Probability, homework 4 due October 4.

Exercise 1. Let n and m be random numbers chosen independently and uniformly on $\llbracket 1, N \rrbracket$. What are Ω, \mathcal{A} and \mathbb{P} (which all implicitly depend on N)? Prove that $\mathbb{P}(n \wedge m=1) \underset{N \rightarrow \infty}{\longrightarrow} \zeta(2)^{-1}$ where $\zeta(2)=\prod_{p \in \mathcal{P}}\left(1-p^{-2}\right)^{-1}=\sum_{n \geq 1} n^{-2}=\frac{\pi^{2}}{6}$ (you don't have to prove these equalities). Here \mathcal{P} is the set of prime numbers and $n \wedge m=1$ means that their greatest common divisor is 1 .

Exercise 2. Let X be a random variable with density $f_{X}(x)=(1-|x|) \mathbb{1}_{(-1,1)}(x)$. Show that its characteristic function is

$$
\phi_{X}(u)=\frac{2(1-\cos u)}{u^{2}}
$$

Exercise 3.

(1) Prove that $\hat{\mu}$ is real-valued if and only if μ is symmetric, i.e. $\mu(A)=\mu(-A)$ for any Borel set A
(2) If X and Y are i.i.d., prove that $X-Y$ has a symmetric distribution.

Exercise 4. Let X_{λ} be a real random variable, with Poisson distribution with parameter λ. Calculate the characteristic function of X_{λ}. Conclude that $\left(X_{\lambda}-\lambda\right) / \sqrt{\lambda}$ converges in distribution to a standard Gaussian, as $\lambda \rightarrow \infty$.

Exercise 5. Assume that the sequence of random variables $\left(X_{n}\right)_{n \geq 1}$ satisfies $\mathbb{E} X_{n} \rightarrow 1$ and $\mathbb{E} X_{n}^{2} \rightarrow 1$. Prove that $\left(X_{n}\right)_{n \geq 1}$ converges in distribution. What is the limit?

Exercise 6. Let $\left(X_{n}\right)_{n \geq 1},\left(Y_{n}\right)_{n \geq 1}$ be real random variables, with X_{n} and Y_{n} independent for any $n \geq 1$, and assume that X_{n} converges in distribution to X and Y_{n} to Y, with X and Y independent defined on the same probability space. Prove that $X_{n}+Y_{n}$ converges in distribution to $X+Y$.

Exercise 7. Let X, Y be independent and assume that for some constant α we have $\mathbb{P}(X+Y=\alpha)=1$. Prove that X and Y are both constant random variables.

Exercise 8. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be nondecreasing measurable functions. Let μ be a probability measure on \mathbb{R} and assume $f, g, f g \in \mathrm{~L}^{1}(\mu)$. prove that

$$
\int f g \mathrm{~d} \mu \geq \int f \mathrm{~d} \mu \cdot \int g \mathrm{~d} \mu
$$

Exercise 9. Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of i.i.d. random variables with standard Cauchy distribution and let $M_{n}=\max \left(X_{1}, \ldots, X_{n}\right)$. Prove that $\left(n M_{n}^{-1}\right)_{n \geq 1}$ converges in distribution and identify the limit.

Exercise 10. Let $\left(X_{i}\right)_{i \geq 1}$ be a sequence of independent random variables, with X_{i} uniform on $[-i, i]$. Let $S_{n}=X_{1}+\cdots+X_{n}$. Prove that $S_{n} / n^{3 / 2}$ converges in distribution and describe the limit.

Exercise 11. Find a probability distribution μ of a \mathbb{Z}-valued random variable which is symmetric $(\mu(\{i\})=\mu(\{-i\})$ for any $i \in \mathbb{Z})$, not integrable, but such that its characteristic function is differentiable at 0 .

Exercise 12. Let X, Y be i.i.d., with characteristic functions denoted φ_{X}, φ_{Y}, and suppose $\mathbb{E}(X)=0, \mathbb{E}\left(X^{2}\right)=1$. Assume also that $X+Y$ and $X-Y$ are independent.
(1) Prove that

$$
\varphi_{X}(2 u)=\left(\varphi_{X}(u)\right)^{3} \varphi_{X}(-u)
$$

(2) Prove that X is a standard Gaussian random variable.

