Exercise 1. Let $X_i, i \geq 1$, be iid random variables, $X_i \geq 0, E(X_i) = 1$. Prove that if $Y_n = \prod_{k=i}^n X_k$, $\mathcal{F}_n = \sigma(X_k, k \leq n)$, $(Y_n)_{n \geq 0}$ is a (\mathcal{F}_n)-martingale.

Prove that if $\mathbb{P}(X_1 = 1) < 1$, Y_n converges to 0 almost surely.

Solution. We have

$$E(|Y_n|) = E\left(\prod_{i=1}^n X_i\right) = E(X_1)^n < \infty.$$

Moreover, Y_n is a measurable function of X_1, \ldots, X_n, so it is \mathcal{F}_n-measurable. In addition, for any $m < n$ we have

$$E(Y_n | \mathcal{F}_m) = E(X_1 \ldots X_m X_{m+1} \ldots X_n | \mathcal{F}_m) = X_1 \ldots X_m E(X_{m+1} \ldots X_n | \mathcal{F}_m) = Y_m E(X_{m+1} \ldots X_n) = Y_m,$$

where for the second equality we used that $X_1 \ldots X_m$ is \mathcal{F}_m-measurable, and the third equality relies on independence of $X_{m+1} \ldots X_n$ and \mathcal{F}_m.

For the convergence to 0, we consider two cases. First, if $\mathbb{P}(X_1 = 0) > 0$, then $X_k = 0$ i.o. with probability 1, and in particular $Y_n \to 0$.

Second, assume $\mathbb{P}(X_1 = 0) = 0$. By Jensen’s inequality, we have $E \log X_1 \leq \log E X_1 = 0$. As log is strictly concave, equality occurs if and only if the distribution of X_1 is a Dirac mass (at 1, necessarily). As it is not, we have $E \log X_1 < 0$ (note that this expectation may be $-\infty$).

Therefore there exists an $\varepsilon \in [0, 1]$ such that, writing $Z_k = (\log X_k) 1_{X_k > \varepsilon}$, we have $E(Z_k) < 0$ (this relies on monotone convergence as $\varepsilon \to 0$ and $\mathbb{P}(X_1 = 0) = 0$). As the Z_k’s are iid and in L^1 (bounded below for the negative part, and integrable above as seen by Jensen) we can apply the strong law of large numbers: $(\sum_{k=1}^n Z_k)/n \to -c$ for some $c > 0$, and in particular

$$e^{\sum_{k=1}^n Z_k} \to 0 \text{ a.s.}.$$

As $X_k \leq e^{Z_k}$, this concludes the proof.

Exercise 2. Let $(\mathcal{F}_n)_{n \geq 0}$ be a filtration, $(X_n)_{n \geq 0}$ a sequence of integrable random variables with $E(X_n | \mathcal{F}_{n-1}) = 0$, and assume X_n is \mathcal{F}_n-measurable for every n. Let $S_n = \sum_{k=0}^n X_k$. Show that $(S_n)_{n \geq 0}$ is a $(\mathcal{F}_n)_{n \geq 0}$-martingale.

Solution. Integrability and \mathcal{F}_n-measurability are part of the assumptions.

Assume we can prove

$$E(S_{n+1} | \mathcal{F}_n) = S_n. \quad (0.1)$$

This would be enough for the martingale property by an immediate induction: Assuming $E(S_{n+k} | \mathcal{F}_n) = S_n$ we have

$$E(S_{n+k+1} | \mathcal{F}_n) = E(E(S_{n+k+1} | \mathcal{F}_{n+k}) | \mathcal{F}_n) = E(S_{n+k} | \mathcal{F}_n) = S_n,$$

where the first equality relies on $\mathcal{F}_n \subset \mathcal{F}_{n+k}$ and the second equality is (0.1).
Therefore we just need to prove (0.1). It is elementary:
\[E(S_{n+1} \mid \mathcal{F}_n) = E(X_{n+1} + X_n + \cdots + X_0 \mid \mathcal{F}_n) = 0 + X_n + \cdots + X_0 = S_n. \]

Exercise 3. Let \(T \) be a stopping time for a filtration \((\mathcal{F}_n)_{n \geq 1} \). Prove that \(\mathcal{F}_T \) is a \(\sigma \)-algebra.

Solution. We first remind the definition of \(\mathcal{F}_T \):
\[
\mathcal{F}_T = \{ A \in \mathcal{F} \mid \forall n \in \mathbb{N}, A \cap \{ T \leq n \} \in \mathcal{F}_n \}.
\]

We need to prove:

(i) \(\Omega \in \mathcal{F}_T \);
(ii) if \(A \in \mathcal{F}_T \), then \(A^c \in \mathcal{F}_T \);
(iii) if \(A_1, A_2, \ldots \) is a countable family of sets in \(\mathcal{F}_T \), then \(\cup_{k \geq 1} A_k \in \mathcal{F}_T \).

We start with (i): for any fixed \(n \), \(\Omega \cup \{ T \leq n \} \in \mathcal{F}_n \) because \(T \) is a stopping time.

For (ii), assume now that \(A \in \mathcal{F}_T \). Then for any \(n \) we have \(A \cap \{ T \leq n \} \in \mathcal{F}_n \). We also have \(\{ T \leq n \} \in \mathcal{F}_n \), so
\[
A^c \cap \{ T \leq n \} = \{ T \leq n \} - A \cap \{ T \leq n \} \in \mathcal{F}_n.
\]
Finally, if for any \(i \) we have \(A_i \cap \{ T \leq n \} \in \mathcal{F}_n \), then their countable union is also in \(\mathcal{F}_n \), and the result follows from
\[
\cup_{i=1}^\infty (A_i \cap \{ T \leq n \}) = (\cup_{i=1}^\infty A_i) \cap \{ T \leq n \}.
\]

Exercise 4. Let \(S \) and \(T \) be stopping times for a filtration \((\mathcal{F}_n)_{n \geq 1} \). Prove that \(\max(S, T) \) and \(\min(S, T) \) are stopping times.

Solution. We have
\[
\{ \max(S, T) \leq n \} = \{ S \leq n \} \cap \{ T \leq n \} \in \mathcal{F}_n,
\]
so \(\max(S, T) \) is a stopping time.

Moreover,
\[
\{ \min(S, T) \leq n \} = (\{ S \leq n \}^c \cap \{ T \leq n \})^c \in \mathcal{F}_n,
\]
so \(\min(S, T) \) is a stopping time.

Exercise 5. Let \(S \leq T \) be two stopping times and \(A \in \mathcal{F}_S \). Define \(U(\omega) = S(\omega) \) if \(\omega \in A \), \(U(\omega) = T(\omega) \) if \(\omega \notin A \). Prove that \(U \) is a stopping time.

Solution. From the definition, we have
\[
\{ U \leq n \} = (A \cap \{ S \leq n \}) \cup (A^c \cap \{ T \leq n \}).
\]
By definition of \(\mathcal{F}_S \), we have \(A \cap \{ S \leq n \} \in \mathcal{F}_n \). Moreover as \(S \leq T \) we have \(\mathcal{F}_S \subset \mathcal{F}_T \), so \(A \in \mathcal{F}_T \) and therefore \(A^c \in \mathcal{F}_T \), which implies \(A^c \cap \{ T \leq n \} \in \mathcal{F}_n \).

This concludes the proof that \(\{ U \leq n \} \in \mathcal{F}_n \).

Exercise 6. Consider the random walk \(S_n = \sum_{k=1}^n X_k \), the \(X_k \)'s being i.i.d., \(\mathbb{P}(X_1 = 1) = \mathbb{P}(X_1 = -1) = 1/2 \), \(\mathcal{F}_n = \sigma(X_i, 0 \leq i \leq n) \).

Prove that \((S_n^2 - n, n \geq 0) \) is a \((\mathcal{F}_n) \)-martingale. Let \(\tau \) be a bounded stopping time. Prove that \(\mathbb{E}(S_\tau^2) = \mathbb{E}(\tau) \).
Take now \(\tau = \inf \{ n \mid S_n \in \{-a, b\} \} \), where \(a, b \in \mathbb{N}^* \). Prove that \(\mathbb{E}(S_\tau) = 0 \) and \(\mathbb{E}(S_\tau^2) = \mathbb{E}(\tau) \). What is \(\mathbb{P}(S_\tau = -a) \)? What is \(\mathbb{E}(\tau) \)?

Let \(\tau' = \inf \{ n \mid S_n = b \} \). Prove that \(\mathbb{E}(\tau') = +\infty \).

Solution. Measurability and integrability of \(S_n^2 - n \) are elementary. For the martingale property, we simply need to write, for \(m < n \),

\[
\mathbb{E}(S_n^2 - n \mid \mathcal{F}_m) = \mathbb{E}(S_m^2 - m + (S_n - S_m)^2 + 2S_m(S_n - S_m) - n + m \mid \mathcal{F}_m)
\]

\[
= S_m^2 - m + \mathbb{E}((S_n - S_m)^2) + 2S_m \mathbb{E}(S_n - S_m) - n + m = S_m^2 - m.
\]

The equation \(\mathbb{E}(S_\tau^2) = \mathbb{E}(\tau) \) therefore follows directly from Doob’s stopping time theorem for bounded stopping times.

For \(\tau = \inf \{ n \mid S_n \in \{-a, b\} \} \), \(\min(\tau, n) \) is a bounded stopping time so from Doob’s stopping time theorem for bounded stopping times, we have

\[
\mathbb{E}(S_{\min(\tau, n)}) = \mathbb{E}(S_0) = 0.
\]

We can take \(n \to \infty \) in the equation above and obtain, by dominated convergence (note that \(S_{\min(\tau, n)} \) is uniformly bounded by \(\max(a, b) \)), \(\mathbb{E}(S_\tau) = 0 \). Important remark: for dominated convergence we need \(S_{\min(n, \tau)} \to S_\tau \) which is true only of \(\tau < \infty \) a.s., and needs to be proved separately (we have already proved in class and/or previous homework that \(T_a < \infty \) a.s., i.e. recurrence of the random walk, which implies \(\tau < \infty \) a.s.).

The equation \(\mathbb{E}(S_{\min(n, \tau)}^2) = \mathbb{E}(\min(n, \tau)) \) also give the desired result by taking \(n \to \infty \) and applying dominated convergence.

From \(\mathbb{P}(\tau = \infty) = 0 \) and \(\mathbb{E}(S_\tau) = 0 \), we have

\[
0 = \mathbb{E}(S_\tau) = -a\mathbb{P}(S_\tau = -a) + b\mathbb{P}(S_\tau = b) = -a\mathbb{P}(S_\tau = -a) + b(1 - \mathbb{P}(S_\tau = -a)).
\]

Solving the previous equation gives

\[
\mathbb{P}(S_\tau = -a) = \frac{b}{a + b}.
\]

We have

\[
\mathbb{E}(\tau) = \mathbb{E}(S_\tau^2) = a^2\mathbb{P}(S_\tau = -a) + b^2\mathbb{P}(S_\tau = b) = \frac{a^2 b}{a + b} + \frac{b^2 a}{a + b} = ab.
\]

The last question is easily answered by taking \(a \to \infty \) above and applying monotone convergence.