Probability, homework 9, due November 8.

Exercise 1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, and $(A_n)_{n\geq 1}$ be a sequence of independent events. We denote $a_n = \mathbb{P}(A_n)$ and define $b_n = a_1 + \cdots + a_n$, $S_n = \mathbb{1}_{A_1} + \cdots + \mathbb{1}_{A_n}$. Assuming $b_n \to \infty$ as $n \to \infty$, prove that S_n/b_n converges almost surely.

Exercise 2. Let $(X_n)_{n>1}$ be i.i.d. Bernoulli random variables with parameter $p \in (0, 1)$, i.e. $\mathbb{P}(X_i = 1) = 1 - \mathbb{P}(X_i = 0) = p$. Let N be a Poisson random variable with parameter $\lambda > 0$, i.e. for any $k \ge 0$ we have $\mathbb{P}(N = k) = e^{-\lambda} \frac{\lambda^k}{k!}$. Assume N is independent from $(X_n)_{n\geq 1}$. Let $P = \sum_{i=1}^{N} X_i$, F = N - P. a) What is the joint distribution of (P, N)?

- b) Prove that P and F are independent.

Exercise 3. Let Y be an integrable random variable on $(\Omega, \mathcal{A}, \mathbb{P})$ and \mathcal{G} a sub σ field of \mathcal{A} . Suppose that $\mathcal{H} \subset \mathcal{G}$ is a sub σ -field of \mathcal{G} . Show that $\mathbb{E}(\mathbb{E}(Y \mid \mathcal{G}) \mid \mathcal{H}) =$ $\mathbb{E}(Y \mid \mathcal{H})$ (almost surely).

Exercise 4. Let X_1, \ldots, X_n be i.i.d. integrable random variables, and S = $\sum_{i=1}^{n} X_i$. Calculate $\mathbb{E}[S \mid X_1]$ and $\mathbb{E}[X_1 \mid S]$.

Exercise 5. For fixed a, b > 0, let (X, Y) be a $\mathbb{N} \times \mathbb{R}_+$ -valued random variable such that

$$\mathbb{P}(X=n,Y\leq t)=b\int_0^t \frac{(ay)^n}{n!}e^{-(a+b)y}\mathrm{d}y.$$

For $h : \mathbb{R}_+ \to \mathbb{R}$ continuous and bounded, calculate $\mathbb{E}[h(Y) \mid X]$. Calculate $\mathbb{E}[\frac{Y}{X+1}]$. Calculate $\mathbb{P}(X = n \mid Y)$. Calculate $\mathbb{E}[X \mid Y]$.

Exercise 6. Let X and Y be random variables on $(\Omega, \mathcal{F}, \mathbb{P})$, and \mathcal{G}, \mathcal{H} sub σ -fields of \mathcal{F} such that $\sigma(\mathcal{G}, \mathcal{H}) = \mathcal{F}$. Find counterexamples to the following assertions:

- (i) If $\mathbb{E}[X \mid Y] = \mathbb{E}[X]$ then X and Y are independent.
- (ii) If $\mathbb{E}[X \mid \mathcal{G}] = \mathbb{E}[X \mid \mathcal{H}] = 0$ then X = 0.
- (iii) If X and Y are independent then so are $\mathbb{E}[X \mid \mathcal{G}]$ and $\mathbb{E}[Y \mid \mathcal{G}]$.

Exercise 7. Let $(X_n)_{n\geq 1}$ be a sequence of nonnegative random variables on $(\Omega, \mathcal{A}, \mathbb{P})$, and $(\mathcal{F}_n)_{n\geq 0}$ a sequence of sub σ -fields of \mathcal{F} . Assume that $\mathbb{E}(X_n \mid \mathcal{F}_n)$ converges to 0 in probability.

- (i) Show that X_n converges to 0 in probability.
- (ii) Show that the reciprocal is wrong.

Exercise 8. On the same probability space, let X, Y be positive random variables such that $\mathbb{E}[X \mid Y] = Y$ and $\mathbb{E}[Y \mid X] = X$ (almost surely). Prove that X = Yalmost surely.