Probability, homework 9, due November 8.

Exercise 1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, and $\left(A_{n}\right)_{n \geq 1}$ be a sequence of independent events. We denote $a_{n}=\mathbb{P}\left(A_{n}\right)$ and define $b_{n}=a_{1}+\cdots+a_{n}$, $S_{n}=\mathbb{1}_{A_{1}}+\cdots+\mathbb{1}_{A_{n}}$. Assuming $b_{n} \rightarrow \infty$ as $n \rightarrow \infty$, prove that S_{n} / b_{n} converges almost surely.

Exercise 2. Let $\left(X_{n}\right)_{n \geq 1}$ be i.i.d. Bernoulli random variables with parameter $p \in(0,1)$, i.e. $\mathbb{P}\left(X_{i}=1\right)=1-\mathbb{P}\left(X_{i}=0\right)=p$. Let N be a Poisson random variable with parameter $\lambda>0$, i.e. for any $k \geq 0$ we have $\mathbb{P}(N=k)=e^{-\lambda} \frac{\lambda^{k}}{k!}$. Assume N is independent from $\left(X_{n}\right)_{n \geq 1}$.

Let $P=\sum_{i=1}^{N} X_{i}, F=N-P$.
a) What is the joint distribution of (P, N) ?
b) Prove that P and F are independent.

Exercise 3. Let Y be an integrable random variable on $(\Omega, \mathcal{A}, \mathbb{P})$ and \mathcal{G} a sub σ field of \mathcal{A}. Suppose that $\mathcal{H} \subset \mathcal{G}$ is a sub σ-field of \mathcal{G}. Show that $\mathbb{E}(\mathbb{E}(Y \mid \mathcal{G}) \mid \mathcal{H})=$ $\mathbb{E}(Y \mid \mathcal{H})$ (almost surely)

Exercise 4. Let X_{1}, \ldots, X_{n} be i.i.d. integrable random variables, and $S=$ $\sum_{i=1}^{n} X_{i}$. Calculate $\mathbb{E}\left[S \mid X_{1}\right]$ and $\mathbb{E}\left[X_{1} \mid S\right]$.

Exercise 5. For fixed $a, b>0$, let (X, Y) be a $\mathbb{N} \times \mathbb{R}_{+}$-valued random variable such that

$$
\mathbb{P}(X=n, Y \leq t)=b \int_{0}^{t} \frac{(a y)^{n}}{n!} e^{-(a+b) y} \mathrm{~d} y
$$

For $h: \mathbb{R}_{+} \rightarrow \mathbb{R}$ continuous and bounded, calculate $\mathbb{E}[h(Y) \mid X]$. Calculate $\mathbb{E}\left[\frac{Y}{X+1}\right]$. Calculate $\mathbb{P}(X=n \mid Y)$. Calculate $\mathbb{E}[X \mid Y]$.
Exercise 6. Let X and Y be random variables on $(\Omega, \mathcal{F}, \mathbb{P})$, and \mathcal{G}, \mathcal{H} sub σ-fields of \mathcal{F} such that $\sigma(\mathcal{G}, \mathcal{H})=\mathcal{F}$. Find counterexamples to the following assertions:
(i) If $\mathbb{E}[X \mid Y]=\mathbb{E}[X]$ then X and Y are independent.
(ii) If $\mathbb{E}[X \mid \mathcal{G}]=\mathbb{E}[X \mid \mathcal{H}]=0$ then $X=0$.
(iii) If X and Y are independent then so are $\mathbb{E}[X \mid \mathcal{G}]$ and $\mathbb{E}[Y \mid \mathcal{G}]$.

Exercise 7. Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of nonnegative random variables on $(\Omega, \mathcal{A}, \mathbb{P})$, and $\left(\mathcal{F}_{n}\right)_{n \geq 0}$ a sequence of sub σ-fields of \mathcal{F}. Assume that $\mathbb{E}\left(X_{n} \mid \mathcal{F}_{n}\right)$ converges to 0 in probability.
(i) Show that X_{n} converges to 0 in probability.
(ii) Show that the reciprocal is wrong.

Exercise 8. On the same probability space, let X, Y be positive random variables such that $\mathbb{E}[X \mid Y]=Y$ and $\mathbb{E}[Y \mid X]=X$ (almost surely). Prove that $X=Y$ almost surely.

