Probability, homework 10, due December 8.

Exercise 1. Let $\left(X_{n}\right)_{n \geq 1}$ be independent Gaussian such that $\mathbb{E}\left(X_{i}\right)=m_{i}, \operatorname{var}\left(X_{i}\right)=$ $\sigma_{i}^{2}, i \geq 1$. Let $S_{n}=\sum_{i=1}^{n} X_{i}$ and $\mathcal{F}_{n}=\sigma\left(X_{i}, 1 \leq i \leq n\right)$.
a) Find sequences $\left(b_{n}\right)_{n \geq 1},\left(c_{n}\right)_{n \geq 1}$ of real numbers such that $\left(S_{n}^{2}+b_{n} S_{n}+c_{n}\right)_{n \geq 1}$ is a $\left(\mathcal{F}_{n}\right)_{n \geq 1}$-martingale.
b) Assume moreover that there is a real number λ such that $e^{\lambda X_{i}} \in \mathrm{~L}^{1}$ for any $i \geq 1$. Find a sequence $\left(a_{n}^{(\lambda)}\right)_{n \geq 1}$ such that $\left(e^{\lambda S_{n}-a_{n}^{(\lambda)}}\right)_{n \geq 1}$ is a $\left(\mathcal{F}_{n}\right)_{n \geq 1}$-martingale.

Exercise 2. Let $\left(X_{k}\right)_{k \geq 0}$ be i.i.d. random variables, $\mathcal{F}_{m}=\sigma\left(X_{1}, \ldots, X_{m}\right)$ and $Y_{m}=\prod_{k=1}^{m} X_{k}$. Under which conditions is $\left(Y_{m}\right)_{m \geq 1}$ a $\left(\mathcal{F}_{m}\right)_{m \geq 1}$-submartingale, supermartingale, martingale?

Exercise 3. Let $\left(\mathcal{F}_{n}\right)_{n \geq 0}$ be a filtration, $\left(X_{n}\right)_{n \geq 0}$ a sequence of integrable random variables with $\mathbb{E}\left(X_{n} \mid \mathcal{F}_{n-1}\right)=0$, and assume X_{n} is \mathcal{F}_{n}-measurable for every n. Let $S_{n}=\sum_{k=0}^{n} X_{k}$. Show that $\left(S_{n}\right)_{n \geq 0}$ is a $\left(\mathcal{F}_{n}\right)_{n \geq 0}$-martingale.

Exercise 4. Let $a>0$ be fixed, $\left(X_{i}\right)_{i \geq 1}$ be iid, \mathbb{R}^{d}-valued random variables, uniformly distributed on the ball $\mathrm{B}(0, a)$. Set $S_{n}=x+\sum_{i=1}^{n} X_{i}$.
(i) Let f be a superharmonic function. Show that $\left(f\left(S_{n}\right)\right)_{n \geq 1}$ defines a supermartingale.
(ii) Prove that if $d \leq 2$ any nonnegative superharmonic function is constant. Does this result remain true when $d \geq 3$?

Exercise 5. Let $\left(S_{n}\right)_{n \geq 0}$ be a $\left(\mathcal{F}_{n}\right)$-martingale and τ a stopping time with finite expectation. Assume that there is a $c>0$ such that, for all $n, \mathbb{E}\left(\left|S_{n+1}-S_{n}\right| \mid\right.$ $\left.\mathcal{F}_{n}\right)<c$.

Prove that $\left(S_{\tau \wedge n}\right)_{n \geq 0}$ is a uniformly integrable martingale, and that $\mathbb{E}\left(S_{\tau}\right)=$ $\mathbb{E}\left(S_{0}\right)$.

Consider now the random walk $S_{n}=\sum_{k}^{n} X_{k}$, the X_{k} 's being iid, $\mathbb{P}\left(X_{1}=1\right)=$ $\mathbb{P}\left(X_{1}=-1\right)=1 / 2$. For some $a \in \mathbb{N}^{*}$, let $\tau=\inf \left\{n \mid S_{n}=-a\right\}$. Prove that

$$
\mathbb{E}(\tau)=\infty
$$

Exercise 6. Let X be a standard random walk in dimension 1, and for any positive integer $a, \tau_{a}=\inf \left\{n \geq 0 \mid X_{\tau_{a}}=a\right\}$. For any $\theta>0$, calculate

$$
\mathbb{E}\left((\cosh \theta)^{-\tau_{a}}\right)
$$

Exercise 7. Let N_{n} be the size of a population of bacteria at time n. At each time each bacterium produces a number of offspring and dies. The number of offspring is independent for each bacterium and is distributed according to the Poisson law with rate parameter $\lambda=2$. Assuming that $N_{1}=a>0$, find the probability that the population will eventually die, i.e., find $\mathbb{P}\left(\left\{\right.\right.$ there is n such that $\left.\left.N_{n}=0\right\}\right)$.

Exercise 8. Let $X_{n}, n \geq 0$, be iid complex random variables such that $\mathbb{E}\left(X_{1}\right)=$ $0,0<\mathbb{E}\left(\left|X_{1}\right|^{2}\right)<\infty$. For some parameter $\alpha>0$, let

$$
S_{n}=\sum_{k=1}^{n} \frac{X_{k}}{k^{\alpha}}
$$

Prove that if $\alpha>1 / 2, S_{n}$ converges almost surely. What if $0<\alpha \leq 1 / 2$?
Exercise 9. Let $\left(Y_{n}\right)_{n \in \mathbb{N}^{*}}$ be a sequence of random variables, and assume $\left(Y_{n}\right)$ converges in distribution to a limiting Y. Also, on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$, the sequence of independent random variables $X:=\left(X_{n}\right)_{n \in \mathbb{N}^{*}}$ is defined, and we assume that the sequence of partial sums $\left(S_{n}\right)_{n \in \mathbb{N}}$ (i.e. $S_{0}=0$ and $\left.S_{n}:=\sum_{j=1}^{n} X_{j}\right)$ converges in distribution. Set $\left(\mathcal{F}_{n}\right)$ the natural filtration of X and $\Phi_{n}(t)=\mathbb{E}\left(\exp \left(\mathrm{it} S_{n}\right)\right)$ for $t \in \mathbb{R}$.
(i) Establish that $\left(\Phi_{Y_{n}}(\cdot)\right)_{n \geq 1}$ converges uniformly on every compact, i.e. show that for any $a>0, \max _{t \in[-a, a]}\left|\Phi_{Y_{n}}(t)-\Phi_{Y}(t)\right| \rightarrow 0$ as $n \rightarrow \infty$. Establish moreover that there exists $a>0$ such that for any $n \geq 1, \min _{t \in[-a, a]}\left|\Phi_{Y_{n}}(t)\right| \geq$ $1 / 2$.
(ii) Show that there exists $t_{0}>0$ such that if $t \in\left[-t_{0}, t_{0}\right]$, then $\left(\exp \left(\mathrm{i} t S_{n}\right) / \Phi_{n}(t)\right)_{n \geq 0}$ is a $\left(\mathcal{F}_{n}\right)$-martingale (i.e. both its real and imaginary parts are martingales).
(iii) Prove that we can choose $t_{0}>0$ such that for any $t \in\left[-t_{0}, t_{0}\right], \lim _{n \rightarrow \infty} \exp \left(\mathrm{i} t S_{n}\right)$ exists \mathbb{P}-a.s.
(iv) Set

$$
C=\left\{(t, \omega) \in\left[-t_{0}, t_{0}\right] \times \Omega: \lim _{n \rightarrow \infty} \exp \left(\mathrm{i} t S_{n}(\omega)\right) \text { exists }\right\} .
$$

Prove that C is measurable, i.e. in the product of $\mathcal{B}\left(\left[-t_{0}, t_{0}\right]\right)$ with \mathcal{F}.
(v) Establish that $\int_{-t_{0}}^{t_{0}} \mathbb{1}_{C}(t, \omega) \mathbb{P}(\mathrm{d} \omega) \mathrm{d} t=2 t_{0}$.
(vi) Prove that $\lim _{n \rightarrow \infty} S_{n}$ exists \mathbb{P}-a.s.

