Complex analysis, homework 9, solutions.

Exercise 1. [18 points] Let C be the arc defined by

$$
z(t)= \begin{cases}3 e^{i \pi t} & \text { if } 0 \leq t \leq 1 \\ -3+6(t-1) & \text { if } 1 \leq t \leq 2\end{cases}
$$

Evaluate the integral $\int_{C} f(z) \mathrm{d} z$ for the following functions f (give your answer in $x+i y$ form).
(1) $f(z)=\frac{\cos z}{(z+i)^{2}(z-4)}$;
(2) $f(z)=\frac{\cos z}{(z-i)^{2}(z-4 i)}$;
(3) $f(z)=\frac{1}{(z-i)^{2}(z+2 i)(z-2 i)}$.

Solution. Note that C is a simple closed contour positively oriented (this is the boundary of the upper half disk about 0 with radius 3).
(1) f is analytic on $\mathbb{C} \backslash\{-i, 4\}$. In particular, f is analytic on and within C, so by Cauchy-Goursat theorem,

$$
\int_{C} f(z) \mathrm{d} z=0
$$

(2) f is analytic on $\mathbb{C} \backslash\{i, 4 i\}$ and i is interior to C. So we set $g(z)=\frac{\cos z}{z-4 i}$ which is analytic on and within C and apply Cauchy integral formula to get

$$
\int_{C} f(z) \mathrm{d} z=\int_{C} \frac{g(z)}{(z-i)^{2}} \mathrm{~d} z=2 i \pi g^{\prime}(i)
$$

Now note that

$$
g^{\prime}(z)=\frac{-\sin z}{z-4 i}-\frac{\cos z}{(z-4 i)^{2}}
$$

and therefore

$$
g^{\prime}(i)=\frac{-\sin i}{-3 i}-\frac{\cos i}{(-3 i)^{2}}=\frac{e^{i^{2}}-e^{-i^{2}}}{-6}-\frac{e^{i^{2}}+e^{-i^{2}}}{-18}=\frac{e-e^{-1}}{6}+\frac{e^{-1}+e}{18}=\frac{2 e-e^{-1}}{9}
$$

So finally, we get

$$
\int_{C} f(z) \mathrm{d} z=2 i \pi \frac{2 e-e^{-1}}{9}
$$

(3) f is analytic on $\mathbb{C} \backslash\{i, 2 i,-2 i\}$ and i and $2 i$ are interior to C. So we first introduce two contours C_{1} and C_{2} chosen as on the picture below.

Since f is analytic on and between C and C_{1}, C_{2}, we can apply the theorem of Section 53 to get

$$
\int_{C} f(z) \mathrm{d} z=\int_{C_{1}} f(z) \mathrm{d} z+\int_{C_{2}} f(z) \mathrm{d} z
$$

For the integral on C_{1}, we set $g(z)=\frac{1}{(z+2 i)(z-2 i)}=\frac{1}{z^{2}+4}$, which is analytic on and within C_{1}, and apply Cauchy integral formula to get

$$
\int_{C_{1}} f(z) \mathrm{d} z=\int_{C_{1}} \frac{g(z)}{(z-i)^{2}} \mathrm{~d} z=2 i \pi g^{\prime}(i)
$$

Now note that $g^{\prime}(z)=-\frac{2 z}{\left(z^{2}+4\right)^{2}}$ and therefore

$$
g^{\prime}(i)=-\frac{2 i}{\left(i^{2}+4\right)^{2}}=-\frac{2 i}{3^{2}}=-\frac{2 i}{9}
$$

So we get

$$
\int_{C_{1}} f(z) \mathrm{d} z=\frac{4 \pi}{9}
$$

For the integral on C_{2}, we set $g(z)=\frac{1}{(z-i)^{2}(z+2 i)}$, which is analytic on and within C_{2}, and apply Cauchy integral formula to get

$$
\int_{C_{2}} f(z) \mathrm{d} z=\int_{C_{2}} \frac{g(z)}{z-2 i} \mathrm{~d} z=2 i \pi g(2 i)=2 i \pi \frac{1}{i^{2} \cdot 4 i}=-\frac{\pi}{2}
$$

So finally, we get

$$
\int_{C} f(z) \mathrm{d} z=\frac{4 \pi}{9}-\frac{\pi}{2}=-\frac{\pi}{18}
$$

Exercise 2. [6 points] Let $M, R>0$. Let f be an analytic on and within the circle centered at 0 with radius R. Assume $|f(z)| \leq M$ for any $|z| \leq R$. Let n be a nonegative integer and $0<\rho<R$. For $|z| \leq \rho$, find an upper bound for $\left|f^{(n)}(z)\right|$ which depends only on M, R, ρ, n.

Solution. Let $|z| \leq \rho$ and $r>0$. Let C_{r} be the circle centered at z with radius r positively oriented. Note that C_{r} is included in the region $\{w:|w| \leq R\}$ if and
only if $r \leq R-|z|$. In that case, f is analytic on and within C_{r} and $|f(w)| \leq M$ for any w on C_{r} : hence, by Cauchy's inequality

$$
\left|f^{(n)}(z)\right| \leq \frac{M n!}{r^{n}}
$$

Hence, we want to take r as large as possible to get the better bound possible. So we take $r=R-|z|$ and, in order to get a bound that does not depend on z, we use the lower bound $r \geq R-\rho$. Hence, we finally get

$$
\left|f^{(n)}(z)\right| \leq \frac{M n!}{(R-\rho)^{n}}
$$

Exercise 3. [6 points] Let f be an entire function. Assume there is a nonnegative integer n and a constant $M>0$ such that $|f(z)| \leq M|z|^{n}$ for any $z \in \mathbb{C}$. Prove f is a polynomial.
Hint: You can first prove that $f^{(n+1)}(z)=0$ using ideas similar to the proof of Liouville's theorem.

Solution. Let $z_{0} \in \mathbb{C}$ and $R>0$. Let C be the circle centered at z_{0} with radius R positively oriented. Then, f is analytic on and within C. Moreover, for z on C, we have $\left.|z| \leq\left|z-z_{0}\right|+\left|z_{0}\right|=R+\left|z_{0}\right|\right)$ and $|f(z)| \leq M|z|^{n} \leq M\left(R+\left|z_{0}\right|\right)^{n}$. Hence, by Cauchy's inequality

$$
\left|f^{(n+1)}\left(z_{0}\right)\right| \leq \frac{M\left(R+\left|z_{0}\right|\right)^{n}(n+1)!}{R^{n+1}}=\frac{1}{R} \cdot M(n+1)!\left(1+\frac{\left|z_{0}\right|}{R}\right)^{n}
$$

Now, we let $R \rightarrow \infty$ (letting z_{0} fixed). In particular, if $R \geq\left|z_{0}\right|$, we have $1+\frac{\left|z_{0}\right|}{R} \leq 2$ and so

$$
\left|f^{(n+1)}\left(z_{0}\right)\right| \leq \frac{1}{R} \cdot M(n+1)!2^{n}
$$

This is arbitrarily small when R is sufficiently large, so we deduce that $\left|f^{(n+1)}\left(z_{0}\right)\right|=$ 0 . We proved that $f^{(n+1)}(z)=0$ for any $z \in \mathbb{C}$. It follows that f is a polynomial.

Let's prove this last step. We proceed by induction on n to prove: for $n \geq 0$, if a function f satisfies $f^{(n+1)}(z)=0$ for any $z \in \mathbb{C}$, then f is a polynomial of a degree at most n.

- Basis step: We take $n=0$. Let f be a function such that $f^{\prime}(z)=0$ for any $z \in \mathbb{C}$. Then, since antiderivatives on a domain (\mathbb{C} is a domain) are unique up to an additive constant and 0 is an antiderivative of 0 , we get that f is a constant, that is a polynomial of degree at most 0 .
- Inductive step: Let $k \geq 0$ be an integer. Assume the result is true for $n=k$, we want to prove it for $n=k+1$. For this, let f be a function such that $f^{(k+2)}(z)=0$ for any $z \in \mathbb{C}$. Let $g=f^{\prime}$. Then $g^{(k+1)}(z)=0$ for any $z \in \mathbb{C}$. So, by induction hypothesis, we get that g is a polynomial of degree at most k. We can write

$$
g(z)=\sum_{j=0}^{k} a_{j} z^{j}
$$

for some $a_{0}, \ldots, a_{k} \in \mathbb{C}$. Hence, an antiderivative of g is

$$
G(z)=\sum_{j=0}^{k} \frac{a_{j}}{j+1} z^{j+1}=\sum_{\ell=1}^{k+1} \frac{a_{\ell-1}}{\ell} z^{\ell}
$$

Since antiderivatives on a domain are unique up to an additive constant, we deduce that f equals G up to an additive constant, and therefore is a polynomial of degree at most $k+1$. This proves the result for $n=k+1$.
This concludes the proof by induction. We can therefore conclude the exercise by saying that f has to be a polynomial of a degree at most n.

