed like in Gross’s Theorem 7.11, showing that the logarithmic Sobolev
inequality Theorem 7.18 implies hypercontractivity for Pt = Te−t . For this, we need
to identify the generator of the semigroup Pt. This is easy when looking at the base
functions :

d

dt
Ptχs =

d

dt
e−t|S|χS = −|S|Ptχs,

so Lf = L(
∑
f̂SχS) = −

∑
|S|f̂SχS. In particular,

−E(fLf) = E
((∑

f̂SχS

)(∑
|S|f̂SχS

))
=
∑
|S|f̂2

S .

We need to prove that this coincides with E
(∑

k |Dkf |2
)
. For this, note that

DkχS = 1k∈SχS,

so

E

(∑
k

|Dkf |2
)

=
∑
k

∑
S

1k∈Sf̂
2
S =

∑
|S|f̂2

S ,

as expected.

We are now in a position to justify Theorem 7.3. The function f now takes values
in {−1, 1}, and the influence of the kth individual is, for any p > 0,

inflk(f) = P(Dkf 6= 0) = E(|Dkf |p). (7.18)
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In particular, the Dirichlet form is also∑
k

inflk(f) =
∑

S

|S|f̂2
S >

∑
S6=∅

f̂2
S = var(f) (7.19)

hence there are influences of order var(f)/d. We prove the following slightly weaker
version of Theorem 7.3, from [8]. The fact that there are influences of greater order
(var(f) log d/d) is a consequence of both following incompatible heuristics.

• If all influences do not exceed this var(f)/d estimate, all |f̂S| need to be small
for large |S| : the Fourier coefficients are concentrated on low frequencies.

• If the Fourier coefficients of f are all concentrated on low frequencies the ope-
rator Tρ does not change much f (remember that TρχS = ρ|S|χS), hence Dkf .
But it still improves integrability by hypercontractivity :

inflk(f) = E(|Dkf |2) ≈ E(|TρDkf |2) 6 inflk(f)2/p

up to compatibility between p and ρ. This is not possible if 1 < p < 2 as the
influence is in [0, 1].

This explanation, is particular the ≈ step, is made rigorous hereafter.

Theorem 7.20. There exists a universal constant c > 0 such that for any d and
f : E→ {−1, 1} there exists 1 6 k 6 d with

inflk(f) > c
log d

d
.

Proof. We know that ∑
S

f̂2
S = 1.

In the above sum, if we make the distinction between summands with |S| 6 m and
|S| > m for some 1 6 m 6 d, we can first bound∑

|S|>m

f̂2
S 6

1

m

∑
k

inflk(f)

thanks to (7.19). For the other sum, we make use of the hypercontractivity property,
Theorem 7.19 in the case 1 6 p 6 2, ρ 6

√
p− 1,

inflk(f) = E(|Dkf |p) > E(|TρDkf |2)p/2.

As TρDkχS = Tρ(1k∈SχS) = 1k∈Sρ
|S|χS, E(|TρDkf |2) =

∑
S ρ

2|S|f̂2
S1k∈S, so∑

k

inflk(f)2/p > ρ2m
∑

S|0<|S|6m

f̂(S)2.

We finally obtain

var(f) 6
1

m

∑
k

inflk(f) + ρ−2m
∑
k

inflk(f)2/p.

If, for any k, infl(f) 6 c log d
d var f , then choosing m = c′ log d yields

1 6
c

c′
+ c2/pρ−2dd

(
c
log d

d

)2/p

.

Choosing ρ =
√
p− 1, this will be impossible for large d if c′ > c and −c′ log(p −

1) − 2/p + 1 < 0. Without caring about optimal coefficients, p = 3/4, c′ = 10−4 is
appropriate.

Note that the spectral gap inequality only yields that there are indexes k with
inflk(f) = Ω(1/d). We really need the (stronger) logarithmic Sobolev inequality to
prove the above theorem.
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