
Probability, homework 10, due December 8.

Exercise 1. Let (Xn)n≥1 be independent Gaussian such that E(Xi) = mi, var(Xi) =
σ2
i , i ≥ 1. Let Sn =

∑n
i=1 Xi and Fn = σ(Xi, 1 ≤ i ≤ n).

a) Find sequences (bn)n≥1, (cn)n≥1 of real numbers such that (S2
n+bnSn+cn)n≥1

is a (Fn)n≥1-martingale.
b) Assume moreover that there is a real number λ such that eλXi ∈ L1 for any

i ≥ 1. Find a sequence (a
(λ)
n )n≥1 such that (eλSn−a(λ)

n )n≥1 is a (Fn)n≥1-martingale.

Exercise 2. Let (Xk)k≥0 be i.i.d. random variables, Fm = σ(X1, . . . , Xm) and
Ym =

∏m
k=1 Xk. Under which conditions is (Ym)m≥1 a (Fm)m≥1-submartingale,

supermartingale, martingale?

Exercise 3. Let (Fn)n≥0 be a filtration, (Xn)n≥0 a sequence of integrable random
variables with E (Xn | Fn−1) = 0, and assume Xn is Fn-measurable for every n.
Let Sn =

∑n
k=0 Xk. Show that (Sn)n≥0 is a (Fn)n≥0-martingale.

Exercise 4. Let a > 0 be fixed, (Xi)i≥1 be iid, Rd-valued random variables,
uniformly distributed on the ball B(0, a). Set Sn = x+

∑n
i=1 Xi.

(i) Let f be a superharmonic function. Show that (f(Sn))n≥1 defines a super-
martingale.

(ii) Prove that if d ≤ 2 any nonnegative superharmonic function is constant. Does
this result remain true when d ≥ 3?

Exercise 5. Let (Sn)n≥0 be a (Fn)-martingale and τ a stopping time with finite
expectation. Assume that there is a c > 0 such that, for all n, E(|Sn+1 − Sn| |
Fn) < c.

Prove that (Sτ∧n)n≥0 is a uniformly integrable martingale, and that E(Sτ ) =
E(S0).

Consider now the random walk Sn =
∑n

k Xk, the Xk’s being iid, P(X1 = 1) =
P(X1 = −1) = 1/2. For some a ∈ N∗, let τ = inf{n | Sn = −a}. Prove that

E(τ) = ∞.

Exercise 6. Let X be a standard random walk in dimension 1, and for any positive
integer a, τa = inf{n ≥ 0 | Xτa = a}. For any θ > 0, calculate

E
(
(cosh θ)−τa

)
.

Exercise 7. Let Nn be the size of a population of bacteria at time n. At each
time each bacterium produces a number of offspring and dies. The number of off-
spring is independent for each bacterium and is distributed according to the Poisson
law with rate parameter λ = 2. Assuming that N1 = a > 0, find the probability
that the population will eventually die, i.e. , find P ({there is n such that Nn = 0}).

Exercise 8. Let Xn, n ≥ 0, be iid complex random variables such that E(X1) =
0, 0 < E(|X1|2) < ∞. For some parameter α > 0, let

Sn =

n∑
k=1

Xk

kα
.
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Prove that if α > 1/2, Sn converges almost surely. What if 0 < α ≤ 1/2 ?

Exercise 9. Let (Yn)n∈N∗ be a sequence of random variables, and assume (Yn) con-
verges in distribution to a limiting Y . Also, on some probability space (Ω,F ,P), the
sequence of independent random variablesX := (Xn)n∈N∗ is defined, and we assume
that the sequence of partial sums (Sn)n∈N (i.e. S0 = 0 and Sn :=

∑n
j=1 Xj) con-

verges in distribution. Set (Fn) the natural filtration ofX and Φn(t) = E(exp(itSn))
for t ∈ R.
(i) Establish that (ΦYn

(·))n≥1 converges uniformly on every compact, i.e. show
that for any a > 0, maxt∈[−a,a] |ΦYn

(t) − ΦY (t)| → 0 as n → ∞. Establish
moreover that there exists a > 0 such that for any n ≥ 1, mint∈[−a,a] |ΦYn

(t)| ≥
1/2.

(ii) Show that there exists t0 > 0 such that if t ∈ [−t0, t0], then (exp(itSn)/Φn(t))n≥0

is a (Fn)−martingale (i.e. both its real and imaginary parts are martingales).
(iii) Prove that we can choose t0 > 0 such that for any t ∈ [−t0, t0], limn→∞ exp(itSn)

exists P-a.s.
(iv) Set

C = {(t, ω) ∈ [−t0, t0]× Ω : lim
n→∞

exp(itSn(ω)) exists}.

Prove that C is measurable, i.e. in the product of B([−t0, t0]) with F .

(v) Establish that
∫ t0
−t0

1C(t, ω)P(dω)dt = 2t0.

(vi) Prove that limn→∞ Sn exists P-a.s.


