
Probability, homework 8, due November 23.

Exercise 1. Let (Sn)n≥0 be a (Fn)-martingale and τ a stopping time with finite
expectation. Assume that there is a c > 0 such that, for all n, E(|Sn+1 − Sn| |
Fn) < c.

Prove that (Sτ∧n)n≥0 is a uniformly integrable martingale, and that E(Sτ ) =
E(S0).

Consider now the random walk Sn =
∑n
k Xk, the Xk’s being iid, P(X1 = 1) =

P(X1 = −1) = 1/2. For some a ∈ N∗, let τ = inf{n | Sn = −a}. Prove that

E(τ) =∞.
Exercise 2. As previously, consider the random walk Sn =

∑n
k Xk, the Xk’s being

iid, P(X1 = 1) = P(X1 = −1) = 1/2, Fn = σ(Xi, 0 ≤ i ≤ n).
Prove that (S2

n − n, n ≥ 0) is a (Fn)−martingale. Let τ be a bounded stopping
time. Prove that E(S2

τ ) = E(τ).
Take now τ = inf{n | Sn ∈ {−a, b}}, where a, b ∈ N∗. Prove that E(Sτ ) = 0 and

E(S2
τ ) = E(τ). What is P(Sτ = −a) ? What is E(τ) ? Get the last result of the

previous exercise by justifying the limit b→∞.

Exercise 3. Let Xn, n ≥ 0, be iid complex random variables such that E(X1) =
0, 0 < E(|X1|2) <∞. For some parameter α > 0, let

Sn =

n∑
k=1

Xk

kα
.

Prove that if α > 1/2, Sn converges almost surely. What if 0 < α ≤ 1/2 ?

Exercise 4. In a game between a gambler and a croupier, suppose that the total
capital in play is 1. After the nth hand the proportion of the capital held by the
gambler is denoted Xn ∈ [0, 1], thus that held by the croupier is 1−Xn. We assume
X0 = p ∈ (0, 1). The rules of the game are such that after n hands, the probability
for the gambler to win the (n + 1)th hand is Xn; if he does, he gains half of the
capital the croupier held after the nth hand, while if he loses he gives half of his
capital. Let Fn = σ(Xi, 1 ≤ i ≤ n).

(i) Show that (Xn)n≥0 is a (Fn)n≥0 martingale.
(ii) Show that (Xn)n≥1 converges a.s. and in L2 towards a limit Z.

(iii) Show that E(X2
n+1) = E(3X2

n + Xn)/4. Deduce that E(Z2) = E(Z) = p.
What is the law of Z?

(iv) For any n ≥ 0, let Yn = 2Xn+1 − Xn. Find the conditional law of Xn+1

knowing Fn. Prove that P(Yn = 0 | Fn) = 1−Xn, P(Yn = 1 | Fn) = Xn and
express the law of Yn.

(v) Let Gn = {Yn = 1}, Pn = {Yn = 0}. Prove that Yn → Z a.s. and deduce
that P(lim infn→∞Gn) = p, P(lim infn→∞ Pn) = 1 − p. Are the variables
{Yn, n ≥ 1} independent ?

(vi) Interpret the questions (iii), (iv), (v) in terms of gain, loss, for the gambler.

Exercise 5. Let a > 0 be fixed, (Xi)i≥1 be iid, Rd-valued random variables,
uniformly distributed on the ball B(0, a). Set Sn = x+

∑n
i=1Xi.

(i) Let f be a superharmonic function. Show that (f(Sn))n≥1 defines a super-
martingale.
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(ii) Prove that if d ≤ 2 any nonnegative superharmonic function is constant. Does
this result remain true when d ≥ 3?

Exercise 6. Let Nn be the size of a population of bacteria at time n. At each
time each bacterium produces a number of offspring and dies. The number of off-
spring is independent for each bacterium and is distributed according to the Poisson
law with rate parameter λ = 2. Assuming that N1 = a > 0, find the probability
that the population will eventually die, i.e. , find P ({there is n such that Nn = 0}).

Exercise 7. Let X be a standard random walk in dimension 1, and for any positive
integer a, τa = inf{n ≥ 0 | Xτa = a}. For any θ > 0, calculate

E
(
(cosh θ)−τa

)
.

Exercise 8. Let (Yn)n∈N∗ be a sequence of random variables, and assume (Yn) con-
verges in distribution to a limiting Y . Also, on some probability space (Ω,F ,P), the
sequence of independent random variablesX := (Xn)n∈N∗ is defined, and we assume
that the sequence of partial sums (Sn)n∈N (i.e. S0 = 0 and Sn :=

∑n
j=1Xj) con-

verges in distribution. Set (Fn) the natural filtration ofX and Φn(t) = E(exp(itSn))
for t ∈ R.

(i) Establish that (ΦYn
(·))n≥1 converges uniformly on every compact, i.e. show

that for any a > 0, maxt∈[−a,a] |ΦYn(t) − ΦY (t)| → 0 as n → ∞. Establish
moreover that there exists a > 0 such that for any n ≥ 1, mint∈[−a,a] |ΦYn

(t)| ≥
1/2.

(ii) Show that there exists t0 > 0 such that if t ∈ [−t0, t0], then (exp(itSn)/Φn(t))n≥0
is a (Fn)−martingale (i.e. both its real and imaginary parts are martingales).

(iii) Prove that we can choose t0 > 0 such that for any t ∈ [−t0, t0], limn→∞ exp(itSn)
exists P-a.s.

(iv) Set
C = {(t, ω) ∈ [−t0, t0]× Ω : lim

n→∞
exp(itSn(ω)) exists}.

Prove that C is measurable, i.e. in the product of B([−t0, t0]) with F .

(v) Establish that
∫ t0
−t0 1C(t, ω)P(dω)dt = 2t0.

(vi) Prove that limn→∞ Sn exists P-a.s.


