
Complex analysis, homework 9, solutions.

Exercise 1. [18 points] Let C be the arc defined by

z(t) =

{
3eiπt if 0 ≤ t ≤ 1,

−3 + 6(t− 1) if 1 ≤ t ≤ 2,

Evaluate the integral
∫
C
f(z) dz for the following functions f (give your answer in

x+ iy form).

(1) f(z) =
cos z

(z + i)2(z − 4)
;

(2) f(z) =
cos z

(z − i)2(z − 4i)
;

(3) f(z) =
1

(z − i)2(z + 2i)(z − 2i)
.

Solution. Note that C is a simple closed contour positively oriented (this is the
boundary of the upper half disk about 0 with radius 3).

(1) f is analytic on C \ {−i, 4}. In particular, f is analytic on and within C,
so by Cauchy-Goursat theorem,∫

C

f(z) dz = 0.

(2) f is analytic on C \ {i, 4i} and i is interior to C. So we set g(z) = cos z
z−4i

which is analytic on and within C and apply Cauchy integral formula to
get ∫

C

f(z) dz =

∫
C

g(z)

(z − i)2
dz = 2iπg′(i).

Now note that

g′(z) =
− sin z

z − 4i
− cos z

(z − 4i)2

and therefore

g′(i) =
− sin i

−3i
− cos i

(−3i)2
=

ei
2 − e−i2

−6
− ei

2

+ e−i2

−18
=

e− e−1

6
+
e−1 + e

18
=

2e− e−1

9
.

So finally, we get ∫
C

f(z) dz = 2iπ
2e− e−1

9
.

(3) f is analytic on C \ {i, 2i,−2i} and i and 2i are interior to C. So we first
introduce two contours C1 and C2 chosen as on the picture below.
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1

i

2i
C

C1

C2

Since f is analytic on and between C and C1, C2, we can apply the theorem
of Section 53 to get∫

C

f(z) dz =

∫
C1

f(z) dz +

∫
C2

f(z) dz.

For the integral on C1, we set g(z) =
1

(z+2i)(z−2i) =
1

z2+4 , which is analytic

on and within C1, and apply Cauchy integral formula to get∫
C1

f(z) dz =

∫
C1

g(z)

(z − i)2
dz = 2iπg′(i).

Now note that g′(z) = − 2z
(z2+4)2 and therefore

g′(i) = − 2i

(i2 + 4)2
= − 2i

32
= −2i

9

So we get ∫
C1

f(z) dz =
4π

9
.

For the integral on C2, we set g(z) = 1
(z−i)2(z+2i) , which is analytic on and

within C2, and apply Cauchy integral formula to get∫
C2

f(z) dz =

∫
C2

g(z)

z − 2i
dz = 2iπg(2i) = 2iπ

1

i2 · 4i
= −π

2

So finally, we get ∫
C

f(z) dz =
4π

9
− π

2
= − π

18
.

Exercise 2. [6 points] Let M,R > 0. Let f be an analytic on and within the
circle centered at 0 with radius R. Assume |f(z)| ≤ M for any |z| ≤ R. Let n be
a nonegative integer and 0 < ρ < R. For |z| ≤ ρ, find an upper bound for |f (n)(z)|
which depends only on M,R, ρ, n.

Solution. Let |z| ≤ ρ and r > 0. Let Cr be the circle centered at z with radius
r positively oriented. Note that Cr is included in the region {w : |w| ≤ R} if and
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only if r ≤ R − |z|. In that case, f is analytic on and within Cr and |f(w)| ≤ M
for any w on Cr: hence, by Cauchy’s inequality

|f (n)(z)| ≤ Mn!

rn
.

Hence, we want to take r as large as possible to get the better bound possible. So
we take r = R − |z| and, in order to get a bound that does not depend on z, we
use the lower bound r ≥ R− ρ. Hence, we finally get

|f (n)(z)| ≤ Mn!

(R− ρ)n
.

Exercise 3. [6 points] Let f be an entire function. Assume there is a nonnegative
integer n and a constant M > 0 such that |f(z)| ≤ M |z|n for any z ∈ C. Prove f
is a polynomial.
Hint: You can first prove that f (n+1)(z) = 0 using ideas similar to the proof of
Liouville’s theorem.

Solution. Let z0 ∈ C and R > 0. Let C be the circle centered at z0 with radius R
positively oriented. Then, f is analytic on and within C. Moreover, for z on C, we
have |z| ≤ |z − z0| + |z0| = R + |z0|) and |f(z)| ≤ M |z|n ≤ M(R + |z0|)n. Hence,
by Cauchy’s inequality

|f (n+1)(z0)| ≤
M(R+ |z0|)n(n+ 1)!

Rn+1
=

1

R
·M(n+ 1)!

(
1 +

|z0|
R

)n

.

Now, we let R → ∞ (letting z0 fixed). In particular, if R ≥ |z0|, we have 1+ |z0|
R ≤ 2

and so

|f (n+1)(z0)| ≤
1

R
·M(n+ 1)!2n.

This is arbitrarily small whenR is sufficiently large, so we deduce that |f (n+1)(z0)| =
0. We proved that f (n+1)(z) = 0 for any z ∈ C. It follows that f is a polynomial.

Let’s prove this last step. We proceed by induction on n to prove: for n ≥ 0, if a
function f satisfies f (n+1)(z) = 0 for any z ∈ C, then f is a polynomial of a degree
at most n.

• Basis step: We take n = 0. Let f be a function such that f ′(z) = 0 for
any z ∈ C. Then, since antiderivatives on a domain (C is a domain) are
unique up to an additive constant and 0 is an antiderivative of 0, we get
that f is a constant, that is a polynomial of degree at most 0.

• Inductive step: Let k ≥ 0 be an integer. Assume the result is true for
n = k, we want to prove it for n = k + 1. For this, let f be a function
such that f (k+2)(z) = 0 for any z ∈ C. Let g = f ′. Then g(k+1)(z) = 0 for
any z ∈ C. So, by induction hypothesis, we get that g is a polynomial of
degree at most k. We can write

g(z) =

k∑
j=0

ajz
j ,
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for some a0, . . . , ak ∈ C. Hence, an antiderivative of g is

G(z) =

k∑
j=0

aj
j + 1

zj+1 =

k+1∑
ℓ=1

aℓ−1

ℓ
zℓ.

Since antiderivatives on a domain are unique up to an additive constant,
we deduce that f equals G up to an additive constant, and therefore is a
polynomial of degree at most k + 1. This proves the result for n = k + 1.

This concludes the proof by induction. We can therefore conclude the exercise by
saying that f has to be a polynomial of a degree at most n.


