Complex analysis, homework 9 due April 11th.

Exercise 1. [18 points] Let C be the arc defined by

$$
z(t)= \begin{cases}3 e^{i \pi t} & \text { if } 0 \leq t \leq 1 \\ -3+6(t-1) & \text { if } 1 \leq t \leq 2\end{cases}
$$

Evaluate the integral $\int_{C} f(z) \mathrm{d} z$ for the following functions f (give your answer in $x+i y$ form).
(1) $f(z)=\frac{\cos z}{(z+i)^{2}(z-4)}$;
(2) $f(z)=\frac{\cos z}{(z-i)^{2}(z-4 i)}$;
(3) $f(z)=\frac{1}{(z-i)^{2}(z+2 i)(z-2 i)}$.

Exercise 2. [6 points] Let $M, R>0$. Let f be an analytic on and within the circle centered at 0 with radius R. Assume $|f(z)| \leq M$ for any $|z| \leq R$. Let n be a nonegative integer and $0<\rho<R$. For $|z| \leq \rho$, find an upper bound for $\left|f^{(n)}(z)\right|$ which depends only on M, R, ρ, n.

Exercise 3. [6 points] Let f be an entire function. Assume there is a nonnegative integer n and a constant $M>0$ such that $|f(z)| \leq M|z|^{n}$ for any $z \in \mathbb{C}$. Prove f is a polynomial.
Hint: You can first prove that $f^{(n+1)}(z)=0$ using ideas similar to the proof of Liouville's theorem.

