Probability, homework 5, due October 11.

As a preliminary to this homework, for exercises 3 and 4 read the Borel-Cantelli lemma (Lemma 3.4 in Varadhan's Probability Theory book).

Exercise 1. Prove that if a sequence of real random variables $\left(X_{n}\right)$ converge in distribution to X, and $\left(Y_{n}\right)$ converges in distribution to a constant c, then $X_{n}+Y_{n}$ converges in distribution to $X+c$.

Exercise 2. Assume that (X, Y) has joint density

$$
c e^{-\left(1+x^{2}\right)\left(1+y^{2}\right)}
$$

where c is properly chosen. Are X and Y Gaussian random variables? Is (X, Y) a Gaussian vector?

Exercise 3. Let $\epsilon>0$ and X be uniformly distributed on [0,1$]$. Prove that, almost surely (i.e. the following event has probability 1), there exists only a finite number of rationals $\frac{p}{q}$, with $p \wedge q=1$, such that

$$
\left|X-\frac{p}{q}\right|<\frac{1}{q^{2+\epsilon}} .
$$

Exercise 4. You toss a coin repeatedly and independently. The probability to get a head is p, a tail is $1-p$. Let A_{k} be the following event: k or more consecutive heads occur amongst the tosses numbered $2^{k}, \ldots, 2^{k+1}-1$. Prove that $\mathbb{P}\left(A_{k}\right.$ i.o. $)=1$ if $p \geq 1 / 2,0$ otherwise.

Here, i.o. stands for "infinitely often", and A_{k} i.o. is the event $\cap_{n \geq 1} \cup_{m \geq n} A_{m}$.
Exercise 5. Prove that for any $x>0, \frac{1}{x}=\int e^{-t x} \mathrm{~d} t$. Deduce the value of $\int_{0}^{\infty} \frac{\sin x}{x} \mathrm{~d} x$.

Exercise 6. For any probability measure μ supported on \mathbb{R}_{+}, one defines the Laplace transform as

$$
\mathscr{L}_{\mu}(\lambda)=\int_{0}^{\infty} e^{-\lambda x} \mathrm{~d} \mu(x), \lambda \geq 0
$$

(1) Prove that \mathscr{L}_{μ} is well-defined, continuous on \mathbb{R}_{+}and \mathscr{C}^{∞} on \mathbb{R}_{+}^{*}.
(2) Prove that \mathscr{L}_{μ} characterizes the probability measure μ supported on \mathbb{R}_{+}.
(3) Assume that for a sequence $\left(\mu_{n}\right)_{n \geq 1}$ of probability measure supported on \mathbb{R}_{+}, one has $\mathscr{L}_{\mu_{n}}(\lambda) \rightarrow \ell(\lambda)$ for any $\lambda \geq 0$, and ℓ is right-continuous at 0 . Prove that $\left(\mu_{n}\right)_{n \geq 1}$ is tight, and that it converges weakly to a measure μ such that $\ell=\mathscr{L}_{\mu}$.

