Complex analysis, homework 9, solutions.

Exercise 1. [18 points] Let C be the arc defined by

(1) = et ifo<t<1,
Sl -346(t—1) if1<t<2,

Evaluate the integral [, f(z)dz for the following functions f (give your answer in
x + iy form).
cos z

(1) f(z) = W;
(2) f(z) = m,

(3) f(2) = (z —1)%(z + 2i)(z — 21)

Solution. Note that C is a simple closed contour positively oriented (this is the
boundary of the upper half disk about 0 with radius 3).

(1) f is analytic on C\ {—i,4}. In particular, f is analytic on and within C,
so by Cauchy-Goursat theorem,

/C F(z)dz =0,

(2) f is analytic on C\ {7,4i} and i is interior to C'. So we set g(z) = &£
which is analytic on and within C' and apply Cauchy integral formula to
get

/Cf(z) dz = /C (29(23)2 dz = 2irg (4).

Now note that

() = —sinz Cos z
g z—4i (2 —49)?
and therefore
/(i)— —sin?  cost _eiz—e_i2 eiz—&-e_iz _6—6_1+6_1+6_26—6_1
IW= "3 T2 T T 6 18 6 8 9

So finally, we get

1
/ f(z)dz = 2i7r267€.
c 9

(3) f is analytic on C\ {%,2i,—2i} and ¢ and 2i are interior to C. So we first
introduce two contours Cy and Cs chosen as on the picture below.
1



1

Since f is analytic on and between C' and C7, Cs, we can apply the theorem
of Section 53 to get

/ f(z)dz = f(z)dz+ [ f(z)dz.
C C1 Cs

For the integral on C7, we set g(z) = (z+2i)1(z_2i) = 2214, which is analytic

on and within C, and apply Cauchy integral formula to get

= 9(2) 2z = 2img' (i
le(z)dz-/c1 d 2imyg (7).

(z—1)?
Now note that ¢'(z) = —(:522#)2 and therefore
So we get
f(z)dz = 4—7T
c, 9

For the integral on Cs, we set g(z) = m7 which is analytic on and

within C5, and apply Cauchy integral formula to get

9(2) . . . 1 T
dz = ———dz=2 21) =2 ——— = ——
Ca f(Z) ? /Cz z 2 : ”rg( Z) . i 4i 2

So finally, we get

™

i 7

Exercise 2. [6 points] Let M, R > 0. Let f be an analytic on and within the
circle centered at 0 with radius R. Assume |f(z)] < M for any |z| < R. Let n be
a nonegative integer and 0 < p < R. For |z| < p, find an upper bound for |f(™(z)|
which depends only on M, R, p,n.

Solution. Let |z] < p and r > 0. Let C, be the circle centered at z with radius
r positively oriented. Note that C, is included in the region {w : |w| < R} if and
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only if » < R — |z|. In that case, f is analytic on and within C, and |f(w)| < M
for any w on C,.: hence, by Cauchy’s inequality

£ () < M0

,rn

Hence, we want to take r as large as possible to get the better bound possible. So
we take r = R — |z| and, in order to get a bound that does not depend on z, we
use the lower bound r > R — p. Hence, we finally get

™) (z —_
OIS

Exercise 3. [6 points] Let f be an entire function. Assume there is a nonnegative
integer n and a constant M > 0 such that |f(z)| < M|z|" for any z € C. Prove f
is a polynomial.

Hint: You can first prove that f(®*+9(z) = 0 using ideas similar to the proof of
Liouville’s theorem.

Solution. Let zg € C and R > 0. Let C be the circle centered at zg with radius R
positively oriented. Then, f is analytic on and within C'. Moreover, for z on C, we
have |z| < |z — 2| + |20] = R + |20]) and |f(2)| < M|z|™ < M(R + |2o|)". Hence,
by Cauchy’s inequality

MR+ |z))"(n+1)! 1 120)\ "
(nt1) _ 1 [zl
1D (20)] < o == M+ (1455 )

[z0

Now, we let R — oo (letting zo fixed). In particular, if R > |2o|, we have 145+ < 2
and so
1
R
This is arbitrarily small when R is sufficiently large, so we deduce that | f(* 1) (z0)| =
0. We proved that f("*1)(z) = 0 for any z € C. Tt follows that f is a polynomial.
Let’s prove this last step. We proceed by induction on n to prove: for n > 0, if a
function f satisfies f(”H)(z) = 0 for any z € C, then f is a polynomial of a degree
at most n.

e Basis step: We take n = 0. Let f be a function such that f'(z) = 0 for
any z € C. Then, since antiderivatives on a domain (C is a domain) are
unique up to an additive constant and 0 is an antiderivative of 0, we get
that f is a constant, that is a polynomial of degree at most 0.

e Inductive step: Let k£ > 0 be an integer. Assume the result is true for
n = k, we want to prove it for n = k 4+ 1. For this, let f be a function
such that f(*+2)(z) = 0 for any z € C. Let g = f’. Then g*+V(2) = 0 for
any z € C. So, by induction hypothesis, we get that g is a polynomial of
degree at most k. We can write

£ (20)] < & - M(n + 1)127,



for some ag,...,ar € C. Hence, an antiderivative of g is
k 4 k+1
G(z) = Z ,aijszrl = Ezf.
=0’ +1 =1 ¢

Since antiderivatives on a domain are unique up to an additive constant,
we deduce that f equals G up to an additive constant, and therefore is a
polynomial of degree at most k + 1. This proves the result for n = k + 1.

This concludes the proof by induction. We can therefore conclude the exercise by
saying that f has to be a polynomial of a degree at most n.



