Complex analysis, homework 9 due April 11th.

Exercise 1. [18 points] Let C be the arc defined by

$$z(t) = \begin{cases} 3e^{i\pi t} & \text{if } 0 \le t \le 1, \\ -3 + 6(t - 1) & \text{if } 1 \le t \le 2, \end{cases}$$

Evaluate the integral $\int_C f(z) dz$ for the following functions f (give your answer in x + iy form).

(1)
$$f(z) = \frac{\cos z}{(z+i)^2(z-4)}$$

(2)
$$f(z) = \frac{\cos z}{(z-i)^2(z-4i)}$$
;

(1)
$$f(z) = \frac{\cos z}{(z+i)^2(z-4)};$$

(2) $f(z) = \frac{\cos z}{(z-i)^2(z-4i)};$
(3) $f(z) = \frac{1}{(z-i)^2(z+2i)(z-2i)}.$

Exercise 2. [6 points] Let M, R > 0. Let f be an analytic on and within the circle centered at 0 with radius R. Assume $|f(z)| \leq M$ for any $|z| \leq R$. Let n be a nonegative integer and $0 < \rho < R$. For $|z| \le \rho$, find an upper bound for $|f^{(n)}(z)|$ which depends only on M, R, ρ, n .

Exercise 3. [6 points] Let f be an entire function. Assume there is a nonnegative integer n and a constant M>0 such that $|f(z)|\leq M|z|^n$ for any $z\in\mathbb{C}$. Prove f

Hint: You can first prove that $f^{(n+1)}(z) = 0$ using ideas similar to the proof of Liouville's theorem.