Complex analysis, homework 8, solutions

Exercise 1. [6 points] Let C be the arc defined by

$$
z(t)= \begin{cases}\pi e^{i \pi t} & \text { if } 0 \leq t \leq 1 \\ -\pi+i(t-1) \ln (2) & \text { if } 1 \leq t \leq 2\end{cases}
$$

and $f(z)=\cos (z) \sin ^{2}(z)$. Calculate the following integral (give your answer in $x+i y$ form)

$$
\int_{C} f(z) \mathrm{d} z
$$

Solution. C is a contour because, at any $t \in[0,1) \cup(1,2], z(t)$ is differentiable, $z^{\prime}(t)$ is continuous and nonzero. The function f has an antiderivative $F(z)=\frac{1}{3}(\sin (z))^{3}$ on the domain \mathbb{C} and the contour C lies entirely in \mathbb{C} so by the theorem of Section 48,

$$
\int_{C} f(z) \mathrm{d} z=F(z(2))-F(z(0))=F(-\pi+i \ln 2)-F(\pi) .
$$

Note that $F(\pi)=0$ and
$\sin (-\pi+i \ln 2)=\frac{e^{i(-\pi+i \ln 2)}-e^{-i(-\pi+i \ln 2)}}{2 i}=\frac{e^{-i \pi} e^{-\ln 2}-e^{i \pi} e^{\ln 2}}{2 i}=\frac{-\frac{1}{2}+2}{2 i}=-\frac{3 i}{4}$
so that $F(-\pi+i \ln 2)=\frac{9 i}{64}$. Finally, we get

$$
\int_{C} f(z) \mathrm{d} z=\frac{9 i}{64} .
$$

Exercise 2. [6 points] Let $z_{0} \in \mathbb{C}$ and $r>0$. Let C be the positively oriented circle of radius r about z_{0} given by

$$
z(\theta)=z_{0}+r e^{i \theta}, \quad 0 \leq \theta \leq 2 \pi
$$

Evaluate the following integral (give your answer in terms of z_{0})

$$
\int_{C} \frac{z+i}{z-z_{0}} \mathrm{~d} z
$$

Solution. Using the definition of contour integrals

$$
\begin{aligned}
\int_{C} \frac{z+i}{z-z_{0}} \mathrm{~d} z & =\int_{0}^{2 \pi} \frac{z_{0}+r e^{i \theta}+i}{z_{0}+r e^{i \theta}-z_{0}} r i e^{i \theta} \mathrm{~d} \theta \\
& =\int_{0}^{2 \pi} \frac{z_{0}+i+r e^{i \theta}}{r e^{i \theta}} r i e^{i \theta} \mathrm{~d} \theta \\
& =\int_{0}^{2 \pi}\left(i z_{0}-1+i r e^{i \theta}\right) \mathrm{d} \theta \\
& =2 \pi\left(i z_{0}-1\right)+\left[r e^{i \theta}\right]_{0}^{2 \pi} \\
& =2 \pi\left(i z_{0}-1\right)
\end{aligned}
$$

Alternative approach: With Cauchy integral formula applied with $f(z)=z+i$ which is analytic on and within C, we have

$$
\int_{C} \frac{z+i}{z-z_{0}} \mathrm{~d} z=2 i \pi f\left(z_{0}\right)=2 i \pi\left(z_{0}+i\right)=2 \pi\left(i z_{0}-1\right)
$$

Exercise 3. [6 points] Let C be a closed contour. Let f be a piecewise continuous function on C. Prove that the integral $\int_{C} f(z) \mathrm{d} z$ does not depend of the choice of the initial point of the contour. More precisely, assume C is given by $z=z(t)$, $a \leq t \leq b$, fix some $t_{0} \in[a, b]$ and define C^{\prime} by

$$
z=w(t)= \begin{cases}z(t) & \text { if } t_{0} \leq t \leq b \\ z(t-b+a) & \text { if } b \leq t \leq b-a+t_{0}\end{cases}
$$

Then you have to prove $\int_{C} f(z) \mathrm{d} z=\int_{C^{\prime}} f(z) \mathrm{d} z$.
Solution. Using the definition of contour integrals

$$
\begin{aligned}
\int_{C^{\prime}} f(z) \mathrm{d} z & =\int_{t_{0}}^{b-a+t_{0}} f(w(t)) w^{\prime}(t) \mathrm{d} t \\
& =\int_{t_{0}}^{b} f(z(t)) z^{\prime}(t) \mathrm{d} t+\int_{b}^{b-a+t_{0}} f(z(t-b+a)) z^{\prime}(t-b+a) \mathrm{d} t
\end{aligned}
$$

In the second term we use the change of variable $s=t-b+a$, noting that when t goes from b to $b-a+t_{0}, s$ goes from a to t_{0}. Hence, we get
$\int_{C^{\prime}} f(z) \mathrm{d} z=\int_{t_{0}}^{b} f(z(t)) z^{\prime}(t) \mathrm{d} t+\int_{a}^{t_{0}} f(z(s)) z^{\prime}(s) \mathrm{d} s=\int_{a}^{b} f(z(t)) z^{\prime}(t) \mathrm{d} t=\int_{C} f(z) \mathrm{d} z$,
where we replaced s by t (it is just a dummy variable) and then combined both integrals.

Exercise 4. [6 points] Let C be the arc defined by

$$
z(t)= \begin{cases}i t & \text { if } 0 \leq t \leq 1 \\ i+(t-1) & \text { if } 1 \leq t \leq 2 \\ 1+i-i(t-2) & \text { if } 2 \leq t \leq 3 \\ 1-(t-3) & \text { if } 3 \leq t \leq 4\end{cases}
$$

Evaluate the following integral (give your answer in $x+i y$ form)

$$
\int_{C} \frac{e^{z^{2}}}{z^{2}+4} \mathrm{~d} z
$$

Solution. First note that C is a contour because, at any $t \in[0,1) \cup(1,2) \cup(2,3) \cup$ $(3,4], z(t)$ is differentiable, $z^{\prime}(t)$ is continuous and nonzero. Moreover, note that C is the square with vertices $0, i, 1+i, 1$, which is a simple closed contour. But $\frac{e^{z^{2}}}{z^{2}+4}$ is analytic everywhere except when $z^{2}+4=0$ that is when $z= \pm 2 i$, which are not on or within C. So by Cauchy-Goursat theorem,

$$
\int_{C} \frac{e^{z^{2}}}{z^{2}+4} \mathrm{~d} z=0
$$

Exercise 5. [6 points] Let C be the following contour (its exact definition does not matter but some of its properties do):

Let $f(z)=$ P.V. $z^{1 / 3}$ for $z \neq 0$. Evaluate the following integral (give your answer in $x+i y$ form)

$$
\int_{C} f(z) \mathrm{d} z
$$

Solution. Let $F(z)=\frac{3}{4}$ P.V. $z^{4 / 3}$ for $z \neq 0$. This function is analytic on $\mathbb{C} \backslash \mathbb{R}_{-}$ and we have seen that its derivative is, for any $z \in \mathbb{C} \backslash \mathbb{R}_{-}$,

$$
F^{\prime}(z)=\frac{3}{4} \cdot \frac{4}{3} \text { P.V. } z^{(4 / 3)-1}=\text { P.V. } z^{1 / 3}=f(z)
$$

Therefore, f has an antiderivative on $\mathbb{C} \backslash \mathbb{R}_{-}$. But the contour C is included in $\mathbb{C} \backslash \mathbb{R}_{-}$, so by the theorem of Section 48 ,

$$
\int_{C} f(z) \mathrm{d} z=F(-i)-F(-2+2 i)
$$

since $-2+2 i$ is the initial point of C and $-i$ the final point. With $-i=e^{-i \pi / 2}$, we get

$$
\begin{aligned}
F(-i) & =\frac{3}{4} \exp \left(\frac{4}{3} \log (-i)\right)=\frac{3}{4} \exp \left(\frac{4}{3} \cdot\left(-\frac{i \pi}{2}\right)\right)=\frac{3}{4} \exp \left(-\frac{2 i \pi}{3}\right) \\
& =\frac{3}{4}\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right)=-\frac{3}{8}-\frac{3 \sqrt{3}}{8} i
\end{aligned}
$$

With $-2+2 i=2^{3 / 2} e^{3 i \pi / 4}$, we get

$$
\begin{aligned}
F(-2+2 i) & =\frac{3}{4} \exp \left(\frac{4}{3} \log (-2+2 i)\right)=\frac{3}{4} \exp \left(\frac{4}{3} \cdot\left(\ln \left(2^{3 / 2}\right)+\frac{3 i \pi}{4}\right)\right) \\
& =\frac{3}{4} \exp (2 \ln (2)+i \pi)=\frac{3}{4} \cdot 2^{2} e^{i \pi}=-3
\end{aligned}
$$

So finally we get

$$
\int_{C} f(z) \mathrm{d} z=-\frac{3}{8}-\frac{3 \sqrt{3}}{8} i+3=\frac{21}{8}-\frac{3 \sqrt{3}}{8} i
$$

